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Abstract

A Markov Decision Process (MDP) is a model employed to describe problems in which
a decision must be made at each one of several stages, while receiving feedback from the
environment. This type of model has been extensively studied in the operations research
community and fundamental algorithms have been developed to solve associated problems.
However, these algorithms are quite inefficient for very large problems, leading to a need
for alternatives; since MDP problems are provably hard on compressed representations, one
becomes content even with algorithms which may perform well at least on specific classes of
problems. The class of problems we deal with in this thesis allows succinct representations
for the MDP as a dynamic Bayes network, and for its solution as a weighted combination of
basis functions. We develop novel algorithms for producing, improving, and calculating the
error of approximate solutions for MDPs using a compressed representation.
Specifically, we develop an efficient branch-and-bound algorithm for computing the Bell-
man error of the compact approximate solution regardless of its provenance. We introduce
an efficient direct linear programming algorithm which, using incremental constraints gener-
ation, achieves run times significantly smaller than existing approximate algorithms without
much loss of accuracy. We also show a novel direct linear programming algorithm which,
instead of employing constraints generation, transforms the exponentially many constraints
into a compact form more amenable for tractable solutions. In spite of its perceived impor-
tance, the efficient optimization of the Bellman error towards an approximate MDP solution
has eluded current algorithms; to this end we propose a novel branch-and-bound approx-
imate policy iteration algorithm which makes direct use of our branch-and-bound method
for computing the Bellman error. We further investigate another procedure for obtaining an
approximate solution based on the dual of the direct, approximate linear programming for-
mulation for solving MDPs. To address both the loss of accuracy resulting from the direct,
approximate linear program solution and the question of where basis functions come from
we also develop a principled system able not only to produce the initial set of basis func-
tions, but also able to augment it with new basis functions automatically generated such that
the approximation error decreases according to the user’s requirements and time limitations.
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many more.

Finally, I would like to thank Valentina for her continuous support.

iv



For my parents

v





Contents

1 Introduction 1

2 General Preliminaries and Background 5

2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Performance Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Optimal Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Problem Types, Solutions, and Nomenclature . . . . . . . . . . . . . . . . 13
2.6 Computational Complexity of Flat MDP Problems . . . . . . . . . . . . . 14
2.7 Methods for Solving Flat MDPs . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Structured MDPs and Compact Representation . . . . . . . . . . . . . . . 17

2.8.1 Factored State Space and Dynamics . . . . . . . . . . . . . . . . . 18
2.8.2 Compact Value Function Representation . . . . . . . . . . . . . . . 22

2.9 Computational Complexity of Succinctly Represented MDP problems . . . 24
2.10 Approximate Algorithms for Solving MDPs . . . . . . . . . . . . . . . . . 26

2.10.1 Linear Basis Functions and the Exploitation of Structure . . . . . . 28
2.10.2 Approximate Policy Iteration Using a Compact LP . . . . . . . . . 33

3 Approximation Error 35

3.1 Hardness of Error Calculation . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 An Algorithm to Compute the Bellman Error . . . . . . . . . . . . . . . . 37
3.3 Experiments—Calculating the Bellman Error . . . . . . . . . . . . . . . . 41

3.3.1 Motivation, Goals, and Setup . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



4 Obtaining an MDP Approximate Solution 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Approximate Linear Programming . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Obtaining an Approximation Using the Primal LP . . . . . . . . . . . . . . 48

4.3.1 Approximate Linear Programming Via Compact Constraints . . . . 48
4.3.2 Approximate Linear Programming With Generated Constraints . . 48
4.3.3 Experiments with the Primal LP Approximation . . . . . . . . . . 50

4.4 Obtaining an Approximation Using Branch-and-Bound Approximate Policy
Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.1 Experiments Using BB-API . . . . . . . . . . . . . . . . . . . . . 57

4.5 Obtaining an Approximation Using the Dual LP . . . . . . . . . . . . . . . 58
4.5.1 Deriving the Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.2 Approximating the Dual . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.3 Experiments with the Dual LP Approximation . . . . . . . . . . . 65

5 Improving the Approximate Solution 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Incrementing the Set of Basis Functions . . . . . . . . . . . . . . . . . . . 69

5.2.1 Choosing a Basis Function Candidate Domain . . . . . . . . . . . 70
5.2.2 Scoring the Basis Function . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3 Constructing the Basis Function Given a Candidate Domain . . . . 75

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Conclusions 93

A Problem Description 97

A.1 The system administrator Domain . . . . . . . . . . . . . . . . . 98
A.2 The robot Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.3 The resource Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.4 The advisor Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B Complete Results for Chapter 5 Experiments 121

viii



List of Tables

2.1 Probability transition table for Example 2.1.1, action ask mother. . . . . . 10
2.2 Probability transition table for Example 2.1.1, action ask father. . . . . . 10
2.3 Probability transition table for Example 2.1.1, action ask neither. . . . . . 10
2.4 Reward function for Example 2.1.1. . . . . . . . . . . . . . . . . . . . . . 10

3.1 Calculating the Bellman error: results using singleton bases. . . . . . . . . 42

4.1 Table of results using ALP and constraint generation for the “system admin-
istrator” domain, in a cycle configuration. . . . . . . . . . . . . . . . . . 53

4.2 Table of results using ALP and constraint generation for the “system admin-
istrator” domain, in a 3legs configuration. . . . . . . . . . . . . . . . . . 54

4.3 API versus ALP results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix





List of Figures

2.1 (a) A Bayes net: graphical representation of the joint probability function
P (x, y1, . . . , yk) = P (x|y1, . . . , yk)

∏k
i=1 P (yi); (b) not a Bayes net. . . . 21

2.2 Dynamic Bayes net example: propositional state variables in “next stage”
depend only on propositional state and action variables in “current stage.” . 21

2.3 Each state variable x′
1, x

′
2, . . . , x

′
n in the next stage has few parent variables

pa(xi) in the current stage. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 The Bellman error calculated using the branch-and-bound method for a se-
quence of instances of the cycle and 3legs problems. . . . . . . . . . . 43

5.1 Example of good performance for the score dual scoring method. . . . . . 86
5.2 Example of slightly lower performance for the score dual scoring method. . 87
5.3 Example of lower performance when constructing a basis function with xor

versus optl1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Example of similar performance for both xor and optl1. . . . . . . . . . . 89
5.5 Example of good performance for the neighbor domain choosing method. . 90
5.6 Example of good performance for the sequential domain choosing method. 91

A.1 Graphical depiction of the cycle configuration for the system administra-
tion problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2 Graphical depiction of the 3legs configuration for the system administra-
tion problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.3 Graphical depiction of the 3loops configuration for the system adminis-
tration problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xi



A.4 Partial view of the DBN for the resource problem: dependence of task
variable T ′

i on action variables and on its prior status. . . . . . . . . . . . . 107
A.5 Partial view of the DBN for the resource problem: dependence of task

variable R′
j on corresponding action variables and on its prior status. Note,

we omitted all other links from the graph (e.g. those pointing to T ′
i ). . . . . 108

B.1 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the cycle problem, with basis function domains generated in a sequential

fashion (seq), with optimized (opt) basis functions on the left, and XOR
(xor) basis function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.2 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods
on the cycle problem, with basis function domains generated in a neighbor

fashion (neigh), with optimized (opt) basis functions on the left, and XOR
(xor) basis function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.3 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods
on the cycle problem, with basis function domains generated in a lattice

fashion (latt), with optimized (opt) basis functions on the left, and XOR
(xor) basis function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.4 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the 3legs problem, with basis function domains generated in a sequential

fashion (seq), with optimized (opt) basis functions on the left, and XOR
(xor) basis function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.5 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods
on the 3legs problem, with basis function domains generated in a neighbor

fashion (neigh), with optimized (opt) basis functions on the left, and XOR
(xor) basis function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.6 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods
on the 3legs problem, with basis function domains generated in a lattice

fashion (latt), with optimized (opt) basis functions on the left, and XOR
(xor) basis function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xii



B.7 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods
on the three loops problem, with basis function domains generated in
a sequential fashion (seq), with optimized (opt) basis functions on the left,
and XOR (xor) basis function. . . . . . . . . . . . . . . . . . . . . . . . . 128

B.8 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods
on the three loops problem, with basis function domains generated in
a neighbor fashion (neigh), with optimized (opt) basis functions on the left,
and XOR (xor) basis function. . . . . . . . . . . . . . . . . . . . . . . . . 129

B.9 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods
on the three loops problem, with basis function domains generated in
a lattice fashion (latt), with optimized (opt) basis functions on the left, and
XOR (xor) basis function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.10 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods
on the resource problem, with basis function domains generated in a
sequential fashion (seq) on the left and neighbor (neigh) on the right, with
optimized (opt) basis functions. . . . . . . . . . . . . . . . . . . . . . . . . 131

