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Abstract

This work aims at studying the effect of word position in text on understanding

and tracking the content of written text. In this thesis we present two uses of word

position in text: topic word selectors and topic flow signals. The topic word selectors

identify important words, called topic words, by their spread through a text. The

underlying assumption here is that words that repeat across the text are likely to

be more relevant to the main topic of the text than ones that are concentrated in

small segments. Our experiments show that manually selected keywords correspond

more closely to topic words extracted using these selectors than to words chosen

using more traditional indexing techniques. This correspondence indicates that

topic words identify the topical content of the documents more than words selected

using the traditional indexing measures that do not utilize word position in text.

The second approach to applying word position is through topic flow signals.

In this representation, words are replaced by the topics to which they refer. The

flow of any one topic can then be traced throughout the document and viewed as

a signal that rises when a word relevant to the topic is used and falls when an

irrelevant word occurs. To reflect the flow of the topic in larger segments of text

we use a simple smoothing technique. The resulting smoothed signals are shown

to be correlated to the ideal topic flow signals for the same document.

Finally, we characterize documents using the importance of their topic words

and the spread of these words in the document. When incorporated into a Support

Vector Machine classifier, this representation is shown to drastically reduce the

vocabulary size and improve the classifier’s performance compared to the traditional

word-based, vector space representation.
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Chapter 1

Introduction

Text is an intensely rich medium where words, structure, and situational context

interact to weave the text’s meaning. Varying aspects of this fabric of meaning have

been used by researchers in text retrieval, text classification, text summarization,

and various natural language understanding tasks.

At the very basic level, the individual words in the document can provide a

crude picture of the text’s content. Many retrieval systems adopt this approach

in measuring the similarity of a document to other documents or to the users’

requests. SMART [Sal71] is one of the earliest examples of such systems. We are

interested in examining how to augment such a “bag-of-words” approach to obtain

characterization of text that is better suited for text retrieval, text classification,

and related text manipulation tasks.

Some systems improve on the basic model by utilizing the semantic interac-

tion between the words and recognizing those words that tend to co-occur in

similar contexts. Latent Semantic Indexing [DDL+90] and Linear Least Squares

Fit [YC93] achieve this through numerical analysis methods that measure the pos-

1



CHAPTER 1. INTRODUCTION 2

sibility of co-occurrence between any two words in the same context, while Morris

and Hirst [MH91] and Green [Gre97] [Gre98] utilize an online-thesaurus to create

semantic links between words in a process called lexical chaining.

Syntactic structure has also been used in understanding text. Clarke et al. [CCKL00],

for instance, parse users’ questions to identify the specific information requested in

the question.

Another useful aspect is the document’s logical structure. This structure helps

indicate the importance of words and sentences to the content, and it can thus be

useful in identifying and extracting important sentences for tasks such as summa-

rization (see for example [KPC95])

Other systems go even further by attempting to capture information about the

situation in which the text is produced. For example, in the Jabber project we

indexed video conferences by several aspects including the content of discussion,

the meeting agenda, and the forms of interaction between participants such as

arguments, discussions, brainstorming, and question-and-answer [KAHHM96].

Although these methods are useful in creating some idea about the text content,

they generally tend to group document words together regardless of their position

in the text, thus losing information about order. Therefore, such methods are dif-

ficult to use for tracking the change in topic and the degree of this change within a

document. Some researchers attempt to address this problem by dividing the doc-

ument into fixed segment sizes and studying the content in each of these segments

(e.g. [Hea94a] [SSBM96]), but this approach restricts our understanding of the text

content to these segment sizes. In some cases the approach also requires knowl-

edge of the whole text before its content can be analyzed (e.g [SSBM96] [MSB97])

making it unsuitable for tracking content of incoming streams of text. Bookstein
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et al. [BKR98] exploit the influence of content on word usage in extracting index

words that are likely to be useful in satisfying user requests. They predict that such

words will tend to occur in close proximity to each other, or will have a pattern of

occurrence in the text that is quite different from the expected random pattern of

occurrence.

We extend Bookstein’s predictions in this work to extract words that signal

certain topics in text. We find it intuitive that as topics change, so do the words we

use. By tracking these words, we should also be able to track the change in topic

as new text is produced. The hope is that such information is readily available and

can be quite useful in providing an insight into the text’s content in real-time at

varying levels of detail.

We begin by describing our view of text and comparing it to other popular

views. We then present two uses of word position in text: topic word selectors

and topic flow signals. The topic word selectors identify important words, called

topic words, by their spread through a text. For example, a word that occurs many

times in a single paragraph of the document is considered less important than one

that occurs as often but its occurrence is spread throughout the document. The

underlying assumption here is that words that spread out in the text are likely to be

more relevant to the main topic of the text than ones that are concentrated in small

segments. We also show that manually selected keywords correspond more closely

to topic words than to words selected using more traditional indexing techniques.

This correspondence indicates that topic words identify the subject matter of the

documents more than words selected using traditional indexing measures that do

not utilize word position in text.

Armed with better topic identifiers, we then move on to tracking the flow of

topics in text through what we call topic flow signals. In this representation, topic
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words are replaced by their relative relevance to the topic. The flow of any one

topic can then be traced throughout the document and viewed as a signal that

remains strong when words relevant to the topic are used and weakens when an

irrelevant word occurs. To reflect the flow of the topic in larger segments of text

we use a simple smoothing technique. The resulting smoothed signals are shown

to correlate to the ideal topic flow signals for the same document.

Finally, we represent documents by the relative importance of their topic words

and by the spread of these words in the document. This representation is then

incorporated into a Support Vector Machine for text classification and shown to

drastically reduce vocabulary size without loss in the classifier’s performance when

compared with the traditional TF*IDF representation.



Chapter 2

Text as a Signal

A solid comprehension of a retrieval approach is rooted in a clear vision of the

approach’s view of text and the criteria it attempts to preserve in a model. In this

chapter we discuss our view of text in addition to several text views that have been

used in the past. We then focus on how to represent text according to the view we

adopt in our work.

2.1 Logical Views of Text

Natural language text encodes large amounts of information at many levels, includ-

ing the syntactic, semantic, and structural levels. As far as we know, only some

of the information in text is needed for a retrieval task. The logical view of a text

defines criteria that capture the essential contents of a document for the task at

hand.

There are two dimensions for our view of text: the first is at the word level,

whereas the second is at the document level. The word level view defines the

5
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semantics of a word and the objects to which it refers, while the document level

view determines how the words in the text weave the meaning of the whole text.

At its simplest, a text is just an unordered collection of words. This is the bag of

words approach. More involved views take into account other information about

the text such as information regarding its structural content, the context in which a

word is used, or the position of the word in the text. The remainder of this section

focuses on several of these document level views along with some examples.

2.1.1 Text as a Bag of Words

The bag of words view assumes that the words used in a document are sufficient to

capture the main contents of the document. It also assumes that the probability

of using a word is independent of the other words in that document and of the

position of the word in the text. Under this view, a text is a flat entity with no

structural information.

This is one of the earliest text views and is very common in current information

retrieval research. Its main attraction is its simplicity. It may also be effective for

some simple retrieval tasks requiring exact word matching. In general, however,

many systems with this view attempt to enhance the system’s performance by

boosting their word semantics views through removing grammatical inflections, by

ignoring empty words through stopword removal, or other preprocessing tasks. An

early example of systems with the bag of words view is the earlier versions of

SMART [Sal71, SM83].

More recent systems augment the bag of words view with knowledge of word

co-occurrence in an attempt to boost their word semantics view, as is done in

the Least Linear Squares Fit approach [YC93], and the Latent Semantic Indexing
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(LSI) system [DDL+90]. In LSI, for example, a document is viewed as a bag of

words and is represented by the words it contains. The system then uses algebraic

methods to distinguish words that tend to co-occur in the database documents.

The assumption here is that words occurring in the same context are most likely

to share a common reference. If the system realizes that the words stocks and

shares, for instance, co-occur frequently in the database, a query containing the

word shares may retrieve a document on stocks even though the word shares is

not used in that document. A pure bag-of-words method retrieves only documents

containing the word shares.

The simplicity and effectiveness of this view are the main reasons behind its

popularity. But sometimes the bag of words view is too simple for the user’s

task. If a text is viewed as an unordered collection of words, then we lose all

information about the text’s structure. Systems using this view cannot retrieve

relevant segments of a document, nor can they identify key content indicators or

analyze the flow of discussion in the text. These capabilities are important for text

segmentation systems, document visualization systems, and paragraph retrieval

systems among others.

2.1.2 Documents as Structured Units

The bag of words method views documents as flat, unordered, sequences of words.

In reality, however, documents are sophisticated physical entities. Baeza-Yates

and Ribeoro-Neto [BYRN99] divide the physical structure of documents into three

types: flat fixed structures, hypertext, and hierarchical structures.

Flat structures separate the document into a list of independent units, each of

which is a bag of words. Emails, for example, consist of fields for the sender’s name,
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the recipient’s name, the date, the subject, and the message. Newspaper articles

and technical reports may be viewed as titles followed by lists of paragraphs. Flat

structures have the advantage that they retain the simplicity of the bag-of-words

view and yet are also capable of searching and retrieving relevant units only, rather

than retrieving the whole document. They may also provide additional information

about the contents of the text that can boost the effectiveness of a retrieval system.

More recent versions of SMART [SAB93] combined the bag of words view with

the view of a document as a list of paragraphs. Salton, Allan, and Buckley measured

an input query against both the full document in its flat bag of words form, and

against single paragraphs. If one or more paragraphs were found more relevant

to the query than the full text, then these paragraphs were returned, otherwise

the system returned the whole text if it were found relevant. This combined view

proved more effective than the simple bag of words view [SAB93].

Unlike flat structures, where a document is a linear list of structural units,

hypertext graph structures view a document as a set of interconnected units. HTML

web pages are one example of these structures. This view is usually extended

to the whole database, in which case each document acts as a node in a web of

interconnected documents.

The hypertext view is adopted by some of the World Wide Web search engines.

Only a few of these search engines, however, utilize the document-document connec-

tions in evaluating their retrieval results. Google’s PageRank [PBMW98] measures

the importance of a web page, and thus its expected usefulness to the user, by

the number of “good” web pages pointing to the page in question. Google is a

good example of how links between documents can provide a rich resource for the

system to understand the document contents, and the author’s view of how other

documents relate to it. However, graph structures are usually expensive to process,
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and the quality of the links is dependent on the context in which they appear, as

well as on the authors’ good judgment. Also, not all documents are prepared as

hypertext documents.

Hierarchical structures are a compromise between the richness of hypertext

and the simplicity of flat structured text. Examples of tree structured documents

are books containing chapters, which contain sections, which in turn may con-

tain subsections etc. Markup languages are usually used to reflect the relation

between units in the structure and allow search engines to exploit this struc-

ture [Tom89, Tom97]. PAT [ST94], MultiText [CCB94], and many web search

engines such as Google [PBMW98], for example, allow users to specify the partic-

ular substructure, called region, they are interested in searching.

Imposing structure on text usually conveys the author’s view of which consec-

utive portions of the text share a common attribute. It helps users search and

understand the document and the database as a whole. However, structure does

little to amend the drawbacks of the bag of words view if the latter is adopted

for segments within a structure. Although with structured text we can now search

and retrieve smaller segments of text, the contents of each of these segments is

still represented as an unordered set of words, and we are still missing information

regarding the local context within a segment and the topic flow in the text.

2.1.3 Words in Context

Rather than attempting to impose some structure on the whole text, some research

tasks require a more detailed view of the local context of the text. The local

context of a word is the words surrounding it in the document. This immediate

context usually assists the reader in restricting the possible meanings of the word,
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as well as the topics under discussion. For example, the word bank can carry many

different meanings, including a commercial bank and a river bank. But the phrase

river immediately adjacent to bank in the phrase river bank disambiguates it and

clarifies the local content of the text.

The idea of using surrounding words to disambiguate text has been investi-

gated for many different applications such as word sense disambiguation [CL85,

Les86, GCY93], query expansion [BYRN99], and character recognition [GCY93]

with varying degrees of success. The definition of “local context” or window also

varies: many systems define a local context as the words immediately preceding

a word as is done in the n-gram language model [MS99]. In this model a word is

assumed to be independent from all other words in the text except for the n − 1

words immediately preceding it.

Other researchers have defined a word’s context as the n words immediately

preceding and succeeding it. Gale et al. [GCY93], for instance, used local context

for sense disambiguation. They also studied a more relaxed definition of the local

context where the context of a word w begins some l words away from w. Interest-

ingly, they found that words as far away from w as 10, 000 words may be useful in

the disambiguation task. Recognizing the importance of local context, PAT [ST94]

and many web search engines such as AltaVista [SHMM98] and Google [PBMW98]

allow users to search for words within some proximity to each other. In MultiText

the relevance of a paragraph to a given set of terms is influenced by the proximity

of the matched terms in the paragraph [CCKL00].

This view of text retains partial information about the relative order of the

text words, and it is sufficient for applications where those local contexts are of

interest. However local context cannot provide a global view of the text and is thus

insufficient for representing the flow of topics in a document, nor is it appropriate
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Figure 2.1: Views of a document as a collection of topics

for other tasks requiring a more unified view of the whole text.

2.1.4 Documents as Collections of Topics

Text words weave together the topics conveyed by the document. The words-in-

context view fragments the text and lacks an insight of the text as one unit within

which run many, possibly overlapping, topics. Figure 2.1 shows four text views that

focus on the document as a collection of topics.

The first view 2.1(a) is of the text as a connected set of topics. This view

makes no assumptions regarding the organization of the topics in the text. A

topic may be discussed in any set of text segments, and it may be discussed along

with any other. The main topic is defined as the one that is discussed in the

greatest number of segments. This view was adopted by Salton et al.in [SSBM96],
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where they represented a topic as a set of mutually similar segments. In this work

a document is segmented into paragraphs. The similarity of each paragraph is

measured against every other paragraph, and those paragraphs whose similarity is

higher than a preset threshold are assumed to discuss a common topic.

The attractiveness of this view is its flexibility allowing for topics to be inter-

rupted and re-introduced several times during the course of the text. However, the

view’s flexibility also entails the loss of the hierarchical relations between a main

topic and its subtopics.

The next text view, shown in 2.1(b), accounts for this relation between main

topics and their subtopics. In this view, a text is a set of one or more main

topics that run through the text in parallel with their subtopics. The subtopics are

expected to be linearly consecutive and mutually exclusive. Hearst adopted this

view in the automatic segmentation system TextTiles [Hea94c, Hea97]. Her goal

was to discover points of topic shift (thematic change) in any given document, and

use these boundaries as guides towards automatically segmenting text.

The first version of Hearst’s algorithm divides the document into several equal-

sized segments. It then measures the similarity between adjacent segments and

places topic boundaries where there is a sudden decrease in similarity relative to

adjacent segments. In this version of the algorithm a topic is a set of consecutive

segments of text bounded by two topic boundaries.

The second version of her algorithm is based on the lexical chains of Morris and

Hirst [MH91], who showed that coherent texts usually contain groups of semanti-

cally related words. Each of these groups is called a lexical chain. This version of

TextTiles represents a topic as a set of parallel lexical chains and places a topic

boundary when a set of chains ends and a new set begins.
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The view adopted in both versions of the algorithm assumes that subtopics are

consecutive and mutually exclusive. Although the linearity and mutual exclusion

expectations are justified in the automatic segmentation context, they are not gen-

erally accurate assumptions. Digressions, interruptions, and topic re-introduction

are to be expected in most types of text. At the same time, the ability to recognize

the main topics’ subtopics provides a deeper insight into the flow of topics in the

text. Therefore, our view of text is a combination of the two previous views. We

adopt Hearst’s view of the text as a set of main topics running throughout the text,

in parallel with their subtopics, as well as the view of Salton et al.that topics can

be modeled as independent entities which may be temporarily interrupted and then

revisited any number of times, and any paragraph may discuss any number of topics

simultaneously [SSBM96]. Figure 2.1(c) reflects this view. In this figure the main

topic is discussed across the text, and within the context of the main topic the first

subtopic subtopic1 is discussed in several segments of the document, and the second

subtopic subtopic2 is discussed only in the middle of the text where it temporarily

intersects with subtopic1. This model is less general than the model adopted by

Salton et al. [SSBM96] since it assumes at least one common theme throughout

a document. But when this assumption is true, as in news stories and technical

reports, it allows for a simpler representation. The model of Figure 2.1(c) is also

more flexible than the one adopted by Hearst [Hea94c, Hea97]. But the flexibility

and simplicity of a model is largely dependent on how we choose to represent it.

2.2 Representing the Flow of Topics in Text

An ideal representation of our topic flow model should preserve as much of the

model’s flexibility as possible and permit many simultaneous topics at any point
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in the text. This can best be achieved by representing each topic in the text

independently of all other topics. The text will then consist of parallel topic flow

representations, and the problem reduces to representing the flow of each individual

topic in a document.

Topic flow reflects the degree of relevance of the topic to various points in the

document. Assume we can measure the relevance level of a word w at point p in

the document to a topic t using a measure MD(p, t). To view the relevance of the

topic to every point containing a content word in the document, we can plot the

relevance levels given by this measure for each position in document D one after

the other. The resulting plot will reflect the flow of topic t in document D. Take

for example the following sentence:

Example 2.2.1 Belief revision focuses on how an agent should change her

beliefs when she adopts a particular new belief. [FH99]

and assume that our relevance measure MD(p, t) produces the relevance levels shown

in Table 2.2 for each word position p containing a content word in the sentence for

the topic Artificial Intelligence where the most important relevance level is 1. Then

Figure 2.3 plots the relevance of Artificial Intelligence versus word positions in the

sentence. Note the variation in height as the relevance level, as defined by our

measure, of the word position to Artificial Intelligence changes. This stream of

importance levels represents the flow of the topic Artificial Intelligence in the sen-

tence. A stream that conveys information about the source is called a signal [SIG].

