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Abstract 

Gallium Nitride (GaN) based high electron mobility transistors (HEMTs) outperform Gallium 

Arsenide (GaAs) and silicon based transistors for radio frequency (RF) applications in terms of output 

power and efficiency due to its large bandgap (~3.4 eV@300 K) and high carrier mobility property 

(1500 – 2300 cm2/(V ⋅ s)). These advantages have made GaN technology a promising candidate for 

future high-power microwave and potential millimeter-wave applications.  

Current GaN HEMT models used by the industry, such as Angelov Model, EEHEMT Model and 

DynaFET (Dynamic FET) model, are empirical or semi-empirical. Lacking the physical description 

of the device operations, these empirical models are not directly scalable. Circuit design that uses the 

models requires multiple iterations between the device and circuit levels, becoming a lengthy and 

expensive process. Conversely existing physics based models, such as surface potential model, are 

computationally intensive and thus impractical for full scale circuit simulation and optimization. To 

enable efficient GaN-based RF circuit design, computationally efficient physics based compact 

models are required. 

In this thesis, a physics based Virtual Source (VS) compact model is developed for GaN HEMTs 

targeting RF applications. While the intrinsic current and charge model are developed based on the 

Virtual Source model originally proposed by MIT researchers, the gate current model and parasitic 

element network are proposed based on our applications with a new efficient parameter extraction 

flow. Both direct current (DC) of drain and gate currents and RF measurements are conducted for 

model parameter extractions. The new flow first extracts device parasitic resistive values based on the 

DC measurement of gate current. Then parameters related with the intrinsic region are determined 

based on the transport characteristics in the subthreshold and above threshold regimes. Finally, the 

parasitic resistance, capacitance and inductance values are optimized based on the S-parameter 

measurement. This new extraction flow provides reliable and accurate extraction for parasitic element 

values while achieving reasonable resolutions holistically with both DC and RF characteristics. The 

model is validated against measurement data in terms of drain current, gate current and scattering 

parameter (S-parameter). 

This model provides simple yet clear physical description for GaN HEMTs with only a short list of 

model parameters compared with other empirical or physics based models. It can be easily integrated 

in circuit simulators for RF circuit design.  
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Chapter 1 

Introduction 

1.1 Background 

Wireless communication systems have greatly changed our daily lives over the past several decades. 

With technology advancement, personal wireless communication has moved from low-data-rate 

voice-based communication in the 2nd Generation (2G) standard to high-speed data-based 

communication in the 4th Generation (4G) Long Term Evolution (LTE) standard, and towards even 

higher-data-rate in the next 5th Generation (5G) mobile network standard [1].  

In the old days, high frequency and high power output were not of priority in personal wireless 

communications, and therefore the performance requirements for radio frequency (RF) circuits, 

especially the power amplifiers (PAs), were not stringent in terms of either device performance or 

circuit design techniques. Silicon based devices, such as Si-laterally diffused metal-oxide-

semiconductor field-effect transistors (Si-LDMOS), were able to provide sufficient power output in 

base stations [2], while Gallium Arsenide (GaAs) high electron mobility transistors (HEMTs) were 

used to meet the low-power and small-size requirements in hand held devices [3, 4]. 

On the other hand, in modern wireless communication systems, frequency bands have moved from L 

and S-band to higher frequency bands (e.g., X-band, K-band or even V-band) meanwhile high order 

modulation schemes (e.g., 64QAM) have been widely used [5 - 8].  These changes have greatly 

improved the throughput of wireless communication systems, but they have also posed demanding 

performance requirements in RF circuits and systems in terms of power, efficiency, linearity, 

advanced circuit topologies and system architectures. To handle these increasingly strict design 

requirements, not only high-performance device technologies are needed, but also carefully 

constructed device models which are suitable for modern computer added design (CAD) tools are 

required.  

The emerging GaN technology is promising for high power and high frequency power amplifiers 

design due to its competitive material properties, such as high bandgap, superior electron mobility 

and carrier velocity. The wide bandgap (3.5 eV@300 K) allows for up to 100 V drain to source 

voltage without device breakdown, which enables GaN HEMTs having more than an order of power 

density than Si-based power devices and GaAs HEMTs [9]. The superior electron mobility (2300 

cm2/(Vs) @ 300 K) and carrier velocity (2.1×107cm/s) makes it capable to operate even in W-band 
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(75 – 110 GHz) while delivering watt level power without significant power-combining circuitry 

[10].  

In addition to process technologies, device models play a significant role in high-performance RF 

circuit design [11, 12]. Currently, due to the sustainable development of electromagnetic (EM) CAD 

software, general passive devices used in RF circuits are well modeled with simple and precise 

descriptions [13, 14]. However, the models for active devices, such as diodes and transistors, are 

modeled with less satisfaction for circuit design in terms of both accuracy and computation efficiency 

due to the nature of multi-physics-dependent device nonlinear behavior. Therefore, the limitations 

and trade-offs of the existing models are discussed.  

Compact models refer to device models used for integrated circuit design in circuit simulation [15]. 

Based on the model formation, the existing compact models for RF transistors can be divided into 

two categories, the empirical models and the physics based models. The empirical models for GaN 

HEMTs, such as Angelov model, EEHEMT model and DynaFET (Dynamic FET) model, use 

analytical functions with fitting parameters or artificial neural networks (ANNs) [16 - 18] to 

empirically describe the current and charge behaviors at each terminal. These empirical models 

usually have simple parameter extraction routine and are easy to implement in circuit simulators. 

Furthermore, due to the close-form property of empirical functions and ANNs, these models are 

computational efficient, making them widely used in commercial CAD software for circuit design 

[17]. However, the equations in empirical models do not represent the operating principles of the 

device and do not allow direct linkage between device parameters and circuit level performance. 

Moreover, the empirical models are usually fitted to measurement data with non-physical fitting 

parameters, which are not scalable with geometry, biasing and/or temperature. This often means only 

very limited device dimensions are available with each technology library with reasonable accuracy 

for circuit design. To adopt other device dimensions beyond the default dimensions requires lengthy 

recalibration. Furthermore, different characteristics in the empirical models are usually modeled using 

independent equations and different sets of parameters which are fitted through different sets of 

measurement data, leading to inconsistency of model behaviors. 

Another category is the physics based models, which is the counterpart of the empirical models in 

modeling ideology. These models solve equations from basic semiconductor laws, such as 

Schrodinger equations and Poisson's equation, to describe the behavior of the transistors. The most 

widely adopted semiconductor physics based model is the surface potential model. It solves the 
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Poisson's equation and Schrodinger equations iteratively to determine the potential and electric field 

of the channel and thereafter calculate the drain current by the carrier drift-diffusion theory [18, 19]. 

The equations in the model are semiconductor physics based, which have two major advantages. 

First, it provides a more consistent and sometimes more accurate global fittings than the empirical 

models not only in static behaviour but also its derivatives, such as tranconductance and third-order 

intermodulation distortion (IMD3) [20], due to the universal applicability of physics laws. Second, 

after the physics parameters are extracted, the model is inherently scalable with geometry, biasing and 

other physical dimensions [21], which makes the device optimization for circuit performance 

improvement much easier and straightforward. However, the physics based model are not without 

shortcomings. The semiconductor equations are usually open-form, which need iterations for solving 

the equations [18 - 21]. Therefore, one major issue with physics based models is that they are 

generally computationally intensive. They are time consuming in simulation and usually not simple to 

implement in circuit simulators. 

1.2 Motivation 

With the stringent performance requirements of the frequency, power and linearity in modern 

communication systems, the designing complexity of RF circuits is escalating, which requires more 

advanced models. This model advancement has three aspects in motivating our research.  

First, the high frequency and high power application scenarios require the transistor model to be 

accurate under both conditions, while the high order modulation schemes pose linearity requirements 

that some significant nonlinear behaviors, such as gate leakage, triode region drain current and sub-

threshold drain current, should be considered carefully in the modern model.  

Second, the goal for modern transistor modeling is not only to accurately model the behavior of the 

transistor, but also enable the best performance of the entire system. Achieving this goal requires 

physics based compact models. Physics based models provide designers circuit-level element 

representation of the device, which enables device optimization, such as layout parasitic optimization 

for the optimum device performance. Furthermore, physics based models potentially support device-

circuit interactive design, which optimizes the RF circuit and device as a holistic system. Therefore, it 

is important and necessary to implement physics-based description of transistor behaviour in modern 

transistor modeling techniques. 
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Third, the design procedure for modern RF circuit is usually an iterative and optimization based 

procedure, in which the computational complexity of the model significantly affects the time and 

labor cost of RF circuit design. Semiconductor-level physics based models, such as surface potential 

based models, are usually computationally expensive and not suitable for circuit design. Circuit-level 

element based models usually implement equivalent circuits and close-form current sources to 

describe the electrical behavior of the model, which is computational efficient without sacrificing 

accuracy significantly. Therefore, circuit-level element based models are more preferable for RF 

circuit design. 

Based on the discussion in background and motivation section, the research objective is stated below.  

1.3 Research Objective 

This thesis has two major research objectives. First, to propose a physics based GaN HEMT compact 

model that meets the requirements for computational efficiency and simulation accuracy in RF circuit 

design. Second, to develop a complete model parameter extraction workflow and validate the model 

accuracy against measurement data.  

1.4 Thesis Organization 

The organization of the thesis is as follows. In chapter 2, a literature review of existing empirical 

compact models and physics based compact models is presented. In addition, the limitations and 

trade-offs of empirical compact models and physics based compact models are discussed. 

In chapter 3, a physics based device model partition scheme is proposed which consists of several 

models according to their physical origins, including the probing pad model, parasitic model and 

intrinsic model. Base on the model partition scheme, detailed modeling scheme for each module is 

discussed in details. 

In chapter 4, the full model parameter extraction flow for each module is demonstrated with 

measurement data of two GaN HEMT samples. The modeled drain current, gate current and small 

signal S-parameters of the transistor are validated by comparing them to the measured data. The 

normalized error of the model is presented and discussed. 

Finally, in chapter 5, summary and conclusions of the thesis are presented. Future work is also 

discussed.  
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Chapter 2 

GaN HEMTs Compact Models: An Overview 

Device models play a significant role in high-performance RF circuit design. As GaN technology 

matures in terms of process and fabrication, an increasing number of GaN compact models are 

developed and adopted. The main focus of this chapter is the literature review of the existing GaN 

HEMT compact models. Several important empirical and physics based GaN compact models are 

introduced in this chapter and the limitations and trade-offs of the compact models are discussed. 

2.1 Empirical Compact Models 

Empirical compact models focus on the selection and combination of mathematical functions to 

numerically fit the behavior of the model to measurement data. In many cases, such mathematical 

functions do not carry any physical explanation for the device behavior. Historically, III-V empirical 

models were originally formulated to cater to GaAs-based technologies for RF-applications. As GaN 

technology matures in terms of process and fabrication, these empirical models are adopted to GaN 

devices. The Angelov, EEHEMT and DynaFET models are well-known empirical models and widely 

used in industry. An overview of these models is given in the following section, highlighting the 

modeling approaches and the limitations. 

2.1.1 Angelov Model 

The Angelov model was an empirical model first proposed by Prof. Iltcho Angelov in 1992 for GaAs 

MESFETS and HEMTs [22] and later extended for GaN HEMTs as Angelov-GaN model [23, 24]. 

The model was developed with an emphasis on nonlinear fitting of drain current and its derivatives. 

The equivalent GaN circuit of Angelov-GaN model is shown in Figure 2.1. 
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Figure 2.1 Equivalent circuit of Angelov-GaN model [24] 

The core equations of Angelov-GaN model include those describing drain current (𝐼𝐷𝑆), gate current 

(𝐼𝐺𝑆, 𝐼𝐺𝐷 ) and nonlinear capacitors (𝐶𝑔𝑠, 𝐶𝑔𝑑 , 𝐶𝑑𝑠). Observation of drain current, gate current and 

nonlinear capacitance have shown that they usually exhibit a hyperbolic tangent shape with respect to 

gate voltage while their tranconductance exhibit a bell shape, and therefore 𝑡𝑎𝑛ℎ(𝑥) function is 

selected as the core empirical fitting function. Figure 2.2 gives an example of the shapes of drain 

current (𝐼𝑑𝑠 in the figure) and transconductance (𝐺𝑚) published for the Angelov-GaN model [25]. 

 

Figure 2.2 Shapes of drain current (𝑰𝒅𝒔) and its derivative (𝑮𝒎) as an example in Angelov-GaN 

model extraction [25] 
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The drain current is modeled by the product of  𝑉𝐺𝑆 dependent term and 𝑉𝐷𝑆 dependent term, which is 

as follows [22, 25] 

𝐼𝑑𝑠 = 𝐼𝑝𝑘(1 + tanh(𝜓))(1 + 𝜆𝑉𝑑𝑠) tanh(𝛼𝑉𝑑𝑠)    (2.1) 

𝐼𝑝𝑘 is the drain current at the bias corresponding to the maximum transconductance 𝑔𝑚𝑝𝑘. 𝜆 is the 

coefficient for modeling drain induced barrier lowering (DIBL). 𝜓 is modeled as a power series at 

peak 𝑔𝑚 point as shown below [22, 25].  

𝜓 = 𝑃1(𝑉𝑔𝑠 − 𝑉𝑝𝑘) + 𝑃2(𝑉𝑔𝑠 − 𝑉𝑝𝑘)
2

+ 𝑃3(𝑉𝑔𝑠 − 𝑉𝑝𝑘)
3

⋯  (2.2) 

𝑉𝑝𝑘 is the gate voltage for maximum 𝑔𝑚𝑝𝑘. Here more empirical fitting parameters (𝑃1, 𝑃2, 𝑃3 …) are 

added for fitting gate-source voltage dependence. 

The terminal charge is modeled by empirically fitting the nonlinear capacitance to the measured 

capacitance by the following equations [22, 25] 

𝐶𝑔𝑠 = 𝐶𝑔𝑠𝑜[1 + tanh(𝜓1)][1 + tanh(𝜓2)]    (2.3) 

𝐶𝑔𝑑 = 𝐶𝑔𝑑𝑜[1 + tanh(𝜓3)][1 − tanh(𝜓4)]    (2.4)  

More fitting parameters (𝜓1, 𝜓2, 𝜓3, 𝜓4) are introduced here to fit the capacitance model. According 

to [12], about 90 parameters in total are used for Angelov-GaN model. Based on the large number of 

fitting parameters, the model is capable to capture the nonlinear current and charge, trapping effect 

and self-heating effect. However, large number parameter extraction is time and effort consuming. 

The independency of fitting parameters (such as the set of 𝑃 and 𝜓 shown above) in I-V equations 

could cause model inconsistency. Furthermore, the model is non-speculative since it is not physics 

based. The model construction cannot provide any physical insights to the device engineers or circuit 

designers. Any process or geometry change made to the device needs re-fitting of the model. 

2.1.2 EEHEMT Model 

The EEHMET model is developed by Keysight Technologies for GaAs and GaN HEMT for RF 

applications. EEHEMT model divides the drain current into three portions – DC current (𝐼𝐷𝐶 ), 

displacement current (𝐼𝐴𝐶), and dispersion current (𝐼𝑑𝑏𝑝) and calculates the sum of the three portions 

as drain current [26, 27]. The equivalent circuit of EEHMET model is shown in Figure 2.3. 
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Trapping Circuit

 

Figure 2.3 Equivalent circuit of EEHMET model (left) and piecewise regions of 

transconductance (right) [27] 

The DC drain current is modeled in a similar way as Aneglov model, which uses 𝑡𝑎𝑛ℎ(𝑥) function to 

fit the 𝐼𝐷𝑆 − 𝑉𝐷𝑆 dependence as follows [26, 27] 

𝐼𝐷𝐶 = 𝐼1(𝑉𝑔𝑠) ⋅ 𝐼2(𝑉𝑑𝑠) ⋅ tanh (𝛼𝑉𝑑𝑠)    (2.5) 

𝐼1(𝑉𝑔𝑠)  and 𝐼2(𝑉𝑑𝑠)  are sophisticated piecewise empirical functions based on the piecewise regions 

of transconductance  (Figure 2.3) without physical explanations. 