B.11 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods
on the resource problem on the left and the robot problem on the right,
with basis function domains generated in a sequential fashion (seq), and
with optimized (opt) basis functions. . . . . . . . . . . . . . . . . . . . . . 132

B.12 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods
on the robot problem, with basis function domains generated in a neighbor

fashion (neigh) on the left and lattice (latt) on the right, and with optimized
(opt) basis functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

B.13 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods
on the advisor problem, with basis function domains generated in a se-

quential fashion (seq) on the left and neighbor (neigh) on the right, and with
optimized (opt) basis functions. . . . . . . . . . . . . . . . . . . . . . . . . 134

B.14 Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the advisor problem, with basis function domains generated in a lattice

fashion (latt), and with optimized (opt) basis functions. . . . . . . . . . . . 135

xiii



B.15 Comparison of two basis function creation methods: optimized with L1 nor-
malization (optl1) and XOR (xor), on the cycle problem, with basis func-
tion domains generated in a sequential fashion (seq) on the left and lattice

(latt) on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.16 Comparison of two basis function creation methods: optimized with L1 nor-

malization (optl1) and XOR (xor), on the cycle problem with basis func-
tion domains generated in a neighbor fashion (neigh) on the left, and 3legs
problem with basis function domains generated in a sequential fashion (seq)
on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.17 Comparison of two basis function creation methods: optimized with L1 nor-
malization (optl1) and XOR (xor), on the 3legs problem with basis func-
tion domains generated in a lattice fashion (latt) on the left and neighbor

(neigh) on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
B.18 Comparison of two basis function creation methods: optimized with L1 nor-

malization (optl1) and XOR (xor), on the three loops problem with ba-
sis function domains generated in a sequential fashion (seq) on the left and
lattice (latt) on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.19 Comparison of two basis function creation methods: optimized with L1 nor-
malization (optl1) and XOR (xor), on the three loops problem with
basis function domains generated in a neighbor fashion (neigh). . . . . . . 140

B.20 Comparison of domain choosing methods sequential (seq), lattice
(latt), and neighbor (neigh) on the cycle problem on the left and the
3legs problem on the right, using optimized basis function construction
with L1 normalization (optl1) and dual score. . . . . . . . . . . . . . . . . 141

B.21 Comparison of domain choosing methods sequential (seq), lattice
(latt), and neighbor (neigh) on the three loops problem on the left
and the resource problem on the right, using optimized basis function
construction with L1 normalization (optl1) and dual score. . . . . . . . . . 142

B.22 Comparison of domain choosing methods sequential (seq), lattice
(latt), and neighbor (neigh) on the robot problem on the left and the
advisor problem on the right, using optimized basis function construction
with L1 normalization (optl1) and dual score. . . . . . . . . . . . . . . . . 143

xiv



Chapter 1

Introduction
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Classical algorithms from operations research such as value iteration, policy iteration,
and linear programming [2, 30, 13, 51], have established the fundamental solutions for
Markov Decision Processes (MDP), the model of choice in sequential decision making un-
der uncertainty. These algorithms are ingeniously based on robust theory and one cannot
easily find reasons to complain when solving problems with hundreds, thousands, and even
hundreds of thousands of states. But at the core of these methods lies an explicit represen-
tation of the MDP, and therefore, when the problem size is significantly larger, with state
spaces in the millions or more, they are quickly rendered with unacceptably long computa-
tion times. The three algorithms assume a table representation of the values involved; the
table obligingly is large in size—at most polynomial in the state space size—as it needs to
store values associated with all of the MDP states (e.g. immediate rewards and transition
probabilities). In contrast with the explicit representation for which usually no assumption is
made about the structure of the MDP—known or unknown— is the compact representation:
it pre-supposes that internal structure exists which, if taken advantage of, hopefully results
in significant computational savings.

Together with structure in the MDP and compact representation of the MDP components
one would also prefer a compact representation of the required solution; but even then,
when all these wishes are fulfilled, it is still an open question how to best take advantage
of the seemingly helpful features a problem may exhibit. Since the desire to solve large
systems has been present from the beginning, several proposals have been put forward;
some whose underlying theme is divide-and-conquer—the original weakly coupled problem
is decomposed into a few smaller problems which are then solved individually [14, 49, 36,
37]. Other notable approaches include exact and approximate solutions employing succinct
piece-wise constant (decision trees) and linear representations [10, 56, 11, 25, 34, 35, 27,
28]. Our approach is similar in vein to the latter cited research, in that we seek to obtain
efficient linear approximations in compressed representation MDPs.

It is not clear, however, that such solutions are applicable in all cases and whether some
solutions are always and in general superior to others. What one would expect—and now
seems to become clearer—is that algorithms which target specific structural assumptions
will outperform more general algorithms in a practical setting. It should be noted that com-
putational complexity results [46, 39, 43, 23, 22, 40, 41] deemed many of the interesting
problems with compressed representation hard if either an exact solution or a good approx-
imation is sought.
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This thesis carries out an investigation into the use and further development of efficient
approximate algorithms for factored MDPs which, not surprisingly, have already shown
promising results [27, 28, 53, 47]. The family of algorithms we develop is based on the
crafty application of linear programming [13] to the problem of approximating the value
function of a given structured MDP. Linear programming has a long history and is well
understood and used in operations research, economics, and other applied fields, but less so
in the context of structured MDPs with succinct representation.1

We employ a linear combination of basis functions as the approximation architecture,
and use various optimization tricks to solve the factored MDPs approximately. More specif-
ically, the contributions of this thesis are:

• an efficient branch-and-bound algorithm for computing the Bellman error of the com-
pact approximate solution obtained by solving a compactly represented MDP;

• by generating constraints as needed, an efficient direct linear programming algorithm
with run time significantly smaller than existing approximate policy iteration algo-
rithms;

• an efficient, direct linear programming algorithm using a transformation to re-write
the exponentially many constraints into a compact form more amenable for tractable
solutions;

• through a different use of our branch-and-bound search employed in calculating the
Bellman error, an efficient approximate policy iteration algorithm which minimizes
the Bellman error;

• an investigation into the use of the linear programming dual to obtaining an approxi-
mate solution;

• a principled system of producing the initial set of basis functions, or otherwise aug-
menting it with new basis functions such that the approximation error decreases.

The thesis is laid out as follows: Chapter 2 introduces notation and mathematical prelim-
inaries describing the problem formally, and provides background on: compact representa-
tion of MDPs and their solutions, computational complexity results for exact and compactly

1We will use interchangeably the following expressions:factored MDPs, MDPs with succinct representation,
and compactly represented (structured) MDPs.
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represented MDPs (to whet the appetite), brief overview of methods for solving MDPs, both
classical exact algorithms and newer approximate algorithms; this chapter provides material
helpful in understanding the contributions and in setting a context for the following chap-
ters. Chapter 3 presents some results concerning the hardness of calculating the Bellman
error and the first contribution, an algorithm to compute this error efficiently for medium-
size problems. The theme of Chapter 4 is the approximate solution of MDPs given a fixed
set of basis functions; we describe our contributions on this subject. In Chapter 5 we con-
tinue by providing a novel suite of techniques that can be used to improve an approximate
solution of a compactly represented MDP. We conclude with some short ending remarks in
Chapter 6. Additionally, in an attempt to establish a smoother readability flow in the main
text, we provide a description of the problems we used in simulations in Appendix A, and a
complete suite of results from experiments related to Chapter 5 in Appendix B.
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Chapter 2

General Preliminaries and

Background
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Particular features of an MDP problem make it belong to some class or another: on the
one hand it is the process itself which can be of several different types; on the other hand
it is the objective to be achieved that will typify the problem. Either way MDPs have well
defined components and they are introduced in the next few sections.

Specifically, Sections 2.1 and 2.2 will introduce the MDP mathematical model, Sections
2.3 and 2.4 cover background material related to setting up an MDP problem and objective to
optimize, while Section 2.5 deals with some terminology. Section 2.6 gives a brief overview
of complexity results for problems with a flat representation. In Section 2.8 we introduce
structured MDPs and their succinct representation, followed by an overview of complexity
results specific to them in Section 2.9.

2.1 Markov Decision Processes

This section will introduce Markov decision processes and associated problems. It should
serve mostly as a vehicle to establish notation, identify the types of MDPs of interest, and
provide a quick overview of important facts from the theory of MDPs. Recommended in-
depth treatments can be found in several books [2, 30, 21, 51, 4].

A Markov decision process is a mathematical model for describing systems in which
long term behavior is to be optimized. Imagine the situation presented in Example 2.1.1.