The flow of any topic can be represented for thesame text resulting in a multiband

signal of topic flow information.

Signals are powerful and versatile representation forms that have been used to

represent audio, speech, and image. Brewster et al. [BM00] also represent docu-
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Word POSITION WORD RELEVANCE

0 belief 1

1 revision 1

2 agent 33

3 change 78

4 beliefs 1

5 belief 1

Figure 2.2: Relevance of content word positions in sentence 2.2.1 to the topic

Artificial Intelligence. Positions containing non-content words such as how, at, and

her have been ignored.

ments in terms of signals. They begin by identifying content-bearing words using

the method proposed by Bookstein et al. [BKR98]. The highest weighted content

words whose weights are higher than a preset threshold are called topics. Those with

weights below that threshold but higher than another, lower, threshold are called

cross-terms while all remaining content words with lower weights are discarded. In

their work each signal, or channel, reflects the association of each document term

to a topic. The collection of topic signals is used to build a single composite energy

signal that is meant to represent the document content and is the basis for their

document visualization and segmentation prototype [MWBF98]. No experimental

results have been reported on the accuracy of the channels and the collective en-

ergy signal in representing text content nor on their usefulness for the purposes of

visualization. Instead of forming a single compound signal, we represent documents

by multiple signals, each of which reflects a topic characterized by a user-defined

collection of documents.

Representing topics as signals allows us to preserve the flow of information and
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retain the flexibility of our original flow model. It also provides multiple views of

the text simultaneously and efficiently. Even text streams produced in real-time

can be easily represented in terms of moving topic signals. These features can

prove useful in many areas of information retrieval including text segmentation,

text summarization, paragraph retrieval, and text filtering. It also opens up for

text processing a wide range of efficient and effective signal processing tools that

cannot be applied in conjunction with other representations of text.

Of course the quality of our signal is sensitive to the relevance measure MD(p, t)

used in constructing the signal. In the next chapter we discuss and compare several

candidate measures. Then, in the following chapter, we adopt these measures to

build topic flow signals. Finally, we study the effect of these relevance measures

and word position on text classification.



Chapter 3

Topic Relevance Measures

In the previous chapter we argued for representing topic flow in text in the form of

signals. We also showed some signal representation examples based on hypothetical

topic relevance values at each point in a sample text. In this chapter we define topic

relevance, then define and compare four different topic relevance measures M(w, t)

for a given word w and topic t. First let us attend to the basic question of topic

relevance.

3.1 Topic Relevance

A word w is strongly relevant to topic t if w reflects a concept that can be discussed

as a subtopic of t. For example, belief networks and agents are strongly relevant

to the topic Artificial Intelligence, and corpora and discourse analysis are strongly

relevant to the topic Computational Linguistics, but the and conductor are less

relevant to either topic. Figure 3.1 shows a list of concepts that are strongly relevant

to Artificial Intelligence, taken from the index of the Encyclopedia of Artificial

18
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• Bayes’ theorem

• Bayesian belief networks

• Bayesian decision theory

• Belief networks

• Belief revision

• Constraint logic programming

• Constraint networks

• Constraint propagation

• Constraint satisfaction

• Feature Detection

Figure 3.1: Concepts that are topically relevant to Artificial Intelligence

Intelligence [Sha92].

Document keywords may also be viewed as topic words. Keywords indicate the

main topics of the document so the set of keywords used to describe a topic’s doc-

uments acts as a partial set of topic words for the topic discussed in the document.

These keywords can either be found in a preset keyword field in the document,

or they can be recognized through some visual features throughout the document.

InfoFinder [KB97], for example, extracts keywords (called topic phrases) from doc-

uments using a set of heuristics based on ‘visually significant features’ such as italics

and document structure. The keywords of a topic’s documents are used to build

decision trees that reflect the topic’s content.
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Topically relevant words are Damerau’s domain-oriented vocabulary [Dam90].

Damerau defines such vocabulary as

a list of content words (not necessarily complete) that would character-

istically be used in talking about a particular subject, say education, as

opposed to the list of words used to talk about, say aviation. [Dam90]

Damerau tests two different approaches which extract domain-oriented vocab-

ulary from the body of plain text documents. In the first he sorts the list of all

words in the domain documents by their frequency, eliminates words bearing little

content such as the and it (called stopwords) from the list, and finally trims the

list size to a predetermined constant by removing the lowest frequency words. In

the second approach he creates two domain lists: for the first list he extracts from

a dictionary all words whose label is that of the domain, and for the second list he

indexes the words used in the domain documents. He then creates the final domain

list from words in common between these two lists. Given a previously unseen set

of documents for a domain, Damerau found that more of the domain’s list appeared

in the domain’s documents than words from most other domains’ lists. However,

this acceptance test does not guarantee that the words are domain-oriented. It

only shows that the selected words are used more often in the domain’s documents.

Therefore, words like she and her can easily be accepted as topic words by this test

if they happened to be used more often in one domain than in the other domains

tested. In this case she and her may be good discriminators of that domain, but

they are not topically relevant words.

This difference between topically relevant words and good discriminators also

applies to traditional information retrieval index terms. Unlike topically relevant

words (topic words), the importance of an index term in information retrieval is
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measured by how well it can discriminate a topic or document from all other topics

or documents, as well as how relevant it is to the content of the topic or docu-

ment [van79] [Sal75] [Dam90]. For example, the Earnings and Earnings Forecasts

category in the Reuter’s database [REU] contains the term &lt in place of the left

bracket at the end of company names. Therefore, &lt is a good discriminator of

that category against other categories in the database [MS99]. However, even if &lt

may be a good discriminator for the Earnings and Earnings Forecasts category, it

is not relevant to the meaning of the category. Therefore, although such discrim-

inators are appropriate as category markers, they lack essential content relevance

information and are not acceptable topic words.

With this definition of relevance, topic flow representation becomes a repre-

sentation of the distribution (in a non-statistical sense) of topic concepts in the

document. Furthermore, the variation in relevance values reflects the variation in

the strength of topic relevance to the various concepts across the text.

The ability to measure the relevance of a topic to a word implies some knowl-

edge of the word and the topic. In information retrieval this knowledge is usually

acquired by analyzing some sample documents and the topics to which they belong.

Assume we have access to a representative sample of plain text documents for each

topic t in the set of all possible topics T , and that each document is represented

by the words it contains in the order they occur in the document. In this chapter

we will call this set of sample documents the database of training documents, or

simply the database. Our task is to recognize strongly relevant words for each topic

from the representative sample. In the remainder of the chapter we will discuss and

compare several different measures of relevance.
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3.2 Measuring Topic Relevance

Topic words are clearly associated with their topics. Otherwise, it would be hard

to argue that they are “characteristically” used in discussing the topic. To measure

this association we use Pointwise Mutual Information (PMI). PMI is an extension

of the information theoretic measure Mutual Information [MS99]. It has been used

for many different retrieval tasks including feature extraction [YP97] and word

concordance discovery [CH90]. PMI measures the likelihood of observing two events

simultaneously as opposed to observing either event separately. This measure is

defined as follows:

I(x, y) = log
p(x, y)

p(x)p(y)
(3.1)

where:

• p(x, y) is the probability of observing x and y together in the database.

• p(x) (p(y)) is the probability of observing x (y) separately.

Within the context of topic relevance, x is the topic, y is the word whose rele-

vance to x is of interest, and I(x, y) reflects the relative likelihood of using a word

y when discussing topic x as compared to using either independently, or, since

I(x, y) = I(y, x), the relative likelihood that an observed instance of word y refers

to topic x as compared to using either independently.

In order to measure the PMI between a word and a topic, their probability of

co-occurrence p(w, t) should be estimated, as well as their probabilities of occur-

ring separately p(w) and p(t). The probability of occurrence of a word is usually
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estimated using some observable statistic of that word such as the number of doc-

uments in which it occurs (document frequency), or the word’s total number of

instances in the database (term frequency).

In what follows we will discuss how document frequency and term frequency

can be used to measure the relevance of a topic to a word, and we compare the

effectiveness of these two statistics to two other word statistics.

3.2.1 Measuring Topic Relevance using Document Frequency

Document frequency (DF) is the number of documents in which a word occurs.

Using DF our PMI measure of the relevance of word w to topic t becomes

MDF (w, t) = log
p(w, t)

p(w)p(t)

= log

( DF (w,t)
|db|

DF (w,db)
|db| ∗ |t|

|db|

)

= log
DF (w, t) ∗ |db|
DF (w, db) ∗ |t|

= log
DF (w, t)

DF (w, db)
+ log

|db|
|t|

(3.2)

where:

• DF (w, t) is the number of topic t documents containing the word w.

• DF (w, db) is the number of database db documents containing the word w.

• |t| is the number of documents in the database whose main topic is t.

• |db| is the number of documents in the database.
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Since the term log |db|
|t| is independent of words for a fixed topic t and database

db, MDF (w, t) in Equation 3.2 compares words under t based on the ratio DF (w,t)
DF (w,db)

.

Words that occur in significantly more documents of t than in the rest of the

database will be weighed more heavily than those occurring in relatively fewer

documents of t than the rest of the database.

Measuring topic relevance of a word by the number of documents in which it

occurs assumes that words that are not frequently used in a variety of documents

usually occur in a document if they are strongly relevant to a main topic of that

document, and that a word that is strongly relevant to a topic t will have a higher

proportion of the documents in which it appears falling under t. For example, a

word that only occurs in documents of t will have a higher weight than another

word where only some of its documents belong to t.

We find the basic assumption in this measure troublesome. In particular, the

measure will assign a high weight to singletons (words occurring only once in the

document) such as misspellings and other infrequent and irrelevant words. For

instance, mentioning the word treaty in this thesis does not mean the word is

strongly relevant to the topic of the thesis. Yet the above measure will count this

thesis as evidence of the relevance of the word to the main topic of the text.

One way to filter out some of these irrelevant words is to discard documents

where the word is a singleton, as we shall see next.

3.2.2 Measuring Topic Relevance using Modified Document

Frequency

As we mentioned in the previous section, the problem with using pure DF in mea-

suring topic relevance is that it exaggerates the importance of single occurrences in
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a document. To overcome this drawback we suggest discarding from the DF count

those documents where the word occurs only once. In this case our topic relevance

measure becomes:

M
�DF (w, t) = log

D̃F (w, t) ∗ |db|
D̃F (w, db) ∗ |t|

= log
D̃F (w, t)

D̃F (w, db)
+ log

|db|
|t|

(3.3)

where

• D̃F (w, t) is the number of topic t documents containing more than one oc-

currence of the word w.

• D̃F (w, db) is the number of database db documents containing more than one

occurrence of the word w.

• |t| and |db| are the number of documents in t and db respectively.

The new measure assumes that the probability of two occurrences of an irrele-

vant word is quite low, and that those words occurring at least twice anywhere in

the document may be strongly relevant to the main topic of the document. These

assumptions were made by Katz [Kat96], who argued that when a word is relevant

to the topic of the document it occurs in a burst of repetitions. Church also used

D̃F (w, db) in one of his adaptation measures [Chu00], where he shows that con-

tent words1 tend to occur at least twice in documents to which they are strongly

relevant.
1Manning and Schütze define non-content words informally as “words that taken in isolation

.. do not give much information about the contents of the document” [MS99]. Note that although

a content word is usually relevant to the topic being discussed in the document, it does not need

to be.
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Based on the above assumptions, if the proportion of topic t documents con-

taining more than one occurrence of a word is high, then the measure assumes the

word is strongly relevant to t.

Replacing document frequency with D̃F alleviates the singleton-word problem.

But D̃F , as well as DF, assumes an independence of the number of times a word

is used within the document from the degree of relevance of the word to the docu-

ment’s topic. For both statistics a word repetition of 10 times in one document is

as good as repeating the same word twice only in that same document. Yet some

researchers assert that this is not valid. Katz for example states that

the total number of observed occurrences of the content word or phrase

in the document ought to be a function only of the degree of relatedness

of the concept named by the word to the document or, in other words,

of the intensity with which the concept is treated. [Kat96]

Luhn also hypothesized that the frequency of a word in a document is a strong

indicator of the word’s significance in the text [van79].

3.2.3 Measuring Topic Relevance using Term Frequency

Many researchers in the information retrieval community use term frequency TF as

an indicator of the importance of a word to a document. We can carry this concept

of frequency as an indicator of importance towards measuring topic relevance by

plugging TF into Equation 3.1 above:

MTF (w, t) = log
TF (w, t) ∗ ||db||
TF (w, db) ∗ ||t||

= log
TF (w, t)

TF (w, db)
+ log

||db||
||t||

(3.4)
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where

• TF (w, t) is the number of occurrences of w in topic t documents.

• TF (w, db) is the number of occurrences of w in the database db.

• ||t|| and ||db|| are the number of terms in t and db respectively.

Equation 3.4 assumes that strongly relevant words are those that occur more

frequently in topic t than in the whole database. Damerau used essentially this

measure in determining domain-oriented vocabulary [Dam90] as discussed above,

and he uses a function similar to Equation 3.4 to extract 2-word domain phrases

for a set of pre-specified domains, based on the ratio of the frequency of the phrase

within the domain to its frequency in the whole database [Dam93]. The assumption

here is that good domain phrases will tend to occur more often on average in the

domain’s documents than in the whole database.

3.2.4 Incorporating Relative Word Positions in Measuring

Topic Relevance

Whether using term frequency or document frequency, the measures proposed so

far assume a bag of words document view, where the total number of occurrences in

the topic documents and in the database is sufficient to describe the contents of the

topic regardless of where the words occur. The bag of words view is incomplete for

our notion of text as an interweaved collection of topics. As we argued in Chapter 2,

the position of words in a document can be useful in understanding the document’s

content.
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In Chapter 2 we presented text as a collection of topics, with the main topic(s)

spanning the length of the text. Since words are the atomic units describing doc-

ument content, we expect topic words to span across the text as well. Some of

these topic words will occur in small segments of the text, while others will repeat

throughout the text. Bookstein et al. [BKR98] use this behavior of content-bearing

words to extract good index words that are likely to be useful in satisfying users’

requests. The authors apply goodness measures of such words that compare the

word’s occurrence behavior in the text to the expected random occurrence. They

define two occurrence behaviors: the word’s tendency to clump by repeating in

close proximity in a single textual unit such as a paragraph, and the word’s ten-

dency to occur at least once in several consecutive textual units in a document.

Their experiments show that such information on word occurrence improves the

quality of words selected for indexing when compared to pure inverse document

frequency. The experiments also indicate a link between content-bearing words

and these words’ tendency to clump.

Although their method identifies content words, the authors do not show how

to use the method to characterize the topic of a whole document or which words

are indicative of that topic.

Katz [Kat96] notes that although content words are likely to repeat in close

proximity to each other, those that are treated heavily and continuously in the text

will occur across the length of the text. We speculate that these intensely treated

content words are strongly related to the main topic of the document and are thus

good topic words. The challenge here is to identify words that repeat across the

text, and evaluate them based on their tendency to span the length of text in a

topic’s documents.

To identify words that repeat across the text we turn to a second measure
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introduced by Church [Chu00]. Church uses the notion of word spread to show

that content words adapt, i.e. their probability of occurrence changes based on the

lexical content of the document. Church divides each document into two halves:

the first half is called the history, and the second is called the test. He shows that

when a content word appears in the history, its probability of occurring in the test

segment rises significantly.

If a word spans the length of the text, then it will occur in both halves of the

document. Adopting Church’s idea of segmenting a document into two halves, our

topic relevance measure becomes

MDF2(w, t) = log
p(w, t)

p(w)p(t)

= log

( DF2(w,t)
|db|

DF2(w,db)
|db| ∗ |t|

|db|

)

= log
DF2(w, t) ∗ |db|
DF2(w, db) ∗ |t|

= log
DF2(w, t)

DF2(w, db)
+ log

|db|
|t|

(3.5)

where:

• DF2(w, t) is the number of topic t documents containing the word w in both

halves of the document.

• DF2(w, db) is the number of database db documents containing the word w

in both halves of the document.

• |t| is the number of documents in the database whose main topic is t.

• |db| is the number of documents in the database.
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Under this measure, topically relevant words are those that occur in both halves

of the document in topic t significantly more often than in both halves of the

database documents.

The idea of segmenting a document into two halves can be easily generalized

into any number n of segments. In this case words are said to spread across the

document if they occur in all n segments. Our measure of topic relevance becomes

MDFn(w, t) = log
DFn(w, t)

DFn(w, db)
+ log

|db|
|t| (3.6)

where:

• DFn(w, t) is the number of topic t documents containing the word w in all n

segments of the document.

• DFn(w, db) is the number of database db documents containing the word w

in all n segments of the document.

• |t| is the number of documents in the database whose main topic is t.

• |db| is the number of documents in the database.

DFn restricts the frequency count to the number of documents where the word

occurs in all n segments. Words that never occur in all n segments of any document

in the database have a frequency DFn(w, db) of 0. Such words are assumed to be

not topically relevant to any topic t in the database and are therefore excluded

from the MDFn(w, t) vocabulary for all topics t. The immediate effect of using the

DFn frequency count is a vocabulary size smaller than that used by MDF , MTF ,

and M D̃F . The higher the value of n, the more words are excluded, and the larger

the reduction in the size of the vocabulary. But this reduction is acceptable only if
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it does not harm the effectiveness of the MDFn measure in recognizing topic words.

In what follows we will look at the effectiveness of MDFn in extracting topic words

for several different values of n and compare that to the other three topic relevance

measures.

3.3 Evaluation

In Section 3.2 we proposed four different functions to measure the relevance of a

word to a topic. All measures use the PMI formula from Equation 3.1, with differ-

ent definitions of p(w, t), p(w), and p(t) for a given word w and topic t. Up until

now we have been deliberately ignoring the question of what constitutes a topic.

