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Abstract 

Electronic devices are vital for our modern life. Semiconductor devices are at the core of them. 

Semiconductor devices are governed by the transport and behavior of electrons and holes which in turn 

are controlled by Fermi-Level or the Quasi-Fermi Level. The most frequently used approximation for 

the population of electrons and holes based on the Boltzmann approximation of Fermi-Dirac 

distribution. However when the Fermi-level is closer to the majority carrier band edge, by less than 

3kT, it causes significant errors in the number of the carriers. This in turn causes errors in currents and 

other quantities of interest. In heavily doped semiconductors, it is desirable to use Fermi-Dirac Integral 

itself. However this is a tabulated function and therefore approximations are developed. Most of the 

approximation are mathematically cumbersome and complicated and they are not easily differentiable 

and integrable. 

Although several approximations have been developed, some with very high precision, these are not 

simple nor are they sufficiently useful in semiconductor device applications. In this thesis after 

exploring and critiquing these approximations, a new set of approximations is developed for the Fermi-

Dirac integrals of the order 1/2. This analytical expression can be differentiated and integrated, still 

maintaining high accuracy. This new approximation is in the form of an exponential series with few 

terms using Prony’s method. Application of this approximation for semiconductor device calculations 

are discussed. Substantial errors in carrier densities and Einstein relation are shown when compared 

with Boltzmann approximation. The efficacy of the approximation in the calculation of Junctionless 

transistor quantities is demonstrated as an example. 
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Chapter 1 

Fermi-Dirac Integrals and Its Importance in Electronics 

1.1 Preface 

Integrated circuits (ICs) have been developed for the last fifty years and have transformed our modern life. 

Primarily, ICs have evolved by realizing ever smaller size devices achieving better performance from the 

reduced sizes. This has been possible by employing a set of coordinated Scaling Laws. One important 

consequence of the Scaling Laws is the increase in doping densities in the various semiconductor regions. 

As a result of this increased doping densities, a number of equations currently used in many textbooks and 

simulations cannot be considered accurate enough. The doping concentration plays a significant role in 

semiconductor devices since it changes the semiconductor devices from non-degenerate to degenerate 

conditions.  

 

The degeneracy of the material depends on the Fermi-level position, and the Fermi-level position can be 

adjusted by varying the doping concentration levels. By increasing the number of donors or acceptors atoms 

in the semiconductor devices, the Fermi-level will move towards the conduction or valence bands. When 

Fermi-levels are very close to the conduction or the valence bands, the commonly used approximations are 

not valid as cannot be used to calculate carrier densities in semiconductor devices. For instance, the 

Boltzmann distribution has been extensively applied in most of the semiconductor devices equations, 

however the Boltzmann distribution is only useful if the doping concentration is below 1018 𝑐𝑚−3.  

1.2 The Importance of Fermi-Dirac Integrals 

The electron and hole densities in the semiconductor devices are crucial quantities in the semiconductor 

devices since most of the behaviour of semiconductor devices equations rely on them. In order to calculate 

the electron density at a given temperature at any given energy level, the density of states, which is the 

number of available states that can be occupied by an electron, is required and is depicted in Figure 1.1.a 

and calculated as follows: 

𝑔𝐶(𝐸) =
8 𝜋√2

ℎ3 𝑚𝑛
∗

3

2√𝐸 − 𝐸𝐶     (1.1) 

The density of states depends on the square root of the energy above the conduction band edge and the 

effective mass of the electron. While the density of states describes the energy states available, the 

probability that any given energy level is occupied by the Fermi-Dirac distribution law as follows:  



 

 2 

𝑓(𝐸) =
1

1+𝑒

𝐸−𝐸𝑓
𝑘𝑇

       (1.2) 

     

  (a)        (b) 

 

(c) 

Figure 1.1 (a) The Density of States in the Conduction and Valence Bands. (b) Fermi-Dirac Probability Distribution. 

(c) The Electron Density in the Conduction Band 

The Fermi-Dirac distribution law is described in Figure 1.1.b. The electron density at each given energy 

level can be thus determined by multiplying the density of states by the Fermi-Dirac distribution. By 

integrating the density of electrons in the whole conduction band, one can determine the total density of 

electrons in the whole conduction band as shown in Figure 1.1.c.  
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𝑛 = ∫ 𝑔𝐶(𝐸)𝑓(𝐸)      (1.3) 

𝑛 = (
4√2𝜋𝑚𝑛

ℎ2 )

3

2
∫ √𝐸_𝐸𝐶  

1

1+𝑒

𝐸−𝐸𝑓
𝑘𝑇

𝐸𝐶,𝑡𝑜𝑝

𝐸𝐶
𝑑𝐸   (1.4) 

The integral in equation (1.4) can be transformed and expressed as follows:  

𝑛 = 2 (
2𝜋𝑚𝑛𝑘𝑇

ℎ2 )

3

2
 ∫

𝑡
1
2

1+𝑒𝑡−𝑥 𝑑𝑡 
∞

0
     (1.5) 

Equation (1.5) includes an integral that is called one of the Fermi-Dirac Integrals (FDI), 𝐹1

2

(𝜂) where,  

𝜂 =
𝐸𝑓−𝐸𝐶

𝑘𝑇
 is the normalized Fermi level. The Fermi-Dirac Integrals have a general form, which is 

expressed as follows for any order: 

𝐹𝑗(𝑥) = ∫
𝑡𝑗

1+𝑒𝑡−𝑥  𝑑𝑡
∞

0
      (1.6) 

In semiconductor devices, the order j in the equation (1.6) is usually equal to 1/2. Instead of the use of 

Fermi-Dirac Integrals oftentimes, an exponential function, which is the result of Boltzmann 

approximation, is used to express the electron density as follows: 

𝑛 = 𝑁𝐶  𝑒
𝐸𝑓−𝐸𝐶

𝑘𝑇        (1.7) 

where 𝑁𝐶 = 2 (
2𝜋𝑚𝑛𝑘𝑇

ℎ2 )

3

2
 is the effective density of states in the conduction band.  

Boltzmann’s approximation is an excellent one when the Fermi-level is more than 3kT away from the 

majority carrier band. However, when the Fermi level is less than 3𝑘𝑇 away from the majority carrier 

band, which means the device region is a degenerate semiconductor due to the heavy doing condition, 

serious error results in carrier densities. Thus, we are required to use 𝐹1

2

(𝜂), and it has an important role in 

determining other significant quantities in semiconductor devices along with the electron density, hole 

density and the Einstein relation, which is defined as the ratio of diffusivity to mobility. In the degenerate 

doping level, the electron and hole densities and the Einstein Relation can be expressed as follows using 

FDI. 

n = 𝑁𝐶  ∗ 𝐹1

2

(
𝐸𝑓−𝐸𝐶

𝑘𝑇
)      (1.8) 

p = 𝑁𝑉  ∗ 𝐹1

2

(
𝐸𝑉−𝐸𝑓

𝑘𝑇
)      (1.9) 

𝐷𝑛,𝑝

𝜇𝑛,𝑝
=

1

𝑞
∗

𝑛,𝑝
𝑑𝑛,𝑝

𝑑𝐸𝑓𝑛,𝑝

       (1.10) 

The FDI is an important function in determining several characteristics in several semiconductor devices 

such as transistors, diodes, solar cells, Nano-devices, and in the field of particle physics. Nevertheless, the 
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FDI does not have a convenient closed form solution to be implemented directly in semiconductor 

devices. FDIs are at present either numerically evaluated or analytically approximated.  

1.3  Numerical Evaluation and Tabulated Values 

While the FDI does not have a closed form solution, there have been many attempts made to compute the 

FDI. One of the early attempts to extend the general form of FDI has been proposed by Sommerfeld, 

which is an asymptotic series expansion [89]. In order to obtain accurate values of FDI, there have been 

many numerical evaluations performed by using numerical integration of the general form of FDI [11, 

96], using a pair of extrapolation procedures [28], or with quadratures of the integrand [5, 42, 61, 76]. In 

addition, FDI has been numerically evaluated by applying Chebyshev approximations for different ranges 

[29] and for different orders [94]. Where Levin-like transforms have been used to approximate the Fermi-

Dirac Integrals [15], Lin et al. have developed two approximations based on the contour integral 

representations and multiple representations of simple pole [58].  

 

Figure 1.2 A Plot of Blakemore’s Tabulated Family of FDI 

With well-known integration methods, FDI has been numerically evaluated using approaches such as, the 

Trapezoidal method with pole corrections [41, 73, 74]. A few of the other attempts of integrating FDI 

have been a double series [33] and a single series [79].  In the next chapter, a few of the recent numerical 

evaluations will be discussed in detail.  
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Unlike the previous numerical evaluations, a few of the earlier computations of FDI have been tabulated 

in order to be used as reference values for analytical expressions. McDougall and Stoner presented one of 

the earlier numerical approaches to determine the Fermi-Dirac Integrals by dividing the values of 𝜂 to 

three different ranges in order to create an approximation for each range [64]. Therefore, they formed a 

series representation for 𝐹𝑗(𝜂) for the range 𝜂 ≤ 0, and used Euler-Maclaurin numerical integration 

method for the ranges 0 < 𝜂 < 3, and 𝜂 ≥ 3 achieving accuracies of the order of 10−6 to 10−8. 

Furthermore, Dingle [33] and Rhodes [79] published their tables of different orders of Fermi-Dirac 

Integrals based on the numerical methods that they developed; however, both tables were for integer 

orders which are not useful in semiconductor device calculations of our interest. Another set of 

computations of FDI, proposed and tabulated by Blakemore [16], are the ones used in this thesis as a 

reference. Figure 1.2 shows the family of the tabulated Fermi-Dirac Integrals computed by Blakemore.  

1.4 Mean Absolute Error (MAE)  

Since the approximations we are seeking should have reasonable accuracy, a method of determining the 

error should be applied. Two of the common methods used in evaluating accuracies of models in these 

studies are, Relative Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Since the number 

of the tried points is large, Mean Absolute Error gives smaller error than Relative Root Mean Square Error 

(RMSE) [20]. The two ways of determining the error are shown in equations (1.11) and (1.12) 

𝑀𝐴𝐸 =
1

𝑛
∑ |

(𝐴𝑐𝑡𝑢𝑎𝑙)𝑖−(𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑)𝑖

(𝐴𝑐𝑡𝑢𝑎𝑙)𝑖
|𝑛

𝑖=1   (1.11) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (

(𝐴𝑐𝑡𝑢𝑎𝑙)𝑖−(𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑)𝑖

(𝐴𝑐𝑡𝑢𝑎𝑙)𝑖
)2𝑛

𝑖=1   (1.12) 

1.5 Boltzmann Distribution 

The numerical evaluations of FDI are not useful in providing insightful semiconductor device 

calculations. Therefore, an analytical approximation of FDI with sufficient accuracy is required. Some of 

the important previous analytical approximations will be discussed in the next chapter. We find that the 

earlier analytical approximations are either too complicated, hard to differentiate and integrate, or of poor 

accuracy. The commonly used analytical expression of FDI that is used in semiconductor devices 

employs Boltzmann’s approximation, which is an exponential function that can be easily differentiated 

and integrated. Equation (1.13) defines the FDI by using Boltzmann’s distribution; however, the resulting 
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values of FDI are not accurate enough for the modern semiconductor devices where the doping 

concentration levels are high. For example, in Silicon, for doping densities greater than about  

5 ∗ 1017𝑐𝑚−3: 

𝐹1

2

(𝜂) = 𝑒𝜂 = 𝑒
𝐸𝑓−𝐸𝐶

𝑘𝑇       (1.13) 

The Boltzmann’s approximation results in reasonable accuracy where the difference between the Fermi 

level and the majority carriers’ band’s edge is larger than 3kT. The Boltzmann’s approximation results in 

the simplest form of FDI since the form is integrable and differentiable. Figure 1.3 shows the 

approximated values of FDI using Boltzmann’s approximation compared to the tabulated values of FDI 

by Blakemore. 

 

Figure 1.3 FDI using Boltzmann’s Approximation compared with the actual values (Blakemore’s) 

As can be seen from Figure 1.3, Boltzmann’s approximation of FDI holds good up to about 3kT away 

from the majority carrier band but results in poor accuracy when the Fermi level moves closer to the 

conduction band. The mean absolute error over the range shown in Figure 1.3 is 16.61%, and the mean 

absolute error of the range from -4 to +4 is 122.49%. Figure 1.4 shows the relative error values of each 

normalized Fermi level position. Consequently, Boltzmann’s approximation of FDI is not accurate 

enough for semiconductor devices where larger doping densities are employed as a result of scaling down 

of the vertical dimensions.  
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Figure 1.4 The Relative Error values of Boltzmann’s Approximation of FDI 

1.6 The Objectives of the Thesis 

The Boltzmann’s approximation of FDI is the simplest of expressions of FDI, and it has been extensively 

applied in semiconductor devices due to its simplicity. In this thesis we endeavor to develop 

approximations to FDI, which are similar to Boltzmann’s approximations in their simplicity and use. As a 

result, we endeavor to seek a sum of exponential terms to approximate the FDI. We seek this sum of 

exponential terms as an approximation such that the exponents and the pre-exponential constants are 

chosen systematically to result in the minimum errors. The systematic method we employ is the Prony’s 

method [48]. 

1.7 Details of the Objectives 

This research has several objectives that can be classified as follows: 

- Surveying and studying some of the important existing analytical approximations employed in 

semiconductor device applications and are simple in terms of their abilities to be calculated 

with measuring the mean absolute error for each.  
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- Forming an analytical expression of FDI in a way that can hold adequate accuracy and be 

differentiated and integrated without using any numerical software to make a bridge between 

the approximated form and its differentiation and integration. 

- Applying the proposed approximation on crucial semiconductor device equations that can be 

significantly affected by changes in FDI and on new devices that are highly doped. 

1.8 Thesis’s Outline  

The thesis has five chapters as follows: 

- Chapter 2 investigates a few numerical and analytical approximations of FDI in terms of 

their accuracies and their ability to be useful in semiconductor devices equations. 

- Chapter 3 provides an introduction about the Prony’s method that is used to approximate the 

FDI in the thesis, indicating the advantages of using the Prony’s method and showing the 

steps for approximating FDI by Prony’s method. 

- Chapter 4 shows the effectiveness of the new approximation of FDI in a number of 

semiconductor device quantities and its use in new semiconductor devices.  

- Chapter 5 concludes and summarizes the proposed approximation and its use in electronic 

devices and discusses further work that can be done based on the proposed expression of 

FDI.  
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Chapter 2 

Previous Expressions of FDI 

2.1 Introduction  

Since 1928 several numerical evaluations of Fermi-Dirac Integrals and analytical approximations of FDI 

have been developed. Some of these have been used in calculating semiconductor device quantities. This 

chapter will not cover some of the analytical expressions which are derived using some numerical methods 

such as Fourier series since they are complicated and have large errors [3, 93]. 

2.2 Numerical Evaluations of FDI 

Accuracy is an important factor in numerical evaluations or analytical approximations of FDI, however 

the numerical evaluations aim to achieve very high accuracies. Numerical evaluations have been typically 

developed with high accuracies by using different numerical integration methods or programming 

languages. A few of the recent numerical evaluations with high accuracies have been proposed by 

Fukushima [36-39]. The four papers of Fukushima have aimed to accomplish numerical evaluations of 

FDI that can achieve high precisions (16 digits – 20 digits) with different orders.  

Fukushima has proposed an analytical computation of generalized FDI by rewriting the first 11 terms of 

the Sommerfeld expansion [39] where it only covers the large values of 𝜂 that are larger than the 

threshold values in Sommerfeld expansion , (𝜂 = 12.3, 11.0, 9.75, 𝑎𝑛𝑑 9.0 when the orders  𝑗 = −
1

2
,

1

2
,

3

2
, 𝑎𝑛𝑑

5

2
, respectively). The Sommerfeld expansion will result in poor accuracy for the values less than 

the threshold values and the direct numerical quadrature integration can be used in this case. In addition, 

the proposed computational evaluation method is 10-80 times faster than the direct numerical quadrature 

integration.  

In a different approach, Fukushima has computed the generalized of FDI by means of extending the 

method of McDougall and Stoner [38]. For the values of 𝜂 ≤ 0, he computed 𝐹(𝜂) by its direct numerical 

integration. On the other hand, the 𝐹(𝜂) has been computed for the values of 𝜂 > 0 by splitting the 

integration intervals into three sub-intervals [0, 𝜂), [𝜂, 2𝜂)and [2𝜂, ∞) as: 

𝐹(𝜂) = 𝑃(𝜂) + 𝑄(𝜂) + 𝐶(𝜂)     (2.1) 

where:  

𝑃(𝜂) = ∫
𝑓(𝑥)

exp(𝑥−𝜂)
𝑑𝑥

𝜂

0
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𝑄(𝜂) = ∫
𝑓(𝑥)

exp (𝑥−𝜂)
𝑑𝑥

2𝜂

𝜂
  

𝐶(𝜂) = ∫
𝑓(𝑥)

exp (𝑥−𝜂)
𝑑𝑥

∞

𝜂
  

The cost of the computation decreases as the value of 𝜂 increases, while the computation of FDI by using 

Chebyshev polynomial expansion is independent on 𝜂. As a result, the proposed computation is not useful 

in the semiconductor devices since it results in large errors for small values of 𝜂. 

