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Abstract 

DNA-functionalized gold nanoparticles (AuNPs) have been extensively used in sensing, 

drug delivery, and materials science. A key step is to attach DNA onto AuNPs forming a stable 

and functional conjugate. While the traditional salt-aging method takes a full day or longer, a 

recent low-pH method allows DNA conjugation to happen in a few minutes. The effect of low pH 

was previously attributed to protonation of adenine (A) and cytosine (C), resulting in an overall 

lower negative charge density on DNA which is helpful for conjugating onto citrate-capped AuNPs. 

However, this simple charge argument does not answer why poly-A DNA works better than poly-

C DNA. In addition to protonation, at low pH, DNA rich in adenine and cytosine could form higher 

secondary structures (e.g. the A-motif for poly-A DNA and i-motif for poly-C DNA). We suspect 

that such DNA folding might also play a role in DNA conjugation to AuNPs. 

In this thesis, the effect of DNA conformation at low pH is studied. Using circular 

dichroism (CD) spectroscopy, parallel poly-A duplex (A-motif) is detected when a poly-A segment 

is linked to a random DNA, a design typically used for DNA conjugation. A DNA staining dye, 

thiazole orange, is identified for detecting such A-motifs. We found that the A-motif structure is 

ideal for DNA conjugation since it exposes the terminal thiol group adjacent to the poly-A for 

directly reacting with the gold surface while minimizing non-specific DNA base adsorption. 

Keeping this in mind, the order of reagent addition was further studied. However, for non-thiolated 

DNA, if the A-motif structure can be formed before the DNA is mixed with AuNPs, alternatively, 

the sample can be acidified after mixing AuNPs and DNA to then promote A-motif formation. Our 

results showed that the latter method is better. By taking DNA conformation into consideration, 

we can also explain the less optimal performance of the C-rich DNA. The i-motif formed by poly-

C DNA at low pH is less favorable for the conjugation reaction due to its unique way of folding. 
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Finally, the stability of poly-A and poly-G DNA in low pH also is examined due to the concerns 

related to DNA depurination and subsequent cleavage. An excellent stability of poly-A DNA is 

confirmed, while poly-G has slightly lower stability. Overall, the stability is sufficient for the low 

pH method for DNA attachment. This study provides new fundamental insights into a practically 

useful technique of conjugating DNA to AuNPs. 
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Chapter 1: Introduction 

1.1 Introduction to DNA 

DNA (deoxyribonucleic acid) was first proved as an important carrier for genetic 

information by the Avery-Macleod-McCarty experiment in the 1940s. In 1953, Watson and Crick 

discovered the B-form DNA, which is a right-handed helical duplex structure giving the birth to 

molecular biology. In the following years, more and more non-B DNA structures were discovered 

and studied. Beyond being a genetic information carrier, DNA is also an important biopolymer. 

Nowadays, DNA biopolymer has attracted significant interest for its potential applications in 

sensing, drug delivery, nanomaterial assembly, and cell imaging.1-6 

1.1.1 DNA as a Biopolymer 

DNA is composed of four types of deoxyribonucleotides (deoxyadenosine, 

deoxyguanosine, deoxythymidine, and deoxycytidine) linked by a phosphate backbone. Each 

deoxyribonucleotide is made of a deoxyribose sugar ring, a phosphate, and one of the four 

nucleobases – cytosine (C), guanine (G), adenine (A), and thymine(T). In the physiological 

environment, nucleobases are electrically neutral, while the phosphate backbone is negatively 

charged. Thus, the whole single or duplex DNA is negatively charged. However, the nucleobases 

can be protonated at different acidic pH values depending on their pKa’s (Figure. 1.1). For example, 

over fifty percent of adenines are protonated when the pH is lower than 3.5. Compared with 

adenine, cytosine is more easily protonated due to its higher pKa value. Base ring nitrogen and 

exocyclic keto groups are often used for binding to metal ions but the exocyclic amino groups are 
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poor ligands since their lone-pair electron is delocalized.7 All the bases are aromatic and can 

achieve pi-stacking with other bases and with the pi-electron containing surfaces such as graphene. 

 

Figure 1.1 The structures of various DNA bases (Thymine, Adenine, Cytosine, Guanine) and their 

pKa values. The numbering of each atom position is in green. 

With the invention of DNA chemical synthesis, single-stranded (ss) DNAs with arbitrary 

sequences become readily available. The natural base pairing rules enable the ssDNA extensively 

to be used as probes for complementary nucleic acids.8 Besides that, DNA can be immobilized on 

various kinds of nanomaterials of all the dimensions (1D to 3D).9-14 These make DNA an excellent 

material for building artificial nanostructures in material science and nanotechnology. 

1.1.2 Modified-DNA 

A wide variety of modifications can be incorporated into an oligonucleotide during the 

time of synthesis. More than 10 different types of functional groups can be obtained from 

commercial sources such as phosphorylation, spacers, fluorophores, dark quenchers, and 

attachment linkers/chemistry. The modifications not only benefit the conjugation process between 

DNA and nanomaterials (e.g. thiolated DNA on AuNPs) but also offer various simple and accurate 
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ways to detect the changes in DNA concentrations and structures. For example, when a ssDNA is 

modified with a 6-carboxyfluorescein group (FAM-DNA), the amount of this ssDNA can be 

monitored with a fluorescence spectrophotometer under 485 nm excitation. 

1.2 B-Form and Non-B DNA Conformations 

Natural DNA duplexes in physiological conditions which was discovered by Watson and 

Crick is called B-form. B-form DNA is right-handed. In this structure, the helix makes a turn every 

3.4 nm, and the distance between two neighboring base pairs is 0.34 nm. Hence, there are about 

10 pairs per turn. The intertwined strands make two grooves of different widths, referred to as the 

major groove and the minor groove. 

In contrast to the B-DNA, more non-B DNA structures were observed and folded when 

respective DNA sequences are incubated under certain conditions. These new structures include 

left-handed Z-form, hairpin, i-motif, G-quadruplex, and A-motif. When DNA, especially ssDNA, 

is used as the biopolymer, it cannot be B-DNA. Thus, non-B DNA conformations play a critical 

role in the process of conjugating DNA onto nanomaterials.15 

1.2.1 A-motif DNA 

At the very beginning of DNA research, the adenine-rich DNA was widely studied because 

of its ability to selectively bind small molecules. For example, coralynes can bind with two single 

strands poly-A oligonucleotides and a stable antiparallel duplex is formed.16 At the same time, an 

adenine-rich DNA could form a parallel duplex structure with another poly-A DNA at an acidic 

pH. This parallel duplex structure is named A-motif. The parallel folding of poly-A DNA can be 
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reversibly controlled by pH changes. This feature makes the A-motif form multiple dimension pH-

reversible DNA morphologies which would have potential uses in biosensors.6 The A-motif 

exhibits a right-handed helical duplex with tilted protonated bases. Rich et al. proposed that the 

A-motif could be stabilized by two factors: the hydrogen bonding and the electrostatic 

interactions.17 At low pH, two adenine bases are assumed to be held together by A+H-H+A base 

pair. The hydrogen bond which was previously observed for a dinucleotide monophosphate can 

be formed between the N7 atom in one adenine with the exocyclic amino group in another adenine 

(Figure 1.2).18 Meanwhile, the N1 atom in the adenine is easily protonated in acid buffers. The 

positively charged N1 atoms and negatively charged phosphate groups will attract each other, 

rendering a total of neutral charge. Therefore, at low pH, adenine-rich DNA will less repulsive to 

negatively charged nanomaterials (citrate capped AuNPs, Fe3O4 NPs, In2O3, etc.).19 

 

Figure 1.2 The base pairing scheme of AH+-H+A between two adenosines at low pH. The poly-A 

block can form a parallel duplex, and this duplex region is positively charged. (Poly-A sequences 

in green and random sequence in blue)20 (Reproduced with permission from ref. 20) 

A systematic work was done to study specifically the pH conditions effects on forming the 

A-motif structures. As a result, the majority of the poly-A DNAs can form the A-motif structures 

at pH 3.0. This is important because my major work in this thesis is to study the effect of DNA 
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conformation on conjugating AuNPs at pH 3.0. With the increase of the pH, less adenine rich DNA 

are involved in the A-motif. When the pH is higher than 6.0, poly-A DNA exists as a single-

stranded structure which is obvious in the gel electrophoresis (Figure 1.3). 