This is because the discussion has been general enough to apply to any topic one

may think of, be it politics or “today’s lunch.” However in order to compare the

topic relevance measures experimentally, we must simplify the concept of topic so

that it can be easily captured and quantified. For evaluation purposes we define

a topic as a predefined subject or category, such as the classes in Yahoo!’s classi-

fication hierarchy [Yah], the subject classes of the ACM Computing Classification

System [ACM], or the classification used in the Reuter’s database [REU].

For this evaluation we use the CoRR database [CORa] and the classification

system used by that database. For our purposes, CoRR has the advantage of longer

documents (all having several pages) which are not found in other, more widely used

databases such the Reuter’s database (most having one or two paragraphs only).

Documents longer than a few paragraphs are essential for testing the effectiveness

of the MDFn measure which is based on segmenting each document into many small

sections.

Given a predetermined set of categories, and a database of manually classified
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documents, we can now generate topic words and evaluate the four measures.

3.3.1 The CoRR Database

The CoRR database [CORa] is an online repository for research in computer science.

The database consists of theses, technical reports, conference papers, and journal

papers from the last decade. Documents range in length between 5 pages and

around 250 pages, but are on average about 13 pages long. They are mainly in

LaTeX format, with a few pdf, and some ps and html files.

Each document in the CoRR database has been classified by the paper’s authors

under one or more of the pre-determined 34 categories listed in the Appendix.

Our version of the database consists of documents submitted between January

1998 and June 2001 for a total of 1151 documents, mostly in LaTeX format. The

LaTeX documents were converted to text using a version of detex [DeT] that was

modified to ignore text preceding the \begin{document} command, as well as ig-

noring abstracts and footnotes. A few of the pdf files were converted using Adobe’s

pdf2txt. In total, 824 text files were converted successfully. Many of the 34 cate-

gories contain very few documents. Documents that belong exclusively to one or

more of these small categories were removed from the database leaving 736 docu-

ments. The remaining categories and their sizes in number of documents are shown

in Table 3.1. Some of these categories are still quite small, but they are useful in

understanding the effect of category size on the quality of the extracted vocabulary.
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Category Description size

CL Computation and Language 194 documents

LO Logic in Computer Science 130 documents

AI Artificial Intelligence 160 documents

CC Computational Complexity 100 documents

CG Computational Geometry 62 documents

DS Data Structures and Algorithms 90 documents

PL Programming Languages 76 documents

SE Software Engineering 38 documents

LG Learning 61 documents

DC Distributed, Parallel, and 41 documents

Cluster Computing

CE Computational Science, Engineering, 23 documents

and Finance

NI Networking and Internet Architecture 25 documents

Table 3.1: The CoRR database categories used in this evaluation
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3.3.2 Preprocessing

The details of preprocessing vary from one system to another but certain steps are

considered by all system designers. First we have to define the building blocks,

called tokens, of text. The input text is merely a sequence of characters prior to

preprocessing. It is the responsibility of the preprocessor to break the sequence into

semantic units in the tokenization step. These units can either be simple words such

as the words program and creation, or multi-word phrases such as The United States

(as opposed to United and States).

We define tokens as case-insensitive sequences of alphanumeric characters con-

sisting of at least one letter. Abbreviations containing a dot interleaved with the

alphanumerics are accepted, as well as words containing an underscore, as in the

sequence w t. The total vocabulary in our version of the CoRR database is 53, 877

unique words.

Two other pre-processing steps are widely used when indexing databases: stop-

word removal and word stemming. Stopword removal ignores words that are gen-

erally accepted as being content-free such as the and it, and stemming removes

morphological inflections from words.

Many researchers opt to remove stopwords using a preset stopword list for effi-

ciency and effectiveness [SM83] [YL99] [Joa98b]. Removing these words drastically

reduces the system’s vocabulary size thus improving its efficiency, and allows the

system to focus only on important content words thus improving its effectiveness.

The difficulty in this step is to remove stopwords only. If we remove too many

non-stopwords or leave in too many stopwords, we will increase the noise in the

database and reduce the system’s effectiveness. But this balance is hard to strike

because different databases have different stopwords, and what constitutes a stop-
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word in one database may be an important content word in another. Consider, for

example, the word computer : whereas computer may be a stopword in a computer

science database, it is most likely a content word in a general science database.

Alternatively, some systems resort to more general feature selection methods which

aim to weigh the uniqueness of each word and its value for the categorization task,

and keep only words deemed important for the task [YP97] [Lew92].

Stopword removal raises a concern when using the DFn frequency counts: re-

moving words from the body of a document will disrupt the position of the re-

maining words in the document thus disrupting the DFn frequency counts. The

approach we choose to deal with this change in DFn frequencies depends on our

view of the role of word position: if the importance of a word position is affected

by the word’s content then stopword positions are of little importance and can be

safely ignored. If, on the other hand, word position in a document is a rough reflec-

tion of the word’s sentence position then all word positions are important, including

those of stopwords, and words that occur in some segment of the document before

stopword removal should still occur in this same segment after stopword removal.

In this case, before removing stopwords their positions should be held by some null

word that can safely be discarded after all DFn frequencies are counted.

Stemming is another common preprocessing step. It reduces words with varying

morphological inflections to one common representation. Thus, runs and running

will both be represented by the stem run. This process has been reported to

help compress an index by up to 50% [Fra92]. Stemming has also been used to

increase the number of documents found by search systems although there is no

strong evidence of its effectiveness in discovering documents that satisfy the users’

request [Fra92].

There are many different approaches to stemming from simple table look-up and
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predefined stemming rules to methods that attempt to discover stems statistically

with no prior knowledge of any stemming rules. None of these approaches has been

shown to outperform the others in terms of precision or retrieval effectiveness, but

they differ in their compactness and simplicity. One of the most compact is the

Porter stemmer [Fra92] [BYRN99], which gradually reduces a word to its simplest

form by iteratively looking for the longest suffix it can remove based on a set of

predefined rules [Por80].

Thus we have four possibilities for representing documents’ words: with or with-

out stopwords and with or without stemming. To explore the effects of stopword

removal and stemming on the precision of our topic relevance measures, we created

four independent indices for the CoRR database. The first index (SIMPLE) is the

simplest one with no stopwords removed and no stemming performed. The sec-

ond index (STEM) does not remove stopwords, but replaces words by their stems

using the Porter stemmer prior to frequency count. The third index (STOP) re-

moves stopwords found on the SMART stopword list [STO], but does not stem

the remaining words. While the fourth version of the CoRR index (S&S) removes

stopwords as was done for the STOP index and stems the remaining words as was

done in the STEM index. We have opted to replace stopwords in the STOP and

S&S indices by a null word in order to preserve the words’ original positions in the

database.

Because the resulting topic word lists for two indices consist of stemmed words

while the STOP and SIMPLE indices may include several different morphological

variants of the same stem, we subsequently convert the unstemmed topic word lists

of STOP and SIMPLE into stemmed lists of topic words as follows: Each word in

the list is stemmed using the Porter stemmer and assigned the unstemmed word’s

weight. When several variants of the same stem occur in the list, only the first
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Figure 3.2: The steps involved in creating each of the indices used in the evaluation

experiments

occurrence of the stem is preserved thus giving it the highest relevance weight of all

its variants. This removes from the unstemmed lists variations of the same word

and produces homogeneous topic word lists that can be cross-compared easily. The

creation process of the different indices is shown in Figure 3.2.

It is important to note that stemming after topic word list generation is different

from stemming prior to index creation. When words are stemmed before they are

indexed, their frequency counts will include the occurrence of all morphological

variants of the word in the database. But when stemming is done after the initial

topic word lists are created a stem will be assigned the highest topic relevance

weight of its variants each treated separately.

Now that we have our final topic word lists, we turn to the method used to

evaluate the relevance measures.
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3.3.3 Creating the Baseline

At the beginning of this chapter we define topic words for a category. The definition

highlights the criterion by which to judge our topic relevance measures: a word

that is identified by a relevance measure is acceptable as a topic word if the word

is used by humans in discussing that topic. According to this criterion we must

evaluate each topic relevance measure by comparing it against a manually selected

list of topic words for each category. The most obvious source for these words are

the keyword fields in the CoRR papers. These fields are usually assigned by the

authors to briefly describe the main contents of the paper. Thus, for a paper that is

classified under Artificial Intelligence for instance, its keywords will describe issues

discussed under Artificial Intelligence. The collection of all keywords used in all

the Artificial Intelligence papers could then form the list of manually selected topic

words for the Artificial Intelligence category. Unfortunately, very few papers in the

CoRR database contain the keyword field.

Luckily, since our goal is to compare the effectiveness of the topic relevance

measures in capturing what humans consider topic words, any database discussing

the category is a potential source for the manual topic word list. Furthermore,

seeking the target topic word list from a source other than our CoRR database has

the advantage that the words are more likely to be database independent. Thus

the success of a topic relevance measure in finding words from this ideal list is an

indication of the measure’s success in recognizing vital topic words independently

of the database. Also, since the ideal list is extracted from an external source, the

success of our topic relevance measures in finding some of these words shows that

topic words are universal for a topic and that given a sufficient amount of data about

a topic, the topic words found by these measures are in fact good representations
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of the topic.

One source of an ideal list is the index of the Encyclopedia of Artificial Intelli-

gence [Sha92] which provides a comprehensive list of artificial intelligence concepts.

Some online journal indices also provide topic words for many different categories.

These indices are easily searchable, and such large databases reduce the chances

of missing good topic words for any category in the index. The most accessible

index we found for the range of topics in the CoRR database was the Computer

and Information Systems Abstracts index from the Cambridge Scientific Abstracts

(CSA database) [CSA]. The online index is a database of 329,660 records from 850

serials. Each record contains several fields describing a serial’s article. The fields

include, among others, the title of the article, the author, the classification field

which contains the list of general classes under which the article falls, the descrip-

tors field which contains a list of closed vocabulary items describing the category

of the article, and the list of identifiers which are open vocabulary terms found by

human indexers to be strongly relevant to the contents of the article. Figure 3.3

shows a sample CSA record.

We assume that identifiers that are believed to be relevant to an article are also

relevant to the categories to which the article belongs. The identifiers are used

in discussing those categories and are therefore the equivalent to what we have

been calling topic words. Thus, given a large enough list of identifiers for each

category, we expect good topic words to appear on this list. To create such a list

for a category C we collect a large number of CSA records that are classified under

category C and extract the identifiers used to describe the papers indexed in these

records. We will call this the identifier list for C. The more of these identifiers a

topic relevance measure can discover, the better the measure.

But identifier lists contain phrases as well as individual words. Since we deal
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with single words only, each identifier phrase is broken into its constituent words.

Stopwords are then removed from the resulting identifier list and the remaining

words are stemmed (using the Porter stemmer) and sorted by the total number of

CSA records in which the stem occurs.

In order to use the CSA database for evaluating our topic relevance measures,

we still have to attend to one more issue: the classification hierarchy defined by the

CSA database is quite different from the categories defined by the CoRR database,

but most of the twelve categories in the CoRR database can be mapped to ones

in the CSA database. One CoRR category cannot be mapped to an acceptable

equivalent, while two had too few documents for a reliable evaluation. The map-

pings for the remaining nine out of the twelve CoRR category areas are shown in

Table 3.2. Some of the CoRR categories are equivalent to CSA classes used in the

classification field, such as Artificial Intelligence which maps the C 723.4 Artificial

Intelligence class, and Programming Languages which maps the C 723.1.1 Com-

puter Programming Languages class; while other more specific classes can only be

mapped to descriptors: Computational Linguistics for example is mapped to the

descriptor Natural Language Processing. Two categories cover more than one class

or descriptor in the CSA database. For example Networking and Internet Archi-

tecture covers many different descriptors in the CSA database each pertaining to

some aspect of the category such as Wide Area Networks, Network Protocols, and

Computer Networks.

In summary, to create the ideal topic list for each of the nine CoRR categories

shown in Figure 3.2 we collected a total of 18, 700 CSA records, each satisfying the

CSA equivalent of at least one CoRR category. Table 3.3 shows the exact number

of records collected for each of the nine CoRR categories. We then extracted the

identifiers used in the identifier fields of all CSA records in each category. Identi-
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CoRR CSA CSA #CSA

Category Equivalent Field Records

AI Artificial Intelligence classifiers 21,910

PL Programming Languages classifiers 8,940

LO formal languages and grammars; classifiers 7,124

mathematical logic;

formal logic; formal languages; descriptors

theorem proving; computational logic;

lambda calculus;

set theory; temporal logic;

verification; correctness proofs; logic

programming;

CC Computational Complexity descriptors 9,016

CG Computational Geometry descriptors 2,257

SE Software Engineering descriptors 4,428

CL Natural Language Processing descriptors 810

DS Data Structures; Algorithms descriptors 45,053

NI Computer Networks; Communication descriptors 12,218

Networks; Network Protocols; Wide

Area Networks; Packet Networks

Table 3.2: CoRR Category to CSA category mapping and the number of CSA

records under each mapped CoRR category
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CoRR # CSA Target List

Category Records Size

AI 2, 357 2, 400

PL 2, 159 2, 081

LO 2, 000 2, 574

CC 2, 159 2, 463

CG 2, 210 2, 576

SE 2, 381 2, 301

CL 783 1, 153

DS 2, 500 2, 583

NI 2, 151 2, 106

Table 3.3: The number of CSA records collected to create the target list for each

of the nine CoRR categories, and the number of words in the resulting target list.

fier phrases were broken into single words, words found on the SMART stopword

list [STO] were removed, and the remaining words were stemmed using the Porter

stemmer [Por80]. The number of words in each category’s identifier list is shown

in Table 3.3.

Once the identifier lists were created, each list was sorted by the number of

occurrences of the identifier stem. This sorting de-emphasizes words that are rarely

used to discuss the category or which may have been used to discuss additional

categories to which the indexed paper belongs. Table 3.4 shows the ten most

frequent stems in AI ’s identifier list. The final identifier list is pruned down to the

top n words to form the target topic word list. We experimented with target lists

of size n = 100, 200, 300, 400, 500, 1000, and 2000 words.
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Identifier Word Stem Example Identifier Phrase

neural Neural Networks

network Neural Networks

learn Cooperative Learning Method

system Multi-agent Systems

model Recurrent Fuzzy Neural Model

algorithm Learning Algorithms

function Horn Function

base Knowledge Based Systems

method Cooperative Learning Method

fuzzi Fuzzy Rules

Table 3.4: Ten most frequent word stems in the AI identifier list along with example

phrases containing these identifier words
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3.3.4 Evaluation Method

The target lists provide us with the basis for comparing the effectiveness of each

of our topic relevance measures. Each of these lists contains a sample set from the

space of words used to discuss the list’s corresponding category. The measure that

consistently finds more of these stems, especially when more of the stems are found

near the start of the topic word list, is deemed to be more effective in extracting

topic words than the other measures. In the remainder of this section target list

refers to the list of identifiers (i.e. stems) presumed to represent a topic and topic

word list and word list refers to the list of words that has been extracted by a topic

relevance measure for a category. Each word list is sorted in decreasing order by

topic relevance value.

The aim in these experiments is to evaluate the relative effectiveness of our topic

relevance measures in extracting words humans view as topic words. We would also

like to see the effect of stemming and stopword removal on a measure’s word list.

To compare the effectiveness of the topic relevance measures we follow standard

procedure in information retrieval experimentation and use the average interpolated

11-point precision-recall curves [Har01]. Precision at any point in the sorted word

list is defined as the ratio of target words found until that point in the list to

the number of words seen so far, while recall at any word in the sorted list is the

ratio of the number of target words found up to this point in the sorted word list

to the total number of identifiers in the target list. The 11-point precision-recall

curves show the precision at 11 recall points from 0 to 1 with increments of 0.1.

Specifying the recall values allows us to compare the results for different topic word

list sizes. Since some of these recall points may not exist in our sorted list, we

use interpolated 11-point precision-recall curves (p-r curves). In the interpolated
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curves the precision at each one of the recall points is the highest precision found

at recall greater than or equal to the current recall point. The average interpolated

11-point precision-recall curves (average p-r curves) are calculated over all 9 CoRR

categories for each topic relevance measure to compare the average effectiveness of

each measure.

3.3.5 Results

In this section we study the effectiveness of the topic relevance measures M tf , MDF ,

M D̃F , and MDFn for n = 2,4,6,8,10,12,14,16 using the four indices SIMPLE, STEM,

STOP, and S&S. The p-r curves for each of these measures were produced using

target lists comprising a maximum of 100, 200, 300, 400, 500, 1000, and 2000 word

stems. Recall that these lists are a sample set of topic words taken from a different

database that covers topics similar to those in the CoRR database. Therefore, we

do not expect any of the measures to reach high precision or recall values. However,

if a measure consistently succeeds in discovering more target words than the other

measures, then by comparison this measure is a better topic relevance measure.

The average p-r curves for each of the seven list sizes using the SIMPLE index

are shown in Figures 3.4– 3.10. Each curve in these figures is labeled by the type of

frequency used in the topic relevance measure associated with the curve. For exam-

ple the curve for MTF is labeled as TF . All seven lists produce a similar pattern:

the more traditional measures MTF , MDF , and M D̃F have a lower precision than

those of MDFn . This pattern becomes more apparent as we increase the target list

size. Measures that are based on a pure count of occurrences, MTF and MDF , have

the lowest precision values. Accounting for the minimum frequency of the term in

calculating its document frequency in D̃F improves precision but even M D̃F falls
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behind MDFn at all recall levels. MDF2 is a further improvement over M D̃F , which

indicates that how the term occurs in a document influences the term’s relevance

to the contents of the document. This is corroborated further by the improvement

in precision when using MDFn for n > 2. The figures also show that the precision

may start to degrade at very high values of n (e.g. n = 12, 14, and 16) while the

maximum recall will still decrease.