A fast and precise computation of FDI of integer and half integer orders by piecewise minimax rational 

approximation has also been developed by Fukushima [36]. The minimax computation is a combination 

of the previous computation using McDougall and Stoner method [36], piecewise shortened Chebyshev 

expansion series [80], and the reflection formula for 𝐹𝑘(𝜂) of integer orders and positive arguments [79]. 

Furthermore, the proposed computation tends to use less CPU time and runs 16-30 times faster than the 

piecewise Chebyshev polynomial approximations [61]. In 2015, Fukushima introduced a fast and 

piecewise computation of the inverse of FDI order ½ by minimax rational function approximation [37].  

 

Figure 2.1 The Numerical Evaluations of FDI by Mohankumar and Natarajan compared to Blakemore’s Tabulated 

Values 

Mohankumar and Natarajan [72] proposed one of the most recent numerical evaluations, using an 

algorithm which uses Double Exponential, Trapezoidal and Gauss–Legendre quadratures. They proposed 

two different evaluations of generalized FDI for the large values of 𝜂. The first evaluation offers values 
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with near double precision accuracy (~22 digits) while the second evaluation offers the values of 

generalized FDI with very high accuracy ( achieving relative error < 1020). By comparing the most 

recent numerical evaluation of FDI proposed by Mohankumar and Natarajan, with one of the early 

numerical evaluations offered by Blakemore, the mean absolute error we calculated is less than 6 ∗ 10−5, 

and Figure 2.1 shows the two evaluations are very close to each other.  

Even though the numerical evaluations of FDI are offering high accuracy and very high precision, they 

are not readily usable in determining the semiconductor devices quantities of our interest; thus an 

analytical expression of FDI is needed to be applicable and useable in semiconductor devices equations. 

In the next sections, a few complicated and simple expressions of FDI are discussed in terms of the 

simplicity and the ability of the expression to be efficiently employed in the equations of semiconductor 

devices.  

2.3 Complicated Analytical Expression 

The accuracy of approximating FDI is a significant goal that researchers have been seeking along with the 

simplicity of the expression. However, few attempts of approximating FDI have achieved both accuracy 

and simplicity. An approximation has used McDougall and Stoner tables to acquire an accurate approach 

of half-order of Fermi-Dirac Integrals with a set of rational functions, but the range of the approximation 

is divided into two ranges (4 ≤ 𝜂 ≤ 0, and 0 ≤ 𝜂 ≤ 20), which cannot be an approximation for all 

heavily doped devices [51]. Jones used rational Chebyshev approximations to acquire an expression of 

FDI as follows: 

𝐹1

2

(𝜂) = eη𝑅33; [−4 ≤  𝜂 ≤ 0]     (2.2) 

𝑅33(𝜂) = 𝑏0 +
𝑒1

𝜂+𝑓1
+

𝑒2

𝜂+𝑓2
+

𝑒3

𝜂+𝑓3
       

𝐹1

2

(𝜂) = 𝑅53; [0 ≤ 𝜂 ≤ 20]     (2.3) 

𝑅53(𝜂) = 𝑏0 + 𝑏1𝜂 + 𝑏2𝜂2  +
𝑒1

𝜂+𝑓1
+

𝑒2

𝜂+𝑓2
+

𝑒3

𝜂+𝑓3
   

The coefficients in the equations (2.2) and (2.3), b’s and f’s, are being used based on the tabulated values 

in Jones’ paper. The expression of FDI below zero involves an exponential term, which is an expression 

of FDI by using Boltzmann’s approximation, so the approximated form is an attempt to develop an 

expression of FDI that is similar to the simplest form of FDI. Jones has offered different expressions of 

FDI with different coefficients based on the range and the order. A few analytical expressions have been 



 

 12 

developed using the plasma dispersion function by applying the binomial expansion theorem and the 

gamma functions [62, 66]. One of the recent attempts to develop an expression that holds high accuracy 

was proposed by Guseinov and Mamedov [45]. They developed two expressions of FDI for the regions 

below and above zero. The expression of FDI for the range above zero can be formed as follows: 

F1

2

(η) =
η

3
2

3

2

+ lim
N→∞

∑ fi(−1)Ki (
1

2
, η)N

i=1 + lim
N′→∞

∑ f𝑗(−1)eη(1+j)
Γ(

3

2
,  η(j+1))

(j+1)
3
2

N′

j=1   (2.4) 

𝐾𝑖 (
1

2
, 𝜂) = 𝑒−𝜂𝑖 ∑

𝜂
3
2

+𝑘

(
3

2
+𝑘)𝛤(𝑘+1)

𝑖𝑘∞ 
𝑘=0     (2.5) 

𝑓𝑖(𝑚) =
(−1)𝑖 Γ(𝑖−𝑚)

𝑖! Γ(−𝑚)
      (2.6) 

Another expression of FDI for values below zero has been developed, but it requires calculating equations 

(2.5) and (2.6).  

The complicated expressions of FDI have achieved high accuracies however, they are not useful for 

implementation in semiconductor device equations because they are not easy to differentiate or integrate.  

2.4 Simple Analytical Approximations  

The complicated expressions of FDI are not easily usable in semiconductor device calculations and are not 

easily differentiable and integrable, and hence we are seeking an expression of FDI that is accurate enough 

and easy to differentiate and integrate and to be employed in semiconductor device calculations. In this 

section, a few analytical approximations of FDI are presented in terms of simplicity and accuracy of each 

expression. 

2.4.1 Joyce and Dixon’s Approximation 

In order to avoid repeated numerical evaluation of the Fermi-Dirac Integral during typical electrical 

characterizations of semiconductor devices under different operating conditions, a few attempts have been 

proposed to approximate the normalized Fermi-level position. One famous approximation introduced by 

Joyce and Dixon is expressed as follows [52]: 

𝜂𝐶 = ln (𝐹1

2

(𝜂𝐶)) + 𝑎1𝐹1

2

(𝜂𝐶) + 𝑎2 (𝐹1

2

(𝜂𝐶))

2

+ 𝑎3 (𝐹1

2

(𝜂𝐶))

3

+ 𝑎4 (𝐹1

2

(𝜂𝐶))

4

 (2.7) 

where 𝑎1 = 0.35355, 𝑎2 = −4.9501 ∗ 10−3, 𝑎3 = 1.4839 ∗ 10−4, 𝑎4 = −4.4256 ∗ 10−5 
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Figure 2.2 The Relative Error of Joyce and Dixon’s approximated values of normalized Fermi-level positions 

For calculating 𝐹1

2

(𝜂𝐶), they used the formula of electron density 𝑛 = 𝑁𝐶𝐹1

2

(𝜂𝐶). Joyce and Dixon’s 

expression consists of a polynomial function. Figure 2.2 shows the relative errors of Joyce and Dixon’s 

approximation. The mean absolute error of Joyce and Dixon’s approximation is 0.0143, which is accurate 

enough to be employed in a semiconductor device. Therefore their expression has been applied to determine 

the Qusai Fermi-level of GaAs − AlxGa1−x As double-heterostructure lasers [18], the current density of 

GaAs: (Al, Ga)As heterostructure [10], the small single junction voltage of semiconductor laser diode [47], 

and the Fermi-level position of high performance p-type field-effect transistors that is based on a single 

layered WSe2  [35]. Another attempt proposed an approximation of 𝐹
−

1

2

(𝜂) in terms of 𝐹1

2

(𝜂) based on 

Joyce and Dixon’s approximation [22]. 

2.4.2 Abidi and Mohammed’s Approximation 

Based on Joyce and Dixon’s form, Abidi and Mohammed developed another approximation of normalized 

Fermi-level position as follows [1]: 

𝜂𝐶 = 𝛽 ln (𝐹1

2

(𝜂𝐶)) + 𝑏0 + 𝑏1𝐹1

2

(𝜂𝐶) + 𝑏2 (𝐹1

2

(𝜂𝐶))

2

+ 𝑏3 (𝐹1

2

(𝜂𝐶))

3

+ 𝑏4 (𝐹1

2

(𝜂𝐶))

4

  (2.8) 
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where 𝛽 = 0.9985, 𝑏0 = −1.048 ∗ 10−4, 𝑏1 = 35.4625 ∗ 10−2, 𝑏2 = −4.958417 ∗ 10−3,  

𝑏3 = 1.199012 ∗ 10−4, 𝑏4 = −1.532784 ∗ 10−6. 

The improvement that Abidi and Mohammed acquired is realized when the Fermi-level is above the 

conduction band by 3kT because of adding new terms (𝛽, 𝑏0). Figure 2.3 is displaying the relative error of 

the Abidi and Mohammed’s approximation while the mean absolute error over the whole range is 0.0139, 

which is more accurate than Joyce and Dixon’s approximation is.  

Mohammed and Abidi used their approximation of Fermi-level position to determine properties of binary 

compound polar semiconductors with nonparabolic energy bonds [71]. Abidi and Mohammed’s 

approximation was used to study the electric field dependence of room temperature electrotransmittance in 

In0.53Ga0.47As/ In0.52Al0.48As single quantum wells [32]. Halkias used Abidi and Mohammed’s 

approximation in order to optimize strained Si channel SiGe/Si n-MOSFET [46]. 

 

Figure 2.3 The Relative Error of Abidi and Mohammed versus Normalized Fermi-level Positions 

2.4.3 Bednarczyks Approximation 

Bednarczyk. D and Bednarczyk. J [12] introduced an analytical expression of  𝐹1

2

(𝜂) for a range ∞ < 𝜂 <

∞ that can be expressed as follows: 
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𝐹1

2

(𝜂) =
1

2
 √𝜋 [

3

4
 √𝜋 (𝑎(𝜂))

−
3

8 + 𝑒−𝜂]
−1

   (2.9) 

where 𝑎(𝜂) = 𝜂4 + 33.6𝜂(1 − 0.68𝑒−0.17(𝜂+1)2
) + 50 

The Bednarczyks’ expression is one of the earlier attempts to obtain an analytical expression of 𝐹1

2

(𝜂)by 

expanding the approximation of 𝐹1

2

(𝜂) by using Boltzmann’s Approximation. Even though their expression 

has the simplest form of FDI, the expression has a polynomial equation that involves another exponential 

term. The accuracy of the Bednarczyks’ approximation is not adequate to semiconductor device equations 

since the accuracy of the approximation varies based on the region as shown in Figures 2.4 and 2.5. The 

mean absolute error of Bednarczyk’s approximation is 103.13%.  

 

Figure 2.4 Bednarczyk’s Approximated Values Compared to the Actual Values 

The expression of FDI cannot be differentiated or integrated without using a numerical tool because of the 

complexity of the approximation. The inaccuracy in the differentiation of the approximation may cause 

large error in important semiconductor quantities such as the Einstein relation.  

Bednarczyks’ approximation has been applied to calculate the free electron concentration in the conduction 

band of the bulk material single quantum well [17], to determine the electric potential in GaAs nanowires 

[25], and to determine the band parameters in heterostructure semiconductor devices [57, 60]. Johnson and 
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McCallum have presented Bednarczyks’ approximation as the most accurate approximation in order to be 

used it in numerical calculations of carrier concentrations [50]. Gao et al. computed the volume electron 

density and 1D electron density of quantum dots by using Bednarczyks’ approximation of FDI [40]. 

 

Figure 2.5 The Relative Error Profiles of Bednarczyk’s Approximation 

2.4.4 Aymerich-Humet, Serra-Mestres, and Millan Approximation 

Aymerich-Humet et al. was trying to develop an expression that is comparable to the simplest form of FDI 

and is easy to be employed in semiconductor device calculations. In 1981, they proposed an analytical 

expression of FDI of orders (j =1/2, 3/2) that is simpler than Bednarczyk’s approximation and is expressed 

as follows [7]: 

𝐹𝑗(𝜂) = (
(𝑗+1)2𝑗+1

[𝑏+𝜂+(|𝜂−𝑏|𝑐+𝑎)
1
𝑐]

𝑗+1 +
𝑒−𝜂

Γ(𝑗+1)
)

−1

   (2.10) 

For 𝑗 =
1

2
, 𝑎 = 9.6, 𝑏 = 2.13, 𝑐 =

12

5
 . 

Although their approximation is simple compared to Bednarczyks’ approximation, yet their approximation 

requires the help of a numerical tool to differentiate and integrate the expression. As can been noticed from 
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Figure 2.6, Aymerich-Humet et al. approximation holds an acceptable range of the accuracy between 

negative 1 and zero compared to the other regions.  

 

Figure 2.6 Aymerich-Humet et al. (1981) Approximated Values with the Actual Values 

The mean absolute error of Aymerich-Humet et al. approximation of FDI (1981) is 0.2721. Wang et al. 

used Aymerich-Humet et al. approximation of FDI to evaluate Einstein relation in n-CdSe/p-ZnTe based 

wide band-gap light emitters [101]. Aymerich-Humet et al. approximation of FDI has been employed 

instead of FDI statistics to calculate the electron density of metal/insulator/AlGaN/GaN heterostructure 

capacitors [69] and to obtain a quantum mechanical simulation of charge distribution in Silicon 

MOSFETs [2]. Ramayya and Knezevic calculate the electron line density in Silicon nanowires by using 

Aymerich-Humet et al. approximation [78]. Lami and Hirlimann used Aymerich-Humet et al. 

approximation of FDI to compute the normalized carriers of CdS devices in order to determine the 

temperatures and the chemical potentials of the thermalized electrons (Te, μe) and holes Th, μh) [55]. 

Wang et al. calculated the current density of AlGaN/GaN high electron mobility transistors (HEMTs) by 

using Aymerich-Humet et al. approximation instead of FDI statistics [100].  

After two years, Aymerich-Humet et al. proposed a generalized approximation of FDI that has a similar 

form to their previous approximation but with a different set of the coefficients (a, b, c)  [8]. The 

coefficients in the new approximation are expressions based on the FDI’s order as follows: 
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𝑎 = (1 +
15

4
 (𝑗 + 1) +

1

40
 (𝑗 + 1)2), 

𝑏 = 1.8 + 0.61𝑗, 

𝑐 = 2 + (2 − √2)2−𝑗. 

 

Figure 2.7 Aymerich-Humet et al. (1983) Approximated Values with the Actual Values 

Their new approximation’s mean absolute error is 0.1155, which is more accurate than their previous 

approximation. Their new approximation of FDI is graphically shown in Figure 2.7 comparing it to the 

Actual values of FDI. As can be seen from Figure 2.7, the shape of the approximated values is similar to 

the shape of actual values with shifting down. 

Sherwin and Drummond used Aymerich-Humet et al. (1983) approximation to obtain the linear density of 

electrons in AlGaAs/GaAs quantum wires [86], and Szmyd, Hanna, and Majerfeld calculated the Fermi-

level position in GaAs:Se by using Aymerich-Humet et al. (1983) approximation [91]. Szmyd et al. have 

acquired the screening length of heavily doped GaAs: Se devices by using Aymerich-Humet et al. (1983) 

approximation of FDI [92]. Idrish Miah used the Aymerich-Humet et al. (1983) approximation in order to 

calculate the diffusion coefficient of spin-sensitive electronics [67, 68]. Aymerich-Humet et al. (1983) 

approximation of FDI has been used to determine the mobile charge density of ballistic nanowire 

transistors [24]. The surface potential of double-gate tunnel-FETs has been determined by using 
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Aymerich-Humet et al. (1983) approximation instead of FDI statistics [105]. Wan et al. have obtained the 

carrier density of graphene field effect transistors by using Aymerich-Humet et al. (1983) approximation 

of FDI [99]. 

Figure 2.8 shows the relative errors of both Aymerich-Humet et al. approximation of FDI where the later 

approximation offers small relative errors compared to the old approximation. 

 

Figure 2.8 The Relative Error Profiles of Both Approximations Compared to the Actual Values 

2.4.5 Marshak, Shibib, Fossum, and Lindholm Approximation 

Marshak et al. proposed one of the most accurate approximations of FDI which combines the FDI 

approximation of Boltzmann in the numerator and the denominator as follows [63]: 

𝐹1

2

(𝜂) =
𝑒𝜂

1+𝐶(𝜂)𝑒𝜂      (2.11) 

𝐶(𝜂) = −4.4 ∗ 10−2𝜂 + 3.1 ∗ 10−1      For (𝜂 ≤ 2) 

𝐶(𝜂) = 𝑒8.6∗10−3𝜂2−3.2∗10−1𝜂−8.8∗10−1
               For (2 < 𝜂 ≤ 12) 
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Figure 2.9 Marshak et al. Approximation Compared to the Actual Values 

 

Figure 2.10 The Relative Error of Marshak et al. Approximation versus Fermi Level Position 
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The approximation uses a pre-exponential function, which is a polynomial function but the function 

varies with the range, one polynomial for η below two and an exponential function for the range between 

two and twelve. The Marshak et al. approximation will be like FDI by using Boltzmann’s approximation 

when the pre-exponential function equals to zero. Figure 2.9 shows Marshak et al. approximated values, 

which cannot be clearly seen because they are fitting pretty close to the actual values.  

The differentiation and the integration of Marshak et al. approximation cannot be achieved without using 

a numerical tool. The relative errors of the approximation are shown in Figure 2.10 compared to the 

actual values, and the mean absolute error is 0.0043. 