 

Figure 1.3 Gel electrophoresis of poly-A DNA A15 at different pH values.17 (The upper bands are 

the parallel duplex, or the A-motif, and the low bands are the single-strand A15) (Reproduced with 

permission from ref. 16) 

1.2.2 i-motif DNA 

Another well-known example is the i-motif formed by the DNA which is rich in cytosine 

at low pH. Due to the distinctive four-stranded DNA structure, the i-motif structures are more 

variable depending on the number of cytosine bases and external conditions. Different from the 

A-motif, i-motif bonding requires only one protonated cytosine and another ground-state cytosine 

(Figure 1.4). Therefore, the typical pH condition of forming i-motif is around 5.0. At the same 

time, the pH condition could be altered by combining the poly-C DNA and nanomaterials. For 

example, with the help of SWNT, i-motif can be formed at pH 8.0.21 When conjugating the homo 

oligonucleotides on the AuNPs, our group found that poly-C and poly-A both have relatively 

higher DNA adsorption densities compared with poly-T and poly-G.22 Comparing the roles of i-

motif and A-motif in the process of conjugating DNA onto AuNPs is important for understanding 

parallel structure importance. 
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Figure 1.4 The base pairing scheme of CH+-C between two cytosine at low pH. i-motif are four-

stranded DNA structure (  Cytosine). 

1.3 Noble Metal Nanoparticles 

Noble metal nanoparticles are much more precious than the bulk metals due to the super 

high specific surface area and quantum effects. The developments in the synthesis of noble metal 

nanoparticles with controlled morphologies have greatly extended the nanoparticles’ properties. 

1.3.1 Gold Nanoparticles (AuNPs) 

AuNPs have fascinating catalytic, electronic, and optical properties. Citrate-capped 13 nm 

AuNPs were chosen as the substrate in my experiments because of its good stability, uniformity, 

and the easy synthesis process. AuNPs show different optical properties compared with bulk gold. 

For example, AuNPs appear red when their diameters are smaller than 80 nm and blue/purple when 

their diameters get larger (Figure 1.5 A). In some cases, the purple color may be induced by the 

aggregation or self-assembly of the smaller AuNPs. Different sizes of AuNPs also haves different 

UV-vis absorbance (Figure 1.5 B). This UV-vis absorbance spectra are usually utilized to analyze 
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the uniformity and stability of AuNPs. Similarly, when AuNPs were modified with other 

functional polymers (e.g., DNA), the changes in size also can be reflected in the UV spectrum. 

The ultimate reason for these phenomena is the AuNPs’ geometry, i.e., surface modification, 

thickness, lateral size, and degree of corner truncation.23  

 

Figure 1.5 (A) The different colors of the AuNPs with diameter from 30 nm to 90 nm (from left 

to right). (B) The UV-vis absorption spectrums of AuNPs with different sizes.24 (Reproduced with 

permission from ref. 24) 
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1.4 DNA-AuNPs conjugates 

DNA functionalized AuNPs are well-developed and have been undergoing continuous 

exploration over several decades for various applications including sensing, imaging, catalysis, 

therapeutics, diagnostics, and drug delivery.25-27 Large scale DNA origami and other DNA patterns 

provide powerful routes to self-assemble AuNPs in a programmable fashion. Short DNA 

sequences functionalized AuNPs conjugates are ideal probes for constructing biorecognition and 

transduction layers in biosensing applications. Rationally designed DNA probes can be designed 

to virtually detect DNA and RNA.3, 28-30 Some DNAs with unique sequences, which are DNAzyme 

and DNA aptamer, even can recognize proteins, ions and small molecules.31, 32 

1.4.1 Interactions between DNA and AuNPs 

The interaction between DNA and AuNPs is an interesting biointerfacial topic with 

applications in analytical chemistry,33-38 drug delivery,39, 40 and materials science.41-44 AuNPs have 

a strong inter-particle van der Waals force, and citrate-capped AuNPs used in this project are only 

stabilized by weak electrostatic repulsion, rendering them easily aggregated at a slightly elevated 

ionic strength. The interaction between non-modification DNA and AuNPs is mainly depended on 

the nucleobases (Figure 1.6). The relative affinities of DNA bases and AuNPs surface follow the 

trend A ˃ C ˃ G ˃ T.45  
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Figure 1.6 Four DNA bases adsorption on gold surface.46 (Reproduced with permission from ref. 

46) 

On the other hand, in order to obtain covalent binding, thiolated DNA is the most 

commonly used reagent for functionalizing AuNPs due to the strong thiol-gold interaction.47, 48 

The colloidal stability of AuNPs is significantly improved upon DNA conjugation. Between the 

thiol group and the DNA sequence intended for hybridization, a polynucleotide spacer is often 

added. Historically, the Mirkin group used a poly-A spacer for many years, and this has been 

followed by many others. Further studies showed that a poly-A DNA binds to gold surfaces quite 

strongly,49, 50 and the more weakly interacting poly-T spacers support the highest DNA loading 

density.51 Regardless of the spacer sequence, in a typical conjugation reaction, thiolated DNA is 

mixed with AuNPs and the NaCl concentration is gradually raised to ~300 mM over a few hours 

to a day to achieve a stable conjugate.52  

In 2012, we studied the adsorption of DNA by AuNPs and identified the critical role of 

pH,53 allowing DNA conjugation reaction in a few minutes at pH 3.0.54 The same method was also 

successfully applied to larger AuNPs,55, 56 Au nanorods,57 silver NPs,58 and platinum NPs.59 Quite 
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interestingly, a high density of non-thiolated DNA with a poly-A fragment can also be adsorbed 

at low pH.22 

1.4.2 The Salt-Aging Method 

We first describe the salt-aging process to understand the surface chemistry of DNA 

adsorption (Figure 1.7).47, 52 Upon the initial mixing, only a few DNAs are adsorbed, both by the 

thiol group and the DNA bases. At a given ionic strength, an equilibrium is reached due to 

electrostatic repulsion between the adsorbed DNA and the DNA in solution. This equilibrium is 

shifted by raising the salt concentration to further screen the charge repulsion, allowing more DNA 

adsorption. Gradually, the DNA bases are displaced by the thiol groups of the newly adsorbed 

DNA (i.e. thiol affinity to gold is stronger than DNA base affinity), forcing each DNA to stand up. 

Finally, a highly stable conjugate is obtained, and the whole procedure usually requires a day or 

longer. In this salt-aging process, the spacer sequence (in green) does not play a critical role and it 

can be any nucleotide. Traditionally, a poly-A spacer was used. 

 

Figure 1.7 Schemes of adsorption of thiolated DNA onto AuNPs by the salt-aging method.  

1.4.3 The Low-pH Method  

The adsorption process of the low-pH method can save hours compared with the salt-aging 

process. Firstly, citrate-capped 13 nm AuNPs are mixed with DNA for 1 minute. Secondly, the 
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reaction solution is adjusted to pH 3.0 by citrate buffer (10 mM) and stands for 3 minutes at room 

temperature. Thirdly, all samples are centrifuged and washed at least three times with HEPES 

buffer (5 mM) pH 7.6 to remove the free DNA. (Figure 1.8) 

 

Figure 1.8 Schemes of adsorption of thiolated DNA onto AuNPs by the low-pH method. 

1.5 Thesis Objective 

Due to the unique properties, DNA-AuNPs conjugates have received wide interest and 

have been extensively studied. However, the mechanism of nonthiolated DNA, especially, the 

DNA with a poly-A fragment, adsorption on AuNPs surface by the low-pH method has yet to be 

fully understood. We used to explain the pH effect mainly based on charge. Adenine (pKa = 3.5) 

can be protonated at pH 3.0, which decreases the negative charge density on DNA and facilitates 

DNA adsorption. However, this simple charge model cannot account for all the observations. 1) 

Based on the salt-aging model, DNA should first lie down on AuNPs since DNA bases can also 

bind to gold strongly.47, 52 Gradually, the adsorbed DNA stands up due to displacement by the thiol 

group from the new incoming DNA. Introducing a positive charge to DNA bases should even 

promote DNA base adsorption (i.e., the thiols cannot easily replace the nucleobases). 2) More 

surprisingly, we achieved a high loading density of non-thiolated poly-A DNA similar to that for 

thiolated DNA (e.g. >60 poly-A DNA per 13 nm AuNP).22, 60 The adsorption density of adenine 

even is higher than cytosine which should be more positively charged at pH 3.0. Without a thiol 
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group, DNA is expected to wrap around AuNPs,61-65 which should limit its density and 

functionality. Therefore, other reasons must also be considered beyond simple protonation of DNA 

bases. 

