
Updating the Vertex Separation of a Dynamically
Changing Tree

by

Peter Olsar

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2004

c©Peter Olsar 2004

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made available electronically to the public.

iii

Abstract

This thesis presents several algorithms that update the vertex separation of a

tree after the tree is modified; the vertex separation of a graph measures the largest

number of vertices to the left of and including a vertex that are adjacent to ver-

tices to the right of the vertex, when the vertices in the graph are arranged in

the best possible linear ordering. Vertex separation was introduced by Lipton and

Tarjan and has since been applied mainly in VLSI design. The tree is modified by

either attaching another tree or removing a subtree. The first algorithm handles

the special case when another tree is attached to the root, and the second algo-

rithm updates the vertex separation after a subtree of the root is removed. The

last two algorithms solve the more general problem when subtrees are attached to

or removed from arbitrary vertices; they have good running time performance only

in the amortized sense. The running time of all our algorithms is sublinear in the

number of vertices in the tree, assuming certain information is precomputed for

the tree. This improves upon current algorithms by Skodinis and Ellis, Sudbor-

ough, and Turner, both of which have linear running time for this problem. Lower

and upper bounds on the vertex separation of a general graph are also derived.

Furthermore, analogous bounds are presented for the cutwidth of a general graph,

where the cutwidth of a graph equals the maximum number of edges that cross over

a vertex, when the vertices in the graph are arranged in the best possible linear

ordering.

v

Acknowledgements

First of all, I would like to thank my supervisors, Naomi Nishimura and Prabhakar

Ragde, who have given me plenty of valuable advice, support, and encouragement

throughout the course of my research and writing of this thesis. I am also thankful

to my readers, Daniel Brown and Ming Li, who agreed to review the thesis and

suggested improvements. I am indebted to Jason Hinek for his help with LATEX and

Unix.

I would also like to thank my friends who have contributed positively to my

experience as a graduate student at the University of Waterloo. Jason Hinek for

stimulating conversations in the office and games of tennis. Yongtao Hu for being

such a great friend. Jeff Farrar for teaching me a lot about history. Ethan Toombs

and Anmar Khadra for the weekly squash games. Alex Tumanov and Bohdan

Krushelnytskyy for many insightful discussions. Finally, all residents of Minota

Hagey Residence, my home for two years, have my thanks for creating such a great

community.

vii

for my mother and step-father

ix

Contents

1 Introduction 1

2 Definitions, Notation, and Basic Results 5

2.1 Layouts, Vertex Separation, and Cutwidth 5

2.2 Graphs . 9

2.3 Trees . 12

3 Bounds on Vertex Separation and Cutwidth 23

4 Vertex Separation of Trees (Preliminaries) 29

4.1 Structure of a Tree and Its Vertex Separation 30

4.2 Vertex Labelling . 35

5 Attaching Trees at Their Roots 67

5.1 Description of the Algorithm . 68

5.2 Correctness and Running Time of the Algorithm 72

5.3 A Different Algorithm for Computing Vertex Separation 93

6 Removing a Subtree Yielded by the Root 97

6.1 VS-Ordered Trees and Strong Labelling 98

6.2 Speeding Up Algorithm COMBINE-LABELS 101

7 Modifying a Tree at an Arbitrary Vertex 109

7.1 Binary Representation of a Vertex Label 113

7.2 Update Algorithms . 117

xi

8 Conclusion and Open Problems 123

A Proof of Lemma 7.7 129

Bibliography 135

xii

Chapter 1

Introduction

The objective of a graph layout problem [DPS02] is to find a linear ordering, or

layout, of the input graph’s vertices in a way that optimizes a certain objective

function. The decision versions of many layout problems are NP-complete on gen-

eral graphs, but become tractable on special classes of graphs, such as trees. This

thesis is mainly concerned with this class of graphs.

We look at two types of layout problems: the minimum vertex separation prob-

lem and the minimum cutwidth problem. The minimum vertex separation problem

was introduced as a tool for finding good planar graph separations [LT79]; a graph

separation is a partition of the graph’s vertices into several sets such that a certain

objective function, such as the number of edges with endpoints in different sets, is

minimized. Further applications of the minimum vertex separation problem occur

in algorithms for VLSI design [Lei80, Möh90] and in complexity theory [CS76]. The

minimum cutwidth problem was first used as a model for the minimum number of

channels required to lay out a circuit on a line [AH73]. It has since been applied

in information retrieval [Bot93], automatic graph drawing [Mut95], and network

reliability [Kar00].

Informally, the vertex separation of a layout is the maximum number of vertices

to the left of or including a vertex that are adjacent to vertices to the right of that

vertex. The cutwidth of the layout is the maximum number of edges such that one

endpoint is to the left of a vertex or is equal to that vertex, and the other endpoint

is to the right of the vertex. These concepts will be defined rigorously in Chapter

1

2 CHAPTER 1. INTRODUCTION

2. The goal is to find a layout, called an optimal layout, that minimizes either

vertex separation or cutwidth. The vertex separation or cutwidth of a graph is this

minimum value.

The minimum vertex separation and cutwidth problems, especially the min-

imum vertex separation problem, turn out to be related quite closely to several

other well-known problems in theoretical computer science. Kinnersley showed that

the vertex separation and pathwidth of a graph are equivalent concepts [Kin92].

Pathwidth, a notion similar to treewidth, is an important metric in the theory of

graph minors [RS85]. Although pathwidth is both a shorter and more usual way of

referring to the concept, we will keep using the term ‘vertex separation,’ because

the results presented in this thesis are better described and understood by using

the original definition of vertex separation.

The edge search number problem on a graph [Par76], which involves finding the

minimum number of guards required to capture a mobile fugitive hiding in an edge

of the graph, is also closely related to the concept of vertex separation [EST94]; the

edge search number of a graph is greater than or equal to the vertex separation of

the graph, and it is not greater than the vertex separation plus two. The cutwidth

and edge search number of a graph are equal if the maximum degree of a vertex in

the graph is at most three [MS89]. The related node search number problem on a

graph was shown to be equal to the vertex separation of the graph plus one [KP86].

Both the minimum vertex separation and cutwidth problems are NP-hard on

general graphs [Len81, Gav97]. The minimum vertex separation problem remains

NP-hard on planar graphs with maximum degree three [MS89, MS88]. The min-

imum cutwidth problem is also NP-hard on planar graphs with maximum degree

three [MS88] and grid graphs [DPPS01].

Both problems have polynomial-time algorithms for trees. The vertex separation

of a tree with n vertices can be computed in O(n) time [EST94, Sko00]. The

algorithm due to Skodinis [Sko00] also computes a corresponding layout in linear

time. The algorithm due to Ellis, Sudborough, and Turner [EST94] takes O(n lg n)

time to compute an optimal layout, where lg n is the base-2 logarithm of n. The

first and only polynomial-time algorithm to date that computes the cutwidth and a

corresponding optimal layout of a tree runs inO(n lg n) time [Yan85]. The minimum

3

vertex separation problem is also solvable in polynomial time on graphs of bounded

treewidth [BK96] and multidimensional grids [BL91]. The classes of graphs for

which the cutwidth problem has a polynomial-time algorithm include hypercubes

[Har64] and graphs of bounded treewidth and degree [TSB01].

The main results in this thesis are four algorithms that update the vertex sep-

aration of a rooted tree after a subtree is either attached to or removed from it. In

order to perform such an update quickly, certain additional information is stored

and updated at all vertices of the tree. The first algorithm solves the special case

when two trees are joined at their roots. It runs in O(lg n) time, where n is the

number of vertices in the resulting tree. The algorithm is described in Chapter 5.

The second algorithm (Chapter 6) updates the vertex separation of a tree after a

subtree of the root is removed; it runs in O
(
lg2 n

)
time and requires an approach

quite different from that used in the first algorithm. We remark that in this case,

n equals the number of vertices in the original tree, not in the tree resulting from

the subtree removal.

The third and fourth algorithms, presented in Chapter 7, solve the more general

problems of updating the vertex separation after a tree is attached to an arbitrary

vertex of another tree, and after a subtree of an arbitrary vertex is removed from

the tree, respectively. The algorithms run in O
(
mlog3 2 lg2m

)
amortized time over a

sequence of m tree additions or subtree removals, provided that each tree added or

subtree removed has a constant size independent of m. We emphasize that all these

bounds are strictly sublinear, making our algorithms asymptotically faster than the

current algorithms for computing the vertex separation of a tree [EST94, Sko00].

This thesis also presents and proves lower and upper bounds on the vertex

separation and cutwidth of a general graph (Chapter 3). Both upper bounds are

given in terms of the number of vertices in the graph; the lower bound on vertex

separation is given in terms of the minimum degree of a vertex in the graph, whereas

the lower bound on cutwidth is a function of the maximum vertex degree in the

graph.

Before presenting our results, we review basic notation, terminology, and results

that are used extensively in the rest of the thesis.

Chapter 2

Definitions, Notation, and Basic

Results

2.1 Layouts, Vertex Separation, and Cutwidth

A linear layout ϕ, or simply layout, of a graph G = (VG, EG) is a bijection from VG

to the set of integers {1, . . . , n = |VG|}. An integer i in the range of ϕ is also called

the ith position of ϕ, or simply a position of ϕ. Since layout ϕ is a bijection, the

inverse function ϕ−1 is well-defined. The vertices ϕ−1(1) and ϕ−1(n) are called the

leftmost and rightmost vertices of layout ϕ, respectively.

The goal of a layout problem on graph G is to find a layout of G so that a

certain objective function defined on graph G and layout ϕ is minimized. We will

define two such objective functions shortly. We remark that there are n! possible

layouts of graph G, so a brute-force search strategy over all layouts to minimize an

objective function is not practical, except for very small values of n.

Díaz, Petit, and Serna [DPS02] give a nice summary of graph layout problems

in a coherent framework. We will only need a small subset of their notation and

definitions, which we discuss below. We can associate various quantities with graph

G and layout ϕ that measure the “goodness” of the layout. Before introducing two

such quantities (vertex separation and cutwidth), it is convenient to define a few

auxiliary variables.

5

6 CHAPTER 2. DEFINITIONS, NOTATION, AND BASIC RESULTS

Many objective functions measuring how “good” a layout ϕ is are maxima over

all integers i, 1 ≤ i ≤ n, of a quantity that relates vertices u to vertices v where

ϕ(u) ≤ i and ϕ(v) > i. We therefore define the left side of position i, denoted by

L(i, ϕ,G), as the set of all vertices to the left of and including the vertex at position

i of ϕ; that is, L(i, ϕ,G) = {u ∈ VG : ϕ(u) ≤ i}. Similarly, the right side of position

i, denoted by R(i, ϕ,G), is the set of those vertices that lie to the right of the vertex

at the ith position of layout ϕ; formally, R(i, ϕ,G) = {v ∈ VG : ϕ(v) > i}. We

remark that this excludes the vertex at that position, in contrast to the definition

of L(i, ϕ,G); we denote by L̃(i, ϕ,G) the symmetric analogue of R(i, ϕ,G), that

is, L̃(i, ϕ,G) = L(i, ϕ,G) − {ϕ−1(i)}. Sets L(i, ϕ,G) and R(i, ϕ,G) form a binary

partition of vertex set VG. Figure 2.1 shows a graph G and one of its layouts ϕ

with ϕ(v5) = 1, ϕ(v6) = 2, ϕ(v1) = 3, and so on; also, L(4, ϕ,G) = {v5, v6, v1, v2}

and R(4, ϕ,G) = {v3, v4, v7}.

���
�

���
�

�������
�

�������
�

	�		�	

�������
�

�

�
�
�

�������
�

�������
�

�������
�

�������
�

�������
�

�������
�

�������
�

v7 v6 v1 v2

v5 v3 v4

v5 v6 v1 v2 v3 v4 v7

Figure 2.1: A graph G on seven vertices and one of its layouts ϕ. The dashed line
separates sets L(4, ϕ,G) and R(4, ϕ,G).

In general, a measure that relates the vertices in set L(i, ϕ,G) to those in set

R(i, ϕ,G) has low value if L(i, ϕ,G) and R(i, ϕ,G) are well-separated in some

sense. Two such measures are quite natural: the number of edges with endpoints

in different sets, and the number of vertices in one set that are adjacent to vertices

in the other set. An edge is said to cross over position i in layout ϕ if one of its

endpoints belongs to L(i, ϕ,G) and the other endpoint belongs to R(i, ϕ,G). In

Figure 2.1, all edges that cross over position 4 are drawn with thick lines. The edge

cut at position i, denoted θ(i, ϕ,G), is the number of edges that cross over position

2.1. LAYOUTS, VERTEX SEPARATION, AND CUTWIDTH 7

i; that is, θ(i, ϕ,G) = |{uv ∈ EG : u ∈ L(i, ϕ,G) and v ∈ R(i, ϕ,G)}|. The layout

in Figure 2.1 has θ(4, ϕ,G) = 4. The cutwidth of layout ϕ is the maximum edge

cut over all positions of ϕ; in other words, CW(ϕ,G) = max1≤i≤n θ(i, ϕ,G). In the

figure, the maximum edge cut of four occurs at positions 3, 4, and 5 of ϕ (vertices

v1, v2, and v3), and therefore CW(ϕ,G) = 4.

The objective of the minimum cutwidth problem is to find a layout ϕ∗ with the

minimum value of CW(ϕ∗, G); that is, we want a layout satisfying CW(ϕ∗, G) =

minϕCW(ϕ,G). This minimum value is called the cutwidth of graph G and is

denoted by CW(G). A layout of G whose cutwidth is CW(G) is said to be optimal

with respect to cutwidth, or simply optimal if the minimization requirement with

respect to cutwidth is clear from context.

The next quantity that we define measures the separation of sets L(i, ϕ,G)

and R(i, ϕ,G) in terms of vertex adjacency. The vertex cut at position i, denoted

δ(i, ϕ,G), equals the number of vertices in L(i, ϕ,G) that are adjacent to vertices in

R(i, ϕ,G). In other words, the vertex cut at position i is the number of vertices in

set L(i, ϕ,G) that are incident to edges that cross over position i. We can formally

define this measure as δ(i, ϕ,G) = |{u ∈ L(i, ϕ,G) : (∃v ∈ R(i, ϕ,G) : uv ∈ EG)}|.

In Figure 2.1, the vertices in the left side of position 4 that satisfy this condition are

v6, v1, and v2. Therefore, δ(4, ϕ,G) = 3. The vertex separation of layout ϕ is defined

as the maximum vertex cut over all positions: VS(ϕ,G) = max1≤i≤n δ(i, ϕ,G). In

the layout of Figure 2.1, the maximum vertex cut occurs at position 5 (vertex v3)

and is equal to four: VS(ϕ,G) = 4.

In the minimum vertex separation problem, we want to find a layout ϕ∗ that

minimizes the function VS(ϕ∗, G); that is, VS(ϕ∗, G) = minϕVS(ϕ,G). We call the

vertex separation of ϕ∗ the vertex separation of graph G, and denote it by VS(G).

Layout ϕ∗ is optimal with respect to vertex separation, or simply optimal if the

context of vertex separation is obvious. We also say that a layout corresponds to

a particular value of vertex separation (cutwidth) if it achieves that value of vertex

separation (cutwidth).

We observe that the vertex cut at a position i of layout ϕ is bounded above

by the edge cut at i, since for each vertex in set L(i, ϕ,G) that is adjacent to a

vertex in set R(i, ϕ,G), there is an edge crossing over position i. We conclude that

8 CHAPTER 2. DEFINITIONS, NOTATION, AND BASIC RESULTS

VS(G) ≤ CW(G). It is not obvious what an upper bound on CW(G) in terms of

VS(G) looks like, and it does not seem to have been investigated. It is certainly

an interesting question. We remark it is possible that the vertex cut at position 1

of layout ϕ is 1, while the edge cut at this position is n − 1; this situation occurs

when vertex ϕ−1(1) is adjacent to all other n− 1 vertices in graph G.

The layout in Figure 2.1 is optimal with respect to neither vertex separation

nor cutwidth. To see this, consider placing vertex v7 between vertices v6 and v1 in

the layout, as shown in Figure 2.2. Both the vertex separation and cutwidth of this

new layout are 3, as opposed to 4 in the old layout.

���
�

��

!�!!�!"
"

#�##�#$
$

%�%%�%&
&

'�''�'(
(

)�))�)*
*

v5 v6 v7 v1 v2 v3 v4

Figure 2.2: An alternative layout of the graph in Figure 2.1 with smaller values
of vertex separation and cutwidth.

Optimal layouts with respect to vertex separation and cutwidth are in general

different. Also, an optimal layout need not be unique: several different layouts of

a graph can have the same minimum vertex separation or cutwidth. An extreme

example of this fact is a graph with no edges, every layout of which is optimal with

both vertex separation and cutwidth 0.

We now state and prove an important lemma that appears in the survey of

Díaz, Petit, and Serna [DPS02]. The lemma below relates the vertex separation

and cutwidth of a graph and its subgraph. It is the foundation of most results that

come afterward.

Lemma 2.1 If H is a subgraph of a graph G, then VS(H) ≤ VS(G) and CW(H) ≤

CW(G). ¤

We next review some terminology and prove a few simple results for graphs that

will be needed later in this thesis.

2.2. GRAPHS 9

2.2 Graphs

For a graph G = (VG, EG), the minimum degree of any vertex in G is denoted by

ε(G). Likewise, ∆(G) denotes the maximum degree of a vertex in graph G. The

number of vertices in G is denoted by |G|. The subgraph H of graph G induced

by set VH ⊆ VG is the graph with vertex set VH and edge set EH , where an edge

uv belongs to EH if and only if uv ∈ EG and {u, v} ⊆ VH . The trivial graph, or

trivial tree, is the graph having only one vertex and no edges. The empty graph,

or empty tree, is the graph with no vertices. The vertex separation and cutwidth

of the empty graph are defined to be 0. A nonempty graph is a graph that is not

empty.

Lemma 2.2 If G is a connected graph, then VS(G) = 0 and CW(G) = 0 if and

only if G is the trivial or empty graph.

Proof. We prove the lemma by assuming the left side of the equivalence first, and

then assuming the right side. First, assume VS(G) = 0 and CW(G) = 0, and

suppose that G contains edge uv, so that it is not the empty or trivial graph.

Given an optimal layout ϕ of G with respect to vertex separation (cutwidth), we

may assume without loss of generality that ϕ(u) < ϕ(v). Then the vertex cut (edge

cut) at position ϕ(u) of ϕ is at least 1, which is a contradiction. Hence, G has no

edges and therefore is the trivial or empty graph; if G had more than one vertex,

it would not be connected. Second, assume graph G is the trivial or empty graph.

If G is the empty graph, then its vertex separation and cutwidth are both 0 by

definition. If G is the trivial graph containing the only vertex w, then there is only

one layout ϕ of G: ϕ(w) = 1. Both the vertex cut and edge cut at position 1 of ϕ

are 0, and thus we conclude that VS(G) = 0 and CW(G) = 0 hold. ¤

Our proofs of many results on the vertex separation of a tree require reasoning

about paths in the tree. A path in a graph G is a sequence P = u1, u2, . . . , um

of vertices in G such that there is an edge in G between each pair of consecutive

vertices in P . Path P is a simple path if u1, . . . , um are all distinct vertices. We are

concerned exclusively with simple paths in this thesis. Path P is oriented in the

sense that u1 is the first vertex and um is the last vertex of P . In many cases, it does

10 CHAPTER 2. DEFINITIONS, NOTATION, AND BASIC RESULTS

not matter what the orientation of a path is, and so P and PR = um, um−1, . . . , u1

are the same path. However, in order to reason about a path, we need to fix its

orientation; we often fix the orientation of the path in a way that is most convenient.

We next introduce terminology to refer to specific vertices in path P . The

endpoints of P are vertices u1 and um; u1 is the left endpoint and um is the right

endpoint. They are denoted by firstP and lastP , respectively. We note that ifm = 1,

then firstP = lastP , and hence path P has only one endpoint. Vertex ui is called

an interior vertex of path P if 2 ≤ i ≤ m − 1. An interior vertex ui of P has

the left neighbour ui−1, denoted left(ui, P), and the right neighbour ui+1, denoted

right(ui, P). If m > 1, the neighbours of endpoints u1 and um are the vertices u2

and um−1, respectively. The only neighbour of an endpoint ui of P is denoted by

right(ui, P) or left(ui, P), depending on whether i = 1 or i = m, respectively.

We next extend the notions of adjacency and incidence to paths. Vertex ui is

said to be in, or on, path P for all i, 1 ≤ i ≤ m. An edge is said to be in P if its

endpoints are consecutive vertices in P . An edge is incident to path P if one of its

endpoints is in P , but the other endpoint is not. A vertex is adjacent to path P if

it is not in P and is an endpoint of an edge incident to P . The length of path P ,

denoted |P |, is equal to the number of edges in P ; in other words, it is equal to the

number of vertices in P minus one. We occasionally say that a vertex u is closer

to a vertex v than it is to a vertex w; this means that the length of a shortest path

from u to v is smaller than the length of a shortest path from u to w in graph G.

We occasionally need to refer to the subgraph of graph G induced by the vertices

in path P . The path graph on m vertices, denoted Pm, consists of vertices u1, . . . , um

and edges uiui+1 for all i such that 1 ≤ i ≤ m− 1. If we specify Pm by a sequence

of vertices, instead of by vertex and edge sets, then a path subgraph of graph G is

a simple path in G. Because of this correspondence, we use the concepts of path

subgraph and simple path interchangeably.

Lemma 2.3 The vertex separation and cutwidth of the path graph Pn are 1 for

all n ≥ 2.

Proof. We describe a layout ϕ of Pn with vertex separation and cutwidth 1 if

n ≥ 2. Then, since Pn is connected and is neither the empty nor trivial graph by

the fact that n ≥ 2, Lemma 2.2 implies VS(Pn) > 0 and CW(Pn) > 0. We can thus

2.2. GRAPHS 11

conclude that the vertex separation and cutwidth of Pn are 1 for all n ≥ 2, because

VS(Pn) ≤ VS(ϕ, Pn) = 1 and CW(Pn) ≤ CW(ϕ, Pn) = 1.

It remains to show that there is a layout ϕ of graph Pn with vertex separation

and cutwidth 1. Writing Pn = u1, . . . , un, we define ϕ by ϕ(ui) = i for all i, 1 ≤

i ≤ n. Both the vertex cut and edge cut at position n are 0, since R(n, ϕ, Pn) = ∅.

Therefore, we only consider positions i such that 1 ≤ i ≤ n−1, and show that both

the vertex cut and edge cut at these positions are 1. Vertex ui is incident to exactly

two edges ui−1ui and uiui+1 if 2 ≤ i ≤ n − 1, and to exactly one edge uiui+1 if

i = 1. Furthermore, there is no vertex uj in Pn such that j < i− 1 that is adjacent

to a vertex in R(i, ϕ, Pn) = {ui+1, . . . , un}. Hence, the only edge that crosses over

position i is the edge uiui+1. We conclude that both the vertex cut and edge cut

at position i of layout ϕ are 1, and therefore VS(ϕ, Pn) = CW(ϕ, Pn) = 1. ¤

We now introduce notation for combining paths together to form longer paths.

A subpath of path P is a contiguous subsequence of P . Path Q is a proper subpath

of P if it is a subpath of P and Q 6= P . When the orientation of path P is

unimportant, then we may say that a subpath Q of path P is also a subpath of

path PR. Given path Q = v1, . . . , vn in graph G such that umv1 is an edge in G, we

denote by P +Q the path u1, . . . , um, v1, . . . , vn. Given a vertex w in G such that

wu1 is an edge, path w+P is w, u1, . . . , um. Similarly, if wum is an edge in G, path

P + w is u1, . . . , um, w. Finally, if ui is an interior vertex of path P , we sometimes

write P = lpath(ui, P) + ui + rpath(ui, P), where lpath(ui, P) = u1, . . . , ui−1 and

rpath(ui, P) = ui+1, . . . , um are the subpaths of P to the left and right of vertex ui,

respectively. In order to make the path algebra easier, we define the empty path to

be the path O satisfying P = P +O and P = O + P . A path is nonempty if it is

not empty.

In proving lower and upper bounds on vertex separation and cutwidth in Chap-

ter 3, we will need two special classes of graphs. The complete graph on n vertices,

denoted Kn, is the graph containing n vertices and having an edge between every

pair of vertices. The star graph on n + 1 vertices, referred to as Sn, contains one

vertex of degree n to which all other n vertices are adjacent, and there is no edge

between any two of these vertices. We emphasize that graph Kn contains n vertices,

whereas graph Sn contains n+ 1 vertices.

12 CHAPTER 2. DEFINITIONS, NOTATION, AND BASIC RESULTS

We have covered all the notation and terminology regarding general graphs that

will be needed. We now focus on trees, which play a central role in this thesis.

2.3 Trees

The tree is a prevalent structure in computer science, and it is often the first

nontrivial class of graphs on which a polynomial-time algorithm for a new graph

problem is found. Many of the definitions applying to trees that will be used later

are defined in this section. We also state a few simple results about the properties of

trees. We first focus on unrooted trees, and then move on to rooted trees. Although

the vertex separation of a tree is defined on an unrooted tree, the algorithms to

compute it require the tree to be rooted at an arbitrary vertex.

A tree T is a graph such that for any two vertices u and v in T , there exists a

unique simple path P with left endpoint u and right endpoint v. Since the path P is

unique, it is denoted by sp(u, v). This definition of ‘tree’ is equivalent to the graph

being acyclic [CLR90]; a graph G is acyclic if there is no path P in G of length at

least 3 such that the endpoints of P are identical, and all other vertices in P are

distinct. A collection of trees forms a graph, which is not necessarily connected,

called a forest.

In relating the vertex separation of tree T to its structure, we will consider a

path P in T whose removal from T produces a forest, each tree of which has vertex

separation less than VS(T). It is therefore convenient to introduce notation and

terminology to refer to the trees in this forest. Given tree T and one of its vertices

u, the branches of u in T are the connected components of the forest obtained by

removing u and its incident edges from tree T . The set of all branches of vertex

u in T is denoted by T [u]. This definition naturally extends to a path in the tree:

the set of branches of path P in tree T consists of the connected components of the

forest obtained by removing from T all vertices in P and all edges in and incident

to P ; it is denoted by T [P]. Figure 2.3 shows tree T and the branches T1, T2, T3,

and T4 of path P = u, v, w in T . If vertices u and z are adjacent in T , then the

branch of u containing z is denoted by T [u]z. In the figure, T [v]z = T3. Similarly,

if path P and vertex z are adjacent, then T [P]z is the branch of P containing z.

2.3. TREES 13

+�++�+,
,

-�--�-.
.

/�//�/0
0

1�11�12
2

3�33�34
4

5�55�56
6

7�77�78
8

99:
:

;�;;�;<
<

==>
>

?�??�?@
@

A�AA�AB
B

CCD
D

EEF
F
GGH
H

I�II�IJ
J

K�KK�KL
L

M�MM�MN
N

O�OO�OP�PP�P

Q�QQ�QR
R

S�SS�ST
T
U�UU�UV
V

W�WW�WX
X
Y�YY�YZ
Z

[�[[�[\
\

]�]]�]^
^

_�__�_`
`

u

v

w

T

z z

T2

T1

T3

T4

Figure 2.3: Tree T and the branches T1, T2, T3, and T4 of path P = u, v, w.

Thus, T [P]z = T3 in the figure.

Having discussed how to select a particular branch out of the set of all branches

of a vertex or path in a tree, we now discuss subsets of the set of branches. If u

is a vertex on path P in tree T , then T [P] ∩ T [u] is the set of branches R in set

T [P] with a vertex in R adjacent to vertex u. In Figure 2.3, T [P] ∩ T [u] = {T1},

T [P]∩T [v] = {T3}, and T [P]∩T [w] = {T2, T4}. We also observe that for a subpath

Q of path P , set T [P]∩T [Q] is the subset of T [P] of all branches R such that there

is a vertex in R adjacent to path Q. In the figure, T [P] ∩ T [u, v] = {T1, T3} and

T [P] ∩ T [v, w] = {T3, T2, T4}.

In proving in Chapter 4 the uniqueness of the shortest path P in tree T such

that all branches of P have vertex separation less than VS(T), we will need to relate

the set of branches of P to the set of branches of a subpath of P . We therefore

state three lemmas that describe this relationship. In the first two lemmas, we do

this by relating the set of branches of a vertex u in path P to the set of branches of

P . In the first lemma, we handle the case when u is an endpoint of path P . Since

we apply this result in cases when the orientation of P is unimportant, we only

consider the case when u is the left endpoint of path P .

14 CHAPTER 2. DEFINITIONS, NOTATION, AND BASIC RESULTS

Lemma 2.4 Consider a simple path P = u1, . . . , um in a tree T such that m > 1.

The following equalities hold:

1. T [u1] = (T [P] ∩ T [u1]) ∪ {T [u1]u2} and

2. T [u1] = (T [P]− T [rpath(u1, P)]) ∪ {T [u1]u2}.

Proof. Figure 2.4 illustrates the essential elements of the proof. The first equation

aab
b

ccd
d

eef
f g�gg�gh�hh�h

i�ii�ij
j

P
u1 u2

T [u1]u2

Figure 2.4: The proof of Lemma 2.4. The subpath rpath(u1, P) of path P is
indicated with a dotted line.

is a consequence of the fact that each branch of vertex u1 in tree T is either a

branch of path P that contains a vertex adjacent to u1 (that is, it is a branch in

set T [P] ∩ T [u1]), or it is the branch T [u1]u2 containing the subpath rpath(u1, P)

of P . The second equation is derived as follows. Every branch of path P is also a

branch of vertex u1, except when it is also a branch of subpath rpath(u1, P) of P ;

the excluded branch is therefore in set T [rpath(u1, P)]. Furthermore, every branch

of vertex u1 is also a branch of path P , except branch T [u1]u2 , which contains path

rpath(u1, P). ¤

In the next lemma, we consider the case when u is an interior vertex of path P .

Lemma 2.5 Consider a simple path P = u1, . . . , um in a tree T such that m ≥ 3

and an interior vertex ui of P . The following equalities hold:

1. T [ui] = (T [P] ∩ T [ui]) ∪
{
T [ui]ui−1

, T [ui]ui+1

}
and

2. T [ui + rpath(ui, P)] = (T [P]− T [lpath(ui, P)]) ∪
{
T [ui]ui−1

}
.

2.3. TREES 15

kkl
l

mmn
n

oop
p q�qq�qr�rr�r

s�ss�st
t u�uu�uv

v

w�ww�wx
x
y�yy�yz�zz�z

ui

P

T [ui]ui+1

ui−1

T [ui]ui−1

ui+1

Figure 2.5: The proof of Lemma 2.5. The subpaths lpath(ui, P) and rpath(ui, P)
of path P are indicated with dotted lines.

Proof. Figure 2.5 illustrates the proof. The first equation follows from observing

that a branch of vertex ui in tree T is either a branch of path P that contains a

vertex adjacent to ui, or it is the branch T [ui]ui−1
or branch T [ui]ui+1

containing

the subpath lpath(ui, P) or rpath(ui, P) of P , respectively. The second equation is

a consequence of the following facts. Every branch in set T [P] is also a branch of

subpath ui + rpath(ui, P), except when it is also a branch of subpath lpath(ui, P);

the excluded branch is therefore in set T [lpath(ui, P)]. In addition, each branch

of path ui + rpath(ui, P) is also a branch of path P , except when it is the branch

T [ui]ui−1
, which contains the subpath lpath(ui, P) of P . ¤

Finally, we investigate the relationship between the branches of a path and the

branches of its subpaths.

Lemma 2.6 Consider a simple path P = u1, . . . , um in a tree T such that m > 1,

and subpaths Pl = u1, . . . , ui and Pr = ui+1, . . . , um of P , where 1 ≤ i ≤ m − 1;

that is, paths Pl and Pr are nonempty. The following three statements hold:

1. all branches of Pl in T except T [Pl]ui+1
are subtrees of the branch T [Pr]ui

,

2. all branches of Pr in T except T [Pr]ui
are subtrees of the branch T [Pl]ui+1

,

and

3. T [P] = (T [Pl] ∪ T [Pr])−
{
T [Pl]ui+1

, T [Pr]ui

}
.

16 CHAPTER 2. DEFINITIONS, NOTATION, AND BASIC RESULTS

Proof. Figure 2.6 illustrates the proof. All branches of subpath Pl in tree T are

subtrees of branch T [Pr]ui
, except branch T [Pl]ui+1

, which contains subpath Pr.

This proves the first statement. Similarly, all branches of subpath Pr in T are

{{|
|

}}~
~

���
� ������������

�������
� �������

�

�������
�
������������

ui

T [Pl]ui+1

ui+1

T [Pr]ui

Pl
Pr

Figure 2.6: The proof of Lemma 2.6.

subtrees of branch T [Pl]ui+1
, except branch T [Pr]ui

, which contains Pl. This proves

the second statement. We also see from the figure that every branch of path P is

a branch of either subpath Pl or subpath Pr, and that every branch of either Pl or

Pr is a branch of P , except the branches T [Pl]ui+1
and T [Pr]ui

containing Pr and

Pl, respectively. This proves the third statement. ¤

As mentioned earlier, the algorithms that compute the vertex separation of

a tree take as input rooted trees. We have so far discussed concepts that are

independent of whether the tree is rooted or not. In the remainder of this chapter,

we discuss concepts related to rooted trees. A tree T is rooted at u if a vertex u in

T is designated as the root of T . The root of T is denoted by rT . A tree that is not

rooted is called unrooted. Rooting a tree corresponds to imposing a partial order,

called the ancestor-descendant relationship, on the vertices in T . A vertex v in tree

T is an ancestor of a vertex w in T if path sp(rT , v) is a subpath of path sp(rT , w).

Vertex w is then called a descendant of vertex v. If |sp(rT , v)| < |sp(rT , w)|, then v

is a proper ancestor of w, and w is a proper descendant of v.

If vertex v is an ancestor of vertex w in tree T and vw is an edge in T , then w

is a child of v in T , and v is the parent of w in T ; the parent is denoted by pw. The

rooted degree of vertex v in T is the number of children of v. The unrooted degree of

2.3. TREES 17

v, or simply the degree of v, is the number of vertices in tree T adjacent to vertex

v. Vertex v is called a leaf if its rooted degree is 0. Otherwise, v is an internal

vertex of T . Tree T is called (partially) ordered if there is a (partial) order defined

on the children of each internal vertex; otherwise, T is unordered. The depth of a

vertex v in tree T is defined to be |sp(rT , v)|. The height of tree T is the maximum

depth of a vertex in T . Rooted tree T is called a perfect tree if all internal vertices

of T have the same rooted degree and the depth of all leaves of T is the same.

Subtrees of a rooted tree T naturally inherit the ancestor-descendant relation-

ship of T . The subtree of T rooted at vertex u is the tree induced by the descendants

of u in T and having root u; it is denoted by Tu. Tree Tu is also called a rooted

subtree of T . We emphasize that while every rooted subtree of rooted tree T is a

subtree of T , not every subtree of T is a rooted subtree of T ; a rooted subtree is

special in that it contains all descendants in T of its root. We note that T = TrT
.

The subtrees yielded by a vertex u in tree T are the subtrees rooted at the children

of u. Figure 2.7 shows the subtree Tu of tree T , and subtrees T1, T2, and T3 yielded

by vertex u. When we say that a rooted tree T is a subtree of another rooted tree

�������
�

�������
�

�������
�

�������
�

�������
�

�������
�

�������
�
������������ ���
���
�� ���
���
������ ���
���
 ¡�¡
¡�¡
¢�¢¢�¢

£�££�£¤
¤

u

T

T3T2T1

Tu

rT

Figure 2.7: Subtree Tu of tree T , and the subtrees T1, T2, and T3 yielded by vertex
u.