Marshak et al. used their approximation of FDI to determine the semiconductor device quantities such as 

current density and Einstein relation [63]. De et al. introduced an expression of effective intrinsic carrier 

density in heavily doped InGaAsP devices [31]. 

2.4.6 Selvakumar’s Approximation 

Another attempt to approximate FDI has been proposed by Selvakumar, which is an exponential function 

with a seven term polynomial in the exponent [85]: 

𝐹1

2

(𝜂) = 𝑒𝑔(𝜂)       (2.12) 

where 𝑔(𝜂) = ∑ 𝑎𝑘𝜂𝑘7
𝑘=0  

𝑎0 =  −0.269951, 𝑎1 = 0.780032, 𝑎2 =  −0.061577, 𝑎3 = −2.60578 ∗ 10−3,  

𝑎4 = 8.37333 ∗ 10−4, 𝑎5 =  −1.90326 ∗ 10−5, 𝑎6 =  −4.1397 ∗ 10−6, 𝑎7 = 2.085 ∗ 10−7 

The approximation is easy to differentiate but difficult to integrate. Selvakumar’s approximated values are 

graphically shown in Figure 2.11 with the actual values where the approximated values are almost sitting 

on the actual values. Figure 2.12 shows the relative errors of Selvakumar’s approximation and the mean 

absolute error is 0.0051. Kozhukhov et al. used Selvakumar’s approximation of FDI in order to determine 

the current of gate induced drain leakage [54]. 
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Figure 2.11 The Approximation of Fermi-Dirac Integrals by Selvakumar 

 

Figure 2.12 The Relative Error Profiles of Selvakumar’s Approximation 
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2.4.7 Van Halen and Pulfrey Approximation 

One of the well-known approximations we examine in this thesis has been developed by Van Halen and 

Pulfrey [97]. They proposed approximations for the whole family of FDIs with dividing the range into two 

separate ranges. Their approximation of FDI has two different expressions for the order 1/2 where the range 

above zero has two different sets of coefficients as follows: 

𝐹1

2

(𝜂) = ∑ (−1)𝑟+1𝑎𝑟𝑒𝑟𝜂7
𝑟=1  , For 𝜂 ≤ 0   (2.13) 

𝐹1

2

(𝜂) = ∑ 𝑎𝑟𝜂𝑟−17
𝑟=1   , For 𝜂 > 0   (2.14) 

The coefficients of each expression and the mean square error for each range are presented in Table 2.1. 

Their approximation for the values below zero is an attempt to improve the simplest approximation of FDI 

by summing the seven terms of exponential functions multiplying by pre-exponential coefficients. The 

expression of FDI beyond zero is a seven polynomial function that has two sets of coefficients based on the 

range. Both expressions are easy to differentiate and integrate, however the accuracy of the approximation 

is not adequate to be useful in semiconductor device equations. Figure 2.13 shows the three ranges of the 

approximation compared to the actual values. The relative errors of Van Halen and Pulfrey approximation 

are shown in Figure 2.14 where the accuracy of each range is separated.  

  

Figure 2.13 The Approximations of Van Haley and Pulfrey for Different Ranges 
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Table 2.1 Coefficients and Mean Absolute Errors (MAE) for Van Haley and Pulfrey Approximations 

The Coefficient −𝟒 ≤ 𝜼 ≤ 𝟎 𝟎 < 𝜼 ≤ 𝟐 𝟐 < 𝜼 ≤ 𝟒 

𝒂𝟏 1 0.765147 0.777114 

𝒂𝟐 0.250052 0.604911 0.581307 

𝒂𝟑 0.111747 0.189885 0.206132 

𝒂𝟒 0.064557 0.020307 0.01768 

𝒂𝟓 0.040754 0.004380 0.006549 

𝒂𝟔 0.020532 0.000366 0.000784 

𝒂𝟕 0.002108 0.000133 0.000036 

MAE 0.0215 0.0152 0.2836 

 

Due to the simplicity of the Van Halen and Pulfrey approximation of FDI, Chu and Pulfrey used Halen 

and Pulfrey approximation of FDI to calculate the electron current and the net hole tunnel current in 

metal-insulator semiconductor tunnel junction [26]. The mobility of heavily doped GaAlAs devices has 

been determined by using Halen and Pulfrey approximation of FDI [14]. Venugopal et al. presented a 

simulation of quantum transport in nanoscale transistors where the 3D electron density is calculated by 

using Halen and Pulfrey approximation of FDI [98]. 

 

Figure 2.14 The Relative Errors of Different Ranges of Van Haley and Pulfrey Approximation 
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2.4.8 Abdus Sobhan and NoorMohammad Approximation 

In 1985, Abdus Sobhan and NoorMohammad proposed an approximation of FDI that has a form similar 

to Marshak et al. approximation as follows [88]: 

𝐹1

2

(𝜂) =
𝑒𝜂

1+𝐶(𝜂)𝑒𝜂      (2.15) 

where 𝐶(𝜂) = ∑ 𝑎𝑣𝜂𝑣7
𝑣=0     and the coefficients of 𝐶(𝜂): 

𝑎0 = 0.307098, 𝑎1 = 0.118985, 𝑎2 = 0.0166708, 𝑎3 = −0.371322 ∗ 10−2, 𝑎4 = 0.863507 ∗ 10−3,  

𝑎5 =  −0.340475 ∗ 10−4, 𝑎6 = −0.524534 ∗ 10−6, 𝑎7 = 0.199866 ∗ 10−6 

 

Figure 2.15 Approximation of Abdus Sobhan and NoorMohammad with the Actual Values 

The pre-exponential function is a polynomial function that has seven terms. The mean absolute error is 

0.2478. As can be seen from Figure 2.15, the error is starting to accumulate for the values beyond zero; 

therefore, their approximation cannot be useful where the Fermi-level is above the conduction band.  

The relative errors of the approximation are shown in Figure 2.16 for the range between negative four and 

positive four where the non-degenerate and degenerate semiconductors are covered.   
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Figure 2.16 The Relative Error Profiles as a Function of Normalized Relative Fermi-Level  

2.5 Summary 

In this chapter, several important analytical approximations of Fermi-Dirac Integrals have been discussed 

in terms of complexity of the form and the accuracy of the approximation. In addition, a few of tabulated 

approaches have been reviewed comparing them to the actual values that based on Blakemore’s 

tabulations. Then, a number of simple analytical approximations have been presented and studied in terms 

of how precise the approximation is and how amenable approximations are to be differentiated and 

integrated. We have computed the mean absolute error for every approximation discussed.  
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Chapter 3 

Approximation of Fermi-Dirac Integrals of Order 1/2 by Prony’s 

Method 

3.1 Introduction 

This chapter describes the Prony’s method that has been chosen to be used in the new proposed 

approximation. This new approximation lends itself for easy differentiation and integration.  

3.2 Prony’s Method 

Prony proposed a method of approximating a function as a sum of exponential functions through a series 

of data values at equally spaced points [77]. Prony’s method is a way to solve a series of nonlinear equations 

by generating a series of linear equations. It had been used in order to approximate some functions such as 

the two-step Diffusion profiles [84] and the average probability of transmission error in the digital 

communication instead of Fourier series [59]. The Prony’s method is explained analytically in the next part 

of this section. 

 Some of the steps of the Prony’s method lead to finding the coefficients of Prony’s main equation: forming 

a series of linear equations, using an algebraic equation, and then multiplying the actual values of the 

function by suitable coefficients. These steps are discussed in this chapter. 

3.2.1 Prony’s Method Components 

The symbols that are used in Prony’s method should be defined before introducing the steps in the Prony’s 

method [48]. N is the number of equally spaced chosen points. The quantity n is the number of terms in 

Prony’s approximation. The quantity C is the coefficient multiplying the exponential term in the function, 

and a is an exponent. Secondly, the general form of Prony’s function is: 

𝑓(𝑥𝑘) =  ∑ 𝐶𝑖𝑒−𝑎𝑖∗𝑥𝑘𝑛
𝑖=1      (3.1) 

where k=1,2,…,N and i=1,2,…,n.  

In order to simplify the form during computations, the general form of Prony’s function can be written as: 

𝑓(𝑥𝑘) =  ∑ 𝐶𝑖𝜇𝑖
𝑥𝑘𝑛

𝑖=1       (3.2) 

where  𝑢𝑖 = 𝑒−𝑎𝑖 
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3.2.2 Steps of Prony’s Method 

The first step towards finding the coefficients C’s is forming the N equations using the actual values of  

𝑓(𝑥𝑘) in the following order: 

𝐶1 + 𝐶2 + ⋯ + 𝐶𝑛 = 𝑓0      (3.3.1) 

𝐶1𝜇1 + 𝐶2𝜇2 + ⋯ + 𝐶𝑛𝜇𝑛 = 𝑓1     (3.3.2) 

𝐶1𝜇1
2 + 𝐶2𝜇2

2 + ⋯ + 𝐶𝑛𝜇𝑛
2 = 𝑓2     (3.3.3) 

. 

. 

. 

. 

 

𝐶1𝜇1
𝑁−1 + 𝐶2𝜇2

𝑁−1 + ⋯ + 𝐶𝑛𝜇𝑛
𝑁−1 = 𝑓𝑁−1   (3.3.N) 

The Prony’s set of equations can be solved directly if 𝜇𝑖 values are known, and equal to the number of the 

terms. However, if  𝑁 > 𝑛 , the least square technique could be used in order to solve the Prony’s set of 

equations. The Prony’s method can solve the Prony’s set of equations if 𝑁 > 𝑛  and 𝜇𝑖 values are to be 

determined. After forming the N equations, the next step is letting 𝜇1, … … , 𝜇𝑛 to be the roots of an algebraic 

equation as follows: 

𝜇𝑛 + 𝛼1𝜇𝑛−1 + 𝛼2𝜇𝑛−2 + ⋯ + 𝛼𝑛−1 𝜇 + 𝛼𝑛 = 0  (3.4) 

so that it can be expressed as follows: 

(𝜇 − 𝜇1)(𝜇 − 𝜇2) … (𝜇 − 𝜇𝑛) 

In order to determine 𝛼1, … … , 𝛼𝑛 , the first actual value 𝑓0 should be multiplied by 𝛼𝑛, second actual value 

𝑓1 should be multiplied by 𝛼𝑛−1, and nth actual value should be multiplied by 1. Thus, the result is seen to 

be of the form: 

𝑓𝑛 + 𝛼1𝑓𝑛−1 + 𝛼2𝑓𝑛−2 + ⋯ + 𝛼𝑛𝑓0 = 0    (3.5) 

Then, a set of 𝑁 − 𝑛 − 1 additional equations of similar type is obtained in the same way by starting instead 

successively with the second, third, …, (𝑁 − 𝑛)th equations. Therefore, equations (3.3) and (3.4) imply a 

set of 𝑁 − 𝑛 linear equations. 

𝑓𝑛 + 𝛼1𝑓𝑛−1 + 𝛼2𝑓𝑛−2 + ⋯ + 𝛼𝑛𝑓0 = 0    (3.6.1) 

𝑓𝑛+1 + 𝛼1𝑓𝑛 + 𝛼2𝑓𝑛−1 + ⋯ + 𝛼𝑛𝑓1 = 0    (3.6.2) 

. 

. 
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. 

. 

𝑓𝑁−1 + 𝛼1𝑓𝑁−2 + 𝛼2𝑓𝑁−3 + ⋯ + 𝛼𝑛𝑓𝑁−𝑛−1 = 0            (3.6.N-n-1) 

Since the actual values of 𝑓𝑘 are known, this set of equations can be solved directly if 𝑁 = 2𝑛, or solved 

approximately by the least squares technique if 𝑁 > 2𝑛 . After determining 𝛼′𝑠, 𝜇′𝑠 can be real or imaginary 

roots of equation (3.4). Then, the set of equations (3.3) can be linear equations in the C’s, with known 

coefficients, and the way to determine the n number of C’s is applying the least squares technique. A key 

transformation is the conversion of a set of non-linear equation to a set of linear equation through the 

algebraic equation (3.4).   

3.2.3 Special Cases of Prony’s Method 

When 𝑓(𝑥𝑘) tends to a finite limit as 𝑥 → ∞, the approximation: 

𝑓(𝑥𝑘) ≈ 𝐶0 + 𝐶1𝑒𝑎1𝑥𝑘 + ⋯ + 𝐶𝑛𝑒𝑎𝑛𝑥𝑘 

is appropriate where 𝑎′𝑠 are expected to have negative real parts. Furthermore, the equations (3.6) can be 

modified by replacing each 𝑓𝑘 by the difference ∆𝑓𝑘 = 𝑓𝑘+1 − 𝑓𝑘 since the previous approximation implies 

that: 

∆𝑓(𝑥𝑘) ≈ 𝐶1
′𝑒𝑎1𝑥𝑘 + ⋯ + 𝐶𝑛

′ 𝑒𝑎𝑛𝑥𝑘 

where the coefficients 𝐶𝑛
′  is unknown constants which is related to the unknown 𝐶𝑛. Then, 𝛼′𝑠 and 𝜇′𝑠 are 

determined as before. Moreover, the equations (3.3) are being modified by insertion of the unknown 𝐶0 in 

each left-hand member, and at least 𝑁 = 2𝑛 + 1 independent data are needed for this case.  

The second case is when one or more of the 𝜇′𝑠 values are not real and 𝜇𝑘 = 𝜌𝑘𝑒𝑖𝛽 ,where 𝜌 and 𝛽 are real 

and 𝜌 is positive; therefore, the polar 𝜌𝑒𝑖𝛽 and its conjugate 𝜌𝑒−𝑖𝛽 should be involved because the 

coefficients in equation (3.4) are assumed to be real. The corresponding part of equation (3.2) can be written 

as 𝜌𝑥(𝐴1𝑒𝑖𝛽𝑥 + 𝐴2𝑒−𝑖𝛽𝑥) where 𝐴1 =
𝐶1−𝑖𝐶2

2
 and 𝐴2 =

𝐶1+𝑖𝐶2

2
 which are constants. Consequently, the 

corresponding parts can be expressed in the following form: 

𝜌𝑥(𝐶1𝑐𝑜𝑠𝛽𝑥 + 𝐶2𝑠𝑖𝑛𝛽𝑥) = 𝑒𝑥𝑙𝑜𝑔𝜌(𝐶1𝑐𝑜𝑠𝛽𝑥 + 𝐶2𝑠𝑖𝑛𝛽𝑥) 

Before the set of equations (3.3) are formed and solved for the coefficients of the approximating functions, 

𝜇′𝑠 are determined from (3.4) and (3.6). 

3.2.4 Advantages of Using Prony’s Method 

Since the Prony’s method is based on a series of exponential terms in the main case or cosine and sine terms 

in the particular case, it can be easily differentiated and integrated. As a result, Prony’s method can be used 
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to approximate certain functions in electronic devices which need to be differentiated or integrated this is 

sometimes needed in the computation of some quantities such as the use of the half integer Fermi-Dirac 

function in the charge density equation. The first and second derivation forms of Prony’s general form can 

be expressed as: 

𝑑𝑓(𝑥𝑘)

𝑑𝑥𝑘
= ∑ 𝐶𝑖 ∗ 𝑎𝑖𝑒𝑎𝑖𝑥𝑘𝑛

𝑖=1      (3.7) 

𝑑2𝑓(𝑥𝑘)

𝑑𝑥𝑘
2 = ∑ 𝐶𝑖 ∗ 𝑎𝑖

2𝑒𝑎𝑖𝑥𝑘𝑛
𝑖=1      (3.8) 

In addition, the Prony’s approximation can be integrated as shown in followed forms 

𝑓′(𝑥𝑘) = ∫ 𝑓(𝑥𝑘) 𝑑𝑥 = ∑
𝐶𝑖

𝑎𝑖
𝑒𝑎𝑖𝑥𝑘𝑛

𝑖=1 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (3.9) 

𝑓′′(𝑥𝑘) = ∫ 𝑓′(𝑥𝑘) 𝑑𝑥 = ∑
𝐶𝑖

𝑎𝑖
2 𝑒𝑎𝑖𝑥𝑘𝑛

𝑖=1 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (3.10) 

Furthermore, the steps of the Prony’s method can be easily followed, and the coefficients of the Prony’s 

method can be determined in few steps.  

3.3 The New Proposed Approximation of Fermi-Dirac Integrals of Order ½  

As seen in the literature review, the positive half integer of Fermi-Dirac can have a major impact on the 

highly doped region of the semiconductor devices. For example one can consider the current density, 

electron or hole density, and the Quasi-Fermi level position. Therefore, a simple way to approximate the 

exact values is needed in order to be used in explicit expressions. Moreover, the ability to differentiate and 

integrate the approximated form is often needed and have been aimed at this work. As a result, the Pony’s 

method was chosen to approximate the Fermi-Dirac Integrals of positive half order. In the first part of this 

section, parameters of the approximation are introduced. Next, steps of approximating the Fermi-Dirac 

Integral are proposed. Last part of this section shows the differentiation and integration of the resulting 

approximation. 

