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ABSTRACT 

A two-dimensional steady laminar natural convection model of a window cavity with 

between-panes louvers (i.e., slats) was developed by approximating the system as a vertical cavity 

with isothermal walls at different temperatures, and with rotateable baffles located midway 

between the walls. The baffles were set to a third temperature so that night-time and day-time 

conditions could be considered. The effects of wall spacing, baffle angle and temperature, and the 

wall-to-wall temperature difference were examined. It was found that the system is suited to a 

traditional one-dimensional analysis, and that the convective heat transfer is largely independent 

of the Rayleigh number for the conditions of practical interest. 
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INTRODUCTION 

The objective of this paper is to numerically examine natural convection heat transfer in 

window cavities containing rotateable louvered shades. Such systems have become increasingly 

popular, and accurate heat transfer correlations are required for rating purposes and building 
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energy analysis. Such systems have been examined extensively in recent times. To date, however, 

none have looked at the situation where the system is sunlit. 

Rheault and Bilgen [1,2] examined the overall heat transfer rates of a window system using 

climatic conditions for a typical Canadian winter and summer. In their analytical work [1], the 

temperature variation across the louvers and over the thickness of each glazing was assumed to be 

minimal, and therefore conduction effects were ignored. Furthermore, the distance between the 

louver tips and the window glazing was relatively large. Therefore, it was assumed that the 

presence of the louvers did not interfere with the cavity flow when the louvers were at angles 

other than vertical. When the louvers were placed vertically, the problem was treated as two side-

by-side cavities with the louvers as a dividing wall. Longwave radiation and convection transfer 

rates across the window system were considered. The numerical work concluded that the 

presence of louvers between the glazings could reduce heating and cooling loads. The analytical 

results were later verified by the results obtained in the experimental study [2]. 

Garnet [3] measured the centre glass heat transfer of a window system with an aluminium 

louvered blind between two panes of glass. Experiments were run at several different blind louver 

angles and three different pane spacings. It was observed that, for the blind in the fully open 

position, the presence of the blind decreased the window's thermal resistance. It was speculated 

that while in this position, conduction effects in the blinds was having a significant effect. For all 

cavity widths a steady improvement in the performance of the window was observed as the blind 

was closed. 

Yahoda [4] and Yahoda and Wright [5,6] performed detailed modelling of the effective 

longwave radiative and solar/optical properties of a louvered blind layer that could be placed 

anywhere in the window system. The effective longwave radiative properties model was were 

based on fundamental radiant exchange analysis, and accounted for the louver width, spacing, 

angle of tilt, and emissivity. The effective solar-optical properties model treated solar beam and 

diffuse radiation separately. Finally, a simplified center-glass model of thermal transmissivity (U-



factor) was proposed by combining the longwave radiation model with some simple convection 

correlations. This model was moderately successful. 

Naylor and Collins [7] developed a two-dimensional numerical model of the conjugate 

convection, conduction and radiative heat transfer in a double glazed window with a between-

panes louvered blind. They obtained numerical results both with and without the effects of 

thermal radiation. It was concluded that data from a conjugate convection-conduction CFD model 

can be subsequently combined with a very simple radiation model to estimate the U-factor of the 

complete window/blind enclosure. 

Recently, Huang [8] conducted an experimental investigation similar to that of Garnet [3]. He 

examined the effects of louvers on the convective and radiative heat transfer inside a vertical 

window cavity using two sets of glazings; clear/clear and low-e/clear. His experiment used 

isothermal vertical surfaces at various pane spacings and louver angles to examine the centre-

glass U-factor. The results showed better window performance when the louvers were tilted from 

their fully open position and also when the low-e coating was used. More importantly, , it was 

discovered that correlations used to predict heat transfer in window cavities could be used to 

predict heat transfer in the present system [9]. To do so, the following assumptions were made: 

• The system could be approximated as two vertical cavities of a width that is a function of 

louver tip to glass spacing 

• There was no transfer of flow across the blind layer except at the ends of the cavity. 