Interestingly, the increased precision for MDFn over the more traditional mea-

sures is coupled with a large decrease in vocabulary size. While MTF and MDF

produce a total vocabulary of 54, 381 words in the SIMPLE index, MDF4 extracts a

vocabulary of 5, 576 words only. This is 10.25% of the vocabulary size of MTF and

MDF . The vocabulary sizes of all measures tested are shown in Table 3.5 for the

SIMPLE and STOP indices. As we have mentioned in Section 3.2.4, this reduction

is to be expected since there are more words with non-zero DF and TF values than

those with non-zero DFn values in the database.

The smaller vocabulary size does have its drawback: fewer words mean a smaller

chance of finding all the target words on our word list. This translates into a recall

that is less than 100%. But by using reasonable values for n such as 4, 6, or 8

we improve precision by at least 30% over TF and DF without significant loss in

recall.

Word lists from the other three indices produced very similar p-r graphs, which

shows that the relative effectiveness of the topic relevance measures is not influ-

enced by whether stemming or stopword removal is performed, as long as the same

pre-processing functions are done for all measures uniformly. This is not to say

that stemming and stopword removal have no effect on the precision of topic rele-

vance measures. In fact we found that stopword removal improves precision while

stemming degrades it. Figures 3.11 and 3.12 show the p-r graphs for each MDFn
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Measure SIMPLE Voc. STOP Voc.

M tf 54, 381 53, 877

MDF 54, 381 53, 877

M
�DF 26, 964 26, 478

MDF2 15, 921 15, 447

MDF4 5, 576 5, 194

MDF6 3, 022 2, 715

MDF8 1, 842 1, 600

MDF10 1, 192 1, 002

MDF12 849 687

MDF14 616 471

MDF16 441 315

Table 3.5: Size of the CoRR database index used by each topic relevance measure

in the SIMPLE and STOP indices.
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Figure 3.4: The average interpolated 11-point average precision-recall using a 100-

word target list
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Figure 3.5: The average interpolated 11-point average precision-recall using a 200-

word target list
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Figure 3.6: The average interpolated 11-point average precision-recall using a 300-

word target list
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Figure 3.7: The average interpolated 11-point average precision-recall using a 400-

word target list
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Figure 3.8: The average interpolated 11-point average precision-recall using a 500-

word target list
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Figure 3.9: The average interpolated 11-point average precision-recall using a 1000-

word target list
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Figure 3.10: The average interpolated 11-point average precision-recall using a

2000-word target list

for n = 2, 4, 6, 8, 10, 12, 14, 16 against the top 500 target words for topic words from

the SIMPLE, STOP, STEM, and S&S indices. These figures clearly show that

for n ≥ 2 stopword removal produces the highest precision while stemming always

generates the least precise word lists.

The negative effect of stemming might be due to several factors: first, it could

be that the genre of technical writing tends to repeat words in the same form.

Also, the stemmer used might be too aggressive. The Porter stemmer reduces

words to the smallest stem possible. This clusters together words that do not have

a common meaning (e.g. factory and factorial) thus over-emphasizing incorrect

words. A weaker stemmer that does limited stemming might have a more positive

effect on precision.

The effect of stopword removal on precision is rather surprising. Stopwords

are expected to behave in a similar manner across topics, thus getting a low topic
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Figure 3.11: The average precision of the word lists generated by the MDF2 , MDF4 ,

MDF6 , and MDF8 measures using the SIMPLE, STOP, STEM, and S&S indices.



CHAPTER 3. TOPIC RELEVANCE MEASURES 54

0 5 10 15 20 25 30
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

In
te

rp
ol

at
ed

 P
re

ci
si

on

% recall

Effect of Word Stemming and Stopword Removal on the Average Interpolated Precision of Mdf10−500 Ident.

stopwords kept−no stemming     
stopwords removed−no stemming  
stopwords kept−words stemmed   
stopwords removed−words stemmed

(a) MDF10

0 2 4 6 8 10 12 14 16 18 20
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

In
te

rp
ol

at
ed

 P
re

ci
si

on

% recall

Effect of Word Stemming and Stopword Removal on the Average Interpolated Precision of Mdf12−500 Ident.

stopwords kept−no stemming     
stopwords removed−no stemming  
stopwords kept−words stemmed   
stopwords removed−words stemmed

(b) MDF12

0 1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
te

rp
ol

at
ed

 P
re

ci
si

on

% recall

Effect of Word Stemming and Stopword Removal on the Average Interpolated Precision of Mdf14−500 Ident.

stopwords kept−no stemming     
stopwords removed−no stemming  
stopwords kept−words stemmed   
stopwords removed−words stemmed

(c) MDF14

0 1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
te

rp
ol

at
ed

 P
re

ci
si

on

% recall

Effect of Word Stemming and Stopword Removal on the Average Interpolated Precision of Mdf16−500 Ident.

stopwords kept−no stemming     
stopwords removed−no stemming  
stopwords kept−words stemmed   
stopwords removed−words stemmed

(d) MDF16

Figure 3.12: The average precision of the word lists generated by the MDF10 , MDF12 ,

MDF14 , and MDF16 measure using the SIMPLE, STOP, STEM, and S&S indices.
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relevance weight. This seems to be the case for the most frequent stopwords, such

as the and in, which are usually at the bottom of the sorted topic word list. But

there are also stopwords that are more common within some topics than others.

An example is behind which is near the top of MDF4 ’s word list for categories AI

and CL, but is not considered a topic word for any other category.

The positive effect of stopword removal is also evident in Figures 3.13 and 3.14.

In these figures we compare the unstemmed word lists obtained from the STOP and

STEM indices against the unstemmed target list which is created in the same man-

ner as the target list we have been using so far, except that we skip the stemming

step and sort CSA identifier words by their total frequency in their unstemmed

form.

3.4 Conclusion

In this chapter we define topic relevance and distinguish topically relevant words

from traditional information retrieval index terms. We then present four different

measures of topic relevance, each using a different word frequency statistic. The

first three of these measures are based on the document as a bag of words. These

measures use frequency statistics that are independent of word position in the text

to assess the word’s topic relevance. The other measure MDFn is based on our

view of text as a sequence of topic indicators. Under such a view the position of

the word in the document can be useful in understanding the document’s content.

This measure evaluates the topic relevance of a word by how it spreads out in the

document. We show that MDFn is more effective in selecting good topically relevant

words than the other three measures, and that medium values of n, namely n = 4, 6,

and 8, produce the best topic word lists. Moreover, these three measures generate
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Figure 3.13: The average precision of the word lists generated by the MDF2 , MDF4 ,

MDF6 , MDF8 measures using the SIMPLE and STOP indices versus the unstemmed

ideal list.
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Figure 3.14: The average precision of the word lists generated by the MDF10 , MDF12 ,

MDF14 , and MDF16 measures using the SIMPLE and STOP indices versus the un-

stemmed ideal list.
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Figure 3.15: The precision of the SIMPLE index words sorted by their frequencies

against the SMART stopword list.

vocabulary sizes that are between 3% and 10% of the size used by the other more

traditional measures. The evaluations also indicate that stopword removal improves

the precision of the topic words extracted whereas stemming degrades it.

Although we use a preset stopword list for stopword removal in the evaluation,

it is preferable to be able to remove stopwords automatically with no reference

to a preset list. One possible approach is to sort index words by their pure DFn

database frequency and remove the top words from this sorted list. For example,

if we plan to use MDF4 to weigh topic words, we can start by sorting the SIMPLE

index words by DF4(w, db) and removing the top 10% of the words from the index.

Figure 3.15 compares the sorted pure frequency lists to SMART’s stopword list. The

plots in this figure are the traditional 11-point precision-recall plot with SMART’s

stopword list as the target vocabulary. These plots show that a high proportion

of the top words in any of the sorted lists are stopwords found on the SMART

stopword list. Therefore, removing these words will likely improve the precision
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of our MDF4 measure without losing too many non-stopwords from the list. This

approach is similar to the adhoc feature selection method mentioned by Yang and

Pedersen [YP97], where they report that removing words with the highest DF

values is one of the most effective feature selection methods for text categorization.

We leave further studies along these lines for future work.

In our evaluations we replaced stopwords by some null term to preserve their

positions in the text. For completeness, it would be interesting to further study the

effect of simply removing stopwords without preserving their position.

Another aspect we would like to investigate is the effect of a stemmer that is

less aggressive than the Porter stemmer used in our evaluations. A weaker stemmer

might reduce the number of words incorrectly represented by the same stem when

an aggressive stemmer is utilized, but at the same time recognize words with slightly

varying morphological formats, such as plurals, which would otherwise be treated

as different words when no stemming is performed.

It is also interesting to explore the effect of relaxing our spread measure to allow

for documents in which a word appears in m out of n segments for DFn, for some

preset value of m < n. This would recognize that the major topic of a paper could

be interrupted in one or two places for a tangential discourse.



Chapter 4

Putting it Together:

Building the Topic Flow Signal

Topic flow signals reflect the variation in the intensity of discussion related to the

topic across the text. Heavily discussed topics in a text tend to recur throughout

and remain relevant to most of the document. Therefore, such topics have a contin-

uous stream of strongly relevant topic words throughout the text. Topics that are

discussed less intensely, however, are either relevant to limited portions of the text,

or are interrupted often thus shifting the focus of discussion away from that topic.

Such topics have a more sparse distribution of relevant topic words indicating a

weaker presence in the text. So generating a topic flow signal for a given text is

simply a matter of representing the relevance of the topic to each segment of the

text.

We start by describing the signal construction algorithm, which generates the

most basic topic flow signals. The constructed signals are then used to view the

flow of the topic at varying levels of detail within the text. Finally, we show that

60
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topic flow signals reflect the actual change in the intensity of discussion within the

document.

4.1 Constructing the Initial Signal

The most basic topic flow signal relies on our earlier observation that given a suf-

ficient list of topic words for a category we will find strongly relevant topic words

in text segments which discuss the category. By tracking the topic relevance of the

words across the text we can construct a word-based representation of the topic

flow within the text. The algorithm for representing the flow of a topic t in a given

document D is presented in Algorithm 1. The algorithm iterates through the doc-

ument, and at each word w’s position in the text the corresponding position in the

signal is assigned a value reflecting the word’s relevance to the topic. Our measure

of topic relevance is based on the sorted topic word lists of MDF4(w, t) which, as

we have seen in the previous chapter, produces one of the most accurate topic word

lists with little loss in vocabulary.

Given the topic word lists sorted by their MDF4 weights, at each word position

w in the text the algorithm assigns the corresponding signal position a value equal

to the rank of w in the sorted topic word list for topic t as described in the Rank

subroutine in Algorithm 1. If w is not on t’s topic word list but on some other

topic’s list, it is assigned one plus the maximum rank in topic t’s list, otherwise it

is discarded.

The resulting topic flow signal should remain low at points of strong relevance to

the topic and peak at points where there are shifts away from the topic. Therefore,

the signal should provide a good representation of the progression of the topic in
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the document. We have already seen a sample signal in Chapter 2 for the text in

Example 4.1.1:

Example 4.1.1 Belief revision focuses on how an agent should change her

beliefs when she adopts a particular new belief. [FH99]

The signal in Figure 2.3 was constructed using MDF4 ’s topic word list for Artificial

Intelligence. The same signal is reproduced in Figure 4.1 with each vertex labelled

by the word that generated the vertex’s topic relevance value.

To take another example, Figure 4.2(a) shows the Computation and Language

signal for a segment from the paper entitled “Applying Natural Language Genera-

tion to Indicative Summarization” [KMK01]:

Example 4.1.2 We have presented a model for indicative multi-document sum-

marization based on natural language generation. In our model, summary content

is based on document features describing topic and structure instead of extracted

text. [KMK01]

As expected, the signal in Figure 4.2(a) has relatively low ranks for many terms

relevant to Computation and Language, such as model, language, content, and text.

The flow of any other topic in the text can be represented in a similar manner

through another signal. The assumption here is that any number of topics can

be discussed simultaneously in a document, and each of these topics can be repre-

sented by a separate topic flow signal. The topic flow of Artificial Intelligence for

Example 4.1.2 is shown in Figure 4.2(b). The variation among the vertex values

and the word ranks in this signal are higher than those in the Computation and

Language signal, indicating a relatively weaker presence of Artificial Intelligence’s

topic words in the segment, and thus a relatively weaker discussion of the topic.
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Algorithm 1 Construct topic flow signal St for topic t in input document D

INPUT: Document D;

||D|| = The number of word positions in D;

Topic t;

T= Topic word list for t sorted by MDF4(w, t);

V oc=
⋃

∀topics ti

topic word list for ti

OUTPUT: Topic flow signal St for topic t in document D;

sig position = 0;

for (text position = 0; text position < ||D||; text position++) do

w = word at text position in D;

if (w ∈ T ) then

St[sig position] = rank(w, T );

sig position++;

else if (w ∈ V oc) then

St[sig position] = 1 + maximum rank(T );

sig position++;

else

ignore w;

end if

end for

(continued)
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SUB Rank

{Find the number of weights lower than word w’s in topic word list T}
INPUT: word w; Sorted topic list T ;

OUTPUT: rank of weight of w in T ;

tmp rank = 0;

i = 0;

prev wt = T [i]{WEIGHT};
while (NOT(Done) AND (i ≤ ||T ||)) do

if (T [i]{WEIGHT} �= prev wt) then

prev wt = T [i]{WEIGHTT};
tmp rank + +;

end if

if (T [i]{WORD} == w) then

Done = TRUE;

end if

i + +;

end while

return(tmp rank);

Algorithm 1 (continued)
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Figure 4.1: Topic flow signal for the topic Artificial Intelligence based on the rel-

evance values in Table 2.2. Each vertex in the signal is labelled by the word that

generated the vertex.



CHAPTER 4. BUILDING THE TOPIC FLOW SIGNAL 66

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

Word position in text

T
op

ic
 w

or
d 

ra
nk

Summarization Example

presented 

model 

indicative summarization 

based 

natural 

language 

generation 

model 

summary 

content 

based 

document 

features 

describing

topic 

structure 

extracted 

text 

(a) The Computation and Language topic flow signal
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(b) The Artificial Intelligence topic flow signal

Figure 4.2: Topic Flow signals for the topics Computation and Language and Ar-

tificial Intelligence in Example 4.1.2. Each vertex in the signal is labelled by the

word that generated the vertex. Note the higher ranks and the wider variation in

these ranks within the Artificial Intelligence signal.
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4.2 Zooming out: Representing the topic flow of

larger segments

The topic flow signals constructed in the previous section represent the change in

topic relevance at individual word positions. Although words are the basic units for

expressing a topic, the overall topic of a sequence of words is a complex function

of many variables including the constituent words, the structure governing these

words, the order of the words, and the situational context within which the text

was produced. For simplicity we focus here on identifying the general topic of a

sequence of words from its constituent words and the context of each word. This

word sequence can be as long as the document itself. It can also be a segment of

the text in which case the topic relevance of the whole word sequence represents

the topic relevance of the document at that particular segment.

By dividing the whole text into consecutive word sequences we can represent the

topic flow within the text through these text segments rather than representing it

at individual word positions. The resulting segment-based topic flow signal should

provide a more general view of the text, and by varying the segment size we can

monitor the change in topic flow at different levels of detail.

We assume that the relevance of a single segment to a topic is a function of

the importance of the constituent words to that topic. Given the ranks of these

individual words in the sorted topic word list, the segment’s topic relevance is

represented by the average rank of the words in the segment:

M(SEG, t) =

∑
∀w:((w∈SEG)∧(w a topic word for some topic τ∈T ))

RANK(w, t)

||SEG|| (4.1)
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where:

• M(SEG, t) is the importance of topic t in segment SEG.

• RANK(w, t) is the rank of the topic relevance value for word w in the sorted

topic word list for t as defined in the RANK subroutine in Algorithm 1.

• ||SEG|| the number of words in segment SEG.

• T is the set of all possible topics.

This approach allows us to include all words within the segment when estimating

its topic relevance. Averaging the words’ ranks also smoothes out the effect of the

occasional noise word.

To view the topic flow in document D at the n-word segment size, we start

by dividing the document into equal segments, each consisting of approximately n

words. Next we calculate M(SEG, t) the importance of topic t for each of these seg-

ments as described in Equation 4.1 above. Algorithm 2, which is a slightly modified

version of the word-based signal construction algorithm described in Algorithm 1,

can then be used to construct the topic flow signal for this segment size.

With a few more operations we can also generate the topic flow at increasingly

larger segment sizes: Starting with the word-based signals, we can get the topic flow

at 2-word segment sizes by averaging every pair of consecutive words in the signal.

The signal for the 2-word segment size can then be used to generate the 4-word

segment signals. Similarly, for any segment size 2i we use the signal for segment

size 2i−1. This algorithm, shown in Algorithm 3, is extremely efficient requiring

only O(||D||) operations to construct the topic flow signals for all 2i segment sizes

from i = 1..log(||D||), where ||D|| is the number of words in the document D.
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Algorithm 2 Construct topic flow signal St for topic t in input document D at

segment size n

INPUT: Document D divided into segments of size n each;

||S|| = The number of segments in D;

Topic t;

Topic relevance value M(SEG, t) for each segment SEG;

OUTPUT: Topic flow signal St for topic t in document D;

for (seg num = 0; seg num < ||S||; seg num++) do

SEG = segment seg num in D;

St[seg num] = M(SEG, t);

end for
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Algorithm 3 The averaging algorithm for the Haar Wavelet Transform

{Construct topic flow signals Rt for larger segment sizes using the word-based

topic flow signal St}
INPUT: Word-based topic flow signal St for topic t in document D;

||St|| = the number of points in signal St

OUTPUT: Set of topic flow signals Rt[0..(log(||St||))] where Rt[i] is the topic

flow signal representing text segments of size 2((log||St||)−i);

maxl = log||St||;
for (i = 0; i < ||St|| ; i++) do

Rt[maxl][i] = St[i];

end for

for (l = maxl − 1; l >= 0 ; l−−) do

i = 0;

for (position = 0; position < ||Rt[l + 1]|| − 1; position = position + 2) do

Rt[l][i] = Rt[l+1][position]+Rt[l+1][position+1]
2

;

i++;

end for

end for
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Just as averaging pairs of consecutive points in a signal smoothes the signal,

taking the difference between these pairs emphasises the local changes in topic rel-

evance, usually due to noise. Adding the averaged signal and the difference signal

reproduces the original unsmoothed signal. Similarly, if we keep the signal repre-

senting topic flow for segments of size n, for some value of n, as well as the difference

between consecutive pairs at all the levels preceding that signal, we can reconstruct

our initial word-based signal. In this case, we will have transformed the initial word-

based signal into another equivalent representation that provides us with a different

view of the same text. This transformation is called the Haar Wavelet Transform,

the simplest type of wavelet transforms, which are used in many applications in-

cluding noise reduction, image processing, and signal compression [SN96] [JlCH01].