At low pH, DNA adopts different conformations beyond those based on the typical 

Watson-Crick base pairing, which may also affect the adsorption process. A well-known example 

is the i-motif formed by poly-C DNA. Poly-A DNA also can form parallel duplexes in acidic pH.66, 

67 In this thesis, we aim to understand the effect of DNA conformation at low pH and its effect on 

the AuNPs conjugation reaction. In particular, we focus on the poly-A parallel duplex. We also 

want to emphasize the parallel duplex formed by the poly-A spacer sequences. The existence of 

the A-motif in the spacer sequences are proved by the CD spectra and staining dye. Due to the 

potential depuration at low pH,68 the stability research of adenines in the A-motif cannot be ignored.  
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Chapter 2: A-motif Formation and Characterization 

2.1 Introduction 

2.1.1 A-motif Formation 

At pH 3.0, the conjugation process of DNA onto AuNPs can be completed in a few 

minutes.54 In this case, a poly-A spacer is particularly useful.60 With a pKa of 3.5, adenine is 

partially protonated at pH 3.0 leading to the decrease of the negative charge density of poly-A 

DNA. While reduced electrostatic repulsion is certainly helpful, the goal of this work is to examine 

the role of DNA conformation at low pH. For example, poly-A DNA can form the AH+-H+A base 

pair by a hydrogen bond between the N7 atom in one adenosine and the exocyclic amino group in 

another (Figure 1.2).67, 69 The consequence is the formation of a parallel poly-A duplex (i.e. A-

motif). 

With the parallel A-motif duplex in mind, two thiolated DNA can be held together by the 

green poly-A fragment in Figure 2.1, exposing the thiol groups. This is only possible for a parallel 

DNA duplex so that the two thiol groups are on the same end. A further advantage is that the poly-

A duplex region (i.e., space sequence) is positively charged, while the rest of the DNA is likely to 

be negatively charged (unless the rest of the DNA is purely poly-A/C). This favors selective 

adsorption of the thiolated end due to electrostatic attraction with the negatively charged AuNPs 

surface. Thus, such a rigid parallel duplex can also minimize internal DNA base adsorption, and 

the desired final structure can form just in one step (e.g. no need for thiol displacing DNA bases). 

All these factors may contribute to the fast DNA adsorption at low pH. The formation of A-motif 

can also explain the high loading density of non-thiolated poly-A DNA.22, 60 
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Figure 2.1 Schemes of the adsorption of thiolated DNA onto AuNPs by the low-pH method. The 

formation of parallel poly-A duplex is highlighted in green, leading to fully exposed thiol groups 

for AuNPs attachment. 

2.1.2 i-motif Formation 

In addition to adenine, cytosine (pKa = 4.2) can also be protonated at pH 3.0. The poly-C 

DNA may also form a unique structure called the ‘i-motif’ (Figure 1.4). The thing needs to be 

noted is that the i-motif structure cannot be parallel. The research on the DNA with a poly-C 

fragment at acidic condition also is carried out with the DNAs which have two blocks (the poly-C 

block and the random sequence block). This is a good control to understand the unique effect of 

the parallel A-motif structure. 

2.1.3 Circular Dichroism (CD) Spectroscopy 

The differences between the absorbance of left- and right-handed circularly polarized light 

by the chiral molecules is called Circular dichroism (CD) (Figure 2.2). The CD signal collected 

from molecules over a range of wavelength is called the CD spectrum. Particularly, CD spectrum 

can sensitively reflect the isomerization among distinct conformational states. The CD signal of 

DNA comes from the asymmetric backbone sugars and the helical arrangement of its 

constituents.70 DNA CD spectroscopy research involves far UV as well as infrared light, but most 
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analysis is under 180-320 nm. The secondary structures of the DNA including A-motif and i-motif 

are good chiral response sources. 

 

Figure 2.2 The principle of circular dichroism. The intensities of LH and RH circularly polarised 

light source are equal. If the sample is chiral, it will have a preference for the absorption of either 

LH or RH circularly polarised light (here LH).71 (Reproduced with permission from ref. 71) 

The CD spectra of both i-motif and A-motif (homo poly-A oligonucleotides) have been 

well studied. At pH 5.00 and 5.51, the CD spectra of cytosine rich oligonucleotides show strong 

positive peaks near 288 nm and negative peaks near 258 nm indicating the formation of i-motif. 

With the increasing pH values, both the positive and negative peaks of the CD spectrum shifts to 

shorter wavelengths (Figure 2.3 A). For single-stranded poly-A DNA A15, there is a characteristic 

positive maximum CD peak at 217 nm with a shoulder at 232 nm. The spectrum of 1 µM A15 at 

pH 3.0 which shows a positive peak at 265 nm is completely different from the CD spectrum at 

pH 7.0. This indicates the formation of A-motif of poly-A DNA at low pH. In addition, when the 

DNA samples at pH 3.0 were heated over melting temperature, the peak at 265 nm totally 

disappears (Figure 2.3 B). In our experiments, the introduction of the conformational isomerization 

by poly-A/C DNA with a random sequence during the low-pH method process will be observed 

in the CD spectrum. 
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Figure 2.3 (A) CD spectra of the oligonucleotides (5′-CCC TAA CCC TAA CCC TAA CCC-3′) 

in various pH solutions.72 (B) CD spectra of 1 µM A15 (5′-AAA AAA AAA AAA AAA-3′) at pH 

3.0 and pH 7.0 recorded at both 20 ℃ and 95 ℃. Inset: CD at 217 nm of 5 µM A15 as a function 

of buffer pH.66 (Reproduced with permission from ref. 72 and 66) 

2.1.4 Fluorescent DNA Staining Dye 

Fluorescent DNA staining dyes are economic materials to probe DNA structures. A trace 

amount of DNA can be visualized with the help of a suitable DNA staining dye. Most fluorescent 

DNA dyes have conjugated structures with a positive charge.73, 74 The positive charge of the dye 

molecule is attractive to the negatively charged phosphate group of DNA. The fluorescence 

enhancement mechanisms of various dyes are different and many of them are not clear by now. 

The various mechanisms make DNA staining dyes have the selectivity to different DNA structures 

or sequences. For example, ethidium bromide (EB) is emissive when intercalated into the grooves 

of double-stranded DNA, but EB lack sequence specificity.75 Another example is the indication of 

the i-motif by thiazole orange (TO). The TO dye was covalently modified in the cytosine rich 

DNA sequence. Under the same excitation wavelength, different emissions from duplex structure 
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(pH 7.3) and i-motif (pH 5.0) can probe the folding or unfolding of i-motif (Figure 2.4). In our 

work, a few DNA staining dyes were screened to study A-motif. 

 

Figure 2.4 The diagram of the different emissions from TO dye in duplex and i-motif structures 

under 490 nm excitation light.76 (Reproduced with permission from ref. 76) 

In this chapter, our goal is to prove the existences of the A-motifs by CD spectra in the 

DNAs with poly-A segments at pH 3.0. At the same time, as a control, same experiments were 

repeated with the poly-C DNA. More than the CD spectra, which is used to characterize A-motif, 

a few dyes were screened to more easily indicate A-motif.  

2.2 Experimental Section 

2.2.1 Chemicals  

All the DNA samples were from Integrated DNA Technologies (IDT, Coralville, IA). Their 

sequences and modifications are listed in Table 1. SYBR Green I (SGI) was from Invitrogen 

(Carlsbad, CA). Thiazole orange (TO) was from Sigma-Aldrich. Ethanol, sodium hydroxide, and 
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hydrochloric acid were from VWR (Mississauga, ON). Ethidium bromide (EB), sodium chloride, 

sodium citrate, and 4-(2-hydroxyethyl) piperazine-1-ethanesulfonate (HEPES) were from Mandel 

Scientific (Guelph, ON).  

Table 2.1 A list of the DNA sequences and modifications used in this work.  