T ′, then not only is the unrooted tree corresponding to T required to be a subtree

of the unrooted tree corresponding to T ′, but also all the descendants of the root

of T in T ′ must be in T .

Although vertex separation and cutwidth are defined on unrooted trees, the al-

18 CHAPTER 2. DEFINITIONS, NOTATION, AND BASIC RESULTS

gorithms that compute these measures work on rooted trees [EST94, Sko00, Yan85].

It does not matter which vertex is the root. The algorithms start execution at the

root and apply recursion on its children. When we talk about a rooted tree, it

is assumed that the tree has been rooted at an arbitrary vertex. Rooting a tree

does not change its structure, and therefore the vertex separation and cutwidth of

a rooted tree and the corresponding unrooted tree are the same.

We next introduce notation for representing a rooted tree from which several

rooted subtrees have been removed. The notation is a minor modification of the

notation used by Ellis, Sudborough, and Turner in their work on the vertex sepa-

ration of trees [EST94]. Given rooted tree T , we denote by T 〈u1〉 the tree obtained

from T by removing rooted subtree Tu1 ; this assumes vertex u1 is in tree T . We

can continue removing subtrees from T ; the tree T 〈u1〉〈u2〉 is obtained by removing

subtree Su2 from tree S = T 〈u1〉, again assuming vertex u2 is in S. To reduce

clutter, we contract T 〈u1〉〈u2〉 to T 〈u1, u2〉. Figure 2.8 illustrates this notation. We

now make the definition precise.

Definition 2.1 [EST94] We denote by T 〈u1, . . . , up〉 the tree obtained from a

rooted tree T by applying the following recursive procedure:

1. tree T 〈u1〉 is obtained from T by removing subtree Tu1 , where u1 is a vertex

in T ; and

2. for all i, 2 ≤ i ≤ p, tree T 〈u1, . . . , ui〉 is obtained from tree S = T 〈u1, . . . , ui−1〉

by removing subtree Sui
, assuming ui is a vertex in tree S.

It is useful to combine notation Tu and T 〈u1, . . . , up〉. Notation Tu〈u1, . . . , up〉 is

parsed as S〈u1, . . . , up〉, where S = Tu. Notation T 〈u1, . . . , up〉u means Su, where

S = T 〈u1, . . . , up〉. For notational convenience, we also define T 〈〉 to be the tree T .

We now make a few observations about tree T 〈u1, . . . , up〉 to gain more intuitive

understanding of the definition. If ui is an ancestor of uj in tree T and 1 ≤ j <

i ≤ p, then T 〈u1, . . . , uj−1, uj+1, . . . , up〉 = T 〈u1, . . . , up〉. This is because removing

subtree T 〈u1, . . . , ui−1〉ui
removes subtree T 〈u1, . . . , uj−1〉uj

as well if it has not

already been removed, so we do not need to remove T 〈u1, . . . , uj−1〉uj
explicitly. In

Figure 2.8, T 〈u2〉 = T 〈u1, u2〉, because u2 is an ancestor of u1. Similarly, T 〈u2, u3〉 =

2.3. TREES 19

¥�¥¥�¥¦�¦¦�¦

§�§§�§¨�¨¨�¨©�©©�©ª�ªª�ª

«�««�«¬�¬¬�¬­­®
®

¯�¯¯�¯°�°°�°±�±±�±²�²²�²

³�³³�³´�´´�´

µ�µµ�µ¶�¶¶�¶

·�··�·¸�¸¸�¸¹�¹¹�¹º�ºº�º

»�»»�»¼�¼¼�¼

½�½½�½¾�¾¾�¾

¿�¿¿�¿À�ÀÀ�À

Á�ÁÁ�ÁÂ�ÂÂ�Â

Ã�ÃÃ�ÃÄ�ÄÄ�ÄÅ�ÅÅ�ÅÆ�ÆÆ�Æ

Ç�ÇÇ�ÇÈ�ÈÈ�ÈÉ�ÉÉ�ÉÊ�ÊÊ�ÊËËÌ
Ì

Í�ÍÍ�ÍÎ�ÎÎ�ÎÏ�ÏÏ�ÏÐ�ÐÐ�Ð

T

T 〈u1〉

T 〈u1, u2〉

T 〈u1, u2, u3〉

u2

u3

u3

u2

u3u1

rT

rT

rT

rT

Figure 2.8: Trees T , T 〈u1〉, T 〈u1, u2〉, and T 〈u1, u2, u3〉.

T 〈u1, u2, u3〉. More generally, there is a shortest sequence σ of vertices v1, . . . , vq

with q ≤ p such that T 〈v1, . . . , vq〉 = T 〈u1, . . . , up〉 and {v1, . . . , vq} ⊆ {u1, . . . , up}.

This sequence is not necessarily unique, as we will see shortly. No vertex in σ is an

ancestor of another vertex w in σ; otherwise, we could remove w from sequence σ

to form a shorter sequence. This implies for any permutation π of the sequence of

20 CHAPTER 2. DEFINITIONS, NOTATION, AND BASIC RESULTS

integers 1, . . . , q, the following equality holds: T 〈v1, . . . , vq〉 = T
〈
vπ(1), . . . , vπ(q)

〉
.

Therefore, sequence σ is not unique if q > 1; there are exactly q! such sequences.

In Figure 2.8, for example, T 〈v1, v2, v3〉 = T 〈v2, v3〉 = T 〈v3, v2〉, since v2 is neither

an ancestor nor a descendant of v3 in tree T . In this case, σ = v2, v3 or σ = v3, v2.

In other words, we can treat σ as a set.

Intuitively, removing subtrees rooted at vertices u1, . . . , up from trees T and S

such that T is a subtree of S should preserve the subtree relationship of T and S.

This is in fact the case.

Lemma 2.7 If T and S are rooted trees such that T is a subtree of S, and u1, . . . , up

are vertices such that u1 is in both trees T and S, and for each integer i such that

2 ≤ i ≤ p vertex ui is in both trees T 〈u1, . . . , ui−1〉 and S〈u1, . . . , ui−1〉, then tree

T 〈u1, . . . , up〉 is a subtree of tree S〈u1, . . . , up〉.

Proof. We prove the lemma by induction on the number i of subtrees removed

from trees T and S. The base case (i = 0) is trivial, since T is a subtree of S by

assumption. For the induction step, we assume 0 < i ≤ p and tree T 〈u1, . . . , ui−1〉

is a subtree of tree S〈u1, . . . , ui−1〉. We show that tree T 〈u1, . . . , ui〉 is a subtree of

tree S〈u1, . . . , ui〉. Vertex ui is in both T 〈u1, . . . , ui−1〉 and S〈u1, . . . , ui−1〉 by as-

sumption, and hence trees T 〈u1, . . . , ui〉 and S〈u1, . . . , ui〉 are both defined (point

2 in Definition 2.1). By the induction hypothesis, rooted tree T 〈u1, . . . , ui−1〉 is

a subtree of rooted tree S〈u1, . . . , ui−1〉, and hence T 〈u1, . . . , ui−1〉 with subtree

T 〈u1, . . . , ui−1〉ui
removed is a subtree of S〈u1, . . . , ui−1〉 with S〈u1, . . . , ui−1〉ui

re-

moved. We conclude that tree T 〈u1, . . . , ui〉 is a subtree of tree S〈u1, . . . , ui〉. ¤

We noted earlier that many of our results require analyzing certain paths in a

tree; that is why we introduced fairly extensive notation and terminology for paths.

A simple path in a rooted tree is one of two kinds, depending on whether or not

one of its interior vertices is an ancestor of all other vertices in the path. This

distinction is crucial in understanding how the structure of a rooted tree relates to

its vertex separation and to an optimal layout with respect to vertex separation.

Given a simple path P = u1, . . . , um in rooted tree T , P is called a monotonic

simple path in T if u2, . . . , um are all descendants or all ancestors of vertex u1; in

other words, P is a subpath of path sp(rT , v) for some leaf v in T . Path P is called a

2.3. TREES 21

nonmonotonic simple path in tree T if it is not monotonic, that is, if there exists an

integer c such that 2 ≤ c ≤ m− 1 and u1, . . . , uc−1, uc+1, . . . , un are all descendants

of uc in T . The vertex ui is termed the inflection vertex of path P in tree T and

is denoted by infP . The following two lemmas are simple results and are stated

without proof. The first lemma will be needed to show that a monotonic simple

path can be extended to the root of tree T , while a nonmonotonic path cannot.

Lemma 2.8 Consider a simple path P in a rooted tree T .

1. If P is nonmonotonic, then infP is closer to the root rT of T than is any

other vertex in P .

2. If path P is monotonic, then one of the endpoints of P is closer to rT than

is any other vertex in P . ¤

The second lemma relates the monotonicity of a path and its subpath.

Lemma 2.9 If a subpath Q of a simple path P in a tree T is nonmonotonic,

then path P is nonmonotonic. Furthermore, the inflection vertices of Q and P are

identical. ¤

The algorithms in Chapters 5 and 7 update the vertex separation of a tree con-

structed from two smaller trees, assuming certain information has been computed

for the smaller trees. In discussing the algorithms, it is useful to have special no-

tation representing the composite tree. Given two rooted trees T and S with roots

rT and rS, respectively, T ` S is the unordered rooted tree obtained by making rS

a child of rT . The root of tree T ` S is rT . More generally, if u is any vertex in

tree T , then T `u S is the unordered rooted tree formed by making vertex rS a

child of u. It follows that T ` S = T `rT
S. If T is the empty tree, then T ` S is

defined to be the empty tree as well, regardless of whether tree S is empty or not.

We observe that if u is a child of root rS, then T = T 〈u〉 ` Tu.

In this chapter, we discussed basic notions that will be needed in the rest of

this thesis. We first introduced two measures of a graph, vertex separation and

cutwidth, associated with linear layouts of the graph. We then showed that both

measures are monotonic under the subgraph relation; that is, the vertex separation

22 CHAPTER 2. DEFINITIONS, NOTATION, AND BASIC RESULTS

and cutwidth of a graph are at least as large as the vertex separation and cutwidth,

respectively, of any subgraph.

Since paths play an important role in our work, we developed extensive notation

and terminology for them. We stated three lemmas that relate the branches of a

path to the branches of its subpath. Subsequently, we introduced rooted trees

and reviewed special notation to represent a rooted tree from which several rooted

subtrees have been removed. Finally, we introduced monotonic and nonmonotonic

paths in a rooted tree, and developed notation for representing a tree constructed

from two smaller trees.

Chapter 3

Bounds on Vertex Separation and

Cutwidth

In this chapter, we state and prove two theorems on upper and lower bounds on

the vertex separation and cutwidth of general graphs. The first theorem gives lower

and upper bounds on the vertex separation of a graph, while the second theorem

gives analogous bounds on the cutwidth of a graph. To the best of our knowledge,

these bounds have not been derived before.

We first investigate the relationship between the vertex separation of a graph

G and the number of vertices and minimum degree of a vertex in G. Toward this

end, we derive the value for the vertex separation of the complete graph.

Lemma 3.1 The vertex separation of the complete graph Kn equals n− 1 for any

n ≥ 1.

Proof. We only need to observe that in any layout ϕ with respect to vertex separa-

tion of any graph on n vertices, there can be at most n−1 vertices that are adjacent

to a vertex to the right of them. Therefore, VS(Kn) ≤ n − 1 holds. Furthermore,

since in complete graph Kn every vertex is adjacent to every other vertex, it follows

that δ(n − 1, ϕ,Kn) = n − 1. We conclude that the vertex separation of complete

graph Kn is n− 1. ¤

Having shown a simple lemma regarding the vertex separation of graph Kn, we now

use this result to derive bounds on the vertex separation of a general graph.

23

24 CHAPTER 3. BOUNDS ON VERTEX SEPARATION AND CUTWIDTH

Theorem 3.2 Any nonempty graph G satisfies ε(G) ≤ VS(G) ≤ |G| − 1, where

ε(G) is the minimum degree of a vertex in G. Furthermore, these inequalities are

tight.

Proof. We first prove that VS(G) ≤ |G| − 1. Since every graph is a subgraph of

complete graph K|G|, it follows from Lemmas 2.1 and 3.1 that VS(G) ≤ |G| − 1.

Furthermore, Lemma 3.1 implies this inequality is tight.

Next, we show that ε(G) ≤ VS(G) by considering the last vertex ϕ−1(|G|) of

an optimal layout ϕ of graph G with respect to vertex separation. Vertex ϕ−1(|G|)

is adjacent to at least ε(G) vertices to the left of it, since every vertex in G is

adjacent to at least ε(G) vertices and there are no vertices to the right of ϕ−1(|G|)

in ϕ. Since R(|G| − 1, ϕ,G) = {ϕ−1(|G|)} and L(|G| − 1, ϕ,G) = VG−{ϕ
−1(|G|)},

we conclude that the number of vertices in L(|G| − 1, ϕ,G) that are adjacent to

vertices in R(|G| − 1, ϕ,G) is at least ε(G); that is, δ(|G| − 1, ϕ,G) ≥ ε(G). It

follows from the fact VS(G) = VS(ϕ,G) ≥ δ(|G| − 1, ϕ,G) that VS(G) ≥ ε(G). To

see that the inequality is tight if graph G has at least two vertices, consider the path

graph P|G|. By Lemma 2.3, graph P|G| has vertex separation 1, and ε
(
P|G|

)
= 1.

If G contains only one vertex, then G is the trivial graph, and hence ε(G) = 0 and

VS(G) = 0 (Lemma 2.2), and therefore the inequality is tight in this case as well,

completing the proof. ¤

Having proved a bound on the vertex separation of a graph in terms of its mini-

mum vertex degree, we will shortly observe that it bears no reasonable functional

relationship to ∆(G), the maximum degree of a vertex in G. In order to make this

observation, we first derive the value for the vertex separation of the star graph.

Lemma 3.3 The vertex separation of the star graph Sn is 1 for any n ≥ 1.

Proof. We prove the result by giving a layout ϕ with respect to vertex separation

of star graph Sn such that ϕ has vertex separation 1. Star graph Sn contains

n + 1 vertices, and since n ≥ 1, it contains at least two vertices. Thus, Lemma

2.2 implies VS(Sn) > 0. Figure 3.1 shows layout ϕ of Sn with vertex separation 1,

where r is a vertex in Sn of degree n, and r1, . . . , rn are the vertices in Sn adjacent

to r and having degree 1. Formally, we let ϕ(r) = 1 and ϕ(ri) = i + 1 for all i,

25

Ñ�ÑÑ�ÑÒ
Ò

Ó�ÓÓ�ÓÔ
Ô

Õ�ÕÕ�ÕÖ
Ö

×�××�×Ø
Ø

r r1 r2 rn
· · ·

Figure 3.1: An optimal layout of star graph Sn with respect to vertex separation.

1 ≤ i ≤ n. It is clear that for any j, 1 ≤ j ≤ n+1, the only vertex in set L(j, ϕ, Sn)

that is adjacent to a vertex in set R(j, ϕ, Sn) is vertex r. Therefore, the vertex

separation of layout ϕ is 1. It follows from the facts VS(Sn) > 0, proved earlier,

and VS(Sn) ≤ VS(ϕ, Sn) that VS(Sn) = 1. ¤

Lemma 3.3 states that the vertex separation of star graph Sn is 1 regardless of the

value of n. But ∆(Sn) = n, and hence we conclude that the vertex separation of a

general graph cannot be bounded from below by a function of ∆(G).

We now turn our attention to deriving lower and upper bounds on the cutwidth

of graph G. The lower bound is in terms of the maximum degree ∆(G) of a vertex

in G, and the upper bound is in terms of the number of vertices in G. We prove

the bounds via a series of smaller results. First, we show that the cutwidth of any

layout of graph G is bounded below by a function of ∆(G).

Claim 3.4 Given a layout ϕ of a graph G with maximum vertex degree ∆(G), the

cutwidth of ϕ is at least
⌈
∆(G)
2

⌉
.

Proof. We derive the lower bound on cutwidth CW(ϕ,G) by finding a position

in layout ϕ with edge cut equal to at least
⌈
∆(G)
2

⌉
. Consider a vertex u∆ in G

that has degree ∆(G); such a vertex must exist by the definition of ∆(G). There

are ∆(G) edges incident to u∆, and therefore u∆ is adjacent to at least
⌈
∆(G)
2

⌉

vertices on one side of u∆ in layout ϕ. More formally, vertex u∆ is adjacent to at

least
⌈
∆(G)
2

⌉
vertices in either set L̃(ϕ(u∆), ϕ,G) = {ϕ−1(1), . . . , ϕ−1(ϕ(u∆) − 1)}

or set R(ϕ(u∆), ϕ,G) = {ϕ−1(ϕ(u∆) + 1), . . . , ϕ−1(|G|)}; we denote this set by C.

If C = L̃(ϕ(u∆), ϕ,G), then θ(ϕ(u∆) − 1, ϕ,G) ≥
⌈
∆(G)
2

⌉
, since at least

⌈
∆(G)
2

⌉

edges cross over position ϕ(u∆) − 1 in the layout. If C = R(ϕ(u∆), ϕ,G), then

θ(ϕ(u∆), ϕ,G) ≥
⌈
∆(G)
2

⌉
, because at least

⌈
∆(G)
2

⌉
edges cross over position ϕ(u∆).

We conclude that CW(ϕ,G) = max1≤i≤n θ(i, ϕ,G) ≥
⌈
∆(G)
2

⌉
. ¤

26 CHAPTER 3. BOUNDS ON VERTEX SEPARATION AND CUTWIDTH

Next, we use the lower bound just established to find an optimal layout of the star

graph with respect to cutwidth.

Lemma 3.5 The cutwidth of the star graph Sn equals
⌈
n
2

⌉
for any n ≥ 0.

Proof. Because of Claim 3.4 and the fact ∆(Sn) = n, we only need to demonstrate

a layout ϕ of star graph Sn with cutwidth dn/2e. We denote by r a vertex in

Sn that has degree n, and by r1, . . . , rn the vertices that have degree 1 and are

adjacent to vertex r. Figure 3.2 illustrates layout ϕ. Formally, we form layout ϕ

Ù�ÙÙ�ÙÚ
Ú

Û�ÛÛ�ÛÜ
Ü

Ý�ÝÝ�ÝÞ
Þ

ß�ßß�ßà
à

ááâ
â
r1 r rn

⌊
n
2

⌋ ⌈
n
2

⌉

· · · · · ·
rbn/2c rbn/2c+1

Figure 3.2: An optimal layout of star graph Sn with respect to cutwidth. The
numbers above the dashed arrows give the numbers of edges crossing the arrows.

such that it satisfies ϕ(ri) < ϕ(r) < ϕ(rj) for all i and j such that 1 ≤ i ≤ bn/2c

and bn/2c+ 1 ≤ j ≤ n. In other words, all vertices ri satisfy ϕ(ri) = i, all vertices

rj satisfy ϕ(rj) = j + 1, and vertex r satisfies ϕ(r) = bn/2c+ 1.

We next consider the edge cut at each position of ϕ. The edge cut at position

i′ of layout ϕ such that 1 ≤ i′ ≤ bn/2c is at most bn/2c, since L(i′, ϕ, Sn) ⊆{
r1, . . . , rbn/2c

}
, and each vertex ri′ in set L(i′, ϕ, Sn) is incident to exactly one edge,

namely ri′u. Similarly, the edge cut at position j ′ such that bn/2c+2 ≤ j ′ ≤ n+1

is at most dn/2e, because dn/2e = n− bn/2c, and there are at most dn/2e vertices

in set R(j ′, ϕ, Sn), each of which is incident to exactly one edge rj′r. Therefore,

at most dn/2e edges cross over a position i of layout ϕ, where 1 ≤ i ≤ n + 1 and

i 6= ϕ(r) = bn/2c + 1. The edge cut at position ϕ(r) is dn/2e, because vertex r is

adjacent to all vertices in R(ϕ(r), ϕ, Sn) =
{
rbn/2c+1, . . . , rn

}
, and no vertex in set

L(ϕ(r), ϕ, Sn) − {r} is adjacent to a vertex in set R(ϕ(r), ϕ, Sn). Since the edge

cut at each other position of layout ϕ was shown to be at most dn/2e, we infer that

CW(Sn) ≤ CW(ϕ, Sn) = dn/2e. The star graph Sn has ∆(Sn) = n, and hence we

conclude from Claim 3.4 that CW(Sn) = dn/2e. ¤

27

We now derive the cutwidth of the complete graph, which will be used in proving

an upper bound on the cutwidth of a general graph.

Lemma 3.6 The cutwidth of the complete graph Kn is
⌊
n2

4

⌋
for any n ≥ 0.

Proof. We obtain the cutwidth of complete graph Kn by analyzing an arbitrary

layout ϕ of Kn. We label the n vertices of Kn by u1, . . . , un such that ϕ(ui) = i.

The edge cut at position 1 of ϕ is n − 1, since vertex u1 is adjacent to all n − 1

vertices ui such that 2 ≤ i ≤ n. The edge cut at position 2 is 2(n− 2), since vertex

u2 is adjacent to all n − 2 vertices ui such that 3 ≤ i ≤ n, and vertex u1, which

comes before u2 in ϕ, is also adjacent to all the n− 2 vertices that are to the right

of u2 in ϕ; hence, (n− 2) + (n− 2) = 2(n− 2) edges cross over position 2 in ϕ.

In general, we consider an arbitrary position i of ϕ. There are i− 1 vertices to

the left of vertex ϕ−1(i) in ϕ. Each of these vertices is adjacent to the n− i vertices

to the right of ϕ−1(i). In addition, vertex ui is adjacent to all n − i vertices that

are to the right of ui. Hence, the edge cut at position i is (i− 1)(n− i) + (n− i) =

i(n − i). This function achieves maximum values at bn/2c and dn/2e. Since n −

bn/2c = dn/2e, it follows that CW(ϕ,Kn) = max1≤i≤n θ(i, ϕ,Kn) = bn/2c dn/2e.

If n is even, CW(ϕ,Kn) is equal to n2

4
=
⌊
n2

4

⌋
. If n is odd, then bn/2c dn/2e =

(
n
2
− 1

2

) (
n
2
+ 1

2

)
= n2−1

4
=
⌊
n2

4

⌋
, since n2−1

4
is an integer and n2

4
− n2−1

4
= 1

4
< 1.

Because layout ϕ was chosen arbitrarily, we see that every layout ofKn is an optimal

layout, and hence CW(Kn) =
⌊
n2

4

⌋
. ¤

Finally, we give lower and upper bounds on the cutwidth of a graph as mentioned

earlier.

Theorem 3.7 Any graph G satisfies
⌈
∆(G)
2

⌉
≤ CW(G) ≤

⌊
|G|2

4

⌋
, where ∆(G) is

the maximum degree of a vertex in G. Furthermore, these inequalities are tight.

Proof. Inequality
⌈
∆(G)
2

⌉
≤ CW(G) follows from Claim 3.4, and by Lemma 3.5 it

is tight. Inequality CW(G) ≤
⌊
|G|2

4

⌋
is a consequence of Lemmas 2.1 and 3.6 and

the fact that every graph is a subgraph of the complete graph K|G|. Furthermore,

Lemma 3.6 implies the inequality is tight. ¤

28 CHAPTER 3. BOUNDS ON VERTEX SEPARATION AND CUTWIDTH

We remark that the cutwidth of graph G is trivially bounded above by the number

of edges in G.

Having proved two simple bounds on the vertex separation and cutwidth of a

general graph, we now turn our attention to computing the vertex separation of

trees. In particular, we are interested in devising algorithms that update the vertex

separation of a tree T as trees are added to or subtrees are removed from T . In the

next chapter, we lay the groundwork for such algorithms.

Chapter 4

Vertex Separation of Trees

(Preliminaries)

The goal of this chapter is to explain the concept of the vertex labelling of a

tree, which encodes the relationship between the vertex separation and structure of

the tree, including an optimal layout of the tree with respect to vertex separation.

Vertex labelling is used in the algorithm by Ellis, Sudborough, and Turner [EST94],

given at the end of the chapter, for computing the vertex separation of a tree. Our

work on updating the vertex separation of a tree involves updating the tree’s vertex

labelling. Although the vertex labelling of a tree is defined only if the tree is rooted,

while vertex separation and layout are defined on unrooted trees, it suffices to root

the tree arbitrarily to make the necessary link between vertex labelling and vertex

separation.

The concept of vertex labelling is used throughout the rest of the thesis, and

we will introduce it in stages. Although all the material in this chapter is based on

previous work [EST94], our exposition of it is different. In particular, we introduce

the concept of a backbone of a tree, which is a useful construct for understanding

the relationship between the vertex separation of a tree and the tree’s structure.

This chapter is divided into two sections. In Section 4.1, we discuss results that

are independent of whether the tree is rooted or not. The most important contri-

butions of the section are the definition of a backbone of a tree and its properties.

We also mention a few results from the original paper. In Section 4.2, we derive

29

30 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

the concept of the vertex label and present an algorithm to compute the vertex

separation of a rooted tree. The section contains many small results, mostly on the

properties of a vertex label, that will be useful in later chapters.

4.1 Structure of a Tree and Its Vertex Separation

In this section, we investigate how the structure of an unrooted tree relates to

the tree’s vertex separation. We start by defining the main construct used in

understanding this relationship.

Definition 4.1 An m-backbone of a tree T is a simple path in T whose branches

all have vertex separation less than m, where m is a nonnegative integer. A VS(T)-

backbone of T is simply called a backbone of T .

To get a first taste of what an m-backbone is, we state and prove a simple conse-

quence of the definition.

Lemma 4.1 If T is a nonempty tree, m is an integer satisfying m > VS(T), and

u is any vertex in T , then the path P = u is an m-backbone of T .

Proof. Every branch R of vertex u in tree T is a subgraph of T , and hence Lemma

2.1 implies VS(R) ≤ VS(T) < m. Therefore, path P = u is an m-backbone of tree

T . ¤

The following result states for what values of m a tree has an m-backbone. Its

proof is similar to the proof by Ellis, Sudborough, and Turner of Lemma 4.4.

Lemma 4.2 Each nonempty tree T has an m-backbone for any m ≥ VS(T).

Proof. We first construct a backbone (that is, a VS(T)-backbone) P of tree T . The

lemma will then follow immediately, since all branches of P have vertex separation

less than VS(T), and therefore they have vertex separation less than m for any

m ≥ VS(T); that is, path P is an m-backbone of T for any m ≥ VS(T).

We construct path P by considering an optimal layout ϕ of T ; that is, layout ϕ

satisfies VS(ϕ, T) = VS(T). If VS(T) = 0, then it follows from Lemma 2.2 and the

4.1. STRUCTURE OF A TREE AND ITS VERTEX SEPARATION 31

fact T is nonempty that T is the trivial tree. The only simple path in the trivial

tree consists of its only vertex rT . Vertex rT does not have any branches, and hence

the lemma follows trivially.

Therefore, assume VS(T) > 0, so n > 1, where n is the number of vertices in

tree T . Consider the path

P = sp(ϕ−1(1), ϕ−1(n)) (4.1)

in T from the leftmost vertex ϕ−1(1) of layout ϕ to the rightmost vertex ϕ−1(n)

of the layout. We demonstrate that each branch in T [P] has vertex separation less

than VS(T) by analyzing the vertex cut at position ϕ(u) for each vertex u in T .

We denote by T ′ the subgraph of T obtained by removing from tree T all edges

incident to vertices on path P ; that is, T ′ is a forest consisting of the trees in set

T [P]. There are two cases in our argument, depending on whether or not u is a

vertex in P .

First, we consider the vertex cut at position ϕ(u) for any vertex u in tree T such

that u is not on path P . Consider vertices u1 and u2 satisfying ϕ(u1) < ϕ(u) <

ϕ(u2), and such that the edge u1u2 is in P . Such an edge must exist, since u is

not in P , 1 = ϕ (ϕ−1(1)) < ϕ(u) < ϕ (ϕ−1(n)) = n holds, and vertices ϕ−1(1) and

ϕ−1(n) are both in P (Equation 4.1). Because vertex u1 belongs to L(ϕ(u), ϕ, T)

and is adjacent to vertex u2, which is in R(ϕ(u), ϕ, T), removing from T all edges

incident to u1, which includes edge u1u2, reduces the vertex cut at position ϕ(u)

by at least one; this is because vertex u1 becomes isolated, and thus is no longer

adjacent to any vertex in R(ϕ(u), ϕ, T). Furthermore, removing an arbitrary edge

from tree T cannot increase the vertex cut at position ϕ(u). Also, layout ϕ is a

layout of graph T ′, since no vertices have been removed from T in constructing

T ′. Because vertex u1 is in P , it is isolated in T ′, and the reasoning above implies

δ(ϕ(u), ϕ, T ′) < δ(ϕ(u), ϕ, T) ≤ max1≤i≤n δ(i, ϕ, T) = VS(T) for each vertex u not

on path P .

Second, we consider the vertex cut at position ϕ(u) for any vertex u in tree T

such that u is on path P . If u = ϕ−1(n), then δ(ϕ(u), ϕ, T ′) = 0 < VS(T), because

the vertex cut at the nth position of a layout is always 0 and we assumed earlier

that VS(T) > 0. Hence, assume u 6= ϕ−1(n); that is, ϕ(u) < n. Then there is a

32 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

vertex u1 on path P that belongs to L(ϕ(u), ϕ, T ′) = L(ϕ(u), ϕ, T), and such that

u1 is adjacent in tree T to a vertex u2 in set R(ϕ(u), ϕ, T ′) = R(ϕ(u), ϕ, T); if there

were no such vertex, no edge in P would cross over position ϕ(u), and hence vertex

ϕ−1(n), which is in R(ϕ(u), ϕ, T ′) by the assumption that ϕ(u) < n, could not be in

P . We note that it is possible for vertex u1 to be equal to u. But all edges incident

to u1 are removed when graph T ′ is constructed from tree T , and therefore vertex

u1 is no longer adjacent in T ′ to any vertex in set R(i, ϕ, T ′); in particular, u1 is

not adjacent in T ′ to vertex u2. We conclude that δ(ϕ(u), ϕ, T ′) < δ(ϕ(u), ϕ, T) ≤

VS(T).

Finally, we combine the two cases considered in the previous two paragraphs

and show that path P is a backbone of tree T . Combining the two cases, we see

that δ(ϕ(u), ϕ, T ′) ≤ VS(T)−1 for any vertex u in T ; that is, VS(T ′) ≤ VS(T)−1.

Now consider a branch R of P in tree T . No vertex in R is in P , and therefore all

edges in R are in T ′. Hence, tree R is a subtree of T ′, and it follows from Lemma

2.1 that the vertex separation of R is at most VS(T ′) ≤ VS(T)− 1. In conclusion,

path P is a VS(T)-backbone of T . ¤

Having shown that tree T has an m-backbone for any m ≥ VS(T), we now prove

that no m-backbone of T exists if m < VS(T). Taken together, these two results

form the basis of understanding the relationship between the vertex separation and

structure of a tree; the vertex labelling of a tree, introduced in the next section,

essentially encodes backbones of the tree and its subtrees. The proof of the following

result is adapted from the proof of the fact that if at most two branches of each

vertex u in tree T have vertex separation k, and all other branches of u have vertex

separation strictly less than k, then VS(T) ≤ k [EST94].

Lemma 4.3 A tree T has no m-backbone for any integer m such that 1 ≤ m <

VS(T).

Proof. We prove the lemma by contradiction; we assume tree T has anm-backbone,

and then show that the m-backbone can be used to construct a layout of T with

vertex separation m < VS(T). Assume tree T has an m-backbone P = u1, . . . , up

such that m ≥ 1. We partition the branches of P in T into p sets C1, . . . , Cp such

that branch R of P belongs to Ci if and only if vertex ui is adjacent in T to a vertex

4.1. STRUCTURE OF A TREE AND ITS VERTEX SEPARATION 33

in R. Next, we impose an arbitrary order on the trees in each set Ci, denoting by

ϕij an optimal layout of the jth tree in Ci, where 1 ≤ i ≤ p and 1 ≤ j ≤ |Ci|. By

Definition 4.1, each branch of m-backbone P has vertex separation at most m− 1,

and hence each layout ϕi
j has vertex separation at most m− 1.

We now show how to construct a layout ϕ of T using layouts ϕi
j such that

VS(ϕ, T) ≤ m. Figure 4.1 illustrates this construction. First, we describe the

ã�ãã�ãä
ä

å�åå�åæ�ææ�æççè
è

é�éé�éê
ê

ë�ëë�ëì�ìì�ì
ϕ11 ϕ12 ϕ

p
2u1 ϕ13 u2 u3

CpC2C1

· · ·

ϕ21 upup−1 ϕ
p−1
1 ϕ

p
1ϕ

p−1
2

Cp−1

Figure 4.1: Constructing a layout of a tree from layouts of the branches of a path
(the thick line) in the tree.

layout function ϕ for the vertices in path P . Intuitively, we place the vertices in

P so that the number of positions strictly between positions ϕ(ui+1) and ϕ(ui) is

exactly equal to the number n(i) of vertices in the trees in Ci. That is, we define

ϕ(u1) = 1 and ϕ(ui+1) = ϕ(ui) + n(i) + 1 for all i such that 1 ≤ i ≤ p − 1. Next,

we assign the layout function ϕ to the vertices not in P . Intuitively, vertices in the

trees in Ci are placed between vertices ui and ui+1 in layout ϕ in the same order as

in the layouts ϕi
j, and in such a way that if vertices v1 and v2 are consecutive in ϕi

j,

then they are consecutive in ϕ. Formally, if v is a vertex in the jth tree in set Ci,

then ϕ(v) = ϕ(ui) +
∑j−1

d=1 n(i, d) +ϕij(v), where n(i, d) is the number of vertices in

the dth tree in Ci; we note that
∑|Ci|

d=1 n(i, d) = n(i).

Finally, we show that the vertex separation of layout ϕ is at most m by proving

that the vertex cut at each position q of ϕ is at most m. We analyze two cases,

depending on whether ϕ−1(q) is a vertex in a branch of path P or ϕ−1(q) is a vertex

in P .

We first consider the case when ϕ−1(q) is a vertex in a branch of P . Suppose

that q is a position in ϕ of a vertex in a branch of path P . Then q is a position

of the part of ϕ corresponding to a layout ϕi
j; that is, q is such that ϕ−1(q) is a

34 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

vertex in the jth tree in set Ci. From the definition of layout ϕ given in the previous

paragraph, it follows that there is at most one vertex, ui, outside of ϕ
i
j and satisfying

ϕ(ui) ≤ q that is adjacent to a vertex ui+1 in set R(q, ϕ, T). Therefore, since the

vertex separation of ϕi
j is at most m − 1 for all i and j such that 1 ≤ i ≤ p and

1 ≤ j ≤ |Ci|, it follows that the vertex cut at position q is at most (m−1)+1 = m.

Next, we consider the case when ϕ−1(q) is a vertex on path P . Then the vertex

cut at position q is at most 1, because the only vertex belonging to set L(q, ϕ, T)

that can be adjacent to a vertex in R(q, ϕ, T) is ui; the vertex to which ui is

adjacent in set R(q, ϕ, T) are vertex ui+1 and the vertices in the trees in set Ci that

are adjacent to ui in tree T .

Combining the results of the previous two paragraphs, we get VS(ϕ, T) ≤

max{m, 1}. Since m ≥ 1 by assumption, it follows that VS(ϕ, T) ≤ m < VS(T),

which is a contradiction. We conclude that tree T has no m-backbone for any

integer m such that 1 ≤ m < VS(T). ¤

We remark that Lemma 4.3 is not valid for m = 0; hence the condition m ≥ 1.