Example 2.1.1

Mary decides that she should optimize her personal income by asking her par-
ents for money more intelligently than she has done in the past. She knows her
parents well, and has noticed the following.

• Father is more generous with money. When he is in a good mood, he
gives Mary $2 if she asks him for money, gives Mary $1 if he overhears
Mary asking mother for money, and gives her no money when he is not in
a good mood.

• Mother is more careful with money, but also more merciful. When Mary
asks her, she gives $1.5 when in a good mood and $0.5 when not in a good
mood. However, when she overhears Mary asking Father for money, she
gives her nothing.

6



• If Mary does not ask for money at all, her father gives her $0.5 in a good
mood, and nothing otherwise.

• Mary’s parents’ future mood is also affected by her currently asking for
money or not. Her father’s mood is more likely to worsen by next day if
Mary asked for money, than her mother’s mood.

Mary also is of the opinion that money is more valuable in the present than in
the future.

Given that she recently has taken an introductory course in operations research,
she decides to apply her knowledge to solving this problem.

As we describe a Markov decision process mathematically, we will also use the simple
example above as an illustration of the components involved.

A Markov decision process is defined as a tuple < S,A,R, P, ν >. The set of states S

can be either finite or infinite, but in this work only finite state spaces are considered, and
we assume its size is |S| = N .

In our tiny example, the state space is comprised of four possible states, i.e. S =

{x1, x2, x3, x4}. Their semantics are:

x1 neither parents are in a good mood,

x2 mother is in a good mood, but father is not,

x3 father is in a good mood, but mother is not, and

x4 both parents are in a good mood.

Similarly, the total number of actions is assumed finite |A| = K; actions are chosen
and executed from a subset A(st) ⊆ A. In this manner we can define Mary’s actions as
A = {ask mother, ask father, ask neither}.

The model intends to describe how a process evolves over time, moving from one state
to another after executing an action and receiving a reward. We only consider discrete time
MDPs, hence transitions from one state to the next is done in stages.

We assume an initial stage, t = 0, from which the process starts in state s0 ∈ S with
probability ν(s0). This probability is commonly referred to as the prior probability over
states; an explicit representation for ν is a N × 1 vector. At all other stages t = 1, 2, . . .

the process is in some state st ∈ S. One can also think of the sequence s0, s1, . . . as a

7



sequence of random variables. If the process has perfect knowledge of the actual current
state, then the MDP is called fully observable; otherwise it is a partially observable MDP
(POMDP).1 The following—not necessarily ordered—events are associated with each stage
t = 1, 2, . . .:

• transition from the previous state st−1 ends and the process arrives in the current state
st,2

• the stage count is incremented from t− 1 to t,

• the process receives a reward rt = R(st−1, at−1), where R : S×A→ [Rmin, Rmax],

• the process incurs a cost ct = C(st−1, at−1), where C : S × A→ [Cmin, Cmax] for
executing action at−1,3

• the process chooses and executes an action at ∈ A

• transition to the next state begins.

As mentioned in the introduction, state-to-state transitions are governed by transition prob-
abilities

P (st|st−1, at−1, st−2, at−2, . . . , s1, a1, s0, a0) = P (st|st−1, at−1). (2.1)

Equation 2.1 makes the Markov property explicit: the transition probabilities are functions
only of the present state and subsequent action. An explicit representation for these prob-
abilities would be one N × N stochastic matrix (i.e. each row sums up to 1) P a for each
possible action a. R and C can be represented explicitly as an N ×K matrix each.

Throughout the document quantities which have a physical aspect, such as vectors and
matrices are denoted by bold types, (e.g. ν, R, P , etc.); when the the physical aspect is
irrelevant, for instance when referring to sets, notation is done via plain types (e.g. ν, R, P ,
etc.); single elements are accessed in both cases using parentheses, as in ν(s), s ∈ S.

1Although POMDPs are a highly interesting topic, we will focus only on fully observable processes which
will be denoted as MDPs from now on, unless confusion may arise from this notation.

2In stage t = 0 instead of a transition from a previous state to the current the process just chooses the current
state according to the prior probability distribution ν.

3Note that both rewards and costs are bounded; treatment of unbounded rewards/costs is not covered in this
research.
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One can easily see the correspondence between the process description given above
and Mary’s situation. The day Mary starts the experiment she observes her parents, and
their mood sets the current state. Every day that follows is another stage for the process.
According to her knowledge of parents’ behavior dynamics, the transition probabilities are
set as shown in Table 2.1 for action ask mother, Table 2.2 for action ask father, and
Table 2.3 for action ask neither. Similarly, the actual numbers corresponding to Mary’s
observed “reward” function is also shown in Table 2.4. In these tables xi represents a
current states while x′

i represents the state at the next stage.

2.2 Policies

For a Markov decision process, one also needs a well defined mechanism for choosing
actions. This mechanism is provided by a policy.4 A policy π is a mapping from states to
actions, i.e. for every state, the policy produces an action. If the policy depends on the stage
the process is in, then the policy is called non-stationary. Policies can be deterministic,
π : S → A, in which case for any given state the action chosen is certain, or stochastic,
π : S ×A→ [0, 1], and then a probability distribution is defined over the available actions.
Thus, in the latter case, for any given state, an action is chosen with the given probability.
In this dissertation, we will focus only on stationary, deterministic policies.

Returning to our simple example, one possible policy—although not very good—for
Mary would be to always choose action ask neither, no matter what mood her parents are
in.

We note that fixing the policy reduces the process to a Markov chain whose transition
probabilities are not functions of the action taken: P (st|st−1). In Mary’s case, if the policy
were fixed to the action ask neither in every state, then the transition probability function
would consist of only the numbers given in Table 2.3.

2.3 Performance Quantification

Now that we introduced the model, we will turn our attention to how we can quantify a
system’s performance. Three different objectives are typically used to assess the goodness

4The policy is also sometimes referred to as strategy or universal plan
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x′
1 x′

2 x′
3 x′

4

x1 0.40 0.60 0.00 0.00
x2 0.04 0.36 0.06 0.54
x3 0.08 0.12 0.32 0.48
x4 0.01 0.09 0.09 0.81

Table 2.1: Probability transition table for Example 2.1.1, action ask mother.

x′
1 x′

2 x′
3 x′

4

x1 0.30 0.70 0.00 0.00
x2 0.01 0.59 0.00 0.40
x3 0.06 0.14 0.24 0.56
x4 0.00 0.10 0.01 0.89

Table 2.2: Probability transition table for Example 2.1.1, action ask father.

x′
1 x′

2 x′
3 x′

4

x1 0.16 0.64 0.04 0.16
x2 0.00 0.40 0.01 0.59
x3 0.02 0.08 0.18 0.72
x4 0.00 0.01 0.01 0.98

Table 2.3: Probability transition table for Example 2.1.1, action ask neither.

ask mother ask father ask neither

x1 $0.50 $0.00 $0.00
x2 $1.50 $0.00 $0.00
x3 $1.50 $2.00 $0.50
x4 $2.50 $2.00 $0.50

Table 2.4: Reward function for Example 2.1.1.
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of a given policy. The general idea is that one would like to maximize long term reward,5

but the following refinement is standard in MDP literature: expected total reward, expected
average per step reward, and expected total discounted reward. Each of these objectives
determines a value associated with every state of the MDP, V (s), commonly called the
value function (V : S → R).

Expected total reward is associated with MDPs of finite horizon in which the system’s
performance is measured over a finite number of stages T :

V π(s0) = Eπ

{
T∑

t=1

R(st)

}
(2.2)

It is interpreted as the expected sum of rewards if the process starts in some state s0 and
makes T transitions according to some policy π.

Expected average reward per stage is a measure of performance for MDPs making an
infinite number of stage transitions, commonly known as infinite horizon MDPs. The value
function for such processes is defined as:

V π(s0) = lim
T→∞

Eπ

{
1

T

T∑

t=1

R(st)

}
. (2.3)

There are problems in which recent rewards are preferable to rewards received in some
distant future, an effect achievable by discounting future rewards exponentially. This second
case of infinite horizon has a value function of the form:

V π(s0) = lim
T→∞

Eπ

{
T∑

t=1

γt−1R(st)

}
(2.4)

where the discount factor γ takes values between 0 and 1.
To illustrate the three different objectives, we will refer again to Example 2.1.1. If Mary

desired to optimize the first objective, she would have to set a horizon value, say of 30 days.
Then she would judge a policy by the expected value of the money accumulated within 30
days from the start. However, since for her is more important to receive money presently (or
in the immediate future) rather than in some distant future, and since she does not have the
stringent requirement of a cutoff horizon, she decides that the third objective suits her best.

5To facilitate a simpler presentation the rest of the document will avoid discussing cost, which does not
invalidate any of the results presented; the change required to include action costs is trivial.