The displacement current (𝐼𝐴𝐶) is modeled by the charging and discharging current of charge source 

𝑄𝑔𝑦 and 𝑄𝑔𝑐 as follows: 

𝐼𝐴𝐶 =
𝑑𝑄𝑔𝑦

𝑑𝑡
+

𝑑𝑄𝑔𝑐

𝑑𝑡
     (2.6) 

𝑄𝑔𝑦 = (𝑞𝑔(𝑉𝑔𝑐 , 𝑉𝑔𝑐 − 𝑉𝑔𝑦) − 𝛾𝑉𝑔𝑐) ⋅ 𝑓2 + 𝛾𝑉𝑔𝑦 ⋅ 𝑓1   (2.7) 

𝑄𝑔𝑐 = (𝑞𝑔(𝑉𝑔𝑐 , 𝑉𝑔𝑐 − 𝑉𝑔𝑦) − 𝛾𝑉𝑔𝑦) ⋅ 𝑓1 + 𝛾𝑉𝑔𝑐 ⋅ 𝑓2   (2.8) 

In these equation, 𝑞𝑔 is the gate effective capacitance. 𝑉𝑔𝑐 and 𝑉𝑔𝑦 are voltage between internal nodes. 

More fitting parameters (𝑓1, 𝑓2, 𝛾) are introduced in the above equations, where detailed explanations 

can be found in the EEHMET model user manual [27].  

The gate current (𝐼𝑔𝑠, 𝐼𝑔𝑑) is modeled by the standard 2-parameter diode model, in which the non-

ideality effects of the diode are not considered. The trapping effect is modeled by an RC network and 

a current source between drain and source terminal to mimic the measured trapping behaviour.  
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Dispersion current (𝐼𝑑𝑏𝑝) is modeled by excluding the DC and displacement current portion from the 

measured current and piecewisely fit the residue by tanh−1(𝑉𝑑𝑠) function after the parameters for DC 

and displacement current are determined. 

EEHMET model has become an industry standard and been integrated in Agilent’s (now Keysight) 

Advanced Design System (ADS). EEHEMT model achieves better modeling accuracy than Angelov 

model due to its piecewise region strategy, but still a large number (71 instead of 90 for Angelov-

GaN model) of parameters are adopted in the model. Although Keysight provides automatic 

parameter extraction software to save time and effort for model construction, its inherent empirical 

nature makes it not scalable with geometry and process. 

2.1.3 DynaFET Model 

The DynaFET (“Dynamic FET”) model is proposed by Keysight technologies in 2014 for GaAs/GaN 

HEMTs. It uses large-signal waveform data of a GaAs/GaN HEMT together with I-V and S-

parameter measurement data to extract a time-domain model that can be used for various circuit 

analyses, such as transient and harmonic-balance simulations [28].  

 

Figure 2.4 DynaFET model formation including sub-circuit (left) and artificial neural networks 

(right) [28, 29] 
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The formation of DynaFET model is shown in Figure 2.4. The DynaFET model exploits artificial 

neural networks (ANNs) and sub-circuits to model the behaviour of the device. The ANNs are used to 

formulate gate charge, gate current, drain charge and drain current while sub-circuits model specific 

behaviours of GaN HEMTs such as self-heating effect and trapping effect [28, 29]. 

The DynaFET model captures dynamic trapping/de-trapping processes in GaN HEMT by introducing 

two effective voltages, 𝜙1  and 𝜙2 , representing gate trapping state and drain trapping state 

respectively through dedicated asymmetric RC networks [28]. The RC networks including an ideal 

diode are used to mimic the trapping behaviour that an increasing drain (decreasing gate) voltage 

propagates almost instantaneously to 𝜙2 (𝜙1), whereas a decreasing drain (increasing gate) voltage 

hardly affects 𝜙2 (𝜙1). 

The self-heating effect is modeled using conventional first order RC thermal network. The thermal 

source is the total electric power generated inside the transistor. The thermal resistance and 

capacitance are related to material properties which can be determined by finite-element-method 

(FEM) simulation or from measurement.  

The ANNs take the nodal voltage of the sub-circuits (𝑉𝑔𝑠, 𝑉𝑑𝑠, 𝑇𝑗, 𝜙1, 𝜙2, 𝑉𝑔𝑠
̅̅ ̅̅ , 𝑉𝑑𝑠

̅̅ ̅̅ ) as input to the 

neuron networks and use the measured large signal waveform to train the weight of each neuron in 

the network. Weights of all neurons in the ANNs are iteratively adjusted during the training process 

until ANNs’ output (such as terminal current) agrees with measurement data within an acceptable 

tolerance.  

DynaFET model has achieved good results in DC, S-parameter, harmonic, intermodulation distortion, 

and loadpull simulation over a very wide range of bias conditions, complex loads, powers, and 

frequencies [29]. Besides, using 𝑡𝑎𝑛ℎ(𝑥) as the transition function, DynaFET model is infinitely 

differentiable and computationally efficient, which is critical for harmonic balance simulation.  

DynaFET model is not without its drawbacks. Although DynaFET model is computational efficient in 

simulation, large-signal waveform measurement and the model training take a large amount of time 

and effort. Besides, although trapping and self-heating equivalent circuit are included for modeling 

the trapping and self-heating effect, the relation between terminal voltages, currents and charges are 

still modeled by empirical ANNs without physical explanations, which inherits all the limitations 

empirical models have.  
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2.2 Physics Based Compact Models 

Another approach of device modeling is the physics based compact models. This approach analyzes 

the cause of the behavior in the devices based on semiconductor physics such as material 

characteristics and carrier transport. The equations in physics based compact models are physical, 

often with a much smaller number of parameters than empirical models. These physical parameters 

can not only be extracted from one’s measurement, but also be taken from other independent sources, 

which saves time and effort in model construction.  The Tsinghua-HKUST model and ASM-HEMT 

are well-known models based on the surface potential while NCSU model is based on the simple gate 

charge control and drift-diffusion theory. These models are introduced in the following as 

representatives of physics based models. 

2.2.1 Tsinghua-HKUST Model 

The Tsinghua-HKUST model is a surface potential based model for GaN HEMTs. Its current-voltage 

model is proposed by X. Cheng and Y. Wang at Tsinghua University in 2011 [30]. The charge model 

is extended later by A. Zhang and K. Chen at HKUST in 2014 [31]. 

The idea of Tsinghua-HKUST surface potential model is directly inspired from the band diagram of 

AlGaN/GaN HEMT, which is shown in Figure 2.5. High-density 2DEG forms at the heterointerface 

of AlGaN/GaN due to the discontinuity of the conduction band and polarization-induced charge at the 

interface. The sheet carrier density 𝑛𝑠, Fermi-potential 𝐸𝐹  and surface potential 𝜑𝑠 are obtained by 

iteratively solving the Poisson’s and Schrodinger equations along the channel [30].  

Applying gradual channel approximation (GCA) and drift-diffusion theory, simple and clear current-

voltage relationship can be obtained for the model [30]. The current-voltage equation is verified to be 

valid over a wide bias and temperature range. By self-consistently solving for 𝐸𝐹  and 𝑛𝑠  in the 

potential well, modeling accuracy is improved compared to the threshold voltage based model even in 

moderate-accumulation regimes [30]. Besides, the model equations are source–drain symmetric 

without derivative singularities up to second order, which improves the computational robustness in 

harmonic balance simulations. Detailed formation explanation of the model can be found in [30]. 
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Figure 2.5 Energy band diagram of AlGaN/GaN HEMT for nonzero gate bias [30]. 

The intrinsic charge and capacitance are derived consistently with the current model. By integrating 

the sheet charge density model along the channel, the gate charge is obtained. Ward–Dutton charge 

partition method is used to divide total gate charge into gate-source charge and gate-drain charge 

[31]. 

 

Figure 2.6 Cross-sectional schematic view for the inner and outer fringing capacitances 

modeling of the drain side [31] 

The inner and outer fringing capacitance are modeled as parasitic capacitance using conformal 

method and verified by using Technology-CAD simulation. Detailed formation explanation and 

verification of the model can be found in [30]. 
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The surface potential model clearly describes the behavior of the device based on semiconductor 

physics with only a small amount of physical parameters. The model is scalable with geometry, 

biasing and temperature. However, the model equations are open-form, which need a number of 

iterations to solve the equations depending on the solution accuracy. This makes the surface potential 

model computational intensive and difficult to implement in circuit simulators. Besides, the physics 

of access regions are not provided in surface potential model, which has a significant impact on the 

accuracy of the physics-based model. 

2.2.2 ASM-HEMT Model 

The ASM-HEMT (Advanced SPICE Model for GaN HEMTs) model is also a surface-potential model 

proposed by S. Khandelwal [32, 33]. This surface potential model is based on the same 

semiconductor physics (i.e., band diagram, Poisson and Schrodinger’s equation) as the Tsinghua-

HKUST model. Khandelwal proposed a new algorithm to obtain the open-form Poisson and 

Schrodinger’s equations that can be implemented in SPICE simulator. The model construction 

workflow for this model is shown in Figure 2.7.  

 

Figure 2.7 Construction workflow for ASM-HEMT model [34] 

Apart from current model and charge model, the ASM-HEMT model captures most of the device 

characteristics required by circuit simulation, such as gate leakage, self-heating, trapping and noise. 

This model is aimed at achieving industrial model quality and has passed into the Phase-II for 
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standardization at the Compact Model Coalition. The theory and validation results of the model will 

not be reproduced here and detailed model explanation and validation can be found in [32, 33, 34]. 

Although in ASM-HEMT model, a new algorithm is proposed to solve the open-form Poisson and 

Schrodinger’s equations, this model is still computational intensive and not easy to implement in 

circuit simulators.  

2.2.3 NCSU Model 

The NCSU model is a drift-diffusion-based compact model proposed by D. Hou and R. Trew at North 

Carolina State University in 2012 [35] and later extended the charge model for displacement current 

[36]. The model is developed by separating the conducting channel of the GaN HEMT into a series of 

zones, based upon physical behavior and the validity of gradual channel approximation (GCA). Drift-

diffusion equations are used to model the carrier transport of each zone and all the equations are 

consistently solved applying the boundary conditions of each zone. 

The model operates in two modes, triode and saturation. The zone separation of each mode is shown 

in Figure 2.8. 

 

Figure 2.8 Cross-section of NCSU model (a) triode mode with its four physical zones (b) 

Saturation mode with its five physical zones [35]. 
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Source and drain access region are modeled as SNZ and DNZ (source neutral zone and drain neutral 

zone) respectively, applying steady-state carrier drifting equations. The gated transistor is modeled as 

IFZ (intrinsic FET zone). In IFZ, GCA holds, and therefore current expression can be immediately 

setup. Poisson equation are constructed for describing the current and voltage relationship in charge 

deficit zone (CDZ) and space-charge-limited Zone (SLZ). Detailed equation formations can be found 

in [35]. 

Assuming quasi-static operation, the charge is modeled by integrating the gate controlled charge 

density along the channel [36]. By solving the derivative of gate-source and gate-drain charge, the 

displacement current is obtained. 

About 20 parameters are required to characterize the model, which compared to empirical models, is 

a significant reduction. Although the model employs approximations in solving equations and the 

determining zone boundaries, measurements of single transistor and a Class-AB power amplifier have 

approved that the NCSU current–voltage model and charge–voltage model are able to accurately 

model the DC and RF behavior (both small signal and large signal) of a GaN HEMT [35, 36].  

This model is not without its limitations. Due to the assumption of GCA, the approximations in 

solving equations and determining zone boundaries, more error will be introduced in this model when 

the gate length is further scale down to cater higher frequency applications. 

2.3 Limitations and Trade-offs of Compact Models 

The empirical models use a large number of fitting parameter to fit the device for various geometry or 

operating spaces (such as biasing and temperature) to measurement data. The equations are close-

form, which are computational efficient and simple to implement in circuit simulators. The parameter 

extraction for empirical model usually not require any prior process knowledge of the device, which 

allows it for quick performance evaluation of new device at circuit and system level. However, the 

limitations of the empirical models are as follows. 

First, the empirical model usually has no physical insight into the device. Device and circuit designer 

use the model as a black box and cannot provide any information for the inside characteristic of the 

device. It is impossible to improve the circuit performance from a device perspective or provide any 

feedback for the technology tuning. Without the interaction between device and circuit, the design job 

often becomes a blind tuning, which could take many iterations to reach the design target. 
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Second, extraction of large number parameters is time and effort consuming, in which experienced 

modelers are required. The parameters extracted for one device are not valid for another device. Any 

process or geometry change made to the device needs re-fitting of the model. 

Third, the current, charge and capacitance behaviors are usually modeled separately based on 

different sets of fitting equations. Therefore, inconsistencies such as violations of charge conservation 

and incontinuities at fitting boundaries are often unavoidable, which significantly affects the 

computational robustness in circuit simulation.  

Physics based models employ semiconductor physics to model the behavior of the device and can 

compensate the limitations of empirical models. First, the physics based models generally provide 

simple and clear explanations to device behaviors from the very basic quantum physics, device 

physics level such as carrier transport to physical-element-based equivalent circuit level depending on 

the applications of the model. Physics based models are able to provide designers insights of circuit-

level physics, which allows for device-circuit interactive design and optimization for better circuit 

performance.  

Second, the parameters in physics based models often have a clear physical meaning. The modeler 

could adopt the parameter value from other independent sources. The sharing of parameters between 

models and modeling groups will greatly reduce the repetitive time and labor cost in model 

construction. It also provides a way to validate the values of extracted parameter.  

Third, the current, charge and capacitance behaviors in physics based models are usually results from 

the same physics origins, and therefore sophisticated physics based model can guarantee that the 

behavior of each sub-model is consistent with other sub-models. 

The major limitation of physics based model is that the model equations are usually open-form, which 

need special numerical algorithms to iteratively solve the equations depending on the solution 

accuracy. These algorithms are usually computational intensive and not easy to implement in circuit 

simulators.  Some approximations can be made in solving the equations to make the solution close-

form, but the solution accuracy and consistency will be affected. Besides, physics based model 

usually required detailed process information of the device, for which most commercial devices are 

not available.   
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Chapter 3 

Physics Based Virtual Source Compact Model of GaN HEMTs 

Since a GaN HEMT is such a complex system, in order to clearly organize and represent the physics 

concepts behind it, it is necessary to divide the device model into separate modules and model each 

module by its corresponding physics. This chapter discusses the partition of the model, the physics of 

each partition and its modeling strategy. 

In this chapter, the model partition scheme is proposed based on the physical construction of the 

device first. After that, the equivalent circuits to model the probing pads and parasitics are discussed. 

At the end, the theory of Schottky diode model and Virtual Source model for the intrinsic transistor 

are introduced, which forms the core of the model.  

3.1 Model Partition 
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Figure 3.1 Top view of an on-wafer GaN HEMT and corresponding layout partition (left) and 

zoomed in illustration of intrinsic transistor (right)  

A compact device model used in circuit simulator is usually partitioned into sub-models based on the 

physical construction of the device [22, 27, 42 - 44, 47]. Figure 3.1 shows a microscopic photo of a 2-

finger GaN HEMT embedded into a pair of ground-signal-ground (GSG) probing pads for on-wafer 
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characterization. The gate and drain terminal of the transistor are connected to the signal pads on both 

sides and the two source terminals are merged into the ground pads. 

Based on the physical layout, the typical GaN model can be divided into three layers, as is shown in 

Figure 3.2 in which the colored regions are corresponding to those regions in Figure 3.1. In this case, 

the GSG probing pads model serves as the outmost layer. This layer represents the behavior of 

connection from the probing tips to the boundary of the metal connection of intrinsic transistor.  To 

adapt the proposed model to generalized cases, the outmost layer needs to be adjusted accordingly. 

For example, in integrated circuit (IC) design, the outmost layer is transmission lines which connect 

the transistor to the front or back stage while in a discrete power transistor, the outmost layer is the 

wire bonding pads or the device package. In general, the outmost layer should include the 

metallization which connects the intrinsic transistor and associated parasitics to the fixture or other 

part of the circuit. 
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Figure 3.2 Device model partition: GSG pads model, parasitic model and intrinsic model 

The middle layer that is enclosed by the GSG pads model is the parasitic EM model. This model 

describes the non-negligible resistive, capacitive and inductive behavior between the GSG pads and 

the intrinsic transistor. These resistive and inductive behaviors usually results from the metal 

extension or vias at the source terminal and the manifold or air-bridge at the gate and drain terminal 

while the capacitive behavior is due to the spatial coupling between them.  



 

 19 

The innermost layer is the core of the transistor – the intrinsic model. The intrinsic model describes 

the electrical behavior of the active region of the transistor, which includes the nonlinear gate and 

drain current and terminal charge. Different types of intrinsic models, such as look-up-table (LUT) 

model, small signal model (SSM) and all the compact models described in Chapter 2 can be 

substituted into the innermost layer to form a complete model.  