• That convective heat transfer was laminar natural convection correlations [10].  

These assumptions were later verified via flow visualization performed by Almeida et al. [11]. 

Those studies further showed that turbulent transition was expected to begin at cavity widths 

exceeding 40 mm. 

A simplified convective heat transfer model was developed which was subsequently combined 

with Yahoda's [4] longwave radiation model to predict the centre-glass U-factor. The new model 

reproduced experimental data accurately. 



In this study, laminar natural convection heat transfer was studied numerically. A two-

dimensional model was used in keeping with established window analysis methodology. 

Convective heat transfer was considered for situations when the blind was at a third prescribed 

temperature relative to the glass temperatures. As a 3-temperaure analysis, simulation of heat 

transfer can be performed for cases where the shade is hotter than the glass; simulating absorbed 

solar radiation. That is, the system was analyzed for situations that represent sunlit conditions. In 

future work, the results produced here will be coupled with Yahoda's [4] longwave model, and 

comparisons will be made to the results of Huang [8].  

Numerical results will be examined on two levels. First, the simulation results will provide 

information about flow structures and heat transfer that improve our understanding of the 

underlying heat transfer processes. Second, in keeping with a traditional one-dimensional centre-

glass analysis, particular attention will be paid to average convective heat transfer across the 

center portion of the cavity. The development of a correlation and comparison to the work of 

Huang [8] will be the subject of a future publication. 

 

PHYSICAL MODEL 

A tall vertical enclosure was chosen to represent the glazing cavity, and baffles located on the 

vertical centre line of the enclosure represented the blind louvers (Figure 1). The two window 

panes (AB and CD) were set apart at a distance, W, and a height, H, and were assumed to be 

isothermal. The end walls (BC and DA) were assumed to be adiabatic. The blind consisted of a 

set of evenly spaced isothermal baffles of width, w, and pitch, P, (pitch is the vertical distance 

between two consecutive louvers), which could be rotated about their centre to an angle, φ, from 

the horizontal. The baffles were assumed to be made of a material with high thermal conductivity, 

and flat with zero thickness. 

Three temperatures were required to model the system. In this study, T1 and T2 are the left wall 

(AB) and right wall (CD) temperatures, and T3 is the baffle temperature. For convenience, the 



temperature difference across the cavity and dimensionless baffle temperature are defined as 

∆T=T2-T1 and Θ3=(T3-T1)/(T2-T1), respectively. Air properties were evaluated at a reference 

temperature, Tref., that represents all three temperatures in the system with the baffle temperature 

predominating. 
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The air properties at Tref were taken from Hilsenrath [12]. 

The numerical model was an approximation of a real fenestration. For an actual window, there 

would be frame effects and only the center-glass region would be nearly isothermal. The 

idealized system was, however, consistent with the experimental setup used in the examination 

conducted by Huang [8]. Geometric parameters that remained constant for all numerical 

simulations are given in Table 1. 

To understand the flow field and heat transfer characteristics of the system, three different 

wall spacings (W=17.8 mm, 25.4 mm, and 40.0 mm), three different wall-to-wall temperatures 

(∆T=35oC, 10 oC, and -15 oC), three different baffle temperatures (Θ3= 0, 0.5, and 1), and three 

different baffle angles (φ=0o, 45o, and -45o) were considered. Table 2 presents the matrix of 

conditions considered in this study. 

 

GOVERNING EQUATIONS 

Steady laminar natural convective heat transfer in the system is described by the fundamental 

conservation laws of mass, momentum, and energy. The Boussinesq approximation has been 

applied to the y-momentum equation, and the assumptions of an incompressible fluid flow with 

negligible viscous dissipation, and constant thermo-physical properties has been made. 