11



Thus she chooses to judge any of her policies by the expected accumulated money, where
each day she discounts the money’s value exponentially.

To clarify notation we re-state that when we refer to the value of policy π we mean
the value of each state s ∈ S, when, starting in s the process follows policy π for the
preset number of stages and accumulates reward according to one of the three schemes just
described.

2.4 Optimal Performance

In previous sections we introduced policies, and, to be able to say that one is better than
another, we also introduced the concept of value functions. However, the ultimate goal in a
problem associated with the MDP is to maximize its performance criterion (e.g. expected
discounted reward). In other words we want to find the best or optimal policy, denoted by
π∗. This policy yields optimal behavior by definition, i.e., if a process starts in any initial
state and chooses actions dictated by π∗ it will achieve maximum possible expected reward.
This is equivalent to saying that no other policy has a better value function and can be written
as:

V ∗(s) = V π∗

(s) ≥ V π(s) ∀π, s (2.5)

where V π∗ is the optimal value function, or the value function of the optimal policy, also
denoted by V ∗. We will tacitly assume that all conditions required for the optimal value
function to exist are met, and mention if this is not the case.

When the optimal policy does not exist, we may instead want to find the ε-optimal policy,
denoted by π∗

ε , which satisfies the following condition for all s ∈ S and some ε > 0:

V π∗

ε (s) ≥ V ∗(s)− ε. (2.6)

Bellman developed a recursive definition of the value function much used in devising
various algorithms [2]. If state-values were known at the next stage then calculating the
current state’s value involves only an expected value computation:

V π(st) = R(st, at) + γ
∑

st+1

P (st+1|st, π(st))V
π(st+1) (2.7)

which can be written for all states concurrently using matrix notation:

V π = Rπ + γP πV π (2.8)
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This relation applies to the optimal value function as well, leading to what is known as
Bellman’s principle of optimality:

V ∗ = max
a
{Ra + γP aV ∗} (2.9)

where the max operator applies row-wise. For notational convenience we introduce the
notion of greedy policy with respect to some value function V as

πgre(V, st) = arg max
at∈A(st)



R(st, at) + γ

∑

st+1

P (st+1|st, at)V (st+1)





= arg max
at∈A(st)

{Q(st, at)} , (2.10)

or in matrix notation:

πgre(V ) = arg max
a

{Ra + γP aV }

= arg max
a

{Qa} . (2.11)

In other words, this is the policy choosing the action which, if taken, would result in the
maximum expected value in the next stage. The state-action value function, Qπ(st, at), is
an analog of the value function, namely the expected value obtained by taking action at in
state st and then following policy π until stage T is reached67 (Q : S ×A→ R).

2.5 Problem Types, Solutions, and Nomenclature

Although the main objective of an MDP problem is to find a policy which maximizes some
notion of long term reward accumulation, technically one can have additional refinements
of the general problem. As an intermediate step to finding the optimal policy, one may in-
stead find the optimal value or state-value function. In other cases, we may be interested in
another intermediate result which is finding the value of a given policy. Therefore, depend-
ing on what is known about the MDP and what the goal is, different algorithms may apply.
The model of the environment, determined in entirety by the transition probabilities P and

6Stage T could be infinity.
7The un-discounted case differs only by the removal of γ, the discount factor, from Equations 2.7, 2.9, and

2.10.
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reward function R, may or may not be known to the solver. If P and R are given, the prob-
lem is usually referred to as solving the MDP. Problems where a model of the environment
is not given fall in the area of reinforcement learning. Solutions which explicitly represent
either P , or R, or their approximation, are referred to as model based or indirect methods.
Otherwise we will call them direct methods.

2.6 Computational Complexity of Flat MDP Problems

We add a very brief summary of results pertaining to the hardness of solving MDP problems
with a flat representation, in order to motivate further the search for efficient approximate
algorithms.

A beginning study in the computational complexity of MDP problems with a flat repre-
sentation has been studied by Papadimitriou and Tsitsikilis. Their main result is as follows:

Theorem 2.6.1 [46] The Markov Decision Problem is P-complete in all three cases (finite

horizon, discounted, and average cost).

Intuitively, Theorem 2.6.1 says that the MDP problem—regardless of the optimality cri-
terion chosen—is solvable in polynomial time in the worst case, however, it is unlikely to
be able to obtain a significant speed-up by using parallel computation. The complexity class
P contains those problems which admit a polynomial time solution using a sequential algo-
rithm. It is known that some of these problems can be solved in a logarithmic-polynomial
time8 using a polynomial number of processors and a parallel algorithm. When this is the
case, the problem is said to belong to the class NC. Similar to the question P =? NP, it is an
open question whether NC =? P (most researchers are inclined to think not). That is, it is
unlikely that all sequential problems in P can be parallelized to obtain orders of magnitude
speed-ups. The class P-complete is the class containing the hardest problems in P, and, if
a parallel algorithm was found that worked for one of these problems, then we would be
able to solve all of them efficiently, as transforming one problem into another is guaranteed
in a polynomial number of steps. One basic problem that is P-complete is the circuit value

problem (CVP): given a circuit with boolean inputs and output, and and or gates, is its value
true? The proof of Theorem 2.6.1 involves a reduction from CVP to the MDP problem.

8O(log(n)k), for input of size n using k processors.
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Interestingly, linear programming belongs to the P-complete class as well, and thus, the
only known polynomial algorithm for solving MDP problems is for the linear programming
(LP) formulation given in the following section. The two best classes of algorithms for
solving linear programs are the simplex-like [13] algorithms and interior point methods. In
particular, Khachian [32] is thought to be the first to prove that linear programming’s com-
plexity is polynomial, while Karmakar [31] being the first to propose a polynomial algo-
rithm with better practical performance. Alas, Karmakar’s algorithm is still quite inefficient
on many problems, and various implementations of the simplex algorithm are used instead
for their excellent average performance, in spite of their worst case exponential complexity.
Though, there is room for further good news since it is not known that linear programs re-
sulting from MDP problems may actually exhibit the features needed to make simplex run
in exponential time. So far the only problems on which simplex would be inefficient have
been highly contrived examples [33].

2.7 Methods for Solving Flat MDPs

Having introduced the problem, now it is time to turn attention to algorithms for solving
it. These algorithms historically will fall within three broad categories of techniques which
have been the focus of most research pertaining to exact solutions to MDPs: value itera-

tion, policy iteration, and linear programming. Note that these methods have the important
property that they are capable of producing the exact solution—as opposed to an approxi-
mation—and they are guaranteed to terminate in a finite number of steps.9 Their input is
a flat MDP, i.e. the probability transitions and reward function have a description of size
polynomial in the number of states.

Although our primary interest is in approximate algorithms, it would be difficult to ap-
preciate the origin, structure, and methodology of the approximation should we choose to
overlook exact algorithms. Hence we will provide a concise review of value iteration, policy
iteration, and linear programming in the next section, followed by our treatment of approxi-
mate algorithms.

Value iteration—shown in Algorithm 1—is part of a larger family of methods, namely
dynamic programming [30, 6, 4]. It starts with a guess for the value function and updates
it iteratively until changes in the value function are smaller than some desired tolerance,

9For finite precision inputs.
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an event which triggers its termination. There are theoretical guarantees of convergence
in a finite number of steps to an ε-optimal solution when tables are used to store the value
function, reward function, and probability transition function. The value and reward function
tables must be able to store a value for each state, while the probability transition function
table needs to store a value for each triple of state, next stage state, and action. Therefore
the memory requirements of value iteration are polynomial in the state space size.

Algorithm 1 Value Iteration
1: v(0) ← g, set ε > 0, n← 0

2: repeat

3: n← n + 1

4: v(n) ← maxa

{
Ra + γP av(n−1)

}

5: until ||v(n) − v(n−1)|| < ε

6: π∗
ε ← πgre(v(n))

where g is a vector of guess values, and we switched to matrix notation such that instead of
P (s′|s, a) we write P a.

Another popular method, policy iteration, described in Algorithm 2 and introduced by
Howard [30], differs from value iteration in that it manipulates a policy explicitly, alternat-
ing between a policy evaluation and a policy improvement step until convergence occurs.
Although, like value iteration, it most commonly applies to stationary infinite-horizon prob-
lems, it can also be applied to more general models under appropriate assumptions. In MDPs
with finite states and actions the algorithm finishes with certainty in a finite number of steps.
Theoretically the rate of convergence of policy iteration is at least linear [51], with many
reporting that in practice the algorithm usually converges at a faster rate than value iteration.

Linear programming is the third exact method covered in this section and is shown in
Algorithm 3 [16, 7, 19, 20, 29, 42]. It is not quite as popular and widely used as value
or policy iteration is, but its usefulness will be motivated by the following sections, where
approximate solutions are sought.