The circuit elements in GSG pads model and parasitic model are always passive while the intrinsic 

model has nonlinear active elements in it. In advanced intrinsic models, thermal effect and trapping 

effect are also considered for GaN HMETs [37 -40].  

The modeling schemes of GSG pads, device parasitics and intrinsic model of gate current and drain 

current are introduced in the following sections. 

3.2 GSG Pad Model 

Modeling probing pads is relatively straightforward compared to modeling other parts of the 

transistor. Although complicated GSG pad model applicable up to 200 GHz is proposed [41], using a 

simple capacitive network to model pads is still reasonably accurate below tens of gigahertz [42 - 44], 

because that pads are spatially separated metals without conductive connections between them. 

Figure 3.3 shows the microscopic photo of a pair of dummy GSG pads measured for this thesis and 

its equivalent circuit. The structure is vertically symmetrical, and therefore three capacitors are used 

in the equivalent circuit to model the pads. 
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Figure 3.3 Photo of a pair of dummy GSG pads (left) and model equivalent circuit (right) 
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𝐶𝑝𝑎𝑑_𝑔𝑠,𝐶𝑝𝑎𝑑_𝑑𝑠 and 𝐶𝑝𝑎𝑑_𝑔𝑑 represent the capacitance between gate-source, drain-source and gate-

drain, respectively. The device is mounted on copper carrier, which serves as circuit ground 

connected with source pads. The pitch of the GSG pads in our measurement is 150 μm, which is in 

the same order of the wafer thickness. 𝐶𝑝𝑎𝑑_𝑔𝑠  and 𝐶𝑝𝑎𝑑_𝑑𝑠  not only include the pad spatial 

capacitance on top of the structure, but also include the capacitance between the pad and the bottom 

copper carrier. These two partial capacitors can be merged into one capacitor (𝐶𝑝𝑎𝑑_𝑔𝑠 or 𝐶𝑝𝑎𝑑_𝑑𝑠) 

without losing the generality of the model.  

3.3 Parasitic and Intrinsic Model 

Figure 3.4 shows the cross section structure of the GaN HEMT measured for this thesis work copied 

from the PDK user manual [45]. The thickness of each layer is not drawn to scale. There are two 

major structural differences of this device from many conventional GaN HEMTs. First, a “GaN Cap” 

layer is grown between the AlGaN layer and the gate metallization, in order to reduce gate current [12] 

and intrinsic strain at the surface for improved device reliability [46]. Second, an ultra-thin AlN 

spacer (usually several to tens angstroms) is grown between the AlGaN layer and GaN buffer layer to 

boost the electron mobility by removing alloy scattering [56].  
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Figure 3.4 Cross section structure of GaN HEMT modeled in this thesis [45] 

The gate metal (Ni/Au alloy) forms Schottky contact with the “GaN Cap” layer due to the work 

function difference, and therefore two Schottky diodes will be used to model the gate-source and 

gate-drain diode behavior at the gate/GaN Cap interface.  

Due to the band gap difference at the AlGaN/GaN interface, a triangular potential well confines the 

free electrons in GaN buffer and forms the 2-dimentional electron gas (2DEG). The carrier transport 
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in 2DEG is modeled by three transistors in series, describing the behavior of source access region, 

gated region and drain access region, respectively. 

The AlN spacer forms a potential peak at the interface of AlGaN and GaN buffer where the carriers 

are tunneled through and the AlGaN and GaN buffer creates a potential barrier, which significantly 

reduces the gate current at high 𝑉𝐺 when the Schottky diodes at the gate/GaN Cap interface is forward 

biased. In [57], the authors proposed to use a weak reverse diode to model the transport through the 

AlGaN/AlN/GaN buffer layers.  In our work, we choose to use a simple effective series resistor 

𝑅𝑠𝑒𝑟𝑖𝑒𝑠 instead of a reverse diode to model the tunneling behavior as well as any additional series 

resistance due to the GaN Cap layer, GaN buffer layer and/or AlGaN layer. This is to simplify the 

model to avoid potential convergence issues in the parameter extraction flow. As seen in Chapter 4, 

our gate current model is able to achieve reasonable accuracy.  

The equivalent circuit of the parasitic and intrinsic model can be mapped on to the cross section, 

which is shown in Figure 3.5 below. 𝐷𝑔𝑠 and 𝐷𝑔𝑑 are symmetrical, and therefore 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 is equally 

split to two branches (each branch has resistance of 2×𝑅𝑠𝑒𝑟𝑖𝑒𝑠 ) for clearer equivalent circuit 

illustration. 
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Figure 3.5 Mapping of the parasitic and intrinsic equivalent circuit on the cross section 

structure 

The parasitic model of power transistors is usually demonstrated by proposing a transistor small 

signal equivalent circuits [42 - 44, 47]. In [42], a 22-element small signal model with parasitic inter-
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electrode capacitance is proposed for large size GaN HEMTs. In [47], parasitic network with 

substrate leakage is introduced for GaN HEMTs on sapphire due to the substrate’s non-negligible 

electrical conductivity. In [43, 44], series resistance and inductance are used for conventional GaN 

HEMTs on SiC substrate. 

Considering the small size transistor (2×50 μm) measured in this work, the interconnect pattern and 

the substrate material, a pair of resistor and inductor is used for modeling the resistive and inductive 

behaviour of the metallization for each terminal (𝐿𝑔, 𝑅𝑔 for gate, 𝐿𝑑, 𝑅𝑑 for drain, 𝐿𝑠, 𝑅𝑠 for source).  

The spatial coupling is modeled by capacitance between the gate, drain and source as 𝐶𝑝𝑎𝑟_𝑔𝑑 , 

𝐶𝑝𝑎𝑟_𝑔𝑠 and 𝐶𝑝𝑎𝑟_𝑑𝑠.  

The intrinsic model can be divided into two part: the gate Schottky diode model and the Virtual 

Source model. The gate Schottky diode model employs two effective series resistor (2×𝑅𝑠𝑒𝑟𝑖𝑒𝑠) and 

two Schottky diodes (𝐷𝑔𝑠 and 𝐷𝑔𝑑) to model the joint resistive behaviour of the stacked layers from 

gate/GaN Cap interface down to AlN/GaN interface and the gate leakage from gate to source and gate 

to drain, respectively. The Virtual Source model theory is used to model both the gated and ungated 

channel regions, which forms the current path between drain and source current together in series 

connection. 
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Figure 3.6  Flattened equivalent circuit for the parasitic and intrinsic model 
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The flattened equivalent circuit for the parasitic and intrinsic model is shown in Figure 3.6. This 

equivalent circuit can be used as schematic input for circuit simulators. The detailed modeling theory 

of the Schottky gate diode and the Virtual Source model is described in the following sections. 

3.4 Intrinsic Gate Current: Schottky Gate Diode Model 

The gate metal (Ni/Au alloy) forms Schottky diode with the “GaN Cap” layer due to the work 

function difference of the two material, and therefore it is preferable to use the Schottky diode theory 

to model gate current. The Schottky diode leakage affects the power added efficiency (PAE), 

especially in power amplifier design because of its significant gate over-drive voltage and non-

negligible gate current. In addition, the drain to gate leakage limits the off-state current, which affects 

the transistor behaviour in switching mode [15]. Therefore, accurate modeling of gate current is 

required for power GaN HEMTs. The I-V characteristic of a Schottky diode with series resistance is 

shown in Figure 3.7.  
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to series 
resistance

 

Figure 3.7 I-V characteristic of a Schottky diode with series resistance 

The forward mode current is modeled with Schottky diode equations and effective series resistances 

(2×𝑅𝑠𝑒𝑟𝑖𝑒𝑠). At low forward voltage (𝑉𝑑𝑖𝑜𝑑𝑒 < 1 V), the forward current is low enough to neglect 

the voltage drop on the series resistor result from the forward current. At high forward voltage 
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(𝑉𝑑𝑖𝑜𝑑𝑒 > 1 V), the voltage drop on the series resistor saturates the diode current and eventually 

makes it increase with 𝑉𝑑𝑖𝑜𝑑𝑒 almost linearly. The forward mode current equations are as follows 

[15]: 

𝐼𝐷𝑔𝑠,𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑊 ⋅ 𝐼𝑗 ⋅ 𝑒
−

𝜙𝐵
𝜂𝜙𝑇 ⋅ (𝑒

𝑉𝑔𝑠𝑖

𝜂𝜙𝑇 − 1)    (3.1) 

𝐼𝐷𝑔𝑑,𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = 𝑊 ⋅ 𝐼𝑗 ⋅ 𝑒
−

𝜙𝐵
𝜂𝜙𝑇 ⋅ (𝑒

𝑉𝑔𝑑𝑖

𝜂𝜙𝑇 − 1)    (3.2) 

 

Here 𝑉𝑔𝑠𝑖 (> 0 V) and 𝑉𝑔𝑑𝑖 (> 0 V) is the intrinsic voltage applied on the gate-source and gate-drain 

diode, respectively. 𝑊 is the total transistor width. 𝐼𝑗 is the reverse saturation current density. 𝜙𝑇 is 

the thermal voltage. 𝜙𝐵 is the Schottky barrier height, which is typically 1 V for GaN HEMT. 𝜂 is the 

ideality factor for the forward diode. The process variation in one device is assumed to be low, and 

therefore the gate-source diode and gate-drain diode is identically modeled with the same set of 

model parameters. 

Reverse mode current of the Schottky diode is described by using the following empirical equations 

[15]: 

𝐼𝐷𝑔𝑠,𝑟𝑒𝑐 = −𝑊 ⋅ 𝐼𝑟𝑒𝑐 ⋅ (𝑒

𝐹𝑠𝑎𝑡,𝑔𝑠𝑖

𝜂𝑟𝑒𝑐𝜙𝑇 − 1)    (3.3) 

𝐼𝐷𝑔𝑑,𝑟𝑒𝑐 = −𝑊 ⋅ 𝐼𝑟𝑒𝑐 ⋅ (𝑒

𝐹𝑠𝑎𝑡,𝑔𝑑𝑖

𝜂𝑟𝑒𝑐𝜙𝑇 − 1)    (3.4) 

𝐹𝑠𝑎𝑡,𝑔𝑠𝑖 = −
𝑉𝑔𝑠𝑖

1+|𝑉𝑔𝑠𝑖|/𝑉𝑔𝑠𝑎𝑡𝑠
     (3.5) 

𝐹𝑠𝑎𝑡,𝑔𝑑𝑖 = −
𝑉𝑔𝑑𝑖

1+|𝑉𝑔𝑑𝑖|/𝑉𝑔𝑠𝑎𝑡𝑑
    (3.6) 

In these equations, 𝐼𝑟𝑒𝑐 is the reverse current density. 𝜂𝑟𝑒𝑐 is the ideality factor for the reverse diode. 

𝑉𝑔𝑠𝑎𝑡𝑠  and 𝑉𝑔𝑠𝑎𝑡𝑑  are empirical reverse saturation voltage for gate-source and gate-drain diode, 

respectively. 𝐹𝑠𝑎𝑡,𝑔𝑠𝑖 and 𝐹𝑠𝑎𝑡,𝑔𝑑𝑖 are empirical equations modeling the saturation of reverse current 

with gate voltage. The total gate current between gate-source (𝐼𝐷𝑔𝑠) and gate-drain (𝐼𝐷𝑔𝑑) is the sum 
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of the forward mode current (𝐼𝐷𝑔𝑠,𝑓𝑜𝑟𝑤𝑎𝑟𝑑 and 𝐼𝐷𝑔𝑑,𝑓𝑜𝑟𝑤𝑎𝑟𝑑) and reverse mode current (𝐼𝐷𝑔𝑠,𝑟𝑒𝑐 and 

𝐼𝐷𝑔𝑑,𝑟𝑒𝑐).  

Here only the modeling theory is introduced. The parameter extraction procedure will be 

demonstrated and the gate current modeling will be validated in Chapter 4. 

3.5 Intrinsic Drain Current: Virtual Source Model 

The Virtual Source model is first proposed at MIT for highly scaled silicon based FETs with quasi-

ballistic mode of transport [48] and later extended to drift-diffusive transport for GaN HEMTs [15， 

49]. The Virtual Source model calculates the density of carriers, which flow in the channel to form 

the transistor current model, and integrates the carrier distribution along the channel to form the 

transistor charge model. The model is physical based on the drift-diffusive transport theory, and 

employs only a small number of fitting parameters to form the model. A brief description of the 

Virtual Source modeling theory is given below to introduce the basic idea. 

0 xo

VSi

VDi

Vxo

Virtual Source Point

Source
Gate

AlGaN

GaN Layer

SiC Substrate

Drain

Neucleation LayerGated 
Region

2DEG

 

Figure 3.8 Band diagram under the gate (left) and charge density (right) 

Virtual Source Model: Current Formation 

The gated region in conventional GaN HEMTs has gate length ranging from tens of nanometers to a 

few hundred of nanometers, and therefore the mean-free-path of a few angstroms [15] for electrons in 

the 2DEG in GaN HEMTs results in scattering-dominated drift-diffusive transport. Assuming gradual 

channel approximation (GCA), the drain current is the product of the charge and carrier velocity at 

the same location and is related to the potential along the channel as follows [15]: 

𝐼𝐷𝑆 = 𝑊 ⋅ 𝑄𝑖(𝑥) ⋅ 𝑣(𝑥) = 𝑊 ⋅ 𝑄𝑖(𝑥) ⋅ 𝜇
𝑑𝜑(𝑥)

𝑑𝑥
     (3.7) 
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Here 𝑄𝑖(𝑥) is the charge density and 𝜑(𝑥) is the channel potential at location 𝑥 . 𝜇  is the carrier 

mobility. 

To account for carrier velocity-saturation effect, Equation 3.7 is written in the following form [15]: 

𝐼𝐷𝑆 = 𝑊 ⋅ 𝑄𝑖(𝑥) ⋅ 𝜇 ⋅
𝑑𝜑(𝑥)

𝑑𝑥

(1+(

𝑑𝜑(𝑥)
𝑑𝑥

𝑣𝑠𝑎𝑡
𝜇

)

𝛽

)

1
𝛽

      (3.8) 

In Equation 3.8, 𝑣𝑠𝑎𝑡 is carrier saturation velocity and 𝛽 is the transition coefficient that controls the 

transition sharpness at saturation voltage. Equation 3.8 is valid at all 𝑥 provided GCA holds, which is 

reasonable for a major portion of the channel except in the pinch-off or velocity-saturated region at 

the drain-end of the gate. 

Charge density 𝑄𝑖(𝑥) is related to channel potential 𝜑(𝑥) by the gate capacitance in strong inversion 

( 𝐶𝑖𝑛𝑣 ). Substituting 𝑑𝑄𝑖(𝑥) = 𝐶𝑖𝑛𝑣 ⋅ 𝑑𝜑(𝑥)  into Equation 3.8 and integrating from 𝑥 = 0  to the 

effective gate length 𝑥 = 𝐿𝑒𝑓𝑓, which equals to 𝐿𝑔 in triode region and smaller than 𝐿𝑔 in saturation 

region (up to the position of pinch-off point), 𝐼𝐷𝑆 is obtained as follows after the simplification. 

𝐼𝐷𝑆 = 𝑊 ⋅
𝜇

2𝐶𝑖𝑛𝑣𝐿𝑔
⋅

(𝑄𝑖𝑠
2 −𝑄𝑖𝑑

2 )
2

(1+(
𝑄𝑖𝑠−𝑄𝑖𝑑

𝐶𝑖𝑛𝑣⋅𝑣⋅𝐿𝑒𝑓𝑓
𝜇

)

𝛽

)

1
𝛽

     (3.9) 

In Equation 3.9, 𝑄𝑖𝑠 = 𝑄𝑖(0) is the charge density at intrinsic source (𝑉𝑆𝑖) and 𝑄𝑖𝑑 = 𝑄𝑖(𝐿𝑒𝑓𝑓) is the 

charge density at intrinsic drain (𝑉𝐷𝑖). 𝐿𝑒𝑓𝑓 is not necessarily equal to the physical-gate-length (𝐿𝑔), 

since it has to be corrected for short-channel-effects described in [15]. 𝑣  is the carrier velocity 

combing strong and weak accumulation regimes by the Fermi function (𝐹𝑓) as below. 