DNA ID DNA Names Sequences and modifications (from 5´ to 3´) 

1 A0-DNA TTCACAGATGCGT 

2 A3-DNA TTCACAGATGCGTAAA 

3 A9-DNA TTCACAGATGCGTAAAAAAAAA 

4 A15-DNA TTCACAGATGCGTAAAAAAAAAAAAAAA 

5 C0-DNA TTTCACAGATGCGT 

6 C3-DNA TTTCACAGATGCGTCCC 

7 C9-DNA TTTCACAGATGCGTCCCCCCCCC 

8 C15-DNA TTTCACAGATGCGTCCCCCCCCCCCCCCC 

9 A15 AAAAAAAAAAAAAAA 

10 T15 TTTTTTTTTTTTTTT 

11 G15 GGGGGGGGGGGGGGG 

12 C15 CCCCCCCCCCCCCCC 

13 A30 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

14 T30 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 

2.2.2 Buffer preparation 

Citrate has three pKa values at 3.13, 4.76, and 6.40, respectively. In our experiment, pH 3.0 

citrate buffer was used in all low-pH method. Citrate HCl buffers were prepared by dissolving 

trisodium citrate at a concentration close to 500 mM and concentrated HCl was used to adjust pH 

to designated values. When the pH value was table, the buffer was adjusted to the final 

concentration of 500 mM as the stock. Citrate pH 7.0 was prepared similarly. 
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HEPES has two pKa values at 3.0 and 7.5, respectively. In our experiment, pH 7.0 HEPES 

buffers were prepared by dissolving HEPES at a concentration close to 500 mM and concentrated 

HCl/NaOH was used to adjust pH to designated values. When the pH value was table, the buffer 

was adjusted to the final concentration of 500 mM as the stock. 

2.2.3 CD Sample Preparation and Operation Conditions 

CD spectroscopy was performed in a 1 cm UV−vis quartz cuvette using a Jasco J-715 

Spectrophotometer. Two 5 mM citrate buffer (pH 3.0 and 7.0) samples were measured as blanks. 

Each DNA sample (10 µM, 200 µL) was dissolved in 5 mM citrate buffer and was measured 10 

times with the continuous scanning mode (100 nm/min) from 200 to 300 nm. 

2.2.4 Fluorescence Spectrometer 

Fluorescent emission spectra were recorded on a RF-5301PC spectrofluorometer 

(Shimadzu, Japan). Photos of the dye-DNA samples were taken under blue-light box (470 nm). 

All samples with 1 μM DNA, and pH=3.0 with Citrate buffer concentration 10 mM pH=7.6 with 

HEPES concentration 10 mM. 

2.3 Results and Discussion  

2.3.1 CD Spectra of A-motif 

Parallel poly-A duplexes have been studied in terms of biophysical properties,55, 77, 78 

structure, and analytical applications.6, 69, 79, 80 Most previous work focused on using pure adenine 

homopolymers. In our system, however, the poly-A DNA is only a fraction of the whole sequence. 
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In addition, there is also a fragment intended for DNA hybridization. To understand whether such 

DNA can form parallel duplex under our experimental conditions, circular dichroism (CD) 

spectroscopy was employed. The A15 DNA was first measured as a positive control. At pH 3.0, a 

characteristic positive CD peak at 268 nm was observed (Figure 2.5 A), consistent with the 

previous literature report of parallel poly-A duplex.66 When the pH is raised to 7.0, the peak at 223 

nm increased strongly, while the peak at 268 nm disappeared, suggesting that the A-motif structure 

is disrupted. We next used a random DNA (DNA 1 in Table 1) as a negative control. Its CD signal 

is quite weak and did not change much upon the pH drop (Figure 2.5 B).  

After these control experiments, we then tested three DNA sequences (DNA 2-4); they all 

have the same random DNA sequence but with different lengths of the poly-A fragment. DNA 

with a longer poly-A fragment showed a more obvious decrease of the 223 nm peak upon the pH 

drop (Figure 2.5 C-E). At the same time, the peak at 268 nm is stronger with longer poly-A, 

suggesting a longer poly-A block can better form the A-motif structure. The CD spectral difference 

of DNA 4 at these two pH’s (Figure 2.5 E) is not as large as that in the pure A15 DNA (Figure 2.5 

A), although they both contained an A15 fragment. This is likely due to the signal from the random 

sequence in DNA 4, and DNA misfolding. 
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Figure 2.5 CD spectra of 10 µM DNA samples at pH 3.0 and 7.0 adjusted by 10 mM citrate buffer. 

(A) The A15 DNA (DNA 9); (B) A0-DNA (DNA 1); (C) A3-DNA (DNA 2); (D) A9-DNA (DNA 

3); and (E) A15-DNA (DNA 4). 

2.3.2 CD Spectra of i-motif 

Similar to adenine rich DNA, the DNA with poly-C can also form the unique structure (i-

motif) at acidic condition. The i-motif has a characteristic CD spectrum with a dominant positive 

band at 290 nm and a negative band at around 260 nm.81 Using a series of poly-C containing DNA 

(DNA 5-8), we measured their CD spectra using the same condition as the poly-A DNA. First, the 

random DNA was measured to understand the background signal (Figure 2.6 A). Then, the length 

of poly-C block was increased in the DNA (Figure 2.6 B-D), where the positive peak at 290 nm 

and the negative peak at 260 became stronger at pH 3.0. This change supports the formation of i-

motif structure even when the poly-C DNA is appended with a block of random sequence. The i-

motif is a less favorable secondary structure for the DNA conjugation reaction since it contains 

four DNA strands arranged in an overall anti-parallel manner (Figure 1.4). This may explain the 
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difficulties associated with forming functional conjugates we previously reported for non-thiolated 

poly-C containing DNA.60 

 

Figure 2.6 CD spectra of 10 µM DNA samples at pH 3.0 and 7.0 in 10 mM citrate buffer. (A) C0-

DNA (DNA 5); (B) C3-DNA (DNA 6); (C) C9-DNA (DNA 7); and (D) C15-DNA (DNA 8). 

2.3.3 Probing the A-motif by DNA Staining Dyes 

Although CD spectroscopy is quite powerful, interpretation of its data is not often 

straightforward and this is not a very common instrument. Therefore, we also want to develop 

another method to study parallel poly-A in our system. For this purpose, a number of DNA staining 

dyes were screened, including SYBR Green I (SGI), ethidium bromide (EB), and thiazole orange 

(TO). 
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2.3.3.1 Ethidium Bromide 

EB is commonly used to detect DNA or RNA in agarose gel electrophoresis. The 

fluorescent intensity of EB can be amplified 20 times compared with no DNA.82 The positive 

charge of EB can profit it’s binding to negatively charged DNA. As shown in Figure 2.7 A, the 

dye-DNA samples at acidic or neutral condition showed no obvious differences. The fluorescence 

spectra of EB-A30 under 490 nm excitation also showed no selectivity. As a result, EB is not a 

suitable for probing A-motif. 

 

Figure 2.7 (A) Chemical structure of EB and the photos of the DNA samples with different dye 

concentrations at pH 3.0 and pH 7.0 (under 470 nm light source). (B) Fluorescence emission 

spectrum of EB-stained A30. 

2.3.3.2 SYBR Green I 

Compared with EB, SGI (see Figure 2.8 A for structure) is much less toxic. It is an 

important dye used in the qualitative PCR.83 As an asymmetrical cyanine, SGI can be excited 

around 497 nm and the maximal emission peak is near 520 nm. Figure 2.8 B shows that SGI do 
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not produce a stronger fluorescence for a poly-A DNA at pH 3.0 than that at pH 7.0. We also found 

that SGI-T30 at pH 7.0 also show an emission peak around 540 nm. From the above points, SGI is 

not a good probing dye for the A-motif. 

 

Figure 2.8 (A) Chemical structure of SGI and the photos of the DNA samples with different dye 

concentrations at pH 3.0 and pH 7.0 (under 470 nm light source). (B) Fluorescence emission 

spectrum of SGI-stained A30. 