To see this, consider the path graph Pn for any n ≥ 2. Graph Pn is its own 0-

backbone, because it does not have any branches, but it has vertex separation 1

according to Lemma 2.3. We also observe from Lemmas 4.1, 4.2, and 4.3 that

finding an m-backbone of tree T is only interesting if m = VS(T).

We conclude the discussion on the relationship between the vertex separation

and structure of a tree by stating a lemma that places a restriction on how many

branches of a vertex u in tree T can have vertex separation equal to VS(T). This

result is very helpful in concluding that a tree has vertex separation greater than

m if a vertex in the tree has too many branches with vertex separation m.

Lemma 4.4 [EST94] If T is a tree and u is any vertex in T , then at most two

subtrees in T [u] have vertex separation VS(T), and all other subtrees in T [u] have

vertex separation strictly less than VS(T). ¤

In analyzing the running times of our algorithms, we will need a relationship

between the number of vertices in a tree and its vertex separation. More specifically,

we will need a lower bound in terms of k on the number of vertices in a tree with

4.2. VERTEX LABELLING 35

vertex separation k, and an upper bound on the vertex separation of a tree in terms

of its size. The next two results give such bounds.

Lemma 4.5 [EST94] Given a positive integer k, the minimum number of vertices

in a tree with vertex separation k is
(
5
6

)
3k − 1

2
. ¤

Theorem 4.6 [EST94] If T is a tree, then VS(T) = O(lg |T |). Furthermore, there

exists a tree T such that VS(T) = Ω(lg |T |). ¤

We note that given an integer k, there is no upper bound in terms of k on the number

of vertices in a tree with vertex separation k. This follows easily from observing

that the path graph Pn, which is a tree on n vertices, has vertex separation 1 for

all n ≥ 2 (Lemma 2.3).

In the next section, we use the results of this section to develop the concept of

vertex labelling; in particular, we refine the concept of backbone to choose a unique

backbone of a tree.

4.2 Vertex Labelling

In this section, we introduce the main concept used in this thesis: vertex labelling

[EST94]. Our algorithms that update the vertex separation of a tree work by up-

dating the vertex labelling of the tree. Vertex labelling is a generalization of vertex

separation in the sense that the vertex separation of a tree T can be found trivially

from the vertex labelling of T . In addition to the vertex separation, the vertex

labelling encodes a backbone of tree T , backbones of the branches of the backbone,

and so on in a recursive fashion. This information is sufficient for computing the

vertex separation and an optimal layout of T recursively.

The current algorithm for computing the vertex labelling of a tree works on

rooted trees [EST94]; we call the algorithm the Ellis-Sudborough-Turner algorithm.

It does not matter which vertex is the root; rooting the tree corresponds to enforcing

a particular recursive structure that is exploited by the algorithm. Finding a root

of the tree so that the algorithm has the best possible running time seems not to

have been investigated (see Chapter 8 for more on this point). We remark that

36 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

the notions of vertex separation and optimal layout are independent of whether

the tree is rooted or not. Therefore, the vertex separation of a rooted tree and the

corresponding unrooted tree are the same. From this point on, we will assume all

our trees are rooted at an arbitrary vertex.

The Ellis-Sudborough-Turner algorithm, the concepts of which are exploited in

our work, finds the vertex labelling of tree T by computing the vertex labels of

the children of the root rT of T recursively, and then combining those labels to

find the label of rT . In order to understand our work, it is necessary to explain in

detail the structure of the vertex label. Instead of just giving a formal definition,

we first describe the concept that leads to the definition: the canonical backbone.

This concept is implicit in the definition of vertex labelling, but is not explicitly

recognized in the original work [EST94]. Our purpose for introducing the canonical

backbone of a tree is twofold: first, it helps to understand the definition of the vertex

label, and second, it is used explicitly in many of our arguments in conjunction with

Lemmas 4.2 and 4.3, both of which are results on an m-backbone of a tree. The

canonical backbone is essentially the shortest backbone of tree T that includes the

root rT of T , if possible; we will prove later that it is unique (Theorem 4.14).

Definition 4.2 The canonical backbone of a tree T , denoted by BT , is the shortest

backbone of T that contains the root rT of T ; if no such backbone exists, then BT

is simply the shortest backbone of T .

Before proceeding further, we need to show that the canonical backbone of a

tree is well-defined, that is, that it is unique. We also mention that the orientation

of a canonical backbone is irrelevant; that is, if P is the canonical backbone of a

tree, then so is PR. This property is invoked many times in our proofs, since when

we reason about a canonical backbone, we usually argue in terms of the underlying

oriented path.

Our proof of the uniqueness of the canonical backbone of a tree requires a new

concept and a few preliminary results. The concept crucial to the proof, and also

to most of the work that comes after it, is that of the criticality of a vertex.

Definition 4.3 [EST94] The criticality of a vertex u in a tree T , denoted by

crit(u, T), is the number of subtrees yielded by u that have vertex separation equal

to VS(T). Vertex u is critical if its criticality is 2; otherwise, it is called noncritical.

4.2. VERTEX LABELLING 37

We remark that the criticality of a vertex depends on the reference tree; for example,

vertex u can be critical in a rooted subtree S of tree T , but it is noncritical in T

if VS(S) < VS(T), since no subtree of S can have vertex separation greater than

VS(S) (Lemma 2.1).

The importance of the criticality concept is that if tree T contains a critical

vertex u, then every backbone of T contains u; this will be shown shortly (Claim

4.8). Toward this goal, we state an important property of the criticality of a vertex

in a tree. It is a simple consequence of Lemma 4.4.

Lemma 4.7 [EST94] If u is any vertex in a tree T , then 0 ≤ crit(u, T) ≤ 2.

Furthermore, there is at most one critical vertex in T . ¤

Later (Lemmas 4.16 and 4.17), we will see that tree T contains a critical vertex if

and only if the canonical backbone BT of T is nonmonotonic, and that the inflection

vertex of BT is the unique critical vertex in T . We recall that the inflection vertex

of a nonmonotonic path P is denoted by infP . Hence, in anticipation of this result,

we denote the critical vertex in tree T , if one exists, by infT .

When arguing about the critical vertex in tree T , or in general about any vertex

u in T , it is often necessary to refer to the subtrees yielded by u that have vertex

separation equal to VS(T). We therefore call a subtree R yielded by vertex u a

critical subtree of u in tree T if VS(R) = VS(T). The root of R is called a critical

child of vertex u in T .

We mentioned earlier that every backbone of tree T contains the critical vertex

infT in T , if there is one in T . We now prove this fact.

Claim 4.8 If a tree T has a critical vertex infT , then infT is in every backbone of

T .

Proof. We prove the claim by showing that if P is a simple path in tree T not

containing the critical vertex, then one of the branches of P has vertex separation

at least VS(T). This implies by Definition 4.1 that path P is not a backbone of

T . Since P is chosen arbitrarily so that it does not contain the critical vertex, we

conclude that every backbone of T contains the critical vertex.

We consider an arbitrary simple path P in T not containing vertex infT . Then

P is entirely contained in a branch of infT in tree T ; this follows, since removing

38 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

vertex infT and all its incident edges from T yields the branches of infT , but this

operation does not disconnect the path P . Since infT is critical in T , it yields two

critical subtrees R1 and R2, which are also branches of infT . Path P cannot be in

both R1 and R2; say P is not in R1. But then R1 is a subtree of a branch R of

P , and thus it follows from Lemma 2.1 and the fact that R1 is a critical subtree of

infT in tree T that VS(R) ≥ VS(R1) = VS(T), implying path P is not a backbone

of tree T . ¤

Together with Claim 4.8, the next result will be important in inferring that the

canonical backbone of tree T contains its root or its critical vertex.

Claim 4.9 If a tree T does not have a critical vertex, there is a backbone of T

containing the root rT of T .

Proof. We give a simple algorithm for constructing a simple path P in tree T that

contains root rT , and then prove that P is a backbone of T . The algorithm is an

iterative one. Before entering the main loop, it starts with P = rT . During one

iteration, the algorithm does the following: if the right endpoint lastP of P does

not have a critical child, then the algorithm outputs path P and exits; otherwise,

it adds a critical child of lastP to the end of P , and then repeats the loop with the

updated path P . We note that the algorithm needs to determine a critical child of

vertex lastP . This can be done by computing the vertex separation of tree T and

each subtree yielded by lastP , and then determining whether the vertex separation

of one of the subtrees equals VS(T). The vertex separation of a tree is computable

[EST94], and hence the algorithm is implementable; we are not concerned about

time efficiency here.

We now prove that the simple algorithm just given computes a backbone of tree

T . Clearly, path P returned by the algorithm contains root rT and is monotonic,

since it is constructed starting at rT and at each step a child of the right endpoint

of P is added to the end of P . This implies every branch R of P is a rooted subtree

of T , and the root rR of R is a child of a vertex in P . Since R is a subtree of T , it

follows from Lemma 2.1 that VS(R) ≤ VS(T). Therefore, if VS(R) < VS(T) holds

for each branch R of P , then P is a backbone of T .

We prove VS(R) < VS(T) holds for any branch R of path P by contradiction.

4.2. VERTEX LABELLING 39

Assume to the contrary that VS(R) = VS(T). Since the root rR of R is a child

of a vertex p in P , the fact that R is a critical subtree of p implies rR is a critical

child of p. The children of p are examined by the algorithm when the algorithm

has already constructed the subpath sp (rT , p) of P . We now consider two cases,

depending on whether p is the right endpoint of P or not.

First, we consider the case when p is the right endpoint of path P . Then

P = sp(rT , p), that is, p = lastP , and the algorithm exits after examining the

children of p, because p has no critical child. This contradicts the fact that rR is a

critical child of p. Therefore, the assumption VS(R) = VS(T) must be false, and

we conclude that VS(R) < VS(T).

Second, we analyze the case when p is not the right endpoint of P . In this case,

we consider the right neighbour right(p, P) of p in P . The algorithm chooses vertex

right(p, P) to be added to the end of sp(rT , p) when it is examining the children of p.

Hence, right(p, P) is a critical child of p. However, rR is also a critical child of p, and

rR 6= right(p, P), since rR is not in P . Lemma 4.7 therefore implies crit(p, T) = 2,

and hence vertex p is critical in T . This contradicts the assumption that tree T

does not have a critical vertex. We therefore conclude that VS(R) = VS(T) cannot

be true, and hence VS(R) < VS(T). ¤

We see from Claims 4.8 and 4.9 that in order to prove the uniqueness of the

canonical backbone of tree T , it suffices to show that the shortest backbone of

all backbones of T that contain vertex s is unique, where s = rT if the canonical

backbone contains rT and s = infT otherwise. However, we can prove a stronger

result: assuming there is a backbone of T containing any vertex s in T , then the

shortest backbone containing s is unique. When this result is combined with Claims

4.8 and 4.9, it implies the canonical backbone of T is unique, as we will show in

detail in Theorem 4.14. The main idea behind the proof of the result is to apply

induction on the minimum number of consecutive vertices shared among all shortest

backbones of T containing s. The base case of the induction is trivial, because all

shortest backbones of tree T that contain vertex s have at least one consecutive

vertex in common, namely s.

We present our proof by means of a few claims. Our first result is used several

times to conclude that a shorter subpath of a backbone is also a backbone if certain

40 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

conditions are satisfied.

Claim 4.10 Consider a backbone P = lpath(u, P)+u+ rpath(u, P) such that the

subpath rpath(u, P) is nonempty.

1. If u is an interior vertex of P , that is, subpath lpath(u, P) of P is nonempty

as well, and VS
(
T [u]left(u,P)

)
< VS(T), then the subpath u + rpath(u, P) of

P is a backbone of T .

2. If u is the left endpoint of P , that is, subpath lpath(u, P) is empty, and

VS
(
T [u]right(u,P)

)
< VS(T), then the single-vertex subpath u of P is a back-

bone of T .

Proof. The claim is a direct consequence of Lemmas 2.5 and 2.4. We first observe

that since path P is a backbone of tree T , all subtrees in set T [P] of the branches

of P in T have vertex separation less than VS(T). We prove each point in the claim

separately.

We first consider the case when vertex u is an interior vertex of path P and

VS
(
T [u]left(u,P)

)
< VS(T). Point 2 in Lemma 2.5 implies

T [u+ rpath(u, P)] = (T [P]− T [lpath(u, P)]) ∪
{
T [u]left(u,P)

}
.

Because all subtrees in T [P] have vertex separation less than VS(T) and also

VS
(
T [u]left(u,P)

)
< VS(T), we infer that all subtrees in set T [u + rpath(u, P)]

have vertex separation less than VS(T). We conclude that path u+ rpath(u, P) is

a backbone of tree T .

We next consider the case when vertex u is the left endpoint of path P and

VS
(
T [u]right(u,P)

)
< VS(T). Point 2 in Lemma 2.4 implies

T [u] = (T [P]− T [rpath(u, P)]) ∪
{
T [u]right(u,P)

}
.

Like in the previous case, since all subtrees in set T [P] have vertex separation less

than VS(T) and VS
(
T [u]left(u,P)

)
< VS(T), it follows that all subtrees in set T [u]

have vertex separation less than VS(T). In conclusion, the path consisting of the

single vertex u is a backbone of T . ¤

4.2. VERTEX LABELLING 41

As mentioned on page 39, the proof of the fact that the shortest backbone of

T containing vertex s is unique proceeds by induction. We assume all shortest

backbones containing s share at least i− 1 consecutive vertices, and prove that all

shortest backbones containing s share at least i consecutive vertices, where i is at

most the number of vertices in all such shortest backbones. We also noted on page

39 that the base case i = 1 is trivial. However, for technical reasons, we also need

to prove case i = 2 explicitly. The reason is that our proof of the induction step

requires that a subpath on i − 1 vertices of all shortest backbones containing s,

guaranteed to exist by the induction hypothesis, has distinct endpoints; that is, the

induction hypothesis requires that i ≥ 3 so that i− 1 ≥ 2. In the following claim,

we therefore establish the case i = 2.

Claim 4.11 If there are at least two vertices in each shortest backbone of T con-

taining vertex s, then all such shortest backbones share at least two consecutive

vertices.

Proof. We prove the claim by showing that two arbitrary shortest backbones B1

and B2 of T containing vertex s share a vertex adjacent to s. This will imply all

shortest backbones containing s have at least two consecutive vertices in common.

Our proof is divided into two cases, depending on whether or not vertex s is an

interior vertex of at least one backbone B1 or B2. The case when s is an interior

vertex is further divided into two subcases. For both cases (and subcases), we

assume to the contrary that all the neighbours of s in B1 and B2, which are all

adjacent to vertex s in tree T , are distinct. We will derive the contradiction that

B2 is not a shortest backbone of T containing s.

We first consider the case when s is an interior vertex of at least one backbone

B1 or B2. Since B1 and B2 were chosen arbitrarily, we may assume without loss of

generality that s is an interior vertex of B1. Then we can write B1 = lpath(s, B1)+

s + rpath(s, B1), where lpath(s, B1) and rpath(s, B1) are both nonempty. Point 1

in Lemma 2.5 therefore yields

T [s] = (T [B1] ∩ T [s]) ∪
{
T [s]left(s,B1), T [s]right(s,B1)

}
. (4.2)

We next consider two subcases, depending on whether or not vertex s is an interior

42 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

vertex of B2.

We first analyze the subcase when s is an interior vertex of B2. Then we can

write B2 = lpath(s, B2)+ s+ rpath(s, B2), where lpath(s, B2) and rpath(s, B2) are

both nonempty. Hence, point 1 in Lemma 2.5 implies the following analogue of

Equation 4.2:

T [s] = (T [B2] ∩ T [s]) ∪
{
T [s]left(s,B2), T [s]left(s,B2)

}
. (4.3)

The neighbours left(s, B1), right(s, B1), left(s, B2), and right(s, B2) of s in B1 and

B2 are all distinct; this is our original assumption. Hence, T [s]left(s,B2) 6= T [s]left(s,B1)

and T [s]left(s,B2) 6= T [s]right(s,B1). Equating the right-hand sides of Equations 4.2 and

4.3, we therefore see that T [s]left(s,B2) ∈ T [B1] ∩ T [s]. Hence, subtree T [s]left(s,B2) is

a branch of backbone B1, and thus VS
(
T [s]left(s,B2)

)
< VS(T). Point 1 in Claim

4.10 now implies s + rpath(s, B2) is a backbone of T containing s that is strictly

shorter than B2.

We now analyze the subcase when vertex s is an endpoint of backbone B2. Then

we can write B2 = s+rpath(s, B2) by orienting B2 arbitrarily. Since every backbone

containing s contains at least two vertices by assumption, point 1 in Lemma 2.4

implies

T [s] = (T [B2] ∩ T [s]) ∪
{
T [s]right(s,B2)

}
. (4.4)

Since right(s, B2) 6= left(s, B1) and right(s, B2) 6= right(s, B1), which is our original

assumption that the neighbours of s in both B1 and B2 are all distinct, we deduce

that T [s]right(s,B2) 6= T [s]left(s,B1) and T [s]right(s,B2) 6= T [s]right(s,B1). It therefore fol-

lows from equating the right-hand sides of Equations 4.2 and 4.4 that T [s]right(s,B2) ∈

T [B1]∩T [s]. But B1 is a backbone of tree T , and hence VS
(
T [s]right(s,B2)

)
< VS(T).

Point 2 in Claim 4.10 implies s is a backbone of T containing only one vertex, and

therefore it is strictly shorter than backbone B2, which contains at least two ver-

tices.

Finally, we consider the case when vertex s is an endpoint of both backbones B1

and B2. We may assume without loss of generality that s is the left endpoint of both

B1 and B2. Thus, we can write B1 = s + rpath(s, B1) and B2 = s + rpath(s, B2).

Point 1 in Lemma 2.4 and the fact that every shortest backbone contains at least

4.2. VERTEX LABELLING 43

two vertices imply

T [s] = (T [B1] ∩ T [s]) ∪
{
T [s]right(s,B1)

}
, (4.5)

and

T [s] = (T [B2] ∩ T [s]) ∪
{
T [s]right(s,B2)

}
. (4.6)

Since right(s, B2) 6= right(s, B1) by assumption, it follows that T [s]right(s,B2) 6=

T [s]right(s,B1). Equating the right-hand sides of Equations 4.5 and 4.6 implies that

T [s]right(s,B2) ∈ T [B1] ∩ T [s]. Thus, T [s]right(s,B2) is a branch of backbone B1, and

therefore VS
(
T [s]right(s,B2)

)
< VS(T). It follows from point 2 in Claim 4.10 that s

is a backbone of T that is strictly shorter than B2.

In each case, we found a backbone of T containing vertex s that is shorter than

backbone B2. This is a contradiction, because B2 was chosen to be a shortest

backbone of T containing s. Hence, our original assumption, that all neighbours

of s in both shortest backbones B1 and B2 are distinct, is false. We conclude that

B1 and B2 share at least one neighbour of s, which is adjacent to s in tree T .

Therefore, backbones B1 and B2 share at least two consecutive vertices, implying

all shortest backbones of T containing s have at least two consecutive vertices in

common. ¤

We now proceed to proving the induction step, which is divided into two claims

in order to make it more manageable.

Claim 4.12 If the number of vertices in each shortest backbone of T containing

vertex s is num ≥ 3, and all such backbones share at least q−1 consecutive vertices

u1, . . . , uq−1, where 3 ≤ q ≤ num, then either

1. u1 is not an endpoint of any shortest backbone of T containing s, or

2. uq−1 is not an endpoint of any shortest backbone of T containing s.

Proof. We prove the claim by examining the endpoints u1 and uq−1 of path P =

u1, . . . , uq−1. Path P is clearly a proper subpath of all shortest backbones containing

s, since the number of vertices in P is strictly less than the number of vertices in

every shortest backbone containing s (num ≥ q > q−1). Furthermore, since q ≥ 3,

44 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

path P contains at least two vertices; that is, u1 6= uq−1 holds. Therefore, vertices

u1 and uq−1 cannot both be endpoints of any shortest backbone of T containing

vertex s.

Our goal is to show that if vertex u1 is an endpoint of a shortest backbone B of

T containing s, then u1 is an endpoint of all shortest backbones containing s, and

hence vertex uq−1 is not an endpoint of any shortest backbone containing s; this

shows the second part of the claim. The case when vertex uq−1 is an endpoint of

B is entirely symmetrical, since we can relabel the vertices u1, . . . , uq−1 in reverse

order.

We suppose that vertex u1 is an endpoint of backbone B, and show that if

there is a shortest backbone B2 of T containing vertex s such that u1 is not an

endpoint of B2, then B2 is not a shortest backbone containing s. Assume u1 is

not an endpoint of B2. Therefore, u1 is an interior vertex of B2, and we can write

B2 = lpath(u1, B2) + u1 + rpath(u1, B2). Point 1 in Lemma 2.5 implies

T [u1] = (T [B2] ∩ T [u1]) ∪
{
T [u1]left(u1,B2), T [u1]right(u1,B2)

}
. (4.7)

We now consider backbone B. Since num ≥ 3, B contains at least three vertices.

Thus, by the assumption that vertex u1 is an endpoint of B, we can write the

backbone as B = u1 + rpath(u1, B), where rpath(u1, B) is nonempty. It then

follows from point 1 in Lemma 2.4 that

T [u1] = (T [B] ∩ T [u1]) ∪
{
T [u1]right(u1,B)

}
. (4.8)

We finally show how Equations 4.7 and 4.8 lead to the desired contradiction

that B2 is not a shortest backbone of T containing vertex s. Since left(u1, B2) 6=

right(u1, B2), at least one of the neighbours left(u1, B2) and right(u1, B2) does not

equal right(u1, B). Because the orientation of backbone B2 is not important, we

can orient B2 in such a way that the left neighbour left(u1, B2) of u1 in B2 does not

equal right(u1, B); we note that both left(u1, B2) and right(u1, B2) can differ from

right(u1, B). By equating the right-hand sides of Equations 4.7 and 4.8, it follows

that T [u1]left(u1,B2) ∈ T [B]∩T [u1]. Therefore, T [u1]left(u1,B2) is a branch of backbone

B, and hence VS
(
T [u1]left(u1,B2)

)
< VS(T). Hence, it follows from point 1 in Claim

4.2. VERTEX LABELLING 45

4.10 that path u1 + rpath(u1, B2) is a backbone of T . We will show shortly that

u1+rpath(u1, B2) contains vertex s. Since u1+rpath(u1, B2) is strictly shorter than

B2, we have reached the contradiction to the fact that B2 is a shortest backbone

of T containing s. Therefore, if u1 is an endpoint of backbone B, then it is an

endpoint of backbone B2.

It remains to show that path u1 + rpath(u1, B2) contains vertex s. Since

T [u1]left(u1,B2) is a branch of backbone B, which contains s, it follows T [u1]left(u1,B2)

does not contain s. Thus, the fact that T [u1]left(u1,B2) contains subpath lpath(u1, B2)

of backbone B2 implies lpath(u1, B2) does not contain s. And since the path

B2 = lpath(u1, B2) + u1 + rpath(u1, B2) contains s, we conclude that path u1 +

rpath(u1, B2) contains s. ¤

We next prove the second part of the induction step.

Claim 4.13 If the number of vertices in each shortest backbone of T containing s

is num ≥ 3, and all shortest backbones containing s have at least q− 1 consecutive

vertices in common, where 3 ≤ q ≤ num, then all such shortest backbones have at

least q consecutive vertices in common.

Proof. We prove the claim by considering two arbitrary shortest backbones of T

containing s, and showing that if they share at least q−1 consecutive vertices, then

there is at least one additional consecutive vertex that they have in common. We

denote by P a path on any q − 1 consecutive vertices u1, . . . , uq−1 shared among

all shortest backbones containing s. Path P is a subpath of each such shortest

backbone. It follows from Claim 4.12 combined with the facts num ≥ 3 and 3 ≤

q ≤ num that either u1 is not an endpoint of any shortest backbone containing s,

or uq−1 is not an endpoint of any shortest backbone containing s. Since we can

orient path P arbitrarily, we may assume without loss of generality that vertex u1

is not an endpoint of any shortest backbone of T containing vertex s.

We next show that there is a vertex z such that path z + P is a subpath of

all shortest backbones of T containing s, which proves the claim. Since q ≥ 3, the

number of vertices in P is q − 1 ≥ 2. Because path P is a subpath of all shortest

backbones containing s, it follows that it is a subpath of any two such shortest

backbones B1 and B2. Then vertex u2, which is the neighbour of u1 in P , is a

46 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

neighbour of u1 in both B1 and B2. Since the orientation of a backbone is not

important, we orient backbones B1 and B2 so that u2 is the right neighbour of u1

in both B1 and B2; that is, u2 = right(u1, B1) = right(u1, B2).

Our goal now is to show that the left neighbours left(u1, B1) and left(u1, B2) of

u1 in B1 and B2, respectively, are equal, and therefore are the vertex z discussed

in the previous paragraph; vertices left(u1, B1) and left(u1, B2) exist, since u1 is not

an endpoint of any shortest backbone containing s, and hence it is not an endpoint

of either B1 or B2. Assume to the contrary that left(u1, B1) 6= left(u1, B2). We will

obtain the contradiction that B2 is not a shortest backbone containing s. Point 1

in Lemma 2.4 implies

T [u1] = (T [B1] ∩ T [u1]) ∪
{
T [u1]left(u1,B1), T [u1]right(u1,B1)

}
, (4.9)

and

T [u1] = (T [B2] ∩ T [u1]) ∪
{
T [u1]left(u1,B2), T [u1]right(u1,B2)

}
. (4.10)

Since our assumption is left(u1, B2) 6= left(u1, B1) and we know left(u1, B2) 6=

right(u1, B2) = right(u1, B1) = u2, we infer from equating the right-hand sides of

Equations 4.9 and 4.10 that T [u1]left(u1,B2) ∈ T [B1]∩T [u1]. Therefore, T [u1]left(u1,B2)

is a branch of backbone B1, and hence VS
(
T [u1]left(u1,B2)

)
< VS(T).

We conclude the proof by showing how the fact VS
(
T [u1]left(u1,B2)

)
< VS(T)

implies B2 is not a shortest backbone of T containing vertex s. Since vertex u1 is not

an endpoint of backbone B2, we can write B2 = lpath(u1, B2)+u1+ rpath(u1, B2).

Point 1 in Claim 4.10 thus implies path u1 + rpath(u1, B2) is a backbone of tree

T . Because T [u1]left(u1,B2) is a branch of backbone B1, which contains vertex s,

T [u1]left(u1,B2) does not contain s, implying lpath(u1, B2) does not contain s. The

fact that B2 contains vertex s implies path u1 + rpath(u1, B2) contains s, and

therefore u1+ rpath(u1, B2) is a backbone of T containing s that is strictly shorter

than B2. This contradicts the fact that B2 is a shortest backbone of T containing

vertex s. Thus, left(u1, B1) = left(u1, B2) = z, and we see that path z + P is a

subpath of backbones B1 and B2. Since B1 and B2 are arbitrary, it follows that

z + P is a subpath of all shortest backbones of T containing vertex s. ¤

4.2. VERTEX LABELLING 47

We finally have all the essential results to be able to prove our goal that the

canonical backbone of a tree is unique, thereby justifying its definition. The proof

of this result is a combination of Claims 4.8, 4.9, 4.11, and 4.13.

Theorem 4.14 The canonical backbone BT of a tree T is unique.

Proof. To prove the lemma, we first show that if tree T has no backbone that

contains the root rT of T , then all backbones of T share the critical vertex infT in

T . Second, we use induction to prove that the shortest backbone of T containing

vertex s is unique, where s = rT if there exists a backbone of T containing rT and

s = infT if there is no backbone of tree T that contains root rT . This will imply by

Definition 4.2 that the canonical backbone of T is unique.

For the first part of the proof, suppose that tree T has no backbone that contains

root rT . Then by the contrapositive of Claim 4.9, there is a critical vertex infT in

T . Claim 4.8 then implies infT is in every backbone of T .

We now prove that the shortest backbone of tree T containing vertex s is unique,

where s = rT if there exists a backbone of T containing rT and s = infT if there is

no backbone of T that contains root rT . In other words, if there is a backbone of T

that contains root rT , we prove that the shortest backbone of all the backbones of

T that contain rT is unique. Similarly, if there is no such backbone, every backbone

of T contains critical vertex infT , and we show that the shortest one is unique.

We prove this by induction on the minimum number of consecutive vertices

common to all shortest backbones of T containing vertex s. That is, we show

by induction that for all i such that 1 ≤ i ≤ num, where num is the number of

vertices in all shortest backbones containing s, all such shortest backbones share

at least i consecutive vertices. The base case consists of subcases i = 1 and i = 2.

Subcase i = 1 is trivially true, and Claim 4.11 implies subcase i = 2 is true. For

the induction step, we assume all shortest backbones containing s contain at least

i − 1 consecutive vertices in common, where 3 ≤ i ≤ num; this is our induction

hypothesis. Claim 4.13 implies all shortest backbones of T containing s share at

least i consecutive vertices, which proves the induction step. If i = num, then all

shortest backbones of T containing s share at least num consecutive vertices, and

hence they must be identical, since each of them contains exactly num vertices. ¤

48 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

For the purpose of computing the vertex separation and an optimal layout of

tree T , we only consider canonical backbones. Theorem 4.14 implies this gives the

algorithms well-defined, fixed behaviour. As mentioned at the beginning of this

section, canonical backbones are implicitly encoded in the vertex labelling of tree

T .

We now discuss vertex labels informally; we will supply a formal definition

after motivating it. The label λu of a vertex u in tree T is a sequence of integers

(k1, . . . , kp). The first integer in the sequence, k1, equals the vertex separation of

the subtree Tu of tree T rooted at u. The length p of λu indicates whether or not

the root u of tree Tu is in the canonical backbone BTu
of tree Tu. If vertex u is

in BTu
, then p = 1, and therefore λu = (k1). On the other hand, if u is not in

backbone BTu
, then p > 1. By Definition 4.2 and the contrapositive of Claim 4.9,

Tu then has a critical vertex infTu
; furthermore, Claim 4.8 implies infTu

is in every

backbone, including the canonical backbone of Tu, and therefore infTu
6= u.

The remaining elements of label λu describe in a recursive fashion the subtree

Tu〈v1〉 (Definition 2.1), where v1 is the vertex in BTu
closest to vertex u. Shortly

(Lemma 4.15), we will show that canonical backboneBTu
is nonmonotonic, implying

by point 1 in Lemma 2.8 that v1 is the inflection vertex of BTu
. We will also show

that v1 = infTu
(Lemma 4.16). The label of vertex u in tree Tu〈v1〉 is (k2, . . . , kp).

Therefore, integer k2 in label λu equals the vertex separation of tree Tu〈v1〉, and

p = 2 if and only if vertex u is in the canonical backbone of Tu〈v1〉; otherwise, p > 2,

and the remaining elements of label λu are determined recursively by considering

the tree Tu〈v1, v2〉, where v2 is the vertex in the canonical backbone BTu〈v1〉 closest

to u. We observe that since v1 is the vertex in backbone BTu
closest to vertex u,

the tree Tu〈v1〉 is a branch of BT in tree Tu. Therefore, VS(Tu〈v1〉) < VS(Tu) holds

(Definition 4.1). Since k1 = VS(Tu) and k2 = VS(Tu〈v1〉), we conclude that k1 > k2.

Analogous reasoning can be used on tree VS(Tu〈v1, v2〉) to infer that k2 > k3, and

so on. That is, label λu is a strictly decreasing sequence of integers.

We now look more closely at the properties of vertex v1. In the informal descrip-

tion of the label λu of vertex u, we chose v1 to be the vertex in BTu
closest to vertex

u. This condition is rather cumbersome and also difficult to check. The following

result, together with point 1 in Lemma 2.8, gives us a cleaner characterization of

4.2. VERTEX LABELLING 49

v1 as the inflection vertex of canonical backbone BTu
.

Lemma 4.15 Given a tree T , consider the canonical backbone BT of T . If back-

bone BT does not contain the root of T , then BT is nonmonotonic.

Proof. The proof proceeds by first assuming canonical backbone BT is monotonic

and does not contain root rT , and then showing that BT can be extended so that it

does contain rT ; this is a contradiction. Since BT is monotonic, point 2 in Lemma

2.8 implies one of its endpoints is closer to root rT than is any other vertex in BT .

Because BT can be oriented in an arbitrary way, we may assume without loss of

generality that the left endpoint firstBT
of BT is closer to rT than is any other vertex

in BT ; to reduce clutter, we simply denote firstBT
by firstT . We observe that no

proper ancestor of firstT in T is in BT , since every proper ancestor of firstT is closer

to root rT than vertex firstT . Hence, path P = sp (rT , z), where z is the parent of

firstT , which consists only of ancestors of firstT , does not contain any vertex in BT .

We conclude that the path P +BT is simple.

We now show that P +BT = sp (rT , z) +BT is a backbone of tree T . By point

1 in Lemma 2.6, all branches of P , except branch T [P]firstT , are subtrees of the

branch T [BT]z of BT ; that is, all branches in set T [P] −
{
T [P]firstT

}
are subtrees

of T [BT]z. Since T [BT]z is a branch of backbone BT , it follows that VS (T [BT]z) <

VS(T). Lemma 2.1 therefore implies all subtrees in T [P]−
{
T [P]firstT

}
have vertex

separation less than VS(T). Since point 3 in Lemma 2.6 implies

T [P +BT] = (T [P] ∪ T [BT])−
{
T [P]first, T [BT]pfirst

}
,

the fact that all subtrees in T [BT] have vertex separation less than VS(T) lets us

infer that all subtrees in set T [P + BT] have vertex separation less than VS(T).

Thus, path P +BT is a backbone of tree T and contains root rT . This contradicts

the fact that BT is the canonical backbone of T , because BT contains rT if there is a

backbone of T that contains rT (Definition 4.2). We conclude that if the canonical

backbone BT of tree T is monotonic, then it contains root rT . Therefore, canonical

backbone BT is nonmonotonic. ¤

Lemma 4.15 implies if the canonical backbone BTu
of tree Tu is monotonic, then

50 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

it contains the root u of Tu, and therefore the label of u is (k1) according to our

informal discussion. However, if BTu
is nonmonotonic, then it may or may not

contain vertex u.

We hinted earlier (the discussion immediately following Lemma 4.7) that the

inflection vertex of a nonmonotonic canonical backbone BT of tree T and the critical

vertex in T are identical. That is why we chose the notation for the critical vertex

of T to be infT , which is similar to notation infBT
for the inflection vertex of BT .

In the following two lemmas, we finally prove this assertion; that is, we prove the

equivalence between the inflection and critical vertices.

Lemma 4.16 If a tree T has a nonmonotonic canonical backbone BT , then it has

a critical vertex infT ; furthermore, infBT
= infT , where infBT

is the inflection vertex

of BT .

Proof. We prove the lemma by showing that the neighbours of infBT
in BT are

critical children of infBT
in tree T . To reduce clutter, we simply write BT as B.

Suppose that B is nonmonotonic with inflection vertex infB. Since infB is the

inflection vertex of B, it is an interior vertex of B. Hence, we can write B =

lpath(infB, B)+ infB+ rpath(infB, B), where lpath(infB, B) and rpath(infB, B) are

both nonempty. Consider the right endpoint last of lpath(infB, B) and the left

endpoint first of lpath(infB, B). In other words, last and first are the left and right

neighbours of infB in B, respectively. Since infB is the inflection vertex, both last

and first are children of infB in tree T . We will show that VS (Tlast) = VS (Tfirst) =

VS(T), thus implying vertices last and first are critical children of infB. Hence, the

criticality of infB in T is at least 2. By Lemma 4.7, the criticality of any vertex is

at most 2. Thus, crit(infB, T) = 2, and vertex infB is critical in tree T (Definition

4.3).