The dimensional forms of the conservation equations are 
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Here, u, v, and T are velocity components in the x, y directions and temperature, respectively. ρ, 

µ, and α are the density, dynamic viscosity and thermal diffusivity respectively. β is the volume 

expansion coefficient where β = 1/Tref. g is gravitational acceleration, and p is the pressure. 

To solve Equations (2) to (5), the boundary conditions must be specified. No slip conditions 

were applied to all surfaces, the temperature was specified for both side walls and the baffles, and 

the end surfaces were adiabatic. The dimensional forms of the boundary conditions are: 

AB u=v=0, T=T1 

CD u=v=0, T=T2 (6) 

BC, DA u=v=0, 0yT =∂∂  

On the baffles u=v=0, T=T3 

 

The steady state governing equations were discretized by the finite-volume-method using a 

third order Quick scheme [13]. The solution procedures included the conjugate gradient method 

and the PISO algorithm (Pressure-Implicit with Splitting of Operations) [14] to ensure correct 

linkage between pressure and velocity. The typical number of iterations needed to obtain 

convergence was between 5,000 and 10,000. The tolerance of the normalized residuals upon 

convergence was set to 10-5 for every calculation case.  

 

MODEL CHECKS 



To provide confidence in the numerical model, steady laminar natural convection in a vertical 

cavity was also studied numerically, and compared to published solutions by Lee and Korpela 

[15], and Wright and Sullivan [16]. Comparisons were made by plotting the average Nusselt 

number, Nuav, versus Rayleigh number, Ra, at different aspect ratios, A = H/W. Nuav as given by 

 ∫=
H

localav dyNu
H
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where Nulocal is the local Nusselt number and is given by 

 
k
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Here, k is the conductivity of the air, and hlocal is the local convective heat transfer coefficient and 

is defined by 
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q" is output by the software a q"=-kϑT/ϑx at the wall. 

Ra is given by 
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where Pr is the Prandtl number 
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Here, Cp is the specific heat of the air. Fluid properties were evaluated at a reference temperature  
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Results were determined for cavities with aspect ratios of A = 15, 20 and 40 using a uniform 

grid size of (W x H) of 60 x 300 (Figure 2). For the cases of A=15 and 20, the predictions of Lee 

and Korpela [15] agree with the present numerical simulation to within 0.7%, while the 



predictions of Wright and Sullivan [16] agree to within 1.5%. At A=40, agreement is not as good, 

although Nuav is still predicted to within 0.1. 

In order to determine the proper grid size for this study, a grid dependency test was also 

conducted for the vertical cavity (W=17.78 mm) with the baffles in the horizontal position, and 

for the geometry presented in Table 1 and Figure 1. Temperatures were set to T1=-10oC, T2=25oC, 

and T3=7.5oC. These variables resulted in Ra=2.92×104. Seven different grid densities were used 

for the grid independence study. Considering both the accuracy and the computational time 

involved, a grid density (WxH) of 80×434 was chosen for W=17.8 mm. By the same method, grid 

densities of 120×434 and 200×434 were chosen for W=25.4 mm, and 40.0 mm spacings, 

respectively. 

 

ANALYSIS AND DISSCUSSION 

It is useful to first examine the flow structures and heat transfer to improve our understanding 

of the underlying heat transfer processes. Figures 3 to 5 show isothermal lines and velocity 

vectors at the top of selected cavities. Figure 3 shows the effect of baffle angle and temperature 

for W=17.8 mm, T1=15oC, and T2=25oC, Figure 4 shows the effect of cavity width and baffle 

temperature for φ=0 deg, T1=15oC, and T2=25oC, and Figure 5 shows the effects of cavity width 

and wall temperatures for φ=0 deg, T1=15oC, and T2=25oC for W=17.8 mm and 25.4 mm. 