2.3.3.3 Thiazole Orange 

The affinity between TO and single-strand polypurines is 100 times stronger than that to 

single-stranded polypyrimidines84. In this experiment, TO (see Figure 2.9 A for structure) showed 

a higher fluorescence with poly-A DNA at pH 3.0 (Figure 2.9 B). This suggests that TO is 

protected by the poly-A structure at low pH from photobleaching. In contrast, TO is quite 

insensitive to pH for poly-T or poly-C DNA (Figure 2.9 C & D). Poly-G DNA was not considered 

here, since they tend to form G-quadruplex and emit very strongly with TO.85 TO is a useful dye 

for staining the A-motif if G-quadruplex can be excluded. 
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Figure 2.9 (A) The chemical structure of TO. Fluorescence spectra of TO stained (B) A15, (C) C15, 

and (D) T15 DNA at pH 3.0 and pH 7.0. 

We then tested the response of TO with DNA 1-4. The DNA with longer poly-A sequence 

has stronger fluorescent intensity (Figure 2.10 A). This trend correlates well the length of poly-A 

suggesting the formation of parallel A-motif. At pH 7.0, fluorescent intensity is weak and 

independent of the length of poly-A (Figure 2.10 B). Therefore, TO staining also supports that the 

A-motif can form in such DNA. 
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Figure 2.10 The fluorescent intensity of TO stained DNA with different poly-A blocks lengths (A) 

at pH 3.0 and (B) at pH 7.0. The ratio of DNA and TO molecule is 1:15 in all the samples. 

2.4 Conclusions  

CD spectroscopy is a powerful way to monitor the folding changes in DNA. From the 

above experiments, we can make a conclusion that both the A-motif and i-motif structures can be 

formed even when the poly-A/C DNA is appended with a block of random sequence. The longer 

poly-A/C blocks in the DNA the easier for the DNA to form higher structures at low pH. The 

parallel structure of A-motif can still expose the ending active points in the DNA, and these active 

points will be at the same side of the A-motif. However, the random (functional) sequence in the 

poly-C DNA will no more in the same side when the i-motif is formed. These differences may 

bring the totally different performance when poly-A and poly-C DNAs conjugates onto AuNPs. 

A few DNA staining dyes were screened for A-motif detection including SYBR green I, 

ethidium bromide, and thiazole orange. SGI and EB did not produce a stronger fluorescence for a 

poly-A DNA at pH 3.0 than that at pH 7.0. Only TO showed a higher fluorescence with at pH 3.0. 

At the same time, the fluorescence of TO stained poly-A DNA is quite stable at low pH for a day, 
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while the fluorescence of this mixture only can maintain for ~1 h at pH 7.0. The details about the 

stabilities will be talked in chapter 4. In conclusion, TO is successfully screened as a suitable DNA 

staining dye for indicating the A-motifs at low pH. 
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Chapter 3: Attaching A-motif Containing DNA to Gold Nanoparticles 

3.1 Introduction 

3.1.1 Active Sites in A-motif 

Before we discuss the active sites in A-motif, we will mention some basic studies on the 

interactions between single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) and 

AuNPs.86 Since the DNA bases (as the active points) are responsible for DNA adsorption and the 

phosphate backbone poses the repulsive barrier, adsorption of ds-DNA and well-folded DNAs 

with shielded bases are kinetically disfavored. As a result, compared with ssDNA, much lower 

DNA adsorption densities are obtained for dsDNA (Figure 3.1). Another important work by 

Kimura-Suda et al. indicates that the DNA hybridization energy is weaker compared to 

chemisorption of DNA by gold.50 

 

Figure 3.1 Pictorial representation of the colorimetric method for differentiating between single- 

and double-stranded oligonucleotides. The circles represent colloidal gold nanoparticles.87  

From the introduction of the interactions between nucleobases and AuNPs in chapter 1, we 

know that adenine has the strongest affinity energy on gold surface. However, the formation of the 

A-motif will decrease the chance of the interactions between adenines and gold surface even bury 
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the active adenines. This should be fine for the thiolated DNA since the A-motif will not bury the 

thiol group. For non-thiolated DNA, the A-motif may inhibit the poly-A DNA conjugations onto 

the AuNPs. Yamuna Krishnan et al. utilized the molecular dynamic (MD) simulation to draw a 

3D structures of single-stranded A15 and parallel duplex of A15 (A-motif) (Figure 3.2). They found 

that the ending two/three adenines will not be involved in the AH+-H+A pairs. In other words, they 

are still active for AuNPs. 

 

Figure 3.2 (A) Equilibrium snapshot of the single-stranded A15 after 20 ns long MD simulating 

using AMBER revealing highly stacked adenine nucleobases. (B) Instantaneous snapshot of N1-

protonated adenosine mediated parallel duplex of A15 after 20 ns long MD simulation revealing a 

Π-helical structure with tilted base.66 (Reproduced with permission from ref. 66) 

3.1.2 Post-Acidification  

In the previous studies from our lab, DNA was usually mixed with AuNPs before adding 

the acidic buffer to lower the pH.54, 55, 88 This process is named post-acidification. We believe the 

initial interaction between DNA and AuNPs is helpful for the stabilities of AuNPs because the 
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adding of the acidic buffer may also introduce salt. With the increasing ionic strength, AuNPs will 

tend to aggregate. The good qualitative DNA-AuNPs conjugates were synthesized by the post-

acidification process. 

 

Figure 3.3 The schematic diagram of mixing the DNA and AuNPs before adjusting pH to 3.0. 

3.1.3 Pre-Acidification  

The special role of the A-motif makes us try to acidify the DNA before they are added into 

the AuNPs. This process is called pre-acidification. This process will give more time for A-motif 

formation. 

 

Figure 3.4 The schematic diagram of acidifying the DNA first to form the A-motif before adding 

AuNPs.  

3.1.4 Effect of DNA Length 

Fan et al. had previously demonstrated that poly-A can serve as an anchoring block for 

preferential binding with the AuNPs surface. Systematically modulate the lateral spacing and 

surface density of DNA on AuNPs can be easily realized by simply adjusting the length of the 
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poly-A block.89 Normally, the longer poly-A block, the lower density will be achieved by the low-

pH method (Figure 3.5).61 

 

Figure 3.5 Schematic for spatial control on AuNPs by varying the length of poly-A blocks.62, 90 

(Reproduced with permission from ref. 62) 

3.1.5 DNA-AuNPs Self-Assembly 

DNA modified AuNPs as the biosensors usually work in two ways: (1) hybridization of 

probes with DNA or RNA targets and (2) association of probes with targets or subunits.91 One of 

the most successful examples is colorimetric detection which is physically detectable signal. 

Herein, an example about DNA-AuNPs biosensor designed for sensing adenosine and cocaine is 

recited.32, 92 Figure 3.6 shows the construction of the adenosine sensor. Firstly, AuNPs were 

separately functionalized with 3′-thiol-modified DNA (3′AdapAu) and 5′-thiol-modified DNA 

(5′AdapAu). Then a linker DNA which contains an adenosine aptamer sequence was mixed with 

the two former DNA-AuNPs conjugates mixture. The aggregation of AuNPs happened when the 

linker DNA hybridized with both 3′-thiol-modified DNA and 5′-thiol-modified DNA. Aggregated 

AuNPs showed purple without targets. When the adenosine was added, the linker DNA which is 

the DNA aptamer for adenosine would bind more strongly with the adenosine molecules. Then, 

the linking AuNPs will be broken resulting in the recovery of red color. In the UV-vis spectra, the 



32 

 

line in blue is the absorbance spectrum of the aggregation of AuNPs. The nanoparticle aggregates 

disassembled within 10 seconds of adding adenosine (2 mM) which showed the red curve (Figure 

3.6 A). At the same time, the ratio of the absorbance at 522 nm and 700 nm in UV-vis spectrum 

of the AuNPs increased. 

 

Figure 3.6 Schematic representation of colorimetric detection of adenosine. The DNA sequences 

are shown in the right side of the figure. (A) Absorbance spectra of the adenosine sensor before 
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(blue) and 10 seconds after (red) the addition of adenosine (2 mm).93 (Reproduced with permission 

from ref. 94) 

The goal of this chapter is to study the performance of poly-A DNA (i.e., A-motif) 

adsorption on citrate-capped AuNPs at low pH, including the DNA adsorption capacity and DNA-

AuNP conjugate’s functionality. It is also necessary to compare the performances when the A-

motif is formed before and after mixing with AuNPs. 