We prove VS (Tlast) = VS (Tfirst) = VS(T) by contradiction; we assume that

VS (Tlast) < VS(T) or VS (Tfirst) < VS(T), and show that a proper subpath of B

is a backbone of tree T , contradicting the fact that backbone B is shortest. We

only consider the case when VS (Tlast) < VS(T), since the case VS (Tfirst) < VS(T)

is symmetrical. By point 2 in Lemma 2.5, the following equation holds:

T [infB + rpath(infB, B)] = (T [B]− T [lpath(infB, B)]) ∪ {T [infB]last} . (4.11)

4.2. VERTEX LABELLING 51

Tree T [infB]last is the branch of infB in T containing vertex last that is adjacent to

infB in T ; that is, it is the subtree yielded by infB and rooted at last, since last is a

child of infB. In other words, T [infB]last = Tlast. The assumption is that VS (Tlast) <

VS(T). Also, all branches in T [B] have vertex separation less than VS(T), since

they are branches of a backbone of T . We conclude from Equation 4.11 that all

branches in T [infB + rpath(infB, B)] have vertex separation less than VS(T), and

hence infB+rpath(infB, B) is a backbone of tree T . But path infB+rpath(infB, B)

is strictly shorter than B, contradicting the fact that B is the shortest backbone

containing infB. Therefore, VS (Tlast) = VS(T) must hold, since Lemma 2.1 implies

VS (Tlast) > VS(T) is impossible. ¤

We now prove the converse of Lemma 4.16, thus establishing the equivalence be-

tween the inflection vertex of a nonmonotonic canonical backbone of tree T and

the critical vertex in T .

Lemma 4.17 If a tree T has a critical vertex infT , then the canonical backbone

BT is nonmonotonic; furthermore, infT = infBT
.

Proof. We prove the lemma by showing that the critical children of infT must be

in BT . Suppose tree T has a critical vertex infT . Then infT yields two subtrees R1

and R2 of T such that

VS(R1) = VS(R2) = VS(T). (4.12)

Also, it follows from Claim 4.8 that vertex infT is in every backbone of T ; in

particular, infT is in BT . We will show shortly that the roots rR1 and rR2 of trees

R1 and R2, respectively, must be in BT , implying path rR1 + infT +rR2 is a subpath

of BT . But path rR1 + infT + rR2 is nonmonotonic with inflection vertex infT , and

therefore it follows from Lemma 2.9 that canonical backbone BT is nonmonotonic

with inflection vertex infT .

It remains to show that vertices rR1 and rR2 are in canonical backbone BT . We

prove this by contradiction. Assume rR1 is not in BT ; the case when rR2 is not in

BT is identical, except that subscript 2 is used in place of subscript 1. We derive

the contradiction that canonical backbone BT is not a backbone of tree T . The

simple path from vertex infT to any vertex in subtree R1 is unique and contains

52 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

vertex rR1 . Since our assumption is that rR1 is not in BT , it follows that no vertex

in R1 is in BT . Hence, R1 is a subtree of a branch R of backbone BT , and hence we

infer from Lemma 2.1 and Equation 4.12 that VS(R) ≥ VS(T), which contradicts

the fact that BT is a backbone of tree T . Therefore, the assumption that rR1 is not

in canonical backbone BT must be false. Hence, vertex rR1 is in BT , and by the

same argument, vertex rR2 is in BT as well. ¤

Lemmas 4.16 and 4.17 together imply the canonical backbone BTu
of tree Tu is

nonmonotonic if and only if Tu has a critical vertex. If Tu does not have a critical

vertex, then BTu
is monotonic, and therefore by Lemma 4.15 it contains the root u

of Tu. Hence, the label λu of vertex u is (k1) according to our informal discussion

of the vertex label. If canonical backbone BTu
is nonmonotonic, then λu = (k1) if

and only if BTu
contains vertex u; otherwise, p > 1, and we derive the remaining

integers in label λu by considering the subtree Tu〈v1〉, where v1 = infTu
. This

correspondence between the critical vertex in tree T and the inflection vertex of the

canonical backbone of T is not made in the original paper [EST94]. We believe it

makes the formal definition of the vertex label easier to understand on an intuitive

level.

As discussed starting on page 48, the label λu = (k1, . . . , kp) is a sequence

of integers. However, in computing with λu, we also need to know the critical-

ities of the vertices v1, . . . , vp−1, u in trees Tu〈〉 = Tu, Tu〈v1〉, . . . , Tu〈v1, . . . , vp−1〉,

respectively. Vertices v1, . . . , vp−1 are all critical in trees Tu, . . . , Tu〈v1, . . . , vp−2〉,

respectively, and hence their ciritcality is 2. But the criticality of vertex u in tree

Tu〈v1, . . . , vp−1〉 can be 0, 1, or 2. Therefore, in most instances, we need both the

sequence of integers and the criticality of u. The formal definition of the vertex

label takes this extra information into account.

Definition 4.4 [EST94] The label of a vertex u in a rooted tree T , denoted λu,T or

simply λu if T is clear from context, is a sequence of integers (k1, . . . , kp)c together

with an integer c for which there exists a sequence of vertices v1, . . . , vp in subtree

Tu of T such that the following three conditions are satisfied:

1. VS(Tu) = k1;

4.2. VERTEX LABELLING 53

2. for 1 ≤ i ≤ p − 1, vertex vi is critical in tree Tu〈v1, . . . , vi−1〉 and we have

VS(Tu〈v1, . . . , vi〉) = ki+1;

3. vp = u, and either vertex u is critical or there is no critical vertex in tree

VS(Tu〈v1, . . . , vp−1〉).

Integer c, also denoted by crit(λu, T) or crit(λu), equals the criticality of vertex u

in tree VS(Tu〈v1, . . . , vp−1〉) and is called the criticality of λu. Label λu is critical

or noncritical depending on whether c = 2 or c 6= 2, respectively.

Lemma 4.18 [EST94] The label of each vertex in a rooted tree is unique. ¤

The consistency of Definition 4.4 with the informal discussion leading up to the

definition can be easily seen once we identify the vertex vi, which is critical in

tree Tu〈v1, . . . , vi−1〉 if i < p, with the inflection vertex of the canonical backbone

BTu〈v1,...,vi−1〉 of Tu〈v1, . . . , vi−1〉.

The definition of the vertex label is not simple, and therefore we state a few lem-

mas by Ellis, Sudborough, and Turner [EST94] that justify claims made informally

earlier.

Lemma 4.19 [EST94] The vertex separation of a tree is equal to the first integer

in the label of the root of the tree. ¤

Lemma 4.20 [EST94] A vertex label (k1, . . . , kp)c is a strictly decreasing sequence;

that is, k1 > · · · > kp ≥ 0. ¤

Lemma 4.21 [EST94] There is no critical vertex in the subtree Tu of a tree T or

vertex u is critical in Tu if and only if the label of u is (VS(Tu))crit(u,Tu). ¤

Lemma 4.22 [EST94] If λu = (k1, . . . , kp)c is the label of a vertex u in a tree T

with p > 1, then (k2, . . . , kp)c is the label of u in tree Tu
〈
infTu

〉
. ¤

Since most of the results in later chapters involve reasoning about vertex labels,

it is convenient to introduce additional notation and terminology. We define the

label of tree T as the label of the root of T , and denote it by λT . The vertex labelling

of T is a collection of the labels of all vertices in T ; it is denoted by ΛT . We say that

54 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

two vertex labels λ = (k1, . . . , kp)c and λ′ =
(
k′1, . . . , k

′
p′

)
c′
are equal up to criticality

if p = p′ and ki = k′i for all i, 1 ≤ i ≤ p = p′. Labels λ and λ′ are said to be equal

if they are equal up to criticality and c = c′.

The length of label λu = (k1, . . . , kp) is defined to be equal to p, and is denoted

by |λu|. We now make a few simple observations about unit-length vertex labels.

Lemma 4.23 If λu is the label of a vertex u in a tree T such that |λu| = 1, and w

is a vertex in the subtree Tu of T such that w 6= u, then w is noncritical in Tu.

Proof. If vertex w is critical in tree Tu, then it follows from Lemma 4.21 and the

fact w 6= u that |λu| > 1. This contradicts the supposition that |λu| = 1. ¤

Lemma 4.24 If λu is the label of a vertex u in a tree T such that |λu| = 1 and is

noncritical, then there is no critical vertex in the subtree Tu of T .

Proof. Lemma 4.21 implies the criticality of label λu equals the criticality of vertex

u in tree Tu. Hence, since λu is noncritical, so is u. If w is a vertex in Tu such that

w 6= u, then by Lemma 4.23 w is noncritical. Therefore, there is no critical vertex

in tree Tu. ¤

In order to derive running times of algorithms that compute with vertex labels, it

is necessary to have an upper bound on the length of a vertex label. The following

result is a simple consequence of Theorem 4.6 and Lemmas 2.1, 4.19, and 4.20.

Lemma 4.25 [EST94] The length of the label of any vertex in a tree T is at most

VS(T) + 1 = O(lg |T |). Furthermore, there exists a tree T such that the label of

the root of T has length VS(T) + 1 = Ω(lg |T |). ¤

An integer ki in label λu = (k1, . . . , kp)c is also called the ith element of label

λu, or simply an element of λu if its position in the label is unimportant; it is

denoted by λu(i). The last element of label λu is kp. Vertex vi, as used in Defi-

nition 4.4, and element ki of λu are said to correspond to each other. We call the

tree T 〈v1, . . . , vi−1〉vi
the subtree corresponding to element ki. In the following two

lemmas, we simply restate aspects of Definition 4.4 using the newly introduced

notation and terminology.

4.2. VERTEX LABELLING 55

Lemma 4.26 Given the label λu of a vertex u in a tree T , consider the sequence

v1, . . . , v|λu| of vertices corresponding to elements λu(1), . . . , λu(|λu|) of λu, respec-

tively. Then it follows that VS(Tu〈v1, . . . , vi〉) = λu(i+ 1), where 1 ≤ i ≤ |λu| − 1.

Proof. Letting ki = λu(i), we see readily that the lemma is equivalent to condition

2 in Definition 4.4. ¤

Lemma 4.27 The vertex corresponding to the last element of the label λu of a

vertex u in a tree T is u. Furthermore, u does not correspond to any element of λu

that is not the last element.

Proof. The first part of the lemma is obvious (condition 3 in Definition 4.4). We

justify the second part by observing that if vi = u such that i < p = |λu|, then tree

Tu〈v1, . . . , vi〉 is empty. Since i < p, there is an element ki+1 of λu that corresponds

to a vertex vi+1 in Tu〈v1, . . . , vi〉. But tree Tu〈v1, . . . , vi〉 is empty, and therefore

vi+1 is not in Tu〈v1, . . . , vi〉, which is a contradiction. We conclude that vi 6= u. ¤

Element ki of label λu is said to be critical or noncritical depending on whether

the vertex vi corresponding to ki is critical or noncritical in tree Tu〈v1, . . . , vi−1〉,

respectively. When we argue about vertex vi being critical or noncritical, we fre-

quently argue in terms of the corresponding element ki. The following three simple

lemmas make the necessary connection between vi and ki.

Lemma 4.28 If an element ki of the label λu of a vertex u in a tree T is noncritical,

then the vertex corresponding to ki is u, and ki is the last element of λu.

Proof. Since ki is a noncritical element, the vertex vi corresponding to ki is noncrit-

ical in tree Tu〈v1, . . . , vi−1〉. But then vi = u, and ki is the last element of label u,

because only the last vertex in the sequence v1, . . . , vp of vertices may be noncritical

in tree Tu〈v1, . . . , vp−1〉, and the last vertex in the sequence is u (conditions 2 and

3 in Definition 4.4, respectively). ¤

Lemma 4.29 If the first element of a label λu of a vertex u in a tree T is noncritical,

then |λu| = 1.

56 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

Proof. Since k1 is a noncritical element of label λu, then Lemma 4.28 implies the

vertex corresponding to k1 is u. From the contrapositive of Lemma 4.27, it follows

that k1 is the last element of λu. Because k1 is both the first and last element of

label λu, it follows that it is the only element of λu. ¤

Lemma 4.30 If λu is the label of a vertex u in a tree T such that |λu| > 1, then

λu(i) is a critical element of λu for all i such that 1 ≤ i ≤ |λu| − 1.

Proof. This lemma essentially restates the second condition in the definition of the

vertex label (Definition 4.4): vertex vi is critical in tree Tu〈v1, . . . , vi−1〉 for all i

such that 1 ≤ i ≤ p − 1 = |λu| − 1. The conclusion follows by observing that the

element of label λu corresponding to vertex vi is λu(i). ¤

We next introduce the operation of adding an element to the beginning of a

vertex label. This operation is used later in this section in computing the label

of a vertex u in tree T from the labels of the children of u. Intuitively, adding

an element k to label u corresponds to attaching a tree S with vertex separation

k > VS(T) whose root is critical in S. Lemma 4.31 supports this intuition. Given

a label λu = (k1, . . . , kp)c and integer k such that k > k1, label (k, k1, . . . , kp)c is

said to be the label λu prepended with k. The following lemma gives an indication

of when the prepending operation is useful.

Lemma 4.31 Given trees T and S such that VS(T) < VS(S), if the root rS of

S is critical in S, then the label of tree T `u S is the label of T prepended with

VS(S), where u is an arbitrary vertex in T and T `u S is the tree with root rT

formed from T and S by adding the edge urS.

Proof. The lemma is a consequence of the recursive definition of the vertex label.

We first show that the vertex separation of tree T `u S equals VS(S). Then we

show that vertex rS is critical in tree T `u S, and use Lemma 4.22 to derive the

label of tree T from the label of T `u S.

We first show that VS(T `u S) = VS(S). Since vertex rS is critical in tree

S, Lemma 4.17 implies the canonical backbone BS of S contains rS. And because

root rS is attached to vertex u in constructing tree T `u S, it follows that T is

4.2. VERTEX LABELLING 57

a branch of BS in T `u S; that is, (T `u S)[BS] = S[BS] ∪ {T}. It follows from

the fact that BS is a backbone of tree S that every subtree in set S[BS] has vertex

separation less than VS(S). By assumption, we know that VS(T) < VS(S). Hence,

each tree in set (T `u S)[BS] has vertex separation less than VS(S), and thus BS is

a VS(S)-backbone of T `u S. Lemma 4.3 therefore implies VS(T `u S) ≤ VS(S).

It follows from Lemma 2.1 and the fact that tree S is a subtree of tree T `u S that

VS(T `u S) ≥ VS(S). We conclude that VS(T `u S) = VS(S).

We next show that vertex rS is critical in tree T `u S. Root rS is critical in

tree S, and hence it yields two subtrees R1 and R2 in S each with vertex separation

VS(S). Vertex rS clearly yields subtrees R1 and R2 in tree T `u S, and since

VS(T `u S) = VS(S), it follows that rS is critical in T `u S. Since rT 6= rS, the

label λT`uS of the root rT is (k1, . . . , kp)crit(λT`uS), where p > 1 (Lemma 4.21) and

k1 = VS(T `u S) = VS(S) (Lemma 4.19). And because (T `u S)〈rS〉 = T , Lemma

4.22 implies the label λT of tree T is (k2, . . . , kp)crit(λT`uS). Thus, label λT`uS is the

label λT prepended with k1 = VS(S). ¤

We now rigorously tie together the concepts of the vertex label and canonical

backbone. Our algorithms work with the vertex labellings of trees, but their cor-

rectness proofs frequently employ canonical backbones. We first investigate the

relationship between the length of the label of a tree and when the canonical back-

bone of the tree contains the root of the tree.

Lemma 4.32 Given a tree T with label λT and root rT , the canonical backbone

BT of T contains rT if and only if |λT | = 1. Furthermore, root rT is an endpoint of

BT if and only if |λT | = 1 and crit(λT) < 2.

Proof. We first show that canonical backbone BT contains root rT if and only if

|λT | = 1. First, suppose BT contains rT . We consider two cases, depending on

whether or not tree T has a critical vertex. If tree T does not have a critical vertex,

then Lemma 4.21 implies λT = (VS(T))crit(rT ,T), and hence |λT | = 1. If there is a

critical vertex infT in T , then Lemma 4.17 implies backbone BT is nonmonotonic

and the inflection vertex of BT equals infT . Since by point 1 in Lemma 2.8 the

inflection vertex of BT is closer to root rT than any other vertex in BT , and because

backbone BT contains rT , the inflection vertex of BT is rT = infT . Thus, root rT is

58 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

critical in tree T , and therefore Lemma 4.21 yields λT = (VS(T))crit(rT ,T), implying

that |λT | = 1. Hence, in both cases, |λT | = 1 holds.

Having proved the forward implication, we now show the backward implication.

Suppose that |λT | = 1. If there is not a critical vertex in tree T , then it follows

from Claim 4.9 that there is a backbone of T containing root rT , and therefore

canonical backbone BT contains rT . If there is a critical vertex infT in tree T , then

Lemma 4.23 implies infT = rT . Since by Claim 4.8 the critical vertex in T is in

every backbone of T , backbone BT contains infT . Thus, in both cases, canonical

backbone BT contains root rT .

We next show that root rT is an endpoint of canonical backbone BT if and only

if |λT | = 1 and crit(λT) < 2. First, suppose that rT is an endpoint of BT . Since

BT contains rT , point 1 in Lemma 2.8 implies if BT is nonmonotonic, then rT is

the inflection vertex of BT , which contradicts the assumption that it is an endpoint

of BT . Hence, BT is monotonic. The contrapositive of Lemma 4.17 then implies

tree T does not have a critical vertex. It therefore follows from Lemma 4.21 that

λT = (VS(T))crit(rT ,T), and therefore |λT | = 1 holds, and the criticality of label λT

equals the criticality of root rT in tree T . Since there is no critical vertex in T , it

follows from Lemma 4.7 that crit(rT , T) < 2, and therefore crit(λT) < 2.

We conclude the proof by showing the backward implication of the second part

of the lemma. Suppose that |λT | = 1 and crit(λT) < 2. Lemma 4.24 implies there

is no critical vertex in tree T . Therefore, it follows from Claim 4.9 that there is a

backbone of T containing root rT , and hence canonical backbone BT contains rT .

By the contrapositive of Lemma 4.16, backbone BT is monotonic. We conclude

that root rT is an endpoint of BT ; if rT were not an endpoint of BT , then backbone

BT would be nonmonotonic. ¤

The next result describes the canonical backbone of a tree when the label of the

tree has at least two elements.

Lemma 4.33 If T is a tree with label λT such that |λT | > 1, and v1 is the vertex

in T corresponding to the first element of λT , then

1. the canonical backbone BT of T is nonmonotonic,

2. v1 is the inflection vertex of BT , and

4.2. VERTEX LABELLING 59

3. one of the branches of BT in T is the tree T 〈v1〉.

Proof. The lemma is a simple consequence of results we have already established.

Suppose that |λT | > 1. Then Lemma 4.30 implies the first element λT (1) is a

critical element. Hence, the vertex v1 corresponding to λ(1) is critical in tree T . It

therefore follows from Lemma 4.17 that canonical backbone BT is nonmonotonic,

and the inflection vertex of BT is v1. Since vertex v1 is closer to root rT than any

other vertex in BT (point 1 in Lemma 2.8), we conclude that tree T 〈v1〉 contains the

parent of v1; vertex v1 has a parent, because Lemma 4.27 yields v1 6= rT . Therefore,

T 〈v1〉 is a branch of canonical backbone BT in tree T . ¤

Having covered basic results about the structure and properties of the vertex

label, we now turn to the problem of computing the labels for all vertices in tree

T . As noted earlier (Lemma 4.19), the label of the root of T gives us the vertex

separation of tree T . The vertex labelling of tree T can also be used to compute an

optimal layout of T in O(|T | lg |T |) time [EST94]. We remark that Skodinis gave

an O(|T |) algorithm to compute both the vertex separation and an optimal layout

of tree T [Sko00]. His algorithm does not use vertex labelling, however, which is

the basis of our work, and therefore we will not discuss this newer algorithm.

Ellis, Sudborough, and Turner [EST94] gave a recursive algorithm, called COM-

BINE-LABELS (Algorithm 4.1), that computes the label λu of a vertex u in tree T

from the labels of the children of u.

Lemma 4.34 [EST94] The label of a vertex u in a tree depends only on the labels

of the children of u. ¤

Even if our objective is to compute the vertex separation only of tree T (that is,

we only need the label of the root rT of T so that we can apply Lemma 4.19), the

algorithm needs to compute the labels of all vertices in T , since in order to compute

the label of rT , it needs the labels of the children of rT , and so on. Because of Lemma

4.34, we may make the following definition that is independent of the underlying

tree T . The label λu of vertex u is called the combination of the labels of the children

of u; that is, given a sequence of labels µ1, . . . , µd, label λu is the combination of

µ1, . . . , µd if it is the label of vertex u whose children have labels µ1, . . . , µd.

60 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

We now give a few details of algorithm COMBINE-LABELS, since in Chapter 6

we modify the algorithm slightly in order to achieve faster running time. The

algorithm is an iterative one, building incrementally the label λu of vertex u from

the sequence σ of the labels µ1, . . . , µd of the children of u. The idea is that after

the end of the kth iteration, the algorithm has computed the combination of labels

in sequence σk = µk1 . . . , µ
k
d, where label µki is obtained from label µi by deleting

all elements greater than k; labels µki is defined formally below (Definition 4.5). If

the last element of µi is greater than k, then by Lemma 4.20 all elements of µi

are greater than k; in this case, “empty label” µki is removed from sequence σk.

The loop terminates after the iteration in which k = M , where M is the maximum

element of a label in sequence σ. Since Lemma 4.20 implies µi = µMi , after it

exits the loop the algorithm will have computed the combination λu of labels in

sequence σM = σ. Before we describe more thoroughly how the algorithm works,

we say more about labels µk1 . . . , µ
k
d, since a similar technique for computing vertex

labels will be used in the algorithm of Chapter 5 that updates the vertex labelling

of the combined tree after two trees are attached at their roots.

The process of deleting from the label µw of a vertex w in tree T all elements

greater than k to form label µkw corresponds in a natural way to removing from tree

Tw the subtrees corresponding to those elements. In order to discuss this in more

detail, we use the notation of Definition 4.4, except that µw = λu in the definition;

we use µw instead of λu to avoid confusion with the label computed by algorithm

COMBINE-LABELS.

Consider label µk1−1
w that is obtained from µw by deleting all elements greater

than k1− 1. The only element of µw greater than k1− 1 is k1 (Lemma 4.20); hence,

µk1−1
w = (k2, . . . , kp)c. What does this deletion correspond to in the underlying tree

Tw? According to Lemma 4.22, if |µw| = p > 1, then (k2, . . . , kp)c is the label of

vertex w in tree Tw〈v1〉. We remark that if p = 1, then v1 = w, and therefore

Tw〈v1〉 is the empty tree; correspondingly, the label µk1−1
w is undefined, since Tw〈v1〉

does not contain vertex w. In order to avoid having to explicitly refer to the vertex

v1, we denote the tree Tw〈v1〉 by T k1−1
w (a formal definition appears below). If

k1 − 2 ≥ k2, then µk1−1
w = µk1−2

w , and correspondingly T k1−1
w = T k1−2

w . Assuming

|µw| ≥ 3, deleting from µk1−1
w element k2 gives label µ

k2−1
w = (k3, . . . , kp)c, which by

4.2. VERTEX LABELLING 61

Lemma 4.22 is the label of w in tree Tw〈v1, v2〉 = T k2−1
w . We can continue in this

manner until all elements of µw have been deleted, in which case the corresponding

tree is the empty tree.

Definition 4.5 [EST94] Given a vertex w in a tree T with label µw = (k1, . . . , kp)c,

we define tree T t
w for a nonnegative integer t in the following way:

T t
w =





Tw if t ≥ k1;

T t+1
w if t < k1 and t+ 1 6= ki for all i, 1 ≤ i ≤ p; and

T t+1
w 〈vi〉 if t+ 1 = ki for some i, 1 ≤ i ≤ p;

where vi is the vertex in Tw corresponding to element ki of label µw. If tree T t
w is

not empty, the label of vertex w in T t
w is denoted by µtw.

The first case in Definition 4.5 corresponds to the base case of the recursive defi-

nition of tree T t
w. It is also easy to see from Lemma 4.20 that if ki is the smallest

integer of label µw = (k1, . . . , kp)c such that ki > t, tree T t
w equals tree Tw〈v1, . . . , vi〉,

where v1, . . . , vi are the vertices in Tw corresponding to elements k1, . . . , ki of µw,

respectively. The following result is a simple consequence of Lemma 4.22 and Def-

inition 4.5.

Lemma 4.35 [EST94] Given a tree T , the label µw = (k1, . . . , kp)c of a vertex w

in T , and a nonnegative integer t, the following two statements hold:

1. tree T t
w is empty if and only if t < kp; and

2. if t ≥ kp, then µtw = (ki, . . . , kp)c, where ki is the largest element of µw

satisfying t ≥ ki; that is, µ
t
w is a contiguous subsequence of µw.

We now return to the description of algorithm COMBINE-LABELS. In light of

Definition 4.5 and Lemma 4.35, we can rephrase the loop invariant mentioned on

page 60 as follows: at the end of the kth iteration, the algorithm has computed

the combination of the labels of trees T k
u1
, . . . , T k

ud
, where u1, . . . , ud are the children

of vertex u in tree T . However, since the algorithm computes with vertex labels,

not trees, we will continue its exposition in terms of the input labels; Lemma 4.35

62 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

combined with Definition 4.5 provides us with a more intuitive way to view the

computation.

Because the algorithm is iterative, we first need to set up the base case of the

loop. The loop iterates from 1 to M (lines 4–14 of Algorithm 4.1 on page 63), with

M defined above as the largest element of a label in sequence σ of input labels

µ1, . . . , µd. The loop invariant is that at the end of the kth iteration label λ is the

combination of labels in sequence σk = µk1, . . . , µ
k
d. Thus, before the loop is entered,

λ is the combination of labels in σ0. The behaviour of algorithm COMBINE-LABELS

before entering the loop is dictated by the following two lemmas.

Lemma 4.36 [EST94] If 0 is an element of at least one of the vertex labels

µ1, . . . , µd, then the combination of labels µ01, . . . , µ
0
d is (0)1. ¤

Lemma 4.37 [EST94] If 0 is not an element of any of the vertex labels µ1, . . . , µd,

then the combination of labels µ01, . . . , µ
0
d is (0)0. ¤

We observe from point 2 in Lemma 4.35 that the number of labels in sequence σ0

that have 0 as an element is the same as the number of labels in sequence σ that

have 0 as an element.

In Chapter 6, we modify algorithm COMBINE-LABELS slightly to improve its

running time. One of the modifications is in the base case of the loop; instead of

starting the iteration at 1, our algorithm starts at m, where m is not necessarily 1.

We next discuss the body of the loop of algorithm COMBINE-LABELS. During the

kth iteration, the algorithm computes the combination of labels in sequence σk.

This combination is computed from the number of times k occurs as an element

of a label in σk, denoted ik, and the combination computed during the previous

iteration, which is the combination of labels in sequence σk−1. As in the previous

paragraph when we considered the case when k = 0, the number of times k occurs

as an element of a label in sequence σk is equal to the number of times k occurs as

an element of a label in sequence σ. There are four cases, depending on whether

ik ≥ 3, ik = 2, ik = 1, or ik = 0. In the last case, the iteration does not modify

label λ, since in this case, point 2 in Lemma 4.35 implies σk = σk−1, and hence the

combinations of labels in sequences σk and σk−1 are equal. The following lemma

gives the answer when ik ≥ 3.

4.2. VERTEX LABELLING 63

Lemma 4.38 [EST94] If k ≥ 1 is an element of at least three labels in µ1, . . . , µd,

then the combination of labels µk1, . . . , µ
k
d is (k + 1)0. ¤

The next two lemmas give label λ when ik = 2.

Lemma 4.39 [EST94] If k ≥ 1 is an element of exactly two labels in µ1, . . . , µd, and

at least one of these elements is critical, then the combination of labels µk1, . . . , µ
k
d

is (k + 1)0. ¤

Lemma 4.40 [EST94] If k ≥ 1 is an element of exactly two labels in µ1, . . . , µd, and

neither of these two elements is critical, then the combination of labels µk1, . . . , µ
k
d

is (k)2. ¤

Finally, we consider the case when ik = 1. There are three subcases.

Lemma 4.41 [EST94] If k ≥ 1 is an element of exactly one label in µ1, . . . , µd and

is critical, and if k is an element of the combination of labels µk−11 , . . . , µk−1d , then

the combination of labels µk1, . . . , µ
k
d is (k + 1)0. ¤

Lemma 4.42 [EST94] If k ≥ 1 is an element of exactly one label in µ1, . . . , µd and

is critical, and if k is not an element of the combination λk−1 of labels µ
k−1
1 , . . . , µk−1d ,

then the combination of labels µk1, . . . , µ
k
d is label λk−1 prepended with k. ¤

Lemma 4.43 [EST94] If k ≥ 1 is an element of exactly one label in µ1, . . . , µd and

is noncritical, then the combination of labels µk1, . . . , µ
k
d is (k)1. ¤

The body of the loop of Algorithm 4.1 corresponds directly to Lemmas 4.38, 4.39,

4.40, 4.41, 4.42, and 4.43 (lines 6, 8, 9, 12, 13, and 14, respectively).

Our modification of algorithm COMBINE-LABELS in Chapter 6 does not modify

the body of the loop at all, and therefore we can use the correctness of the loop in

COMBINE-LABELS, stated in the next claim, to prove the correctness of our modi-

fied algorithm. Before stating the claim, we include the pseudocode for algorithm

COMBINE-LABELS. We remark that the algorithm handles the special case when

d = 0; that is, it computes the combination of zero labels. This corresponds to the

case when we want to compute the label of a leaf.

64 CHAPTER 4. VERTEX SEPARATION OF TREES (PRELIMINARIES)

Algorithm 4.1 [EST94]

Input: a sequence σ of vertex labels µ1, . . . , µd.

Output: the combination λ of the labels in σ.

COMBINE-LABELS(µ1, . . . , µd)

1. if 0 is an element of at least one label in σ then λ← (1)0

2. else λ← (0)0

3. M ← the maximum element of a label in σ if d > 0, and 0 if d = 0

4. for k from 1 to M do

5. ik ← the number of labels in σ that contain k

6. if ik ≥ 3 then λ← (k + 1)0

7. else if ik = 2 then

8. if k is a critical element of at least one label in σ then

λ← (k + 1)0

9. else λ← (k)2

10. else if ik = 1 then

11. if k is a critical element of the label in σ that contains k then

12. if λ(1) = k then λ← (k + 1)0

13. else λ← label λ prepended with k

14. else λ← (k)1

Claim 4.44 [EST94] If λ is the combination of labels µj−11 , . . . , µj−1d just before

the iteration in which k = j in the loop on lines 4–14 of Algorithm 4.1, then λ is

the combination of labels µj1, . . . , µ
j
d just after the iteration. ¤

The following lemma states the correctness and running time of the algorithm.

Lemma 4.45 [EST94] If σ = µ1, . . . , µd is a sequence of d vertex labels, where

d ≥ 0, then on input (µ1, . . . , µd) Algorithm 4.1 correctly computes the combination

of the labels in σ and runs in time Θ(dM), where M is the largest element of a

label in σ. ¤

Algorithm COMBINE-LABELS can be used to compute the vertex labelling, and

therefore the vertex separation (Lemma 4.19), of tree T by recursively computing

the labels of the children of the root of T and then computing the combination of

4.2. VERTEX LABELLING 65

these labels. The vertex labelling of tree T can in turn be used to find an optimal

layout of T . The next two theorems state upper bounds on the time required to

compute the vertex labelling and an optimal layout of a tree.

Theorem 4.46 [EST94] Given a rooted tree T , the vertex labelling of T can be

computed in O(|T |VS(T)) = O(|T | lg |T |) time using Algorithm 4.1. ¤

Theorem 4.47 [EST94] Given a rooted tree T , an optimal layout of T with respect

to vertex separation can be computed in O(|T |VS(T)) = O(|T | lg |T |) time from

the vertex labelling of tree T . ¤

In the upcoming chapters, we give algorithms that use the vertex labelling of tree

T to update the vertex separation of T after a tree is attached to T or a subtree is

removed from T .

Chapter 5

Attaching Trees at Their Roots

In some cases, we construct a tree incrementally vertex-by-vertex, or subtree-by-

subtree, and we need to maintain the correctness of the vertex labelling of such a

dynamically growing tree, given that the vertex labelling of each subtree has been

computed. In this chapter, we give an algorithm that updates the vertex labelling

of a tree after another tree is attached to it via the edge that connects the two roots.

The more general case when a tree is attached by its root to an arbitrary vertex

of another tree will be considered in Chapter 7. Updating the vertex labelling of a

tree after removing a subtree will be discussed in Chapters 6 and 7.

We first explain in general why it is useful to update the vertex labelling of

a tree T after another tree S is attached to T . Assume the vertex labellings ΛT

and ΛS of T and S have been computed. The problem we wish to solve is that of

computing the vertex labelling Λ of the composite tree T `a S from ΛT and ΛS,

where a is the vertex of attachment in T . We will see in this chapter that the vertex

separation of T `a S cannot be computed from the vertex separations of trees T

and S alone, but it can be computed from labellings ΛT and ΛS much faster than

by recomputing Λ. Hence, if we maintain the correctness of the vertex labelling of

tree T as other trees are attached to or removed from it, we maintain the correct

value of the vertex separation of the tree. As mentioned earlier, in this chapter we

only consider the case when a is one of the two roots rT and rS of trees T and S.

If a = rT , the composite tree is T `rT
S = T ` S, and if a = rS, the composite tree

is S `rS
T = S ` T . Without loss of generality, we assume the new tree is T ` S.

67

68 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

The important observation, proved below, is that λrT
is the only label of a vertex

in T ` S that can change after trees T and S are attached at their roots and the

root rT of T is made the root of the new tree.

Lemma 5.1 Given trees T and S with roots rT and rS, respectively, if u is a vertex

in T such that u 6= rT , then λu,T = λu,T`S. If u is a vertex in S, then λu,S = λu,T`S.

Proof. The lemma follows directly from Definition 4.4, the fact that vertex rT is

the only vertex u in tree T for which (T ` S)u 6= Tu, and the observation that all

vertices u in tree S satisfy (T ` S)u = Su. ¤

Lemma 5.1 implies that in order to compute the vertex labelling Λ of tree T ` S

from labellings ΛT and ΛS, we only need to update the label λrT
. Algorithm 4.1 can

compute the label λ of vertex rT in tree T ` S from the labels of the d children of

rT in T ` S. This can take time Ω(|T ` S|) using Algorithm 4.1, because of Lemma

4.45 and the observation that d can be Ω(|T ` S|). Our algorithm computes λ only

from labels λT and λS, achieving O(lg |T ` S|) running time. Labels λ, λT , and

λS are the labels of trees T ` S, T , and S, since they are the labels of the roots of

T ` S, T , and S, respectively.