The effect of baffle temperature is shown in Figures 3 and 4. For Θ3=0.5, the system is 

geometrically and thermally symmetric. As such, the isotherms on both sides of the cavity are 

also symmetric (albeit in the opposite direction), indicating an equal amount of heat transfer at 

both surfaces. When Θ3=0, however, there is no temperature difference between the left wall and 

the baffles. As such, the isotherms are all between the right wall and the baffles. The opposite 

occurs when Θ3=1. Finally, while the vector plots show a turn-around region at the tops of the 

cavities, the isothermal lines do not penetrate appreciably to the opposite side of the cavity for 



any of the cases. It appears as if the turn-around region at the cavity ends is very short. This 

suggests that the end regions of the cavity have little effect on the heat transfer between the walls. 

The effects of baffle angle are demonstrated by Figure 3. In all cases, the heat transfer at the 

baffle tips is increased due to increased fluid flow when the baffle tips are in close proximity to 

the walls. This effect was also seen in the results of Huang [8] and Garnet [3] who found that an 

open blind, when the louvers and glass were in close proximity, resulted in larger thermal 

transmission then a similar system with no blind present. Furthermore, it is noted that the 

isotherms extend into, but not beyond the baffle layer in all cases. The corresponding vector plots 

show that convective cells form between the baffles, and no significant transfer of fluid occurs 

between opposite sides of the cavity via the baffle layer. This phenomenon supports the treatment 

of the system as two vertical cavities (right wall-baffles and baffles-left wall). 

The effects of cavity width are demonstrated by Figures 4 and 5. The fluid velocity increases 

as the spacing increases, resulting in larger turn-around regions near the cavity ends. In practice, 

fortunately, a 40.0 mm wide window cavity is extremely rare. The turn-around regions that 

represent the more realistic windows (17.8 mm and 25.4 mm) is still small. It is also noted that in 

general, the isothermal lines become denser at the walls as the cavity spacing decreases. Heat 

transfer is therefore highest for the lowest pane spacing. 

The effects of wall temperature are shown in Figure 5. The fluid velocity increases only 

slightly with the increase of ∆T for both widths. Furthermore, the cells located between the 

louvers reverse direction depending on which wall is hotter. Overall however, the temperature 

difference has little impact on the flow structures. 

To evaluate how the baffles affect the heat transfer, it is necessary to observe the variations of 

Nulocal on the walls. Due to the fact that this is a three temperature problem, negative and positive 

Nusselt numbers can result where the sign is not indicative of the direction of heat flow. For this 

discussion, positive Nuavg indicates that heat flux is from the surface, while negative Nuavg 

indicates that heat flux is into the surface. 



Figure 6 shows an example of Nulocal along the right wall of the cavity for W=17.78 mm, φ=00, 

T1=150C, and T2=250C. As was predicted in the preceding paragraphs, one can observe that the 

proximity of the baffle tips producing a significant periodic effect on the Nulocal distribution, 

where the peak values of Nulocal indicate the positions of the louvers. The small turn-around 

region the top and bottom of the cavity are also confirmed. More importantly, the heat transfer is 

shown to be steady-periodic after the 1st baffle from either end of the cavity. The baffles prevent 

boundary layer growth on the cavity walls. As the problem is symmetric, Nulocal at the left wall 

can be examined via the same plot where θ3,left = |θ3 – 1| and the Nulocal,left = -Nulocal. For example, 

to examine Nulocal on the left wall for θ3=1, then look at the results for θ3=0, and take the negative 

value of the resulting Nulocal. 

The previous result is a fortunate occurrence in that most windows are analyzed from a one-

dimensional centre-glass perspective, and ultimately a center-glass U-factor would be required for 

use in window rating software and building energy studies. As such, a center-glass Nusselt 

number, Nucg, has been calculated at the center of the cavity between two consecutive louvers  
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Figure 7 shows Nucg for all situations of 0o, 45o, and -45o, respectively, and on the right wall. 

The symmetry of the heat transfer is further demonstrated in Figure 7. As before, Nucg at the 

left wall can be examined via the same plot where θ3,left = |θ3 – 1| and the Nucg,left = -Nucg. 