We briefly note that Step 2 of Algorithm 3 can be skipped since the dual solution of the
linear program holds the optimal policy.

Although the use of linear programming has been associated with computational inef-
ficiency in the past, much progress has been made in this area. In practice, large linear
programs can currently be solved in very reasonable times, giving this method a new level
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Algorithm 2 Policy Iteration
1: π(0) ← h, n← 0

2: repeat

3: n← n + 1

4: (Policy evaluation)
v(n) ← solution of linear system v(n) = Ra + γP π(n−1)

v(n)

5: (Policy improvement)
π(n) ← πgre(v(n))

6: until π(n) = π(n−1)

7: π∗ ← π(n)

where v(n) is a vector of unknowns, and h is a vector holding an arbitrary policy.

of credibility. When solving the entire linear program at once memory usage is potentially
higher than that of other methods, but can be overcome using constraint generation. Trick
and Zin [58] demonstrate the viability of using linear programming specifically for solving
MDPs.

Algorithm 3 Linear Programming
1: Solve the linear optimization:

V ∗ = arg minv vT
1

subject to
v ≥ Ra + γP av ∀a

2: π∗ ← πgre(V ∗)

where the parameter vector v is unrestricted and the objective function is an inner product
between v transpose and a vector of ones.

2.8 Structured MDPs and Compact Representation

Our interest in approximate algorithms stems from the fact that non-concisely represented
MDPs will lead exact algorithms to provide solutions in very impractical times. Therefore,
we will allow MDPs to be represented somehow compactly; however, the discerning reader
may ask: how useful could this be if the actual solution does not have a compact representa-
tion?—not very useful indeed. Therefore, to keep our hope of developing practical methods
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intact, we allow the solution to be represented succinctly as well. As soon as this allowance
is made, it should become clear very quickly that we might have to give up exact optimal
solutions and instead settle for some sort of good approximations, and we will expand later
on what “good” means for us.

At first sight, the results of Section 2.6 seem acceptable; after all, a polynomial run time
is not undesirable; upon closer examination one notices that the run time is polynomial in the
size of the state space, which, for large MDPs, can be exponential in the number of variables
representing the state, as we will see later in this section. As expected, real life problems
are notorious for their large size, and, if one hopes to employ MDPs for modeling such
problems, then the need for more efficient solutions arises. A way out of this impediment
may be based on the fact that real life problems often exhibit structure mostly overlooked
by general algorithms such as those just described. Common sense dictates that significant
structure in a problem can be used to one’s advantage. Of course, this may not always be
the case, but nevertheless, when it is true, we would like to have methods which exploit
structure. The search for new algorithms and heuristics is also warranted by the inherent
hardness of the problem regardless of whether an exact or an approximate solution is desired
[39, 43, 23, 22, 40, 41] (Details in Section 2.9.)

The type of structure we are interested in is that which makes it possible to represent
large parts of the system by a succinct equivalent, of logarithmic order of the size of the
original. Furthermore we would like to find algorithms which:

• have a small memory footprint, when compared to the size of the state space,

• give the user the ability to trade off accuracy for run time,

• and if stopped anytime, a current solution is available.

2.8.1 Factored State Space and Dynamics

The first components whose representation size we address are the state space and the pro-
cess dynamics (i.e. probability transition function and reward function).

The state space Instead of indexing the entire state space with integers, we assume that
certain features of interest can be identified in the problem at hand. Features can be rep-
resented using propositional variables, allowing one to obtain a one-to-one correspondence
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between configurations of said variables and states. Before describing this formally, let us
illustrate the practice with a modeling exercise of Example 2.1.1.

Recall the set of states {x1, x2, x3, x4} of Example 2.1.1, representing the moods of
Mary’s parents. Instead, we can use a binary variable for each parent:

• F ∈ {0, 1} represents father’s mood. Variable F takes value 1 if father is in a good
mood, and 0 otherwise.

• M ∈ {0, 1} represents mother’s mood. Variable M takes value 1 if mother is in a
good mood, and 0 otherwise.

Thus the set of all configurations of the ordered pair (F,M) is used as the set of states,
with the understanding that the vector x = (M,F ).

We generalize from this example and assume 10 that the state space is encoded via a
vector x of n binary state variables, x1, . . . , xn. The state space size is then N = 2n,
with each state being an assignment of true or false values to the n variables. State spaces
described in this way are sometimes called factored. Similarly, we will represent action a

by k binary action variables a1, . . . , ak.

The probability transition function The dynamics of a temporally changing probabilistic
system can be represented compactly in several ways, but each representation has its own
advantages and disadvantages, and not all are fitting efficient algorithms.

Conceptually speaking, we need to be able to represent the probability of arriving in
some state knowing that some action was taken in the present state, and that we have a
finite number of states and actions. With our choice of using a set of propositional variables
to encode the state space, we have committed to the idea that the probability transition
function is a mapping from the set of configurations of state variables to the interval [0, 1].
Therefore, P : Dom(x′) × Dom(x) × Dom(a) → [0, 1]. We already introduced the
simplest representation of this mapping as a table, and now survey other more compact
possibilities. It is true that for some problems a table can be sparse, i.e. have in fact few
non-zero entries, and therefore have a small memory requirement, but this is clearly not
always the case. Furthermore, the sparsity patterns can be highly different from a problem
to another, and algorithms may not be able to always take advantage of such structure. We

10Without loss of generality in the case of finite state spaces.
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would like to find representation classes such that there exists certain structure in a given
class that allows an algorithm to be efficient on all the class members.

We are motivated to choose the dynamic Bayes network (DBN) [17] representation both
for its expressive power and for its suitability to the task we undertake. A number of re-
searchers have used this representation successfully in solving MDP related problems, and
we cite the work of Koller, Parr, and Guestrin as the most relevant work to the current re-
search [34, 35, 27, 28].

A DBN is a Bayes network with an extension enabling it to represent certain temporal
information. Let us define a Bayes network first.

Definition 2.8.1 A Bayes network is a joint probability distribution defined on a finite set
X = {x1, . . . , xn} of discrete variables as a product of conditional probability functions:

P (X) =
n∏

i=1

P (xi|pa(xi))

where pa(xi) ⊆ X . (The set pa(x) is often called the parents of x.) Furthermore, for
any xi, i = 1 . . . n, if A0 = {xi}, Aj = ∪y∈Aj−1pa(y), and Aj 6= ∅, j = 1, 2, . . ., then
A0 ∩Aj = ∅.11

Another—less formal—way of describing a Bayes net is graphical, due to the one-to-
one correspondence that exists between Bayes networks and directed acyclic graphs. To
construct a graph for a Bayes network one lets each variable x ∈ X be a graph vertex, and
draws directed edges from vertex y to vertex x if y ∈ pa(x). A directed link between two
vertices means that the two variables are probabilistically dependent. Figure 2.1 illustrates
the concept. For a more extensive treatment of Bayes nets and associated algorithms we
recommend Pearl’s book [48].

A dynamic Bayes net aims at representing graphically a joint probability function whose
variables are associated with different time stages. In MDPs, leveraging the Markov prop-
erty—future states depend only on the current state—enables us to discuss only two stage
DBNs (e.g. like that shown in Figure 2.2).

Dependencies between next stage and current stage state variables are problem depen-
dent—they encompass one aspect of what we call structure. If the number of actions is
small one can choose not to represent actions via propositional variables and, instead, use

11That is, one cannot arrive at the same node while being allowed to move only from nodes to parents.
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Figure 2.1: (a) A Bayes net: graphical representation of the joint probability function
P (x, y1, . . . , yk) = P (x|y1, . . . , yk)

∏k
i=1 P (yi); (b) not a Bayes net.

current stage next stage

x1 x′
1

x2 x′
2

...
...

xn x′
n

a1

a2

...

ak

Figure 2.2: Dynamic Bayes net example: propositional state variables in “next stage” de-
pend only on propositional state and action variables in “current stage.”

21



one DBN for each action. How small the number of actions should be depends on the
available memory and computational power.

Thus the DNB in this figure represents a joint probability distribution over variables
appearing in two time stages:12

P (x′|a,x) = P (x′
1, x

′
2, . . . , x

′
n|a1, a2, . . . , ak, x1, x2, . . . , xn) (2.12)

=
n∏

i=1

P (x′
i|a1, a2, . . . , ak, pa(x′

i)) (2.13)

where pa(x′
i) are parent state variables with links pointing to x′

i.
We note that the terms participating in the product expression of the joint are commonly

called factors. Normally each factor is represented as a table of values: one for each configu-
ration of its variables.13 If one prefers a more compact representation, for example because
the factors happen to be functions of many variables, one can choose a succinct function
representation such as decision trees [10].