5.1 Description of the Algorithm

In computing the label λ of tree T ` S, our algorithm, called ADD-LABEL, em-

ploys the technique used in Algorithm 4.1 (COMBINE-LABELS). It builds λ incre-

mentally, from the smallest element to the largest. We denote by λk the label

of the tree T k ` Sk, where k is a nonnegative integer. We remark that if T k is

the empty tree, then T k ` Sk is empty, and therefore λk is undefined. We de-

note by m the maximum of {1, λT (|λT |)}, where λT (|λT |) is the last element of

label λT , and by M the maximum vertex separation of trees T and S. Lemma

4.19 implies VS(T) = λrT ,T (1) = λT (1) and VS(S) = λrS ,S(1) = λS(1), and hence

M = max{λT (1), λS(1)}.

Algorithm ADD-LABEL iteratively computes a sequence of the labels λ0, λm, λm+1,

. . . , λM of trees T 0 ` S0, Tm ` Sm, Tm+1 ` Sm+1, . . . , TM ` SM , respectively. Since

m ≥ λT (|λT |), point 1 in Lemma 4.35 implies tree T k, and therefore tree T k ` Sk,

5.1. DESCRIPTION OF THE ALGORITHM 69

is nonempty for all k ≥ m, and hence all labels in the sequence are defined, except

possibly λ0, which is undefined if and only if λT (|λT |) > 0, which again follows from

point 1 in Lemma 4.35. The fact that M ≥ λT (1) and M ≥ λS(1) implies TM = T

and SM = S (the first case in Definition 4.5), and therefore the last label in the

sequence is λ, the label of tree T ` S.

During each iteration in the algorithm, λk is computed from λk−1 and labels λkT
and λkS. We recall that λkT and λkS are the labels of trees T k and Sk, respectively,

and point 2 in Lemma 4.35 implies they are contiguous subsequences of λT and

λS. There are three cases to consider, depending on whether k is an element of

both λkT and λkS, it is an element of exactly one of the labels, or it is an element

of neither label. In the first case, the subroutine ADD-LABEL-EQUAL is called, and

in the second case, subroutine ADD-LABEL-UNEQUAL is invoked to compute λk. If

k is an element of neither λkT nor λkS, then it follows from point 2 in Lemma 4.35

that k is an element of neither λT nor λS. Hence, T k = T k−1 and Sk = Sk−1 (the

second case in Definition 4.5), which implies T k ` Sk = T k−1 ` Sk−1. Therefore, in

this case, λk = λk−1 holds, and the iteration does nothing. We give the pseudocode

for algorithms ADD-LABEL-EQUAL and ADD-LABEL-UNEQUAL before giving the pseu-

docode for ADD-LABEL. The correctness and running time of all three algorithms

are proved afterward.

Subroutine ADD-LABEL-EQUAL is called on arguments λkT and λkS from algorithm

ADD-LABEL, and assuming that k is an element of both labels λkT and λkS, it returns

the label λk. By Lemmas 4.20 and 4.35, the largest element of both λkT and λkS
is k, and hence the assumption can be restated as λkT (1) = k and λkS(1) = k. We

briefly discuss what algorithm ADD-LABEL-EQUAL does; the correctness proof will

appear later (Lemma 5.7). The algorithm has two cases, depending on whether k

is a critical element of either λkT or λkS, or it is a critical element of neither label.

In the former case, we will show later (Lemma 5.5) that the vertex separation of

tree T k ` Sk is k + 1, there is no critical vertex in T k ` Sk, and the criticality

of the root of T k ` Sk is 0. Thus, the label λk is (k + 1)0. In the latter case,

we will prove (Lemma 5.6) that attaching trees T k and Sk at their roots does not

increase the vertex separation, the criticality of the root of T k increases by one, and

there is no critical vertex in T k ` Sk, except possibly the root of T k. Therefore,

70 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

λk = (k)
crit(λk

T)+1
.

Algorithm 5.1

Input: the vertex labels λkT and λkS of trees T and S, respectively, such that λkT (1) =

λkS(1) = k.

Output: the vertex label λk of tree T k ` Sk.

ADD-LABEL-EQUAL
(
λkT , λ

k
S

)

1. if k is a critical element of either λT or λS then λk ← (k + 1)0

2. else λk ← (k)
crit(λk

T)+1

Subroutine ADD-LABEL-UNEQUAL is called on arguments λkT , λ
k
S, and λk−1, where

λk−1 is the label computed during the previous iteration in algorithm ADD-LABEL;

that is, it is the label of tree T k−1 ` Sk−1. The precondition of algorithm ADD-LA-

BEL-UNEQUAL is that k is an element of exactly one of the labels λkT and λkS. By

point 2 in Lemma 4.35, the largest elements of λkT and λkS are at most k, and hence

the precondition is equivalent to k = max
{
λkT (1), λ

k
S(1)

}
and λkT (1) 6= λkS(1).

We now discuss each of the four cases covered in the algorithm. The first

case occurs when k is the only element of label λkT . We will show in Lemma 5.8

that the label of tree T k does not change as tree Sk is attached to it, and hence

λk = λkT = (k)
crit(λk

T)
. If the first case does not apply, and if k is the only element

of λkS and is noncritical, then we will show (Lemma 5.9) that the vertex separation

of tree T k ` Sk is k, there is no critical vertex in T k ` Sk, and the criticality of

the root of T k ` Sk is 1. Therefore, λk = (k)1. Argument λk−1 is not used in

either of the two cases. If neither the first nor second case applies, then k is a

critical element of either λkT or λkS (this will be shown in Lemma 5.12). We will

also prove that T k−1 ` Sk−1 is nonempty, thus guaranteeing label λk−1 is defined.

If λk−1(1) = VS
(
T k−1 ` Sk−1

)
< k, we will show that λk is label λk−1 prepended

with k (Lemma 5.10); otherwise, λk = (k + 1)0 (Lemma 5.11).

5.1. DESCRIPTION OF THE ALGORITHM 71

Algorithm 5.2

Input: the vertex labels λkT and λkS of trees T k and Sk, respectively, such that

λkT (1) 6= λkS(1), and the label λk−1 of T
k−1 ` Sk−1, where k = max

{
λkT (1), λ

k
S(1)

}
.

If T k−1 ` Sk−1 is empty, then argument λk−1 is not used (it is not defined in this

case).

Output: the vertex label λk of tree T k ` Sk.

ADD-LABEL-UNEQUAL
(
λkT , λ

k
S, λk−1

)

1. if k is the only element of λkT then λk ← (k)
crit(λk

T)
2. else if k is the only element of λkS and is noncritical then λk ← (k)1

3. else if λk−1(1) < k then λk ← λk−1 prepended with k

4. else λk ← (k + 1)0

Finally, we present the pseudocode for the main iterative algorithm, which calls

the subroutines just described. Before the algorithm enters the main loop, it com-

putes the label of tree T 0 ` S0. The label remains undefined unless the smallest

element of λT is 0, in which case T 0 consists of the single vertex rT . Tree S0 is

also either empty or consists of the single vertex rS. Hence, tree T 0 ` S0 is either

the empty tree, the single vertex rT , or the path rT , rS. The base case is handled

by the algorithm before entering the main loop. Values m and M are used by the

algorithm in the same way as they are defined on page 68.

Algorithm 5.3

Input: the vertex labels λT and λS of trees T and S, respectively.

Output: the vertex label λ of tree T ` S.

ADD-LABEL(λT , λS)

1. if λT (|λT |) = 0 then

2. if λS(|λS|) > 0 then λ← (0)0

3. else λ← (1)0

4. m← max{1, λT (|λT |)}; M ← max {λT (1), λS(1)}

5. for k from m to M do

6. if k is an element of both λT and λS then

7. λ← ADD-LABEL-EQUAL
(
λkT , λ

k
S

)

8. else if k is an element of exactly one of λT and λS then

9. λ← ADD-LABEL-UNEQUAL
(
λkT , λ

k
S, λ

)

72 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

5.2 Correctness and Running Time of the Algo-

rithm

Before proving the correctness of algorithms ADD-LABEL-EQUAL, ADD-LABEL-UN-

EQUAL, and finally ADD-LABEL, we prove three simple claims that are used several

times in the correctness proofs. The first claim is used to infer the label of tree

T k ` Sk if its vertex separation is greater than k.

Claim 5.2 Given trees T k and Sk such that VS
(
T k ` Sk

)
> k, the label of tree

T k ` Sk is (k + 1)0.

Proof. We first show that VS
(
T k ` Sk

)
= k+1 and that the criticality of the root

rT in tree T k ` Sk is 0. Next, we prove that there is no critical vertex in T k ` Sk.

This implies by Lemma 4.21 that the label of the root rT in T k ` Sk is (k + 1)0.

Before we proceed with the rest of the proof, we observe the following: point 2 in

Lemma 4.35 implies the largest elements of the labels of trees T k and Sk are at

most k, and hence Lemma 4.19 yields VS
(
T k
)
≤ k and VS

(
Sk
)
≤ k.

First, we show that VS
(
T k ` Sk

)
≤ k + 1, which means VS

(
T k ` Sk

)
= k + 1,

because of the fact VS
(
T k ` Sk

)
> k. The proof of VS

(
T k ` Sk

)
≤ k + 1 involves

showing that root rT is a (k + 1)-backbone of tree T k ` Sk. Since every branch of

rT in T k ` Sk is either a branch of rT in T k or it is the tree Sk,
(
T k ` Sk

)
[rT] =

T k[rT] ∪
{
Sk
}
. By Lemma 2.1 and the fact VS

(
T k
)
≤ k, every subtree in T k[rT]

has vertex separation at most k. And because VS
(
Sk
)
≤ k, every subtree in(

T k ` Sk
)
[rT] has vertex separation at most k. This implies rT is a (k+1)-backbone

of T k ` Sk, and hence Lemma 4.3 implies VS
(
T k ` Sk

)
≤ k + 1. Therefore,

VS
(
T k ` Sk

)
= k+1. Since the set of subtrees yielded by root rT is

(
T k ` Sk

)
[rT],

no subtree yielded by rT has vertex separation greater than k. Thus, the criticality

of rT in T k ` Sk is 0.

Next, we show by a straightforward application of Lemma 2.1 that there is no

critical vertex in tree T k ` Sk. Given an arbitrary vertex u in T k ` Sk such that

u 6= rT , Lemma 5.1 implies
(
T k ` Sk

)
u
=
(
Xk
)
u
, where Xk = T k if u is in T k and

Xk = Sk if u is in Sk. It follows from the facts VS
(
T k
)
≤ k and VS

(
Sk
)
≤ k

that VS
(
Xk
)
≤ k, and Lemma 2.1 implies the vertex separation of

(
T k ` Sk

)
u
is

5.2. CORRECTNESS AND RUNNING TIME OF THE ALGORITHM 73

at most k. We conclude from Lemma 2.1 that tree
(
T k ` Sk

)
u
has no subtrees with

vertex separation greater than k, and therefore u cannot be critical. Hence, there

is no critical vertex in tree T k ` Sk. ¤

The second claim places restrictions on which vertices in tree T k ` Sk can be

critical.

Claim 5.3 Given trees T k and Sk such that VS
(
T k ` Sk

)
= k, if tree R = T k ` Sk

has a critical vertex infR 6= rT , then either VS
(
T k
)
= k and infR is critical in T k,

or VS
(
Sk
)
= k and infR is critical in Sk.

Proof. Suppose tree T k ` Sk has a critical vertex infR 6= rT . Lemma 5.1 implies(
T k ` Sk

)
infR

=
(
Xk
)
infR

, where Xk = T k if infR is in T k and Xk = Sk if infR

is in Sk. It follows from Lemma 2.1 that VS
((
T k ` Sk

)
infR

)
= k, and hence

VS
((
Xk
)
infR

)
= k. Since

(
Xk
)
infR

is a subtree of Xk and Xk is a subtree of

T k ` Sk, Lemma 2.1 implies VS
(
Xk
)
= k. We conclude that vertex infR is critical

in tree Xk, because the subtrees yielded by infR in Xk are the same as the subtrees

yielded by infR in T k ` Sk. ¤

The third claim essentially shows that removing a subtree rooted at a vertex u

from either tree T k or Sk such that u 6= rT , and then attaching the trees at their

roots gives the same result as attaching trees T k and Sk first, and then removing

the subtree rooted at u from T k ` Sk. The actual statement of this result is more

technical and tailored for its use later.

Claim 5.4 Given trees T k and Sk with labels λkT and λkS, respectively, such that k

is an element of exactly one label and there is an element of λkT smaller than k, the

trees T k−1 ` Sk−1 and
(
T k ` Sk

)
〈vk〉 are identical, where vk is the vertex in either

T k or Sk corresponding to element k.

Proof. We prove the claim in two stages. We denote by Xk the tree T k or Sk

such that k is an element of label λkX , and by Y k the other tree; that is, Y k = T k

if Xk = Sk and Y k = Sk if Xk = T k. First, we show that Xk−1 = Xk〈vk〉 and

Y k−1 = Y k. Since there is an element of label λkT smaller than k, point 1 in Lemma

74 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

4.35 implies tree T k−1 is nonempty. We therefore infer the following: if Xk = T k,

then T k−1 ` Sk−1 = T k〈vk〉 ` S
k, and if Xk = Sk, then T k−1 ` Sk−1 = T k ` Sk〈vk〉.

Second, we prove that T k〈vk〉 ` S
k =

(
T k ` Sk

)
〈vk〉 if X

k = T k and T k ` Sk〈vk〉 =(
T k ` Sk

)
〈vk〉 if X

k = Sk, which shows that T k−1 ` Sk−1 =
(
T k ` Sk

)
〈vk〉.

By applying the recursive definition of trees Xk−1 and Y k−1 (Definition 4.5), we

first show that Xk−1 = Xk〈vk〉 and Y k−1 = Y k. Since k is an element of label λkX ,

tree Xk−1 is obtained from tree Xk by removing the subtree rooted at vk. Thus,

Xk−1 = Xk〈vk〉. Because k is an element of exactly one of the labels λkT and λkS, it

follows that k is not an element of λkY . Hence, Y
k−1 = Y k.

Second, we show that T k〈vk〉 ` Sk =
(
T k ` Sk

)
〈vk〉 if X

k = T k and T k `

Sk〈vk〉 =
(
T k ` Sk

)
〈vk〉 if X

k = Sk. We prove this by showing that vk 6= rT and

then applying Lemma 5.1. We first consider the case when Xk = T k. Since there is

an element of label λkT smaller than k, it follows from Lemma 4.20 that element k

is not the last element of λkT , and hence the vertex vk corresponding to k is not the

root rT (Lemma 4.27). Next, we consider the case when Xk = Sk. Then vk 6= rT ,

because rT is not in tree Sk. Therefore, in both cases, vk 6= rT holds. Lemma

5.1 now implies
(
Xk
)
vk

=
(
T k ` Sk

)
vk
. Therefore, if Xk = T k, tree

(
T k ` Sk

)
〈vk〉

is obtained from tree T k ` Sk by removing subtree
(
T k ` Sk

)
vk

=
(
T k
)
vk
, and

thus
(
T k ` Sk

)
〈vk〉 = T k〈vk〉 ` Sk. Similarly, if Xk = Sk, then

(
T k ` Sk

)
〈vk〉

is obtained from T k ` Sk by removing subtree
(
T k ` Sk

)
vk

=
(
Sk
)
vk
, implying(

T k ` Sk
)
〈vk〉 = T k ` Sk〈vk〉. ¤

We now show the correctness of algorithm ADD-LABEL-EQUAL (Algorithm 5.1)

by first proving two lemmas directly corresponding to the two cases on lines 1

and 2 and then combining them. Both lemmas have as one of their conditions

λkT (1) = λkS(1) = k, where λkT and λkS are the labels of trees T k and Sk, respectively;

this is a precondition of the algorithm. In the first lemma, we consider the case

when k is a critical element of either λkT or λkS (line 1 of the algorithm).

Lemma 5.5 Suppose we have trees T k and Sk with labels λkT and λkS, respectively,

such that λkT (1) = λkS(1) = k. If k is a critical element of either λkT or λkS (or both),

then the label λk of tree T k ` Sk is (k + 1)0.

5.2. CORRECTNESS AND RUNNING TIME OF THE ALGORITHM 75

Proof. We show that VS
(
T k ` Sk

)
> k. Claim 5.2 then implies λk = (k + 1)0. We

prove VS
(
T k ` Sk

)
> k by showing there is a vertex in tree T k ` Sk that has three

branches with vertex separation at least k; Lemma 4.4 then implies VS
(
T k ` Sk

)
>

k. Since k is a critical element of either λkT or λkS, there is a critical vertex in T k

or Sk. Consider the critical vertex infXk in tree Xk, where Xk = T k or Xk = Sk,

and the critical children inf1 and inf2 of infXk . Vertex infXk has three branches in

T k ` Sk that have vertex separation at least k:
(
Xk
)
inf1

,
(
Xk
)
inf2

, and Y , where

Y is defined as follows. If infXk is the root rT of T k, then Y = Sk, since tree Sk

is a branch of rT in T k ` Sk and VS
(
Sk
)
= k (Figure 5.1). If infXk 6= rT , then

í�íí�íî�îî�î

ï�ïï�ïð�ðð�ðñ�ññ�ñò�òò�ò ó�óó�óô�ôô�ô

T k = Xk

Sk = Y

rS

(
Xk

)
inf1

(
Xk

)
inf2

rT = infXk

inf2

inf1

Figure 5.1: The proof of Lemma 5.5 when infXk = rT .

Y =
(
T k ` Sk

)
〈infXk〉, since the branch

(
T k ` Sk

)
〈infXk〉 of infXk in T k ` Sk

contains Sk or T k as a subtree, and hence by Lemma 2.1 the vertex separation of(
T k ` Sk

)
〈infXk〉 is at least k; if Xk = T k, then

(
T k ` Sk

)
〈infXk〉 contains tree Sk

as a subtree (Figure 5.2), and if Xk = Sk, then
(
T k ` Sk

)
〈infXk〉 contains tree T k

as a subtree (Figure 5.3). Thus, vertex infXk has three branches in tree T k ` Sk

with vertex separation at least k. ¤

In the second lemma, we consider the case when the condition of Lemma 5.5 does

not hold; that is, when k is a noncritical element of both labels λkT and λkS. This

case corresponds to line 2 of algorithm ADD-LABEL-EQUAL.

Lemma 5.6 Suppose we have trees T k and Sk with labels λkT and λkS, respectively,

such that λkT (1) = λkS(1) = k. If k is a noncritical element of both λkT and λkS, then

the label of tree T k ` Sk is (k)
crit(λk

T)+1
.

Proof. The first step of our proof is a construction of a k-backbone of tree T k ` Sk.

Lemma 4.3 then implies the vertex separation of T k ` Sk is at most k. The fact

76 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

õ�õõ�õö
ö

÷�÷÷�÷ø
ø

ù�ùù�ùú�úú�ú

û�ûû�ûü
ü

ý�ýý�ýþ
þ

rT

rS

(
Sk ` T k

)
〈infXk〉 = Y

Sk

infXk

inf2

(
Xk

)
inf2

(
Xk

)
inf1

T k = Xk
inf1

Figure 5.2: The proof of Lemma 5.5 when infXk 6= rT and Xk = T k.

λkT (1) = λkS(1) = k and Lemma 4.19 imply VS
(
T k
)
= VS

(
Sk
)
= k. Therefore,

Lemma 2.1 yields VS
(
T k ` Sk

)
= k, because T k and Sk are subtrees of T k ` Sk.

We next prove there is no critical vertex infR in tree R = T k ` Sk such that

infR 6= rT , and then finally conclude that the label of T k ` Sk is (k)
crit(λk

T)+1
.

First, we construct a k-backbone P of tree T k ` Sk from the canonical backbones

BT k and BSk of trees T k and Sk. Since k is the first element of both labels λkT and

λkS and is noncritical, by Lemma 4.29

∣∣λkT
∣∣ =

∣∣λkS
∣∣ = 1. (5.1)

Thus, both λkT and λkS are noncritical labels, because the last element of each label

is noncritical. Lemma 4.32 therefore implies the root rT of T k is an endpoint of BT k

and the root rS of Sk is an endpoint of BSk (Figure 5.4). Since the concept of the

canonical backbone is independent of its orientation, we may assume without loss

5.2. CORRECTNESS AND RUNNING TIME OF THE ALGORITHM 77

ÿ�ÿÿ�ÿ�
�

�������
�

������������

�������
�

������	
	

rT

infXk

(
Sk ` T k

)
〈infXk〉 = Y

Sk = Xk

rST k

inf2inf1

(
Xk

)
inf1

(
Xk

)
inf2

Figure 5.3: The proof of Lemma 5.5 when infXk 6= rT and Xk = Sk.

�
�

������
�

�

rT

rS

Sk

T k

BT k

BSk

Figure 5.4: The proof of Lemma 5.6.

78 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

of generality that rT is the right endpoint of BT k and rS is the left endpoint of BSk .

Because rT rS is an edge in tree T k ` Sk, we may consider the path P = BT k +BSk

in T k ` Sk. All branches of both BT k in T k and BSk in Sk have vertex separation

less than k, and therefore all branches of P in T k ` Sk have vertex separation less

than k. Hence, P is a k-backbone of T k ` Sk.

We next show that if there is a critical vertex infR in tree R = T k ` Sk, then

infR = rT . Suppose for sake of contradiction that tree T k ` Sk has a critical vertex

infR 6= rT . Then Claim 5.3 implies VS
(
T k
)
= k and infR is a critical vertex in

T k, or VS
(
Sk
)
= k and infR is a critical vertex in Sk. We denote by Xk the tree

T k or Sk, depending on whether vertex infR is in T k or Sk, respectively. Since

VS
(
T k
)
= VS

(
Sk
)
= k, VS

(
Xk
)
= k. But if infR is critical in Xk, Lemma 4.24 is

contradicted, because of Equation 5.1 and the fact, shown right after the equation,

that both labels λkT and λkS are noncritical. We conclude that if tree T k ` Sk has

critical vertex infR, then infR = rT .

We now derive the label λk of tree T
k ` Sk and then show its criticality, conclud-

ing that λk = (k)
crit(λk

T)+1
. Since we just proved that if T k ` Sk has a critical vertex

infR, then infR = rT , we infer from Lemma 4.21 and the fact VS
(
T k ` Sk

)
= k,

shown earlier, that the label λk of T k ` Sk is (k)
crit(rT ,T k`Sk).

We now prove that the criticality of root rT in tree T k ` Sk is crit
(
λkT
)
+ 1.

The criticality of rT in T k ` Sk is equal to the number of subtrees yielded by rT in

T k ` Sk that have vertex separation k. The number of such subtrees in T k ` Sk

is one more than the number of such subtrees in tree T k, since tree Sk, which has

vertex separation k, is attached to rT in constructing the tree T k ` Sk; that is,

crit
(
rT , T

k ` Sk
)
= crit

(
rT , T

k
)
+ 1. Since Equation 5.1 yields

∣∣λkT
∣∣ = 1, Lemma

4.27 implies the vertex corresponding to the only element k of λkT is rT . Thus,

the criticality of rT in tree T k equals the criticality of λkT ; that is, crit
(
rT , T

k
)
=

crit
(
λkT
)
. We conclude that the criticality of rT in T k ` Sk is crit

(
λkT
)
+ 1. ¤

The correctness of algorithm ADD-LABEL-EQUAL (Algorithm 5.1) follows easily from

Lemmas 5.5 and 5.6.

Lemma 5.7 Suppose we have trees T k and Sk with labels λkT and λkS, respectively.

If λkT (1) = λkS(1) = k, then on input
(
λkT , λ

k
S

)
Algorithm 5.1 correctly computes the

5.2. CORRECTNESS AND RUNNING TIME OF THE ALGORITHM 79

label λk of tree T k ` Sk.

Proof. The proof is a simple case analysis. Condition of Lemma 5.5 is the same as

the condition on line 1 of the algorithm: k = λkT (1) = λkS(1) is a critical element of

either λkT or λkS. In this case, the algorithm returns λk = (k + 1)0 as the label of

tree T k ` Sk, which is correct (Lemma 5.5). If k is a noncritical element of both

λkT and λkS, then the algorithm returns λk = (k)
crit(λk

T)+1
on line 2, which is correct

(Lemma 5.6). ¤

We show in a similar fashion that algorithm ADD-LABEL-UNEQUAL (Algorithm

5.2) is correct; we prove four lemmas corresponding to lines 1, 2, 3, and 4 of the

algorithm, and then combine them. The four lemmas have the condition λkT (1) 6=

λkS(1) in common. In each of the lemmas, k is the first element of exactly one of

the labels λkT and λkS, where k = max
{
λkT (1), λ

k
S(1)

}
, and the first element of the

other label is smaller than k. In the first lemma, we consider the case when k is

the only element of label λkT (line 1 of algorithm ADD-LABEL-UNEQUAL).

Lemma 5.8 Suppose we have trees T k and Sk with labels λkT and λkS, respectively,

such that λkT (1) 6= λkS(1) and k = max
{
λkT (1), λ

k
S(1)

}
. If k is the only element of

λkT , then the label of tree T k ` Sk is (k)
crit(λk

T)
= λkT .

Proof. The proof involves three stages. We first describe how to tie the results of

the three stages together to reach the conclusion λk = (k)
crit(λk

T)
, and then prove

each of the three results in turn. First, we show that the root rT of tree T k is

in BT k , implying tree Sk is a branch in tree T k ` Sk of the canonical backbone

BT k of tree T k. Lemma 4.3 then implies VS
(
T k ` Sk

)
≤ k, since every branch of

BT k in T k ` Sk is either a branch of BT k in T k, and hence has vertex separation

less than k, or it is tree Sk; but by Lemma 4.19 VS
(
Sk
)
< k. Therefore, Lemma

2.1 implies VS
(
T k ` Sk

)
= k, since T k is a subtree of T k ` Sk and VS

(
T k
)
= k.

Second, we show that there is no critical vertex infR in tree R = T k ` Sk such

that infR 6= rT . Lemma 4.21 then implies the label λk is (k)
crit(rT ,T k`Sk). Third, we

prove crit
(
rT , T

k ` Sk
)
= crit

(
λkT
)
.

We first show that tree Sk is a branch of canonical backbone BT k in tree T k ` Sk,

and then prove there is no critical vertex infR in tree R = T k ` Sk such that

80 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

infR 6= rT . Since
∣∣λkT
∣∣ = 1 by the fact that k is the only element of λkT , Lemma 4.32

implies BT k contains root rT . But then Sk is a branch of BT k in T k ` Sk, because

T k ` Sk is formed from tree T k by attaching tree Sk to rT (Figure 5.5). By Claim

������������

���
�

T k

rT

rS

Sk

BT k

Figure 5.5: The proof of Lemma 5.8.

5.3, if infR is a critical vertex in T k ` Sk such that infR 6= rT , then VS
(
T k
)
= k

and infR is a critical vertex in T k, or VS
(
Sk
)
= k and infR is a critical vertex in Sk.

The second possibility cannot be true, because VS
(
Sk
)
< k. If the first possibility

is true, then it follows from Lemma 4.23 and the fact
∣∣λkT
∣∣ = 1 that infR = rT . We

conclude that if T k ` Sk has a critical vertex infR, then infR = rT .

Finally, we prove that the criticality of root rT in tree T k ` Sk is crit
(
λkT
)
.

Since the subtrees yielded by rT in T k ` Sk are tree Sk and the subtrees yielded

by rT in tree T k, we conclude from the facts k = VS
(
T k ` Sk

)
= VS

(
T k
)
and

VS
(
Sk
)
< k that crit

(
rT , T

k ` Sk
)
= crit

(
rT , T

k
)
. Because k is the only ele-

ment of label λkT , Lemma 4.21 implies crit
(
λkT
)
= crit

(
rT , T

k
)
. We conclude that

crit
(
rT , T

k ` Sk
)
= crit

(
λkT
)
. ¤

In the second lemma of the case analysis, we analyze the case when k is the only

element of label λkS and is noncritical (line 2 of algorithm ADD-LABEL-UNEQUAL).

Lemma 5.9 Suppose we have trees T k and Sk with labels λkT and λkS, respectively,

such that λkT (1) 6= λkS(1) and k = max
{
λkT (1), λ

k
S(1)

}
. If k is the only element of

λkS and is noncritical, then the label of tree T k ` Sk is (k)1.

5.2. CORRECTNESS AND RUNNING TIME OF THE ALGORITHM 81

Proof. The structure of the proof is similar to that of Lemma 5.8. We prove

the lemma by first constructing a k-backbone of tree T k ` Sk from the canonical

backbone BSk of tree Sk. This implies by Lemmas 2.1 and 4.3 that since λkS(1) =

VS
(
Sk
)
= k (Lemma 4.19) and Sk is a subtree of T k ` Sk, the vertex separation

of tree T k ` Sk is k. Second, we show that there is no critical vertex infR in

R = T k ` Sk such that infR 6= rT , implying by Lemma 4.21 that label λk is

(k)
crit(rT ,T k`Sk). Third, we prove that the criticality of rT in T k ` Sk is 1.

We first show that tree T k ` Sk has a k-backbone by considering the canonical

backbone BSk of tree Sk. Since k is the only element of label λkS and is noncritical,∣∣λkS
∣∣ = 1 holds and λkS is a noncritical label. Therefore, Lemma 4.32 implies the

canonical backbone BSk of tree Sk has as one endpoint the root rS of Sk. Since the

concept of the canonical backbone is independent of its orientation, we may assume

without loss of generality that rT is the left endpoint of BSk . Because the root rT

of tree T k is adjacent to rS in T k ` Sk, we may consider the path P = rT +BSk in

T k ` Sk. Every branch of P in T k ` Sk is either a branch of rT in T k or a branch

of BSk in Sk; that is,
(
T k ` Sk

)
[P] = T k[rT] ∪ Sk [BSk] (Figure 5.6). The facts

�������
�

�������
�

�������
�

���������������
�

BSk

Sk

T k

rT

rS

T k[rT]

Figure 5.6: The proof of Lemma 5.9.

that VS
(
T k
)
= λkT (1) 6= λkS(1) = VS

(
Sk
)
and k = λkS(1) = max

{
λkT (1), λ

k
S(1)

}

imply VS
(
T k
)
< k. But then Lemma 2.1 implies all subtrees in T k[rT] have vertex

separation less than k. Hence, since all subtrees in Sk [BSk] have vertex separation

82 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

less than k by the fact that BSk is a backbone of Sk, it follows that all subtrees in

set
(
T k ` Sk

)
[P] have vertex separation less than k. Hence, path P is a k-backbone

of tree T k ` Sk.

We next prove that there is no critical vertex infR in tree R = T k ` Sk such

that infR 6= rT . If there is a critical vertex infR in T k ` Sk, then Claim 5.3 yields

infR = rT , because VS
(
T k
)
< k and Lemma 4.24 implies there is no critical vertex

in tree Sk.

Third, we show the criticality of label rT in T k ` Sk is 1. Lemma 2.1 and the

fact VS
(
T k
)
< k imply all subtrees yielded by rT in tree T k have vertex separation

less than k. Furthermore, each subtree yielded by rT in T k ` Sk is either a subtree

yielded by rT in T k, or it is the tree Sk. Together with the fact that VS
(
Sk
)
= k,

we conclude that rT yields exactly one subtree, Sk, with vertex separation k in

T k ` Sk. We have thus shown that crit
(
rT , T

k ` Sk
)
= 1. ¤

The third case of our case analysis applies when neither of the first two cases

(Lemmas 5.8 and 5.9) applies and λk−1(1) < k, where λk−1 is the label of tree

T k−1 ` Sk−1 (line 3 of algorithm ADD-LABEL-UNEQUAL). This condition is equivalent

to saying that k is a critical element of either label λkT or label λkS, there is an

element of λkT smaller than k, and λk−1(1) < k; this will be shown later in the

correctness proof of the algorithm (Lemma 5.12).

Lemma 5.10 Suppose we have trees T k and Sk with labels λkT and λkS, respectively,

such that λkT (1) 6= λkS(1) and k = max
{
λkT (1), λ

k
S(1)

}
, and suppose λk−1 is the label

of tree T k−1 ` Sk−1. If k is a critical element of either λkT or λkS, there is an element

of λkT smaller than k, and λk−1(1) < k, then the label of tree T k ` Sk is label λk−1

prepended with k.

Proof. We initially observe that since there is an element of λkT smaller than k,

point 1 in Lemma 4.35 implies tree T k−1 is not empty. Therefore, tree T k−1 ` Sk−1

is nonempty, and label λk−1 is defined. We prove the lemma by first showing that

the vertex separation of tree T k ` Sk is k and then applying Lemma 4.31.

We first show VS
(
T k ` Sk

)
= k by demonstrating that the canonical backbone

of either tree T k or tree Sk is a k-backbone of tree T k ` Sk. We denote by infXk

the critical vertex in tree Xk, where Xk = T k if k is a critical element of λkT and

5.2. CORRECTNESS AND RUNNING TIME OF THE ALGORITHM 83

Xk = Sk if k is a critical element of λkS; that is, infXk is the vertex in tree Xk

corresponding to the (first) element k of label λkX .

We now consider the canonical backbone BXk of tree Xk, and show that all

branches of BXk in tree T k ` Sk have vertex separation less than k. We analyze

two cases, depending on whether
∣∣λkX

∣∣ > 1 or
∣∣λkX

∣∣ = 1.

We first consider the case when
∣∣λkX

∣∣ > 1. Since infXk is the vertex in tree Xk

corresponding to the first element of λkX , Lemma 4.33 implies BXk is nonmonotonic,

infXk is the inflection vertex of BXk , and one of the branches of BXk in Xk is the

subtree Xk〈infXk〉. Thus, every vertex u in BXk is a descendant in Xk of infXk ,

and Lemma 5.1 implies
(
T k ` Sk

)
u
=
(
Xk
)
u
. Hence, every branch Y of BXk in

Xk such that Y 6= Xk〈infXk〉 is a branch of BXk in T k ` Sk, and every branch Y

of BXk in T k ` Sk such that Y 6=
(
T k ` Sk

)
〈infXk〉 is a branch of BXk in Xk. In

other words,

(
T k ` Sk

)
[BXk] =

(
Xk [BXk]−

{
Xk〈infXk〉

})
∪
{(
T k ` Sk

)
〈infXk〉

}
.

Figures 5.7 and 5.8 illustrate the cases Xk = T k and Xk = Sk, respectively. Claim

5.4 implies

T k−1 ` Sk−1 =
(
T k ` Sk

)
〈infXk〉. (5.2)

It follows from the facts that BXk is a backbone of tree Xk and VS
(
Xk
)
= λkX(1) =

k (Lemma 4.19) that every subtree in set Xk [BXk] has vertex separation less than

k. And since VS
(
T k−1 ` Sk−1

)
= λk−1(1) < k, we conclude from Equation 5.2 that

VS
((
T k ` Sk

)
〈infXk〉

)
< k, and hence every branch of BXk in tree T k ` Sk, that

is, every branch in set
(
T k ` Sk

)
[BXk], has vertex separation less than k. We next

derive the identical conclusion for the second case, and then combine the two cases.

We now analyze the case when
∣∣λkX

∣∣ = 1. If Xk = T k, then λkT contains element

k by the definition of tree Xk, and it also contains an element smaller than k,

which is one of the suppositions. Hence,
∣∣λkT
∣∣ > 1, which is a contradiction of the

assumption
∣∣λkX

∣∣ = 1. Therefore, Xk = Sk holds. By Lemma 4.32, the canonical

backbone BSk of Sk contains the root rS of Sk. Since every vertex u in BSk is in

tree Sk, Lemma 5.1 implies
(
T k ` Sk

)
u
=
(
Sk
)
u
, which means that every branch

84 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

������������

������������ � � !�!!�!