3.3.1 Components of the Approximation 

𝑓1

2

(𝑥𝑘) values for a specific range (-4 to +12) have been tabulated by Blakemore (1961) (See the 

Blakemore’s table at the Appendix A), so the actual values used in this thesis are taken from these tabulated 

values. First, we select a range of values of 𝑥𝑘 that is from (-2) to (+4) with the interval (0.1) because the 

degenerate semiconductor has the highest deviation from the Boltzmann’s values. Thus, we select this 

region and use a value of N unit 61 points. In addition, the number of chosen terms of the exponentials is 

four (n=4). Even though a large number of terms might imply a good approximation, by using different 
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number of terms for this approximation (n=6, 8, and 10) the accuracy of the approximation turns out to be 

similar and not significantly improved. 

3.3.2 Steps of the Approximation 

The general form of the proposed approximation can be expressed in the following form: 

𝑓1
2

(𝑥𝑘) = ∑ 𝐶𝑖𝑒𝑎𝑖𝑥𝑘

4

𝑖=1

= 𝐶1𝑒𝑎1𝑥𝑘 + 𝐶2𝑒𝑎2𝑥𝑘 + 𝐶3𝑒𝑎3𝑥𝑘 + 𝐶4𝑒𝑎4𝑥𝑘 

𝑓1
2

(𝑥𝑘) = ∑ 𝐶𝑖𝜇𝑖
𝑥𝑘

4

𝑖=1

= 𝐶1𝜇1
𝑥𝑘 + 𝐶2𝜇2

𝑥𝑘 + 𝐶3𝜇3
𝑥𝑘 + 𝐶4𝜇4

𝑥𝑘 

where 𝜇𝑖 = 𝑒𝑎𝑖 . 

The first step to take towards approximating the Fermi-Dirac Integral is forming 61 equations by using the 

actual values of Fermi-Dirac Integral values from the tabulated values: 

𝐶1𝜇1
𝑥1 + 𝐶2𝜇2

𝑥1 + 𝐶3𝜇3
𝑥1 + 𝐶4𝜇4

𝑥1 = 𝑓0 

𝐶1𝜇1
𝑥2 + 𝐶2𝜇2

𝑥2 + 𝐶3𝜇3
𝑥2 + 𝐶4𝜇4

𝑥2 = 𝑓1 

𝐶1𝜇1
𝑥3 + 𝐶2𝜇2

𝑥3 + 𝐶3𝜇3
𝑥3 + 𝐶4𝜇4

𝑥3 = 𝑓2 

𝐶1𝜇1
𝑥4 + 𝐶2𝜇2

𝑥4 + 𝐶3𝜇3
𝑥4 + 𝐶4𝜇4

𝑥4 = 𝑓3 

𝐶1𝜇1
𝑥5 + 𝐶2𝜇2

𝑥5 + 𝐶3𝜇3
𝑥5 + 𝐶4𝜇4

𝑥5 = 𝑓4 

. 

. 

. 

. 

𝐶1𝜇1
𝑥61 + 𝐶2𝜇2

𝑥61 + 𝐶3𝜇3
𝑥61 + 𝐶4𝜇4

𝑥61 = 𝑓60 

Since each equation has four terms, the 𝜇′𝑠 can be roots of the algebraic equation 

𝜇4 + 𝛼1𝜇3 + 𝛼2𝜇2 + 𝛼3𝜇 + 𝛼4 = 0 

so, the left-hand side of this equation is identified with: 

(𝜇 − 𝜇1)(𝜇 − 𝜇2)(𝜇 − 𝜇3)(𝜇 − 𝜇4) 

To find 𝛼1, 𝛼2, 𝛼3, 𝛼4, we multiply 𝛼4 by 𝑓0, 𝛼3 by 𝑓1, 𝛼2 by 𝑓2, and 𝛼1 by 𝑓3, so the first equation will be 

formed as  

𝑓4 + 𝛼1𝑓3 + 𝛼2𝑓2 + 𝛼3𝑓1 + 𝛼4𝑓0 = 0 

By applying the same condition on the rest of the equations, the equations can be formed in the following 

way 
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𝑓4 + 𝛼1𝑓3 + 𝛼2𝑓2 + 𝛼3𝑓1 + 𝛼4𝑓0 = 0 

𝑓5 + 𝛼1𝑓4 + 𝛼2𝑓3 + 𝛼3𝑓2 + 𝛼4𝑓1 = 0 

𝑓6 + 𝛼1𝑓5 + 𝛼2𝑓4 + 𝛼3𝑓3 + 𝛼4𝑓2 = 0 

𝑓7 + 𝛼1𝑓6 + 𝛼2𝑓5 + 𝛼3𝑓4 + 𝛼4𝑓3 = 0 

𝑓8 + 𝛼1𝑓7 + 𝛼2𝑓6 + 𝛼3𝑓5 + 𝛼4𝑓4 = 0 

.  

. 

. 

. 

𝑓60 + 𝛼1𝑓59 + 𝛼2𝑓58 + 𝛼3𝑓57 + 𝛼4𝑓56 = 0 

Since 𝑁 > 2𝑛, we use least squares technique and the resulting form is  

𝛼4 ∑ 𝑓𝑖

56

𝑖=0

+ 𝛼3 ∑ 𝑓𝑖+1

56

𝑖=0

+ 𝛼2 ∑ 𝑓𝑖+2

56

𝑖=0

+ 𝛼1 ∑ 𝑓𝑖+3

56

𝑖=0

+ ∑ 𝑓𝑖+4

56

𝑖=0

= 0 

By differentiating previous equation with respect 𝛼1, 𝛼2, 𝛼3, 𝑎𝑛𝑑 𝛼4, four equations are being formulated 

as shown in equations 

𝛼4 ∑ 𝑓𝑖
2

56

𝑖=0

+ 𝛼3 ∑ 𝑓𝑖 ∗ 𝑓𝑖+1

56

𝑖=0

+ 𝛼2 ∑ 𝑓𝑖 ∗ 𝑓𝑖+2

56

𝑖=0

+ 𝛼1 ∑ 𝑓𝑖 ∗ 𝑓𝑖+3

56

𝑖=0

= − ∑ 𝑓𝑖 ∗ 𝑓𝑖+4

56

𝑖=0

 

𝛼4 ∑ 𝑓𝑖 ∗ 𝑓𝑖+1

56

𝑖=0

+ 𝛼3 ∑ 𝑓𝑖+1
2

56

𝑖=0

+ 𝛼2 ∑ 𝑓𝑖+1 ∗ 𝑓𝑖+2

56

𝑖=0

+ 𝛼1 ∑ 𝑓𝑖+1 ∗ 𝑓𝑖+3

56

𝑖=0

= − ∑ 𝑓𝑖+1 ∗ 𝑓𝑖+4

56

𝑖=0

 

𝛼4 ∑ 𝑓𝑖 ∗ 𝑓𝑖+2

56

𝑖=0

+ 𝛼3 ∑ 𝑓𝑖+1 ∗ 𝑓𝑖+2

56

𝑖=0

+ 𝛼2 ∑ 𝑓𝑖+2
2

56

𝑖=0

+ 𝛼1 ∑ 𝑓𝑖+2 ∗ 𝑓𝑖+3

56

𝑖=0

= − ∑ 𝑓𝑖+2 ∗ 𝑓𝑖+4

56

𝑖=0

 

𝛼4 ∑ 𝑓𝑖 ∗ 𝑓𝑖+3

56

𝑖=0

+ 𝛼3 ∑ 𝑓𝑖+1 ∗ 𝑓𝑖+3

56

𝑖=0

+ 𝛼2 ∑ 𝑓𝑖+2 ∗ 𝑓𝑖+3

56

𝑖=0

+ 𝛼1 ∑ 𝑓𝑖+3
2

56

𝑖=0

= − ∑ 𝑓𝑖+3 ∗ 𝑓𝑖+4

56

𝑖=0

 

Meanwhile, there are four equations in four unknowns, and these equations can be solved directly. The 

resulting 𝛼′𝑠 are: 

𝛼1 = −3.49404 

𝛼2 =    4.57663 

𝛼3 =  −2.66342 

𝛼4 =     0.58106 

Now, the algebraic equation can be formed since the 𝛼 values are known 
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𝜇4 − 3.49404𝜇3 + 4.57663𝜇2 − 2.66342𝜇 + 0.58106 = 0 

By solving this algebraic equation, the values of 𝜇′𝑠 become known: 

𝜇1 =  0.90556 

𝜇2 =  0.89495 

𝜇3 =  0.85224 

𝜇4 =  0.84129 

After finding the 𝜇′𝑠, the first equation of the desired approximation can be written as  

𝐶1(0.90556)𝑥1 + 𝐶2(0.89495)𝑥1 + 𝐶3(0.85224)𝑥1 + 𝐶4(0.84129)𝑥1 = 𝑓0 

Moreover, by introducing 𝜇′𝑠 in the other equations of the approximation, the resulting general form can 

be expressed as 

𝐶1 ∑(0.90556)𝑥𝑘

61

𝑘=1

+ 𝐶2 ∑(0.89495)𝑥𝑘

61

𝑘=1

+ 𝐶3 ∑(0.85224)𝑥𝑘

61

𝑘=1

+ 𝐶4 ∑(0.84129)𝑥𝑘

61

𝑘=1

= ∑ 𝑓1
2

(𝑥𝑘)

61

𝑘=1

 

C’s can be determined by differentiating the error equation and equating them to zero in order to get the 

best accuracy. The equation of Relative mean square error can be expressed as shown in the equation  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 =
1

𝑁
√∑

(𝑓𝑎𝑐𝑡𝑢𝑎𝑙−𝑓𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒𝑑)
2

𝑓𝑎𝑐𝑡𝑢𝑎𝑙

𝑁
1   (3.11) 

The left-hand member is the approximated value, and the right-hand member is the actual value. In order 

to minimize the error, the previous equation should be differentiated and equal to zero, the four resulting 

equations are formed as following 

𝐶1 ∑ 𝜇1
2𝑥𝑘

61

𝑘=1

+ 𝐶2 ∑(𝜇1𝜇2)𝑥𝑘  

61

𝑘=1

+ 𝐶3 ∑(𝜇1𝜇3)𝑥𝑘

61

𝑘=1

+ 𝐶4 ∑(𝜇1𝜇4)𝑥𝑘

61

𝑘=1

− ∑ 𝜇1
𝑥𝑘𝑓1

2

(𝑥𝑖)

61

𝑘=1

= 0 

𝐶1 ∑(𝜇1𝜇2)𝑥𝑘

61

𝑘=1

+ 𝐶2 ∑ 𝜇2
2𝑥𝑘

61

𝑘=1

+ 𝐶3 ∑(𝜇2𝜇3)𝑥𝑘

61

𝑘=1

+ 𝐶4 ∑(𝜇2𝜇4)𝑥𝑘

61

𝑘=1

− ∑ 𝜇2
𝑥𝑘𝑓1

2

(𝑥𝑘)

61

𝑘=1

= 0 

𝐶1 ∑(𝜇1𝜇3)𝑥𝑘

61

𝑘=1

+ 𝐶2 ∑(𝜇2𝜇3)𝑥𝑘

61

𝑘=1

+ 𝐶3 ∑ 𝜇3
2𝑥𝑘

61

𝑘=1

+ 𝐶4 ∑(𝜇3𝜇4)𝑥𝑘

61

𝑘=1

− ∑ 𝜇3
𝑥𝑘𝑓1

2

(𝑥𝑘)

61

𝑘=1

= 0 

𝐶1 ∑(𝜇1𝜇4)𝑥𝑘

61

𝑘=1

+ 𝐶2 ∑(𝜇2𝜇4)𝑥𝑘

61

𝑘=1

+ 𝐶3 ∑(𝜇3𝜇4)𝑥𝑘

61

𝑘=1

+ 𝐶4 ∑ 𝜇4
2𝑥𝑘

61

𝑘=1

− ∑ 𝜇4
𝑥𝑘𝑓1

2

(𝑥𝑘)

61

𝑘=1

= 0 

After calculating these four equations, the resulting C values are 

𝐶1 =  5.7955 ∗ 103 

𝐶2 =  −8.3584 ∗ 103 
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𝐶3 =  7.0383 ∗ 103 

𝐶4 =  −4.4747 ∗ 103 

Moreover, the a’s values can be calculated by using the following formula 𝜇𝑖 = 𝑒𝑎𝑖 

𝑎1 =  −0.0992 

𝑎2 =  −0.1110 

𝑎3 =  −0.1599 

𝑎4 =  0.1728 

Finally, the approximated form of Fermi-Dirac Integrals of positive half order can be written as follows: 

𝑓1

2

(𝑥𝑘) = 5.7955 ∗ 103𝑒−0.0992𝑥𝑘 − 8.3584 ∗ 103𝑒−0.111𝑥𝑘     

+7.0383 ∗ 103𝑒−0.1599𝑥𝑘 − 4.4747 ∗ 103𝑒−0.1728𝑥𝑘  (3.12) 

 

Figure 3.1 Approximated and Actual Values of Fermi-Dirac Positive Half-Integral 

Since the actual values of Fermi-Dirac Integrals are known, this approximation can be calculated and 

compared to the actual values. Thus, a Matlab code has been used to program this method, and the results 

can be seen in Figure 3.1 

As shown in Figure 3.1, the approximated values are mostly comparable to the actual values; consequently, 

the average relative mean square error has been calculated. 

𝑅𝑀𝑆𝐸 = 0.0038 
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Our goal is not focused on exclusively achieving the smallest error but much more about achieving the 

simplest approximation of Fermi-Dirac Integrals with as good an accuracy as possible which can be used 

effectively in books and software programs. Also, the relative mean error for each point has been computed 

as shown in Figure 3.2 

 

Figure 3.2 Relative Mean Square Error of the Approximation for Different Fermi Level Positions 

Table 3.1 Summarized Components of Our Approximation 

 1 2 3 4 

𝜶 −3.49404 4.57663 −2.66342 0.58106 

𝝁 0.90556 0.89495 0.85224 0.84129 

a −0.0992 −0.1110 −0.1599 0.1728 

C 5.7955 ∗ 103 −8.3584 ∗ 103 7.0383 ∗ 103 −4.4747 ∗ 103 

 

Even though Figure 3.2 indicates that there is a significant error around negative two, the approached values 

are still more accurate than Boltzmann’s approximated values.  

3.4 Differentiation and Integration of the New Proposed Approximation 

In this section, we examine the accuracy of the differentiated and integrated forms of the approximation by 

comparing them to actual values of the functions. 
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3.4.1 Differentiation 

To examine how good the approximation is, we calculate the first and second differentiated expressions of 

the approximation. Then, the evaluation of the differentiated functions are being compared to the actual 

tabulated values based on the following equation: 

𝑓𝑗−1(𝑥𝑘) =
𝑑𝑓𝑗

𝑑𝑥𝑘
       (3.13) 

Since the value of j in our approximation is 𝑗 =
1

2
, the first derivative of the equation is 𝑓

−
1

2

(𝑥𝑘) =
𝑑𝑓1

2

𝑑𝑥𝑘
 ; 

moreover, the resulting form of the derived function is: 

𝑓
−

1
2

(𝑥𝑘) = −1.1253 ∗ 103𝑒−0.0992𝑥𝑘 + 773.2507𝑒−0.111𝑥𝑘 + 927.5932𝑒−0.1599𝑥𝑘 

−574.9186𝑒−0.1728𝑥𝑘      (3.14) 

The previous function has been calculated at each x point and compared to actual tabulated 𝑓
−

1

2

(𝑥𝑘). The 

approximated and actual functions have been plotted as shown in Figure 3.3. Then, the average relative 

mean square error for the derived function has been determined. Further, Figure 3.4 shows the relative mean 

square error at each point, and it can be noticed that the differentiated function has large errors for the values 

of 𝜂 around negative two, which also has occurred for the original approximation. It should be stated that 

the average relative mean square error of derived function is larger than the average relative mean square 

error of the original approximation because of the sufferers after the differentiation.  

