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Abstract

Daptomycin is a clinically important lipopeptide antibiotic that kills Gram-positive bacteria through 

membrane depolarization. Its activity requires calcium and the presence of phosphatidylglycerol in the 

target  membrane.  Calcium  and  phosphatidylglycerol  also  promote  the  formation  of  daptomycin 

oligomers,  which  have  been  assumed  but  not  proven  to  be  required  for  the  bactericidal  effect. 

Daptomycin shares substantial structural similarity with another lipopeptide antibiotic, A54145; the two 

have identical amino acid residues in 5 out of 13 positions and similar ones in 4 more positions. We 

here examined whether these conserved residues are sufficient for oligomer formation. To this end, we 

used fluorescence energy transfer and excimer fluorescence to detect hybrid oligomers of daptomycin 

and  CB-182,462,  a  semisynthetic  derivative  of  A54145.  Mixtures  of  the  two  compounds  indeed 

produced  hybrid  oligomers,  but  at  the  same  time  displayed  a  significantly  less  than  additive 

antibacterial  activity  against  Bacillus  subtilis.  The  existence  of  functionally  impaired  oligomers 

indicates that oligomer formation is indeed important for antibacterial function. However, it also shows 

that oligomerization is not sufficient; once formed, the oligomers must take another step in order to 

acquire  antibacterial  activity.  Thus,  the  amino  acid  residues  shared  between  daptomycin  and  CB-

182,462 suffice for formation of the oligomer, but not for its subsequent activation. 
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Introduction

The lipopeptide antibiotic daptomycin is used clinically against infections by Gram-positive bacteria, 

including strains of staphylococci and enterococci that are resistant to other antibiotics [1-3]. It binds to 

and  causes  depolarization  of  the  bacterial  cytoplasmic  membrane,  which  is  considered  to  be  the 

mechanism of its rapid bactericidal action  [4, 5]. Electron microscopy of daptomycin-exposed cells 

does  not  reveal  any discontinuity  of  or  morphological  change  to  the  lipid  bilayer  [6].  Both  this 

observation and the selective nature of the membrane permeability defect  [7] support the notion that 

daptomycin forms small, discrete membrane lesions. It was proposed earlier that these discrete lesions 

are formed by oligomeric assemblies of daptomycin molecules [5]. However, experimental evidence of 

oligomer formation has been obtained only recently  [8, 9], and direct proof of their involvement in 

membrane permeabilization is still lacking.

Daptomycin consists of 13 amino acids, including several nonstandard ones [10]. The ten C-terminal 

residues form a ring that is closed by an ester bond (Figure 1). The exocyclic N-terminal tryptophan 

carries a fatty acyl residue, which in the clinical compound is decanoic acid, although the length of this 

acyl tail is subject to variation in the natural compound. The same architecture occurs in the related 

antibiotic A54145  [11], and the two molecules also share significant sequence homology, with five 

identical residues and four more similar ones. We reasoned that testing the two molecules for their 

ability to form hybrid oligomers should provide information on the contributions of the conserved and 

the non-conserved residues, respectively, to the oligomerization process. 

The  experiments  were  performed  with  various  fluorescent  derivatives  of  daptomycin  and  of  CB-

182,462, a semisynthetic derivative of A54145 [12]. Our results readily demonstrate the formation of 

such hybrid oligomers, both on model membranes and on bacterial cells; therefore, the amino acid 

residues  conserved  between  daptomycin  and  CB-182,462  are  sufficient  for  oligomerization. 

Remarkably, however, the hybrid oligomers exhibit reduced antibacterial activity. The observation of 

oligomers with impaired antibacterial  activity shows, on the one hand, that the oligomer is  indeed 

involved in the antibacterial effect. On the other hand, it indicates that oligomer formation as such is 

not  sufficient  for activity.  The oligomer must  undergo some additional  event,  such as for example 

cooperative membrane insertion, in order to acquire bactericidal activity. 
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Materials and Methods

Synthesis and purification of NBD-CB-182,462 and of perylene-daptomycin. Unlabeled CB-182,462 

was kindly provided by Jared Silverman (Cubist Pharmaceuticals Inc., Lexington, MA, USA). Reaction 

of CB-182,462 with NBD-Cl (4-Chloro,7-nitro-2,1,3-benzoxadiazole; Fluka) and HPLC purification 

were performed as described before for NBD-daptomycin [8]. Molecular weight and homogeneity were 

confirmed by mass spectrometry on a Micromass Q-TOF Ultima GLOBAL mass spectrometer. The 

synthesis of perylene-daptomycin has been described as well [9].