The reward function Since reward is a function of state and action, we assume it factor-
izes additively over subsets of state and action variables [1]. Formally, given a collection
{x}j , j = 1, 2, . . . ,m, and m << 2n, such that each xj ⊆ x is a subset of all state
variables, we assume that

R(x,a) =
m∑

j=1

R(xj ,a).

This assumption is not very restrictive and quite natural for many decomposable domains
where each component brings its contribution to the total reward. One extreme case is when
the summation has only one term which is a function of all the state and action variables.

2.8.2 Compact Value Function Representation

For large MDPs, the explicit representation of the value function as a table is out of the ques-
tion. Candidate compact representations include state to value mappings, state to features
mappings, or state to feature to value mappings. Examples of these are neural networks [5],
decision trees [10], algebraic decision diagrams [56], linear combinations of basis functions

12We will consistently use primed variables to denote that they belong to the “next stage.”
13Usually referred to as conditional probability table or CPT.
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[54, 34, 35, 53, 47], piecewise linear combinations (decision tree with linear combinations
of basis functions at leaves) [50], and state aggregation [55]. Although the main require-
ment on a candidate representation is that it is compact, from a computational efficiency
standpoint the different representations may not suit known algorithms well. There are still
open questions on how much a computational saving (if any) one can obtain using compact
representations for specific problems. In general, of course, mere compactness does not
guarantee faster and/or more precise algorithms.

An important issue in non-explicit value function representation is that of approxima-
tion. If the function exhibits structure which the compact representation fits exactly, then no
approximation is needed. For example this might be the case if the value function lies in the
space spanned by a given basis. However, this happens only in very simple instances and
almost never in realistic domains, even if the rest of the model is factored and compactly
represented in the best possible way. Therefore, it is most likely that the true value function
will need to be approximated by some function belonging to a restricted family, and this is
the view that we adopt here. The restricted family we use is that of linear combinations of
basis functions. Although other compact representations have been proposed elsewhere with
various degrees of success, we can now further research with a linear MDP approximation
architecture.

Consider a function V : S → R whose domain is a set of states (configurations of state
variables), such as described in the previous section. In our case this function is the MDP
value function, but this would apply to any function defined on a number of multi-valued
variables. Instead of a flat representation, i.e. a table for holding a real value for each state,
we will use a number of basis14 functions:

φ1 : S → R

φ2 : S → R

...
φK : S → R

where each member of S is a configuration of state variables x1, . . . , xn. However, to keep
each function easily computable we would like to restrict each φi to a small subset of state
variables xi. For instance φ1’s domain x1 could be (x3, x5, xn), and, if variables x3, x5,
and xn were binary, a possible choice for the basis function could be logic and, i.e. φ1 =

14We use this name although the functions need not necessarily constitute an algebraic basis.
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x1 ∧ x5 ∧ xn. Note that if we allow the basis functions to have unlimited domain sizes, one
can simply go to the extreme of using all the state variables, which would defeat our purpose
of having a compact representation.

The goal is to find parameter (weights) vector w such that

V̂ (x) =

K∑

i=0

wiφi(x)

is a close approximation of V (x), for any x. The notion of “close” is defined as a small
distance between the approximation and the optimal value function. In theory one could
choose any one of several distance functions, such as:

L1 = ||V − V̂ ||1 =
∑

s |V (s)− V̂ (s)|,
L1,c = ||V − V̂ ||1,c =

∑
s |V (s)− V̂ (s)| c(s),

L2
2 = ||V − V̂ ||22 =

∑
s(V (s)− V̂ (s))2, or

L∞ = ||V − V̂ ||∞ = maxs |V (s)− V̂ (s)|,

but the actual choice can make quite a big difference in practice; for instance, minimizing
the L1 or weighted L1 distance is easier than minimizing the L∞ distance, as it will be seen
in Section 2.9.

To simplify notation somewhat we can represent the K basis functions as the matrix
they induce, i.e.

Φ =




φ1(x1) φ2(x1) · · · φK(x1)
...

...
...

...
φ1(xN ) φ2(xN ) · · · φK(xN )




Thus V̂ = Φw. We will describe how we make use of this representation in the next
chapters.

2.9 Computational Complexity of Succinctly Represented MDP

problems

Before we engage in designing algorithms, it would be good to know what we are up against;
i.e., how difficult is the task of solving MDPs if we indeed are given a compact representa-
tion. We review below some important results.
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From a computational complexity point of view, a compact representation such as de-
scribed above is equivalent to the sequential-effects tree (ST) representation introduced by
Littman [38]. In ST representation the state variables are propositions (in our case boolean),
and the effect of each action on a proposition is encoded in a decision tree instead of a table.
The leaves of the tree give the values to which the proposition will change as an action’s
effect. The leaves therefore encode a true or false value, with a given probability. Since the
details of the representation are not of crucial importance, the reader is directed to Littman’s
paper for more explanations. The following results uses this representation.

Theorem 2.9.1 [38] The plan-existence problem for ST is EXPTIME-complete.

Essentially, this theorem tells us that succinctly represented MDPs are hard problems.
For completeness we will elaborate a little on the class EXPTIME-complete, but for more
background on the subject we recommend Papadimitriou’s book [44]. This complexity class
is thought of as including the hardest problems in the set EXPTIME. The complexity class
EXPTIME is made of problems which are solvable by a deterministic Turing machine in
O(2p(n)) time, where p(n) is a polynomial function of input size n. In our case, n would
be the size of the succinct MDP description. Two explanations are in order: first, Littman
presents this result in a planning context, but it applies directly to MDPs; second, complexity
results are usually presented for a decision problem, whereas solving an MDP is clearly an
optimization problem. The work around given by all practitioners is that any optimization
problem can be transformed into a binary search using decision problems. For instance,
instead of finding the optimal policy, we can ask ”is there a policy with value greater than
δ?” for various values of δ.

The other interesting question, regarding the computational complexity of policy evalu-
ation in compactly represented MDPs is— as far as we know—an open question [43].

As we can see, simply having a smaller representation does not make the problem easy in
general. This does not mean that we should give up trying to find specific problem domains
for which such representation can help; rather it reinforces what experience has shown again
and again, that real life problems which rarely are unstructured, are very hard to solve.
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2.10 Approximate Algorithms for Solving MDPs

To obtain approximate algorithms from the exact version of policy iteration and linear pro-
gramming one can replace each V (x) variable with the summation

∑K
i=1 wiφi(x), for

which the basis functions φi are known, and a new set of variables w is introduced. Thus
reducing the problem dimension from N to K variables. This modification has been shown
and analyzed by Schweitzer and Seidmann [54]. Their approximate policy iteration is shown
in Algorithm 4.

Algorithm 4 Approximate Policy Iteration – Schweitzer and Seidmann (API-SS)
1: π(0) ← h, n← 0, nMAX

2: repeat

3: n← n + 1

4: (Policy evaluation)
w(n) ← arg minw {[R + γP π(n−1)

Φw −Φw]2c}
5: (Policy improvement)

π(n) ← πgre(Φw)

6: until π(n) = π(n−1) or n ≤ nMAX

7: if n ≤ nMAX then

8: π∗ ← π(n)

9: else if π(n) 6= π(n−1) then

10: return UNSUCCESSFUL
where h is a vector holding an arbitrary policy, nMAX is the maximum number of iterations
allowed, and c is a vector of positive weights.

The nMAX limit on the number of iterations must be imposed to prevent cycling because,
unlike the exact version of policy iteration, the sequence of value functions is not necessarily
monotone. Note that in the policy evaluation step, the necessary optimization evaluation
amounts to a regular least squares problem minimization, hence, zeroing the gradient of the
right hand side with respect to w leads to a system of K linear equations in unknowns w.

Koller and Parr provided an approximate method for policy evaluation using ideas sim-
ilar to those of Schweitzer and Seidmann. They argued [34] that the preferred instantiation
of weights c is ρ, the stationary distribution of the underlying Markov process. However,
since ρ is not known a priori, they use an approximation and derive an iterative approximate
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dynamic programming algorithm. However, using the stationary distribution in minimizing
the weighted Euclidean distance was a principal hindrance in further development of a sub-
routine to policy iteration. Hence, Koller and Parr address this problem [35] and improve the
algorithm by replacing the stationary distribution with arbitrary non-negative weights, and
replacing the iterative dynamic programming with a direct way of evaluating the policy, thus
offering an approximate policy iteration algorithm. It should be noted that Koller and Parr
addressed an important issue which Schweitzer and Seidmann treatment lacked, regarding
the use of a compact policy. Under somewhat restrictive assumptions they represented the
working policy as a decision list

〈x1, a1, δ(x1, a1)〉, 〈x2, a2, δ(x2, a2)〉, . . . 〈xL, aL, δ(xL, aL)〉 (2.14)

where xl, l = 1, . . . , L, is an assignment to a subset of variables in the state vector x, effec-
tively using a pattern of partial assignments to state variables to represent subsets of states
to which the same action applies. In order to understand the decision list representation
one needs to look first at the required assumptions. The model must have a default action
d which leads to the concept of a default state-action value function Qd. A score δ(s, a) is
defined as the difference between the value of the given state-action pair and that of the de-
fault state-action pair: δ(s, a) = Q(s, a)−Q(s, d). The decision list is sorted in decreasing
order of δ. Thus, a possibly compact mapping from states to actions is provided since for
any state x, the first triple 〈xl, al, δ(xl, al)〉 whose pattern xl is a match provides the action
al with maximum Q value, thus the greedy action is easily obtained.