𝑅𝑀𝑆𝐸 = 0.0215 

Table 3.2 Summarized Components of First Derivative Function  

 1 2 3 4 

a −0.0992 −0.1110 −0.1599 0.1728 

C −1.1253 ∗ 103 773.2507 927.5932 −574.9186 

 

The second derivative function can be analytically calculated by differentiating the approximation twice 

(𝑓
−

3

2

(𝑥𝑘) =
𝑑2𝑓1

2
(𝑥𝑘)

𝑑𝑥𝑘
2 ), and the results can be compared to tabulated 𝑓

−
3

2

(𝑥𝑘); thus, the approached form is  

𝑓
−

1

2

(𝑥𝑘) = 179.9299𝑒−0.0992𝑥𝑘 − 133.6301𝑒−0.111𝑥𝑘 − 102.9464𝑒−0.1599𝑥𝑘 + 57.0347𝑒−0.1728𝑥𝑘 (3.15) 

Figure 3.5 shows the values of the twice differentiated function compared to the actual tabulated values for 

each position of the Fermi level. Also, the average relative mean square error is 

𝑅𝑀𝑆𝐸 = 0.1019 
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Figure 3.3 The First Derivative Function and Actual Values of Fermi-Dirac Negative Half-Integral (−
1

2
) 

 

Figure 3.4 Relative Mean Square Error Profiles of the Once-Differentiated Function 



 

 38 

 

Figure 3.5 The Twice Differentiated Approximation and the Actual Values of Fermi-Dirac Negative One and Half-

Integral (−
3

2
 ) 

 

Figure 3.6 Relative Mean Square Error Profiles of the Twice Differentiated Function 
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As can be seen from Figure 3.5, the values of 𝜂 that are between negative two and negative one have a 

bigger error due to the losses after the second differentiation. Further, the average relative mean square 

error of the second derived function is two order of magnitudes larger than the average relative mean 

square. However, the average relative mean square errors of the first and the second derivative functions 

still seem to be reasonable since the accuracy is not the chief goal of this approximation as much as the 

easiness of using it. The relative mean square error profiles of the values are shown in Figure 3.6 

Table 3.3 Summarized Components of Twice Derivative Function 

 1 2 3 4 

a −0.0992 −0.1110 −0.1599 0.1728 

C 179.9299 −133.6301 −102.9464 57.0347 

3.4.2 Integration 

In order to examine the effectiveness of the approximation, the approximation can easily be integrated and 

evaluated. The integration of the approximation can be done based on the following equation: 

∫ 𝑓𝑗(𝑥𝑘)𝑑𝑥𝑘 = 𝑓𝑗+1(𝑥𝑘)     (3.16) 

Thus, the first integrated function can be compared to 𝑓3

2

(𝑥𝑘), and the resulting formula is  

𝑓3
2

(𝑥𝑘) = −4.4017 ∗ 104𝑒−0.0992𝑥𝑘 + 2.5891 ∗ 104𝑒−0.111𝑥𝑘 + 7.5310 ∗ 104𝑒−0.1599𝑥𝑘 

−5.8417 ∗ 104𝑒−0.1728𝑥𝑘 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡     (3.17) 

The appearance of the constant is normal since it appears in the general form of the integration, so the 

values of the integration without counting the constant were compared to the actual values in order to 

determine the best choice of the constant. Thus, the constant is the median of the sum of the differences 

between the actual values and the integrated values (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  1233.8648). Additionally, the average 

relative mean square error of the first integrated function is  

𝑅𝑀𝑆𝐸 = 9.5425 ∗ 10−4 

As can be noted, the average relative mean square error of the integration is more accurate than the average 

relative mean square error of the differentiated function. 

The first integrated function provides more accurate results than the initial approximation since the 

integration is the area under the curve as shown in Figure 3.7. Also, the relative mean square error profiles 

of the Fermi level position can be seen in Figure 3.8 
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Figure 3.7 The First Integrated and Actual Values of Fermi-Dirac Positive One and Half-Integral (+
3

2
) 

 

 

Figure 3.8 Relative Mean Square Error Profiles of the Once Integrated function 
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Table 3.4 Summarized Components of the First Integrated Function  

 1 2 3 4 

a −0.0992 −0.1110 −0.1599 0.1728 

C −4.4017 ∗ 104 2.5891 ∗ 104 7.5310 ∗ 104 −5.8417 ∗ 104 

With 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  1233.8648 

By twice integrating the approximate function, one can assess how good the original approximation is. The 

twice second integrated function can be expressed as follows: 

𝑓3
2

(𝑥𝑘) = 2.7529 ∗ 105𝑒−0.0992𝑥𝑘 − 1.4982 ∗ 105𝑒−0.111𝑥𝑘 − 6.7857 ∗ 105𝑒−0.1599𝑥𝑘 

+5.8885 ∗ 105𝑒−0.1728𝑥𝑘 + 1233.8648 ∗ 𝑥𝑘 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3.18) 

By using the same criteria which were used with the first integrated function, the constant can be determined 

as (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  −35748.68618).  

Figure 3.9 shows how close the twice integrated function is to the tabulated 𝑓5

2

(𝑥𝑘). The average 

relative mean square error is being calculated to be: 

𝑅𝑀𝑆𝐸 = 9.3129 ∗ 10−4 

 

Figure 3.9 The Second Integrated Function of the Approximation and the Actual Values of the Fermi-Dirac Positive 

Two and Half-Integral (+
𝟓

𝟐
) 
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Figure 3.10 Relative Mean Square Error Profiles of the Second Integrated function 

Moreover, the relative mean square error of each Fermi level position has been determined and 

plotted in Figure 3.10 

Table 3.5 Summarized Components of Second Integrated Function  

 1 2 3 4 

a −0.0992 −0.1110 −0.1599 0.1728 

C 2.7529 ∗ 105 −1.4982 ∗ 105 −6.7857 ∗ 105 5.8885 ∗ 105 

With using 1233.8648 ∗ 𝑥𝑘  from the first integrated and 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =  −35748.68618 

3.5 Summary 

In this chapter, the Prony’s method has been successfully used to approximate the Fermi-Dirac positive 

half-integral. Prony’s method has been chosen for two reasons: its ability to be differentiated and integrated 

easily and the simplicity of determining the coefficients of the Prony’s equation. In order to examine how 

good the form of the approximation is, the approximated function was differentiated and integrated once 

and twice and compared with tabulated actual values. These exercises show that not only that the 

magnitudes of the values given by the approximation are good, the nature of variation, as indicated by the 

differentiated functions show, are also very good. 
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Chapter 4 

Applications of the New Approximation 

4.1 Introduction 

In the previous chapter, I had discussed a new approximation that can be applied to several applications in 

electronic devices due to its simplicity and the ability to be differentiated and to be integrated. Although 

the Fermi-Dirac Integrals play a significant role in the electronics, a simple enough approximation of Fermi-

Dirac Integrals had not been proposed in the literature other than Boltzmann Approximation with limitation 

of accuracy.  In this chapter, I elaborate how the new approximation can be applied effectively to a few 

semiconductor devices’ equations and how it is simple enough to be used in the calculations.   

The first section of this chapter presents previous research on using other approximations of Fermi-Dirac 

Integrals in the calculation of electron density. Next, I show the application of the new approximation to 

the calculation of the electron density and also for different temperatures. The hole density calculations are 

also studied using Fermi-Dirac Integrals approximation, including the new approximation. The third section 

discusses the Einstein Relation and the importance of obtaining a good approximation for it. Since the new 

approximation can be applied in the electronic devices, some devices that use heavily doped regions as 

active region such as Junctionless transistors can use the Fermi-Dirac integrals in some of their 

characteristics. The last section of this chapter will provide some other applications other than 

semiconductor devices such as heat thermodynamic and particle physics, to illustrate the usefulness of the 

developed approximation.   

4.2 Electron and Hole Densities 

Electron and Hole densities in 3D materials, which are per unit volume, can be expressed as shown in 

equations (4.1) and (4.2) 

𝑛 = ∫ 𝑔𝐶(𝐸)𝑓(𝐸)𝑑𝐸
∞

𝐸𝐶
      (4.1) 

𝑝 = ∫ 𝑔𝑉(𝐸)(1 − 𝑓(𝐸))𝑑𝐸
𝐸𝑉

−∞
     (4.2) 

When 𝑔𝐶(𝐸) and 𝑔𝑉(𝐸) are the density of available states (DOS) in Conduction Band and Valence Band 

respectively and 𝑓(𝐸) is the Fermi-Dirac Distribution law, which gives the probability of occupation of an 

energy level E. The equations (4.1) and (4.2) compute the density of free electrons n and density of free 

holes p in Conduction Band and Valence band respectively at equilibrium. In this section, Silicon (Si) and 
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Gallium Arsenide (GaAs) devices are considered which have high doping. The density states equation for 

three-dimensional Si and GaAs, can be written as follows: 

𝑔𝐶(𝐸) =
8𝜋√2

ℎ3 𝑚𝑛
∗

3

2(𝐸 − 𝐸𝐶)
1

2     (4.3) 

𝑔𝑉(𝐸) =
8𝜋√2

ℎ3 𝑚𝑝
∗

3

2(𝐸 − 𝐸𝑉)
1

2     (4.4) 

where 𝑚𝑛
∗ , 𝑚𝑝

∗  is the effective mass of electrons and holes 

By substituting density of states equations and Fermi-Dirac distribution, the electron and hole densities can 

be as follows: 

𝑛 = 𝑁𝐶𝐹1

2

(𝐸)       (4.5) 

𝑝 = 𝑁𝑉𝐹1

2

(𝐸)       (4.6) 

where 𝑁𝐶  and 𝑁𝑉 are the “effective density” of states in the conduction band and the “effective density” of 

states in the valence band, respectively. In addition, 𝐹1

2

(𝐸) is the positive half integer of Fermi-Dirac 

Integrals. By choosing three different temperatures (50 𝐾, 300 𝐾, 1000 𝐾), the 𝑁𝐶  and 𝑁𝑉 have been 

calculated by using the following equations, where it is assumed that the effective masses are temperature-

independent.  

𝑁𝐶 = 2 (
2𝜋𝑚𝑛

∗ 𝑘𝑇

ℎ2 )

3

2
      (4.7) 

𝑁𝑉 = 2 (
2𝜋𝑚𝑝

∗ 𝑘𝑇

ℎ2 )

3

2
      (4.8) 

Table 4.1 Calculated 𝑁𝐶  and 𝑁𝑉 at different temperatures 

Material 𝒎𝒏
∗  (𝒌𝒈) 𝒎𝒑

∗  (𝒌𝒈) 𝑵𝑪 (𝒄𝒎−𝟑) 𝑵𝑽 (𝒄𝒎−𝟑) 

𝟓𝟎 𝑲 𝟑𝟎𝟎 𝑲 𝟏𝟎𝟎𝟎 𝑲 𝟓𝟎 𝑲 𝟑𝟎𝟎 𝑲 𝟏𝟎𝟎𝟎 𝑲 

Si 1.18𝑚0 

[75] 

0.81𝑚0 

[75] 

2.189

∗ 1018 

3.217

∗ 1019 

1.958

∗ 1020 

1.245

∗ 1018 

1.829

∗ 1019 

1.113

∗ 1020 

GaAs 0.067𝑚0 

[75] 

0.53𝑚0 

[75] 

2.961

∗ 1016 

4.352

∗ 1017 

2.649

∗ 1018 

6.588

∗ 1017 

9.683

∗ 1018 

5.893

∗ 1019 

 

As shown in Table 4.1, 𝑁𝐶  and 𝑁𝑉 have been calculated for different temperatures by using the density of 

effective masses from reference [75]. The electron and hole densities can be calculated directly by using 

equations (4.5) and (4.6) since the actual values of Fermi-Dirac Integrals have been tabulated. Thus, Figure 

4.1 and Figure 4.2 show the electron and hole densities for different temperatures. 



 

 45 

As can be seen from the Figures 4.1 and 4.2, the Fermi level positions vary for each temperature. However, 

the Fermi-Dirac Integrals is itself temperature-dependent. Another factor to be taken into consideration is 

the temperature has an impact on energy bandgap as well and because of that the Fermi-Dirac Integrals will 

give rise to a different probability distribution and 𝐸𝑓 between conduction and valence bands.  

 

Figure 4.1 Electron Density of Si and GaAs Devices versus the Position of Fermi Level 

One of the popular ways to calculate the electron and hole densities is using Boltzmann’s distribution, and 

the equations can be written as follows: 

𝑛 = 𝑁𝐶𝑒
𝐸𝑓−𝐸𝐶

𝑘𝑇        (4.9) 

𝑝 = 𝑁𝑉𝑒
𝐸𝑉−𝐸𝑓

𝑘𝑇        (4.10) 

Nevertheless, these equations are applicable for non-degenerate regions of devices, and at medium 

temperatures as Figures 4.3 and 4.4 show electron and hole densities of Si and GaAs at 300 𝐾. It is observed 

from Figures 4.3 and 4.4 that Boltzmann’s approximation does not give accurate values when 𝐸𝑓 − 𝐸𝐶  and 

𝐸𝑉 − 𝐸𝑓 ≤ −3𝑘𝑇 which effectively means that Boltzmann’s distribution is only valid for nondegenerate 

region of electronic devices. Furthermore, for high doping and high temperatures Boltzmann’s distribution 

can lead to erroneous results. As a result, several studies have been conducted to achieve good 

approximations to be used in electron and hole density equations. These approximations and their impact 

on density equations can modify other equations such as, current equation and Einstein relation. In the 
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following paragraph, some studies with electron and hole densities using different approximations of Fermi-

Dirac Integrals will be discussed. 

 

Figure 4.2 Hole Density of Si and GaAs Devices versus the Position of Fermi Level 

Next, the electron and hole density equations that use the proposed approximations will be presented. These 

will be compared to the actual values and the relative error of using the proposed approximation when 

compared to Boltzmann’s distribution. 

The relative mean absolute error of electron and hole concentrations, using Boltzmann’s distribution 

compared to the actual values, is 1.2249, so using Boltzmann’s distribution to calculate the electron and 

hole concentrations in heavily doped (≥1018 cm-3) materials leads to large errors. As a result, a few studies 

have established a new formula of carrier concentration equation, which is suitable for degenerate regions 

of devices by using different approaches to the Fermi-Dirac Integrals. Marshak et al. presented a new 

approximation half-integer of Fermi-Dirac Integrals to be used in carrier concentration [64]. The form of 

their approximation of Fermi-Dirac Integrals is: 

𝑓1

2

(𝑛) =
𝑒𝜂

1+𝐶(𝜂)𝑒𝜂      (4.11) 

where 𝐶(𝜂) = −4.4 ∗ 10−2 ∗ 𝜂 + 3.1 ∗ 10−1 for 𝜂 ≤ +2 
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Figure 4.3 Electron Density in Si and GaAs devices using Boltzmann’s Distribution and the Actual Values of Fermi-

Dirac Integrals 

 

Figure 4.4 Hole Density in Si and GaAs devices using Boltzmann’s Distribution and the Actual Values of Fermi-

Dirac Integrals 
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Figure 4.5 Electron Density in Si and GaAs devices using Marshak et al.’s Approximation and the Actual Values of 

Fermi-Dirac Integrals 

 

Figure 4.6 Hole Density in Si and GaAs devices using Marshak et al.’s Approximation and the Actual Values of 

Fermi-Dirac Integrals 
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Consequently, the carrier concentration equation can be calculated and plotted as shown in Figure 4.5. The 

relative mean absolute error for this approximation is 0.0043, but this approximation is only valid for values 

of η below two.  

Furthermore, the approximation is not easy to differentiate or integrate in the current density equation and 

Einstein relation. Figure 4.6 shows the hole concentration in Silicon and Gallium Arsenide at 300 𝐾. 

Another study that calculates the electron and hole density equations [103] has been conducted by using 

Aymerich-Humet et al.’s approximation (1983) [8]. The relative mean absolute error is 0.1155, two orders 

of magnitude bigger than Marshak et al. 

Thus, this approximation is not sufficiently suitable to be used in degenerate semiconductors due to its poor 

accuracy and high complexity to differentiate and to integrate. Figures 4.7 and 4.8 show the electron and 

hole concentrations in Si and GaAs devices that are determined by Xiao & Wei. 

By using a different approach to calculate the electron and hole densities, Das and Khan [30] presented a 

new approximation for the carrier concentrations based on Van Halen and Pulfrey’s approximation of 

Fermi-Dirac Integrals [97]. Nevertheless, Van Halen and Pulfrey’s approximation does not cover any 

integer of FDI above than 𝑗 =  +
7

2
, so Khan and Das’ calculations are hard to be used for the electron 

density. Moreover, Khan and Das [53] introduced a new approximation to calculate the electron density of 

degenerate semiconductors with normalized relative Fermi-levels η larger than zero, however most of 

current degenerate semiconductors have Fermi-levels either below conduction band or into the conduction 

band. 

Thus, the last two approximations cannot be compared to other approximations due to lack of calculating 

Fermi-Dirac Integrals for the first approximation and non-coverage of an extensive range of values for the 

second approximation. Previous studies of approximating the carrier concentrations equations still have 

some issues such as, the complexity of the calculation, poor accuracy, and the limited range of values for 

the normalized relative Fermi-level position. Therefore, a new simple approximation of carrier 

concentration is required to obtain an accurate and simple way to calculate the carrier concentration. In the 

next part of this section, a newly proposed approximation of Fermi-Dirac Integral will be applied to 

calculate the electron and hole density equations. 

The previous chapter explained the new proposed approximation; this part however will show the electron 

density and hole density with the error at each point of the Fermi-level position thus with different 

degeneracies.  
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Figure 4.7 Electron Density in Si and GaAs devices using Aymerich-Humet et al.’s Approximation (1983) and the 

Actual Values of Fermi-Dirac Integrals 

 

Figure 4.8 Hole Density in Si and GaAs devices using Aymerich-Humet et al.’s Approximation (1983) and the 

Actual Values of Fermi-Dirac Integrals 
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Figure 4.9 Electron Density in Si and GaAs devices using the New Proposed Approximation and the Actual Values 

of Fermi-Dirac Integrals 

 

Figure 4.10 Hole Density in Si and GaAs devices using the New Proposed Approximation and the Actual Values of 

Fermi-Dirac Integrals 
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As seen Figure 4.9, the range of examined points starts from η of negative two, because Boltzmann’s 

distribution is an accurate enough approximation below negative two. Additionally, the relative mean 

absolute error is 0.0038; a value comparable to Marshak’s relative mean square error. Figure 4.10 shows 

similarly the hole concentration in Silicon and Gallium Arsenide at 300 K. 

The electron and hole densities that have been calculated using the newly proposed approximation can be 

used efficiently in solving the current density and Einstein relation due to its simplicity to differentiate or 

to integrate. It has reasonable accuracy. The next section shows different approaches to calculating the 

Einstein relation compared to the newly proposed approach. Table 4.2 summarizes the studies discussed, 

above, outlining the errors and issues. 