Preparation of PC/PG large unilamellar vesicles (LUV). 1,2-Dimyristoyl-sn-glycero-3-phosphocholine 

(DMPC) and 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG) were purchased from 

Avanti Polar Lipids (Alabaster, AL, USA). Large unilamellar vesicles were prepared by polycarbonate 

membrane extrusion as described  [8]. HEPES buffer (20 mM, pH 7.4) containing 150 mM sodium 

chloride was used throughout. 

Steady-state  fluorescence  measurements  on PC/PG liposomes  and on bacterial  cells. Fluorescence 

emission spectra were acquired using a PTI QuantaMaster spectrofluorometer. Excitation wavelengths 

were 282 nm for tryptophan, 430 nm for perylene, and 465 nm for directly excited NBD fluorescence. 

Excitation and emission band passes were typically 2 nm but were occasionally adjusted in order to 

increase or reduce sensitivity. Unlabeled daptomycin and CB-182,462 or NBD-labeled CB-182,462 and 

perylene-labeled  daptomycin  were  applied  in  the  quantities  indicated  in  the  Results  section  to  the 

liposomes (200 or 250 μM total lipid) in HEPES/NaCl with calcium (5 mM). Samples were incubated 

for 5 or 10 minutes before acquisition of emission spectra, and in some instances measured repeatedly 

after longer time intervals as indicated. 

For fluorescence measurements on bacteria, cells from a fresh overnight culture of  Bacillus subtilis 

ATCC 1046 were harvested and repeatedly washed with HEPES/NaCl buffer by centrifugation in a 

table-top centrifuge. The pelleted cells were resuspended in approximately 20 volumes of buffer. Of the 

resulting cell suspension, 150 μl were incubated in the presence of CaCl2 (5 mM) for 10 minutes with 

the amounts of labeled or unlabeled daptomycin and CB-182,462 stated in the Results section. The 

cells  were again washed repeatedly by centrifugation with HEPES/NaCl/CaCl2,  resuspended in the 

same buffer and measured as described above for liposome samples. 

Antibacterial activity of daptomycin and CB-182,462. Overnight cultures of  Bacillus subtilis ATCC 

1046 were grown at 37 °C in LB broth. Daptomycin and CB-182,462, alone or combined in various 
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ratios, were serially diluted in LB broth supplemented with 5 mM CaCl2.  Each serial  dilution was 

inoculated with 1% by volume of the  Bacillus subtilis overnight culture, and the culture tubes were 

incubated with shaking at 37°C overnight. Growth was evaluated visually by turbidity. Growth and 

sterility controls were included in each experiment. 

Results

Oligomerization of CB-182,462 on liposome membranes. We have previously shown that daptomycin 

forms oligomers on model membranes and bacterial cells [8, 9, 13]. While the similarity between the 

two compounds suggests that CB-182,462 should do the same, this has not been directly demonstrated. 

Therefore, a fluorescently labeled derivative was prepared with nitrobenzoxadiazole (NBD) attached to 

its unique free amino group (Figure 1). While the absorption of NBD is highest around 470 nm, there is 

a smaller absorption peak around 340 nm [14] that overlaps the fluorescence emission spectrum of 

tryptophan. This allows the detection of FRET between the tryptophan of unlabeled CB-182,462 and 

the NBD-labeled derivative. In the experiment shown in Figure 2A, the two species were mixed before 

application  to  PC/PG  liposomes  in  the  presence  of  calcium.  The  tryptophan  fluorescence  of  the 

unlabeled molecules is very strongly reduced by FRET, which indicates a close association of the two 

species. FRET is still observed, but to a lesser extent, when the two species are applied sequentially. 