Since we are not interested in the noise within the signal, nor are we interested

in reconstructing the signal, we will not keep these differences. Instead, we are

interested in the various views of the text at different segment sizes, each of which

reflects the flow at a different level of detail. We will call these levels of detail levels

of resolution. Wavelet transformation is an efficient method to obtain these multi-

resolution signals. However they require a signal length that is a power of 2. When

this is not the case the signal is extended to the nearest power of 2 size by padding

it with some constant, by repeating a portion of the signal, or by some other signal

extension method [SN96] [JlCH01]. In the context of topic flow, concatenating the

signal with any artificial value disrupts the real topic flow representation. This

problem has posed serious concerns for us regarding the accuracy of the extended

signals in reflecting topic flow. The solution, however, turns out to be quite simple.

The power of 2 length requirement stems from the averaging approach where we

average every two consecutive words starting from the word-based topic flow signal.

Instead, we can start by recursively dividing the text into segments of equal sizes. At
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each level of resolution, we are now certain that all segments are of roughly the same

size, thus representing equal portions of the text with no artificial values added.

The detailed algorithm is presented in Algorithm 4. For instance, a document

consisting of 9 words can be divided into 4 and 5 word segments, each of these two

segments can then be divided into 2 and 2, and 2 and 3 word segments respectively

for topic flow at the lower, more detailed, segment size. At the very bottom we

will find seven consecutive segments of size 1 word, and one segment of size 2. The

segment sizes for each level of resolution in this 9-word text is shown in Figure 4.3.

Now that we have segments of roughly equal size at each level of resolution, we

can proceed as before in finding the topic relevance for each segment at a certain

resolution level and constructing the topic flow signal for that resolution starting

from the most detailed level up to the more general levels with larger segments.

The main difference from the original averaging step in the wavelet transform is

that our segment sizes do not necessarily have power of 2 length, nor does our

text. We do, however, need to know apriori the total size of the text which may

not be available in some situations such as when streams of text are being received

and their signals constructed in real-time. Figure 4.4 shows the topic flow signals

for the topics Computation and Language and Artificial Intelligence at resolution

levels 0–5 for the sample text in Figure 4.1.2.

4.3 Evaluation

So far we have been concerned with building topic flow signals and viewing the flow

of topics at different levels of resolution. The assumption has been that words are

the “atomic units” used to describe the topics under discussion [Kat96], that by

following the relevance of these words to the topic we will manage to create a signal
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Algorithm 4 The Gradual Averaging algorithm

{Construct topic flow signals Rt for larger segment sizes using the word-based

topic flow signal St}
INPUT: Word-based topic flow signal St for topic t in document D;

||St|| = the number of points in signal St

OUTPUT: Set of topic flow signals Rt where:

Rt[i] is the topic flow signal at resolution level i, with the the most

general level at i = 0 which consists of one point representing the overall

average of relevance in the text.

{Get number of words in each segment at each level in the transform}
get segment sizes( segment sizes, maxl );

for (i = 0; i < ||St|| ; i++) do

Rt[maxl + 1][i] = St[i];

end for

{Create the first level of the transform after Rt[maxl + 1]}
get first sums( Rt, segment sizes, maxl );

for (l = max l − 1; l >= 0 ; l −−) do

i = 0;

for (position = 0; position < ||Rt[l + 1]|| − 1; position = position + 2) do

Rt[l][i] = Rt[l + 1][position] + Rt[l + 1][position + 1];

Rt[l + 1][position] = Rt[l + 1][position]/segment sizes[l + 1][position];

Rt[l+1][position+1] = Rt[l+1][position+1]/segment sizes[l+1][position+

1];

i++;

end for

end for

Rt[0][0] = Rt[0][0]/segment sizes[0][0];

(continued)
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SUB get segment sizes

INPUT: ||St||;
OUTPUT: segment sizes : an array containing number of words to include in

each segment at each level in the transform;

maxl the maximum level in segment sizes;

i = 0;

segment sizes[0][0] = ||St||;
for ( l = 1; 2l ≤ ||St||; l++) do

p = 0;

maxl = l;

for ( i = 0; i < number of elements in segment sizes[l − 1]; i++) do

segment sizes[l][p] = �segment sizes[l−1][i]
2

�;
segment sizes[l][p + 1] = segment sizes[l − 1][i] − segment sizes[l][p];

p = p + 2;

end for

end for

Algorithm 4 (continued)
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SUB get first sums

INPUT: segment sizes : an array containing number of words to include in

each segment at each level in the transform;

Topic flow signals array Rt;

Current resolution level l;

OUTPUT: Topic flow signal Rt[l] at resolution level l;

position = 0;

for ( p = 0; p < number of elements in segment sizes[l]; p++) do

Rt[l][p] = 0;

for ( i = 0; i < segment sizes[l][p]; i++) do

Rt[l][p] = Rt[l][p] + Rt[l + 1][i + position];

end for

position = position + segment sizes[l][p];

end for

Algorithm 4 (continued)
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that can reflect topic flow in the text. By gradually smoothing this word-based

signal we get a more robust topic flow representation at larger text segments. This

section aims at evaluating the signals’ ability to represent topic flow.

4.3.1 The Ideal Topic Flow Signal

Evaluating the quality of our topic flow signals requires comparing these signals to

the ideal topic flow representation in the text. An ideal topic flow signal should

remain low when the corresponding text intensifies its discussion on the topic indi-

cating strong topic relevance, and peak when the corresponding text significantly

reduces its discussion of the topic indicating. But the knowledge of when the topic

discussion intensifies and when it abates necessitates usage of documents whose dif-

ferent segments have been manually categorized for any segment size. This manual

categorization would reflect the flow of topics at different segment sizes including

temporary digressions that take up small segments, as well as subtopics that may

span larger segments.

An alternative to manually categorizing document segments is to construct our

evaluation documents from smaller pre-categorized texts. Ideally, we would also like

these smaller texts to discuss the topics under which they have been categorized

throughout the text with no digressions to any other topic. These criteria are best

met in the abstracts of technical papers: abstracts are concise so the possibility of

digressions is minimal, and they aim to describe only the main topics of the paper

so they are more likely to discuss these topics throughout the abstract.

Given a sequence of abstracts each of which belongs to at least one category,

the ideal topic flow signal for a category t within this sequence is a reflection of the

distribution of the category’s abstracts. Such a signal would indicate the strongest
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This paper compares the tasks of part-of-speech (POS) tagging and word-sense-tagging or

disambiguation (WSD), and argues that the tasks are not related by fineness of grain or

anything like that, but are quite different kinds of task, particularly becuase there is

nothing in POS corresponding to sense novelty. The paper also argues for the reintegration

of sub-tasks that are being separated for evaluation.

This paper describes the design of a control and management network (orderwire) for a mobile

wireless Asynchronous Transfer Mode (ATM) network. This mobile wireless ATM network is part

of the Rapidly Deployable Radio Network (RDRN). The orderwire system consists of a packet

radio network which overlays the mobile wireless ATM network, each network element in this

network uses Global Positioning System (GPS) information to control a beamforming antenna

subsystem which provides for spatial reuse. This paper also proposes a novel Virtual

Network Configuration (VNC) algorithm for predictive network configuration. A mobile ATM

Private Network-Network Interface (PNNI) based on VNC is also discussed. Finally, as a

prelude to the system implementation, results of a Maisie simulation of the orderwire system

are discussed.

We present a memory-based learning (MBL) approach to shallow parsing in which POS tagging,

chunking, and identification of syntactic relations are formulated as memory-based modules.

The experiments reported in this paper show competitive results, the F-value for the Wall

Street Journal (WSJ) treebank is: 93.8% for NP chunking, 94.7% for VP chunking, 77.1% for

subject detection and 79.0% for object detection.

Figure 4.5: A sample sequence of abstracts. The first and last abstracts belong

to Computation and Language, while the second abstract is on Networks and the

Internet.

topic relevance at points where the abstract belongs to category t, and peak to

its highest rank values indicating no topic relevance otherwise. Figure 4.5 shows a

sample sequence of abstracts.

The topic flow signals we have constructed in the previous sections are all word-

based. Our ideal signals should similarly be word-based. We will make the un-

realistic assumption that if an abstract is categorized under a topic, then every

vocabulary word in the abstract will be relevant to that topic. This is a restrictive

assumption that hypothesizes there is absolutely no noise in our abstracts, even

though it is possible to have vocabulary words within the abstract that are not rel-
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evant to the abstract topic. Nevertheless, we believe that due to the concise nature

of abstracts, and the noise reduction effect of averaging, this assumption will not

have a huge impact on our evaluation.

Given a sequence of abstracts, we now proceed to build the ideal word-based

topic flow signals as follows: we start by removing from the abstracts all non-

vocabulary words. A vocabulary word is one that is known to be a topic word for

any of our 12 categories using the MDF4 topic word lists. We then create the ideal

topic flow signal for each of the 12 CoRR categories where for every topic t we

trace each word in the abstracts and mark its corresponding position in the signal

with a 1 if the abstract belongs to the topic t, or with a (max rank(t) + 1) if the

abstract does not belong to t, where max rank(t) is the maximum possible rank in

the topic word list for t. To get the ideal topic flow at larger segments, we simply

use the gradual averaging algorithm described earlier 4. Figure 4.6 shows the ideal

word-based topic flow signals as well as the topic flow at resolution levels 0− 7 for

the simple document in Figure 4.5 whose first and third abstracts are Computation

and Language abstracts, while its second abstract is a Networks and the Internet

abstract.

4.3.2 Evaluation Abstract Sequences

We created our evaluation abstract sequences using the abstracts of the technical

papers submitted to the CoRR website [CORa] between January 1998 and Dec 2001.

There are two evaluation sequences: The first, called the T sequence, consists of

736 abstracts summarizing the CoRR papers used by our system in creating its list

of topic words. The corresponding set of full papers is called the CoRR training

set. It is important to note, however, that before the training set was used to
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Figure 4.6: The Computation and Language ideal topic flow signal at the word level

(level 7), and at increasingly larger segment sizes (levels 6 up to 0) for a sample

document consisting of 3 abstracts the first and last of which are Computation and

Language abstracts and the second is on Networks and the Internet
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extract topic words, the abstracts were stripped from the set’s papers. So although

the papers from which these abstracts come were in the training set, the abstracts

themselves were not. Nevertheless, the system will have been trained on most of

the topic words appearing in these abstracts. Therefore, the T abstract sequence

will assist us in evaluating our topic flow signals given that the system recognizes all

the important topic words, and that there is no inconsistency in the categorization

of the segments in the T abstract sequence versus the training set papers.

The second evaluation abstract sequence, called the N sequence, consists of 447

abstracts of papers that were submitted to the CoRR website between January

1998 and December 2001, but whose papers were not part of the training set. Since

the papers to which these abstracts belong were not used in training, the chances

of missing good topic words are much higher than in the T sequence. Therefore,

this document is useful in evaluating the robustness of our topic flow signals in the

presence of noise due to missing topic words, or due to inconsistencies in categorizing

the abstracts compared to the training set. Table 4.1 shows the number of abstracts

that fall under each of the 12 categories tested, as well as the number of abstracts

that belong solely to that category (“one-topic abstracts”) in the T and N abstract

sequences.

To ensure that there is no bias for the order in which abstracts are concatenated,

we created three different versions of each abstract sequence T and N where each

version contains a random ordering of the abstracts used in the sequence. We will

call the T sequence versions T1, T2, and T3, and those using the N sequence N1,

N2 and N3.
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TOPIC # abs # one-topic ||T || # abs # one-topic ||N ||
in T abs in T in N abs in N

(TA) (OTA) (NA) (ONA)

CL 179 149 736 94 47 447

CC 100 49 736 41 15 447

SE 38 17 736 33 11 447

CG 62 26 736 10 1 447

NI 25 8 736 90 71 447

DC 41 13 736 44 17 447

AI 160 40 736 90 24 447

PL 76 19 736 53 16 447

LO 130 22 736 44 14 447

DS 90 15 736 22 4 447

LG 60 9 736 20 1 447

CE 23 3 736 24 4 447

Table 4.1: The number TA and NA of abstracts belonging to each of our 12 CoRR

topics in the T and N evaluation sequences, and the number OTA and ONA of

documents among the TA and NA documents that have the topic as the only correct

topic
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4.3.3 Evaluation Method

For each of our evaluation sequences T1–T3 and N1–N3 we first generate 12 ideal

topic flow signals each representing the flow of one of the 12 CoRR database topics.

These signals are then smoothed at resolution levels 0 through the maximum size

(the log of the size of the evaluation sequence).

Next, for each of the six sequences, we generate a topic flow signal as described

in Sections 4.1 and 4.2 above for each of the 12 CoRR categories. We will call these

the test signals.

For a given sequence, each one of the ideal signals is compared to each one

of the 12 test signals. Two signals match perfectly when they rise and fall at

exactly the same point. This match indicates that both signals reflect the same

flow. The most appropriate statistical measure for our purposes is the correlation

coefficient [Ost88]:

CORRCOEF (X, Y ) =
(
∑

∀x∈X and y∈Y (x − x̄)(y − ȳ))

(
∑

∀x∈X(x − x̄)2)(
∑

∀y∈Y (y − ȳ)2)
(4.2)

where X and Y are the two signals to be matched composed of a sequence of

ranks, and x̄ and ȳ are the average ranks across X and Y respectively. The highest

correlation coefficient is +1 indicating a perfect match. A correlation coefficient of

0.65 or higher indicates strong correlation, a correlation coefficient between 0.3 and

0 indicates weak to no correlation between the shapes of the two signals, while a −1

indicates a reverse correlation between X and Y which means that when X is high,

Y is low, and vice versa. Figure 4.7 shows an example of highly correlated test and

ideal signals in the T1 evaluation sequence for the topic Computation and Language

at resolution level 6 (i.e. 27 segments). The correlation coefficient between the

two signals at this level is 0.9. Note how the two signals rise and decline at about
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the same pace indicating similar changes in topic flow. Two non-correlated signals,

with correlation coefficient −0.05, are shown in Figure 4.8 for the Computational

Engineering, Finance, and Science ideal and test signals in the N1 sequence at

resolution level 7. In this case the test signal’s fluctuations are independent of those

of the ideal signal thus painting different pictures of topic flow in the document. In

between highly correlated signals and weakly correlated ones, some signals are said

to be moderately correlated. An example of moderately correlated signals is shown

in Figure 4.9. In this figure, the test and ideal signals represent the topic flow for

Software Engineering at resolution level 6 in the N1 evaluation sequence. The two

signals have a correlation coefficient value of 0.56. When the ideal signal indicates

a strong topic relevance through a low rank value, so does the test signal, but the

test signal also fluctuates at points where the ideal signal is constant.

The correlation between the test and ideal signals can be measured at any level

of resolution. At the most detailed levels we expect the effect of noise to be high

in the signals and, consequently, the correlation to be low. But as we proceed to

lower resolution levels, the noise should gradually diminish and correlation should

increase if the flow in both signals is similar. Ideally, we would like the noise to

have diminished completely at the resolution level where each point in the signal

corresponds to an average abstract size. At this segment size each abstract will

be represented by one low ranked point to reflect the fact that it discusses its

topic(s) throughout the abstract with minimal digressions. Thus, any noise will

have been mostly smoothed out at previous levels of resolution. In the T and N

sequences this segment size corresponds to the resolution levels 	log2(736)
 = 10

and 	log2(447)
 = 9, respectively. From this resolution level up to the most general

level 0, noise should be minimal, and correlation between the ideal and test signals

should be high. In order to evaluate the correlation between any test and ideal
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Figure 4.7: An example of highly correlated ideal and test topic flow signals. The

signals represent the flow of Computation and Language in the T1 abstract sequence

at resolution level 7
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Figure 4.8: An example of weakly correlated ideal and test topic flow signals. The

signals represent the flow of Computational Engineering, Finance, and Science in

the N1 abstract sequence at resolution level 7
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Figure 4.9: An example of moderately correlated ideal and test topic flow signals.

The signals represent the flow of Software Engineering in the N1 abstract sequence

at resolution level 7
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Figure 4.10: The Computation and Language ideal signal resulting from concate-

nating the signals at resolution levels 2–10 in the T1 abstract sequence

signal pairs at several levels of resolution we start by concatenating each topic’s

test signals at resolution levels 2–10 for each of the T abstract sequences, and

levels 2–9 for each of the N abstract sequences. The same concatenation process

is done for the ideal signals. Levels 1 and 0 are excluded because they contain

too few points for meaningful correlation coefficient values. Figures 4.10 and 4.11

show the concatenated signals for the Computation and Language category. By

concatenating the signals we can get a single pair of vectors for determining the

correlation between the test and ideal signals at multiple levels of resolution.
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Figure 4.11: The Computation and Language test signal resulting from concatenat-

ing the signals at resolution levels 2–10 in the T1 abstract sequence
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4.3.4 Results

We measured the correlation between every concatenated ideal signal and each one

of the 12 concatenated test signals for each one of the abstract sequences. Tables 4.2

and 4.3 show the top four correlation coefficients for these signal pairs for each of

the T and N abstract sequences.