Table 4.2 Summary of Section 4.1 

The approximation Range η RMAE Issues 

Boltzmann Below -3 1.2249 Poor accuracy 

Marshak [63] Any value until +2 0.0043 Complexity when used in other equations 

like Einstein relation 

Xiao and Wei [103] Any value 0.1155 Poor accuracy, complexity when applied 

to other equations like Einstein relation 

Das and Khan [30] Below zero 0.0367 Dependency on an approximation  of 

Fermi-Dirac Integrals that does not cover 

all the integers used in their expression 

Khan and Das [53] Above zero 0.0152, 

0.2836 

Two different ranges ,  

difficult to use in other equations like 

Einstein relation 

4.3 Einstein Relation 

The diffusion coefficient and drift mobility are critical parameters in electronic devices which play 

significant role in the characterization of material quality and electronic transport properties. The Einstein 

relation describes the ratio between the diffusion coefficient and mobility by using electron and hole 

concentrations. The general forms of the Einstein relation for electron and hole can be written as follows 

[56]: 

𝐷𝑛

𝜇𝑛
=

1

𝑞

𝑛
𝑑𝑛

𝑑𝐸𝑓

       (4.12) 
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𝐷𝑝

𝜇𝑝
=

1

𝑞

𝑝
𝑑𝑝

𝑑𝐸𝑓

       (4.13) 

The Einstein relation depends significantly on Fermi-Dirac Integrals due to the electron and hole. Therefore, 

many approximations have been used to solve the Einstein relation. The first attempt was made by 

Landsberg [56], and the resulting form can be expressed as:  

𝐷𝑛,𝑝

𝜇𝑛,𝑝
=

𝑘𝑇

𝑞

𝑓1
2

(𝜂)

𝑓
−

1
2

(𝜂)
       (4.14) 

This expression has been plotted by San Li and Lindholm [83] as shown in Figure 4.11. This expression 

has also been used as a general form of the Einstein relation, and it is being used as a reference to other 

approximations.  

 

Figure 4.11 Einstein Relation versus the Fermi Level Position 

Figure 4.11 shows the diffusion/mobility relation using the previous equation, and it indicates that the 

relation differs from non-degenerate and degenerate semiconductors. One of the common approaches has 

used Boltzmann’s distribution to calculate the Einstein relation. The form of the relation can be written as: 

𝐷𝑛,𝑝

𝜇𝑛,𝑝
=

𝑘𝑇

𝑞
       (4.15) 

T=300 °K 
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Figure 4.12 Actual Values of Einstein Relation with an Einstein Relation using Boltzmann’s Distribution 

 

Figure 4.13 Relative Error of Approximated Values of Einstein Relation compared to the Actual Values as a 

Function of Fermi-Level Position 
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Figure 4.14 Einstein Relation Calculated by Marshak et al. and the Actual Values 

 

Figure 4.15 Relative Error of the Einstein Relation approximated by Marshak et al. compared to the Actual Values 

as a Function of Fermi-Level Position 
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As can be seen in Figure 4.11, it is valid for the normalized relative Fermi-level η<-2. Thus, equation 4.15 

is not valid for degenerate semiconductors since it does not depend on Fermi-Dirac Integrals. Figures 4.12 

and 4.13 show the inadequacy of equation (4.15) for degenerate semiconductors. The relative mean absolute 

error calculated for this approximation is 0.2659. Therefore, this approximation will lead to significant 

errors when used in heavily doped semiconductors or for high temperature situations. Despite this 

equation’s lack of precision, many studies and books have used it as a general form of the Einstein relation 

and have calculated Diffusion coefficients based on it [9, 27, 70]. 

 Marshak et al. established another method to calculate the Einstein relation [63], using the same 

approximation of Fermi-Dirac Integrals. The differentiation of their approximation has been accomplished 

using a numerical software due to its complexity to differentiate. Figure 4.14 shows the Einstein relation 

approximated by Marshak compared to the actual values of the Einstein relation.  

Though the relative mean absolute error of Marshak et al. is 0.006, the differentiation of their approximation 

cannot be achieved directly. The relative error profiles of each Fermi-level position can be seen in Figure 

4.15. This approximation is only valid for values of 𝜂 below positive two.   

 Xiao and Wei [103] assumed that the narrowing bandgap could affect the electron and hole densities, so 

the diffusion to mobility ratio for electrons can be modified and written as follows:: 

𝐷𝑛

𝜇𝑛
=

𝑘𝑇

𝑞
∗

𝑓1
2

(𝜂)

𝑓
−

1
2

(𝜂)
∗

1

1+
𝜆𝑛

𝑘𝑇
𝑁𝐶𝑓

−
1
2

(𝜂)
−𝜆𝑛

     (4.16) 

where 𝜆𝑛 =
𝑑Δ𝐸𝑔𝐶

𝑑𝑁𝐷
 and Δ𝐸𝑔𝐶 is the bandgap narrowing of the conduction band due to the effects of high 

doping. 

This approximation can be applied when bandgap narrowing is considered, but it is not considered in this 

thesis.  Furthermore, the electron and hole densities equations would be affected by bandgap narrowing if 

the bandgap narrowing is taken into account. Khan and Das [30, 53] introduced two new approximations 

of diffusion-mobility relations that depend on another approximation of Fermi-Dirac Integrals [97]. Their 

proposed equations can be expressed as follows: 

𝐷𝑛

𝜇𝑛
= (

𝑘𝑇

𝑞
)

∑ (𝑘𝑇)𝑗−1Γ(𝑗+
1

2
)𝜉𝑗𝑓

𝑗−
1
2

(𝜂𝐶)7
𝑗=1

∑ (𝑘𝑇)𝑗−1Γ(𝑗+
1

2
)𝜉𝑗𝑓

𝑗−
3
2

(𝜂𝐶)7
𝑗=1

    (4.17) 

𝐷𝑛

𝜇𝑛
= (

𝑘𝑇

𝑞
) [

𝜉1𝜉4

𝜉1+𝜉2𝜉3
]

𝑓1
2

(𝜂𝐶)

𝑓
−

1
2

(𝜂𝐶)
     (4.18) 
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Equation (4.18) calculates the diffusion-mobility ratio due to the bandgap narrowing situation, but equation 

(4.17) can be a general approximation of diffusion-mobility ratio. However, they have depended on an 

approximation of Fermi-Dirac Integrals that does not have any approximation for integrals larger than 
3

2
, 

and their equations need an approximation of Fermi-Dirac Integrals of (𝑗 =
9

2
,

10

2
,

11

2
,

12

2
,

13

2
). 

Without considering bandgap narrowing, an accurate and simple approximation of diffusion-mobility ratio 

is required. Therefore, the proposed approximation of Fermi-Dirac Integrals and its first derivative function 

will be used to calculate the diffusion-mobility ratio. Using the equation of Landsberg [56], the diffusion-

mobility ratio can be computed as shown in Figure 4.16. 

As seen in Figure 4.16, the Einstein Relation using the new approximation has somewhat large errors 

around 𝜂 values of negative two because of the error of the first derivative function of the proposed 

approximation. The relative mean absolute error of the Einstein relation calculated by the new 

approximation is 0.0194, which is larger than the Einstein Relation using Marshak et al. approximation 

[63]. The relation can be solved directly by differentiating the proposed approximation. This shows the 

simplicity of using the new approximation compared to Marshak et al.’s. Moreover, the proposed 

approximation covers the range of 𝜂 values -2 to +4 while Marshak et al. approximation only covers the 

𝜂 values up to positive two. Figure 4.17 shows the relative error of each Fermi-level position.  

 

Figure 4.16 Einstein Relation Calculated by the New Proposed Approximation and Actual Values 
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Figure 4.17 Relative Error of Einstein Relation Calculated by the Proposed Approximation compared to the Actual 

Values as a Function of Fermi-Level Position 

In the next section, some electronic devices that have been considered as heavily doped devices such as 

Junctionless Transistors (JLT) will be studied and discussed. Some aspects of these devices which have 

been affected by different approximations of Fermi-Dirac Integrals will be presented.  

4.4 Junctionless Transistors (JLT) 

The junctionless transistor (JLT) is a multigate FET with no PN, N+N or 𝑃+𝑃 junctions, and they act like 

resistors. Therefore, the gate can adjust the mobile charge density. There are two states for these transistors: 

ON state and OFF state. In ON state, high doping concentration in the channel region causes large body 

current, and the surface accumulation current can be added. In Off state, since there is a difference in the 

workfunction between the semiconductor and the gate material, the depletion region turns off the channel. 

In addition, two major aspects should be satisfied in Junctionless transistors: high doping to achieve suitable 

current drive, and small cross section to be able to turn off the device.  

Since the Junctionless transistors need to be heavily doped, the Boltzmann’s distribution cannot be applied. 

However, a few research studies based on Boltzmann’s distribution have recently been published. Guo et 

al. introduced a three-dimensional analytical model for short-channel triple-gate junctionless MOSFET, but 

their hole density was calculated using Boltzmann’s approximation [44]. Nevertheless, their doping 
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concentrations were high, so their calculations should be modified using an approximation that is more 

accurate and straightforward. Their equations depend on the Quasi-Fermi level, which can be affected by 

high doping concentrations. In the section below, a few results will be studied using different 

approximations of Fermi-Dirac Integrals.  

Recently, the Double Gate Ferroelectric Junctionless Transistor (DGFJL) has been modeled and simulated 

using 2D ATLAS software [65]. Figure 4.18 shows the modeled and simulated electron density versus 

various gate voltages. It should be noted that this study should be compared to an experimental work to 

observe the difference in the value of electron density at each value of gate voltage. Another study was 

conducted to optimize nanoscale JLT that can be used for ultra-low power logic applications by varying 

device design parameters [81] using 2D ATLAS software [87]. However, 2D ATLAS software used FDI 

approximation using Boltzmann’s approximation instead of Fermi-Dirac Integrals for order 
1

2
  and Rational 

Chebyshev approximation for orders −
3

2
, −

1

2
,

3

2
 [87]. Though the accuracy of Rational Chebyshev 

approximation is very high [27], the use of this approximation cannot be performed easily and without 

computer simulation tools. 

Wang et al. developed a high-performance junctionless MOSFET with an asymmetric gate (AG-JL) [102] 

by conducting experimental and simulated work. They used 2D Sentaurus software [90]. Their results show 

AG-JL that shows the difference between the experimental and simulated results as can be seen in Figure 

4.19. Furthermore, Hosseini analyzed the electrical characteristics of Strained Junctionless Double-Gate 

MOSFET (Strained JL DG MOSFET) [49] based on quantum model approach that depends on non-

equilibrium Green’s function (NEGF) method [4]. He used 2D ATLAS software which is not accurate for 

calculating Fermi-Dirac Integrals of order 
1

2
 [87].   There are a few attempts that have tried to model the 

equations of junctionless transistors to make the calculations simple and easy. A proposed charge-based 

continuous model for long-channel Symmetric Double-Gate Junctionless Transistors was simulated and 

validated for high doping concentrations [19], but the mobile charge density was computed based on 

Boltzmann’s distribution as shown in equation (4.19). 

𝜌 = 𝑞𝑁𝐷(−𝑒
𝜑𝑠−𝑉

𝜑𝑡 + 1)      (4.19) 

where 𝜑𝑡 =
𝑘𝑇

𝑞
, 𝑉 = 𝑉𝐷 − 𝑉𝑠, 𝑁𝐷 is doping concentration  
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Figure 4.18 Mobile Charge Density of Double Gate Ferroelectric Junctionless Transistor (DGFJL) compared to 

Double Gate Junctionless Transistor (DGJL) [65] 

 

Figure 4.19 Drain Current versus Gate Voltage of JL and AG-JL MOSFET, the inset shows the simulated and 

experimental results of AG-JL [102] 
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Thus, the drain current can be calculated by using the following equation  

𝐼𝐷 =
𝐾𝜑𝑡

1+𝐾𝑅(𝑉𝑔−𝑉𝑇−𝑛𝑉𝑑)
 ∫ 𝑞𝑛𝑑𝑉

𝑉𝑑

𝑉𝑠
    (4.20) 

where 𝐾 = 2
𝑊

𝐿
 𝐶𝑜𝑥𝜇𝑜, 𝑉𝑇 is the threshold voltage, 𝑅 is the series resistance, 𝑞𝑛 is mobile charge density 

and 𝑉𝐺 is the gate voltage. 

To calculate the surface potential 𝜑𝑠, the following equation can be used [82] 

𝜑𝑠 = 𝜑0 +
𝑄𝑏

8𝐶𝑠
 (𝑒

𝜑0−𝑉

𝜑𝑡 − 1)     (4.21) 

where 𝜑0 is the potential at the centre of the layer, 𝑄𝑏 is the total fixed charge, 𝐶𝑠 =
𝜀𝑠

𝑡𝑠
. 

As can be observed from Figures 4.20 and 4.21, the simulated and modeled values have excellent 

agreement. Nonetheless, the researchers used the Boltzmann’s approximation in their calculations of mobile 

electron charge even though their doping concentration is high [19]. Moreover, the simulation software that 

has been used to validate the proposed model, ATLAS, uses the Boltzmann’s distribution to determine the 

mobile charge [61].  

 

Figure 4.20 The Drain Current versus Gate Voltages of Different Devices with Different Doping Concentrations and 

Thicknesses Compared to the Modeled Device while VD = 1.5 V [19] 

Other studies have been conducted to obtain full-range drain current model with Pao–Sah electrostatic 

assumptions and by extending the parabolic potential approximation in the subthreshold and the linear 
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regions [34], while Trevisoli et al. proposed a physically-based definition of threshold voltage in nanowire 

junctionless transistors analytically and experimentally by using Sentaurus [95]. 

In order to simplify the calculations of mobile charge density in junctionless transistors to be used in drain 

current density, Avila-Herrera et al. introduced a new approximation of mobile charge density with its 

impact on calculations of drain current [6]. Their approximation used Boltzmann’s distribution to determine 

the electron concentration as shown in the following equation: 

𝑛𝑃𝐵𝑧 = 𝐹𝑧(𝛾𝐶)𝑛𝐵      (4.22) 

where 𝑛𝑃𝐵𝑧 is the electron density by Pseudo-Boltzmann continuous, which is their proposed 

approximation, 𝑛𝐵 is the electron density calculated by Boltzmann’s approximation, and 𝛾𝐶  is the 

normalized relative Fermi-level.  

 

Figure 4.21 The Drain Current versus Drain Voltages of Different Devices with Different Doping Concentrations 

and Thicknesses Compared to the Modeled Device while VG = 1.5 V [19] 

Avila-Herrera et al. proposed an approximation of FDI as shown in equation (4.23): 

𝐹𝑧(𝛾𝐶) ≈
𝑛𝑃𝐵𝑧

𝑛𝐵
≈  𝑎1𝑒(𝑏1−1)𝛾𝐶 +

1

2
 [(1 − 𝑎1𝑒(𝑏1−1)𝛾𝐶 + 𝑐)     

−√(1 − 𝑎1𝑒(𝑏1−1)𝛾𝐶 + 𝑐)2 + 4𝑐(𝑎1𝑒(𝑏!−1)𝛾𝐶) ]    (4.23) 

𝑎1 = 0.7774, 

𝑏1 = 0.8127, 
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𝑐 = 0.006 

Figure 4.22 shows the calculated electron concentration by Pseudo-Boltzmann continuous model compared 

to the actual value, and the relative mean absolute error is 0.0486. However, this approximation is valid up 

to 𝛾𝐶 = 0.5 because it gives large errors for 𝛾𝐶  values of above 0.5. The relative error profiles can be seen 

in Figure 4.23. Since the junctionless transistors use heavily doped semiconductor as the active region, this 

approximation cannot be valid for all the applications of junctionless transistors.  

The researchers used their approximation of electron density to calculate drain current of a junctionless 

Silicon transistor with equation (4.20) while 𝑞𝑛 is the calculated mobile charge density by Pseudo-

Boltzmann continuous model.  

Because the approximation of electron density is complicated and difficult to differentiate or integrate, the 

equations for solving the drain current equation for different drain and gate voltages cannot be solved 

without using a simulation tool. Furthermore, the modeled values using Pseudo-Boltzmann’s continuous 

approximation are similar to the values obtained using Boltzmann’s distribution as can been seen in Figures 

4.24 and 4.25. 