Under these conditions, the labeled molecules and the unlabeled ones should undergo oligomerization 

separately, and therefore FRET will only occur between, but not within oligomers, which accounts for 

the reduced extent of FRET.

NBD exhibits concentration-dependent self-quenching [15]. The local concentration of NBD is higher, 

and  therefore  quenching is  more  pronounced,  in  pure  NBD-CB-182,462 oligomers  than  in  hybrid 

oligomers formed from a mixture of the NBD-labeled compound and an excess of the unlabeled one 

(Figure 2B). The results from both FRET and self-quenching experiments are completely analogous to 

our previous observations with daptomycin [8].

Formation of daptomycin/CB-182,462 hybrid oligomers on liposomes. The intrinsic fluorescence of 

tryptophan also overlaps the absorption spectrum of kynurenine, which in daptomycin causes virtually 

complete FRET from tryptophan to kynurenine  [16]. FRET between tryptophan and kynurenine can 

also  be  used  to  detect  formation  of  hybrid  CB-182,462/daptomycin  oligomers.  When  a  premixed 

sample of the two is applied to PC/PG liposomes, the tryptophan fluorescence of CB-182,462 is largely 
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suppressed by FRET (Figure 3A). Again, sequential application reduces FRET, which is consistent with 

formation of separate oligomers.

While daptomycin oligomers are largely stable on a time scale of one or a few hours  [8], it seems 

possible that hybrid oligomers of CB-182,462 might be less stable. In the experiment shown in Figure 

3B,  a  sample  prepared  by  sequential  application  of  the  two  antibiotics  was  incubated,  and  the 

fluorescence emission measured repeatedly after  various  time intervals.  While  the extent  of FRET 

increases slightly with time, it remains much lower than that observed with a premixed sample after 60 

minutes. This suggests that the rate of subunit exchange between oligomers is low, and oligomers are 

largely stable on the time scale of the experiment.

Formation of hybrid oligomers on bacterial cells. While PC/PG membranes are a useful model to 

observe the activity of daptomycin and CB-182,462, the lipid composition of bacterial membranes is 

different, and it is therefore pertinent to examine the formation of hybrid oligomers on bacterial cells as 

well. Due to the abundance of tryptophan in bacterial proteins, the intrinsic tryptophan fluorescence of 

CB-182,462 could not be used in these experiments; however, two alternative approaches allowed for 

the detection of hybrid oligomers on  Bacillus subtilis cells. Firstly, the concentration-dependent self-

quenching of NBD in NBD-labeled CB-182,462 can be inhibited not only by unlabeled CB-182,462 

but also using unlabeled daptomycin (Figure 4A). Secondly,  the formation of perylene excimers in 

oligomers  of  perylene-labeled  daptomycin  [9] is  suppressed  by  both  unlabeled  daptomycin  and 

unlabeled CB-182,462 (Figure 4B). Between the two experiments, it is evident that both the labeled 

and the unlabeled forms of daptomycin and CB-182,462 are capable of hybrid oligomer formation on 

bacterial cell membranes. 

Antibacterial activity of daptomycin/CB-182,462 mixtures. If two different drugs act independently but 

share the same target and mode of action, their mixtures will display additive effectiveness. This can be 

detected in an isobologram [17]. In such a graph, the concentrations of the two drugs in question are 

varied independently, and lines are drawn to connect equieffective dosages of various combinations. If 

the two drugs in question indeed behave additively, the equieffective dosages of all mixtures will fall 

on a straight line that connects the equieffective dosages of the two pure drugs. 

Figure 5 shows an isobologram for the minimum inhibitory concentrations (MICs) of daptomycin and 

CB-182,462. It  is  clear  that  the MICs deviate  from such an ideal  straight  line.  With the mixtures, 

greater than additive dosages are required to reach the MIC, indicating that the two drugs inhibit one 
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another. The apex of mutual inhibition occurs at equimolar ratio. While any binary mixture should 

produce a distribution of oligomers that vary with respect to both the fractions of the two antibiotics 

incorporated  and  the  positions  within  the  oligomer  occupied  by  each,  an  equimolar  ratio  should 

maximize the extent of scrambling and minimize the residual fractions of homogeneous oligomers. The 

observation that mutual inhibition is strongest at this ratio therefore supports the notion  that hybrid 

oligomers have impaired antibacterial activity. 