The table shows a consistently high correlation between the ideal signal and

its corresponding test signal for the same topic in the T abstract sequences all of

which are statistically significant within a 95% confidence interval. All of the ideal

signals in these sequences best resemble the corresponding test signal for the same

category. This shows that when sufficient topic words are provided, and when

categorization consistency can be guaranteed, then the topic flow representation

algorithms succeed in creating signals that accurately reflect the flow of the topic.

The table also shows the effect of extracting the topic word list from a training

set of multi-category documents. Since the CoRR training documents may belong

to more than one category, several resulting topic word lists may be influenced by

a single document. For example, the topic word chunker is a Computation and

Language word. However, because it occurs in a Computation and Language and

Learning training document, the word also occurs in the Learning topic word list as

well. Therefore, topic flow signals will tend to share more topic words than might

be expected. The higher the proportion of training documents a group of categories

share, the stronger the similarity between their signals. Table 4.4 shows the number

of training documents belonging to each category in the CoRR database and the

top three categories with which it shares documents. Looking back at Table 4.2

we note that the second most similar test signals to a topic’s ideal signal in the T

sequences are those of the top co-occurring categories.
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The effect of sharing training documents is also evident in the N sequence results

in Table 4.3 where the categories sharing the highest proportion of documents with

a category C are always among the top four signals most similar to C ’s ideal signal.

The N sequence results also reveal the effect of topic word lists with insufficiently

many words and categorization that is inconsistent with that of the training set.

The sequence has a generally lower correlation than the T sequences: only 10 out

of the 12 categories have a high or medium correlation with their corresponding

test signal, and 2 ideal signals (for CE and DS) were most similar to the test signal

of a different topic. We suspect this is due to a combination of factors, including

training set size, multi-topic training documents, and important keywords being

discarded from the N abstract sequences because they were not present in any

training documents.

One way to reduce the noise in the topic word lists and, consequently, in the

topic flow signals, is to extract the lists from a training set with a high proportion

of single-category documents. The number of single-category training documents in

the CoRR training set is shown in Table 4.5. The table also shows the proportion of

single-category documents to the total number of training documents for each CoRR

category. Nine of the ten categories containing the highest proportion of single-

category documents succeed in generating test topic flow signals that are highly

to moderately correlated with the corresponding ideal signal. The three categories

containing the lowest proportion of single-category documents all generate test

signals that are at best weakly correlated with the corresponding ideal signal.

The correlation values we have seen so far show that our approach for generating

topic flow signals succeeds in creating signals that reflect the flow of the topic in

the text. However, these correlations between the concatenated signals incorporate

noise from all resolution levels. Such noise causes the overall correlation to be lower
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TOPIC # training # one-topic ratio

docs (TD) training docs TD:OTD

(OTD)

CL 194 149 0.79

CC 100 49 0.49

SE 38 17 0.45

CG 62 26 0.42

NI 25 8 0.32

DC 41 13 0.32

AI 160 40 0.25

PL 76 19 0.25

LO 130 22 0.17

DS 90 15 0.17

LG 61 9 0.15

CE 23 3 0.13

Table 4.5: The number TD of training documents belonging to each of our 12 CoRR

topics, and the number OTD of documents among the TD documents that identify

no co-topic
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than the correlation between the test and ideal signals at individual resolution levels.

For example, the correlation between the test and ideal concatenated Learning

signals is 0.63 in the T1 text, yet the correlation between the individual levels 2–10

in this text are 0.76, 0.82, 0.75, 0.71, 0.69, 0.65, 0.61, 0.55, and 0.47, respectively.

This higher correlation can be observed for all topics in all 6 sequences. Table 4.6

for example shows the four most correlated test signals for each ideal signal at

resolution level 5.

Table 4.6: Top Four Correlated Test Topics for each Ideal

Signal at Resolution Level 5 in the T1 Text

Ideal Test Corr Signif t

AI AI 0.86 1 18.75

LO 0.60 1 8.51

PL 0.31 1 3.72

SE 0.08 0 0.91

CL CL 0.92 1 26.68

LG 0.28 1 3.25

CG -0.23 1 -2.71

NI -0.25 1 -2.86

CC CC 0.80 1 15.23

DS 0.31 1 3.67

CG 0.20 1 2.31

CE 0.13 0 1.52

SE SE 0.73 1 12.07

PL 0.24 1 2.81

NI 0.11 0 1.20



CHAPTER 4. BUILDING THE TOPIC FLOW SIGNAL 103

Table 4.6: (continued)

Ideal Test Corr Signif t

CE 0.03 0 0.35

CE CE 0.68 1 10.44

DS 0.42 1 5.14

CG 0.21 1 2.47

CC 0.16 1 1.79

CG CG 0.78 1 13.82

DS 0.25 1 2.95

CC 0.18 1 2.01

CE 0.10 0 1.15

DS DS 0.75 1 12.64

CE 0.62 1 8.83

CG 0.35 1 4.17

NI 0.28 1 3.23

DC DC 0.81 1 15.34

NI 0.49 1 6.30

CE 0.17 1 1.92

LG 0.16 1 1.86

LG LG 0.71 1 11.47

CL 0.24 1 2.80

NI 0.10 0 1.18

DC 0.06 0 0.64

LO LO 0.76 1 13.06

AI 0.56 1 7.53
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Table 4.6: (continued)

Ideal Test Corr Signif t

PL 0.54 1 7.28

SE 0.19 1 2.17

NI NI 0.77 1 13.46

DC 0.49 1 6.38

LG 0.23 1 2.61

CE 0.12 0 1.42

PL PL 0.70 1 11.081

SE 0.48 1 6.11

LO 0.33 1 3.92

AI 0.14 0 1.59

Table 4.6: The four most correlated test categories for

each ideal signal in the T1 abstract sequence at resolution

level 5 and the statistical significance of these correlation

coefficients at the 95% confidence interval.

Interestingly, the noise that affects the correlation is not all rooted in the test

signals. Some of this noise, especially at the lower levels, comes from the ideal

signals themselves. Remember that in building the ideal signals we assumed that

all words of an on-topic abstract are on topic, and all words of an off-topic abstract

are also off topic. Throughout this discussion we have assumed that by the time

we reach a resolution level in which the segment size is approximately equal to the

size of an abstract, the noise resulting from our assumption will have disappeared.

However, the scatter plots for the ideal signal values versus the test signal values re-
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veal that this noise takes one or two more levels before it dissipates (see Figure 4.12.

These scatter plots show for each value in the ideal signal at a specific resolution

level all the values in the corresponding positions in the test signal at the same

level of resolution. For example, the ideal signal of Computation and Language at

resolution level 10 has the value 77.175 at two points in the signal: point number

3 and number 213. At these points the test signal has the values 127.0625 and

122.6375, respectively.

Figure 4.12 shows the scatter plot of the Computation and Language ideal signal

versus the test signal at resolution levels 2–10. The plot shows the linear relation-

ship between the ideal and test signals for this category. In general, when the ideal

signal is low, so is the test signal. The range of the test signal values that corre-

spond to a specific ideal signal value is also generally narrow except at the extremes

1 and 278. These extremes correspond to the lowest possible and the highest pos-

sible ranks for the Computation and Language category. A segment at resolution

level as high as 10 can only have such extreme values if all its words have the same

extreme values, and the only case where this occurs is in the ideal signal when the

segment is all on-topic or all off-topic. The test signal, on the other hand, cannot

have such a value in most cases since some of the words in an on-topic abstract

will undoubtedly be off-topic, and some of the words in an off-topic abstract may

appear to be on-topic. The ratio of on-topic words in the abstract affect its overall

average rank therefore creating a wide range of possible values, which plays a role in

lowering the correlation between the test and ideal signals at this resolution level.
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Figure 4.12: The Computation and Language scatter plot of resolution levels 10–2

for the ideal and test signals in the T1 abstract sequence.
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4.4 Conclusions

In this chapter we have shown how to construct signals that represent the flow of

topics in text. We started with a basic algorithm to construct word-based topic

flow signals. Next, we presented an averaging algorithm that allows us to use the

word-based topic flow signals in viewing the flow of topics in various sized segments

of text. Finally, we tested the quality of the topic flow signals and showed that

given a good topic word list, our algorithm is able to represent the flow of the topic

accurately. Our experiments also revealed that the quality of the topic flow signal

is dependent upon the quality of the topic word list, which in turn is dependent

upon the training set used to create the list. In the future we propose to study the

effect of varying the proportion of single-category documents in the training set on

the quality of the topic word lists and on the generated topic flow signals. We also

propose to experiment with the effect of different smoothing methods on the topic

flow signal. In particular, we would like to reduce the oscillation found in off-topic

segments thus reducing noise in these segments and clarifying the topic flow.

Topic flow signals provide a versatile representation of text content. An im-

portant distinction between our topic flow signals and other work in fields such as

text segmentation is that each individual point in the topic flow signal represents

the relevance of an individual segment in the text independent of the rest of the

text. This relevance is measured using our unique topic relevance measure MDFn

described in the previous chapter. This is quite different from the plots used in

segmentation by TextTiling [Hea97], for example, where each point in the plot rep-

resents the similarity between two consecutive segments. Our signals are meant to

represent the content of the text in such a way that they can be used for a variety

of applications including text segmentation, topic detection, topic tracking, and
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document visualization.

In the next chapter we present one possible application for topic flow signals in

text categorization.



Chapter 5

An Application to Text

Categorization

The view of text as a sequence of topics can be beneficial for retrieval tasks that rely

on text content and on similar tasks such as text summarization, text segmentation,

document clustering, and text categorization. This chapter examines the benefits of

topic spread for text categorization. We first define text categorization and present a

general categorization model. Next, we describe Support Vector Machines, a state-

of-the-art categorization method, and show how we can improve its performance

through the use of topic words and topic distribution in text.

109
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5.1 Text Categorization

5.1.1 Definition and Applications

Text categorization systems group text data under a pre-specified set of labels or

categories. Applications of automatic text categorization are numerous [DPHS98],

the most obvious of which is automating manually categorized databases such as

Yahoo!’s and Infoseek’s. Automation provides a more consistent, less expensive,

and more efficient categorization. Another useful application is text filtering where

the system learns the user’s interests, then filters incoming documents or emails that

fall under categories deemed interesting to the user. In addition, automatic text

categorization can make large amounts of data more manageable, it may be used to

browse the data by topic, to search only data that belongs to certain categories, or to

view search results by category rather than viewing them as long lists of documents

(e.g. [CD00] [Hea94b]). But the applicability of text categorization is dependent

on its effectiveness and robustness against noisy real-life data. To this end, many

approaches have been proposed, each with its own advantages and disadvantages.

These systems share a common general model that we describe next.

5.1.2 Preprocessing

The input to a text categorization system is a set of categories and the document

to be categorized, and the output is the subset of categories most relevant to the in-

put text. But since text comes in many different formats and contains significantly

more information than the categorizer requires, the input document is usually pre-

processed before being passed through the classifier. The tokenization, stopword

removal, and stemming steps discussed in detail in Section 3.3.2 apply here.
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5.1.3 Document Representation

Once the input text is tokenized and stemmed and stopwords are removed, the text

must be converted to a representation that is acceptable to the categorizer. In the

most common representation, each document is represented by a vector in which

every dimension is associated with a unique feature and the value of the feature

represents its weight in the text. The method used to calculate the feature’s weight

varies, but in general the weight is meant to reflect the dominance of that feature in

the document. Many researchers (see for example [van79, BYRN99, SM83, MN98])

experimented with words as document features where each word is weighted by pure

term frequency, by the binary value of occurrence in the document, or by the tf*idf

function:

Wtf∗idf(wi) = TF (wi) ∗ log(
|D|

DF (wi)
) (5.1)

where:

• wi is a word in the document.

• TF (wi) is the term frequency of wi in the document.

• |D| is the number of documents in the training set.

• DF (wi) is the document frequency of the word wi.

Using term frequency has generally been found to perform better than binary

feature weights, but the extent of this improvement is influenced by the classification

method and the database used [MN98] [MS99] [Joa02].

To take a simple example, let us assume that our categorizer has the vocabu-

lary: bank, commerce, and money, and that our input text after tokenization and



CHAPTER 5. AN APPLICATION TO TEXT CATEGORIZATION 112

bank money commerce

a b 0

b

a

commerce

bank

money

D:

D

Figure 5.1: A vector representing a sample document D which consists of the terms

bank and money with term weights a and b respectively.

stemming consists of the words bank and money. Then the vector representation

of the document is shown in Figure 5.1 where a and b are the weights of bank and

money in the input text.

5.1.4 Document Classification

Now the input is ready to be forwarded to the categorizer. Before the system can

categorize documents, however, it needs to model each category in the category set.

One method to achieve this is supervised learning.

Supervised learning involves training the system using pre-labeled data. The

labels of the data reflect each document’s categories and are usually prepared by a

human and assumed to be correct. From this data, the system identifies criteria that

distinguish documents belonging to a category from those under other categories.
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Once the training phase is done, the categorizer is ready to accept and categorize

unlabeled input documents.

In binary text classification, supervised learning approaches are presented with

a set of training documents each labeled by humans as either positive or negative

examples of the category. The system creates from the given training data an

approximation function that represents the criteria distinguishing between positive

and negative training examples for that category. The learned model becomes

the classifier for the category and is used to label previously unseen documents

as either belonging to the category or not. For more than one category, several

binary classifiers are built, one for each category. If the documents can be multi-

labeled then each classifier makes its own independent decision of whether the

document belongs to its category. In some cases, however, each document is allowed

only a single label. One possible approach in this case is to attach a confidence

level with each category label for the document and allow only the label with

the highest confidence [Joa02]. Examples of these supervised learning systems are

the Rocchio algorithm [LSCP96], the Naive Bayes algorithm [Lew98], and Support

Vector Machines [Joa98b].

This general approach is shown in Figure 5.2. There are other variations of this

architecture. For instance, some categorizers skip the learning stage and represent a

category directly by its training documents. This is called lazy learning. In this type

of learning the system does minimal work, or none at all, during the training stage.

Instead, it compares incoming (unlabeled) input documents directly to the training

data. The most prominent example in this class is K-Nearest Neighbor [Mit97].

Of these categorization methods, Support Vector Machines (SVMs) have been

found to perform as well as or better than most other categorization systems

(e.g. [Joa02, YL99, Coo99]). In what follows we will discuss the basics of SVMs fol-
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and

Training

Preprocessing

nsystem’s representation of category C

training documents for category Cn

training documents for category C
1

system’s representation of category C
1

Stemming
Removal
Stopword

D

CategorizationFeature
Extraction

Tokenization D’s Categories

Figure 5.2: A general architecture for a text categorization system. The system is

categorizing document D under one or more of the categories C1..Cn. The system

is trained to recognize those categories using training documents for each of the

categories.
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lowing the description of Joachims [Joa02], then explore the effect of replacing the

traditional documents-as-bags-of-words vectors with representations which reflect

the distribution of topics in the document.

5.2 Text Categorization with Support Vector Ma-

chines

The simplest type of SVMs are Linear Support Vector Machines. Linear SVMs

create a hyperplane separating positive examples from negative ones. In placing

these hyperplanes, SVMs attempt to maximize the distance between the negative

and positive examples closest to the hyperplances which in turn minimizes the

error. The distance between the negative and positive examples closest to the

hyperplane is called the margin, while the closest training examples themselves are

called support vectors. The separating hyperplane that maximizes the margin δ

is described by a weight vector �w and the maximum margin δ. Given this plane,

the resulting classification function requires that a document �x is relevant to the

category if (�w�x + b) > 0. Figure 5.3(a) shows an example of a set of training

examples that can be separated by a hyperplane with margin δ.

An indication of the expressiveness of an SVM is its VC-dimension (VCdim).

When a VCdim of a model is too small the model is likely to overfit the data

creating too many false negatives, but a VCdim that is too large may indicate that

the model is too simple and the classifier may tend to over-generalize which means

the classifier tends to generate too many false positives. Joachims reports that

Vapnik [Joa02] showed that the hyperplane with the optimum VCdim is the one

with the largest distance from the closest training examples.
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SVMs that separate all positive examples from all negative ones are called Hard-

margin SVMs. In some cases it is not possible to find such a hyperplane. In this

case, it is possible to soften the condition of separation and allow some training

examples to be on the wrong side of the hyperplane for some cost C . These SVMs

are called Soft-margin SVMs. Sometimes there are many more positive examples

than negative ones or vice versa, in which case it may be desirable to assign two

different costs C and C ′ for each type of example to avoid putting more emphasis

on avoiding errors in assigning the more frequent type of examples.

Yet in other cases the training data may not be linearly separable. Figure 5.3(b)

shows one such example. SVMs solve this problem by using seed functions, called

Kernel functions, which succeed in mapping the data from the non-linear space into

a much simpler linear space for training. More specifically, the kernel functions map

the data from the original space into a high-dimensional space via implicit basis

expansion. Once the classifier is created, the same kernel function is used to map

test documents into the linear space before they can be classified. Examples of

popular kernels used in SVMs are polynomials (POLY) and radial basis functions

(RBF). For example, a document with two features x1 and x2 in the non-linear

space can be mapped onto a linear space using the polynomial kernel with degree d:

Kpoly( �x1, �x2) = (s. �x1. �x2 + r)d, or the RBF kernel Krbf ( �x1, �x2) = exp−γ( �x1 − �x2)
2,

where the values r,s, d, and γ can be set by the user of the SVM learner. A

more detailed description of SVMs and their parameters can be found in Joachims’

dissertation [Joa02].
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Figure 5.3: (a) An example of a linear data set with a linear hyperplane �H sepa-

rating the positive and negative examples with a margin δ. (b) A nonlinear data

set which cannot be separated by a linear hyperplane.

5.2.1 Model Selection

Given a SVM and a training set, our mission is to generate a good classifier based on

this training data. It is possible that several different kernels and many variations

of parameter values can generate a classifier. Unfortunately, there is no automatic

way to select the one that will generate the best performance on unseen documents.