Therefore, when Θ3 = 0.5, and the baffle temperature is at the average of the two vertical walls 

temperatures, Nucg on the left wall equals the negative of that on the right wall. Furthermore, 

when Θ3=1, the louver and the right wall are at the same temperature, and when Θ3=0, the louver 

and the left wall are at the same temperature. Under these circumstances, there should be little 

heat transfer between the baffle and the wall. The figures show that this is indeed the case, and a 

value of Nucg near zero results. For the opposite situation of heat transfer between the baffle and 



the left wall when Θ3=1, and between the baffle and the right wall when Θ3=0, the maximum Nucg 

occurs. Practically, the symmetrical nature of the problem means that the same correlation would 

suffice for both sides of the system. 

The effects of pane spacings and temperature difference on Nucg are also presented in these 

figures. Nucg is highest for the lowest wall spacing in all cases. Furthermore, in most cases, Nucg 

is almost independent of Ra. The exceptions are the high Ra cases (i.e., when W=40 mm) and the 

high temperature cases (∆T = 35K) coupled with a small baffle tip to wall spacing (i.e. φ=0o and 

W=17.8 mm), and a large baffle-wall temperature difference (i.e., θ3=1 at right wall or θ3=0 at the 

left wall). Considering the 40 mm spacing, the calculated Ra’s are large and heat transfer in those 

cavities may be dominated by advection. It is also likely that the assumption of steady laminar 

flow for the widest pane spacing is not valid. Practically, however, windows are rarely built with 

40 mm spacings due to structural considerations. These cases were examined out of curiosity. 

Concerning the second exception, the proximity of the baffle to the wall likely enhanced the 

cellular flow between the baffles, and enhanced the heat transfer. However, the conditions 

required for this to occur are at the limits of the practical cases that would be considered in a 

building energy analysis, and the resulting change in Nucg was not significant. Practically, it may 

be possible to represent the heat transfer in the system in a way that decouples Ra and Nucg. As 

was suggested by Huang [8], the baffle tip-wall spacing appears to be the main geometric 

parameter needed for a correlation. 

 

CONCLUSIONS 

A finite-volume model of a glazing cavity with between-panes louvers has been developed 

and validated. Examination of the numerical results suggested that a number of assumptions can 

be applied to the formulation of a simplified heat transfer model. These assumptions relate to the 



treatment of direct convection between the glass, the intra-louver heat transfer, and the glass-to-

louver heat transfer characteristics. 

• The energy transfer that would occur at the end regions, when the flow reverses cavity sides, 

and by air entrainment directly through the louvers, was found to be negligible. From the 

numerical model, Nulocal was influenced at the ends of the cavity over a small distance, and 

therefore, the turn-around region is also small. Flow across the cavity was also negligible 

due to the formation of cells between the louvers. For these reasons, the convective heat 

transfer could be represented as the convective heat transfer from the glass-to-blind and 

blind-to-glass, without including a glass-to-glass term. 

• Nulocal reached a steady-periodic state over a very short distance. Practically, this supports 

the one-dimensional centre-glass analysis preferred by building modelers.  

• It was shown that the temperature drop across the cavity exists mostly between the blind tips 

and the glass. The convective cells that form between the slats create mixing which makes 

the blind-section of the cavity essentially isothermal (i.e., with negligible resistance to heat 

flow). Therefore, no resistance needs to be assigned to the blind section. 

• The isotherms spread slightly into the spaces between the louvers. On the basis of this 

observation it seemed reasonable to treat convective heat transfer between the glass and the 

blind using established vertical cavity correlations, where the width of the cavity is based on 

the glass-to-blind spacing with some sort of geometric correction factor applied. That is Ra 

would be calculated on the basis of a cavity width which is a strong function of slat angle. 

Combining these conclusions, the convective heat transfer in a window cavity with a blind can be 

treated as a combination of two vertical cavities from the glass-to-blind and blind-to-glass 

without accounting for the blind section. The cavity width will be some modified width based on 

the slat geometry and the slat tip-to-glass spacing. 