𝑣 = 𝑣𝑠𝑎𝑡(1 − 𝐹𝑓) + 2𝜙𝑇
𝜇

𝐿𝑔
𝐹𝑓     (3.10) 

𝐹𝑓 =
1

1+exp (
max(𝑉𝐺𝑆𝑖,𝑉𝐺𝐷𝑖)−(𝑉𝑇−𝛼𝜙𝑇/2)

𝛼𝜙𝑇
)
    (3.11) 

𝑉𝑇 = 𝑉𝑇0 − 𝛿𝑉𝐷𝑆𝑖     (3.12) 

In Equation 3.10, 𝑣𝑠𝑎𝑡 is the carrier saturation velocity and 𝜙
𝑇
 is the thermal voltage. For the fermi 

function (𝐹𝑓), 𝛼 is the fitting parameter for the transition at threshold voltage and 𝑉𝑇 is the threshold 
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voltage, which is defined by Equation 3.12. 𝑉𝑇0 is the threshold voltage at 𝑉𝐷𝑆 = 0. 𝛿 is the drain 

induced barrier lowering (DIBL) coefficient.  

When the source is grounded and drain is ramped to positive voltage, the charge density at intrinsic 

source (𝑄𝑖𝑠) and drain (𝑄𝑖𝑑) are obtained as [15]: 

𝑄𝑖𝑠 = 𝐶𝑖𝑛𝑣2𝑛𝜙𝑇ln (1 + exp (
𝑉𝐺𝑆𝑖−(𝑉𝑇−𝛼𝜙𝑇𝐹𝑓𝑠)

2𝑛𝜙𝑇
))   (3.13) 

𝑄𝑖𝑑 = {
𝐶𝑖𝑛𝑣2𝑛𝜙𝑇ln (1 + exp (

𝑉𝐺𝐷𝑖−(𝑉𝑇−𝛼𝜙𝑇𝐹𝑓𝑑)

2𝑛𝜙𝑇
))

𝐶𝑖𝑛𝑣2𝑛𝜙𝑇ln (1 + exp (
𝑉𝐺𝑆𝑖−𝑉𝐷𝑆𝐴𝑇1−(𝑉𝑇−𝛼𝜙𝑇𝐹𝑓𝑑)

2𝑛𝜙𝑇
))

   (3.14) 

In Equation 3.13 and Equation 3.14, 𝐹𝑓𝑠  and 𝐹𝑓𝑑  are the fermi function for source and drain, 

respectively. 𝑉𝐷𝑆𝐴𝑇1  is the refined saturation voltage for compensating the smaller 𝐿𝑒𝑓𝑓  when the 

transistor is in saturation region. 𝑛 is the subthreshold factor which combines the subthreshold slope 

(𝑆𝑆) and punch through factor as follows (𝑛𝑑): 

𝑛 =
𝑆𝑆

𝜙𝑇 ln(10)
+ 𝑛𝑑𝑉𝐷𝑆𝑖     (3.15) 

Complete explanation and derivation for the Virtual Source current model can be found in [15, 44]. 

Virtual Source Model: Charge Formation 

The channel charge in GaN HEMTs exhibits nonlinearity which significantly affects the large signal 

RF behaviour of the device. In order to enable a charge based rather than capacitor based model, the 

non-uniform channel charge should be partitioned to generate gate-source and gate-drain charges at 

source and drain terminals. The Virtual Source model accomplishes this in a self-consistent manner 

by using the current-continuity and linear Ward-Dutton charge partition scheme [15, 50]. The 

expressions for charge partitioning along with the total gate charge are given below: 

𝑄𝑆 = 𝑊𝐿 ∫ (1 −
𝑥

𝐿
) 𝑄𝑖(𝑥)𝑑𝑥

𝑥=𝐿

𝑥=0
     (3.16) 

𝑄𝐷 = 𝑊𝐿 ∫ (
𝑥

𝐿
) 𝑄𝑖(𝑥)𝑑𝑥

𝑥=𝐿

𝑥=0
      (3.17) 

𝑄𝐺 = 𝑊𝐿 ∫ 𝑄𝑖(𝑥)𝑑𝑥
𝑥=𝐿

𝑥=0
      (3.18) 

Plugging in the drain current expression (Equation 3.8 and 3.9) and integrating along the channel, the 

close-form charge expressions are as follows [15]: 



 

 28 

𝑄𝑆 =
2𝑊𝐿

(𝑄𝑖𝑠
2 −𝑄𝑖𝑑

2 )
2 [

𝑄𝑖𝑠
5 −𝑄𝑖𝑑

5

5
− 𝑄𝑖𝑑

2 𝑄𝑖𝑠
3 −𝑄𝑖𝑑

3

3
]    (3.19) 

𝑄𝐷 =
2𝑊𝐿

(𝑄𝑖𝑠
2 −𝑄𝑖𝑑

2 )
2 [𝑄𝑖𝑠

2 𝑄𝑖𝑠
3 −𝑄𝑖𝑑

3

3
−

𝑄𝑖𝑠
5 −𝑄𝑖𝑑

5

5
]    (3.20) 

𝑄𝐺 =
2𝑊𝐿

𝑄𝑖𝑠
2 −𝑄𝑖𝑑

2 [
𝑄𝑖𝑠

3 −𝑄𝑖𝑑
3

3
]      (3.21) 

Complete explanation and derivation for the Virtual Source charge model can be found in [15, 49]. 

Access Regions: Implicit Gate Transistor Model 

The access regions in GaN HEMTs are ungated two-terminal structures that exhibits nonlinear 

resistive behaviour same as transmission line method (TLM) structures. When low voltage (< 1𝑉) is 

applied across a TLM structure, the TLM structure behaves as a linear resistor, whose resistance is 

determined by the active region sheet resistance and its geometry. When high voltage is applied, the 

resistance is increased with the applied voltage, due to the carrier velocity saturation in the active 

region. This nonlinear resistive behaviour is well captured by using a transistor model which is biased 

with a constant gate to source voltage [15]. This constant 𝑉𝐺𝑆  is determined by making the on-

resistance (resistance at a certain 𝑉𝐺𝑆 and 𝑉𝐷𝑆 = 0) of the model equal to the resistance of TLM at 

low voltage, which is : 

𝐼𝑎𝑐𝑐𝑒𝑠𝑠 =
𝑉𝑎𝑐𝑐𝑒𝑠𝑠

𝑅𝑠ℎ×
𝐿

𝑊

=
𝑊

𝐿
𝜇𝐶𝑖𝑛𝑣(𝑉𝐺𝑆 − 𝑉𝑇)𝑉𝑎𝑐𝑐𝑒𝑠𝑠   (3.22) 

Solving Equation 3.22, the gate over drive voltage (𝑉𝐺𝑆 − 𝑉𝑇) can be calculated from carrier mobility 

𝜇, sheet resistance 𝑅𝑠ℎ and implicit gate capacitance 𝐶𝐼𝑔 as [15]: 

𝑉𝐺𝑆 − 𝑉𝑇 =
1

𝑅𝑠ℎ𝜇𝐶𝐼𝑔
     (3.23) 

Since it is difficult to determine a location for the implicit gate, the implicit gate capacitance is treated 

as a fitting parameter. The implicit gate capacitance 𝐶𝐼𝑔  is the only additional fitting parameter 

needed for the access regions in the Virtual Source model. 

3.6 Model Parameters Summary 

The proposed physics based compact model has the simplicity of using small numbers of parameters 

to model the device. The key parameters needed for the complete model are listed in Table 3.1. 
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Table 3.1 Model parameter summary 

Model Partition Parameters No. of 

Parameters 

Fixture Model 𝐶𝑝𝑎𝑑_𝑔𝑠, 𝐶𝑝𝑎𝑑_𝑑𝑠, 𝐶𝑝𝑎𝑑_𝑔𝑑 3 

Parasitic Model 𝐿𝑔,  𝐿𝑑 , 𝐿𝑠, 𝑅𝑔, 𝑅𝑑 , 𝑅𝑠, 𝐶𝑝𝑎𝑟_𝑔𝑠, 𝐶𝑝𝑎𝑟_𝑔𝑑 , 𝐶𝑝𝑎𝑟_𝑑𝑠 9 

Intrinsic 

Model 

Diode Model 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 ,  𝐼𝑗,  𝜂, 𝐼𝑟𝑒𝑐 ,  𝜂𝑟𝑒𝑐 , 𝑉𝑔𝑠𝑎𝑡𝑠, 𝑉𝑔𝑠𝑎𝑡𝑑 7 

Gated Transistor  𝑣𝑥𝑜, 𝜇0, 𝛽, 𝑉𝑡0, 𝐷𝐼𝐵𝐿1, 𝐷𝐼𝐵𝐿2, 𝑆𝑆, 𝑛𝑑, 𝐷𝐼𝐵𝐿𝑠𝑎𝑡 

𝑅𝑡ℎ, 𝐶𝑡ℎ  

11 

Source Access 

Region Model 
𝐶𝑔

𝑆𝐴𝑅 , 𝑣𝑥𝑜
𝑆𝐴𝑅 , 𝜇0

𝑆𝐴𝑅 , 𝛽𝑆𝐴𝑅 4 

Drain Access 

Region Model 
𝐶𝑔

𝐷𝐴𝑅 , 𝑣𝑥𝑜
𝐷𝐴𝑅 , 𝜇0

𝐷𝐴𝑅 , 𝛽𝐷𝐴𝑅 4 
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Chapter 4 

Model Parameter Extraction and Validation 

Model parameter extraction and validation are among the most important procedures in device 

modeling procedure. In this chapter, the complete model parameter extraction flow is demonstrated 

with the measurement data of two GaN HEMTs first. Since the key contribution of this thesis is the 

physics based Virtual Source compact model that is suitable for RF circuit simulation, the complete 

model formation and parameter extraction described in this chapter form the heart of the thesis. After 

all the parameters have been extracted, the GaN HEMT model constructed is validated against 

independent device measurement in terms of drain current, gate current and the S-parameter with 

respect to its associated sweeps (biasing and/or frequency). With the proposed extraction flow, the 

model is able to achieve reasonable accuracy for both DC and RF characteristics with a single set of 

parameter values. 

4.1 Physics Based Virtual Source Compact Model Extraction 

Based on the model partition proposed above, the complete model extraction flow is introduced in 

this section. Starting form device measurement results, the algorithm and technique of extracting each 

parameter are demonstrated step by step until the complete model is established for model validation. 

4.1.1 Overview of Model Extraction Procedure 

Since the wide adoption of GaAs HEMTs more than 20 years ago, the pinch-off cold-FET technique 

was appeared most frequently in literature for HEMT parasitic extraction [42, 47, 52- 54]. However, 

as pointed out by A. Landa in [55], the classical cold-FET method cannot be used in the parasitic 

extraction of GaN HEMTs, due to the reason that in GaN HEMTs the capacitive behavior of the 

Schottky diode, which affects the determination of parasitic resistance and inductance in classical 

cold-FET method, cannot be suppressed even by using large forward gate-source current. 

In order to overcome the inaccuracy due to the interference of parasitic resistances, capacitances and 

inductances during the extraction flow, a new gate current based resistive parameter extraction 

method is proposed for extracting the parasitic resistance and sheet resistance of the device. This 

method determines the resistive elements by using DC gate current first, which eliminates the 

affection of the gate capacitance in S-parameters. After the DC current of the transistor has been 
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correctly modeled, the parasitic inductance and capacitance are determined by fitting the S-parameter 

characteristics of the complete model to measurement data.  

The flowchart of the complete parameter extraction is shown in Figure 4.1. First, the dummy GSG pads 

structure is measured (step 1) to extract the pad capacitance (step 2). After that the DC-IV and DC S-

parameter of the transistor are measured to extract the parasitic and intrinsic model parameters (step 3).  

During the parasitic and intrinsic model parameter extraction, the parameters for forward diode are 

extracted from gate current (step 4). After that the source and drain contact resistance, active region 

sheet resistance and the parameters for forward diode are extracted from the gate current measurement 

(step 5). Then a few Virtual Source model parameters, such as the subthreshold slope and punch 

through factor, are directly extracted from measurement as initial values for VSM optimization (step 6). 

After that the VSM parameters are optimized to fit the drain current of both above-threshold region and 

subthreshold region (step 7). The parameters for reverse gate-drain diode current are optimized to fit the 

gate to drain leakage floor and the overall gate current (step 8). At the end, the parasitic inductance and 

capacitance are optimized to fit the modelled S-parameter to measurement data (step 9). 

End

Start

Step 1: Dummy GSG Probing Pads Measurement

Step 4: Modeling of Diode Forward Current

Step 2: GSG Pad Capacitance Extraction 

Step 10: Model Validation Against Measurement

Step 6: Preliminary VS Model Parameters Extraction 

Step 3: On-Wafer Transistor Measurement

Step 7: Drain Current Modelling of Intrinsic Transistor

Step 8: Reverse Diode Modeling of Intrinsic Transistor

Step 9: RF (Parasitic) Modelling of Transistor

Step 5: Contact Resistance, sheet Resistance Extraction

Section No.
Extracted 

Parameters

4.1.2

4.1.3

4.1.2

4.1.4

4.1.5

4.1.6

4.1.7

4.1.8

4.1.9

4.2

Table 4.3

Table 4.4

Table 4.5

Table 4.6 and 4.7

Table 4.8 and 4.9

Table 4.10 and 4.11

Table 4.12 and 4.13

 

Figure 4.1 Flowchart of the complete parameter extraction procedure 
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After all the model parameters have been extracted, the complete model is validated against 

measurement data, which will be demonstrated in next section (step 10). 

4.1.2 On-Wafer Device Characterization Setup 

Device characterization is the initial and one of the most important steps in device modeling 

procedure. The model developed in this thesis is fitted to measurement data, and therefore the 

reliability and accuracy of the device model depend largely on the choice of measurement method and 

the measurement accuracy. Considering the relatively lower measurement accuracy of pulsed 

measurement and the capability of thermal modeling in the intrinsic Virtual Source model as well as 

the relatively good thermal conductivity of the GaN samples on SiC substrate, DC-IV and DC S-

parameter measurement are performed. The on-wafer device characterization setup is shown in Figure 

4.2.  

PC
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Power Supply
E3634A

Power Supply
E3634A

Probe Stataion

Bias Tee Bias Tee

CPFC GaN500
HEMT

Probe
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HP 11612AAeroflex 
8810SMFX-Y

GPIB GPIB

VNA
N5242A

TCP/IP

Signatone WL-210

6½ DMM
34401A

6½ DMM
34401A

Gate Current Drain Current

 

Figure 4.2 On-wafer device characterization setup 

The DC-IV and DC S-parameter of device under test (DUT) are measured on the probe station with 

gate and drain connected to bias tees for DC biasing. The gate and drain voltage is supplied and 

measured by two power supplies while the gate and drain current are measured by a 6½ digital 



 

 33 

multimeter (DMM) instead of directly read from power supply for improved accuracy. The S-

parameter is measured using a vector network analyzer (VNA) from 45 MHz to 18 GHz. All the 

equipment are controlled by customized Matlab program running on a personal computer. The full 

measurement is conducted automatically using Matlab programs without the experimenter’s 

intervene.  

The on-wafer GaN device characterized in this study are fabricated by Canadian Photonics 

Fabrication Center (CPFC) using its GaN500 process. Figure 4.3 shows a microscopic photo of a die 

measured in this study. Each device on the die includes the GSG pads for probing and the embedded 

transistor. Three different gate widths of transistor are fabricated on the die with its width of 50 μm, 

100 μm and 200 μm.  All the transistors have a gate length of 500 nm and 2 fingers. 

 

Figure 4.3 Microscopic photo of a die with different sized transistors 

In order to achieve higher breakdown voltage, drain access region length is designed two times larger 

than the source access region length, which gives the transistor a breakdown voltage of more than 100 V 

[45]. Limited by the bias-tee operating voltage limitation, the transistors are only measured up to 

drain voltage of 45V. The devices are fabricated on SiC substrate, which allows for good thermal 

dissipation, therefor during measurement, the DC power of the transistor is limited to 10 W/mm. 

The devices measured in our study are device No. 1 and 2, both of which have a gate width of 50 μm. 

Geometrical parameters of the 2×50 μm transistor are listed in Table 4.1 below.  

Table 4.1 Geometrical parameters of the 2*50um transistors 

Parameters Value Unit 

Gate Length 500 nm 

Gate Width per Finger 50 μm 

1 2 3 
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Number of Fingers 2  

Source Access Region Length 1.1 μm 

Drain Access Region Length 2.4 μm 

In addition to the transistors, a short, open, line and Thru (SOLT) structure is fabricated on the die as 

well for probing calibration. The open structure is dummy GSG pad structure (device No. 3 in Figure 

4.3), whose S-parameter is measured for pad capacitance extraction in step 1 in our study. 