Rather, to choose between these classifiers we follow the algorithm described by

Joachims [Joa02], in which we first select the set of parameters and variables we

would like to consider. For each combination of these values, we calculate an

estimate of the expected performance using the training data and choose the model

with the best estimate.

Joachims [Joa02] tested the effectiveness of two different estimates in predict-

ing classifier performance, and determined that the Leave-One-Out Precision Recall
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Break Even Point(BEPloo) is most effective. In leave-one-out cross-validation esti-

mation, the system trains on n−1 training examples and then tests its performance

on the remaining document and records whether it succeeded in predicting the class

of the document. The same process is repeated n times until all the training doc-

uments have been used to test the classifier’s performance. Finally, the results are

used to calculate the classifier’s leave-one-out estimation of the precision and recall,

whose arithmatic mean is the BEPloo for this model.

5.3 Using Topic Distribution in Documents with

Support Vector Machines

5.3.1 Previous Work

SVM expects training documents to be represented as weighted vectors of features.

Many researchers experimented with SVMs using words as document features where

each word is weighted by pure term frequency, by the binary value of occurrence

in the document, or by the tf*idf function [Joa02, YL99]. But the definition of a

feature does not have to be a word; it can be any datum that helps distinguish

documents belonging to a category from all other documents. Among the other

interesting features studied are those suggested by Bekkerman et al. [BEYTW03],

where documents are represented by vectors of semantically similar word clusters

generated automatically using the Information Bottleneck approach (IB) [TPB99].

Initially, each word is labeled by the classes in which it occurs. The main idea

behind IB is to cluster words with minimal loss of the mutual information between

the words and the class labels, thus maximizing:
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I(CW , L) − βI(CW , W ) (5.2)

where:

• W is the set of labeled words.

• CW are the clusters created from W .

• L is the set of all labels.

• I(CW , L) (I(CW , W )) is the mutual information of CW and L (CW and W ).

• β is the factor controlling the allowed amount of reduction in mutual infor-

mation caused by clustering W into CW .

Bekkerman et al. compare this cluster-based SVM to the TF*IDF SVM which

uses tf*idf weights with and without feature selection. Their tests show a 0 − 3%

improvement in the microaveraged BEP over the tf*idf SVM using the ten most

frequent categories in the Reuters21578 database [REU].

Word clustering has also been used by Cristiani et al. to group words by their

co-occurrence statistics through what is called the Latent Semantic Kernels. The

features in this approach are still the document words, but the Latent Semantic

Kernels create a map between individual words and a cluster of semantically related

words. Unfortunately, tests using the Reuters21578 database did not result in an

improved performance over the linear TF*IDF SVM classifier.
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5.3.2 Incorporating Topic Distribution into Document Fea-

tures

Throughout this thesis we show the benefits of word spread in identifying important

topic words and in representing the relevance of topics within a document. Thus,

rather than using words as document features, one can represent documents by the

number of occurrences of the relevance rankings within the document, as defined

in Chapter 3. A document vector will thus contain a list of ranking levels each

weighted by the number of occurrences in the document. The more dominant

the category’s top ranking words are, the stronger the evidence of the document’s

relevance to the category.

To represent a document by the relevance ranking of its words to a category

we begin by replacing each word in the document by its relevance ranking. The

importance of each rank r in the document is then weighted by the number of times

the rank r occurs in that document. For example, in the previous chapter we saw

the signal for the Example 4.1.1:

Example 5.3.1 Belief revision focuses on how an agent should change her

beliefs when she adopts a particular new belief. [FH99]

In this example, four words belief, revision, beliefs, and belief have top rank 1

for category AI, while the remaining two vocabulary words agent and change have

lower ranks 33 and 78, respectively. Assuming that the maximum rank in the topic

word list for the category AI is 300, the vector representing this example with

respect to AI will have the features 1..300, with feature 1 having weight 4, features

33 and 78 having weight 1 each, and features 2..32, 34..77, and 79..300 having

weight 0 as shown in Figure 5.4. The same procedure is followed to represent the
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Relevance Rank

1 2 3 ... 33 ... ... 300
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4 0 0 1 0 1 0
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representation
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agent
change
beliefs
belief

words by
Replace

ranks

1
1
33

1
1
78

Figure 5.4: Converting the Example 5.3.1 into the Bag-of-Ranks representation.

document with respect to another category using that category’s topic word ranks.

In this representation, relevance rankings replace words but, as with the bag-

of-words method, no position information is retained. Thus, we call this the Bag-

of-Ranks representation.

Our experiments in Chapter 3 show that word position information may be

useful in identifying better topic words. The idea behind the MDFn measure is

that when we discuss a topic, the topic’s words will spread across the length of

the text and occur in many segments of the document. The more important these

topic words and the more segments they occur in, the stronger the evidence that

the document is about the topic. Thus we can measure the spread of a rank

by the number of segments in which it occurs. Under this approach the vector

representing a document in a category T becomes a two dimensional matrix with

n rows reflecting the maximum number of segments, and R features in each row

where R is the maximum rank for category T . A feature weight for feature (i, r) is

the number of times relevance rank r occurs in at least i segments. For example if
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Figure 5.5: Converting the Example 5.3.1 into the Topic-Spread representation.

we divide Example 5.3.1 above into 2 segments the first segment will consist of the

vocabulary words belief, revision, and agent which correspond to the ranks 1, 1, and

33 respectively. The second segment will consist of change, beliefs, and belief which

correspond to the ranks 78, 1 and 1 respectively. The vector representation for

the text will be a 2X300 matrix with feature (2, 1) having weight 2 since relevance

rank 1 occurs twice in at least 2 segments, feature (1, 1) having weight 2 since rank

1 occurs twice in at least one segment, features (1, 33) and (1, 78) having weight

1 since relevance ranks 33 and 78 occur once each in at least one segment each,

and all other features having weight 0 as shown in Figure 5.5. We will call this

representation the Topic-Spread representation.

5.4 Experiments

In the experiments to follow we will compare the performance of the SVM classifier

using the TF*IDF document representation (TF*IDF SVM), the Bag-of-Ranks

document representation (Bag-of-ranks SVM), and the Topic-Spread representation
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(Topic-Spread SVM). We use Joachim’s SVM implementation SV M light [Joa98a] for

all three methods.

5.4.1 Database

We use the same training database and 12 categories as described in Section 3.3.1.

Our test documents consist of those submitted to the CoRR website between July

2001 and December 2001. These test documents were converted to text using the

same version of detex [DeT] that was used to convert the training documents. After

removing empty test documents and ones that do not belong to any of the categories

used in the training database, we are left with 142 test documents each categorized

under at least one category. Of these test documents 125 have one correct category

belonging to the 12 CoRR categories considered in our tests, 38 have two, only 2

test files have three correct categories each, and 20 do not to any of the 12 CoRR

categories considered. Table 5.1 shows the number of test files for each of the 12

categories.

5.4.2 Experimental Setup

There are 12 training sets, one for each category. For every category we begin by

preprocessing each training document as was done in Section 3.3.1. Each document

is then represented as a vector of features: For the TF*IDF SVM we use the

tf*idf function to weigh document words; while the Bag-of-Ranks SVM uses the

category’s topic word list sorted by MDF4 to replace document words by their

relevance ranking. Each ranking is then weighed by its frequency of occurrence

in the document. For the Topic-Spread method we linearize the two-dimensional

matrix into the one dimensional vector representation expected by SV M light using
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CATEGORY #test files

NI 2

LG 5

CE 5

SE 6

CG 7

DS 10

DC 12

LO 19

PL 21

AI 22

CC 24

CL 27

Table 5.1: The number of test files for each category
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row-major order, that is, by mapping each feature (n, r) in the two-dimensional

matrix to ((n ∗ 1000) + r) where: r is the rank, n is the number of segments, and

the maximum value for r is always less than 1000. Each document is then divided

into 4 segments, and rank occurrences within the document are counted using the

ranking in the sorted MDF4 topic word list for the category. Thereafter the weight

for feature (4, r) is the minimum number of occurrences of rank r in all 4 segments,

the weight for feature (3, r) is the minimum number of occurrences of rank r in at

least 3 segments, and so forth.

Once the document vectors are created for each of these methods, each vector

is normalized by its Eucledian length, and labeled in the training set as a positive

example if it belongs to the category, or as a negative example otherwise.

After the training set for each category is constructed, we move onto selecting

the best model for that category. We experimented with several different values for

the cost factor C , the factor J which adjusts the misclassification cost of positive

examples to (J∗C) while keeping the cost of negative examples to C , the polynomial

degree d, and the γ factor for the RBF kernel. For each combination of these values,

SV M light produces the leave-one-out estimate of the precision and recall. The model

that produces the highest PRAV Gloo for a category is the one we choose to classify

the test documents with respect to that category. Table 5.4.2 shows the values used

to search for the best classifier for each category. We will discuss our observations

regarding the resulting models in the results section below.

5.4.3 Evaluation Measures

Categorization systems are usually evaluated by comparing their category assign-

ments to those of humans. Two popular evaluation measures are Precision and
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General

Parameters

C 0, 0.05, 0.1, 0.5, 1, 5, 10, 1000

J 0.5, 1, 2, −ve
+ve

Polynomial

kernel

b 1, 2, 3, 4, 5, 10

s 1

r 0

RBF kernel γ 0.01, 0.03, 0.1, 0.3, 1, 3

Table 5.2: The values used to search for the best category model for each CoRR

category. −ve
+ve

is the ratio of the number of negative category examples to the

number of positive examples in the training database

category Ratio

AI 3.6

CC 6.4

CE 31

CG 10.8

CL 3.1

DC 17

DS 7.2

LG 11.3

LO 4.7

NI 28.4

PL 8.7

SE 18.4

Table 5.3: The ratio of negative to positive examples used for the J parameter.
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Recall. Precision is the proportion of correct categories assigned by the system

for test documents to the total number of categories the system assigns. Recall is

the proportion of correct categories assigned by the system to the total number of

categories assigned by humans.

When we are presented with several test documents we can calculate precision

by counting the number of correct categories assigned across all the test documents,

then dividing that by the total number of categories assigned by the system:

P =

∑
∀d∈Test Corr S(d)∑

∀d Num(d)
(5.3)

where:

• Test is the set of all test documents.

• Corr S(d) is the number of correct categories assigned by the system to test

document d.

• Num(d) is the number of categories, both correct and incorrect, assigned by

the system to test document d.

Recall can be calculated in a similar manner by dividing the number of correct

categories assigned by the system to the total number of correct categories assigned

by humans:

R =

∑
∀d∈Test Corr S(d)∑

∀d Corr H(d)
(5.4)

where:

• Test and Corr S(d) are as before.
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• Corr H(d) is the number of categories assigned by human judges to test

document d.

The two measures can be combined in one measure called the F1-measure which

reflects the effectiveness of the system assuming precision and recall are equally

important [Lew95] [YL99] [MS99] . F1 is defined as:

F1 =
2PR

(P + R)
(5.5)

where P is precision and R is recall.

Precision and Recall are also used in calculating the Breakeven Point (BEP )

which is the point at which precision is expected to equal recall. The higher the

BEP the better the performance of the system. In the case of binary classifiers it

is defined as the mean of the precision and recall values:

BEP =
P + R

2
(5.6)

where P and R are as before.

Since all of the above measures pool together all the classifiers’ decisions, they

are called the microaveraged P , R, F1, and BEP . The microaveraged performance

measures give each categorization decision equal weight across all categories. Thus,

these measures are influenced more heavily by categories with a higher number of

test documents.

Alternatively, we can group the test documents by their human-assigned cat-

egories, then calculate the precision, recall, F1, and BEP values for each group.

The overall average of these values is the macroaveraged P , R, F1, and BEP ,

respectively. Unlike the microaveraged version it weighs all categories equally.
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In the experiments below we will be reporting both the microaveraged and the

macroaveraged BEP , F1, recall, and precision.

5.4.4 Results and Analysis

Model Selection

Starting with the parameter values shown in Table 5.4.2, we use SV M light [Joa98a]

to evaluate the leave-one-out BEP for each combination for each of the TF*IDF,

the Bag-of-Ranks, and the Topic-Spread methods. When two models have equal

BEP the model with the lower VC-dim is selected. The resulting models are ranked

by their BEP and the top model for every category for each method is selected.

The 12 selected models and their parameters are shown in Tables 5.4, 5.5, and 5.6.

The tables also show the kernel used in the model, the parameters that apply for

that kernel, the VC-dimension of each model as well as the leave-one-out estimate

of the precision, recall, and the BEP.

Although these models have the highest BEP values, there are several models

whose BEP is close to the top. This agrees with Joachims’ observation that there

is usually a range of classifiers that can produce similar performance [Joa02]. It is

interesting to note, however, that the TF*IDF method tends to select the linear

polynomial and the RBF kernels, whereas the Bag-of-Ranks and the Topic-Spread

methods tend to select the polynomial kernel but with varying degrees. Note also

the wide difference in the BEPloo values for the TF*IDF models which are mostly

around 70%, and those of the Bag-of-Ranks and Topic-Spread SVM’s which are

mostly around 90%. These estimates either indicate a tendency for overfitting the

data, or that the Topic-Spread and Bag-of-Ranks document representations succeed

in capturing useful information about the document content. Thus, in the presence
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cat C J kernel γ d VCdim recall prec BEP

AI 5 0.5 POLY 1 341.62336 0.5897 0.8598 0.7248

CC 0.1 6.4 RBF 0.1 7.5105 0.7071 0.7778 0.7425

CE 0.5 31 RBF 0.03 27.86897 0.3043 0.7778 0.5411

CG 0.1 10.8 POLY 1 61.39553 0.8167 0.9608 0.8888

CL 10 3.1 RBF 0.01 98.0634 0.9167 0.9888 0.9528

DC 1 2 POLY 1 101.3259 0.4878 0.9524 0.7201

DS 10 1 RBF 0.1 200.02401 0.5056 0.9574 0.7315

LG 5 2 RBF 0.1 138.80971 0.5085 0.9677 0.7381

LO 5 4.7 RBF 0.03 143.39289 0.7752 0.7246 0.7499

NI 0.05 28.4 POLY 1 41.34812 0.6800 0.8947 0.7874

PL 5 8.7 RBF 0.03 118.3939 0.7600 0.7215 0.7408

SE 5 1 RBF 0.3 120.90823 0.3784 1.00 0.6892

Table 5.4: The cost factor C , the optimization parameter J , the γ factor for the

RBF kernel, and the degree d for the polynomial kernel for the top ranking mod-

els for each CoRR cat for the TF*IDF approach. The table also shows the VC-

dimensions of the selected classifier and the leave-one-out estimate of the precision,

recall, and breakeven point.
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cat C J kernel γ d VCdim recall prec BEP

AI 1 3.6 POLY 5 119.80557 0.9038 0.9156 0.9097

CC 1 6.4 POLY 4 100.22017 0.9394 0.9029 0.9212

CE 0.1 31 RBF 1 57.65913 0.8261 1.00 0.9131

CG 1 2 POLY 10 25.80709 0.9000 1.00 0.9500

CL 5 1 POLY 2 74.60417 0.9896 0.9845 0.9871

DC 0.1 17 POLY 3 28.61864 0.9512 0.9070 0.9291

DS 5 2 POLY 1 240.319 0.8427 0.9615 0.9021

LG 0.5 2 POLY 3 40.23411 0.8475 0.9615 0.9045

LO 5 4.7 RBF 3 488.06805 0.8760 0.9040 0.8900

NI 1 2 RBF 3 39.90703 0.9600 1.00 0.9800

PL 5 8.7 POLY 1 379.84627 0.9733 0.7935 0.8834

SE 5 2 POLY 10 103.79613 0.9189 1.00 0.9595

Table 5.5: The cost factor C , the optimization parameter J , the γ factor for the

RBF kernel, and the degree d for the polynomial kernel for the top ranking models

for each CoRR cat for the Bag-of-Ranks approach. The table also shows the VC-

dimensions of the selected classifier and the leave-one-out estimate of the precision,

recall, and breakeven point.
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cat C J kernel γ d VCdim recall prec BEP

AI 1.0 2 POLY 4 101.05862 0.8974 0.9272 0.9123

CC 5 6.4 POLY 1 444.08250 0.9293 0.92 0.9246

CE 10 31 POLY 5 104.08289 0.9130 0.8750 0.894

CG 5 10.8 POLY 5 165.31334 0.9167 1.00 0.9583

CL 5 1 POLY 2 77.88067 0.9896 0.9845 0.9870

DC 5 2 POLY 5 84.34398 0.8780 1.00 0.939

DS 10 7.2 RBF 0.3 532.55819 0.8876 0.9186 0.9031

LG 0.5 2 POLY 4 39.91318 0.8475 0.9615 0.9045

LO 10 4.7 POLY 5 223.74791 0.8682 0.9032 0.8857

NI 0.5 2 POLY 5 17.32727 0.92 1.00 0.96

SE 1000 1 RBF 0.3 1094.67241 0.9189 0.9714 0.9451

PL 5 8.7 RBF 0.1 141.38082 1.00 0.75 0.875

Table 5.6: The cost factor C , the optimization parameter J , the γ factor for the

RBF kernel, and the degree d for the polynomial kernel for the top ranking models

for each CoRR cat for the Topic-Spread approach. The table also shows the VC-

dimensions of the selected classifier and the leave-one-out estimate of the precision,

recall, and breakeven point.
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of complete topic word lists, the two representations should produce more accurate

models than those found using the TF*IDF SVM. If, however, there is an overfitting

problem, then we expect the test results to show the recall falling behind that of

the TF*IDF method.

Table 5.7 shows the number of cpu seconds used by each method to create

the selected classification models on a shared Sun machine with 8 cpu’s and 16G

RAM running SunOS-5.8. The average time for the Topic-Spread method is 0.912

cpu-seconds which is 11% that of the TF*IDF method, while the average time for

the Bags-of-Ranks approach is 0.549 which is only 6.9% the average time for the

TF*IDF approach. Once the models are selected, they are used to classify each one

of the test documents.