"�""�"#�##�#

$�$$�$%�%%�%

S

rS

BXk

rT

T k = Xk

(
T k ` Sk

)
〈infXk〉

infXk

Figure 5.7: The proof of Lemma 5.10 when
∣∣λkX

∣∣ > 1 and Xk = T k.

of BSk in Sk is a branch of BSk in T k ` Sk. By the definition of tree T k ` Sk

and the fact that rS is the root of tree Sk,
(
T k ` Sk

)
〈rS〉 = T k holds. It follows

that
(
T k ` Sk

)
[BSk] = Sk [BSk] ∪

{
T k
}
(Figure 5.9), since rS is in BSk . Because

VS
(
Sk
)
= k, VS

(
T k
)
< k. Therefore, since the fact that BSk is a backbone of tree

Sk implies every subtree in set Sk [BSk] has vertex separation less than k, every

subtree in set
(
T k ` Sk

)
[BSk] has vertex separation less than k. We remark that

Equation 5.2 holds in this case as well.

Combining cases
∣∣λkX

∣∣ > 1 and
∣∣λkX

∣∣ = 1, we conclude that all branches in tree

T k ` Sk of the canonical backbone BXk of tree Xk have vertex separation less than

k, and thus Lemma 4.3 yields VS
(
T k ` Sk

)
≤ k. Lemma 2.1 and the facts that

Xk is a subtree of T k ` Sk and k = λkX(1) = VS
(
Xk
)
imply VS

(
T k ` Sk

)
≥ k.

Hence, VS
(
T k ` Sk

)
= k holds.

5.2. CORRECTNESS AND RUNNING TIME OF THE ALGORITHM 85

&�&&�&'�''�'

(�((�()�))�) *�**�*+�++�+

,�,,�,-�--�-

.�..�./�//�/T

rT

rS

Sk = Xk

BXk

(
T k ` Sk

)
〈infXk〉

infXk

Figure 5.8: The proof of Lemma 5.10 when
∣∣λkX

∣∣ > 1 and Xk = Sk.

We conclude the proof by constructing the label λk of tree T
k ` Sk using Lemma

4.31. We first show that infXk 6= rT . If X
k = Sk, then infXk 6= rT , since rT is not in

tree Sk. If Xk = T k, then label λkT contains at least two elements: k and an element

smaller than k. Lemma 4.27 therefore implies the vertex infXk , which corresponds

to the first element k of λkT , is not the root rT . Thus, in either case, infXk 6= rT .

The critical vertex infXk of Xk is also critical in subtree
(
Xk
)
b
, where b = infXk .

Since infXk 6= rT , Lemma 5.1 implies
(
Xk
)
b
=
(
T k ` Sk

)
b
. Thus, the root infXk of

tree
(
T k ` Sk

)
b
is critical in the tree, and Lemma 2.1 implies VS

((
T k ` Sk

)
b

)
= k.

It follows from Equation 5.2 that VS
((
T k ` Sk

)
〈infXk〉

)
= VS

(
T k−1 ` Sk−1

)
=

λk−1(1) < k. We conclude from Lemma 4.31 that the label of tree T k ` Sk is label

λk−1 prepended with k, since T k ` Sk =
(
T k ` Sk

)
〈infXk〉 `p

(
T k ` Sk

)
b
, where p

is the parent of vertex infXk = b. ¤

86 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

0�00�01
1

2�22�23
3

4�44�45
5

6�66�67
7rT

rS

Sk = Xk =
(
T k ` Sk

)
rS

(
T k ` Sk

)
〈rS〉 = T k

BSk

Figure 5.9: The proof of Lemma 5.10 when
∣∣λkX

∣∣ = 1.

Finally, we consider the case when none of the first three cases applies (line 4

of algorithm ADD-LABEL-UNEQUAL). The only difference between this case and the

third case (Lemma 5.10) is that λk−1(1) ≥ k in this case, as opposed to λk−1(1) < k

in Lemma 5.10.

Lemma 5.11 Suppose we have trees T k and Sk with labels λkT and λkS, respectively,

such that λkT (1) 6= λkS(1) and k = max
{
λkT (1), λ

k
S(1)

}
, and suppose λk−1 is the label

of tree T k−1 ` Sk−1. If k is a critical element of either λkT or λkS, there is an element

of λkT smaller than k, and λk−1(1) ≥ k, then the label of tree T k ` Sk is (k + 1)0.

Proof. Like at the beginning of the proof of Lemma 5.10, we initially note that

since there is an element of label λkT smaller than k, point 1 in Lemma 4.35 guar-

antees tree T k−1 is nonempty. Therefore, tree T k−1 ` Sk−1 is nonempty and label

λk−1 is defined. We prove the lemma by showing that VS
(
T k ` Sk

)
> k. Since

k = max
{
λkT (1), λ

k
S(1)

}
= max

{
VS
(
T k
)
,VS

(
Sk
)}

(Lemma 4.19), Claim 5.2 then

implies the label λk of tree T k ` Sk is (k + 1)0.

In order to prove VS
(
T k ` Sk

)
> k, we first show that VS

((
T k ` Sk

)
〈infXk〉

)
≥

k, where Xk is the tree T k or Sk depending on whether k is a critical element of

label λkT or λkS. By Claim 5.4, T k−1 ` Sk−1 =
(
T k ` Sk

)
〈infXk〉 holds. Since

VS
(
T k−1 ` Sk−1

)
= λk−1(1) ≥ k, we conclude that VS

((
T k ` Sk

)
〈infXk〉

)
≥ k.

5.2. CORRECTNESS AND RUNNING TIME OF THE ALGORITHM 87

We next show that infXk yields two subtrees in tree T k ` Sk with vertex sep-

aration k, and conclude that VS
(
T k ` Sk

)
> k. Toward this goal, we first prove

infXk 6= rT . We consider two cases, depending on whether Xk = Sk or Xk = T k.

If Xk = Sk, then clearly infXk 6= rT . If Xk = T k, the label λkT contains at least

two elements: k and an element smaller than k. But then
∣∣λkT
∣∣ > 1, and Lemma

4.27 implies infXk 6= rT , because infXk corresponds to the first element of label λkT .

Therefore, in both cases, infXk 6= rT . Vertex infXk yields two subtrees X1 and X2

in tree Xk with vertex separation k, and hence it follows from Lemma 5.1 that it

yields the same two subtrees in tree T k ` Sk. This implies vertex infXk has three

branches in T k ` Sk with vertex separation at least k:
(
T k ` Sk

)
〈infXk〉, X1, and

X2. We conclude from Lemma 4.4 that VS
(
T k ` Sk

)
> k. ¤

The correctness of algorithm ADD-LABEL-UNEQUAL (Algorithm 5.2) is a consequence

of Lemmas 5.8, 5.9, 5.10, and 5.11.

Lemma 5.12 Suppose we have trees T k and Sk with labels λkT and λkS, respec-

tively, such that k = max
{
λkT (1), λ

k
S(1)

}
, and suppose λk−1 is the label of tree

T k−1 ` Sk−1; if T k−1 ` Sk−1 is empty, then λk−1 is undefined and is not used

by Algorithm 5.2. If λkT (1) 6= λkS(1), then on input
(
λkT , λ

k
S, λk−1

)
Algorithm 5.2

correctly computes the label λk of tree T k ` Sk.

Proof. We prove the lemma by showing that the algorithm executes line 1, 2, 3,

or 4 if and only if the condition of Lemma 5.8, 5.9, 5.10, or 5.11, respectively, is

satisfied. Lemma 5.12 then follows by observing that the algorithm sets the return

label λk to the correct label in each of the four cases. We also show that if label

λk−1 is undefined, then one of the first two lines of the algorithm is executed, and

therefore argument λk−1 is not used.

We first show that the conditions on lines 1 and 2 of the algorithm correspond

directly to the conditions of Lemmas 5.8 and 5.9, respectively. The conditions

λkT (1) 6= λkS(1), k = max
{
λkT (1), λ

k
S(1)

}
, and λk−1 being the label of tree T k−1 `

Sk−1 are common to Lemmas 5.8, 5.9, 5.10, and 5.11, and they are also preconditions

of the algorithm. Hence, we focus on the other, more specific conditions. If k is

the only element of λkT , then the algorithm sets λk to (k)
crit(λk

T)
on line 1, which is

correct (Lemma 5.8). If k is the only element of λkS and is noncritical, then k is not

88 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

an element of label λkT by the facts that k = max
{
λkT (1), λ

k
S(1)

}
and λkT (1) 6= λkS(1).

Hence, the condition on line 1 of the algorithm cannot be true, and the algorithm

sets λk to (k)1 on line 2, which is correct (Lemma 5.9).

Next, we show that if neither of the first two cases on lines 1 and 2 applies,

then k is a critical element of either λkT or λkS and there is an element of label λkT
smaller than k. This is equivalent to the common conditions of Lemmas 5.10 and

5.11. If neither of the first two cases applies, then k is neither the only element

of λkT nor the only element of λkS that is noncritical. There are thus three possible

cases. In the first case, k is an element of λkT and
∣∣λkT
∣∣ > 1. In the second case, k is

an element of λkS and
∣∣λkS
∣∣ > 1. In the third case, k is the only element of λkS and

is critical. We show that in each case, k is a critical element of either λkT or λkS and

there is an element of label λkT smaller than k.

First, we consider the case when k is an element of λkT and
∣∣λkT
∣∣ > 1. Lemma

4.30 implies k is a critical element of label λkT , since k is the first element of λkT .

We also infer from Lemma 4.20 and the fact
∣∣λkT
∣∣ > 1 that there is an element of

λkT smaller than k.

Second, we consider the case when k is an element of λkS and
∣∣λkS
∣∣ > 1. Like

in the previous case, it follows from Lemma 4.30 that k is a critical element of λkS.

Since λkT (1) 6= λkS(1), λ
k
T (1) < k holds, and therefore the element λkT (1) of label λ

k
T

is smaller than k.

Third, we consider the case when k is the only element of λkS and is critical. We

only need to observe that there is an element of λkT smaller than k, since λkT (1) < k.

We conclude the proof by showing that lines 3 and 4 of the algorithm correctly

compute the label λk of tree T k ` Sk, assuming neither of the cases on lines 1 and

2 applies. We remark that since there is an element of λkT smaller than k, point 1

in Lemma 4.35 implies tree T k−1 is not empty. Thus, tree T k−1 ` Sk−1 is nonempty

and label λk−1 is defined. Therefore, if λk−1 is undefined, one of the first two cases

on lines 1 and 2 applies and the algorithm does not use λk−1. If λk−1(1) < k, then

the algorithm executes line 3 and sets λk to label λk−1 prepended with k, which

is correct (Lemma 5.10). If λk−1(1) ≥ k, then line 4 is executed and λk is set to

(k + 1)0; Lemma 5.11 implies this is correct. ¤

5.2. CORRECTNESS AND RUNNING TIME OF THE ALGORITHM 89

Having shown the correctness of algorithms ADD-LABEL-EQUAL and ADD-LA-

BEL-UNEQUAL, we now prove the correctness and running time of the main algorithm,

algorithm ADD-LABEL (Algorithm 5.3).

Theorem 5.13 Suppose we have trees T and S with labels λT and λS. Then on

input (λT , λS) Algorithm 5.3 correctly computes the label λ of tree T ` S.

Proof. We prove the theorem by induction on the number i of iterations of the

loop on lines 5–9. The technique we employ is similar to that used in the cor-

rectness proof of algorithm COMBINE-LABELS (Algorithm 4.1) [EST94], which was

described starting on page 59. The loop in algorithm ADD-LABEL iterates from

m = max{1, λT (|λT |)} to M = max{λT (1), λS(1)}, however, and therefore during

the ith iteration, 1 ≤ i ≤ M − m + 1, the relationship between i and the loop

variable k is

k = i+m− 1. (5.3)

We show that λ is the correct label of the tree T k ` Sk just after the ith iteration

is completed.

Before we start the induction, there is one technicality worth mentioning at this

point. If λT (|λT |) > 0, then m = max{1, λT (|λT |)} = λT (|λT |). By point 1 in

Lemma 4.35, this implies tree Tm−1 is empty, and therefore tree Tm−1 ` Sm−1 is

empty. Thus, label λ is undefined when i = 0 (base case). However, because m is

at least the smallest element of λT , at the end of the ith iteration of the loop, where

1 ≤ i ≤M −m+1, point 1 in Lemma 4.35 implies tree T k = T i+m−1 is not empty,

and hence tree T k ` Sk = T i+m−1 ` Si+m−1 is nonempty. Nevertheless, since the

induction step covers the case when i = 1, it is possible that the label λ used in the

induction hypothesis is undefined, since it is the label of tree Tm−1 ` Sm−1, which

can be empty. We will see that in this case, the label of Tm−1 ` Sm−1 is not used

in the induction step.

We now prove the base case of the induction. There are two cases, depending on

whether λT (|λT |) > 0 or λT (|λT |) = 0. If λT (|λT |) > 0, then tree Tm−1 ` Sm−1 is

empty; this was just shown in the previous paragraph. Thus, label λ is undefined.

The algorithm does not set λ to any value before entering the loop, because the

condition on line 1 is false.

90 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

We now turn to the case when λT (|λT |) = 0. In this case, m = max{1, 0} = 1,

and thus our objective is to show that λ is the label of tree Tm−1 ` Sm−1 = T 0 ` S0

before the algorithm enters the loop. In this case, the condition on line 1 is true,

and the algorithm executes one of the two assignment statements on lines 2 and

3. By point 1 in Lemma 4.35, tree T 0 is not empty and the largest element of

the label λ0T of T 0 is 0 (point 2 in Lemma 4.35). Lemma 4.20 therefore implies

λ0T = (0)
crit(λ0

T)
. Hence, Lemma 4.19 yields VS(T 0) = 0, and Lemma 2.2 implies

T 0 is the trivial tree.

We now consider two subcases, depending on whether λS(|λS|) > 0 or λS(|λS|) =

0. If λS(|λS|) > 0, then we conclude from point 1 in Lemma 4.35 that tree S0 is

empty. Therefore, T 0 ` S0 = T 0, and hence λ = λ0T = (0)0; the criticality of the

only vertex in T 0 is clearly 0. In this case, the algorithm correctly sets λ to (0)0 on

line 2. If λS(|λS|) = 0, then point 1 in Lemma 4.35 implies tree S0 is not empty

and its label is λ0S = (0)
crit(λ0

S)
. It follows from Lemma 2.2 that S0 is the trivial

tree, and thus T 0 ` S0 is the path graph P2. By Lemma 2.3, the vertex separation

of P2 is 1. There are clearly no critical vertices in T 0 ` S0, and the root rT of

T 0 ` S0 yields only one subtree, the trivial tree S0, whose vertex separation is 0.

Therefore, the criticality of rT in T 0 ` S0 is 0, and hence the criticality of the label

of T 0 ` S0 is 0. We conclude that λ = (1)0. Label λ is correctly set to this value

on line 3 of the algorithm. This completes our analysis of the base case.

We prove the induction step by showing that at the end of the ith iteration,

1 ≤ i ≤ M −m + 1, λ is the correct label of tree T k ` Sk, where k = i +m − 1

(Equation 5.3). We assume λ is the correct label of tree T k−1 ` Sk−1 just before the

ith iteration begins; this is our induction hypothesis. We will prove the induction

step shortly. Since the loop terminates right after the (M −m + 1)th iteration, λ

is the label of tree TM ` SM after the algorithm finishes execution. It follows from

the facts M ≥ λT (1) and M ≥ λS(1) that T
M = T and SM = S (the first case in

Definition 4.5). Thus, λ is the label of tree T ` S after the algorithm exits.

The induction step uses the correctness of the two subroutines called by the

main algorithm, ADD-LABEL-EQUAL and ADD-LABEL-UNEQUAL, proved in Lemmas

5.7 and 5.12, respectively. If k is an element of both λT and λS, then by point 2

in Lemma 4.35 and the fact that a label is a strictly decreasing sequence (Lemma

5.2. CORRECTNESS AND RUNNING TIME OF THE ALGORITHM 91

4.20), the first element of both λkT and λkS is k; that is, k = λkT (1) = λkS(1). Hence,

all the conditions of Lemma 5.7 are satisfied, and subroutine ADD-LABEL-EQUAL

(Algorithm 5.1), called on line 7, correctly computes the label λ of tree T k ` Sk.

If k is an element of exactly one of λT and λS, then it follows from Lemmas 4.20

and 4.35 that the first element of exactly one of the labels λkT and λkS is k; that is,

λkT (1) 6= λkS(1) and k = max
{
λkT (1), λ

k
S(1)

}
. Therefore, all the conditions of Lemma

5.12 are satisfied, and subroutine ADD-LABEL-UNEQUAL (Algorithm 5.2), called on

line 9, correctly computes the label λ of tree T k ` Sk, assuming λ is the correct

label of tree T k−1 ` Sk−1, which is true by the induction hypothesis. We note that

T k−1 ` Sk−1 can be empty, in which case λ is undefined.

Finally, if k is not an element of either λT or λS, then T
k = T k−1 and Sk = Sk−1

by the following argument. If k > λX(1), where X = T or X = S, then k − 1 ≥

λX(1), and by the base case of the recursive definition of Xk−1, Xk−1 = X = Xk

holds. If k ≤ λX(1), then Xk−1 = Xk, since k is not an element of λX (the second

case in Definition 4.5). Therefore, T k ` Sk = T k−1 ` Sk−1, which implies the labels

of trees T k ` Sk and T k−1 ` Sk−1 are the same. The iteration correctly does not

modify λ in this case. ¤

Theorem 5.14 Algorithm 5.3 can be implemented to run in O(VS(T ` S)) =

O(lg |T ` S|) time on input (λT , λS), where λT and λS are the labels of trees T and

S.

Proof. We prove the theorem by showing how to achieve constant running time

per iteration of the loop on lines 5–9 of the algorithm. This, together with the fact

that the loop iterates at most M times, implies the running time of the algorithm

is O(M); lines 1–4 are simple operations that can be implemented in O(1) time.

Since M ≤ VS(T) and M ≤ VS(S), and because both trees T and S are subtrees

of T ` S, we conclude from Lemma 2.1 that M ≤ VS(T ` S). Lemma 4.6 then

implies the running time of the algorithm is O(VS(T ` S)) = O(lg |T ` S|).

We first describe how to achieve constant running time for subroutines ADD-LA-

BEL-EQUAL (Algorithm 5.1) and ADD-LABEL-EQUAL (Algorithm 5.2). Algorithm

5.1 consists of simple operations and can be readily implemented to run in O(1)

time. Algorithm 5.2 also consists of simple constant-time operations, except for

92 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

the prepending operation on line 3. If the condition on line 3 is true, then λk is

assigned label λk−1 prepended with k. Since the argument λk−1 is not used again

in Algorithm 5.2, we can simply prepend λk−1 with k (a constant-time operation),

and then assign to λk the pointer to λk−1. In this way, we avoid copying λk−1 over

to λk, which is not, in general, a constant-time operation. We also pass argument

λk−1 and return label λk by means of a pointer; this is justified, because variable

λ used in algorithm ADD-LABEL and passed to subroutine ADD-LABEL-UNEQUAL as

λk−1 on line 9 is immediately assigned to the value returned by the subroutine, and

hence its former value is not needed again in algorithm ADD-LABEL.

We next show how to implement the calls on lines 7 and 9 of algorithm ADD-LABEL

in O(1) time. Since it follows from point 2 in Lemma 4.35 that labels λkT and λkS are

contiguous subsequences of labels λT and λS, respectively, we can specify λkT and

λkS by two pairs of integers delimiting the subsequences of λT and λS, together with

unmodified versions of λT and λS. We pass labels λT and λS by means of a pointer

to eliminate the need for copying them during the call. Since neither algorithm

ADD-LABEL-EQUAL nor algorithm ADD-LABEL-UNEQUAL modifies the arguments λkT
and λkS, passing the labels by means of a pointer is justified. We also pass by means

of a pointer the argument λ on line 9, as discussed in the previous paragraph. ¤

So far in this chapter, we have discussed computing the label of a tree T as

another tree S is attached to the root rT of T . It is natural to ask the converse

question: given a tree T with root rT and label λT , and a child u of rT with label

λu,T = λTu
, what is the label λrT ,T 〈u〉 = λT 〈u〉 after the subtree Tu is removed from

T? Unfortunately, this question is impossible to answer given only labels λT and

λTu
; to see this, consider the following example. Suppose that λT 〈u〉 = (k1, k2)c

and λTu
= (k1)2, where c is an integer satisfying 0 ≤ c ≤ 2, and k1 and k2 are

nonnegative integers satisfying k1 > k2. Then by Lemma 5.5 the label of T =

T 〈u〉 ` Tu is (k1 + 1)0, regardless of the value of k2. Hence, given only the labels

λT = (k1 + 1)0 and λTu
= (k1)2 of trees T and Tu, it is not possible to compute

the label of tree T 〈u〉. Chapter 6 describes how to augment the trees with extra

information that makes it possible to recompute the label of tree T after a subtree

yielded by root rT is removed from T .

5.3. A DIFFERENT ALGORITHM FOR COMPUTING VERTEX
SEPARATION 93

5.3 A Different Algorithm for Computing Vertex

Separation

In this section, we show how the algorithm just given for computing the label of tree

T ` S from the labels of trees T and S can be used to find the vertex separation of

a tree T . Our algorithm, called LABEL, runs in O(|T | lg |T |) time, which is the same

time bound as that achieved by the Ellis-Sudborough-Turner algorithm (Theorem

4.46).

In algorithm LABEL, we view tree T as being composed of two nonempty subtrees

T1 and T2 such that T = T1 ` T2. We first compute the labels λT1 of T1 and λT2 of

T2 recursively, and then use algorithm ADD-LABEL on input (λT1 , λT2) to compute

the label, and hence vertex separation (Lemma 4.19), of tree T . Since the root of

T1 ` T2 is the root of T1, we have to choose trees T1 and T2 such that T1 = T 〈u〉

and T2 = Tu, where u is a child of the root rT of T . Our algorithm chooses an

arbitrary child u of rT ; it would be interesting to investigate if a more clever choice

of u improves the running time of the algorithm (see Chapter 8 for an elaboration

on this issue). Algorithm LABEL computes the vertex labelling of T as well.

Algorithm 5.4

Input: a tree T with root rT .

Output: the vertex labelling of T .

LABEL(T, rT)

1. if rT is a leaf then λrT
← (0)0

2. else

3. u← an arbitrary child of rT

4. LABEL(T 〈u〉, rT)

5. LABEL(Tu, u)

6. λrT
← ADD-LABEL (λrT

, λu)

Both the correctness and running time of algorithm LABEL are simple results, and

are stated and proved below.

Theorem 5.15 Suppose we have a tree T with root rT . Then on input (T, rT)

Algorithm 5.4 correctly computes the label λv of each vertex v in T .

94 CHAPTER 5. ATTACHING TREES AT THEIR ROOTS

Proof. We prove the theorem by induction on the size n of tree T . The base case

occurs when n = 1; that is, T is the trivial tree. By Lemma 2.2, VS(T) = 0 holds.

Furthermore, the root rT of T is a leaf, and therefore its criticality is 0, because it

does not yield any subtrees. Hence, the label of rT is (0)0. The algorithm correctly

assigns this label to λrT
on line 1.

We now prove the induction step. We assume n > 1 and the algorithm works

correctly for any tree of size at most n − 1. Since |T 〈u〉| < n and |Tu| < n, where

u is an arbitrary child of root rT as assigned on line 3, the calls on lines 4 and

5 correctly compute the vertex labellings of trees T 〈u〉 and Tu, respectively. By

Lemma 5.1, the only label of a vertex v in tree T = T 〈u〉 ` Tu that can be different

from the label of v in tree X, where X = T 〈u〉 if v is in T 〈u〉 and X = Tu if v is in

Tu, is the label of the root rT . But Theorem 5.13 implies the label λrT
is correctly

updated by algorithm ADD-LABEL on line 6. ¤

Theorem 5.16 Suppose we have a tree T with root rT . Then on input (T, rT)

Algorithm 5.4 runs in time O(|T |VS(T)) = O(|T | lg |T |).

Proof. We show the running time of the algorithm by first proving the bound of

O(|T |) on the total number of recursive calls made by the algorithm. Then, we

show that the running time per a recursive call is O(VS(T)) = O(lg |T |). These

two claims imply the running time of the algorithm is O(|T |VS(T)) = O(|T | lg |T |).

We first show that the total number of recursive calls made by the algorithm is

O(|T |). The pair of recursive calls on lines 4 and 5 can be thought of as correspond-

ing to a removal of the edge rTu from tree T . Since the algorithm calls itself on each

tree T 〈u〉 and Tu separately, no edge is removed more than once. Since there are

|T |−1 edges in a tree on |T | vertices, we conclude that the total number of recursive

calls generated, including the initial call, is at most 2(|T | − 1) + 1 = O(|T |).

We now show that the running time per a recursive call is O(VS(T)) = O(lg |T |).

Lines 1 and 3 of the algorithm take O(1) time. Lines 4 and 5 can be implemented in

O(1) time by simply updating a constant number of pointers to effectively remove

edge rTu from tree T . Finally, it follows from Theorem 5.14 that the running time

of line 6 is O(VS(T)) = O(lg |T |), since T = T 〈u〉 ` Tu. We conclude that the

5.3. A DIFFERENT ALGORITHM FOR COMPUTING VERTEX
SEPARATION 95

running time of one recursive call of the algorithm takes O(VS(T)) = O(lg |T |)

time. ¤

Chapter 6

Removing a Subtree Yielded by

the Root

In this chapter, we investigate how to quickly update the vertex separation of a

tree T after a subtree Trm yielded by the root rT of T is removed (that is, vertex

rm is a child of rT). We present an O (VS(T)2) algorithm that updates the vertex

labellings of trees T 〈rm〉 and Trm. Since T = T 〈rm〉 ` Trm, Lemma 5.1 implies the

only label of a vertex u in T 〈rm〉 that can be different from the label of u in tree

T is label λrT
, and the label of every vertex in Trm is the same as the label of that

vertex in T . That is, our goal is to compute λrT ,T 〈rm〉. We denote this label by λ

in order to avoid clutter. As discussed toward the end of Chapter 5 (page 92), it is

not possible to find λ only from labels λrT ,T and λrm,T , so an approach is needed

that is different from that used in algorithm ADD-LABEL presented in that chapter.

In order to achieve the running time claimed, extra information is stored at

vertices rT and rm. This extra information in effect imposes a partial order on

the children of rT . We will discuss this extra information in Section 6.1. Although

the need to keep the extra information has been motivated only for the root rT of

T , we will discuss it for an arbitrary vertex in T . This generalization will become

important in Chapter 7, when we describe how to update the vertex labelling of a

tree T after another tree is attached to an arbitrary vertex in T , or after a subtree

yielded by an arbitrary vertex in T is removed from T .

The update algorithms presented in this chapter, which are REMOVE-SUBTREE

97

98 CHAPTER 6. REMOVING A SUBTREE YIELDED BY THE ROOT

and ATTACH-TREE, use a modified version of algorithm COMBINE-LABELS (Algorithm

4.1) as a subroutine, and by taking advantage of the extra information we improve

its running time from Θ(dM) (Lemma 4.45) to O(M 2), where d is the number of

labels to combine andM is the maximum element of an input label. The algorithm,

called FAST-COMBINE-LABELS, computes the label λ by combining the labels of all

d children of rT except rm. It is described in Section 6.2, together with algorithms

REMOVE-SUBTREE and ATTACH-TREE.

6.1 VS-Ordered Trees and Strong Labelling

Toward the goal of improving the running time of algorithm COMBINE-LABELS from

Θ(dM) to O(M 2), we need to be able to store and efficiently update an ordering

on the children of each vertex in tree T that is induced by the vertex separations

of the subtrees rooted at the children. We call a tree T a VS-ordered tree if the

children u1, . . . , ud of each vertex u in T are ordered so that VS (Tu1) , . . . ,VS (Tud
)

is a monotonically decreasing sequence; that is, 1 ≤ i < j ≤ d implies VS(Tui
) ≥

VS
(
Tuj

)
. A VS-ordered tree T is implemented by storing the pointers to the

children u1, . . . , ud of each vertex u in a doubly linked list that is sorted in the

order of nonincreasing value of VS(Tui
). From now on, we omit the mention of

pointers when their use is implicit. For example, we say ‘storing the children’

instead of ‘storing the pointers to the children.’ Since we will need to argue about

these doubly linked lists for different vertices and trees, we introduce notation to

simplify the discussion.

Definition 6.1 Suppose that T is a rooted tree and u is a vertex in T whose

children are u1, . . . , ud. We denote by DT
u the doubly linked list storing vertices

u1, . . . , ud such that node α occurs before node β in the list if and only if α stores

ui, β stores uj, and VS(Tui
) ≥ VS

(
Tuj

)
. If vertex u is a leaf, then list DT

u is empty.

We next explain how to update list DT
u quickly after a subtree yielded by u

is removed from tree T , or after a tree is attached to u. Without additional in-

formation, this can take linear time in the worst case, since the length of DT
u can

be Ω(|T |), and potentially we need to scan the entire list DT
u to find the position

6.1. VS-ORDERED TREES AND STRONG LABELLING 99

of the root of the removed subtree (if a subtree has been removed), or to find a

correct position for the root of the attached tree (if a tree has been attached to u).

A faster, O(VS(T)) running time is achieved by storing a few additional pieces of

information at each vertex: arrays A and Z, and pointer π. The pair of vertices

A[k] and Z[k] delimits the start and end of the block of vertices in list DT
u that are

the roots of the subtrees yielded by u and having vertex separation k; this sublist

of DT
u is called the k-block of DT

u . With arrays A and Z, it is possible to find the

k-block in constant time. The pointer π is used to locate in constant time the node

in DT
pu

that stores the vertex u, where pu is the parent of u. Figure 6.1 illustrates

the arrays A and Z, and the pointer πu. In the figure, the 8-block of DT
u consists

of nodes 2–5.

Definition 6.2 Given a rooted tree T with the list DT
u computed for a vertex u in

T , we denote by AT
u and ZT

u arrays indexed from 0 to the largest vertex separation

of a subtree of T yielded by u:

1. entry AT
u [k] stores the first node in the k-block of list DT

u , and

2. entry ZT
u [k] stores the last node in the k-block of DT

u .

If the k-block of DT
u is empty, then AT

u [k] and Z
T
u [k] are both null. If u is not the

root of tree T and the list DT
pu

has been computed for the parent pu of u, then we

define πTu to be the pointer to the node in list DT
pu

that stores the vertex u. If u is

the root of T , then πTu is null.

The extra data structures DT
u , A

T
u , Z

T
u , and π

T
u will always be used together with

label λu,T . Hence, we give a special name to a tree that has all of these five pieces of

information stored at each vertex. A rooted tree T is called strongly labelled if λu,T ,

DT
u , A

T
u , Z

T
u , and πTu are stored at each vertex u in T . The collection of all these

five structures for a vertex u in T is called the strong labelling of u. The collection

of strong labellings of all vertices in tree T is called the strong labelling of T . For

reference, we now state the rather obvious fact that the strong labelling of a tree

can be computed together with the vertex labelling of the tree without increasing

the asymptotic running time.

100 CHAPTER 6. REMOVING A SUBTREE YIELDED BY THE ROOT

8�88�89
9

:�::�:;
;

<�<<�<=
=

>�>>�>?
?

@�@@�@A
A

B�BB�BC
C

D�DD�DE
E

F�FF�FG
G

H�HH�HI
I

J�JJ�JK
K

L�LL�LM
M

N�NN�NO
O

P�PP�PQ
Q

u

9 8 8 8 8 5 5 5 5 2 1 1 0

· · ·

pu

0123456789 0123456789

· · ·

AT
u ZT

u

DT
pu

πTu

DT
u

Figure 6.1: Extra information stored at each vertex u of a tree T . The vertex
separations of the subtrees yielded by vertex u are indicated inside the triangles
representing the subtrees.

Theorem 6.1 The strong labelling of a rooted tree T can be computed in time

O(|T |VS(T)) = O(|T | lg |T |). ¤

Hence, computing the strong labelling of a tree takes no more time than computing

the vertex labelling of the tree using algorithm COMBINE-LABELS (Theorem 4.46).

Updating DT
u , A

T
u , Z

T
u , and πTu after a tree is attached to vertex u or a subtree

yielded by u is removed is also simple, and we will not go into the details.

6.2. SPEEDING UP ALGORITHM COMBINE-LABELS 101

Lemma 6.2 Given a tree T and a vertex u in T , list DT
u , arrays A

T
u and ZT

u , and

pointer πTu can be updated in O(VS(T)) = O(lg |T |) time after a subtree yielded

by u is removed from T . The structures can be updated in O(VS(T `u S)) =

O(lg |T `u S|) time after a tree S is attached to u. ¤

6.2 Speeding Up Algorithm COMBINE-LABELS

Having described the list DT
u and arrays AT

u and ZT
u , we now show how to quickly

combine the labels of the children of u using list DT
u . The key is to look only at

O(M) labels, where M is the largest vertex separation of a subtree yielded by u,

even if there are Ω(|T |) children. Our algorithm is called FAST-COMBINE-LABELS

and runs in time O(M 2). It is obtained by modifying algorithm COMBINE-LABELS

(Algorithm 4.1), which runs in time Θ(dM) (Lemma 4.45), where d is the number

of children of vertex u.

A natural question to ask at this point is whether an alternative representation of

the tree, one that imposes an upper bound on the number of children of each internal

vertex, preserves the vertex separation. If such a representation is possible, then we

can use algorithm COMBINE-LABELS to compute the combination of the labels of the

children in sublinear time. Although we do not have a proof of the claim that there

is no such representation, we show that one such common representation does not

necessarily preserve the vertex separation of the tree. The left-child right-sibling

representation of a rooted tree T is a binary tree rep(T) such that the left child

of each internal vertex u in rep(T) is the leftmost child of u in T , and the right

child of u in rep(T) is the right sibling of u in T . Figure 6.2 gives an example of

this definition. In the figure, tree T has vertex separation 1 (Lemma 4.3), since the

dotted line is a 1-backbone of T . Tree rep(T) has vertex separation greater than

1, however, because of Lemma 4.4 and the fact that vertex u has three branches in

rep(T), each of which is path P2 and hence has vertex separation 1 (Lemma 2.3).

Thus, VS(T) 6= VS(rep(T)).

The key idea for improving the running time of algorithm COMBINE-LABELS is to

start iterating at a higher value of k in the loop on lines 4–14. For example, ifm ≥ 1

is an integer such that m is an element of three or more input labels µ1, . . . , µd,

102 CHAPTER 6. REMOVING A SUBTREE YIELDED BY THE ROOT

RRS
S

TTU
U

VVW
W
XXY
Y
ZZ[
[

\\]
]

^^_
_

`�``�`a�aa�a

b�bb�bc
c

dde
e

f�ff�fg�gg�g

h�hh�hi
i

jjk
k

l�ll�lm
m

uu

T rep(T)

Figure 6.2: A rooted tree T and its left-child right-sibling representation rep(T).

then λ is set to (m + 1)0 on line 6 of the algorithm during the iteration in which

k = m; all smaller values of k are irrelevant in constructing the output label. This

observation suggests that the loop starts iterating at m instead of 1. This idea does

in fact work to reduce the running time of algorithm COMBINE-LABELS. However,

it may be slow to check how many labels in µ1, . . . , µd contain a particular integer.

Instead, we focus only on the first elements of the labels, and denote by m the

largest integer such that m is the first element of at least three labels in µ1, . . . , µd.

The modified algorithm, called FAST-COMBINE-LABELS, appears below. The new

algorithm has only four lines that are different from those in algorithm COMBINE-LA-

BELS; two new lines are added and two lines are modified.