The parameter extraction for drain current model and gate current model requires different ranges of 

biasing sweeping. For drain current model parameter extraction, positive 𝑉𝐺𝑆 is not required due to 

the negative threshold voltage, but 𝑉𝐷𝑆  should be swept to tens of volts in order to accurately 

characterize the current saturation and thermal effect. Biasing sweep for gate current model parameter 

extraction is just the opposite. Positive 𝑉𝐺𝑆  is applied to generate large enough gate current for 

forward diode model extraction while 𝑉𝐷𝑆  is swept only up to several volts, which is sufficient 

enough to supress the gate current. Furthermore, sweeping step for measuring gate current is much 

finer than that for measuring drain current, due to the higher biasing sensitivity for gate current. 

The biasing sweeps for model parameter extraction and validation is listed in Table 4.2. 

Table 4.2 Biasing sweeping for model parameter extraction and validation 

Measurement 
Parameter 

Sweep 

Dataset for Fitting Dataset for validation 

Start Stop Step Start Stop Step 

Drain Current and  

S-parameter 

𝑉𝐷𝑆(V) 0 45 1 0.5 44.5 1 

𝑉𝐺𝑆(V) -6 0 0.2 -5.9 0.1 0.2 

Frequency (Hz) 45M 18G 25.9M 45M 18G 25.9M 

Gate Current 
𝑉𝐷𝑆(V) 0 1.8 0.2 0.1 1.7 0.2 

𝑉𝐺𝑆(V) -6 1.6 0.2 -5.9 1.5 0.2 

 

During all the measurements, the DC power is limited to 10 W/mm, in order to avoid the burndown 

of the device. 

4.1.3 GSG Pad Capacitances Extraction 

The GSG pad modeling theory is already introduced in Section 3.2. The two-port S-parameter of 

GSG pads is measured for pad capacitance extraction. GSG pad model is a pure capacitive network 
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(shown in Figure 3.3), and therefore the measured S-parameter is converted to Y-parameter for a 

direct capacitance representation as follows. 

𝐶𝑝𝑎𝑑_𝑔𝑑 = −
𝑖𝑚𝑎𝑔(𝑌12)

2𝜋⋅𝐹𝑟𝑒𝑞
     (4.1) 

𝐶𝑝𝑎𝑑_𝑔𝑠 =
𝑖𝑚𝑎𝑔(𝑌11)

2𝜋⋅𝐹𝑟𝑒𝑞
+

𝑖𝑚𝑎𝑔(𝑌12)

2𝜋⋅𝐹𝑟𝑒𝑞
    (4.2) 

𝐶𝑝𝑎𝑑_𝑑𝑠 =
𝑖𝑚𝑎𝑔(𝑌22)

2𝜋⋅𝐹𝑟𝑒𝑞
+

𝑖𝑚𝑎𝑔(𝑌12)

2𝜋⋅𝐹𝑟𝑒𝑞
    (4.3) 

The extracted pad capacitance vs. frequency is shown in Figure 4.4. The pads exhibit behaviour as 

constant capacitors for a wide range of frequency (except low frequency reaching the VNA’s 

measurement limitation) due to the reason that there is no physical conductive connection between 

each pad.  

   

Figure 4.4 Extracted pad capacitance vs. frequency 

The extracted results of 𝐶𝑝𝑎𝑑_𝑔𝑠, 𝐶𝑝𝑎𝑑_𝑑𝑠 and 𝐶𝑝𝑎𝑑_𝑑𝑠 between 500 MHz and 4 GHz are averaged as 

the final pad capacitance, which is listed in Table 4.3. 

Table 4.3 Final pad capacitance results 

Parameter Value Unit 

𝐶𝑝𝑎𝑑_𝑔𝑠 1.06×10−2 pF 

𝐶𝑝𝑎𝑑_𝑑𝑠 1.41×10−2 pF 

𝐶𝑝𝑎𝑑_𝑔𝑑 1.39×10−3 pF 

Result between 0.5GHz and 4GHz are 
averaged as the final pad capacitance value.  
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As is shown in Figure 3.3, the GSG pads are symmetrical, and therefore the gate pad capacitance 

(𝐶𝑝𝑎𝑑_𝑔𝑠) and drain pad capacitance (𝐶𝑝𝑎𝑑_𝑑𝑠) should have the same value. However, 𝐶𝑝𝑎𝑑_𝑔𝑠 and 

𝐶𝑝𝑎𝑑_𝑑𝑠 extracted in our study are not exactly the same. Possible reasons could be the position of gate 

probe and drain probe placement from the center are not ideally the same, which introduce 

unsymmetrical spatial capacitance to 𝐶𝑝𝑎𝑑_𝑔𝑠 and 𝐶𝑝𝑎𝑑_𝑑𝑠. 

4.1.4 Forward Diode Parameters Extraction 

The forward diode parameters are extracted from the forward gate current under the biasing condition 

of 𝑉𝐷𝑆 = 0  and 𝑉𝐺𝑆 ≥ 0  assuming gate-source diode ( 𝐷𝑔𝑠 ) and gate-drain diode ( 𝐷𝑔𝑑 ) are 

symmetrical. When the drain and source are both tied to ground, the DC equivalent circuit of the 

Schottky diode, the channel and the access regions are shown in Figure 4.5. The channel and the 

access regions are linear resistors, whose resistance is proportional to its horizontal length. The access 

region resistance (𝑅𝑠_𝑎𝑐𝑐𝑒𝑠𝑠, 𝑅𝑑_𝑎𝑐𝑐𝑒𝑠𝑠) is represented in terms of channel resistance (𝑅𝑐ℎ), which is 

labeled in Figure 4.5.  

DrainSource

Dgs

Gate

Rs_access=

Rch*1.1/0.5

Rch Rd_access=

Rch*2.4/0.5

Rg

Rseries

Dgd

RdRs

Vgi

Vsi Vdi

 

Figure 4.5 DC equivalent circuit of the transistor under biasing condition of  𝑽𝑫𝑺 = 𝟎 and 

𝑽𝑮𝑺 ≥ 𝟎 

The forward Schottky diode parameters ( 𝑅𝑔 + 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 ,  𝐼𝑗,  𝜂  as introduced in Section 3.4) are 

extracted by fitting the linear forward gate current to the measured 𝐼𝑔 of 𝑉𝐷𝑆 = 0 V and 𝑉𝐺𝑆 > 0 V. 

𝑅𝑠,  𝑅𝑑 , 𝑅𝑐ℎ, 𝑅𝑠_𝑎𝑐𝑐𝑒𝑠𝑠  and 𝑅𝑑_𝑎𝑐𝑐𝑒𝑠𝑠  are ohms level while the gate leakage is small ( < 4 mA ). 

Therefore, the voltage drop on 𝑅𝑠,  𝑅𝑑 , 𝑅𝑐ℎ , 𝑅𝑠_𝑎𝑐𝑐𝑒𝑠𝑠, 𝑅𝑑_𝑎𝑐𝑐𝑒𝑠𝑠 due to gate leakage can be neglected, 
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and the two gate diode resistors (2×𝑅𝑠𝑒𝑟𝑖𝑒𝑠 ) in parallel can be converted to one series resistor 

(𝑅𝑠𝑒𝑟𝑖𝑒𝑠). In this circuit simulation and parameter optimization, 𝑅𝑠,  𝑅𝑑 , 𝑅𝑐ℎ, 𝑅𝑠_𝑎𝑐𝑐𝑒𝑠𝑠, 𝑅𝑑_𝑎𝑐𝑐𝑒𝑠𝑠 are 

all set to 0 and 𝑅𝑔 + 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 ,  𝐼𝑗,  𝜂 are optimized to fit the linear 𝐼𝐺(𝑉𝑑𝑠 = 0 V,  𝑉𝑔𝑠 > 0 V) curve from 

measurement. The fitting result of linear scale and log scale gate current is shown in Figure 4.6 and 

Figure 4.7, respectively. 

 

Figure 4.6 Fitting result of linear scale forward gate current of device 1 and 2 

 

Figure 4.7 Fitting result of log scale forward gate current of device 1 and 2 

The extracted forward diode parameters for device 1 and 2 are listed in Table 4.4. 

(A)  

(log(A))  

(V)  

(V)  
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Table 4.4 Extracted forward diode parameters for device 1 and 2 

Parameter Device 1 Device 2 

𝑅𝑔 + 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 (Ω) 131 205 

𝐼𝑗 (mA/mm) 4.80 1.75 

𝜂 2.80 3.37 

  

The parasitic gate resistance (𝑅𝑔) and effective series resistance (𝑅𝑠𝑒𝑟𝑖𝑒𝑠) are in series, which cannot 

be distinguished in this section, and therefore the sum of the two resistance is extracted here. 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 

constitutes most part of 𝑅𝑔 + 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 because 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 models not only the series layer resistance but 

also the equivalent resistance due to the tunneling through the AlGaN/AlN/GaN structure. The value 

of 𝑅𝑔 and 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 will be determined by S-parameter fitting in the section of 4.1.9.  

As is demonstrated in Figure 4.6 and Figure 4.7, the Schottky forward diode model accurately 

describes the gate current vs. gate voltage. The process variation causes the large difference in gate 

current difference in device 1 and 2. This difference is accurately reflected in terms of the parameter 

difference shown in Table 4.4. 

4.1.5 Gate Current Based Resistive Parameters Extraction 

After the forward diode model has been established, the method of how to determine the source and 

drain contact resistance, active region sheet resistance is demonstrated in this section.  

Before extracting the contact resistance and sheet resistance based on the gate current, the on-

resistance of the transistor is extracted first. The on-resistance (𝑅𝑜𝑛) is defined as the total series 

resistance between the drain and source terminal when the channel is turned on at 𝑉𝐷𝑆 = 0, which is 

equal to 𝑅𝑠 +  𝑅𝑠_𝑎𝑐𝑐𝑒𝑠𝑠 + 𝑅𝑐ℎ + 𝑅𝑑_𝑎𝑐𝑐𝑒𝑠𝑠 + 𝑅𝑑 in Figure 4.5. The on-resistance serves as constrain 

of the total series resistance in the optimization to be discussed later in this section and the value of 

each resistive part is determined based on the 𝑉𝐷𝑆 dependence of the gate current. 

The on-resistance is extracted from the S-parameter measurement at 𝑉𝐺𝑆 = 0 and 𝑉𝐷𝑆 = 0. If the gate 

terminal is defined as port 1 and drain terminal is determined as port 2 in Figure 4.5, 𝑅𝑜𝑛 can be 

easily represented from the Z-parameter converted from S-parameter as follows. 
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𝑅𝑜𝑛 = 𝑟𝑒(𝑍22) = 𝑅𝑑 + 𝑅𝑠 + 𝑅𝑠_𝑎𝑐𝑐𝑒𝑠𝑠 + 𝑅𝑑_𝑎𝑐𝑐𝑒𝑠𝑠 + 𝑅𝑐ℎ  (4.4) 

The Z-parameter used here is not converted from the raw S-parameter of the measurement but the S-

parameter in which the pad capacitance has already been de-embedded. The pad capacitance usually 

includes errors, and therefore incomplete or over de-embedding of the pad capacitance introduce 

nonlinear frequency dependence in the real part of de-embedded Z-parameters [42]. To reduce the 

errors, the de-embedded Z-parameter is first multiplied by 𝜔2, which is: 

𝜔2 ⋅ 𝑅𝑜𝑛 = 𝜔2 ⋅ 𝑟𝑒(𝑍22) = 𝜔2 ⋅ (𝑅𝑑 + 𝑅𝑠 + 𝑅𝑠_𝑎𝑐𝑐𝑒𝑠𝑠 + 𝑅𝑑_𝑎𝑐𝑐𝑒𝑠𝑠 + 𝑅𝑐ℎ)  (4.5) 

By linear regression of 𝜔2 ⋅ 𝑟𝑒(𝑍22) vs. 𝜔2, 𝑅𝑜𝑛 is extracted from the slope. The linear regression of 

device 1 and 2 with frequency range from 45 MHz to 18 GHz and the corresponding 𝑅𝑜𝑛 is shown in 

Figure 4.8. 

Device 1 Device 2

Dash Line: 
Linear Regression

Solid Line: 
Measurement 

Dash Line: 
Linear Regression

Solid Line: 
Measurement 

 

Figure 4.8 𝑹𝒐𝒏 extraction of device 1 and 2 

After 𝑅𝑜𝑛 is extracted, the total series resistance constrain is established. Considering the proportional 

property of access regions and channel resistance in Figure 4.5, the resistance constrain is written as 

follows: 

𝑅𝑜𝑛 = 𝑅𝑠 + 𝑅𝑑 + 8×𝑅𝑐ℎ    (4.6) 

The free variables in Equation 4.6 are 𝑅𝑠, 𝑅𝑑 and 𝑅𝑐ℎ. Any two of these three free variables can be 

selected as independent variables while the other one as dependent variable for optimization to fit the 

model 𝐼𝐺 to the linear 𝐼𝐺 curves measured vs. positive 𝑉𝐺𝑆 and 𝑉𝐷𝑆 sweeps. 
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The fitting result of linear scale and log scale gate current vs. positive 𝑉𝐺𝑆 and 𝑉𝐷𝑆 sweeps is shown in 

Figure 4.9 and Figure 4.10, respectively. 

Device 2

: 0V to 1.8V 
Step 0.2V

Device 1

        : 0V to 1.8V 
Step 0.2V

 

Figure 4.9 Fitting result of linear scale forward gate current vs. 𝑽𝑮𝑺 and 𝑽𝑫𝑺 sweeps of device 1 

(left) and 2 (right) 

Device 1
: 0V to 1.8V 

Step 0.2V

Device 2
: 0V to 1.8V 

Step 0.2V

 

Figure 4.10 Fitting result of log scale forward gate current vs. 𝑽𝑮𝑺 and 𝑽𝑫𝑺 sweeps of device 1 

(left) and 2 (right) 

The contact resistance and sheet resistance are calculated using the following equations, in which 𝑊 

is the total width of the transistor. 

𝑅𝑐𝑠 = 𝑅𝑠×𝑊      (4.7) 

𝑅𝑐𝑑 = 𝑅𝑑×𝑊      (4.8) 

𝑅𝑠ℎ = (𝑅𝑜𝑛−𝑅𝑠 − 𝑅𝑑) ⋅
𝑊

𝐿𝑔𝑠+𝐿𝑔𝑑+𝐿𝑔
    (4.9) 

The complete extraction result for parasitic resistance, contact resistance and sheet resistance is 

shown in Table 4.5. 
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Table 4.5 Extraction result for parasitic resistance, contact resistance and sheet resistance 

Parameter Device 1 Device 2 

𝑅𝑠 (Ω) 8.392 9.724 

𝑅𝑑 (Ω) 9.288 10.60 

𝑅𝑐𝑠 (Ω ⋅ m) 8.392E-4 9.724E-4 

𝑅𝑐𝑑 (Ω ⋅ m) 9.288E-4 10.60E-4 

𝑅𝑠ℎ (Ω ⋅ sq) 278 226 

4.1.6 Preliminary Virtual Source Model Parameters Extraction 

Most of the parameters in the Virtual Source model are determined by optimizing the model output to 

the measurement data. However, before the optimization, a few parameters need to be extracted or 

estimated from the measurement as constant or initial values for optimization. The gate-to-channel 

capacitance is extracted as a constant while the subthreshold slope and punch through factor are 

extracted as initial values for optimization. 

Gate Capacitance Extraction and Threshold Voltage Estimation 

The gate-to-channel capacitance (𝐶𝑖𝑛𝑣) is defined as the capacitance between the gate and channel 

when the channel is fully turned on. It is an important parameter which directly impacts the current of 

the channel. The gate-to-channel capacitance is extracted from the value difference of the total gate 

capacitance before and after the channel is turned on. 