A correlation can be produced from these results, however, such an exercise is outside the 

scope of this paper. A future paper will be dedicated to the development of a Nucg correlation, and 

the comparison of results to the work of Huang [8]. 
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NOMENCLATUREA Aspect Ratio, dim 

Cp Specific heat, J/kgK 

g Gravity, m2/s 

h Heat transfer coef., W/m2K 

H Cavity height, mm 

k Conductivity, W/mK 

Nu Nusselt number, dim 

p Pressure, Pa 

P Louver pitch, mm 

Pr Prandtl number, dim 

q”
 Heat flux, W/m2 

Ra Rayleigh number, dim 

T Temperature, ◦C, K 

U Thermal transmissivity, W/m2K 

u,v Velocity, m/s 

w Louver width, mm 

W Cavity width, mm 

α Thermal diffusivity, m2/s 



∆ change/difference 

φ Louver angle, deg 

ρ Density, kg/m3 

µ Viscosity, kg/ms 

Θ Temperature, dim 

 

Subscripts 

av Average 

cg Centre-Glass 

left Left Wall 

local Local 

ref Reference 

1 Left Wall/Left Glass 

2 Right Wall/Right Glass 

3 Louver/Baffle 
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Table 1: Constant geometric parameters used in the numerical model 

H (mm) w (mm) No. of baffles Pitch P (mm) 

367.0 14.8 30 11.8 

 



Table 2: Input variables used in the numerical model 

T1(◦C) T2(◦C) Θ3 T3(◦C) ∆T(◦C) W (mm) φ (deg.) 

-10.0 25.0 0.0 -10.0 35.0  

 

 

 

17.8/25.4/40.0 

 

 

 

 

-45, 0, 45 

-10.0 25.0 0.5 7.5 35.0 

-10.0 25.0 1.0 25.0 35.0 

15.0 25.0 0.0 15.0 10.0 

15.0 25.0 0.5 20.0 10.0 

15.0 25.0 1.0 25.0 10.0 

40.0 25.0 0.0 40.0 -15.0 

40.0 25.0 0.5 32.5 -15.0 

40.0 25.0 1.0 25.0 -15.0 

 



 
Figure 1: (a) Blind louvers enclosed between glass panes and (b) computational domain. 
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Figure 2: Comparison of the Nuav for the hot wall of the cavity versus Lee and Korpela [12] and 

Wright and Sullivan [13] 
 



           
 

           
 

           
 Θ3=0, Ra=6110 Θ3=0.5, Ra=5870 Θ3=1, Ra=21800 

 
Figure 3: Isothermal lines and velocity vectors for φ=0 o (top), 45o (mid), and -45o (bot). 

W=17.8mm, T1=150C and T2=250C. 



           
 Ra=6110 Ra=17800 Ra=69600 
 

           
 Ra=5870 Ra=17100 Ra=66900 
 

           
 Ra=21800 Ra=16500 Ra=64400 
 W=17.8 mm W=25.4 mm W=40.0 mm 
 
Figure 4: Isothermal lines and velocity vectors for Θ3=0 (top), 0.5 (mid), and 1 (top). φ=00, 

T1=150C, and T2=250C. 
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 T1=-100C, T2=250C T1=150C, T2=250C T1=400C, T2=250C 
 
Figure 5: Isothermal lines and velocity vectors for W=17.8mm (top), and 25.4mm (bottom). φ=00 

and Θ3=0.5. 
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Figure 6: Variation of Nulocal along the right wall of the cavity for W=17.8mm, φ=00, T1=150C, 

and T2=250C. For left wall: θ3,left = |θ3 – 1| and Nulocal,left = -Nulocal. 
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Figure 7: Nucg for φ=45o (top), φ=0o (mid), and φ=-45o (bottom) on the right wall. For left wall: 

θ3,left = |θ3 – 1| and Nucg,left = -Nucg. 
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