 

Figure 4.22 Electron Density of Si JLT using Avila-Herrera et al. Approximation and the Actual Values of Fermi-

Dirac Integrals 
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Figure 4.23 Relative Error of Electron Density Approximated by Avila-Herrera et al. compared to the Actual Values 

as a Function of Fermi-Level Position 

 

Figure 4.24 Comparison between Different Drain Currents Using Different Approximations of Electron Density 

with the Actual Fermi-Dirac Values while VD = 1.5 V [6] 
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Figure 4.25 Comparison between Different Drain Currents Using Different Approximations of Electron Density 

with the Actual Fermi-Dirac Values while VG = 1.5 V [6] 

They also used Atlas 2D simulation, which depends on Boltzmann’s approximation. Therefore, the new 

proposed approximation of electron density using Prony’s method has been applied on mobile charge 

density to establish a new expression of the current density of junctionless transistors. Firstly, the mobile 

charge density of N-type Silicon JLT is formed as 

𝜌 = 𝑞(−𝑛 + 𝑁𝐷)      (4.24) 

𝜌 = 𝑞 (−𝑁𝐶𝑓1

2

(
𝜑−𝑉

𝜑𝑡
) + 𝑁𝐷)     (4.25) 

Where 𝑓1

2

(
𝜑−𝑉

𝜑𝑡
) = ∑ 𝐶𝑖𝑒

𝑎𝑖(
𝜑−𝑉

𝜑𝑡
)4

𝑖=1  𝑁𝐶 = 3.217 ∗ 1019𝑐𝑚−3 at 𝑇 = 300 𝐾, 𝑁𝐷 = 1019𝑐𝑚−3  

The potential at center (𝜑0 = 𝜑(0)) can be obtained by applying the Poisson’s equation then equate it to 

zero, so the form of Poisson’s equation is 

∇2𝜑 = −
𝜌

𝜀𝑠𝑖
= −

𝑞

𝜀𝑠𝑖
 (−𝑁𝐶 ∑ 𝐶𝑖𝑒

𝑎𝑖(
𝜑−𝑉

𝜑𝑡
)4

𝑖=1 + 𝑁𝐷) = 0  (4.26) 

𝑁𝐷

𝑁𝐶
=  ∑ 𝐶𝑖𝑒

𝑎𝑖(
𝜑−𝑉

𝜑𝑡
)4

𝑖=1       (4.27) 

By calculating 
𝑁𝐷

𝑁𝐶
= 0.31085 which is equal to a certain value of the new proposed approximation of 

Fermi-Dirac Integrals of order 
1

2
, the value of 

𝜑0−𝑉

𝜑𝑡
= −1.06275. Thus, the equation of 𝜑0 is 
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𝜑0 = 𝑉 − 1.06275
𝑘𝑇

𝑞
      (4.28) 

Consequently, one can see that the values of drain current and  𝜑𝑠 will be affected due to changes in the 

form of mobile charge density. 

4.5 Other Applications of Fermi-Dirac Integrals 

Fermi-Dirac Integrals are not only crucial in semiconducting applications, but they also play an important 

role in other applications. For instance, Fermi-Dirac Integrals have been used in non-Debye specific heat 

applications to calculate the difference between entropies [21]. In addition, Charlier, Blase, and Roche used 

Fermi-Dirac Integrals to determine the current density in nanotube devices [23]. Another research which 

had used Fermi-dirac Integrals in quantum computer showed that Fermi-Dirac Integral plays a key role in 

a condition for the onset of chaos [13]. Groß et al. introduced a new model to determine the absorption 

enthalpies and entropy of the resulting water vapor pressure-hydrogen composition isotherms [43]. As one 

of the least example I want to cite here, the Fermi-Dirac Integrals has been used to compare results for non-

Long Term Evolution (LTE) systems [104]. 

4.6 Summary 

In this chapter, the applications of Fermi-Dirac Integrals in semiconductor devices have been discussed. 

Firstly, the electron and hole densities in Silicon and Gallium Arsenide devices have been studied with 

different approximations and actual values of Fermi-Dirac Integrals. Second, the electron and hole 

concentrations of Si and GaAs devices were determined by using the proposed approximation developed 

in this thesis, our calculations showed a small RMSE compared to the other approximations. The second 

application was Einstein relation, and the importance of this relation in electronic devices was presented. 

The Einstein relation was calculated by using the actual values of Fermi-Dirac Integrals and approximated 

using various approximations of Fermi-Dirac Integrals. The last application of Fermi-Dirac Integrals in 

semiconductor devices was junctionless transistors where drain current in junctionless transistors was 

determined using Boltzmann’s distribution. The last section showed other applications of Fermi-Dirac 

Integrals in non-semiconducting devices. The next chapter will summarize the thesis, indicating future work 

that can be related to this thesis. 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion  

In this thesis I introduced a new analytical approximation for the Fermi-Dirac Integrals of half order using 

Prony’s method. It was shown that not only that the magnitude of FDI are well approximated, but it 

predicted as well the rate of change. The exponential series approximation lent itself for easy differentiation 

and integration. The quality of the approximation for FDI was tested by twice differentiating and integrating 

the expression of the approximation and comparing them to the actual values. These tests showed how good 

the approximation is. In order to compare the accuracy of my approximation I surveyed a range of previous 

approximations and determined their accuracies. I used relative mean absolute error to assess the 

approximations. Finally I employed the new approximation in a few devices and in Einstein Relation and 

showed the usefulness. 

5.2 Future Work 

A careful look at this problem shows that there are a number of potential works that can be done. 

 When semiconductors are doped heavily the fundamental bandgap shrinks. This will impact the 

carrier densities in combination with FDI. This has not been pursued in this thesis but can be done 

as a future work. 

 Investigations of Einstein Relation for heavily doped regions along with the new approximation 

of FDI would lead to useful results in a tractable way. 

 For non-thermal equilibrium situations, the quasi-Fermi level would be impacted by the FDI. 

 A study of devices like Junctionless Transistors with this new approximation  for FDI would lead 

to significant corrections or modifications of the computation of its terminal characteristics. 

 The impact of this new approximation on the characteristics of MIM devices can be studied.    



 

 68 

References 

[1] S. Abidi and S. N. Mohammad, "Approximation for the Fermi–Dirac integral with applications to 

degenerately doped solar cells and other semiconductor devices," J. Appl. Phys., vol. 56, pp. 3341-
3343, 1984.  

[2] A. Abramo et al, "Two-dimensional quantum mechanical simulation of charge distribution in silicon 
MOSFETs," IEEE Trans. Electron Devices, vol. 47, pp. 1858-1863, 2000.  

[3] M. T. Abuelma'atti, "Approximations for the Fermi-Dirac integrals Fj (x)," Solid-State Electronics, 
vol. 37, pp. 1367-1369, 1994.  

[4] O. M. Alatise et al, "Improved analog performance in strained-Si MOSFETs using the thickness of 
the silicon–germanium strain-relaxed buffer as a design parameter," IEEE Trans. Electron Devices, vol. 
56, pp. 3041-3048, 2009.  

[5] J. M. Aparicio, "A simple and accurate method for the calculation of generalized Fermi functions," 
The Astrophysical Journal Supplement Series, vol. 117, pp. 627, 1998.  

[6] F. Avila-Herrera et al, "Pseudo-Boltzmann model for modeling the junctionless transistors," Solid-
State Electronics, vol. 95, pp. 19-22, 2014.  

[7] X. Aymerich-Humet, F. Serra-Mestres and J. Millan, "An analytical approximation for the Fermi-
Dirac integral F32 (η)," Solid-State Electronics, vol. 24, pp. 981-982, 1981.  

[8] X. Aymerich-Humet, F. Serra-Mestres and J. Millan, "A generalized approximation of the Fermi–

Dirac integrals," J. Appl. Phys., vol. 54, pp. 2850-2851, 1983.  

[9] M. Balkanski 1927-, Semiconductor Physics and Applications. Oxford ; New York: Oxford University 
Press, 2000.  

[10] J. Batey and S. Wright, "Energy band alignment in GaAs:(Al, Ga) As heterostructures: The 
dependence on alloy composition," J. Appl. Phys., vol. 59, pp. 200-209, 1986.  

[11] H. B. Bebb and C. Ratliff, "Numerical Tabulation of Integrals of Fermi Functions Using k lim→· p 
lim→ Density of States," J. Appl. Phys., vol. 42, pp. 3189-3194, 1971.  

[12] D. Bednarczyk and J. Bednarczyk, "The approximation of the Fermi-Dirac integral F12 (η)," 
Physics Letters A, vol. 64, pp. 409-410, 1978.  

[13] G. Benenti, G. Casati and D. L. Shepelyansky, "Emergence of Fermi-Dirac thermalization in the 
quantum computer core," The European Physical Journal D-Atomic, Molecular, Optical and Plasma 
Physics, vol. 17, pp. 265-272, 2001.  

[14] H. S. Bennett, "Majority and minority electron and hole mobilities in heavily doped gallium 
aluminum arsenide," J. Appl. Phys., vol. 80, pp. 3844-3853, 1996.  

[15] V. Bhagat, R. Bhattacharya and D. Roy, "On the evaluation of generalized Bose–Einstein and 
Fermi–Dirac integrals," Comput. Phys. Commun., vol. 155, pp. 7-20, 2003.  



 

 69 

[16] J. S. Blackmore, Semiconductor Statistics. Pergamon, 1962.  

[17] P. Brounkov, T. Benyattou and G. Guillot, "Simulation of the capacitance–voltage characteristics 
of a single-quantum-well structure based on the self-consistent solution of the Schrödinger and Poisson 

equations," J. Appl. Phys., vol. 80, pp. 864-871, 1996.  

[18] H. Casey Jr, "Room-temperature threshold-current dependence of GaAs-Al x Ga1− x As double-
heterostructure lasers on x and active-layer thickness," J. Appl. Phys., vol. 49, pp. 3684-3692, 1978.  

[19] A. Cerdeira et al, "Charge-based continuous model for long-channel symmetric double-gate 
junctionless transistors," Solid-State Electronics, vol. 85, pp. 59-63, 2013.  

[20] T. Chai and R. R. Draxler, "Root mean square error (RMSE) or mean absolute error (MAE)?–

Arguments against avoiding RMSE in the literature," Geoscientific Model Development, vol. 7, pp. 
1247-1250, 2014.  

[21] R. V. Chamberlin and B. F. Davis, "Modified Bose-Einstein and Fermi-Dirac statistics if excitations 
are localized on an intermediate length scale: Applications to non-Debye specific heat," Physical 
Review E, vol. 88, pp. 042108, 2013.  

[22] T. Chang and A. Izabelle, "Full range analytic approximations for Fermi energy and Fermi–Dirac 
integral F− 1/2 in terms of F 1/2," J. Appl. Phys., vol. 65, pp. 2162-2164, 1989.  

[23] J. Charlier, X. Blase and S. Roche, "Electronic and transport properties of nanotubes," Reviews of 
Modern Physics, vol. 79, pp. 677, 2007.  

[24] J. Chen, "A circuit-compatible analytical device model for ballistic nanowire transistors," 
Microelectron. J., vol. 39, pp. 750-755, 2008.  

[25] A. C. Chia and R. R. LaPierre, "Analytical model of surface depletion in GaAs nanowires," J. Appl. 
Phys., vol. 112, pp. 063705, 2012.  

[26] K. Chu and D. Pulfrey, "An improved analytic model for the metal-insulator-semiconductor tunnel 
junction," IEEE Trans. Electron Devices, vol. 35, pp. 1656-1663, 1988.  

[27] J. Chu, Device Physics of Narrow Gap Semiconductors. New York: Springer, 2010.  

[28] L. D. Cloutman, "Numerical evaluation of the Fermi-Dirac integrals," The Astrophysical Journal 
Supplement Series, vol. 71, pp. 677, 1989.  

[29] W. Cody and H. C. Thacher Jr, "Rational Chebyshev approximations for Fermi-Dirac integrals of 
orders-1/2, 1/2 and 3/2," Mathematics of Computation, vol. 21, pp. 30-40, 1967.  

[30] A. Das and A. Khan, "Carrier concentrations in degenerate semiconductors having band gap 
narrowing," Zeitschrift Für Naturforschung A, vol. 63, pp. 193-198, 2008.  

[31] S. De et al, "Studies on temperature and concentration dependent minority carrier lifetime in 
heavily doped InGaAsP," Solid-State Electronics, vol. 37, pp. 1455-1457, 1994.  



 

 70 

[32] A. Dimoulas et al, "Electric-field dependence of interband transitions in In0. 53Ga0. 47As/In0. 

52Al0. 48As single quantum wells by room-temperature electrotransmittance," J. Appl. Phys., vol. 72, 

pp. 1912-1917, 1992.  

[33] R. Dingle, "The fermi-dirac integrals\ mathcal {F} _p (\ eta)=(p!)^{-1}\ mathop\ smallint\ 
limits_0^\ infty\ varepsilon^ p (e^{\ varepsilon-\ eta} 1)^{-1} d\ varepsilon," Applied Scientific 
Research, Section A, vol. 6, pp. 225-239, 1957.  

[34] J. P. Duarte, S. Choi and Y. Choi, "A full-range drain current model for double-gate junctionless 
transistors," IEEE Trans. Electron Devices, vol. 58, pp. 4219-4225, 2011.  

[35] H. Fang et al, "High-performance single layered WSe2 p-FETs with chemically doped contacts," 
Nano Letters, vol. 12, pp. 3788-3792, 2012.  

[36] T. Fukushima, "Precise and fast computation of Fermi–Dirac integral of integer and half integer 
order by piecewise minimax rational approximation," Applied Mathematics and Computation, vol. 259, 
pp. 708-729, 2015.  

[37] T. Fukushima, "Precise and fast computation of inverse Fermi–Dirac integral of order 1/2 by 
minimax rational function approximation," Applied Mathematics and Computation, vol. 259, pp. 698-
707, 2015.  

[38] T. Fukushima, "Computation of a general integral of Fermi–Dirac distribution by McDougall–
Stoner method," Applied Mathematics and Computation, vol. 238, pp. 485-510, 2014.  

[39] T. Fukushima, "Analytical computation of generalized Fermi–Dirac integrals by truncated 
Sommerfeld expansions," Applied Mathematics and Computation, vol. 234, pp. 417-433, 2014.  

[40] X. Gao et al, "Quantum computer aided design simulation and optimization of semiconductor 
quantum dots," J. Appl. Phys., vol. 114, pp. 164302, 2013.  

[41] M. Goano, "Algorithm 745: Computation of the complete and incomplete Fermi-Dirac integral," 
ACM Transactions on Mathematical Software (TOMS), vol. 21, pp. 221-232, 1995.  

[42] Z. Gong, W. Däppen and L. Zejda, "MHD equation of state with relativistic electrons," Astrophys. 
J., vol. 546, pp. 1178, 2001.  

[43] B. Groß et al, "Dissociative water vapour absorption in BaZr 0.85 Y 0.15 O 2.925/H 2 O: 
pressure–compositions isotherms in terms of Fermi–Dirac statistics," Physical Chemistry Chemical 
Physics, vol. 2, pp. 297-301, 2000.  

[44] Z. Guo et al, "3-D Analytical Model for Short-Channel Triple-Gate Junctionless MOSFETs," IEEE 
Trans. Electron Devices, vol. 63, pp. 3857-3863, 2016.  

[45] I. Guseinov and B. Mamedov, "Unified treatment for accurate and fast evaluation of the Fermi–
Dirac functions," Chinese Physics B, vol. 19, pp. 050501, 2010.  

[46] G. Halkias and A. Vegiri, "Device parameter optimization of strained Si channel SiGe/Si n-
MODFET's using a one-dimensional charge control model," IEEE Trans. Electron Devices, vol. 45, pp. 
2430-2436, 1998.  



 

 71 

[47] C. Harder et al, "Noise equivalent circuit of a semiconductor laser diode," IEEE J. Quant. 
Electron., vol. 18, pp. 333-337, 1982.  

[48] F. B. Hildebrand, Introduction to Numerical Analysis. Courier Corporation, 1987.  

[49] R. Hosseini, "Uncoupled mode space approach for analysis of nanoscale strained junctionless 
double-gate MOSFET," Journal of Computational Electronics, vol. 15, pp. 787-794, 2016.  

[50] B. Johnson and J. McCallum, "Dopant-enhanced solid-phase epitaxy in buried amorphous silicon 
layers," Physical Review B, vol. 76, pp. 045216, 2007.  

[51] E. Jones, "Rational Chebyshev approximation of the Fermi-Dirac integrals," Proc IEEE, vol. 54, 
pp. 708-709, 1966.  

[52] W. Joyce and R. Dixon, "Analytic approximations for the Fermi energy of an ideal Fermi gas," 
Appl. Phys. Lett., vol. 31, pp. 354-356, 1977.  

[53] A. Khan and A. Das, "General Diffusivity-Mobility Relationship for Heavily Doped 
Semiconductors," Zeitschrift Für Naturforschung A, vol. 64, pp. 257-262, 2009.  

[54] N. Kozhukhov, B. Oh and H. Shin, "Approximations to field-effect factor and their use in GIDL 
modeling," in Physical and Failure Analysis of Integrated Circuits (IPFA), 2011 18th IEEE International 
Symposium on the, pp. 1-4, 2011. 

[55] J. Lami and C. Hirlimann, "Two-photon excited room-temperature luminescence of CdS in the 
femtosecond regime," Physical Review B, vol. 60, pp. 4763, 1999.  

[56] P. Landsberg, "On the diffusion theory of rectification," in Proceedings of the Royal Society of 
London A: Mathematical, Physical and Engineering Sciences, pp. 226-237, 1952. 

[57] Z. Li, S. McAlister and C. Hurd, "Use of Fermi statistics in two-dimensional numerical simulation 
of heterojunction devices," Semiconductor Science and Technology, vol. 5, pp. 408, 1990.  

[58] L. Lin et al, "Pole-based approximation of the Fermi-Dirac function," Chinese Annals of 
Mathematics, Series B, vol. 30, pp. 729, 2009.  