The added lines appear before the first line of COMBINE-LABELS, and are num-

bered 0.1 and 0.2 in the pseudocode for FAST-COMBINE-LABELS. Line 0.1 finds the

largest value of m such that m is the first element of at least three input labels, as

discussed above, or sets m to 0 if no integer is the first element of at least three

input labels. Line 0.2 then sets λ to (m + 1)0 if m > 0, which is consistent with

the value of λ in algorithm COMBINE-LABELS at the end of the iteration in which

k = m.

The lines of pseudocode for FAST-COMBINE-LABELS that are modifications of

lines in algorithm COMBINE-LABELS are lines 1 and 4 and are primed in the pseu-

docode for FAST-COMBINE-LABELS. Line 1′ differs from line 1 only in that the if

statement has an else in front of it; this means that if m > 0, then the base

case of algorithm COMBINE-LABELS on lines 1 and 2 is not executed. Line 4′ differs

6.2. SPEEDING UP ALGORITHM COMBINE-LABELS 103

from line 4 in the range of k over which the loop iterates; whereas COMBINE-LABELS

starts the iteration at 1, FAST-COMBINE-LABELS starts at m + 1. We now give the

pseudocode for FAST-COMBINE-LABELS, and then prove its correctness.

Algorithm 6.1

Input: a sequence σ of vertex labels µ1, . . . , µd.

Output: the combination λ of labels in σ.

FAST-COMBINE-LABELS(µ1, . . . , µd)

0.1. m← the largest value of m′ such that m′ is the first element of at least

three labels in σ; if m′ does not exist then m← 0

0.2. if m > 0 then λ← (m+ 1)0

1′. else if 0 is an element of at least one label in σ then λ← (1)0

2. else λ← (0)0

3. M ← the maximum element of a label in σ if d > 0, and 0 if d = 0

4′. for k from m+ 1 to M do

5. ik ← the number of labels in σ that contain k

6. if ik ≥ 3 then λ← (k + 1)0

7. if ik = 2 then

8. if k is a critical element of at least one label in σ then

λ← (k + 1)0

9. else λ← (k)2

10. else if ik = 1 then

11. if k is a critical element of the label in σ that contains k then

12. if λ(1) = k then λ← (k + 1)0

13. else λ← label λ prepended with k

14. else λ← (k)1

Lemma 6.3 Given a sequence σ of vertex labels µ1, . . . , µd, Algorithm 6.1 on input

(µ1, . . . , µd) correctly computes the combination λ of the labels in σ.

Proof. We prove the lemma by showing the analogue of Claim 4.44 for FAST-COM-

BINE-LABELS, which by induction immediately yields the correctness of the al-

gorithm. Since the body of the loop is exactly the same in both algorithms

COMBINE-LABELS and FAST-COMBINE-LABELS (lines 5–14), we only need to show

104 CHAPTER 6. REMOVING A SUBTREE YIELDED BY THE ROOT

that just before FAST-COMBINE-LABELS enters the loop on lines 4′–14, or just af-

ter the loop terminates if m = M , label λ is equal to the combination of labels

µm1 , . . . , µ
m
d , since the loop starts iterating at m+ 1.

We now show the claim stated at the end of the last paragraph by analyzing the

code of algorithm FAST-COMBINE-LABELS preceding the main loop. We consider

two cases, depending on whether m = 0 or m > 0.

We first analyze the case when m, as set on line 0.1 of the algorithm, is 0.

Then line 1′ or 2 is executed and the loop starts iterating at 1. But lines 1′

and 2 correspond exactly to lines 1 and 2 of algorithm COMBINE-LABELS, respec-

tively, and hence algorithm FAST-COMBINE-LABELS behaves in exactly the same

way as algorithm COMBINE-LABELS when m = 0. Therefore, Lemma 4.45 implies

FAST-COMBINE-LABELS is correct.

We next consider the case when m > 0. Then m is the largest integer such that

m is the first element of at least three labels among those in sequence µ1, . . . , µd.

Hence, m is an element of at least three labels in µ1, . . . , µd. This means that

during the iteration in algorithm COMBINE-LABELS in which k = m, variable λ is

set to (m + 1)0 on line 6 of that algorithm. Thus, it follows from Claim 4.44 that

label (m+1)0 is the correct value of λ just before the iteration in which k = m+1,

or just after the loop terminates if m = M . But algorithm FAST-COMBINE-LABELS

sets λ to this value on line 0.2, and therefore λ is equal to the combination of labels

µm1 , . . . , µ
m
d just before FAST-COMBINE-LABELS enters the loop on lines 4′–14, or just

after the loop terminates if m = M . ¤

Having shown that algorithm FAST-COMBINE-LABELS is correct, we now prove its

O(M2) running time.

Lemma 6.4 Given a sequence σ of labels µ1, . . . , µd of the children of a vertex u

in a tree T , Algorithm 6.1 on input (µ1, . . . , µd) can be implemented to run in time

O(M2), where M is the largest element of a label in σ, assuming the list DT
u and

labels of all the children of vertex u have been computed.

Proof. Before showing how to implement different parts of the algorithm to run in

the stated time bound, we note that passing labels µ1, . . . , µd explicitly as the input

to the algorithm can require Ω(dM) time, since there are d labels and Lemma 4.25

6.2. SPEEDING UP ALGORITHM COMBINE-LABELS 105

implies each label can have length Ω(M). However, the labels are stored with the

children of vertex u, and hence no passing of arguments is required.

We first show how to implement lines 0.1, 0.2, and 1′–3 of algorithm FAST-COM-

BINE-LABELS to run in time O(M). We implement line 0.1 as a simple list traversal:

we start at the beginning of the list DT
u , and for each value m′ of vertex separation

starting at M and ending at 0, we count the number of subtrees yielded by u

that have vertex separation m′. We stop as soon as we count three subtrees with

vertex separation m′; value m is set to this value m′ of vertex separation. Since

the list DT
u is ordered so that the vertex separation of the subtrees is monotonically

decreasing, and because the first element of the label of a child v of u equals the

vertex separation of Tv (Lemma 4.19), the value m thus computed is equal to

the largest integer that is the first element of at least three labels in µ1, . . . , µd.

Furthermore, we never count more than three nodes for each particular value of

vertex separation, and hence the running time of the traversal is O(M).

Line 1′ can be implemented in O(1) time by simply determining whether the last

node of DT
u contains a vertex that is the root of a subtree with vertex separation

0. Similarly, line 3 can be implemented in O(1) time by determining the vertex

separation of the subtree whose root is stored in the first node of DT
u . Lines 0.2

and 2 of algorithm FAST-COMBINE-LABELS can trivially be implemented to run in

constant time. Hence, the running time of lines 0.1, 0.2, and 1′–3 is O(M).

We now analyze the running time of the loop on lines 4′–14. Consider the sublist

D2 of list D
T
u starting at the beginning of the m-block of DT

u and ending at the end

of DT
u . The crucial observation is that because DT

u is sorted by the nonincreasing

value of the vertex separation of the subtrees rooted at the vertices stored in the

list, the vertex separation of the subtree Tv rooted at a vertex v stored in D2 is

at most m. By Lemma 4.19, the vertex separation of Tv equals the first element

of the label λv of v. As a consequence of Lemma 4.20, no element of λv is greater

than m. It follows that no element of the label of a vertex stored in sublist D2 is

greater than m. Therefore, for k > m, we do not need to examine on line 5 of the

algorithm any labels of vertices stored in the sublist D2.

We now consider the sublist D1 of DT
u starting at the beginning of DT

u and

ending at the node just in front of the first node in D2. By the definition of m

106 CHAPTER 6. REMOVING A SUBTREE YIELDED BY THE ROOT

as the largest integer that is the first element of at least three labels in µ1, . . . , µd,

we conclude from Lemma 4.19 that m is the largest integer such that m is the

vertex separation of at least three subtrees yielded by vertex u. Hence, there are

at most two vertices v1 and v2 stored in D1 such that subtrees Tv1 and Tv2 have

vertex separation i, m + 1 ≤ i ≤ M . We also observe that if m does not exist,

then D1 = D
T
u , and there are at most two vertices v1 and v2 stored in D1 such that

subtrees Tv1 and Tv2 have vertex separation i, 0 ≤ i ≤ M . Thus, the length of

D1 is at most 2(M + 1) = O(M). It follows from the conclusion of the previous

paragraph that line 5 of algorithm FAST-COMBINE-LABELS can be implemented in

time O(M) per iteration by examining the O(M) labels of the vertices in D1, and

determining in constant time, as explained next, for each label µj whether k is an

element of µj. Since µj is a strictly decreasing sequence (Lemma 4.20), we keep

track in µj of the currently examined element as the loop progresses. Therefore, it

is possible to determine in constant time if k is in µj.

It remains to show that lines 6–14 of algorithm FAST-COMBINE-LABELS can be

implemented to run in O(M) time per iteration. Lines 6, 7, 9, 10, 12, and 14

trivially run in O(1) time. Checking whether k is a critical element of a label µj

on lines 8 and 11 can be implemented to run in constant time as follows. If k is

the last element of µj, then its criticality is equal to the criticality of µj, which can

be read off directly from µj. If k is not the last element of µj, then Lemma 4.30

implies it is critical. Finally, line 13, which may involve copying λ, runs in O(M)

time, since the largest element of label λ is O(M) and therefore Lemma 4.25 yields

|λ| = O(M).

We conclude that each iteration of the loop takes O(M) time, and since the

loop iterates at most M times, it follows that the running time of the loop, and

therefore the entire algorithm, is O(M 2). ¤

Having at our disposal a faster version of algorithm COMBINE-LABELS, we can

finally give algorithms to update the strong labelling of a vertex u in a tree T after

a subtree yielded by u is removed (algorithm REMOVE-SUBTREE), or after another

tree is attached to u (algorithm ATTACH-TREE). If u is the root of T , then both

algorithms update the strong labelling, and therefore the vertex separation, of tree

T after it is modified. We first give the pseudocode for algorithm REMOVE-SUBTREE,

6.2. SPEEDING UP ALGORITHM COMBINE-LABELS 107

and prove its correctness and running time afterward.

Algorithm 6.2

Input: an internal vertex u of a strongly labelled tree T and a child rm of u.

Output: updated label λu,T , list D
T
u , arrays A

T
u and ZT

u , and pointer πTrm after the

subtree Trm is removed from T .

REMOVE-SUBTREE(u, rm)

1. update DT
u , A

T
u , Z

T
u , and πTrm

2. λu ← FAST-COMBINE-LABELS(the labels of the children of u in T 〈rm〉)

Theorem 6.5 Given a strongly labelled tree T , an internal vertex u of T , and a

child rm of u, Algorithm 6.2 on input (u, rm) correctly updates the label λu,T , list

DT
u , arrays A

T
u and ZT

u , and pointer πTrm after the subtree Trm is removed from T .

The algorithm runs in time O(VS(T)2) = O
(
lg2 |T |

)
.

Proof. The proof essentially combines results we have already established. Lemma

6.3 implies line 2 then correctly updates the label of vertex u in tree T 〈rm〉. The

running times of lines 1 and 2 are O(VS(T)) (Lemma 6.2) and O(M 2) (Lemma 6.4),

respectively, where M is the largest element of a label “passed” as an argument

on line 2. Since the largest element of the label of a vertex equals the vertex

separation of the subtree rooted at that vertex (Lemma 4.19), and because every

subtree yielded by vertex u is a subtree of tree T , Lemma 2.1 implies M ≤ VS(T).

It follows that the running time of the algorithm is O(VS(T)2), which by Lemma

4.6 is O
(
lg2 |T |

)
. ¤

We now present the pseudocode for algorithm ATTACH-TREE, and prove its correct-

ness and running time.

Algorithm 6.3

Input: a vertex u in a strongly labelled tree T and the root rS of a strongly labelled

tree S.

Output: updated label λu,T , list D
T
u , arrays A

T
u and ZT

u , and pointer πSrS
after tree

S is attached to u via the edge urS.

ATTACH-TREE(u, rS)

108 CHAPTER 6. REMOVING A SUBTREE YIELDED BY THE ROOT

1. update DT
u , A

T
u , Z

T
u , and πSrS

2. λu ← FAST-COMBINE-LABELS(the labels of the children of u in T `u S)

Theorem 6.6 Given a strongly labelled tree T , a vertex u in T , and the root rS

of a strongly labelled tree S, Algorithm 6.3 on input (u, rS) correctly updates the

label λu,T , list D
T
u , arrays A

T
u and ZT

u , and pointer πSrS
after tree S is attached to

T via the edge urS. The algorithm runs in time O(VS(R)2) = O
(
lg2 |R|

)
, where

R = T `u S.

Proof. The proof is similar to that of Theorem 6.5. Lemma 6.3 implies line 2

correctly updates the label of vertex u. It follows from Lemma 6.2 that the running

time of line 1 is O(VS(R)). By Lemma 6.4, the running time of line 2 is O(M 2),

where M is the maximum element of a label passed as an argument on line 2; that

is, M is the maximum vertex separation of a subtree yielded by u in tree R. It

follows from Lemma 2.1 that M ≤ VS(R), and therefore Lemma 4.6 implies the

running time of the algorithm is O(VS(R)2) = O
(
lg2 |R|

)
. ¤

Algorithms REMOVE-SUBTREE and ATTACH-TREE update the strong labelling of tree T

after it is modified if u = rT . In the next chapter, we will see how to use algorithms

REMOVE-SUBTREE and ATTACH-TREE to update the strong labelling of tree T after

the tree is modified at an arbitrary vertex u.

Chapter 7

Modifying a Tree at an Arbitrary

Vertex

This chapter generalizes the problems of Chapters 5 and 6. In Chapter 5, we

presented an algorithm that computes the vertex labelling of tree T ` S from the

vertex labellings of trees T and S. The algorithm runs in time O(VS(T ` S)).

In Chapter 6, an alternative O (VS(T ` S)2)-time algorithm for the problem was

given. That algorithm, in addition to updating the vertex labelling of T ` S, also

updates the tree’s strong labelling. We also gave an O (VS(T)2)-time algorithm for

updating the strong labelling of a tree T after a subtree yielded by the root rT of

T is removed from the tree. In this chapter, we investigate the more general case

when tree S is attached to an arbitrary vertex u in T , or a subtree of T yielded by

an internal vertex u in T is removed from T . The algorithms are very similar to

each other and achieve O
(
mlog3 2 lg2m

)
amortized time complexity over a sequence

of m constant-size tree additions to an initially constant-size tree, or sequence of

m constant-size subtree removals from a tree such that the final tree has constant

size.

Both algorithms work by traversing a subpath of the simple path sp(u, rT) from

vertex u to the root rT of tree T , updating the strong labelling of each vertex on

that path. Since the length of sp(u, rT) can be linear in the number of vertices in

tree T , traversing the path entirely each time a tree is attached to T or a subtree

is removed from T does not necessarily yield sublinear amortized running time.

109

110 CHAPTER 7. MODIFYING A TREE AT AN ARBITRARY VERTEX

However, we observe that sometimes we do not need to traverse the entire path

sp(u, rT); as soon as we encounter a vertex whose label does not change after the

update, all ancestors of that vertex in sp(u, rT) do not need to be updated; this is

quite obvious, but will be shown rigorously in Lemma 7.3.

Definition 7.1 The red path is the subpath from vertex u to vertex z of the simple

path sp(u, rT), where z is the closest vertex to u in sp(u, rT) such that λz,T = λz,T`uS

if S is attached to T or λz,T = λz,T 〈v〉 if Tv is removed from T , where v is a child of

u. If vertex z does not exist, then the red path is defined to be sp(u, rT).

We remark that the orientation of the red path is important; that is, the left

endpoint of the red path is u and the right endpoint is z or rT .

In the following claim, we collect a few observations that will be used in the

proof that we only need to update the strong labelling of vertices on the red path.

The claim follows immediately from Definition 7.1, and therefore a proof is omitted.

Claim 7.1 Given a tree T with root rT , consider the red path in T after a tree S

is attached to a vertex u in T or a subtree yielded by u is removed from T . Then

1. all vertices on the red path except possibly its right endpoint are such that

their labels change after tree T is modified, and

2. the label of the right endpoint of the red path changes if and only if vertex

z, as used in Definition 7.1, does not exist; in this case, the right endpoint of

the red path is the root rT . ¤

Shortly (Lemma 7.3), we will state and prove that the strong labelling of all vertices

not on the red path remains “almost” the same after tree T is modified. Before

doing that, however, we show a simple claim that will be useful in the proof.

Claim 7.2 Given a tree T with root rT and an arbitrary vertex u in T , consider the

red path in T after a tree S is attached to u or a subtree yielded by u is removed

from T . If w is a vertex in either T or S not on the red path, the labels of no

children of w change when tree T is modified.

111

Proof. To prove the claim, we consider two cases, depending on whether w is on

the simple path sp(u, rT) or not.

We first consider the case when w is in sp(u, rT). We prove the case by induction

on the length Lw of the simple path sp(lastRP , w), where lastRP is the right endpoint

of the red path RP . We observe that sp(u, rT) = RP + sp (p, rT), where p is the

parent of vertex lastRP in tree T . Because the assumption is that vertex w is on

path sp(u, rT) but not on red path RP , it follows that w is in sp (p, rT). Thus,

Lw = |sp(lastRP , w)| = 1 + |sp (p, w) | ≥ 1, and one subtree RRP yielded by w

contains red path RP . We conclude that RRP is the only subtree that becomes

modified as a tree is attached to or a subtree is removed from tree T . Therefore,

Definition 4.4 implies the labels of all other subtrees yielded by w remain the same.

Hence, we only need to show that the label of tree RRP does not change.

We first show the base case (Lw = 1) of the induction proof. In this case,

sp(lastRP , w) = lastRP + w. This implies the right endpoint lastRP of red path

RP is a child of w. Since vertex w yields subtree RRP and RRP contains RP , we

conclude that lastRP is the root of RRP . Because w is a descendant of root rT , it

follows that rT 6= lastRP , and point 2 in Claim 7.1 implies the label of vertex lastRP

does not change; that is, the label of tree RRP does not change.

We now show the induction step. We assume Lw > 1 and the labels of no

children of vertex wRP change, where wRP is the child of w such that subtree TwRP

contains red path RP . This induction hypothesis is justified, since |sp(lastRP , w)| =

Lw, and therefore |sp(lastRP , wRP)| = Lw− 1 ≥ 1 (thus, tree TwRP
entirely contains

RP). It follows that the label of vertex wRP does not change, since by Lemma 4.34

the label of a vertex is a function of the labels of its children. As TwRP
= RRP , the

label of subtree RRP does not change.

We next consider the case when w is not on path sp(u, rT). In this case, none

of the subtrees yielded by w change by attaching tree S to T or removing a subtree

from T ; if a subtree yielded by w became modified, then w would be on the path

sp(u, rT). Since none of the subtrees yielded by w are modified, Definition 4.4

implies their labels remain unchanged. ¤

We finally state and prove that the strong labelling of all vertices not on the red

path remains the same after tree T is modified, except for one pointer π (Definition

112 CHAPTER 7. MODIFYING A TREE AT AN ARBITRARY VERTEX

6.2).

Lemma 7.3 Suppose that a strongly labelled tree S with root rS is attached to a

strongly labelled tree T with root rT to form tree T `u S, where u is a vertex in

T , or that subtree Tv is removed from T , where v is a child of u. Then the strong

labelling of each vertex in either T or S not on the red path does not change as tree

T is modified, except for πSrS
if S is attached to T and πTv if Tv is removed from T .

Proof. In this proof, we consider a vertex w that is either in tree T or in tree S, and

that is not on the red path. To simplify the argument, we define tree X as follows:

if w is in T , then X = T , and if w is in S, then X = S. The proof is organized

in the following way. First, we show that if w 6= rS and w 6= v, then the pointer

πXw does not change. Second, we prove that the label λw,X , list D
X
w , and arrays AX

w

and ZX
w do not change.

First, we show that the pointer πXw does not change if w 6= rS and w 6= v.

Suppose that w 6= rS and w 6= v. If w = rT , then πXw is null before tree T is

modified and is null after T is modified, because rT is the root of both tree T `u S

and tree T 〈v〉. Hence, πXw does not change in this case. If w 6= rT , then πXw points

to the node in list DX
pw

that stores vertex w, where pw is the parent of w in tree

X; we remark that w has a parent, because w 6= rS and w 6= rT . Therefore, πXw
does not change unless the edge between w and pw is broken or created as the tree

is modified. But the only vertex in either tree T or tree S for which the parent is

different in tree T `u S or Tv is rS if S is attached to T and v if Tv is removed

from T . Because w 6= rS and w 6= v by the original supposition, we conclude that

pointer πXw does not change as tree T is modified.

Second, we show that λw,X , D
X
w , A

X
w and ZX

w do not change. According to

Lemma 4.34, the label of vertex w depends only on the labels of the children of w.

By Claim 7.2, the labels of the children of w do not change, and therefore the label

λw,X of w does not change. Furthermore, since the labels of the subtrees yielded

by w do not change, neither do their vertex separations (Lemma 4.19). Since the

list DX
w depends only on the vertex separations of the subtrees yielded by w, the

list does not change. Finally, arrays AX
w and ZX

w depend only on DX
w . Because the

list does not change, neither do the arrays. ¤

7.1. BINARY REPRESENTATION OF A VERTEX LABEL 113

Lemma 7.3 implies we only need to update the strong labelling for vertices on the

red path, and pointer πSrS
if S is attached to T and pointer πTv if Tv is removed from

T .

Before presenting the algorithms to update the strong labelling of tree T after

attaching a tree to or removing a subtree from T , we first prove that the amortized

length of the red path is O
(
M(Mm)log3 2

)
over a sequence of m tree additions or

subtree removals; M is an upper bound on the size of each tree that is added or

removed, and also on the sizes of the initial or final tree, depending on whether we

are adding trees or removing subtrees, respectively. Since the algorithms traverse

the red path and spend O
(
lg2(Mm)

)
time for each vertex on the path (this will

be shown later in Theorems 7.10 and 7.12), we will be able to conclude that the

amortized running time of the algorithms is O
(
M(Mm)log3 2 lg2(Mm)

)
.

7.1 Binary Representation of a Vertex Label

In order to prove the bound on the amortized length of the red path, we need a new

concept: a correspondence between vertex labels and binary numbers. We can think

of a vertex label λ with maximum element λ(1) as a binary number bλ containing

λ(1)+1 bits and defined as follows. If i is an element of λ, where 0 ≤ i ≤ λ(1), then

bλ has a 1 at position i; otherwise, bλ contains a 0 at this position. For example,

label (5, 3, 1, 0) can be represented as 101011. It follows from Lemma 4.20 that this

construction is a one-to-one correspondence up to the label’s criticality. We call

the binary number bλ the binary representation of label λ. The following lemma

gives a formula for computing the value of the binary representation of a label; it

follows directly from the definition.

Lemma 7.4 The value of the binary representation of a label λ is
∑|λ|

j=1 2
λ(j). ¤

The next basic result will be useful in bounding the number of possible binary

representations of a label in terms of the label’s maximum element. It is another

direct consequence of the definition and Lemma 4.20, but we state it explicitly for

easy reference later.

114 CHAPTER 7. MODIFYING A TREE AT AN ARBITRARY VERTEX

Lemma 7.5 The binary representation of a label λ has at most k + 1 bits, where

k is an upper bound on λ(1). ¤

It will also be useful to refer to the uniqueness of the value of the binary represen-

tation of a label, which in conjunction with Lemma 7.5 makes it possible to count

the number of possible labels with maximum element bounded above by k.

Lemma 7.6 The value of the binary representation of a vertex label is unique up

to the label’s criticality.

Proof. The lemma follows from Lemma 4.20 and observing that the value of a

binary number b is unique once we specify the positions in b of 1’s and 0’s. ¤

Our first goal is to show that when tree S is attached to tree T to form tree

T `u S, where u is a vertex in T , the binary representation of the label λ of any

vertex w in T does not decrease, and if it stays the same, then the criticality of

λ does not decrease. This result will be important in bounding the number of

times the label of a particular vertex can change, ultimately leading to the claimed

amortized length of the red path.

Intuitively, decreasing the value of the binary representation of the label of a

vertex corresponds to decreasing the vertex separation of a subtree (or subtrees)

of the subtree rooted at that vertex. However, since tree T is a subtree of tree

T `u S, every subtree of T is a subtree of T `u S, and hence by Lemma 2.1 the

vertex separation of no subtree of T decreases. Therefore, the value of the binary

representation of the label cannot decrease. The proof of this fact is technical,

however, and we also need to take into account the label’s criticality; it is deferred

to Appendix A.

Lemma 7.7 If T and T ′ are trees with identical roots such that T is a subtree of

T ′, and w is a vertex in T , then either bλ′ > bλ, or bλ′ = bλ and crit(λ′) ≥ crit(λ),

where λ′ and λ are the labels of w in trees T ′ and T , respectively.

Proof. See Appendix A. ¤

Lemma 7.7 is the key result for bounding the number of times the label of a vertex

in tree T can change as trees are attached to T . This bound in turn implies a

7.1. BINARY REPRESENTATION OF A VERTEX LABEL 115

bound on the sum of the lengths of the red paths, which can be used to bound the

amortized length of the red path over a sequence of tree additions.

Lemma 7.8 Over a sequence of m tree additions to a tree, the amortized length

of the red path is O
(
M(Mm)log3 2

)
for a single tree addition; M is an upper bound

on the size of each tree added and the initial tree.

Proof. We begin the proof by deriving a relationship between the maximum vertex

separation VSmax of the tree at any point during the sequence of tree additions and

the maximum number of vertices in the tree. We then use this result to bound the

number of times a vertex label in the tree can change.

We first derive a relationship between VSmax and the maximum number of

vertices in the tree. By Lemma 4.5, the minimum number of vertices nmin in a tree

with vertex separation VSmax is

nmin =

(
5

6

)
3VSmax −

1

2
. (7.1)

Inverting Equation 7.1, we obtain

VSmax = log3
6nmin + 3

5
. (7.2)

By supposition, each tree added and the initial tree have size at most M . Since the

sequence consists of m tree additions, the number of vertices in the final tree is at

most M +Mm = M(1 +m). Denoting by Ti the tree resulting from performing

the first i tree additions to the initial tree T0, it is clear that tree Ti is a subtree

of tree Tj if i < j. Lemma 2.1 therefore implies VS(Ti) ≤ VS(Tj), and hence

VSmax = VS(Tm). By definition, the minimum number of vertices in a tree with

vertex separation VSmax is nmin, and because the number of vertices in the final

tree Tm is at most M(1 +m), we conclude that nmin ≤ M(1 +m). Equation 7.2

now yields

VSmax ≤ log3
6M(1 +m) + 3

5
. (7.3)

Having derived a relationship between the maximum vertex separation of and

maximum number vertices in the tree over a sequence of m tree additions, we now

116 CHAPTER 7. MODIFYING A TREE AT AN ARBITRARY VERTEX

use it to bound the number of times the label λw of any particular vertex w in the

tree changes. Since the maximum vertex separation of the tree over the sequence

of tree additions is VSmax, it follows from Lemma 2.1 that the subtree rooted at

w has vertex separation at most VSmax over the sequence; that is, λw(1) ≤ VSmax.

Hence, Lemma 7.5 implies the length of the binary representation of label λw is at

most VSmax+1. Because there are at most 2VSmax+1 possible binary numbers on at

most VSmax + 1 bits, we conclude from Equation 7.3 that there are at most

2VSmax+1 ≤ 2log3
6M(1+m)+3

5 = O
(
(M(1 +m))log3 2

)
= O

(
(Mm)log3 2

)
(7.4)

possible binary representations of label λw over the sequence of tree additions.

We now investigate how often the binary representation of λw can change. By

Lemma 7.7 and the fact that tree Ti is a subtree of tree Tj for all i < j, it follows

that the value of the binary representation bj of label λw,j in Tj is at least as

large as the value of the binary representation bi of λw,i in Ti; that is, bj ≥ bi. This

implies by Equation 7.4 that the binary representation of λw changes O
(
(Mm)log3 2

)

times over the course of the sequence of tree additions. By the uniqueness of the

binary representation of a vertex label (Lemma 7.6), we infer that label λw changes

O
(
(Mm)log3 2

)
times up to criticality over the sequence.

If the binary representation of λw does not change by performing a tree addition

(that is, if bi+1 = bi), then it follows from Lemma 7.7 that crit (λw,i+1) ≥ crit (λw,i).

That is, if the label λw does not change up to criticality when a tree is attached to

tree Ti to form Ti+1, then its criticality remains the same, in which case λw does

not change, or its criticality increases from 0 to 1 or 0 to 2, or it increases from

1 to 2 (Lemma 4.7). We infer that when λw remains the same up to criticality,

crit(λw) changes at most two times. We conclude that label λw changes at most

2 ·O
(
(Mm)log3 2

)
= O

(
(Mm)log3 2

)
times over the sequence of m tree additions.

Finally, we derive the amortized length of the red path over the sequence of

m tree additions. Since the label of a vertex in the dynamically changing tree

chages O
(
(Mm)log3 2

)
times and there are at most M(1+m) = O(Mm) vertices in

the tree, the maximum number of label changes in the tree is O
(
Mm(Mm)log3 2

)
.

The red path consists only of vertices whose labels change plus possibly one vertex

whose label does not change (point 1 in Claim 7.1). Therefore, the sum of the

7.2. UPDATE ALGORITHMS 117

lengths of the red paths is at most m+O
(
Mm(Mm)log3 2

)
, since there are m tree

modifications and therefore m red paths. We conclude that the amortized length

of the red path for a tree addition is
m+O(Mm(Mm)log3 2)

m
= O

(
M(Mm)log3 2

)
. ¤

We observe that if M is a constant independent of m, the amortized length of the

red path is O
(
mlog3 2

)
. Equipped with Lemma 7.8, we can easily prove the running

time of the update algorithms described in the next section.

7.2 Update Algorithms

We now give a straightforward algorithm, called ATTACH-TREE-ANYWHERE, that tra-

verses the red path RP of a tree T after another tree S is attached to T at vertex

a, and updates the strong labelling of all vertices in RP . That is, it updates the

vertex separation of tree T `a S and prepares the tree for another tree addition.

The algorithm works by traversing the red path in tree T upward from the

point of attachment a of tree S. The right endpoint lastRP of path RP is detected

either when the root rT of tree T is reached, or when the newly computed label

of a vertex on the path equals the old label of the vertex (Definition 7.1). The

algorithm initially updates the strong labelling of vertex a by using subroutine

ATTACH-TREE (Algorithm 6.3). Then, excluding the left endpoint a of RP , red path

RP is traversed from the parent pa of a to the right endpoint lastRP of RP .

The strong labelling of each vertex w in this traversal is updated as follows.

First, the subtree W yielded by w to which tree S is attached is removed, and the

strong labelling of w is updated by subroutine REMOVE-SUBTREE (Algorithm 6.2).

Second, the subtree W `a S is attached to vertex w to form tree T `a S, and

algorithm ATTACH-TREE is used to update the strong labelling of w. Since path

RP is traversed upward, the strong labelling of the root rW of W has already been

updated when the algorithm is updating the strong labelling of w. The algorithm

is summarized below.

118 CHAPTER 7. MODIFYING A TREE AT AN ARBITRARY VERTEX

Algorithm 7.1

Input: the roots rT and rS of strongly labelled trees T and S, respectively, and a

vertex a in T .

Output: the strong labelling of tree T `a S.

ATTACH-TREE-ANYWHERE(rT , rS, a)

1. ATTACH-TREE(a, rS)

2. if a = rT then exit

3. for each vertex w on the simple path from pa to rT in order do

4. REMOVE-SUBTREE(w, rW)

5. ATTACH-TREE(w, rW)

6. if the new and old labels of w are equal then exit

We now prove the correctness and amortized running time of the algorithm.

Theorem 7.9 Given strongly labelled trees T and S with roots rT and rS, respec-

tively, and a vertex a in T , Algorithm 7.1 on input (rT , rS, a) correctly computes

the strong labelling of tree T `a S.

Proof. The theorem follows quite easily from results of Chapter 6 and Lemma 7.3.

Lemma 7.3 implies the strong labelling of no vertex in either tree T or tree S outside

the red path changes as tree S is attached to tree T , except for the pointer πSrS
.

But the strong labelling of each vertex on the red path is correctly updated on lines

1, 4, and 5 of the algorithm; this follows from Theorems 6.6 and 6.5. Theorem 6.6

also implies pointer πSrS
is correctly updated on line 1. ¤

Theorem 7.10 Over a sequence of m tree additions to a tree, the amortized run-

ning time of Algorithm 7.1 is O
(
M(Mm)log3 2 lg2(Mm)

)
, where M is an upper

bound on the size of each attached tree and the initial tree.

Proof. We prove the theorem by considering the running times of algorithms

ATTACH-TREE and REMOVE-SUBTREE, and then the amortized length of the red path.

We first derive the running time of one iteration of the algorithm, and then bound

the number of iterations of the loop. Over the sequence of m tree additions, the

maximum size of the tree is at most M + Mm = O(Mm), since the initial tree

7.2. UPDATE ALGORITHMS 119

and each added tree have size at most M . Theorem 6.6 therefore implies line 1 of

algorithm ATTACH-TREE-ANYWHERE takes time O
(
lg2(Mm)

)
. Theorems 6.5 and 6.6

imply the running time of lines 4 and 5 for a single iteration of the loop on lines

3–6 is also O
(
lg2(Mm)

)
.

During each iteration, we also need to compare the newly computed label of

vertex w with its old label in order to determine the end lastRP of the red path RP

(line 6). It follows from Theorem 4.6 and the fact that the number of vertices in the

tree is O(Mm) that the vertex separation of the tree is O(lg(Mm)). Therefore, by

Lemma 4.25 the lengths of the labels to be compared are both at most O(lg(Mm)).

Thus, we can compare the labels for equality in O(lg(Mm)) time, including their

criticalities; these are stored explicitly with each label. Because O(lg(Mm)) ≤

O
(
lg2(Mm)

)
, the running time of one iteration is O

(
lg2(Mm)

)
.

We now consider the amortized length of the red path RP , and use it to

derive a bound on the amortized number of iterations of the loop on lines 3–

6. By Lemma 7.8, the amortized length of RP is O
(
M(Mm)log3 2

)
over the se-

quence of tree additions. Hence, the amortized number of iterations of the loop is

O
(
M(Mm)log3 2

)
. We conclude that the amortized running time of the algorithm

is O
(
M(Mm)log3 2 lg2(Mm)

)
, since the running time of one iteration was shown to

be O
(
lg2(Mm)

)
in the previous paragraph. ¤

We next present an algorithm, called REMOVE-SUBTREE-ANYWHERE, for updating

the strong labelling of tree T after a rooted subtree of T rooted at vertex rm is

removed. It differs from algorithm ATTACH-TREE-ANYWHERE only in the code that

precedes the loop; instead of calling subroutine ATTACH-TREE to update the strong

labelling of vertex prm, algorithm REMOVE-SUBTREE is used to update the labelling.

The traversal of the simple path from the parent pprm
of vertex prm to the right

endpoint lastRP of the red path RP is exactly the same in both algorithms. For

greater clarity and similarity to algorithm ATTACH-TREE-ANYWHERE, the arguments

to algorithm REMOVE-SUBTREE-ANYWHERE include both the root rm of the removed

subtree and parent prm of rm in tree T . This is redundant, because we can deter-

mine the parent of rm easily by reading a pointer. As in ATTACH-TREE-ANYWHERE,

vertex rW is the root of the subtree yielded by vertex w that has been modified.

120 CHAPTER 7. MODIFYING A TREE AT AN ARBITRARY VERTEX

Algorithm 7.2

Input: the root rT of a strongly labelled tree T , a vertex prm in T , and a child rm

of prm in T .