Guestrin et al. [27, 28] introduced a further improvement over Koller and Parr’s algo-
rithm. The least-squares minimization was discarded in favor of the L∞ criterion:

w(n) ← arg min
w

∥∥∥R +
(
γP π(n−1) − I

)
Φw

∥∥∥
∞

(2.15)

which can be solved via the linear program:

min
w,y

y

subject to

y 1 ≥ Rπ + (γP π − I)Φw

y 1 ≥ (I − γP π)Φw −Rπ (2.16)

for some policy π, represented as a decision list. This change facilitated the computation of
error bounds on the algorithm’s solution.
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2.10.1 Linear Basis Functions and the Exploitation of Structure

This section deals with the practicality of these approximate algorithms and it describes
material developed by Koller, Parr, and Guestrin. The linear program of Equation 2.16 is
a good example of the computational issues needed to be tackled. Not only does the linear
program feature the matrix multiplication P π

x,:Φw for each constraint (sizes 1×N,N×K,
and K × 1 respectively), but it also has 2N number of constraints; for very large N this
is a linear program of significant size. We use P π

x,: to denote the row vector of matrix
P π corresponding to state x. Fortunately, specific structure in the MDP, such as described
earlier, allows the matrix product computation to be done in an efficient manner. For this to
hold, besides the default action assumption, a number of other conditions must be met:

• each basis function depends only on few state variables,

• the dynamic Bayes net representing the transition probability distribution has next

state variables with few parent current state variables (see Figure 2.3),
PSfrag replacements

x
′
1

x
′
2

x
′
n

pa(x′
1){

pa(x′
2){

pa(x′
n){

......

Figure 2.3: Each state variable x′
1, x

′
2, . . . , x

′
n in the next stage has few parent variables

pa(xi) in the current stage.

• the reward function decomposes additively and each factor is a function of few state
variables.
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The following derivation shows how helpful these assumptions really are in reducing the
computational effort:

P π
x,:Φw =

∑

x′

P (x′|x, π(x))
K∑

i=1

wiφi(x
′)

=
K∑

i=1

wi

∑

x′

P (x′|x, π(x))φi(x
′)

=
K∑

i=1

wi

∑

x′

i

P (x′
i|x, π(x))φi(x

′
i)

∑

x′

j
∈x′\x′

i

P (x′
j |x, π(x))

=
K∑

i=1

wi

∑

x′

i

P (x′
i|x, π(x))φi(x

′
i) (2.17)

After moving the summation over basis functions out to the left in Step 2, we divide the
summation over all the variables into two summations, one over variables x′

i, which is the
subset of state variables in x′ that the basis function φi depends on, and the other over vari-
ables x′

j , which is the disjoint subset of x′ on which the basis function φi does not depend
on. This summation over all values of variables occurring in the probability transition func-
tion adds up to one, and therefore does not appear in the last step. Thus, the 2|x

′| = 2n

summation over variables x′ has been reduced to a summation with 2|x
′

i| terms, no longer a
computational challenge for basis functions of small number of variables.

Without further changes, the computation in Equation 2.17 needs to be done for each of
the 2N constraints. To overcome this difficulty Guestrin et al. employ a trick inspired from
the technique of variable elimination [18, 3]. First the constraints must be written in a more
amenable form.15 Instead of

y 1 ≥ Rπ + (γP π − I)Φw (2.18)

or, in non-matrix form

y ≥ R(x, π(x)) + γ
∑

x′

P (x′|x, π(x))
K∑

i=1

wiφi(x
′)−

K∑

i=1

wiφi(x) ∀x ∈ S

R(x, π(x)) + γ
∑

x′

P (x′|x, π(x))
K∑

i=1

wiφi(x
′)−

K∑

i=1

wiφi(x) ≤ y ∀x ∈ S,

15We show it only for y 1 ≥ Rπ +(γP π
− I)Φw, as the transformation for y 1 ≥ (I − γP π)Φw−Rπ

is identical except for some sign changes.
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we can write

max
x∈S

{
R(x, π(x)) + γ

∑

x′

P (x′|x, π(x))
K∑

i=1

wiφi(x
′)−

K∑

i=1

wiφi(x)

}
≤ y. (2.19)

At this point having a decision list representation and a small number of actions become
crucial assumptions. Recall that the decision list has the desirable property of an inverse
mapping: i.e. can produce a set of patterns of assignments to state variables for any given
action (in effect it partitions the state space according to the action the policy would choose
from those states). Allow πinv : A ⇒ P(S) to denote the inverse mapping from actions to
subsets of S. Therefore πinv(a) would be the set of states policy π would choose action a

from. Thus, for each a ∈ A we have a constraint similar to Equation 2.19:

max
x∈πinv(a)

{
R(x, π(x)) + γ

∑

x′

P (x′|x, a)
K∑

i=0

wiφi(x
′)−

K∑

i=0

wiφi(x)

}
≤ y. (2.20)

The significance of the transformation will become clear once we do some more mathemat-
ical manipulation of this last equation:

max
x∈πinv(a)

{
R(x, π(x)) + γ

∑

x′

P (x′|x, a)
K∑

i=0

wiφi(x
′)−

K∑

i=0

wiφi(x)

}
≤ y

max
x∈πinv(a)





m∑

j=1

R(xj , π(x)) +
K∑

i=0

wiγ
∑

x′

i

P (x′
i|pa(x′

i), a)φi(x
′
i)− φi(xi)



 ≤ y.

(2.21)

Note that the reward is explicitly decomposed into m sub-reward functions, each a function
of only xj ⊆ x state variables. We also introduce the following notation:

pa(x′
i) =

⋃

k,x′

k
∈x′

i

pa(x′
k).

In general, the max in Equation 2.21 can be over the entire state space and therefore costly
to calculate. Besides that, the max operator also makes the constraints non-linear. Guestrin
et al. employ a clever trick to transform constraints of this type back into linear constraints
at the cost of introducing extra variables. For simplicity it would be best to illustrate this
with an example (here the reward only depends on state). Assume we have the following
MDP:
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• current stage states are x = (x1, x2, x3, x4) and next stage states are x′ = (x′
1, x

′
2, x

′
3, x

′
4)

where states variables take binary values,

• reward decomposes as R(x, π(x)) =
∑4

j=1 R(xj , π(x)),

• system dynamics for action a according to the DBN in the following figure:PSfrag replacements

x1

x2

x3

x4

x
′
1

x
′
2

x
′
3

x
′
4

correspond to

P (x′|x, a) = P (x′
1|x1)P (x′

2|x2, x1)P (x′
3|x3, x2)P (x′

4|x4, x3),

• V̂ (x) =
∑4

i=1 wiφi(xi)

• and policy π chooses the same action a in all states, or πinv(a) = S.

Re-writing Equation 2.21 for this example we obtain

max
x1

max
x2

. . .max
x4

{ R(x1) + R(x2) + R(x3) + R(x4) +

w1γ
∑

x′

1

P (x′
1|x1, a)φ(x′

1)− φ(x1) +

w2γ
∑

x′

2

P (x′
2|x2, x1, a)φ(x′

2)− φ(x2) +

w3γ
∑

x′

3

P (x′
3|x3, x2, a)φ(x′

3)− φ(x3) +

w4γ
∑

x′

4

P (x′
4|x4, x3, a)φ(x′

4)− φ(x4) } ≤ y
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and, after moving each max operator inside as far as it can go,

max
x1

{ R(x1) + w1γ
∑

x′

1

P (x′
1|x1, a)φ(x′

1)− φ(x1) +

max
x2

{ R(x2) + w2γ
∑

x′

2

P (x′
2|x2, x1, a)φ(x′

2)− φ(x2) +

max
x3

{ R(x3) + w3γ
∑

x′

3

P (x′
3|x3, x2, a)φ(x′

3)− φ(x3) +

max
x4

{ R(x4) + w4γ
∑

x′

4

P (x′
4|x4, x3, a)φ(x′

4)− φ(x4) }}}} ≤ y

(2.22)

The construction used by Guestrin et al. is based on variable elimination. In general, the
variable elimination algorithm maintains a collection F of functions, initially instantiated to
{f1, f2, . . . , fm}, the functions present in the formula to be maximized/minimized. From
the still to be eliminated variables a variable xl is chosen for elimination. The set of func-
tions G = {f ∈ F : xl ∈ Dom(f)} is replaced with a new function el whose domain is
∪g∈GDom(g)\{xl}. For our example, assume that variable x4 is chosen to be eliminated in
Equation 2.22; then function e4(x3) replaces maxx4{R(x4)+w4γ

∑
x′

4
P (x′

4|x4, x3, a)φ(x′
4)−

φ(x4)}. This procedure is repeated until all variables have been eliminated and the result of
the maximization/minimization is returned. For our example this is equivalent to a constant
replacing the left hand side of the constraint of Equation 2.22. The cost of variable elimina-
tion is shown to be exponential [18] in the induced tree width obtained during the variable
elimination procedure. Intuitively, the induced tree width is the size of the largest domain
of replacing functions el (minimized over variable orderings).