Discussion

In previous studies, it was shown that daptomycin forms oligomers on PG-containing membranes [8, 

9],  and  that  the  oligomers  have  a  stoichiometry  of  approximately  6–7  subunits  [13].  A role  of 

membrane-associated oligomers in the antibacterial activity of daptomycin has widely been assumed 

and accepted as plausible [5]; however, direct experimental evidence has been lacking. The mutual 

inhibition between daptomycin and the semisynthetic homologous lipopeptide CB-182,462 reported in 

this study constitutes the first such evidence; for if each individual monomer contributed independently 

and  proportionally  to  the  antibacterial  action,  combinations  of  the  two  antibiotics  should  display 

additive activity. In addition, however, the reduced antibacterial activity of hybrid oligomers also shows 

that oligomer formation as such is not sufficient for the antibacterial effect. One must therefore assume 

that the oligomer, once formed, has to undergo an additional step to acquire bactericidal activity. A 

similar  functional  sequence  exists  with  many  pore-forming  protein  toxins,  such  as  for  example 

Staphylococcus  aureus α-toxin  [18,  19],  anthrax  toxin  protective  antigen  [20]  and the  cholesterol-

dependent cytolysins of Gram-positive bacteria [21], all of which first assemble into oligomers atop the 

target  membrane  before  cooperatively  inserting  into  and  permeabilizing  it.  By  analogy,  one  may 

hypothesize that the oligomers of daptomycin and related antibiotics also undergo such a cooperative 

membrane insertion (Figure 6); however, the structural correlate of oligomer activation clearly needs 

further experimental study. The same applies to the functional roles of individual amino acid residues 

in  the  daptomycin  molecule.  While  our  study makes  an  initial  distinction  between two functional 

groups of residues – namely, the ones shared between daptomycin and CB-182,462, which suffice for 

oligomerization, and those not shared between the two molecules, at least some of which are required 

for oligomer activation – this level of resolution is clearly inadequate for construction of a detailed 

structural and functional model of the formation and activation of the oligomer. Studies with additional 
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synthetic or genetically engineered [22, 23] molecular variants of daptomycin may help to address this 

question. 

The high degree of specificity in the mutual interaction of the subunits within the daptomycin and CB-

182,462 oligomers agrees with the considerable stability of the oligomers; even the hybrids, which one 

might expect to be less stable than the homogeneous oligomers, appear mostly stable on a time scale 

longer than required for exercising the antibacterial effect. Daptomycin has been likened to the large 

and  structurally  diverse  functional  family  of  antibacterial  peptides  [24,  25].  However,  with  most 

antibacterial peptides, oligomer formation seems to be rather fleeting and transient, or at least more 

readily reversible [26-29] than with daptomycin and CB-182,462. It appears possible, therefore, that 

pore-forming  protein  toxins  provide  a  more  useful  and  valid  paradigm than  typical  antimicrobial 

peptides to understand daptomycin's mode of pore formation. 
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Legends to Figures

Figure 1: Structures of daptomycin and of CB-182,462 and of their labeled derivatives used in this 

study. Arrows indicate amide or ester bonds, in C to N or C to O direction. In perylene-daptomycin, a 

perylene-butanoyl residue replaces the N-terminally attached decanoyl residue found in daptomycin. 

CB-182,462 is  a semisynthetic derivative of the natural compound A54145, in which the naturally 

occurring N-terminally linked fatty acyl residue is replaced by a substituted carbamyl residue. In NBD-

CB-182,462, a nitrobenzoxadiazole group is attached to the free amine in the side chain of D-lysine. 

Abbreviated names for non-standard amino acids: Orn, ornithine; MeOGlu, γ-methoxy-glutamate; kyn, 

kynurenine; HO-Asn,  β-hydroxy-asparagine; MeOAsp,  β-methoxy-aspartate. The two residues whose 

intrinsic fluorescence was used in some of the experiments, tryptophan in CB-182,462 and kynurenine 

in daptomycin, are set in boldface. Note that, in addition to the sequence similarity, the same positions 

are occupied by D- and L-amino acids in both molecules.