3.2 Experimental Section  

3.2.1 Chemicals 

All the DNA samples were purchased from Integrated DNA Technologies (Coralville, IA). 

The DNA sequences used are listed in Table 2. DNA 17-21 carries a FAM (carboxyfluorescein) 

modification on the 3′ -end. HAuCl4 and KCN were from Sigma-Aldrich. Ethanol, sodium 

hydroxide, and hydrochloric acid were from VWR (Mississauga, ON). Sodium chloride, sodium 

citrate, and 4-(2-hydroxyethyl) piperazine-1-ethanesulfonate (HEPES) were from Mandel 

Scientific (Guelph, ON). 

Table 3.1 A list of the DNA sequences and modifications used in this work. FAM = 

carboxyfluorescein. 

DNA ID DNA Names Sequences and modifications (from 5´ to 3´) 

3 A9-DNA TTCACAGATGCGTAAAAAAAAA 

7 C9-DNA TTTCACAGATGCGTCCCCCCCCC 

15 SH-DNA SH-AAAAAAAACCCAGGTTCTCT 

16 Linker DNA ACGCACACACAAAGAGAACCTGGG 
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17 A5-FAM AAAAA-FAM 

18 A10-FAM AAAAAAAAAA-FAM 

19 A15-FAM AAAAAAAAAAAAAAA-FAM 

20 A30-FAM AAAAAAAAAAAAAAA AAAAAAAAAAAAAAA-FAM 

21 A45-FAM AAAAA(A~A)35AAAAA-FAM 

3.2.2 Synthesis of 13 nm AuNPs 

Before synthesizing AuNPs, all the glassware and stir bar were soaked in aqua regia for 2 

hours. Firstly, add 2 ml of 50 mM HAuCl4 solution into 98 ml of Millipore water in the two-neck 

flask so that the final HAuCl4 concentration is 1 mM. Then, the flask was heated with refluxing 

and stirring. When the solution begins to reflux, 10 mL of 38.8 mM sodium citrate was quickly 

added. Allow the system to reflux for another 20 min. Last, the whole solution was cooled to room 

temperature. The final concentration of AuNPs were ~10 nM. 94 

3.2.3 UV-vis Characterization 

All the samples of the AuNPs for UV-vis spectra (Agilent 8453) were diluted to control 

the final absorbance intensity is between 0~1. For 13 nm AuNPs, there is a characteristic 

absorbance peak around 520 nm.95 The photos of AuNPs were recorded with a digital camera 

(Canon Powershot SD1200 IS). 

3.2.4 DNA Conjugating onto AuNPs 

The process of preparing DNA-functionalized AuNPs was the same regardless of the DNA 

sequences or modification. First, a DNA solution (100 mM, 2 µL) was mixed with 100 µL as-

synthesized 13 nm AuNPs. After 3 min incubation, the mixture was adjusted to pH 3.0 by adding 
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citrate buffer (500 mM, pH 3.0, 2 µL). After 3 min, the mixture was adjusted back to neutral by 

adding HEPES buffer (500 mM, pH 7.0, 6 µL). Finally, the resulting DNA-functionalized AuNPs 

were washed with 5 mM HEPES buffer (pH 7.0) for three times by centrifugation at 15,000 rpm 

for 15 min. 

3.2.5 Quantification of the Adsorbed DNA 

In our experiments, the DNA adsorption densities were mainly determined by fluorescent 

signal. AuNPs are excellent fluorescence quenchers, yielding a large change in fluorescence signal 

upon fluorescently labeled DNA (FAM-DNA) adsorption/desorption. For FAM-labeled DNA, the 

quantification was performed by determining the fluorescence intensity of the diluted KCN-treated 

sample with a plate reader (Infinite F200 Pro, Tecan). The adsorption capacities of DNAs in our 

experiments will be given by comparing the fluorescence intensity of samples with a standard 

curve following literature reported procedures (Figure 3.7 A).96 For non-FAM-labeled DNAs, after 

dissolving the AuNPs cores with KCN solution, a DNA staining dye will be added to provide a 

fluorescent signal when the dyes combine with DNAs (Figure 3.7 B). 

 

Figure 3.7 (A) Determination of the adsorption density of FAM-labeled DNA. (B) Utilizing DNA 

staining dyes to detect the adsorption density of non-FAM-labeled DNA. 
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3.3 Results and Discussion 

3.3.1 AuNPs Binding Capacity 

The DNA adsorption density on AuNPs is a key factor for the performance of the DNA-

AuNPs conjugates. The capacity of the AuNPs were studied by absorbing different poly-A 

oligonucleotides whose lengths vary from 5 to 45 at low pH. As shown in Figure 3.8, the longer 

length of the poly-A sequence, the lower DNA adsorption density was obtained. This trend is 

consistent with the poly-A adsorption density at neutral pH.62  

 

Figure 3.8 Poly-A DNA adsorption density as a function of the length of poly-A. 

3.3.2 Order of mixing 

So far, the protocol has been mixing the DNA and AuNPs first without adjusting pH, 

followed by adding pH 3.0 citrate buffer to a final concentration of 10 mM. We call it post-

acidification. We want to test the effect of acidifying DNA before mixing it with AuNPs (i.e. pre-

acidification). This may give more time for A-motif formation.  
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We first tested two non-thiolated DNA. The A10 and A15 DNAs were chosen since this 

length range is often used as a spacer. In one group, DNA was mixed with AuNPs before adjusting 

the pH to 3.0 (Figure 3.9 A). In another group, DNA was first incubated at pH 3.0 before adding 

AuNPs (Figure 3.9 B). We further measured the loaded DNA density on AuNPs (Figure 3.9 C). 

For both A10 and A15, a higher density was achieved by the post-acidification method. The DNA 

density trend is also consistent with the stability measurement (details will be shown in the next 

chapter). It might be that during pre-acidification, a stable A-motif can form, resulting in most 

adenine nucleotides buried in the duplex and thus weaker interaction with the AuNP surface.97 

Since these DNAs were non-thiolated and they require the adenine-AuNP interaction for 

adsorption, a lower stability was observed for the pre-acidification method. 

 

Figure 3.9 The schematic diagram of (A) mixing the DNA and AuNP before adjusting pH to 3 

and (B) acidifying the DNA first to form the A-motif before adding AuNPs. The methods in (A) 
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and (B) are called post- and pre-acidification, respectively. The final composition of these two 

samples are the same and only the order of mixing is different. (C) The DNA adsorption density 

of A10 and A15 on AuNPs using these two methods. 

3.3.3 Functionality of DNA-AuNPs  

The polarity of DNA is particularly important for DNA-directed assembly. In this thesis, 

we use DNA with two blocks: a poly-A block (i.e., anchor sequence) and a functional block (i.e., 

sequence for hybridization). To test the functionality of our DNA-AuNPs conjugates, we modify 

AuNPs with another thiolated DNA with a nine-adenine block. Then, the poly-A DNA modified 

AuNPs were mixed with the thiolated DNA modified AuNPs. After adding linker DNA strands, 

which are complementary to the two DNAs (except the nine-adenine spacer) adsorbed on AuNPs, 

to the mixture of the two conjugates, purple aggregates happened (Figure 3.10 A). The process of 

AuNP aggregation is reversible by changing temperature. When the temperature is higher than the 

melting T, AuNPs solution will return to red. In the UV-vis spectra, no peak shifts were observed 

before and after the AuNPs were modified with the DNAs (Figure 3.10 B). When AuNPs are 

assembled by linker DNA, there were shifts in the surface plasmon band that can be monitored 

using UV−vis spectroscopy (Figure 3.10 C). The similar experiment was repeated on the poly-C 

DNA modified AuNPs, and the same result was given. 



39 

 

 

Figure 3.10 (A) The scheme of the chrmetric detection based on the DNA directed AuNPs self-

assembly. (B) UV-vis spectra of bare AuNPs and poly-A/C and thiolated DNA modified AuNPs. 

(C) UV−vis spectra and photographic images (inset) for the DNA directed AuNPs self-assembly. 