Categorization Performance

The average classification time for each of the three approaches is shown in Ta-

ble 5.7. Again, the average time for the Topic-Spread and the Bag-of-Ranks ap-

proaches is much less than that for the TF*IDF method. The Topic-Spread method

has an average classification time of 1.66 cpu-seconds which is 7.4% the classification

time for the TF*IDF approach, while the Bag-of-Ranks approach has an average

classification time of 0.076 cpu-seconds which is only 3.4% the time for the TF*IDF

approach.

Table 5.8 shows the performance results on the test data. The micro and macro

averaged BEP and F1 for the Topic-Spread method are the highest among the

three methods indicating a positive effect of the DF4 frequency and the topic spread

information on classification performance. Note that this is coupled with the fact

that the Topic-Spread method and the Bag-of-Ranks method use a vocabulary
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that is 10% the size of the vocabulary used by the TF*IDF method. The average

recall for both the Bag-of-Ranks and the Topic-Spread methods is higher than

that of TF*IDF which reflects the effect of the relevance ranking in identifying

relevant documents unrecognized by the tf*idf function. The method’s effect on

recall also makes it less likely that the high BEPloo values seen during training are

due to overfitting. Rather, it is more likely that the use of topic spread information

produces a more accurate category model than that produced using the TF*IDF

approach.

This improvement in recall is statistically significant at a 90% confidence interval

with 11 degrees of freedom. The improvement however comes at the cost of a slightly

lower precision which goes down from a macroaverage of 68.6% for TF*IDF to

61.6% for Bag-of-Ranks. Adding the topic word spread information in the Topic-

Spread method manages to compensate for most of that lost precision bringing the

macroaverage up to 65.6%. The effect on the microaveraged precision and recall is

similar. The overall BEP and F1 values are statistically insignificant at the 90%

confidence interval.

The TF*IDF method’s macroaveraged BEP of 0.609 is close to the estimated

BEPloo of 0.689 in Table 5.4. Unlike the TF*IDF method, however, the overall BEP

for the Topic-Spread and the Bag-of-Ranks methods are quite different from those

predicted from the training set falling from an estimated macroaveraged BEPloo of

0.924 and 0.919 seen in Tables 5.5 and 5.6, respectively, to a BEP macroaverage of

0.63 and 0.611. This difference is probably due to the coverage of the MDF4 topic

word list which was created from multi-labeled training documents thus introducing

noise within the lists and adversely affecting the quality of the vector representations

for the two methods. Nevertheless, the resulting classifiers still perform at least as

well as the TF*IDF method, while using only 10% the vocabulary size used by
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TF*IDF SVM.

5.5 Conclusions

This chapter presents text categorization as one possible application for the topic

spread and topic relevance methods discussed in the previous chapters. It proposes

document representations based on topic relevance rankings (Bag-of-Ranks) and

the distribution of these rankings within the document (Topic-Spread). Our tests

show that the two representations produce small improvements in performance over

the SVM which uses the traditional tf*idf vector representation even though they

use a vocabulary size that is only 10% the size of the vocabulary used by the tf*idf

vector representation. The proposed methods also reduce the model creation time

to as little as 6.9% the average time for the TF*IDF approach, and the classification

time to 3.4% the average classification time for the TF*IDF approach.

The experiments in this chapter explore the effect of using the MDF4 topic

word lists for the Bag-of-Ranks and the Topic-Spread representations. It would

be interesting to investigate the effect of using topic word lists produced by MDFn

for n > 4. Similarly, we would like to study the effect of increasing the maximum

number of segments n used in the Topic-Spread approach.

We suspect that the use of multi-labeled documents for creating the topic-word

lists has affected the quality of the results by introducing into the lists topic words

that are relevant to frequently co-occurring categories. It would be interesting to

look at the change in performance resulting from restricting training documents to

those with single labels only.



Chapter 6

Conclusions and Future Work

This work originated from our experience with the Jabber project [KAHHM96].

The project was aimed at indexing videoconferences by several aspects including

content of discussion, meeting agenda, and the forms of interaction between par-

ticipants. Our work in the project highlighted the importance of the temporal

positioning of words in tracking content. Word position information can be useful

for tasks requiring local content analysis such as topic flow identification, as well

as for passage retrieval, text summarization and segmentation.

In this thesis we presented two methods to utilize word position in text: topic

word selectors and topic flow signals. The topic word selectors identify important

words, called topic words, by their spread through a text. For example, a word

that occurs many times in a single paragraph of the document is considered less

important than one that occurs as often but its occurrence is spread throughout the

document. The underlying assumption here is that words that spread out in the

text are likely to be more relevant to the main topic of the text than ones that are

concentrated in small segments. In our experiments we divide each document into

138
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n equal-length segments, for a preset value of n. The spread of a topic word is then

defined by the number of documents in which the word occurs in all n segments

of the document DFn. Our experiments showed that manually selected keywords

correspond more closely to topic words selected using these selectors than to words

selected using more traditional indexing measures. This correspondence indicates

that topic words identify the topical content of documents more than words selected

using the traditional indexing measures which do not utilize word position in text.

The experiments also indicated that the topic word quality improves as the number

of segments n increases up to a certain value for n after which the quality of the

words starts to decrease. Word stemming using the Porter Stemmer [Por80] de-

grades the quality of the selected words but it remains to be seen if a less aggressive

stemmer has a different effect on topic word quality.

We would like to further study the effect of relaxing the condition on word spread

by allowing a topic word to occur in a subset of the document’s segments. It is also

interesting to explore the effect of document length on the quality of the generated

topic words. Another issue worth investigating is that of stopword removal. We

have used a predefined stopword list in this thesis for stopword removal but our

preliminary experiments indicate that using DFn for feature selection might be an

acceptable alternative.

Topic words can be useful in many applications. For instance, the short context

of topic words can form a helpful starting point for users trying to create a lexicon

for a particular topic by selecting from a set of short topic word contexts those

that reflect the topic. The idea of evaluating the quality of a word through its

spread within a document may also prove useful for feature selection which can

help improve the performance of the categorization and text retrieval systems.

The second approach to representing word position is through topic flow signals.
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In this representation, words are replaced by a measure of their relevance to the

topic. The flow of any one topic can then be traced throughout the document and

viewed as a signal that remains low when a word relevant to the topic is used, and

rises to indicate an irrelevant word occurrence. The intended flow of topics can

be represented by a multi-band signal. To reflect the flow of the topic in larger

segments of text we use a simple smoothing technique. The resulting smoothed

signals were shown to be correlated to the ideal topic flow signals for the same text

sequence. We would like to explore the effect of other smoothing techniques on the

quality of the signals. Incorporating the immediate short context of words may also

be useful in refining the signals although our preliminary experiments on using a

moving window for smoothing the signal did not show substantial improvements.

Our results have shown that the topic flow signals succeed in representing the flow

of a topic in the document when a sufficient list of topic words is used. However,

we suspect that the quality of the topic word lists, and, therefore, the quality

of the resulting topic flow signals, is influenced by the proportion of multi-labeled

training documents used. The relationship between the use of multi-labeled training

documents to extract topic-word lists and the quality of the topic flow signals using

these lists is left for further study.

Topic flow signals are versatile text representations emphasizing the relevance to

the topic at each individual point in the text. Thus, there are many applications for

topic flow signals. For example, topic flow signals may be used for topic tracking in

spoken discussions. Kazman et al. [KAHHM96] introduced an interesting interface

in the Jabber prototype JabPro. In that system users could view the progress of

a meeting in terms of parallel streams, each representing the speech content of a

meeting participant. Topic flow signals can be used to implement a similar interface

where users can track the change in intensity of discussion for any particular topic
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at any moment for each meeting participant. Our smoothing technique would

also allow users to view such change at different levels of detail in real time. A

similar application is possible through the visualization tool proposed by Miller et

al. [MWBF98]. They present a text visualization prototype that allows users to

view changes in the text content through a content signal and to navigate through

the text and its keywords using that signal at several levels of resolution. Our

topic flow signals would allow a richer view of the text since each signal reflects an

individual topic.

Topic flow signals can be useful for text segmentation by recognizing points in

the text where there is a sudden change in the topics being discussed, as was done

using different representations by Green [Gre97] and Hearst [Hea94c]. We may also

segment text by topic using individual topic flow signals. In this case different text

segments would reflect different degrees of relevance to the topic. These relevant

segments can then assist us in summarizing the document with respect to the topic.

It is important to note, however, that the topic flow signals discussed in this work

are quite different from those used in Hearst’s TextTiling [Hea94c]. While both

representations look like signals, the graphs generated by TextTiling reflect the

inter-similarity between consecutive text segments. There is no such inter-segment

similarity represented within our topic flow signals. Rather, each point in the signal

reflects the relevance of the corresponding point in the text to a specific topic. Once

a signal is smoothed, we get the average topic relevance of the text segment within

the smoothed portion not the cross similarity between the points in that segment.

Moreover, each text can be represented through any number of simultaneously

running topic flow signals. Methods which can be used to compare those bands of

signals effectively need further study.

Throughout this work we have defined topics as stationary entities represented
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by a fixed set of topic words. One may be able, however, to allow for dynamic topic

representations by continuously introducing new training documents discussing rel-

evant issues not seen before by the system. Such a dynamic representation is

essential in tasks where topic content changes continuously such as in the Topic

Tracking task of the Topic Detection and Tracking Conference (TDT) [TDT]. In

the TDT context, topics are defined as events through a set of newspaper sto-

ries [ACD+98] [Way98]. Any progress in that event is still viewed as part of the

same topic. For example, if the topic is The cow found in the U.S. infected with the

Mad Cow disease, all updates on this story which have yet to take place are part

of the topic. Given a dynamic topic representation, topic flow signals may then be

used in tracking the progress of a topic in an incoming stream of text.

Finally, Support Vector Machines were used to show the benefits of topic spread

for text categorization. In these experiments we showed that the way topic words

spread in a document is a good indication of the document’s main topics. To

reflect topic spread, we proposed two document representations, Topic-Spread and

Bags-of-Ranks, which define document features by the relevance of the document’s

words to each topic based on the MDF4 topic relevance selector, and by the spread of

these relevance values across the document. We then compared the categorization

effectiveness of these two representations to the SVM which used the traditional

words-as-features representation weighted by the tf*idf function (TF*IDF SVM).

Our document representations improved the recall levels over the TF*IDF SVM

classifier while reducing the average document vector length to 20% − 50% of the

length of the traditional tf*idf vector representation, and the vocabulary size to 10%

of the vocabulary size used by the TF*IDF representation. Our proposed methods

also reduced the SVM model creation time to as little as 6.9% of the average time

of the TF*IDF SVM, and the classification time to as little as 3.4% of the average
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classification time for the TF*IDF SVM. The effect of using other topic relevance

selectors MDFn on categorization performance is left for further study.

Written text has been the focus of this thesis. But we expect word position to

be even more beneficial in spoken discussions where important issues are discussed

for longer periods of time, and are more likely to be reintroduced repeatedly during

a meeting.

This work is a first step towards studying the effect of word position in text on

understanding and tracking the content of text. The results we have seen so far are

promising. We expect that with further refinement we can achieve an even more

accurate picture of written and spoken text content.
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Appendix A

Subject Areas of the CoRR

Database

(from [CORb])

AR - Architecture Covers systems organization and architecture. Roughly in-

cludes material in ACM Subject Classes C.0, C.1, and C.5.

AI - Artificial Intelligence Covers all areas of AI except Vision, Robotics, Ma-

chine Learning, Multiagent Systems, and Computation and Language (Nat-

ural Language Processing), which have separate subject areas. In particular,

includes Expert Systems, Theorem Proving (although this may overlap with

Logic in Computer Science), Knowledge Representation, Planning, and Un-

certainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1,

I.2.3, I.2.4, I.2.8, and I.2.11.

CC - Computational Complexity Covers models of computation, complexity

classes, structural complexity, complexity tradeoffs, upper and lower bounds.
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Roughly includes material in ACM Subject Classes F.1, F.2.3, and F.4.3.

Some material in F.2.1 and F.2.2 may also be appropriate here, but is more

likely to have Data Structures and Algorithms as the primary subject area.

Some material in F.4.3 may have Logic in Computer Science as the primary

subject area.

CG - Computational Geometry Roughly includes material in ACM Subject

Classes I.3.5 and F.2.2.

CE - Computational Science, Engineering, and Finance Covers the use of

computational methods in all areas of Science (including Computational Bi-

ology and Computational Chemistry), Engineering, and Finance. Roughly

includes material in ACM Subject Classes J.2, J.3, and J.4.

CL - Computation and Language (subsumes cmp-lg) Covers natural language

processing. Roughly includes material in ACM Subject Class I.2.7.

CV - Computer Vision and Pattern Recognition Covers image processing,

computer vision, pattern recognition, and scene understanding. Roughly in-

cludes material in ACM Subject Classes I.2.10, I.4, and I.5.

CY - Computers and Society Covers impact of computers on society, com-

puter ethics, information technology and public policy, legal aspects of com-

puting, computers and education. Roughly includes material in ACM Subject

Classes K.0, K.2, K.3, K.4, K.5, and K.7.

CR - Cryptography and Security Covers all areas of cryptography and secu-

rity including authentication, public key cryptosytems, proof-carrying code,

etc. Roughly includes material in ACM Subject Classes D.4.6 and E.3.
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DB - Databases Covers database management, datamining, and data processing.

Roughly includes material in ACM Subject Classes E.2, E.5, H.0, H.2, and

J.1.

DS - Data Structures and Algorithms Covers data structures and analysis of

algorithms Roughly includes material in ACM Subject Classes E.1, E.2, F.2.1,

and F.2.2.

DL - Digital Libraries Covers all aspects of the digital library design and doc-

ument and text creation. Note that there will be some overlap with Informa-

tion Retrieval (which is a separate subject area). Roughly includes material

in ACM Subject Classes H.3.5, H.3.6, H.3.7, I.7.

DM - Discrete Mathematics Covers combinatorics, graph theory, applications

of probability. Roughly includes material in ACM Subject Classes G.2 and

G.3.

DC - Distributed, Parallel, and Cluster Computing Covers fault-tolerance,

distributed algorithms, stabilility, parallel computation, and cluster comput-

ing. Roughly includes material in ACM Subject Classes C.1.2, C.1.4, C.2.4,

D.1.3, D.4.5, D.4.7, E.1.

GL - General Literature Covers introductory material, survey material, predic-

tions of future trends, biographies, and miscellaneous computer-science re-

lated material. Roughly includes all of ACM Subject Class A, except it does

not include conference proceedings (which will be listed in the appropriate

subject area).

GR - Graphics Covers all aspects of computer graphics. Roughly includes ma-

terial in all of ACM Subject Class I.3, except that I.3.5 is is likely to have
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Computational Geometry as the primary subject area.

HC - Human-Computer Interaction Covers human factors, user interfaces, and

collaborative computing. Roughly includes material in ACM Subject Classes

H.1.2 and all of H.5, except for H.5.1, which is more likely to have Multimedia

as the primary subject area.

IR - Information Retrieval Covers indexing, dictionaries, retrieval, content and

analysis. Roughly includes material in ACM Subject Classes H.3.0, H.3.1,

H.3.2, H.3.3, and H.3.4.

LG - Learning Covers machine learning and computational (PAC) learning. Roughly

includes material in ACM Subject Class I.2.6.

LO - Logic in Computer Science Covers all aspects of logic in computer sci-

ence, including finite model theory, logics of programs, modal logic, and pro-

gram verification. Programming language semantics should have Program-

ming Languages as the primary subject area. Roughly includes material in

ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2.

MS - Mathematical Software Roughly includes material in ACM Subject Class

G.4.

MA - Multiagent Systems Covers multiagent systems, distributed artificial in-

telligence, intelligent agents, coordinated interactions. and practical applica-

tions. Roughly covers ACM Subject Class I.2.11.

MM - Multimedia Roughly includes material in ACM Subject Class H.5.1.

NI - Networking and Internet Architecture Covers all aspects of computer

communication networks, including network architecture and design, network
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protocols, and internetwork standards (like TCP/IP). Also includes topics,

such as web caching, that are directly relevant to Internet architecture and

performance. Roughly includes all of ACM Subject Class C.2 except C.2.4,

which is more likely to have Distributed, Parallel, and Cluster Computing as

the primary subject area.

NE - Neural and Evolutionary Computation Covers neural networks, con-

nectionism, genetic algorithms, artificial life, adaptive behavior. Roughly

includes some material in ACM Subject Class C.1.3, I.2.6, I.5.

NA - Numerical Analysis Roughly includes material in ACM Subject Class

G.1.

OS - Operating Systems Roughly includes material in ACM Subject Classes

D.4.1, D.4.2., D.4.3, D.4.4, D.4.5, D.4.7, and D.4.9.

OH - Other This is the classification to use for documents that do not fit any-

where else.

PF - Performance Covers performance measurement and evaluation, queueing,

and simulation. Roughly includes material in ACM Subject Classes D.4.8

and K.6.2.

PL - Programming Languages Covers programming language semantics, lan-

guage features, programming approaches (such as object-oriented program-

ming, functional programming, logic programming). Roughly includes mate-

rial in ACM Subject Classes D.1 and D.3.

RO - Robotics Roughly includes material in ACM Subject Class I.2.9.
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SE - Software Engineering Covers design tools, software metrics, testing and

debugging, programming environments, etc. Roughly includes material in all

of ACM Subject Classes D.2, except that D.2.4 (program verification) should

probably have Logics in Computer Science as the primary subject area.

SD - Sound Covers all aspects of computing with sound, and sound as an infor-

mation channel. Includes models of sound, analysis and synthesis, audio user

interfaces, sonification of data, computer music, and sound signal processing.

Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2,

I.2.7, I.5.4, I.6.3, J.5, K.4.2.

SC - Symbolic Computation Roughly includes material in ACM Subject Class

I.1.