Figure 2: Formation of CB-182,462 oligomers on PC/PG liposomes. NBD-labeled CB-182,462 (0.96 

µM) and unlabeled CB-182,462 (4.8 µM), alone or combination, were incubated with PC/PG (1:1, 200 

µM total  lipid)  liposomes  in  the  presence  of  calcium (5  mM).  A:  Tryptophan  fluorescence  upon 

excitation at 282 nm. NBD-CB-182,462 has virtually none, due to FRET from tryptophan to NBD. 

When the two compounds are mixed before application to liposomes, the tryptophan fluorescence is 

more  strongly quenched  than  when they are  applied  separately with  a  time  interval  of  5  minutes 

between both applications. This is consistent with the formation of hybrid oligomers in the first case 

but  mostly  segregated  oligomers  in  the  second.  The  emission  of  NBD  was  not  scanned  in  this 

experiment  because  it  overlaps  the  secondary  maximum  of  the  excitation  wavelength.  B:  Self-

quenching of NBD-CB-182,462. Addition of unlabeled CB-182,462 before application to the PC/PG 

liposomes increases the fluorescence intensity of NBD-CB-182,462 upon direct excitation of NBD at 

465  nm,  indicating  that  the  latter  is  subject  to  self-quenching  in  homogeneous  oligomers.  If  the 

unlabeled CB-182,462 is added 5 minutes after the NBD-labeled sample,  it  has little effect on the 

extent of quenching. 

Figure 3:  Formation of hybrid oligomers of native CB-182,462 and daptomycin on liposomes.  A: 

When both compounds (2  μM each) are mixed before addition to PC/PG liposomes (250  μM total 

lipid) and calcium (5 mM), the tryptophan fluorescence of CB-182,462 is strongly reduced by FRET, 

and the kynurenine emission of daptomycin (around 445 nm) is  increased.  The extent of FRET is 
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smaller when one compound is applied to the liposomes 5 minutes after the first one.  B: Extended 

incubation of a sequentially prepared sample. The extent of FRET increases slightly with time, but after 

60 minutes still  does not approach that of a premixed sample, indicating that daptomycin and CB-

182,462 mostly do not reassemble into hybrid oligomers within this time period. Thin dotted lines 

represent several time points between 5 and 60 minutes. 

Figure  4:  Formation  of  hybrid  CB-182,462  oligomers  on  Bacillus  subtilis cell  membranes.  A: 

Alleviation of NBD-CB-182,462 self-quenching by unlabeled CB-182,462 or daptomycin. NBD-CB-

182,462 (4 µM), alone or premixed with unlabeled CB-182,462 or daptomycin (20 µM), was incubated 

with  Bacillus subtilis ATCC 1046 cells in the presence of calcium (5 mM). After incubation for 10 

minutes,  the cells  were washed repeatedly by centrifugation,  re-suspended in buffer,  and the NBD 

fluorescence measured upon excitation at 465 nm.  B:  Inhibition of excimer formation by perylene-

daptomycin by unlabeled daptomycin or CB-182,462. Perylene-daptomycin monomers emit maximally 

at 455 nm, whereas the excimers emit maximally at about 525 nm [9]. Concentrations of labeled and 

unlabeled compounds, and other conditions as in A. 

Figure 5:  Mutual  inhibition  of  bactericidal  action  between  daptomycin  and  CB-182,462.  Bacillus  

subtilis ATCC 1046 was pre-grown in LB broth and inoculated 1:100 into LB broth supplemented with 

calcium (5 mM) and either or both antibiotics as indicated. The data points represent the MIC values 

determined in two independent representative experiments. The dotted line (partly covered) represents 

the expected relationship for additive drug action. 

Figure 6: Hypothetical model for daptomycin action. Membrane binding (1) precedes oligomerization 

(2),  which  in  turn  must  be  followed  by  membrane  insertion  (3)  in  order  to  produce  functional 

membrane  lesions  (top).  In  mixtures  of  daptomycin  and  CB-182,462  (bottom),  oligomerization  is 

preserved, but membrane insertion is disrupted.
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