Output: the strong labelling of trees T 〈rm〉 and Trm.

REMOVE-SUBTREE-ANYWHERE(rT , prm, rm)

1. REMOVE-SUBTREE(prm, rm)

2. if prm = rT then exit

3. for each vertex w on the simple path from pprm
to rT in order do

4. REMOVE-SUBTREE(w, rW)

5. ATTACH-TREE(w, rW)

6. if the new and old labels of w are equal then exit

We next prove the correctness of algorithm REMOVE-SUBTREE-ANYWHERE.

Theorem 7.11 Given a strongly labelled tree T with root rT , and a vertex rm in

T , Algorithm 7.2 on input (rT , prm, rm) correctly computes the strong labelling of

trees T 〈rm〉 and Trm.

Proof. The proof follows a pattern similar to that of Theorem 7.9. By Lemma 7.3,

the strong labelling of no vertex in tree T outside the red path changes as subtree

Trm is removed from tree T , except for the pointer πTrm. By Theorems 6.5 and 6.6,

the strong labelling of each vertex on the red path is correctly updated on lines 1,

4, and 5 of the algorithm. Furthermore, it follows from Theorem 6.5 that pointer

πTrm is correctly updated on line 1. ¤

Finally, we show the amortized running time of algorithm REMOVE-SUBTREE-ANY-

WHERE.

Theorem 7.12 Over a sequence of m tree removals from a tree, the amortized

running time of Algorithm 7.2 is O
(
M(Mm)log3 2 lg2(Mm)

)
, where M is an upper

bound on the size of each removed subtree and the final tree.

Proof. Instead of duplicating the reasoning in the proof of Theorem 7.10, we prove

this theorem by considering the corresponding sequence of tree additions. Denot-

ing by σ the sequence of m subtree removals, we consider the sequence σ ′ that

7.2. UPDATE ALGORITHMS 121

is the reverse of σ, and in which each tree is added rather than removed. Since

the final tree in the subtree-removal sequence σ has size at most M , the initial

tree in the tree-addition sequence σ has size at most M . Furthermore, every tree

added in σ′ has size at most M , because every subtree removed in σ has size at

most M . Theorem 7.10 therefore implies the amortized running time of sequence

σ′ is O
(
M(Mm)log3 2 lg2(Mm)

)
. Clearly, the sequence of the strong labellings of

the tree in sequence σ is the reverse of the sequence of the strong labellings of

the tree in sequence σ′, and therefore the same number of labels are updated

in both sequences. We conclude that the amortized running time of algorithm

REMOVE-SUBTREE-ANYWHERE is O
(
M(Mm)log3 2 lg2(Mm)

)
. ¤

If the bound M is a constant independent of m, algorithms ATTACH-TREE-ANY-

WHERE and REMOVE-SUBTREE-ANYWHERE have O
(
mlog3 2 lg2m

)
amortized running

time, which is sublinear in m, since log3 2 ≈ 0.63 < 1. In a sequence of m tree ad-

ditions or subtree removals, the tree potentially has n = Ω(m) vertices. Therefore,

applying our algorithms to recompute the vertex separation of a dynamically chang-

ing tree as constant-size subtrees are attached to or removed from the tree is faster

than recomputing the vertex separation of the tree by either the Ellis-Sudborough-

Turner algorithm [EST94] or Skodinis’ algorithm [Sko00]; both algorithms have

running time Θ(n) = Ω(m), where n is the number of vertices in the tree.

As a concluding thought, we remark that if both tree additions to and subtree

removals from a tree are allowed in the sequence, the amortized red path length

for a single operation can be Ω(Mm). As an example demonstrating the validity

of this claim, consider the following sequence of operations. The first m
2
operations

consist of adding trees of size M such that the resulting tree has size Mm
2

and depth

Ω(Mm). The next m
2

operations of the sequence consist of repeatedly attaching

and removing a subtree yielded by a vertex w at depth Ω(Mm) that causes the

vertex separation of the tree to repeatedly increase and decrease by 1. Thus, the

red path after each operation is the simple path from w to the root of the tree

and has length Ω(Mm). Hence, the total cost of the second half of the sequence

is m
2
Ω(Mm) = Ω(Mm2), which implies that the amortized cost for an operation is

Ω(Mm2)
m

= Ω(Mm).

Chapter 8

Conclusion and Open Problems

In this thesis, we primarily looked at how to update the vertex separation of a tree

T after another tree S is attached to T or after a rooted subtree is removed from

T . We first described an O(lg |T ` S|)-time algorithm, ADD-LABEL, that solves the

problem by updating the vertex labelling of the tree if T and S are attached at

their roots. The algorithm is essentially a case analysis of the labels of trees T and

S.

Algorithm ADD-LABEL is used in our next algorithm, LABEL, to compute the

vertex labelling, and therefore the vertex separation, of tree T . Although algo-

rithm LABEL achieves the same running time, O(|T | lg |T |), as the Ellis-Sudborough-

Turner algorithm to compute the vertex labelling of tree T , it uses a different tech-

nique. The technique is to split the input tree T into two parts, compute the vertex

labellings of the two parts recursively, and then combine the vertex labellings using

algorithm ADD-LABEL. We believe this technique is conceptually simpler than the

technique employed by algorithm COMBINE-LABELS, which uses recursion on the

children of each vertex in tree T .

One feature of algorithm LABEL worth discussing is that when splitting the tree

T into trees T 〈u〉 and Tu, where u is a child of the root rT of T , the algorithm

chooses an arbitrary child u. It is conceivable that some children are better than

others for the running time of the algorithm. We remark that the asymptotic worst-

case running time of algorithm LABEL cannot be improved by making a more clever

choice of u, since in the case when the input tree T is perfect, all subtrees yielded by

123

124 CHAPTER 8. CONCLUSION AND OPEN PROBLEMS

any particular vertex in T are identical. However, it might be possible to optimize

the choice of u for a particular input T , which is not necessarily as pathological

as a perfect tree. The following example provides motivation for investigating this

further.

Consider the case when child u of rT is chosen so that VS(T 〈u〉) > VS(Tu)

and the canonical backbone BT 〈u〉 of tree T 〈u〉 includes root rT . Then tree Tu is a

branch of BT 〈u〉, and the label of rT is the same regardless of the label of Tu; this

can be proved using the results derived in this thesis. Thus, after computing the

vertex labelling of tree T 〈u〉 recursively, if we can somehow deduce that the vertex

separation of tree Tu is less than VS(T 〈u〉), we do not even need to apply recursion

on tree Tu or find its vertex separation exactly. One way to tell that the vertex

separation of Tu is too small is if the tree’s size is too small. Even if Tu contains

many vertices, its vertex separation is small if the tree is too skinny; that is, if it is

essentially a long path with many small branches attached to it. If we can somehow

quickly test these tree characteristics, we might be able to reduce the number of

recursive calls.

All algorithms to date for computing the vertex separation of tree T require the

tree to be rooted, and they examine all vertices in T . The fact that T needs to

be rooted at an arbitrary vertex immediately raises the question of whether some

choices for root rT are better than others. In order to compare different choices for

root rT , we need to have a metric that establishes the “goodness” of rT as the root

of tree T . One such natural measure is the length of the concatenation of the labels

of all vertices in T . The best possible scenario is when all labels have unit length;

then, the vertex labelling of T can be computed in time linear in |T |. The fact that

all algorithms examine all vertices in tree T implies their running time is Ω(|T |).

An interesting open problem is whether we can quickly approximate a subtree T ′

of T such that VS(T ′) = VS(T). If T ′ is small compared to T , then we can use

Skodinis’ algorithm to compute the vertex separation of tree T in O(|T ′|) = o(|T |)

time.

In order to be able to update the vertex labelling of tree T after removing

a subtree from T , and also to generalize the problem of updating the labelling

after a tree is attached, we introduced the concept of strong labelling. The strong

125

labelling of tree T essentially orders the subtrees yielded by each vertex in T by

their vertex separations. The strong labelling also contains the vertex labelling

of T , and it includes additional data structures that make it possible to quickly

update the subtree ordering of a vertex after another tree is attached to the vertex,

or after a subtree yielded by the vertex is removed. This leads to two algorithms,

REMOVE-SUBTREE and ATTACH-TREE, that update the strong labelling of tree T with

root rT after a subtree of T yielded by rT is removed from T , and after a strongly

labelled tree S with root rS is attached to T via the edge rT rS.

Algorithms REMOVE-SUBTREE and ATTACH-TREE run in times O
(
lg2 |T |

)
and

O
(
lg2 |T ` S|

)
, respectively. Algorithm ADD-LABEL is faster than ATTACH-TREE

by a factor of lg |T |, and it also updates the vertex separation of tree T ` S. How-

ever, ATTACH-TREE updates the strong labelling as well, which we need in the more

general algorithms ATTACH-TREE-ANYWHERE and REMOVE-SUBTREE-ANYWHERE. It is

possible to combine the ideas behind algorithms ADD-LABEL and ATTACH-TREE so

that the resulting algorithm updates the strong labelling of T ` S and runs in time

O(lg |T ` S|). We chose not to elaborate on this possibility, because algorithms

REMOVE-SUBTREE and ATTACH-TREE are always used together as a pair, and the

running time of REMOVE-SUBTREE is O
(
lg2 |T |

)
, thus dominating the running time

of this potentially faster ATTACH-TREE algorithm.

It would be interesting to investigate a simpler scheme for keeping sufficient

information with a tree to update its vertex separation as other trees are added to

or removed from the tree. We use vertex and strong labellings, but it is conceivable

that they contain redundant information. A simpler approach could greatly simplify

the algorithms and potentially improve their running times as well. Our need to

compute and update the strong labelling of a tree stems from having to be able to

update the label of a vertex. Should a scheme be devised that does not use vertex

labelling to update the vertex separation of a dynamically changing tree, there may

be no need for strong labelling.

Finally, we gave algorithms, ATTACH-TREE-ANYWHERE and REMOVE-SUBTREE-ANY-

WHERE, that update the strong labelling of tree T after another strongly labelled

tree S is attached to an arbitrary vertex u in T , and after a subtree yielded by a

vertex u is removed from T . Although updating the strong labelling using these

126 CHAPTER 8. CONCLUSION AND OPEN PROBLEMS

algorithms can be slow for a single tree modification, we showed that the amortized

time complexity of the algorithms is sublinear in the number of modifications under

the following conditions: either tree additions or subtree removals are allowed, but

not both. Furthermore, for a sequence of tree additions, the initial tree and each

tree added have size constant and independent of the number of tree additions.

Similarly, for a sequence of subtree removals, each subtree removed and the final

tree have size constant and independent of the number of subtree removals.

If the conditions described in the last paragraph are satisfied, then the amortized

running time of each algorithm ATTACH-TREE-ANYWHERE and REMOVE-SUBTREE-ANY-

WHERE is O
(
mlog3 2 lg2m

)
, where m is the number of tree additions or subtree re-

movals. The key concept in deriving this time bound is that of the red path, which

after each tree modification consists of the vertices whose strong labellings need to

be updated, and whose amortized length was shown to be O
(
mlog3 2

)
.

We mentioned that if both tree additions and subtree removals are allowed

in the sequence of tree modifications, the amortized length of the red path can

be linear in the number of operations. Therefore, the amortized running time of

algorithms ATTACH-TREE-ANYWHERE and REMOVE-SUBTREE-ANYWHERE can be linear

in the number of operations m. Finding an algorithm that updates the vertex

separation of a tree in this case, and whose running time is sublinear in m, is an

open problem. Such an algorithm would have to use an approach different from

updating the vertex labelling of the tree, since we showed a linear lower bound on

the number of vertex labels that can change after each tree modification.

Another point to consider is that the amortized length of the red path was

derived using a global counting argument by bounding the number of labels in the

tree that can change over an entire sequnce of tree additions. Our upper bound

on the number of labels was essentially argued by the following reasoning: first, we

argued that when a tree is added to tree T , the binary representation of the label

of any vertex in T cannot decrease. Second, we derived an upper bound on the

number of possible labels with maximum element at most k, and concluded that

the number of possible labels is an upper bound on the number of times a label

changes over the sequence of tree additions. Finally, we bounded k in terms of the

number of tree additions.

127

Although this reasoning produced a sublinear bound on the amortized length of

the red path, which was our objective, intuitively we expect the amortized length

of the red path to be much smaller. In other words, we expect that bounding the

number of labels occurring in a tree by the number of possible labels is not tight.

This suggests that our upper bound on the length of the red path can be reduced

significantly. We expect it to be possible to reduce the bound to a polylogarithmic

one. Our reason for this conjecture is that because of the relationship between the

minimum number of vertices in a tree with a particular vertex separation, we need

to at least triple the size of the tree in order to increase its vertex separation by 1. In

conclusion, it is an interesting open problem to reduce the current upper bound of

O
(
mlog3 2

)
on the amortized length of the red path. Finding pathological sequences

of tree additions that cause the amortized length to be large is another avenue

of research, and it can possibly provide more understanding of the relationship

between the structure of a tree and the tree’s vertex separation.

In addition to reducing the upper bound on the length of the red path by a

tighter analysis, there may also be a way of reducing the lg2m factor in the running

time of algorithms ATTACH-TREE-ANYWHERE and REMOVE-SUBTREE-ANYWHERE. This

can potentially be achieved by a more refined analysis of the label being updated;

there are many cases when the label changes only very slightly. Another factor

contributing to relatively fast average update times is that many labels in a typical

tree have very short length. It would be interesting to investigate this a little bit

further, and perhaps derive an upper bound on the length of the concatenation of

all labels in a tree, or the amortized length of the concatentation of the labels on

the red path.

The only tree modifications that we have considered are attaching another

(rooted) tree and removing a (rooted) subtree. Expanding an edge involves re-

placing the edge by two edges and one new vertex, and contracting an edge in-

volves removing a degree-2 vertex and connecting the two adjacent vertices by

a new edge. Edge expansion can be viewed as removing a subtree, attaching a

single vertex, and then reattaching the subtree. Similarly, edge contraction can

be viewed as removing a subtree, removing a single vertex, and then reattaching

the subtree. Therefore, the vertex labelling of the tree after both modifications

128 CHAPTER 8. CONCLUSION AND OPEN PROBLEMS

can be updated in sublinear time using algorithms ATTACH-TREE-ANYWHERE and

REMOVE-SUBTREE-ANYWHERE. However, since the modifications are minor, it might

be possible to devise algorithms with much lower running time bounds.

Another tree “modification” that might be of interest is re-rooting the tree. In

this case, it is not clear whether a sublinear-time algorithm to update the vertex

labelling is possible. Since re-rooting a tree can completely change the ancestor-

descendant relationship of all vertices, and because vertex labelling depends on

this relationship, we conjecture that a sublinear-time algorithm for this problem

is not possible. However, such an algorithm might be possible if the distance of

the new root from the old root is bounded above by a constant, since then the

ancestor-descendant relationship is partially preserved.

The next major step in the research presented in this thesis would be to devise

algorithms that update an optimal layout of tree T with respect to vertex separation

as trees are added to or removed from T . Storing an integer with each vertex in T

to indicate its position in an optimal layout ϕ is probably not a good idea, since

inserting a single vertex to T could potentially shift Ω(|T |) positions in ϕ. However,

the amortized running time of an algorithm using this simple data structure might

be good. Another, more reasonable approach is to encode optimal layout ϕ in

a more clever way that would make both queries on ϕ and updates of tree T

run quickly, preferably in polylogarithmic time. Devising such a data structure is

certainly an exciting open problem.

A natural extension of our work to a related problem would be to updating the

cutwidth of tree T after a tree is attached to T or a subtree is removed from T .

Yannakakis’ algorithm [Yan85] for computing the cutwidth of tree T in O(|T | lg |T |)

time also uses the concept of vertex labelling, although the vertex labels are defined

differently. It might be possible to use this different kind of vertex labelling to derive

algorithms similar to those presented in this thesis, at least conceptually.

Appendix A

Proof of Lemma 7.7

We present the proof in stages by means of several claims. In the end, we will have

shown that either bλ′ > bλ, or bλ′ = bλ and crit(λ′) ≥ crit(λ), where λ is the label

of a vertex w in a tree T , λ′ is the label of w in a tree T ′, and T is a subtree of

T ′ such that the roots of trees T and T ′ are identical (subscript w on λ and λ′ is

omitted for clarity).

It is convenient to define additional notation for the purposes of the claims

and their proofs. Additional notation is not strictly necessary, but it will greatly

reduce clutter. In all claims we consider an arbitrary vertex w in tree T . Since

T is a subtree of tree T ′, w is also in T ′. The labels of w in trees T and T ′

are denoted by λ and λ′, respectively. The vertices in tree Tw corresponding to

elements λ(1), . . . , λ(|λ|) of label λ are denoted by v1, . . . , v|λ|, respectively. Since

we will need to reason about it, we denote this sequence of vertices by σ. Similarly,

the vertices in tree T ′w corresponding to elements λ′(1), . . . , λ′(|λ′|) of label λ′ are

denoted by v′1, . . . , v
′
|λ′|, respectively, and the sequence itself is denoted by σ′.

The proofs involve reasoning about the relationship between the sequences σ and

σ′. The most important property of the two sequences is the length of their longest

common prefix. We therefore give this length a special name: pf . We remark

that 0 ≤ pf ≤ min{|λ|, |λ′|} holds. Finally, we define Tw〈j〉 = Tw〈v1, . . . , vj〉 and

T ′w〈j〉 = T ′w〈v
′
1, . . . , v

′
j〉.

We begin by proving an important relationship, used several times in subsequent

proofs, between the vertex separations of the trees Tw 〈j〉 and T ′w 〈j〉.

129

130 APPENDIX A. PROOF OF LEMMA 7.7

Claim A.1 The following inequality holds for all j such that 1 ≤ j ≤ pf :

λ′(j) = VS (T ′w 〈j − 1〉) ≥ VS (Tw 〈j − 1〉) = λ(j).

Proof. The claim is an easy consequence of Lemma 2.7. If j = 1, then Lemmas

2.1 and 4.19 combined with the fact that tree T is a subtree of tree T ′ imply

λ′(1) = VS(T ′w〈〉) = VS(T ′w) ≥ VS(Tw) = VS(Tw〈〉) = λ(1). When 2 ≤ j ≤ pf ,

since v1 = v′1, v2 = v′2, . . . , vpf = v′pf by the definition of pf , Lemma 2.7 implies

tree Tw 〈j〉 is a subtree of tree T ′w 〈j〉. Lemma 2.1 and Lemma 4.26 hence yield

λ′(j) = VS (T ′w 〈j − 1〉) ≥ VS(Tw 〈j − 1〉) = λ(j). ¤

The next four claims are sufficient to easily show our goal that either bλ′ > bλ,

or bλ′ = bλ and crit(λ′) ≥ crit(λ). First, we show that sequence σ cannot be a

proper prefix of sequence σ′ and vice versa; that is, the longest common prefix of

sequences σ and σ′ cannot be equal to one of the sequences and not equal to the

other sequence.

Claim A.2 Sequence σ is not a proper prefix of sequence σ′ and σ′ is not a proper

prefix of σ.

Proof. We show the claim by contradiction. Assume σ is a proper prefix of sequence

σ′ or σ′ is a proper prefix of σ. We will derive a contradiction to Lemma 4.27.

We only consider the case when σ is a proper prefix of sequence σ′; the other

case is completely analogous. In this case, v|λ| = v′|λ|. Because v|λ| is the vertex

corresponding to the last element λ(|λ|) of label λ, Lemma 4.27 implies v|λ| = w.

Thus, v′|λ| = w. But v′|λ| is not the last vertex in sequence σ′, since σ is a proper

prefix of σ′ and hence |λ′| > |λ|. This contradicts Lemma 4.27, because λ′ is the

label of vertex w in tree T ′. ¤

In the next claim, we consider the case when the longest common prefix of se-

quences σ and σ′ is a proper prefix of both σ and σ′, and vertex vpf+1 is critical

in tree Tw 〈pf〉. The case when vpf+1 is noncritical in Tw 〈pf〉 will be considered

immediately afterward.

131

Claim A.3 If the longest common prefix of sequences σ and σ′ is a proper prefix

of both σ and σ′ and vertex vpf+1 is critical in tree Tw 〈pf〉, then bλ′ > bλ.

Proof. The proof of this claim involves four steps. Initially, we prove that vertex

vpf+1 is noncritical in tree T ′w 〈pf〉. Then, we prove that vpf+1 yields two subtrees

in tree T ′w 〈pf〉 that have vertex separation at least λ(pf + 1). Next, we show how

this implies λ′(pf + 1) > λ(pf + 1), and finally argue that bλ′ > bλ.

We first show that vertex vpf+1 is not critical in tree T ′w 〈pf〉. Since the sequence

of vertices v1, ..., vpf is the longest common prefix of sequences σ and σ′, it follows

that v′pf+1 6= vpf+1; otherwise, the longest common prefix could be extended, con-

tradicting the fact that it is longest. One of the assumptions is that vertex vpf+1

is critical in tree Tw 〈pf〉. If vpf+1 is critical in tree T ′w 〈pf〉 as well, then Definition

4.4 implies vpf+1 = v′pf+1 by the uniqueness of the critical vertex in a tree (Lemma

4.7). Thus, vpf+1 is not critical in T ′w 〈pf〉.

We next prove vpf+1 yields two subtrees in tree T ′w 〈pf〉 that have vertex sep-

aration at least λ(pf + 1). It follows from Lemma 2.7 combined with the fact

v1 = v′1, v2 = v′2, . . . , vpf = v′pf that tree Tw 〈pf〉 is a subtree of tree T ′w 〈pf〉. There-

fore, the subtree Tw 〈pf〉vpf+1
of Tw 〈pf〉 rooted at vpf+1 is a subtree of T ′w 〈pf〉, and

hence it is a subtree of T ′w 〈pf〉vpf+1
. Since vpf+1 is critical in Tw 〈pf〉, it yields two

subtrees R1 and R2 in Tw 〈pf〉 with vertex separation VS (Tw 〈pf〉). Lemma 4.26

implies

λ(pf + 1) = VS(Tw 〈pf〉) = VS(R1) = VS(R2). (A.1)

Since tree Tw 〈pf〉vpf+1
is a subtree of T ′w 〈pf〉vpf+1

, vertex vpf+1 yields two subtrees

R′1 and R′2 in T ′w 〈pf〉 such that R1 is a subtree of R′1 and R2 is a subtree of R′2.

It follows from Lemma 2.1 that VS(R′1) ≥ VS(R1) and VS(R′2) ≥ VS(R2). In

other words, vertex vpf+1 yields two subtrees, R′1 and R′2, in T ′w 〈pf〉 with vertex

separation at least λ(pf + 1).

We now argue how the conclusions of the previous two paragraphs imply λ′(pf+

1) > λ(pf + 1). Since tree T ′w 〈pf〉 has a subtree with vertex separation at least

λ(pf + 1), Lemma 2.1 implies that VS (T ′w 〈pf〉) ≥ λ(pf + 1). If VS (T ′w 〈pf〉) =

λ(pf+1), then it follows from Equation A.1 that VS (T ′w 〈pf〉) = VS(R1) = VS(R2).

Since VS(R′1) ≥ VS(R1) and VS(R′2) ≥ VS(R2), Lemma 2.1 yields VS (T ′w 〈pf〉) =

VS(R′1) = VS(R′2). We conclude that vertex vpf+1 is critical in T ′w 〈pf〉. But we

132 APPENDIX A. PROOF OF LEMMA 7.7

argued that vpf+1 is not critical in tree T ′w 〈pf〉. Therefore, the vertex separation

of T ′w 〈pf〉, which is λ′(pf + 1) (Lemma 4.26), is greater than λ(pf + 1); that is,

λ′(pf + 1) > λ(pf + 1).

Finally, we show that bλ′ > bλ holds by using the fact λ′(pf + 1) > λ(pf + 1)

proved in the previous paragraph. Lemma 7.4 implies the value of the binary

representation bλ is
∑|λ|

j=1 2
λ(j) =

∑pf
j=1 2

λ(j) + 2λ(pf+1) +
∑|λ|

j=pf+2 2
λ(j). We bound

from above the value of the term
∑|λ|

j=pf+2 2
λ(j) in order to prove that bλ′ > bλ. Since

a vertex label is a strictly decreasing sequence (Lemma 4.20), λ(j − 1) < λ(j) <

λ(pf +1) holds for all j such that j > pf +1. It also follows that the length of the

suffix λ(pf + 2), . . . , λ(|λ|) of label λ is at most λ(pf + 1); this maximum length is

achieved when the suffix is λ(pf + 1)− 1, λ(pf + 1)− 2, . . . , 1, 0. Therefore,

|λ|∑

j=pf+2

2λ(j) ≤

λ(pf+1)−1∑

j=0

2j = 2λ(pf+1) − 1. (A.2)

Having bounded from above the term
∑|λ|

j=pf+2 2
λ(j), we can now prove that bλ′ > bλ:

bλ′ =

pf∑

j=1

2λ
′(j) + 2λ

′(pf+1) +

|λ′|∑

j=pf+2

2λ
′(j) (A.3)

≥

pf∑

j=1

2λ
′(j) + 2λ

′(pf+1) (A.4)

≥

pf∑

j=1

2λ(j) + 2λ
′(pf+1) (A.5)

=

pf∑

j=1

2λ(j) + 2λ
′(pf+1)−1 + 2λ

′(pf+1)−1 (A.6)

≥

pf∑

j=1

2λ(j) + 2λ(pf+1) + 2λ(pf+1) (A.7)

>

pf∑

j=1

2λ(j) + 2λ(pf+1) + 2λ(pf+1) − 1 (A.8)

133

≥

pf∑

j=1

2λ(j) + 2λ(pf+1) +

|λ|∑

j=pf+2

2λ(j) (A.9)

= bλ; (A.10)

Equation A.5 follows from Claim A.1, Equation A.7 follows from the fact, proved

above, that λ′(pf +1) > λ(pf +1), Equation A.9 is a consequence of Equation A.2,

and Equation A.10 follows from Lemma 7.4. ¤

We now consider the case analyzed in Claim A.3, except that vertex vpf+1 is non-

critical in tree Tw 〈pf〉. The conclusion reached is the same, but the proof technique

is different.

Claim A.4 If the longest common prefix of sequences σ and σ′ is a proper prefix

of both σ and σ′ and vertex vpf+1 is noncritical in tree Tw 〈pf〉, then bλ′ > bλ.

Proof. We prove the claim by demonstrating that |λ′| > |λ|. Since vertex vpf+1 is

noncritical in tree Tw 〈pf〉, it follows from Lemma 4.28 that vpf+1 = w. Therefore,

Lemma 4.27 implies vpf+1 is the vertex corresponding to the last element of label

λ; that is, |λ| = pf + 1. Because vpf+1 6= v′pf+1, we infer that v′pf+1 6= w, and thus

Lemma 4.27 implies vertex v′pf+1 does not correspond to the last element of label

λ′; that is, |λ′| > pf + 1. We conclude that |λ′| > |λ|, and thus

bλ′ =

|λ′|∑

j=1

2λ
′(j) =

|λ|∑

j=1

2λ
′(j) +

|λ′|∑

j=|λ|+1

2λ
′(j) >

|λ|∑

j=1

2λ
′(j) ≥

|λ|∑

j=1

2λ(j) = bλ

(Lemma 7.4 and Claim A.1). ¤

It follows from Claim A.2 that if σ 6= σ′, then one of the cases handled by Claims

A.3 and A.4 must occur. It thus remains to consider the case when σ = σ ′.

Claim A.5 If σ = σ′, then either bλ′ > bλ, or bλ′ = bλ and crit(λ′) ≥ crit(λ).

Proof. We prove the claim by first showing that bλ′ ≥ bλ holds, and then showing

that crit(λ′) ≥ crit(λ) if bλ′ = bλ. Since σ = σ′, it follows that pf = |λ| = |λ′|.

Therefore, Claim A.1 implies λ′(j) = VS(T ′w 〈j − 1〉) ≥ VS (Tw 〈j − 1〉) = λ(j)

134 APPENDIX A. PROOF OF LEMMA 7.7

holds for all j such that 1 ≤ j ≤ |λ|. Hence, it follows from Lemma 7.4 and the

fact |λ′| = |λ| that

bλ′ =

|λ′|∑

j=1

2λ
′(j) ≥

|λ|∑

j=1

2λ(j) = bλ.

We conclude the proof by showing that if bλ′ = bλ, then crit(λ′) ≥ crit(λ).

Suppose that bλ′ = bλ. By definition, the criticalities of labels λ and λ′ are equal

to the criticalities of vertices v|λ| and v′|λ′| in trees Tw 〈|λ| − 1〉 and T ′w 〈|λ
′| − 1〉,

respectively. It follows from Lemma 4.27 that v|λ| = v′|λ′| = w. Since σ = σ′, Lemma

2.7 implies tree Tw 〈|λ| − 1〉 is a subtree of tree T ′w 〈|λ
′| − 1〉. Therefore, all subtrees

R1, . . . , Rd yielded by vertex w in Tw 〈|λ| − 1〉 are subtrees of the corresponding

subtrees R′1, . . . , R
′
d yielded by w in T ′w 〈|λ

′| − 1〉; the corresponding subtree is the

one with the same root. Lemma 2.1 thus implies VS
(
R′j
)
≥ VS (Rj) for all j,

1 ≤ j ≤ d. Hence, the number of subtrees in R′1, . . . , R
′
d that have vertex separation

at least λ(|λ|) = VS(Tw 〈|λ| − 1〉) is at least as large as the number of subtrees in

R1, . . . , Rd that have vertex separation λ(|λ|). Furthermore, it follows from Lemmas

2.1 and 4.26 that the vertex separation of each tree R′j is at most VS(T ′w 〈|λ
′| − 1〉) =

λ′(|λ′|). We conclude that if λ(|λ|) = λ′(|λ′|), the criticality of w in tree T ′w 〈|λ
′| − 1〉

is at least as large as the criticality of w in tree Tw 〈|λ| − 1〉. But Lemma 7.6 and

the fact that bλ′ = bλ imply λ(|λ|) = λ′(|λ′|). Hence, crit(λ′) ≥ crit(λ). ¤

Finally, we combine the results of the previous four claims to prove Lemma 7.7.

Consider the sequences σ and σ′, integer pf , and tree Tw 〈j〉 as defined above (page

129). There are two cases to consider, depending on whether σ 6= σ ′ or σ = σ′. We

first analyze the case when σ 6= σ′. By Claim A.2, σ is not a proper prefix of σ′

and σ′ is not a proper prefix of σ. Hence, vertex vpf+1 exists, since pf is the length

of the longest common prefix of σ and σ′. Therefore, the longest common prefix of

sequences σ and σ′ is a proper prefix of both σ and σ′. If vpf+1 is a critical vertex

in tree Tw 〈j〉, then it follows from Claim A.3 that bλ′ > bλ. Otherwise, if vpf+1 is

noncritical in Tw 〈j〉, then Claim A.4 implies bλ′ > bλ as well. Next, we consider

the case when σ = σ′. Then by Claim A.5 either bλ′ > bλ holds, or bλ′ = bλ and

crit(λ′) ≥ crit(λ) hold.

Bibliography

[AH73] D. Adolphson and T. C. Hu. Optimal linear ordering. SIAM Journal on

Applied Mathematics, 25(3):403–423, 1973.

[BK96] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms

for the pathwidth and treewidth of graphs. Journal of Algorithms,

21(2):358–402, 1996.

[BL91] B. Bollobás and I. Leader. Edge-isoperimetric inequalities in the grid.

Combinatorica, 11(4):299–314, 1991.

[Bot93] R. A. Botafogo. Cluster analysis for hypertext systems. In Proceedings of

the 16th International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, Association Methods, pages 116–125,

1993.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-

rithms. MIT Press, McGraw-Hill, Cambridge, London, 1990.

[CS76] S. Cook and R. Sethi. Storage requirements for deterministic polynomial

time recognizable languages. Journal of Computer and System Sciences,

13(1):25–37, 1976.

[DPPS01] J. Dı́az, M. D. Penrose, J. Petit, and M. Serna. Approximating layout

problems on random geometric graphs. Journal of Algorithms, 39(1):78–

116, 2001.

[DPS02] J. Dı́az, J. Petit, and M. Serna. A survey of graph layout problems.

ACM Computing Surveys, 34(3):313–356, 2002.

135

136 BIBLIOGRAPHY

[EST94] J. A. Ellis, I. H. Sudborough, and J. S. Turner. The vertex separation and

search number of a graph. Information and Computation, 113(1):50–79,

1994.

[Gav97] F. Gavril. Some NP-complete problems on graphs. In Proceedings of

the 11th Conference on Information Sciences and Systems, pages 91–95,

Johns Hopkins University, Baltimore, Maryland, 1997.

[Har64] L. H. Harper. Optimal assignments of numbers to vertices. Journal

of the Society for Industrial and Applied Mathematics, 12(1):131–135,

1964.

[Kar00] D. R. Karger. A randomized fully polynomial time approximation

scheme for the all-terminal network reliability problem. SIAM Journal

on Computing, 29(2):492–514, 2000.

[Kin92] N. G. Kinnersley. The vertex separation number of a graph equals its

path-width. Information Processing Letters, 42(6):345–350, 1992.

[KP86] L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. The-

oretical Computer Science, 47(2):205–218, 1986.

[Lei80] C. E. Leiserson. Area-efficient graph layouts (for VLSI). In Proceedings

of the 21st Symposium on Foundations of Computer Science, pages 270–

281, Syracuse, New York, 1980.

[Len81] T. Lengauer. Black-white pebbles and graph separation. Acta Informat-

ica, 16(4):465–475, 1981.

[LT79] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs.

SIAM Journal on Applied Mathematics, 36(2):177–189, 1979.

[Möh90] R. H. Möhring. Graph problems related to gate matrix layout and PLA

folding. In Gottfried Tinhofer, R. (Rudolf) Albrecht, et al., editors,

Computational Graph Theory, volume 7 of Computing Supplementum,

pages 17–51. Springer, 1990.

BIBLIOGRAPHY 137

[MS88] B. Monien and I. H. Sudborough. Min Cut is NP-complete for edge

weighted trees. Theoretical Computer Science, 58(1-3):209–229, 1988.

[MS89] F. Makedon and I. H. Sudborough. On minimizing width in linear lay-

outs. Discrete Applied Mathematics, 23(3):243–265, 1989.

[Mut95] P. Mutzel. A polyhedral approach to planar augmentation and related

problems. In Paul G. Spirakis, editor, Proceedings of the 3rd European

Symposium on Algorithms, volume 979 of Lecture Notes in Computer

Science, pages 494–507, Corfu, Greece, 1995. Springer.

[Par76] T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. Lick,

editors, Theory and Applications of Graphs, pages 426–441, Berlin, 1976.

[RS85] N. Robertson and P. D. Seymour. Graph minors—A survey. In Surveys

in Combinatorics, pages 153–171. Cambridge University Press, 1985.

[Sko00] K. Skodinis. Computing optimal linear layouts of trees in linear time.

In M. Paterson, editor, Proceedings of the 8th European Symposium on

Algorithms, volume 1879 of Lecture Notes in Computer Science, pages

403–414. Springer-Verlag, 2000.

[TSB01] D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. A polynomial

time algorithm for the cutwidth of bounded degree graphs with small

treewidth. In F. Meyer auf der Heide, editor, Proceedings of the 9th

European Symposium on Algorithms, volume 2161 of Lecture Notes in

Computer Science, pages 380–390. Springer-Verlag, 2001.

[Yan85] M. Yannakakis. A polynomial algorithm for the min-cut linear arrange-

ment of trees. Journal of the ACM, 32(4):950–988, 1985.