The gate capacitance distribution of a GaN HEMT when the channel is turned off (𝑉𝐺𝑆 ≪ 𝑉𝑡ℎ) is 

illustrated in Figure 4.11. 𝐶𝑝𝑎𝑟_𝑔𝑠 and 𝐶𝑝𝑎𝑟_𝑔𝑑  are the gate parasitic capacitance and 𝐶𝑜𝑓𝑠 and 𝐶𝑜𝑓𝑑 

are the fringing capacitance of the gate metallization. The capacitance under the gate is controlled by 

𝑉𝐺𝑆 and can be written as 𝐶𝑢𝑔(𝑉𝐺𝑆). 𝐶𝑢𝑔(𝑉𝐺𝑆) only includes the fringing capacitance when the 𝑉𝐺𝑆 is 

lower than the threshold voltage but increases dramatically as 𝑉𝐺𝑆 increases higher than the threshold 

voltage due to the formation of the channel.  
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Figure 4.11 Gate capacitance distribution when the channel is turned off (𝑽𝑮𝑺 ≪ 𝑽𝒕𝒉)   

The gate capacitance distribution of a GaN HEMT when the channel is fully turned on (𝑉𝐺𝑆 = 0) is 

illustrated in Figure 4.12. When 𝑉𝐺𝑆 = 0, the channel is completely formed, and therefore the gate-to-

channel capacitance (𝐶𝑖𝑛𝑣) remains almost constant with even higher 𝑉𝐺𝑆 and 𝐶𝑢𝑔(𝑉𝐺𝑆) can be written 

as 𝐶𝑢𝑔(𝑉𝐺𝑆 = 0) = 𝐶𝑜𝑓𝑠 + 𝐶𝑜𝑓𝑑 + 𝐶𝑖𝑛𝑣. 
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Figure 4.12 Gate capacitance distribution when the channel is fully turned off (𝑽𝑮𝑺 ≫ 𝑽𝒕𝒉) 

The total gate capacitance is express as Equation 4.10 and the total capacitance can be calculated 

from low frequency (hundreds of MHz) Y-parameter converted from measured S-parameter. 

𝐶𝑡𝑜𝑡𝑎𝑙(𝑉𝐺𝑆) = 𝐶𝑝𝑎𝑑_𝑔𝑠 + 𝐶𝑝𝑎𝑑_𝑔𝑑 + 𝐶𝑝𝑎𝑟_𝑔𝑠 + 𝐶𝑝𝑎𝑟_𝑔𝑑 + 𝐶𝑢𝑔(𝑉𝐺𝑆)  (4.10) 

If the gate and drain are define as port 1 and port 2 and the transistor is biased with 𝑉𝐷𝑆 = 0, the total 

gate capacitance is defined by the Y-parameter as: 

 𝐶𝑡𝑜𝑡𝑎𝑙(𝑉𝐺𝑆) =
𝑖𝑚𝑎𝑔(𝑌11)

𝑗𝜔
     (4.11) 

Therefore, the gate-to-channel capacitance can be calculated as 

𝐶𝑖𝑛𝑣 = 𝐶𝑢𝑔(𝑉𝐺𝑆 = 0) − 𝐶𝑢𝑔(𝑉𝐺𝑆 ≪ 𝑉𝑡ℎ) = 𝐶𝑡𝑜𝑡𝑎𝑙(𝑉𝐺𝑆 = 0) − 𝐶𝑡𝑜𝑡𝑎𝑙(𝑉𝐺𝑆 ≪ 𝑉𝑡ℎ) 

=
𝑖𝑚𝑎𝑔(𝑌11(𝑉𝐺𝑆=0))−𝑖𝑚𝑎𝑔(𝑌11(𝑉𝐺𝑆≪𝑉𝑡ℎ))

𝑗𝜔
    (4.12)    
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Frequency range from 200 MHz to 1 GHz is used for the total gate capacitance (𝐶𝑡𝑜𝑡𝑎𝑙) extraction. 

The extracted values in the frequency range are averaged as the final value. 𝐶𝑡𝑜𝑡𝑎𝑙 vs. 𝑉𝐺𝑆 sweep is 

shown in Figure 4.13. 

 

Figure 4.13 Total gate capacitance vs. 𝑽𝑮𝑺 sweep at 𝑽𝑫𝑺 = 𝟎 

The total gate capacitance of 𝑉𝐺𝑆 = −6 V and 0 V are selected as the turned-off capacitance and 

turned-on capacitance, as is marked in Figure 4.13. The difference between the on an off capacitance 

is calculated as the gate-to-channel capacitance, which is listed in Table 4.6. The threshold voltage 

(𝑉𝑡ℎ) is estimated by looking for the 𝑉𝐺𝑆 value that gives the maximum slope on the 𝐶𝑡𝑜𝑡𝑎𝑙 vs. 𝑉𝐺𝑆 

curve. The estimated 𝑉𝑡ℎ is listed in Table 4.6. These 𝑉𝑡ℎ are initial values and will be optimized in 

the DC intrinsic parameter optimization section. 

Table 4.6 Gate-to-channel capacitance and threshold voltage. 

Parameter Device 1 Device 2 

𝐶𝑖𝑛𝑣 (mF/m2) 2.453 4.327 

𝑉𝑡ℎ (V) -3.90 -3.85 
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The extracted gate-to-channel capacitance of device 1 and 2 diverges with each other significantly due 

to the process variation, which is partly because the devices were fabricated with immature process. 

Subthreshold Slope and Punch Through Factor Estimation 

One of the important advantages of the Virtual Source model is that the subthreshold behaviour of the 

transistor is correctly modeled. The subthreshold behaviour depends on the subthreshold slope and 

the punch through factor by the following equation. 

𝑆𝑆(𝑉𝐷𝑆) = 𝑆𝑆0 + 𝑛𝑑𝜙𝑡 ln(10) ⋅ 𝑉𝐷𝑆    (4.13) 

In Equation 4.13, 𝑆𝑆(𝑉𝐷𝑆) is the drain current depended subthreshold slope appeared in the Virtual 

Source drain current model. 𝑆𝑆0 is the constant subthreshold slope extracted at 𝑉𝐷𝑆 = 0. 𝑛𝑑  is the 

punch through factor, which captures the 𝑉𝐷𝑆 dependence of 𝑆𝑆.  

The purpose of this section is to introduce a method of extracting 𝑆𝑆0 and 𝑛𝑑 as initial values for the 

Virtual Source DC intrinsic parameter optimization. Both 𝑆𝑆0  and 𝑛𝑑  affect the drain current 

depended subthreshold slope (𝑆𝑆) and in a sense they compensate each other. Therefore, extracting 

𝑆𝑆0  and 𝑛𝑑  initial values helps the optimizer avoid being trapped in local minima and save 

optimization time as well. 

Log scale of drain current vs. 𝑉𝐺𝑆 is shown in Figure 4.14 and the subthreshold region used to extract 

subthreshold slope is highlighted in the blue quadrilateral. The subthreshold slope is defined as the 

maximum slope on the curve of each 𝑉𝐷𝑆 in the subthreshold region.  

VDS: 0 to 45V 
Step 1V

 

Figure 4.14 Log scale of drain current showing the subthreshold slope 
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The maximum slope of device 1 and 2 is searched in the quadrilateral and plotted with respect to 𝑉𝐷𝑆, 

which is shown in Figure 4.15. 

Device 1 Device 2

Figure 4.15 Subthreshold slope vs. 𝑽𝑫𝑺 of device 1 and 2  

The zigzag shape on the extracted curves is mainly due to the fact that the maximum slope does not 

happen exactly at the 𝑉𝐺𝑆 point where is swept, in which case the average of two adjacent second-

largest values is used. Nevertheless, the overall trend is well captured by fitting the threshold curve to 

the linear subthreshold slope Equation 4.13. The fitted straight line is plotted red in Figure 4.15. 

Punch through factor (𝑛𝑑 ) can be calculated from the slope of the straight line and 𝑆𝑆0  is the 

interception of the straight line with 𝑉𝐷𝑆 equal to zero. The extracted result is listed in Table 4.7. 

Table 4.7 Extracted result of subthreshold slope (𝑺𝑺𝟎) and punch through factor (𝒏𝒅) 

Parameter Device 1 Device 2 

𝑆𝑆0 (V/dec) 0.11858 0.12294 

𝑛𝑑 0.216783 0.03354 

 

The process variation is mainly responsible for the significant parameter difference of device 1 and 2. 

4.1.7 Drain Current Modeling of Intrinsic Transistor 

The DC intrinsic parameters of the Virtual Source model are obtained from optimizing the output of 

the model to fit the measurement data. Different error function is chosen for the optimization for 

above-threshold and subthreshold current due to different magnitude and span of the current. Besides, 

parameter sets controlling the above-threshold and subthreshold current are optimized separately, in 



 

 46 

order to reduce optimization dimensions and avoid the difficulty of combining two separate 

optimization goals. 

Above-threshold Drain Current Fitting  

Drain current curves measured with 𝑉𝐺𝑆 > −4 V, which is roughly the threshold voltage, are regarded 

as above-threshold current. The modeling theory was introduced in section 3.5. Here the focus is the 

explanation of optimization procedure for parameter extraction. 

A linear form rather than log form error function is used for the above-threshold optimization. This is 

mainly due to that the above-threshold current accuracy dominates the accuracy of the performance 

prediction of a power transistor. Little error in log scale could result in large difference in linear scale 

while linear scale error function could give a better description of the overall fitting. Therefore, a 

linear form error function, which normalizes the fitting error to measurement data, is used for the 

optimization as shown below. This is mainly due to the fact that current and voltage follows a roughly 

linear relationship in above-threshold region. 

𝐸𝑅𝑅𝐼𝑉−𝑎𝑏𝑜𝑣𝑒−𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
1

𝑁𝑎𝑏𝑜𝑣𝑒
∑

|𝐼𝐷
𝑚𝑜𝑑𝑒𝑙(𝑖)−𝐼𝐷

𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖)|

|𝐼𝐷
𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖)|

𝑁𝑎𝑏𝑜𝑣𝑒
𝑖=1    (4.14) 

In Equation 4.14, 𝐼𝐷𝑆
𝑚𝑜𝑑𝑒𝑙(𝑖) and 𝐼𝐷𝑆

𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖) are the drain current of model output and measurement 

data, respectively, and 𝑖 is the index of all the (𝑉𝐺𝑆, 𝑉𝐷𝑆) sweeping combination. 𝑁𝑎𝑏𝑜𝑣𝑒 is the total 

number of the  (𝑉𝐺𝑆, 𝑉𝐷𝑆) biasing points swept for above-threshold current. The sweep range of 𝑉𝐷𝑆 

starts from 1 V  instead of 0 for the reason that the drain current of the model at 𝑉𝐷𝑆 = 0  is 

theoretically zero, which will always give a normalized error equal to one without any benefit to the 

optimization. 

Apart from the initial values extracted in Section 4.1.6, the initial values of other parameters, such as 

saturation velocity and carrier mobility, are set to values within the common range reported by 

literature. Gradient optimization algorithm is chosen to optimize the model parameters to minimize 

the error function.  

The key parameters optimized for fitting the above-threshold drain current and the optimum values 

are listed in Table 4.8. 
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Table 4.8 Key parameters optimized for fitting the above-threshold drain current 

Region Parameter 
Device 1 

Initial Value 

Device 2 

Initial Value 

Device 1 

Optimum 

Value 

Device 2 

Optimum 

Value 

Unit 

Gated Transistor 

Saturation 

Velocity 
𝑣𝑥𝑜 1.5×105 1.5×105 1.99×105 1.71×105 m/s 

Carrier Mobility 𝜇0 0.2 0.2 0.23 0.22 m2/Vs 

Transition Fitting 

Parameter 
𝛽 1 1 1.8 0.89 

 

Threshold Voltage 𝑉𝑡𝑜 -3.90 -3.85 -3.93 -3.90 V 

1st Order DIBL 𝛿1 0 0 0.031 0.011 
 

Punch Through 

Factor 
𝑛𝑑 0.217 0.034 0.22 0.034 

 

Source Access 

Region Transistor 

Source Implicit 

Gate Capacitance 
𝐶𝑔

𝑆𝐴𝑅 1×10−3 1×10−3 5.0×10−4 5.8×10−4 F/m2 

Source Access 

Region Saturation 

Velocity 
𝑣𝑥𝑜

𝑆𝐴𝑅 1.5×105 1.5×105 1.55×105 1.33×105 m/s 

Source Access 

Region Carrier 

Mobility 
𝜇0

𝑆𝐴𝑅 0.2 0.2 0.19 0.19 m2/Vs 

Source Access 

Region Transition 

Fitting Parameter 
𝛽𝑆𝐴𝑅 1 1 0.63 0.61 

 

Drain Access 

Region Transistor 

Drain Implicit 

Gate Capacitance 
𝐶𝑔

𝐷𝐴𝑅 1×10−3 1×10−3 5.0×10−4 5.29×10−4 F/m2 

Drain Access 

Region Saturation 

Velocity 
𝑣𝑥𝑜

𝐷𝐴𝑅 1.5×105 1.5×105 1.90×105 1.36×10−5 m/s 

Drain Access 

Region Carrier 

Mobility 
𝜇0

𝐷𝐴𝑅 0.2 0.2 0.15 0.15 m2/Vs 

Drain Access 

Region Transition 

Fitting Parameter 
𝛽𝑆𝐴𝑅 1 1 0.81 4.71 

 

Thermal 

Coefficients 

Thermal 

Resistance 
𝑅𝑡ℎ 10 10 8.58 18.3 K/W 

 

The optimized saturation velocity and carrier mobility of device 1 and 2 are close to each other, and 

all of them represent the high carrier velocity and carrier mobility advantage of GaN HEMTs. The 

optimization gives an overall fitting error of 3.4% and 1.9% for device 1 and device 2, respectively. 

The measured and fitted above-threshold drain current curves are shown in Figure 4.16 and Figure 

4.17. 
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Device 1

     : -4 to 0V 
Step 0.2V

 

Figure 4.16 Above-threshold drain current fitting of device 1 

Device 2

        : -4 to 0V 
Step 0.2V

 

Figure 4.17 Above-threshold drain current fitting of device 2 

Except that some low 𝑉𝐷𝑆 regions have relatively larger fitting error, the model accurately captures 

the drain current profile of the transistor. The problem of fitting error in the low 𝑉𝐷𝑆 region (triode 

regions) needs further investigation. One way to improve the accuracy in triode region is to make the 

transition fitting parameter 𝛽  dependent on 𝑉𝐷𝑆 . However, doing so with ADS simulator causes 
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convergence issues. Therefore, this method is not used to improve triode region fitting accuracy at the 

moment. Besides, device 2 has more significant thermal effect than device 1, which is correctly 

modeled by the thermal resistance.  

Subthreshold Drain Current Fitting 

Drain current with −6 V ≤ 𝑉𝐺𝑆 ≤ −4 V is regarded as subthreshold current. A log form error function 

is selected to calculate the subthreshold drain current error due to the reason that the subthreshold 

current is much lower than above-threshold current and it spans to decades of values. The log for 

error function directly calculates the exponent difference of the model output and measurement data 

without normalization, which is as follows: 

𝐸𝑅𝑅𝐼𝑉−𝑠𝑢𝑏𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
1

𝑁𝑠𝑢𝑏
∑ |log (𝐼𝐷

𝑚𝑜𝑑𝑒𝑙(𝑖)) − log(𝐼𝐷
𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖))|

𝑁𝑠𝑢𝑏
𝑖=1   (4.15) 

𝐼𝐷𝑆
𝑚𝑜𝑑𝑒𝑙(𝑖), 𝐼𝐷𝑆

𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝑖) and 𝑖 are defined the same as in Equation 4.14. 𝑁𝑠𝑢𝑏 is the total number of the  

(𝑉𝐺𝑆, 𝑉𝐷𝑆) biasing points swept for subthreshold current. 

In subthreshold model optimization, both subthreshold slope at 𝑉𝐷𝑆 = 0 (𝑆𝑆0) and punch through 

factor (𝑛𝑑) affect the actual subthreshold slope. 𝑛𝑑 is already determined in above-threshold model 

optimization. Only 𝑆𝑆0 of the gated transistor is optimized in subthreshold optimization. The initial 

value is the 𝑆𝑆0 estimated in Section 4.1.6. 

To eliminate the misguiding of gate-drain diode leakage floor in the subthreshold model optimization, 

𝐼𝐷 points higher than two times of corresponding gate leakage floor and with 𝑉𝐺𝑆 lower than −4 V 

(points inside the blue quadrilateral in Figure 4.14 or the upper quadrilateral in Figure 4.18 and Figure 

4.19) are selected for the optimization. The optimization algorithm is Gradient. The initial value the 

optimum value of 𝑆𝑆0 is list in Table 4.9. 