[59] P. Loskot and N. C. Beaulieu, "Prony and polynomial approximations for evaluation of the average 
probability of error over slow-fading channels," IEEE Transactions on Vehicular Technology, vol. 58, 
pp. 1269-1280, 2009.  

[60] M. S. Lundstrom and R. J. Schuelke, "Numerical analysis of heterostructure semiconductor 
devices," IEEE Trans. Electron Devices, vol. 30, pp. 1151-1159, 1983.  

[61] A. J. MacLeod, "Algorithm 779: Fermi-Dirac functions of order-1/2, 1/2, 3/2, 5/2," ACM 
Transactions on Mathematical Software (TOMS), vol. 24, pp. 1-12, 1998.  

[62] B. Mamedov, "Analytical evaluation of the plasma dispersion function for a Fermi Dirac 
distribution," Chinese Physics B, vol. 21, pp. 055204, 2012.  

[63] A. H. Marshak et al, "Rigid band analysis of heavily doped semiconductor devices," IEEE Trans. 
Electron Devices, vol. 28, pp. 293-298, 1981.  



 

 72 

[64] J. McDougall and E. C. Stoner, "The computation of Fermi-Dirac functions," Philosophical 
Transactions of the Royal Society of London.Series A, Mathematical and Physical Sciences, vol. 237, 
pp. 67-104, 1938.  

[65] H. Mehta and H. Kaur, "Modeling and simulation study of novel Double Gate Ferroelectric 
Junctionless (DGFJL) transistor," Superlattices and Microstructures, vol. 97, pp. 536-547, 2016.  

[66] D. Melrose and A. Mushtaq, "Plasma dispersion function for a Fermi–Dirac distribution," Phys 
Plasmas, vol. 17, pp. 122103, 2010.  

[67] M. I. Miah, "Spin transport in the degenerate and diffusion regimes," J. Appl. Phys., vol. 103, pp. 
123711, 2008.  

[68] M. I. Miah, "Drift-diffusion crossover and the intrinsic spin diffusion lengths in semiconductors," J. 
Appl. Phys., vol. 103, pp. 063718, 2008.  

[69] M. Miczek et al, "Effects of interface states and temperature on the C-V behavior of 
metal/insulator/AlGaN/GaN heterostructure capacitors," J. Appl. Phys., vol. 103, pp. 104510, 2008.  

[70] U. K. Mishra, Semiconductor Device Physics and Design. Dordrecht: Springer, 2007.  

[71] S. N. Mohammed and S. Abidi, "Current, carrier concentration, Fermi energy, and related 
properties of binary compound polar semiconductors with nonparabolic energy bands," J. Appl. Phys., 
vol. 60, pp. 1384-1390, 1986.  

[72] N. Mohankumar and A. Natarajan, "On the very accurate numerical evaluation of the Generalized 
Fermi–Dirac Integrals," Comput. Phys. Commun., vol. 207, pp. 193-201, 2016.  

[73] N. Mohankumar and A. Natarajan, "A note on the evaluation of the generalized Fermi-Dirac 
integral," Astrophys. J., vol. 458, pp. 233, 1996.  

[74] N. Mohankumar and A. Natarajan, "The accurate numerical evaluation of half-order Fermi-Dirac 

Integrals," Physica Status Solidi (b), vol. 188, pp. 635-644, 1995.  

[75] K. K. Ng, "Appendix D: Physical properties," in Anonymous Wiley Online Library, pp. 671-696, 
2010. 

[76] B. Pichon, "Numerical calculation of the generalized Fermi-Dirac integrals," Comput. Phys. 
Commun., vol. 55, pp. 127-136, 1989.  

[77] R. Prony, "Essai experimental–,-," J.De l’Ecole Polytechnique, 1795.  

[78] E. Ramayya and I. Knezevic, "Self-consistent Poisson-Schrödinger-Monte Carlo solver: electron 
mobility in silicon nanowires," Journal of Computational Electronics, vol. 9, pp. 206-210, 2010.  

[79] P. Rhodes, "Fermi-dirac functions of integral order," in Proceedings of the Royal Society of 
London A: Mathematical, Physical and Engineering Sciences, pp. 396-405, 1950. 

[80] T. Rivlin, "Chebyshev Polynomials. From Approximation Theory to Algebra and Number Theory. 
1990," Pure Appl.Math.(NY), 1990.  



 

 73 

[81] D. Roy and A. Biswas, "Performance optimization of nanoscale junctionless transistors through 
varying device design parameters for ultra-low power logic applications," Superlattices and 
Microstructures, vol. 97, pp. 140-154, 2016.  

[82] J. Sallese et al, "Charge-based modeling of junctionless double-gate field-effect transistors," IEEE 
Trans. Electron Devices, vol. 58, pp. 2628-2637, 2011.  

[83] S. San Li and F. Lindholm, "Alternative formulation of generalized Einstein relation for degenerate 
semiconductors," Proc IEEE, vol. 56, pp. 1256-1257, 1968.  

[84] C. Selvakumar, "Approximations to two-step diffusion process by Prony's method," Proc IEEE, 
vol. 70, pp. 514-516, 1982.  

[85] C. Selvakumar, "Approximations to Fermi-Dirac integrals and their use in device analysis," Proc 
IEEE, vol. 70, pp. 516-518, 1982.  

[86] M. Sherwin and T. Drummond, "A parametric investigation of AlGaAs/GaAs modulation-doped 

quantum wires," J. Appl. Phys., vol. 66, pp. 5444-5455, 1989.  

[87] I. SILVACO, "ATLAS User’s Manual," Santa Clara, CA, Ver, vol. 5, 2011.  

[88] M. A. Sobhan and S. NoorMohammad, "Approximation for the Fermi–Dirac integral with 
applications to the modeling of charge transport in heavily doped semiconductors," J. Appl. Phys., vol. 
58, pp. 2634-2637, 1985.  

[89] A. Sommerfeld, "Zur elektronentheorie der metalle auf grund der fermischen statistik," Zeitschrift 
Für Physik, vol. 47, pp. 1-32, 1928.  

[90] Synopsys, "Sentaurus Device User Manual," June 2012.  

[91] D. Szmyd, M. Hanna and A. Majerfeld, "Heavily doped GaAs: Se. II. Electron mobility," J. Appl. 
Phys., vol. 68, pp. 2376-2381, 1990.  

[92] D. Szmyd et al, "Heavily doped GaAs: Se. I. Photoluminescence determination of the electron 
effective mass," J. Appl. Phys., vol. 68, pp. 2367-2375, 1990.  

[93] M. Taher, "Approximations for fermi-dirac integrals Fj (x)," Solid-State Electronics, vol. 37, pp. 
1677-1679, 1994.  

[94] A. Trellakis, A. Galick and U. Ravaioli, "Rational Chebyshev approximation for the Fermi-Dirac 
integral F− 32 (x)," Solid-State Electronics, vol. 41, pp. 771-773, 1997.  

[95] R. D. Trevisoli et al, "A physically-based threshold voltage definition, extraction and analytical 
model for junctionless nanowire transistors," Solid-State Electronics, vol. 90, pp. 12-17, 2013.  

[96] H. Van Cong and B. Doan-Khanh, "Simple accurate general expression of the Fermi-Dirac integral 
Fj (a) for arbitrary a and j>− 1," Solid-State Electronics, vol. 35, pp. 949-951, 1992.  

[97] P. Van Halen and D. Pulfrey, "Accurate, short series approximations to Fermi–Dirac integrals of 
order− 1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2," J. Appl. Phys., vol. 57, pp. 5271-5274, 1985.  



 

 74 

[98] R. Venugopal et al, "Simulating quantum transport in nanoscale transistors: Real versus mode-
space approaches," J. Appl. Phys., vol. 92, pp. 3730-3739, 2002.  

[99] X. Wan et al, "Enhanced performance and fermi-level estimation of coronene-derived graphene 
transistors on self-assembled monolayer modified substrates in large areas," The Journal of Physical 
Chemistry C, vol. 117, pp. 4800-4807, 2013.  

[100] A. Wang, M. Tadjer and F. Calle, "Simulation of thermal management in AlGaN/GaN HEMTs with 
integrated diamond heat spreaders," Semiconductor Science and Technology, vol. 28, pp. 055010, 
2013.  

[101] M. Wang et al, "n-CdSe/p-ZnTe based wide band-gap light emitters: Numerical simulation and 

design," J. Appl. Phys., vol. 73, pp. 4660-4668, 1993.  

[102] Y. Wang et al, "High performance of junctionless MOSFET with asymmetric gate," Superlattices 
and Microstructures, vol. 97, pp. 8-14, 2016.  

[103] Z. Xiao and T. Wei, "Modification of the Einstein equations of majority-and minority-carriers with 
band gap narrowing effect in n-type degenerate silicon with degenerate approximation and with non-
parabolic energy bands," IEEE Trans. Electron Devices, vol. 44, pp. 913-914, 1997.  

[104] W. Ze-Qing, L. Shi-Chang and H. Guo-Xing, "Opacity calculations for a non-LTE system with the 
three-temperature model," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 56, pp. 
623-627, 1996.  

[105] L. Zhang and M. Chan, "SPICE modeling of double-gate tunnel-FETs including channel 
transports," IEEE Trans. Electron Devices, vol. 61, pp. 300-307, 2014.  

 

  



 75 

Appendix A 

Blakemore Tables 

The Table A.1 in this appendix shows the “actual values” of the FDI as tabulated by Blakemore. 

These are the actual values which have been used in this thesis. 

Table A.1 Blakemore’s Tabulated Values 

𝜼 𝑭
−

𝟑
𝟐

(𝜼) 𝑭
−

𝟏
𝟐

(𝜼) 𝑭𝟏
𝟐

(𝜼) 𝑭𝟑
𝟐

(𝜼) 𝑭𝟓
𝟐

(𝜼) 𝑭𝟕
𝟐

(𝜼) 

-4 0.0178 0.01808 0.018199 0.018256 0.018287 0.018301 

-3.9 0.0196 0.01995 0.020099 0.02017 0.020206 0.020224 

-3.8 0.0217 0.02203 0.022195 0.022283 0.022327 0.022349 

-3.7 0.0238 0.02429 0.02451 0.024617 0.02467 0.024697 

-3.6 0.0263 0.02681 0.027063 0.027193 0.027259 0.027291 

-3.5 0.0289 0.02956 0.02988 0.030037 0.030118 0.030158 

-3.4 0.0318 0.0326 0.032986 0.033179 0.033276 0.033325 

-3.3 0.035 0.03595 0.036412 0.036645 0.036764 0.036824 

-3.2 0.0385 0.03962 0.040187 0.040473 0.040617 0.04069 

-3.1 0.0423 0.04367 0.044349 0.044696 0.044872 0.044961 

-3 0.0465 0.0481 0.048933 0.049356 0.049571 0.049679 

-2.9 0.051 0.05298 0.053984 0.054498 0.054759 0.054891 

-2.8 0.056 0.05831 0.059545 0.06017 0.060488 0.060649 

-2.7 0.0613 0.06417 0.065665 0.066425 0.066813 0.067009 

-2.6 0.0671 0.07059 0.072398 0.073323 0.073795 0.074033 

-2.5 0.0735 0.07762 0.079804 0.080927 0.081501 0.081791 

-2.4 0.0802 0.08529 0.087944 0.089309 0.090006 0.09036 

-2.3 0.0876 0.09369 0.096887 0.098544 0.099391 0.099822 

-2.2 0.0955 0.10284 0.10671 0.10872 0.10975 0.11027 

-2.1 0.104 0.1128 0.11748 0.11992 0.12117 0.12181 

-2 0.1132 0.12366 0.1293 0.13225 0.13377 0.13454 

-1.9 0.1229 0.13546 0.14225 0.14581 0.14766 0.1486 

-1.8 0.1331 0.14826 0.15642 0.16074 0.16297 0.16412 

-1.7 0.1442 0.16213 0.17193 0.17714 0.17986 0.18125 
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𝜼 𝑭
−

𝟑
𝟐

(𝜼) 𝑭
−

𝟏
𝟐

(𝜼) 𝑭𝟏
𝟐

(𝜼) 𝑭𝟑
𝟐

(𝜼) 𝑭𝟓
𝟐

(𝜼) 𝑭𝟕
𝟐

(𝜼) 

-1.6 0.1558 0.17712 0.18889 0.19517 0.19846 0.20015 

-1.5 0.168 0.1933 0.2074 0.21497 0.21895 0.22099 

-1.4 0.1808 0.21074 0.22759 0.23671 0.24152 0.24401 

-1.3 0.1941 0.22948 0.24959 0.26055 0.26636 0.26938 

-1.2 0.208 0.24958 0.27353 0.28669 0.2937 0.29736 

-1.1 0.2222 0.27108 0.29955 0.31533 0.32378 0.32822 

-1 0.2367 0.29402 0.3278 0.34667 0.35686 0.36222 

-0.9 0.2517 0.31845 0.35841 0.38096 0.39321 0.3997 

-0.8 0.2667 0.34438 0.39154 0.41844 0.43316 0.44098 

-0.7 0.282 0.37181 0.42733 0.45936 0.47702 0.48646 

-0.6 0.2971 0.40077 0.46595 0.504 0.52515 0.53653 

-0.5 0.3121 0.43123 0.50754 0.55265 0.57795 0.59164 

-0.4 0.3268 0.46318 0.55224 0.60561 0.63583 0.65229 

-0.3 0.341 0.49657 0.60022 0.66321 0.69923 0.71899 

-0.2 0.3548 0.53137 0.65161 0.72577 0.76863 0.79234 

-0.1 0.3677 0.5675 0.70654 0.79365 0.84455 0.87294 

0 0.38 0.6049 0.76515 0.8672 0.92755 0.96148 

0.1 0.3915 0.64348 0.82756 0.9468 1.0182 1.0587 

0.2 0.4019 0.68317 0.89388 1.0328 1.1171 1.1654 

0.3 0.4114 0.72384 0.96422 1.1257 1.225 1.2824 

0.4 0.4196 0.7654 1.0387 1.2258 1.3425 1.4107 

0.5 0.4269 0.80774 1.1173 1.3336 1.4704 1.5513 

0.6 0.4328 0.85074 1.2003 1.4494 1.6095 1.7052 

0.7 0.4378 0.89429 1.2875 1.5738 1.7606 1.8736 

0.8 0.4415 0.93826 1.3791 1.7071 1.9246 2.0577 

0.9 0.4441 0.98255 1.4752 1.8497 2.1023 2.2589 

1 0.4457 1.0271 1.5756 2.0023 2.2948 2.4787 

1.1 0.4463 1.0717 1.6806 2.165 2.5031 2.7184 

1.2 0.4459 1.1163 1.79 2.3385 2.7282 2.9799 
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𝜼 𝑭
−

𝟑
𝟐

(𝜼) 𝑭
−

𝟏
𝟐

(𝜼) 𝑭𝟏
𝟐

(𝜼) 𝑭𝟑
𝟐

(𝜼) 𝑭𝟓
𝟐

(𝜼) 𝑭𝟕
𝟐

(𝜼) 

1.3 0.4447 1.1608 1.9038 2.5232 2.9712 3.2647 

1.4 0.4427 1.2052 2.0221 2.7194 3.2332 3.5747 

1.5 0.4398 1.2493 2.1449 2.9278 3.5155 3.912 

1.6 0.4365 1.2931 2.272 3.1486 3.8192 4.2786 

1.7 0.4325 1.3366 2.4035 3.3823 4.1456 4.6766 

1.8 0.4281 1.3796 2.5393 3.6294 4.4961 5.1085 

1.9 0.4233 1.4222 2.6794 3.8903 4.8719 5.5767 

2 0.4182 1.4643 2.8237 4.1654 5.2746 6.0838 

2.1 0.4126 1.5058 2.9722 4.4552 5.7055 6.6325 

2.2 0.407 1.5468 3.1249 4.76 6.1662 7.2258 

2.3 0.4013 1.5872 3.2816 5.0803 6.658 7.8668 

2.4 0.3954 1.6271 3.4423 5.4164 7.1827 8.5585 

2.5 0.3893 1.6663 3.607 5.7689 7.7419 9.3044 

2.6 0.3833 1.7049 3.7755 6.138 8.3371 10.108 

2.7 0.3772 1.743 3.948 6.5241 8.97 10.973 

2.8 0.3712 1.7804 4.1241 6.9277 9.6425 11.903 

2.9 0.3654 1.8172 4.304 7.3491 10.356 12.903 

3 0.3595 1.8535 4.4876 7.7886 11.113 13.976 

3.1 0.3537 1.8891 4.6747 8.2467 11.915 15.127 

3.2 0.3481 1.9242 4.8653 8.7237 12.763 16.36 

3.3 0.3425 1.9588 5.0595 9.2199 13.66 17.681 

3.4 0.337 1.9927 5.2571 9.7357 14.608 19.094 

3.5 0.3319 2.0262 5.458 10.271 15.608 20.605 

3.6 0.3267 2.0591 5.6623 10.827 16.662 22.218 

3.7 0.3216 2.0915 5.8699 11.404 17.774 23.939 

3.8 0.3167 2.1235 6.0806 12.001 18.944 25.774 

3.9 0.312 2.1549 6.2945 12.62 20.175 27.73 

4 0.3075 2.1859 6.5115 13.26 21.469 29.812 

 