3.4 Conclusions 

DNA adsorption density is one important reference value to evaluate a DNA-AuNP 

conjugate. On one hand, when the conjugates were designed as biosensors, the higher DNA 

adsorption density always meant better stability, faster response speed, and higher sensitivity. To 

avoid the poly-A DNA laying down and wrapping around the AuNP, pre-acidification seems to be 

helpful. The result is that the traditional post-acidification is favorable in DNA adsorption. This 

might be the formation of A-motif before mixing DNA with AuNPs does avoid more adenine 

bases in one ss-DNA interact with the gold surface, however, A-motif also decrease the chance of 
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interacting between DNA and gold surface. On the other hand, too high DNA adsorption density 

may lead to limited space for further DNA hybridization. The functionality experiment results 

support that functional DNA-AuNP conjugate was successfully synthesized with the help of A-

motif. 
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Chapter 4: Stability of DNA at Low pH 

4.1 Introduction 

4.1.1 DNA Stability at Low pH 

The stability of the DNA at low pH is the main concern during the low-pH conjugating 

process. The acid can catalyze the depurination of DNA.98 Depurination, the process of releasing 

purine bases from nucleic acids by the hydrolysis of N-glycosidic bonds, has attracted considerable 

attention since it is closely related to the damage of nucleic acids. In the poly-A DNA, N7 atom of 

the adenine will be protonated at the low pH. This results in the formation of the monoprotonated 

intermediate, which leads to the transition of the charge of the oxygen atom in the deoxyribose. 

Then another proton will attack the N3 atom, leading adenine to fall off (Figure 4.1). The position 

where the adenine/guanine is absent is called apurinic (AP) sites. The depurination could affect 

the normal properties of the DNA, including hybridization, mutagenesis, carcinogenesis and 

cellular aging.99-102 

 

Figure 4.1 The schematic diagram of the depurination reaction and subsequent DNA cleavage by 

protonation mechanism. At low pH, poly-purine DNAs such as poly-A and poly-G are unstable 

due to this reason. 
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4.1.2 DNA Stabilized AuNPs 

In our experiments, the citrate-capped 13 nm AuNPs were used. The bare 13 nm AuNPs 

are very sensitive to the salt. Aggregation (show blue or purple color) will happen when the 

concentration of salt (i.e., NaCl) increases (Figure 4.2 A). The effect of the bivalent salt (e.g., Mg2+ 

and Ca2+) even is more obvious. The resistance to the salt induced aggregation of AuNPs can be 

improved by surface modification. A well-established system has been applied to stabilize AuNPs 

including surfactants, protein, polymers, ionic liquid, and DNA.49, 103-106 Herein, we focused on 

the DNA stabilized AuNPs. On one hand, the modification of ssDNA on the AuNPs can noticeably 

improve the AuNP’s colloidal stability, due to the electrostatic repulsion force between two 

negatively charged DNA strands (Figure 4.2 B). On the other hand, the dsDNA buries the 

nucleobases, leading to the weak interaction between ds-DNA and AuNP. As a result, the 

protection on AuNPs from dsDNA is too weak to avoid the aggregation (Figure 4.2 C). The 

stability of the DNA-AuNP conjugates can be used to estimate the DNAs’ adsorption density and 

their spatial arrangements. At the same time, it is important for us to understand how salt and stable 

AuNPs are coexisting during the salt-aging method. As mentioned above in chapter 1, salt can 

screen the negative charge of DNA and AuNP. It is helpful for DNA adsorption. In salt-aging 

method, the concentration of salt is increased in multiple steps to avoid aggregation. Therefore, 

the salt-aging method always need over 12 hours even a day. 
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Figure 4.2 Salt effects on the stabilities of the AuNPs. (A) A low salt concentration can induce 

bare AuNP aggregation. (B) Adsorption of ss-DNA can protect AuNPs from salt induced 

aggregation. (C) Adsorption of ds-DNA is kinetically slow and AuNPs are not protected. 

4.1.3 Gel Electrophoresis  

15% Polyacrylamide gel electrophoresis (PAGE) is a commonly used technique to separate 

DNAs with different lengths by electrophoretic mobility.107-109 Detection and collection of various 

lengths of DNAs can be achieved at the same time. In this chapter, PAGE gel was used to study 

the cleavage degrees of DNAs at different pHs, and the stability of poly-A DNA at pH 3.0 as a 

function of time. The A-motif DNA may be formed with the poly-A DNA during the low-pH DNA 

adsorption method. It is also possible that poly-A DNA might be cleaved via the depurination 

reaction at pH below 3.5 if incubated for a long time. PAGE gel is a simple way to prove whether 

the poly-A DNA will be cleaved into shorter fragments. 

Far more than this, gel electrophoresis also can be carried out with DNA-AuNP conjugates. 

The Gel percentage, buffers, voltage, and time are needed to be considered to separate the DNA-

AuNP conjugates with different DNA adsorption densities. The position of the DNA-AuNP 
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conjugates can be easily seen with the naked eyes. Figure 4.3 shows the migration rate of the 

conjugates decreases as the length of poly-A increases. In Figure 4.3, the left picture is taken under 

digital gel imaging systems, and the right picture is the photographic image taken under daylight. 

According to the migration rate, a conclusion can be draw that adsorption density of DNA strands 

are decreased with the increase of poly-A block length. 

 

Figure 4.3 Agarose gel electrophoresis images showing the increased migration rate with the 

increase of polyA length. L1: Citrate-modified AuNPs, L2: Thiolated-DNA-AuNPs conjugates.90 

(Reproduced with permission from ref. 91) 

The goal of this chapter is to study the stability of the poly-A DNA modified AuNPs under 

various concentrations of NaCl salt. This can reflect the binding strength between poly-A DNA 

and AuNPs. Due to the potential DNA damage caused by acidic environment, the stability of the 

home poly-A and poly-G oligonucleotides will be discussed. A stable DNA is essential for 

functional DNA-AuNP conjugate.  
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4.2 Experimental Section  

4.2.1 Chemicals 

All the DNA samples were purchased from Integrated DNA Technologies (Coralville, IA). 

The DNA sequences used are listed in Table 3. SYBR Green I (SGI) was from Invitrogen 

(Carlsbad, CA). HAuCl4 were from Sigma-Aldrich. Ethanol, sodium hydroxide, and hydrochloric 

acid were from VWR (Mississauga, ON). Sodium chloride, sodium citrate, and 4-(2-hydroxyethyl) 

piperazine-1-ethanesulfonate (HEPES) were from Mandel Scientific (Guelph, ON). 

Table 4.1 A list of the DNA sequences and modifications used in this work. FAM = 

carboxyfluorescein. 

DNA ID DNA Names Sequences and modifications (from 5´ to 3´) 

9 A15 AAAAAAAAAAAAAAA 

10 T15 TTTTTTTTTTTTTTT 

11 G15 GGGGGGGGGGGGGGG 

12 C15 CCCCCCCCCCCCCCC 

22 A10 AAAAAAAAAA 

23 A30 AAAAAAAAAAAAAAA AAAAAAAAAAAAAAA 

24 5SH-A9-DNA SH-AAAAAAAAACCCAGGTTCTCT 

25 3SH-A9-DNA TCACAGATGCGTAAAAAAAAA-SH 

26 FAM-DNA FAM-ACGCATCTGTGA 

4.2.2 DNA-AuNPs Stability 

To test the colloidal stability of AuNPs, 5 M NaCl was add to 100 µL DNA-functionalized 

AuNPs to achieve a final NaCl concentration of 200, 400, and 600 mM. The color of the resulting 

AuNPs was documented using a digital camera. 
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4.2.3 Gel Electrophoresis 

Poly-A DNA (1 µM) was incubated at different pH values for various amount of time. 

Then all the samples were adjusted to neutral pH before analyzed by 15% denaturing 

polyacrylamide gel electrophoresis (dPAGE). To test the possibility of forming apurinic (AP) sites, 

the A15 DNA (1 µM) was incubated under different pH’s for 12 h. Then the samples were adjusted 

to neutral pH with 500 mM HEPES buffer, followed by adding a final of 1 µM T15 DNA for 

hybridization. After hybridization, SGI dye was added to stain the duplex DNA (ratio of DNA: 

SGI was 1:15). The same process was performed with the G15 DNA, except that C15 was added for 

hybridization. The final SGI fluorescence was measured by exciting at 485 nm and the emission 

was quantified at 535 nm. 

4.3 Results and Discussion  

4.3.1 The Stabilities of the DNA-AuNP conjugates in Salt Solution 

Individually dispersed AuNPs are red, while their color changes to blue/purple upon salt-

induced aggregation. By simply observing the color, the colloidal stability of AuNPs can be judged. 