Table 4.9 Initial value and the optimum value of 𝑺𝑺𝟎 

Region Parameter 
Device 1 

Initial Value 

Device 2 

Initial Value 

Device 1 

Optimum 

Value 

Device 2 

Optimum 

Value 

Unit 

Gated Transistor 
𝑆𝑆0 (Subthreshold 

Slope at 𝑉𝐷𝑆 = 0) 
0.12 0.12 0.08 0.151 V/dec 

 

The measured and fitted subthreshold drain current curves of device 1 and device 2 are shown in 

Figure 4.18 and Figure 4.19. 
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Device 1

: 1 to 45V 
Step 1V

Subthreshold Region

Gate-Drain Diode Leakage Floor

 

Figure 4.18 Subthreshold region fitting of device 1 

Device 2

: 1 to 45V 
Step 1V

Subthreshold Region

Gate-Drain Diode Leakage Floor

 

Figure 4.19 Subthreshold region fitting of device 2 

Due to process variation, the subthreshold regions of device 1 and device 2 show different slopes and 

𝑉𝐷𝑆  dependence, which are accurately captured and modeled by 𝑆𝑆0  and 𝑛𝑑 . The drain current 

leakage floor is due to the reverse leakage from drain to gate at high 𝑉𝐷𝑆, which will be modeled in 

the next section.  
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4.1.8 Reverse Diode Parameter Extraction 

Gate-Drain Reverse Diode Parameter Extraction 

The equations to model gate reverse current is introduced in Section 3.4. The gate reverse current 

consists of two parts – the gate-drain reverse current and gate-source reverse current. Gate-drain 

reverse current determines the 𝐼𝐷 floor at low 𝑉𝐺𝑆 shown in 𝐼𝐷(𝑉𝐷𝑆, 𝑉𝐺𝑆) plot while the sum of the 

two parts determines the overall leakage at low 𝑉𝐺𝑆 shown in 𝐼𝐺(𝑉𝐷𝑆, 𝑉𝐺𝑆) plot. Therefore, parameters 

of gate-drain reverse diode are extracted first from the drain current leakage floor and after that 

parameters of gate-source reverse diode are extracted from the rest of gate leakage current to form a 

complete reverse diode model. 

The reverse current density 𝐼𝑟𝑒𝑐 , the ideality factor for the reverse diode 𝜂𝑟𝑒𝑐  and the empirical 

reverse saturation voltage for gate-drain 𝑉𝑔𝑠𝑎𝑡𝑑  are optimized to fit the 𝐼𝐷  of the model to the 

measured 𝐼𝐷 leakage floor. Log form error function (Equation 4.15) is used for the gate-drain reverse 

current optimization. Two times of 𝐼𝐷(𝑉𝐷𝑆, 𝑉𝐺𝑆 = −6𝑉) of each 𝑉𝐷𝑆 is regarded as the floor current 

threshold and all the 𝐼𝐷(𝑉𝐷𝑆, 𝑉𝐺𝑆) points less than the floor current threshold (the lower quadrilateral 

in Figure 4.18 and Figure 4.19) are selected as data set for the optimization. 

The optimum parameters for the gate-drain reverse diode are listed in Table 4.10. 

Table 4.10 Optimum parameters for the gate-drain reverse diode 

Parameter Device 1 Device 2 

𝜂𝑟𝑒𝑐 3.37 3.36 

𝐼𝑗𝑟𝑒𝑐  (mA/mm) 1×10−9 3×10−10 

𝑉𝑔𝑠𝑎𝑡𝑑 (V) 1.87 1.84 

 

The measured and fitted gate-drain reverse leakage floor are shown in Figure 4.20 and Figure 4.21, 

respectively. 
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Gate-Drain Diode Leakage Floor

Device 1

: 1 to 45V 
Step 1V

 

Figure 4.20 Fitting of gate-drain reverse leakage floor of device 1 

Gate-Drain Diode Leakage Floor

Device 2

: 1 to 45V 
Step 1V

 

Figure 4.21 Fitting of gate-drain reverse leakage floor of device 2 

Gate-Source Reverse Diode Parameter Extraction 

After the parameters of gate-drain reverse diode are determined, the reverse current density 𝐼𝑟𝑒𝑐 and 

the ideality factor 𝜂𝑟𝑒𝑐 for gate-source reverse diode are determined as well. The only variable to be 

optimized for gate-source reverse diode is the reverse saturation voltage 𝑉𝑔𝑠𝑎𝑡𝑠. 𝑉𝑔𝑠𝑎𝑡𝑠 is optimized to 
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fit the gate current 𝐼𝐺  to measurement data. Log form error function (Equation 4.15) and gradient 

algorithm are selected in the optimization. In order to avoid the impact of measurement noise, only 

the measured 𝐼𝐺 with 𝑉𝐺𝑆 lower than −4 V is used in the optimization. 

The optimum parameter for the gate-drain reverse diode is listed in Table 4.11. 

Table 4.11 Optimum parameters for the gate-source reverse diode 

Parameter Device 1 Device 2 

𝑉𝑔𝑠𝑎𝑡𝑠 (V) 1.87 2.15 

 

The measured and fitted gate reverse current with the full range 𝑉𝐺𝑆 sweep are shown in Figure 4.22 

and Figure 4.23, respectively.  

Device 1

: 0 to 2V 
Step 0.2V

 

Figure 4.22 Gate current with both forward and reverse current of device 1 
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Device 2

: 0 to 2V 
Step 0.2V

 

Figure 4.23 Gate current with both forward and reverse current of device 2 

From Figure 4.20 to Figure 4.23, it is clear that the proposed Schottky gate diode model not only 

models the reverse and forward gate current for a large range of 𝑉𝐺𝑆 sweep, but also captures the 

drain current leakage floor at low 𝑉𝐷𝑆. The parameters extracted are physics based, which clearly 

describes the device behaviour, and are able to facilitate future device design and optimization.  

4.1.9 RF (Parasitic) Parameter Extraction  

Because of Virtual Source model’s physics based characteristic, the charge model is determined as 

well when the parameters are extracted from DC-IV measurement. The intrinsic model constructed 

from DC-IV measurement has the capability of describing the RF behavior of the intrinsic transistor, 

but the parasitic model cannot be extracted from pure DC measurement. Therefore, the measured S-

parameter is used to extract the parasitic gate resistance (which cannot be separated form GaN Cap 

layer resistance introduced in Section 4.1.5), inductance and capacitance in the equivalent circuit 

shown in Figure 3.5 and Figure 3.6. 

The behavior of parasitic gate resistance (𝑅𝑔) is mainly represented by 𝑆11. 𝑅𝑔 has much less impact 

on the other S-parameters (ie. 𝑆12,𝑆21and 𝑆22). Besides, optimizing 𝑅𝑔 with other parasitic parameters 

results in a higher dimensional optimization space (𝑅𝐶𝐿 space instead of only 𝑅 space), in which the 

optimization will be easily trapped in local minima. Therefore, in our methodology, 𝑅𝑔 is extracted 

from 𝑆11 optimization first. After that parasitic inductance ( 𝐿𝑔, 𝐿𝑑 , 𝐿𝑠 ) and capacitance 
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(𝐶𝑝𝑎𝑟_𝑔𝑠, 𝐶𝑝𝑎𝑟_𝑔𝑑 , 𝐶𝑝𝑎𝑟_𝑑𝑠) are optimized to fit the overall S-parameter of the complete model (with 

GSG pad model) to the S-parameter from the measurement. 

S-parameter Dataset for Parasitic Optimization 

The parasitic elements optimization is based on the constructed DC Virtual Source model. The DC 

fitting accuracy significantly affects the parasitic element values when they are optimized to fit model 

S-parameter to the measured S-parameter. For example, the DC transcondutance (𝑔𝑚), which is the 

origin of transistor gain, determines 𝑆21 together with the input and output RCL network. If the DC 

transconductance is not correctly modeled, the error will propagate to the RCL values during the 

optimization. Besides, S-parameter simulation is computationally intensive. It takes a huge amount of 

time to optimize the model with respect to all the biasing points. Considering the two issues above, 

only the 𝑉𝐷𝑆 point that gives the best 𝐼𝐷  fitting (thus, the best 𝑔𝑚 fitting as well because 𝑔𝑚 is the 

derivative of 𝐼𝐷  vs. 𝑉𝐺𝑆) is selected and the corresponding S-parameters are used in the parasitic 

optimization. 

Simulation shows that 𝑉𝐷𝑆 = 12 V for device 1 and 𝑉𝐷𝑆 = 10 V for device 2 give the most accurate 

𝐼𝐷 and 𝑔𝑚 fitting with the full 𝑉𝐺𝑆 sweep from the threshold voltage to zero, which is highlighted in 

Figure 4.24 and Figure 4.25. The 𝐼𝐷 points of the model and measurement on the dashed line fit each 

other with the least error (3.3% of device 1and 1.8% of device 2). 

Device 1

     : -6 to 0V 
Step 0.5V

 

Figure 4.24 𝑽𝑫𝑺 = 𝟏𝟐 𝐕 gives the best 𝑰𝑫 and 𝒈𝒎 fitting of device 1 
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Device 2

        : -4 to 0V 
Step 0.2V

 

Figure 4.25 𝑽𝑫𝑺 = 𝟏𝟎 𝐕 gives the best 𝑰𝑫 and 𝒈𝒎 fitting of device 2 

The S-parameter with 𝑉𝐷𝑆 = 12 V  from device 1 measurement and 𝑉𝐷𝑆 = 10 V  from device 2 

measurement are used in the following optimization. 

There are two rounds of optimization in this step. In the first round, 𝑅𝑔 is optimized with parasitic 

inductance and capacitance set to 0. 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 is then decided by using the optimum value of 𝑅𝑔. In the 

second round, 𝑅𝑔 and 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 are fixed to the final value for last round of optimization, in which the 

parasitic inductance and capacitance are determined. 

Round 1: Parasitic Gate Resistance Optimization 

Parasitic gate resistance (𝑅𝑔) is optimized to fit 𝑆11 of the model to the 𝑆11of the measurement. At 

this time, the parasitic inductance and capacitance are not determined yet. Setting them to 0 is a 

reasonable choice without affecting the result of 𝑅𝑔.  

S-parameter data include a set of vectors, and an error vector magnitude (EVM) form error function is 

used for the S-parameter fitting error calculation, which is shown as follows. 

𝐸11
𝑖 =

√|𝑟𝑒𝑎𝑙(𝑆11−𝑚𝑜𝑑𝑒𝑙
𝑖 −𝑆11−𝑚𝑒𝑎𝑠

𝑖 )|
2

+|𝑖𝑚𝑎𝑔(𝑆11−𝑚𝑜𝑑𝑒𝑙
𝑖 −𝑆11−𝑚𝑒𝑎𝑠

𝑖 )|
2

|𝑆11−𝑚𝑒𝑎𝑠
𝑖 |

  (4.16) 

𝐸12
𝑖 =

√|𝑟𝑒𝑎𝑙(𝑆12−𝑚𝑜𝑑𝑒𝑙
𝑖 −𝑆12−𝑚𝑒𝑎𝑠

𝑖 )|
2

+|𝑖𝑚𝑎𝑔(𝑆12−𝑚𝑜𝑑𝑒𝑙
𝑖 −𝑆12−𝑚𝑒𝑎𝑠

𝑖 )|
2

|𝑆12−𝑚𝑒𝑎𝑠
𝑖 |

  (4.17) 
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𝐸21
𝑖 =

√|𝑟𝑒𝑎𝑙(𝑆21−𝑚𝑜𝑑𝑒𝑙
𝑖 −𝑆21−𝑚𝑒𝑎𝑠

𝑖 )|
2

+|𝑖𝑚𝑎𝑔(𝑆21−𝑚𝑜𝑑𝑒𝑙
𝑖 −𝑆21−𝑚𝑒𝑎𝑠

𝑖 )|
2

|𝑆21−𝑚𝑒𝑎𝑠
𝑖 |

  (4.18) 

𝐸22
𝑖 =

√|𝑟𝑒𝑎𝑙(𝑆22−𝑚𝑜𝑑𝑒𝑙
𝑖 −𝑆22−𝑚𝑒𝑎𝑠

𝑖 )|
2

+|𝑖𝑚𝑎𝑔(𝑆22−𝑚𝑜𝑑𝑒𝑙
𝑖 −𝑆22−𝑚𝑒𝑎𝑠

𝑖 )|
2

|𝑆22−𝑚𝑒𝑎𝑠
𝑖 |

  (4.19) 

𝐸𝑅𝑅𝑆𝑃 =
1

𝑁𝑆𝑃
∑

1

4
×(𝐸11

𝑖 + 𝐸21
𝑖 + 𝐸12

𝑖 + 𝐸22
𝑖 )

𝑁𝑆𝑃
𝑖=1    (4.20) 

Gradient algorithm is used in 𝑅𝑔 optimization. The 𝑆11 before and after 𝑅𝑔 optimization of device 1 

and device 2 are shown in Figure 4.26 and Figure 4.27 respectively.  
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Figure 4.26 𝑺𝟏𝟏 before and after 𝑹𝒈 optimization of device 1 
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Figure 4.27 𝑺𝟏𝟏 before and after 𝑹𝒈 optimization of device 2 
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Optimization of 𝑅𝑔  converges the modeled 𝑆11  curves to the measured 𝑆11  curves. The model 

accurately captures the 𝑆11  behavior of the device. In the section of forward diode parameter 

extraction (Section 4.1.4), 𝑅𝑔  and the effective series resistance 𝑅𝑠𝑒𝑟𝑖𝑒𝑠  cannot be separated. 

Therefore, the sum of 𝑅𝑔  and 𝑅𝑠𝑒𝑟𝑖𝑒𝑠  were extracted. Now the values of both 𝑅𝑔  and 𝑅𝑠𝑒𝑟𝑖𝑒𝑠  are 

determined, which are listed in Table 4.12.  

Table 4.12 Result of parasitic gate resistance (𝑹𝒈) and effective series resistance (𝑹𝒔𝒆𝒓𝒊𝒆𝒔) 

Parameter Device 1 Device 2 

𝑅𝑔 (Ω) 4.80 4.83 

𝑅𝑠𝑒𝑟𝑖𝑒𝑠 (Ω) 126 200 

 

Round 2: Parasitic Inductance and Capacitance Optimization 

Parasitic inductance (𝐿𝑔, 𝐿𝑑 , 𝐿𝑠) and capacitance (𝐶𝑝𝑎𝑟_𝑔𝑠, 𝐶𝑝𝑎𝑟_𝑑𝑠, 𝐶𝑝𝑎𝑟_𝑔𝑑) are optimized to fit the 

overall S-parameter (𝑆11, 𝑆12, 𝑆21, 𝑆22) of the model to the S-parameter of the measurement. Here the 

same S-parameter error function and optimization algorithm are used as introduced in last section.  

The model S-parameters after optimization of device 1 and 2 are shown in Figure 4.28 and Figure 

4.29. The total S-parameter EVM fitting error for device 1 and device 2 are 7.4% and 6.8% 

respectively. The model accurately captures the voltage gain 𝑆21 and reflection coefficient 𝑆11 of the 

device, which is of great importance for power amplifier design. The EVM fitting error for isolation 

𝑆12 is relative large, but since the absolute value of 𝑆12 is always very small (< 0.1) compared to 

other S-parameters, the error in 𝑆12 has very little affection on performance prediction, and therefore 

the 𝑆12 fitting error can be accepted. The modeled 𝑆22 correctly captures the trend of measured 𝑆22, 

but there is certain discrepancy in the amplitude of the modeled and measured 𝑆22  data. The 

amplitude difference represents the difference in output resistance of the model and the measurement, 

which needs further investigation. Detailed EVM error with respect 𝑉𝐷𝑆 is listed in Table 4.14. 
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     : -6 to 0V 
Step 0.5V

Device 1

 

Figure 4.28 S-parameter fitting of device 1 

Device 2

     : -6 to 0V 
Step 0.5V

 

Figure 4.29 S-parameter fitting of device 2 
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Since 𝑆21 is the most critical for power amplifier design, the magnitude and phase of 𝑆21 of device 1 

and device 2 are plotted separately in rectangular plots, which are shown Figure 4.30. Both the 

magnitude and phase of 𝑆21 are reasonably well described by the proposed model.  

Device 1      : -6 to 0V 
Step 0.5V

Device 2

 

Figure 4.30 Magnitude and phase of 𝑺𝟐𝟏 of device 1 (left two plots) and device 2 (right two 

plots) 

The optimum values of the parasitic inductance and capacitance from the optimization are list in 

Table 4.13. The optimum parameters of device 1 are reasonably close to those of device 2 (within the 

same decade), due to the reason that parasitics are passive elements and the process variation of 

passive elements is much less severe than process variation in active regions.  
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Table 4.13 Optimum values of the parasitic inductance and capacitance 

Parameter Device 1 Device 2 

𝐿𝑔 (pH) 10.75 8.16 

𝐿𝑑 (pH) 25.3 15.75 

𝐿𝑠 (pH) 9.16×10−3 7.26×10−3 

𝐶𝑝𝑎𝑟_𝑔𝑠 (pF) 0.162 0.168 

𝐶𝑝𝑎𝑟_𝑔𝑑 (pF) 1.08×10−3 3.01×10−3 

𝐶𝑝𝑎𝑟_𝑑𝑠 (pF) 0.029 0.084 

 

S-parameter EVM Fitting Error Summary 

The overall EVM error and the EVM error of each S-parameter with respect to 𝑉𝐷𝑆 are listed in Table 

4.14. Generally, 𝑆11, 𝑆21 and 𝑆22 are better modeled than  𝑆12 due to the large absolute values of 

𝑆11, 𝑆21  and 𝑆22 which give dominant affection in not only guiding the optimization but also 

predicting the transistor performance. A significant degradation of 𝑆22  happens in the saturation 

regime (high 𝑉𝐷𝑆 ) for both device 1 and 2, which indicates that output impedance significantly 

changes in saturation region. This issue needs further investigation. 

Table 4.14 S-parameter EVM fitting error of different 𝑽𝑫𝑺 

𝑽𝑫𝑺 
Device 1 Device 2 

S11 S12 S21 S22 Overall S11 S12 S21 S22 Overall 

5V 9.8% 25.4% 13.9% 19.4% 17.1% 3.2% 9.6% 8.9% 14.1% 9.0% 

10V 8.4% 14.9% 8.1% 13.0% 11.1% 3.4% 5.7% 5.4% 12.8% 6.8% 

20V 5.1% 4.9% 4.0% 9.0% 5.7% 2.8% 9.1% 5.0% 13.1% 7.5% 

30V 4.3% 6.2% 5.0% 12.8% 7.1% 2.6% 10.6% 7.0% 19.7% 10.0% 

40V 3.3% 6.2% 4.8% 14.7% 7.3% 2.7% 11.9% 9.50% 31.1% 13.8% 

 

The proposed model with its optimum parameters is validated in the next section. 
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4.2 Model Validation 

4.2.1 Drain Current Model Validation 

The measurement dataset for device validation should be completed independently from the dataset 

used for model parameter extraction to avoid the error dependence inheritance. Base on this 

dependence requirement, the dataset for model validation is obtained by shifting both the 𝑉𝐺𝑆 and 𝑉𝐷𝑆 

by a constant value from the 𝑉𝐺𝑆 and 𝑉𝐷𝑆 points swept in the dataset for model parameter extraction. 

Due to the wide span (from μA to a hundred of mA), drain current is validated in two parts – above-

threshold current validation in linear scale and subthreshold current validation in log scale. 

Above-Threshold Drain Current 

As shown in Table 4.2, 𝑉𝐺𝑆 and 𝑉𝐷𝑆 sweepings for drain current validation are shifted by 0.1 V and 

0.5 V from the sweepings for model parameter extraction, respectively. Drain current points with 

𝑉𝐺𝑆 ≥ −3.9 V (shifted threshold voltage from −3.8 V to −3.9 V) are regarded as above-threshold 

current. The above-threshold drain current points of device 1 and device 2 vs. 𝑉𝐷𝑆  are plotted in 

Figure 4.31. 

Device 1 Device 2

     : -3.9 to -0.1V 
Step 0.2V

        : -3.9 to -0.1V 
Step 0.2V

 

Figure 4.31 Above-threshold drain current with shifted biasing of device 1 (left) and device 2 

(right) 

Figure 4.31 shows that except some low 𝑉𝐷𝑆 regions (triode region) have relatively larger fitting error, 

the model accurately predicts the drain current profile compared measurement data. The overall 

fitting error of device 1 and device 2 with the shifted biasing are 4.4% and 2.4%, respectively.  
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Subthreshold Drain Current and Gate-Drain Reverse Leakage 

The subthreshold drain current and the gate-drain reverse leakage are plotted in log scale in Figure 

4.32. The subthreshold slope and its dependence on 𝑉𝐷𝑆 is correctly modeled and validated by the 

constructed model. 

Device 1

: 0.5 to 
44.5V Step 1V

Device 2

: 0.5 to 
44.5V Step 1V

 

Figure 4.32 Subthreshold drain current and gate-drain reverse leakage of device 1 (left) and 

device 2 (right) 

The gate-drain leakage that caused the drain current floor is modeled and validated as well. Leakage 

current above 1×10−6A is well captured by the gate-drain diode. Leakage current below 1×10−6A is 

reaching the instrument’s limitation. Therefore, the current deviation between the model and 

measurement data below 1×10−6A in the right figure is reasonable to be neglected, due to the 

unreliable measurement.  

4.2.2 Gate Current Model Validation 

Similar to the drain current validation, both 𝑉𝐺𝑆 and 𝑉𝐷𝑆 sweepings for gate current validation are 

shifted by 0.1 V from the sweepings for model parameter extraction (Table 4.2). The forward mode 

current is validated in linear scale due to its relatively large value. The total gate current with both 

forward and reverse current is validated in log scale with full 𝑉𝐺𝑆 range from -5.9 V to 1.5 V. 

Forward Mode Current in Linear Scale 

Forward gate current with shifted biasing sweepings of device 1 and device 2 is plotted in Figure 

4.33. The gate forward diode model accurately predicted the gate current with respect to both 𝑉𝐺𝑆 and 

𝑉𝐷𝑆. Upper limit up to 𝑉𝐺𝑆 = 1.5 V is high enough for validation purpose since the device is reaching 
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its operating limitation at this voltage. In common power amplifier designs, the gate voltage seldom 

reaches such a high value. 

Device 1

      : 0.1V to 1.7V 
Step 0.2V

Device 2

: 0.1V to 1.7V 
Step 0.2V

 

Figure 4.33 Linear scale forward gate current vs. shifted 𝑽𝑮𝑺 and 𝑽𝑫𝑺  sweeps of device 1 (left) 

and 2 (right) 

Forward and Reverse Mode Current in Log Scale 

The gate current in log scale with full range of 𝑉𝐺𝑆 sweep of device 1 and device 2 is plotted in Figure 

4.34. Gate current measured below 1×10−6A is discarded due to the unreliable measurement error 

due to the equipment limitation.  

Device 1

: 0 to 2V 
Step 0.2V

Device 2

: 0 to 2V 
Step 0.2V

 

Figure 4.34 Log scale gate current with both forward and reverse current of device 1 (left) and 

device 2 (right) 

The proposed Schottky gate diode model is validated with the full range 𝑉𝐺𝑆  sweep. The model 

accurately describes the forward gate current above 1×10−5A. For the forward and reverse current 
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between 1×10−5A and 1×10−6A, the modelling accuracy is not as accurate as gate current above 

1×10−5𝐴, but still accurate for circuit simulation. 

4.2.3 S-parameters Model Validation 

In Section 4.1.9, the S-parameters of the 𝑉𝐷𝑆 that achieve the most accurate 𝐼𝐷𝑆 fitting vs. 𝑉𝐺𝑆 are 

selected for optimizing the parasitic elements. The optimum 𝑉𝐷𝑆 found for device 1 and device 2 is 

12 V and 10 V, respectively. Here the optimum 𝑉𝐷𝑆 is shifted upwards by 0.5 V to validate the vector 

S-parameters and the magnitude and phase of 𝑆21. The shifted optimum 𝑉𝐷𝑆 of device 1 and device 2 

for validation are 12.5 V and 10.5 V respectively. 

S-parameters on Smith Chart 

     : -5.9 to 0.1V 
Step 0.5V

Device 1

 

Figure 4.35 S-parameter validation of device 1 
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The S-parameters of device 1 and device 2 on the shifted optimum 𝑉𝐷𝑆 are shown in Figure 4.35 and 

Figure 4.36. Using the validation dataset, the total S-parameter EVM fitting errors for device 1 and 

device 2 are 7.7% and 6.9%, respectively, which are close to that error in the previous chapter.  The 

model accurately captures the voltage gain 𝑆21 and reflection coefficient 𝑆11 of the device. Using the 

parameter extraction dataset, the relative large error in 𝑆12 and 𝑆22 has the same pattern of those 

appeared in the corresponding smith chart of the previous chapter, which needs further investigation.  

 

Device 2

     : -5.9 to 0.1V 
Step 0.5V

 

Figure 4.36 S-parameter validation of device 2 
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Magnitude and Phase of 𝑺𝟐𝟏 

The magnitude and phase of 𝑆21 for the two device are shown in Figure 4.37. The magnitude and 

phase of 𝑆21 are separately validated by dataset from independent measurement.  

Device 1      : -5.9 to 0.1V 
Step 0.5V

Device 2
 

Figure 4.37 Magnitude and phase of 𝑺𝟐𝟏 of device 1 (left two plots) and device 2 (right two 

plots) 

The proposed model accurately captures both the amplitude and phase of 𝑆21, which provides a solid 

evidence for the model’s capability of power amplifier simulation. 

S-parameter EVM Validation Error Summary 

The overall EVM error and the EVM error of each S-parameter with the dataset under original 

biasing for extraction (last chapter) and the dataset under shifted biasing for validation (this chapter) 
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are listed in Table 4.15. The fitting error before and after the biasing shift are close to each other, 

which proves the model’s validity for the full biasing range.  

Table 4.15 S-parameter EVM error comparison of parameter extraction and validation 

𝑽𝑫𝑺 
Device 1 Device 2 

S11 S12 S21 S22 Overall S11 S12 S21 S22 Overall 

Fitting 5V 9.8% 25.4% 13.9% 19.4% 17.1% 3.2% 9.6% 8.9% 14.1% 9.0% 

Val 5.5V 10.1% 26.4% 13.5% 19.9% 17.5% 3.5% 10.2% 7.7% 15.0% 9.1% 

Fitting 10V 8.4% 14.9% 8.1% 13.0% 11.1% 3.4% 5.7% 5.4% 12.8% 6.8% 

Val 10.5 8.3% 14.2% 10.0% 13.9% 11.3% 3.5% 5.8% 5.3% 13.0% 6.9% 

Fitting 20V 5.1% 4.9% 4.0% 9.0% 5.7% 2.8% 9.1% 5.0% 13.1% 7.5% 

Val 20.5 4.8% 4.6% 3.9% 9.3% 5.7% 3.0% 9.5% 5.7% 13.6% 7.9% 

Fitting 30V 4.3% 6.2% 5.0% 12.8% 7.1% 2.6% 10.6% 7.0% 19.7% 10.0% 

Val 30.5 3.6% 6.5% 5.0% 13.4% 7.1% 2.8% 11.0% 7.9% 20.9% 10.6% 

Fitting 40V 3.3% 6.2% 4.8% 14.7% 7.3% 2.7% 11.9% 9.5% 31.1% 13.8% 

Val 40.5 3.6% 6.4% 4.7% 15.1% 7.4% 2.7% 11.3% 9.4% 31.6% 13.7% 

 

In summary, the GaN HEMT model constructed in the last chapter is validated against device 

measurement in this section. Validation with independent measurements proves that the drain current, 

gate current and S-parameter with respected to biasing are accurately modelled by the proposed 

physics based Virtual Source compact model. 
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Chapter 5 

Conclusions and Future Work  

5.1 Conclusions 

A physics based Virtual Source compact model for GaN HEMTs has been proposed to accurately 

model the DC and RF behaviors. The proposed GaN HEMT model is partitioned into three modules 

based on the physical layout of the device – the GSG pad model, the parasitic model and the intrinsic 

model. This physics based partition scheme is valid and efficient for modeling the device behavior on 

the top-most level. 

The GSG pads are modeled by a pure capacitive network due to their layout while the transistor 

parasitics are modeled by a pair of serial resistor and inductor for each terminal and a spatial coupling 

capacitor between each terminal. Separate measurement for GSG pads and pad capacitor extraction 

have shown that the proposed pads model is able to model the behavior of the pads. The parasitic 

elements are extracted by S-parameter fitting after the DC model of the device has been constructed. 

The extracted elements correctly represent the physical behaviors of the parasitics. 

The intrinsic drain current is physically modeled based on the Virtual Source model theory proposed 

at MIT. Virtual Source model parameters are determined by optimizing model output to measurement 

data. The proposed optimization method that optimizes above-threshold current parameters and 

subthreshold current parameters separately is demonstrated to be efficient to reduce optimization 

space and obtain reliable parameters. The intrinsic gate current is modeled by a Schottky diode with 

forward and reverse current. Fitting results show that the both drain and gate current with dependence 

on 𝑉𝐺𝑆 and 𝑉𝐷𝑆 are accurately predicted by the proposed model. 

Besides, a complete model parameter extraction workflow is demonstrated by constructing actual 

models for two GaN HEMTs from device measurement. A novel gate current based resistive 

parameter estimation technique is proposed for extracting the parasitic source and drain resistance and 

channel resistance. This technique uses only DC gate current to determine the resistive elements, 

which avoids the inaccuracy and uncertainties due to the interference of different types of parasitic 

elements as happened in conventional methods such as the cold-FET method. This method also 

eliminates the effort of fabricating the TRL structure for measuring active region sheet resistance, 

which is used in MIT Virtual Source model parameter extraction. 
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At the end, the constructed model is validated with independent measurement dataset in terms of 

drain current, gate current and S-parameter targeting future RF circuit design. Reasonable accuracy is 

reported for both DC (gate current and drain current) and S-parameter characteristics using the same 

set of extracted parameters. 

Compared to the empirical compact models, such as Angelov model, EEHEMT model and DynaFET 

model, the proposed physics-based Virtual Source compact model clearly describes the behavior of 

the device based on the drift-diffusive transport theory with a significant smaller amount of physical 

parameters. It is computational efficient and easy to implement in circuit simulator. The model is 

scalable with dimension, biasing and temperature. However, due to the device process limitation and 

measurement set up, the scalability of the model cannot be validated with all the dimensions. This 

serves as part of the future work described in next section.  

5.2 Future Work 

Several works are worth further investigation at the conclusion of this project. These works can be 

divided into three aspects – improving the accuracy of the model, validating model’s capability and 

adding new features to the model. 

A. Improving the Accuracy of the Model 

The model introduced in this thesis didn’t use pulse-IV measurement to avoid the thermal effect in 

drain current due to the large measurement error of pulsed measurement and the capability of thermal 

modeling in the intrinsic Virtual Source model. However, with the development of instrumentation, 

future high resolution pulse-IV measurement is more valuable and preferred for GaN HEMT 

modeling. Pulse-IV measurement is able to isolate thermal effect, and therefore the current model and 

thermal model can be characterized separately to avoid error propagation. Furthermore, by separating 

thermal effect, more complicated (such as layout dependent) thermal networks can be implemented 

and calibrated to model the dynamic thermal behavior of the transistor. 

Although the overall I-V fitting of the transistor is satisfactory, there is still noticeable divergence 

between the fitted curves and measurement data in triode region. This issue is neglected at the 

moment due to the reason that for power amplifier design, the load line seldom goes into the triode 

region. To provide a more accurate model not just for power amplifier design, the specific device 

operating principles and corresponding modeling method need investigation in the future. 
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For the S-parameter, model 𝑆22  correctly captures the trend of 𝑆22  from measurement, but the 

amplitude does not exactly matches each other. The amplitude difference represents the difference in 

output resistance of the model and the measurement. To provide a more accurate prediction of the 

output characteristics, this issue needs further investigation. 

B. Validating Model’s Capability  

The model is inherently scalable with geometry, biasing and other physical dimensions. These 

scalabilities have not been validated in our work so far due to the limitation of device samples, 

process and measurement setup. For the future, devices with different gate length and access region 

length should be fabricated and measured for validating the scalability on device geometry. 

Moreover, high voltage (> 40 V) measurement setup and thermal chuck can be utilized for validating 

the scalability on biasing and temperature. 

C. Adding New Features to the Model 

With the advancement of GaN process technology, the trapping effect exhibited in modern GaN 

devices is much less serious than in devices several years ago. In the DC-IV measurement performed 

for this study, only trivial trapping effect is observed. Apart from trapping effect, the noise and 

breakdown in the device weren’t considered in our model either. However, it is reasonable to 

integrate trapping modeling, noise modeling and breakdown modeling in the future, in order to 

provide a complete model framework that is suitable for modeling devices of different generations 

and manufactures, of different applications (such as power amplifier design or low noise amplifier 

(LNA) design) and of different operating conditions (under normal condition or operate beyond 

breakdown limitation). 

Although the proposed compact model is able to be constructed from DC-IV and small signal S-

parameter measurement, advanced large signal measurements, such as load-pull and intermodulation 

measurement, are worth to be performed to validate the large signal accuracy of the model in the 

future. Moreover, using I-V characteristics measured from RF excitation (RF-IV) to characterize 

device model is an emerging trend for the future. 
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