For both A10 and A15, a better stability was achieved with the post-acidification method (Figure 

4.4, the first two groups). To further understand it, we next used a few thiolated DNA each 

containing a A9 spacer (DNA 24, 25). In this case, both methods yielded a similarly high stability 

(Figure 4.4, the last two groups). With a thiol group, its interaction with the AuNP surface 

dominates the adenine base interaction. As a result, the A-motif conformation is not that important. 

Overall, post-acidification appears to be the optimal method for non-thiolated DNA, while for 

thiolated DNA, either method should work. 
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Figure 4.4 The stability of the A10, A15, and two thiolated DNA with a A9 spacer conjugated 

AuNPs assayed in different concentrations of NaCl using the methods in (A) and (B), respectively. 

4.3.2 DNA Stability at Low pH. 

At low pH, DNA may undergo depurination and then cleavage.110 Therefore, DNA is 

vulnerable at the adenine and guanine sites in acids. Since poly-A DNA is studied here, its stability 

at low pH is important to understand. To test this, we used FAM-labeled A15 and a random FAM-

DNA (DNA 26). These DNAs were incubated at various pH from 1.0 to 7.0 for 1 h and then 

analyzed with gel electrophoresis (Figure 4.5 A&B). Neither the random DNA nor poly-A DNA 

was cleaved at pH 3.0 or even pH 1.0. Next, we incubated the FAM-A15 at pH 3.0 for up to 24 h, 

and still no degradation was observed (Figure 4.5 C). 



48 

 

 

Figure 4.5 Gel electrophoresis micrographs showing the stability of (A) A15 and (B) a random 

DNA (DNA 26) incubated at different pH values for 1 h, and (C) A15 incubated at pH 3.0 for 

various amount of time. 

The lack of cleavage products, however, may not fully exclude the possibility of apurinic 

sites (e.g. depurinated without cleavage). To test this, we then designed a hybridization experiment. 

We incubated the A15 DNA in pH 1.0-7.0 buffers for 12 h. Then all the samples were brought to 

neutral pH and mixed with the same concentration of T15 to form duplex. Finally, SGI was added 

to stain the DNA, and all the samples showed a similar fluorescence intensity (Figure 4.6 A). This 

result suggests that the A15 is still functional for hybridization and depurination is unlikely to 

happen. In contrast, the G15 DNA has lost or lowered its integrity at pH 3.0 based on its 

hybridization with C15 and then staining (Figure 4.6 B). The result is consistent with the longer 

half-life of A30 (97 h) than G18 (24 h) at pH 1.6. In the case of pH 2.5 at 37 °C, the half-life of A30 

is 230 h.111 For our conjugation method at pH 3, the stability of poly-A DNA is sufficient. However, 

we still need to be careful of the guanine nucleotides to keep them stable.  
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Figure 4.6 The fluorescence intensity of (A) A15 and (B) G15 after incubation at various pH for 12 

h and then hybridized with T15 or G15 at neutral pH to form duplex and finally stained with SGI. 

4.3.3 Stabilities of the Dye-DNA Conjugates 

The high stability of the dye-DNA conjugate is basic for the possibility of applying the dye 

in detecting DNA.112 In this part, the stability of the dye-DNA conjugate was studied as a function 

of time. We screened three common dyes to indicate A-motif structure. TO not only has a unique 

response for the poly-A oligonucleotides at low pH, but also show a better stability at pH 3.0 than 

pH 7.0. Figure 4.7 shows that the fluorescence of TO stained poly-A DNA is quite stable at low 

pH for a day, while the fluorescence of this mixture only can maintain for ~1 h at pH 7.0.  
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Figure 4.7 The stability of TO-A30 conjugates at (A) pH 3.0 and (B) pH 7.0. 

4.4 Conclusions 

In this chapter, the stabilities of DNA-AuNP conjugates in salt solution was firstly 

discussed. The ability of bearing higher NaCl concentration (i.e., ionic strength) reflect higher 

DNA adsorption density. The stability results of A10 and A15 supported that traditional post-

acidification is better, which is consistent with conclusion in chapter 3. However, for thiolated 

DNA, both post-acidification and pre-acidification work. Next, the stability of homo poly-A DNA 

at different pH, especially pH 3.0, is mainly studied. From the PAGE gel results, no cleavage was 

observed in A15 even under pH 1.0 for 24 h. This indicates the stability of the poly-A DNA 

phosphate backbone and sugar ring. In order to rule out the possibility of AP sites, a hybridization 

experiment was designed and G15 was introduced as a control. After incubating A15 and G15 under 

a series pH conditions, A15 and G15 respectively hybridized with their complementary DNA. The 

hybridization bonds involve the adenine and guanine bases, and enhanced fluorescence will 

happen when the SGI dye molecules combine with the hybridization bonds. The fluorescent results 
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of SGI-A15 and SGI-G15 is consistent with the half-life (A30 97 h and G18 24 h) in the reference.111 

Overall, the stability of poly-A DNA is sufficient for the low-pH modifying method. 
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Chapter 5: Conclusions 

In this thesis, I confirmed the role of the parallel poly-A duplex at low pH in assisting the 

DNA conjugation reaction to AuNPs. This method works for both thiolated and non-thiolated 

DNA, as long as they contain a block of poly-A segment. For thiolated DNA, a high DNA density 

can be easily rationalized. At low pH, both thermodynamic and kinetic effects are favorable for 

achieving a high density of DNA with the intended DNA conformation. There is no need for the 

thiol group to displace adsorbed DNA bases. Therefore, this low pH method works very well for 

thiolated DNA with a poly-A block. For non-thiolated DNA, the kinetic factor dominates initially. 

Although adenine can displace other bases especially thymine, it is not as efficient as thiol 

displacing DNA bases.50 Forming the A-motif at low pH can also help non-thiolated DNA to be 

adsorbed in the intended conformation.  

The formation of such A-motifs in DNA sequences containing a block of adenine (the rest 

are random sequences) is supported by CD spectroscopy. We further screened a few DNA staining 

dyes showing that TO can selectively detect the A-motif at low pH. While the previous 

understanding was focused on electrostatic interactions, this work shows the unique role of DNA 

conformation. The order of mixing DNA and AuNPs and pH adjustment have also been optimized. 

For non-thiolated DNA, the optimal attachment is achieved by mixing poly-A DNA and AuNPs 

at neutral pH followed by pH adjustment. For thiolated DNA, adjusting pH either before or after 

mixing DNA with AuNPs can work. For the same conformational reasons, poly-C DNAs forming 

the i-motif are less favorable for the low pH method. Finally, we confirmed that poly-A DNA is 

very stable under the acidic pH conditions for the AuNP conjugation reaction, while the stability 

of poly-G DNA is relatively lower due to the depurination reaction. This work has provided new 

insights into the reaction between DNA and AuNPs, and it will facilitate related research in 
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biosensor development and nanotechnology. While the current discussion is made with AuNPs, 

the formation of A-motif at low pH is independent of gold. Bearing this in mind, it is also possible 

to design poly-A DNA sequences at low pH for interacting with other surfaces. 

This study has also implication on DNA sequence design for the bioconjugation reaction. 

In retrospect, it was quite lucky that our lab initially followed Mirkin’s sequence design to involve 

a block of poly-A sequence as a spacer.54 After observing the interesting effect of low pH, it was 

initially attributed to a simple electrostatic model. In this work, we emphasized also on the effect 

of DNA conformation, which allowed us to explain the difference between poly-A and poly-C 

spacer,60 and also the adsorption of non-thiolated DNA. Now that the importance of the parallel 

poly-A is confirmed, we can intentionally design sequences to contain poly-A instead of poly-C. 

Using a poly-T spacer might work well with the salt-aging method but it is unlikely to be a good 

choice for the low-pH method since thymine cannot be protonated. Poly-G may also fold to 

complex quadruplex structures and cannot be protonated either unless pH is lower than 2, where 

guanine nucleotide is expected to suffer from depurination and cleavage. In addition to poly-A, 

some other special sequences may also form parallel duplexes. This however require two different 

strands of carefully designed sequences.113 Their contribution to DNA adsorption to AuNPs is less 

easy to generalize.  
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