Back to the constraints construction; eliminating the first variable x1: for each instan-
tiation y1 of variables in y1 = Dom(e1), a new LP variable ue1

y1
and associated constraints

are introduced. Continuing with the example, when eliminating x4, two variables ue4
0 and

ue4
1 , and two new constraints ue4

0 = e4(0) and ue4
1 = e4(1) are introduced, corresponding

to instantiating x3 in e4(x3) to 0 and 1 respectively. For each subsequent eliminated vari-
able xl new LP variables are introduced for each instantiation of variables in the domain of
the function to be replaced, and a separate constraint for each as well. Assuming we are
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eliminating x3 next, we introduce ue3
0 and ue3

1 and constraints

ue3
0 ≥ R(x3 = 0) + w3γ

∑

x′

3

P (x′
3|x3 = 0, x2 = 0, a)φ(x′

3)− φ(x3 = 0) + ue4
0

ue3
0 ≥ R(x3 = 1) + w3γ

∑

x′

3

P (x′
3|x3 = 1, x2 = 0, a)φ(x′

3)− φ(x3 = 1) + ue4
1

ue3
1 ≥ R(x3 = 0) + w3γ

∑

x′

3

P (x′
3|x3 = 0, x2 = 1, a)φ(x′

3)− φ(x3 = 0) + ue4
0

ue3
1 ≥ R(x3 = 1) + w3γ

∑

x′

3

P (x′
3|x3 = 1, x2 = 1, a)φ(x′

3)− φ(x3 = 1) + ue4
1

After eliminating the last variable and introducing new LP variables and constraints, a few
last additional constraints are still needed to make the connection to the original constraint.
For instance, after eliminating x1, we still need:

u ≥ ue1
0

u ≥ ue1
1

u ≤ y.

Here variable u takes the value of the max expression on the left hand side of Equation 2.22.

One should note that this procedure is provably correct, all new constraints are linear in
both the new LP variables and the original LP variables w, and the LP transformed this way
is equivalent to the original LP (i.e. the two LPs have the same optimal solution w) [27].
Thus this construction offers the advantage of a compact LP, where instead of N constraints
there are O(2k|A|) constraints, and k is the size of the largest domain over all replaced
functions during the transformation.

2.10.2 Approximate Policy Iteration Using a Compact LP

Calculating the value of a policy efficiently encourages one to use the policy iteration algo-
rithm. Guestrin et al. introduced approximate versions of both value iteration and policy

iteration with a preference for the latter, as it seemed to converge faster in practice. We,
for the same reason, will also maintain a focus on policy iteration. Their algorithm differs
from that of Schweitzer and Seidmann (Algorithm 4) in that the policy evaluation step is
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performed using the compact LP described in the previous section (a compact version of
Equation 2.16).
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Chapter 3

Approximation Error
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It is important to recall that only in rare cases the optimal value function lies in the set
spanned by the given basis functions. Therefore, one should expect that Φw will only be an
approximation. There are two questions of interest: first, what is the quality of the approx-
imate value function induced by w—regardless of how this approximation was obtained,
and second, can the error (or a bound on the error) be calculated efficiently?

The chapter is laid out as follows: Section 3.1 describes two results related to the diffi-
culty of computing the Bellman error. Section 3.2 introduces a branch-and-bound algorithm
which can calculate the Bellman error, while Section 3.3 illustrates its use with some exper-
iments.

In regards to the first question, all we have is an upper bound shown by Williams and
Baird [59]. This bound is defined in terms of the Bellman error; for any value function V

the Bellman error is defined as:

BellErr(V ) = ‖max
a
{Ra + γP aV } − V ‖∞, (3.1)

or the largest absolute value discrepancy between the value function of any state and the
value obtained by passing V through the Bellman back-up.1 One can use the Bellman error
to obtain a crude upper bound on the L∞ error of the approximate value function Φw:

‖V ∗ −Φw‖∞ ≤
BellErr(Φw)

1− γ
. (3.2)

As can be seen from Equation 3.2, to obtain this bound one must be able to compute the
Bellman error. The next section explores how difficult a task this is.

3.1 Hardness of Error Calculation

We show two results—due to Patrascu et al. [47]—related to this computation: one that
claims that it is hard to assess whether the Bellman error is above or below a given threshold,
and therefore to compute it; and another results that claims that it is hard to determine
whether a current approximation can be improved with respect to the Bellman error.

Theorem 3.1.1 It is co-NP-complete to determine whether the Bellman error of a given

Φw is less than a given δ.

1Ra + γP aV .
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Proof. We show that the complementary problem of deciding whether the Bellman error is
at least δ is NP-complete. To show that it is in NP: a given witness state s can be used to
certify a large Bellman error, and this can be done in polynomial time using the structured
computation:

max
a
|(Φw)(s)− γ

∑

s′

P (s′|s, a)(Φw)(s′)|.

To show the problem is NP-hard we use a reduction from 3SAT: given a 3CNF formula,
let the state variables correspond to propositional (formula) variables. Construct a basis
function φj for each clause, such that it indicates whether the clause is satisfied by the state
assignment. Set the rewards to zero and the transition model to identity for each action, and
set γ = 0 and w = 1. The Bellman error for this setup becomes maxs

∑k
j=1 φj(sj). If k

is the number of clauses, then the Bellman error will be k if and only if the original 3CNF
formula is satisfiable. �

Theorem 3.1.2 It is NP-hard to determine whether there exists a weight vector w such that

Φw has Bellman error less than a given δ. The problem remains in NPco-NP.

Proof. First, to establish that the problem is in NPco-NP, note that an acceptable w can be
given as a certificate of small Bellman error, and this can then be verified by consulting a
co-NP oracle. Second, NP-hardness follows from a reduction from 3SAT: given a 3CNF for-
mula, let the state variables correspond to the propositional variables, and construct a local
reward function rj for each clause that is the same for each action, where rj is the indicator
function for satisfaction of clause j. Choose a single trivial basis function φ0 = 0. Set the
transition model to be identity for each action and set γ = 0. The Bellman error in this setup
becomes maxs

∑k
j=1 rj(sj). If k is the number of clauses, then minw maxs

∑k
j=1 rj(sj)

yields value k if and only if the original 3CNF formula is satisfiable. �

3.2 An Algorithm to Compute the Bellman Error

In the light of these two results one should expect that, in general, calculating the Bellman
error of a given solution w is not a practical proposition. However, we propose a scheme
which in many cases, for MDPs that are not extremely large, will be much more practical
than a brute force approach. For ease of presentation we introduce some notation. Let
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v(w,x) , (Φw)(s),

q(w,x, a) , r(x, a) + γ
∑

x′

P (x′|x, a)v(w,x′).

We would like to calculate maxx |v(w,x)−maxa q(w,x, a)|, which can be reduced to two
searches:

min
x

v(w,x)−max
a

q(w,x, a)

max
x

v(w,x)−max
a

q(w,x, a) (3.3)

(3.4)

The first search is easy, since

min
x

v(w,x)−max
a

q(w,x, a) = min
x

min
a

v(w,x)− q(w,x, a)

= min
a

min
x

v(w,x)− q(w,x, a) (3.5)

Here, once a is fixed, the min over x can be efficiently computed by using variable elimina-
tion the usual way. The second search is much harder.

max
x

v(w,x)−max
a

q(w,x, a) = max
x

min
a

v(w,x)− q(w,x, a) (3.6)

The problem in this case is that we can no longer use simple variable elimination to conduct
the search, because a cannot be held fixed while eliminating x. However, we can perform
this search by using a branch and bound method.

First note that Equation 3.6 can be broken down into a number of constrained maximum
searches, one for each a, where x is restricted to those states where in fact a is the optimal
action.

max
x

v(w,x)−max
a

q(w,x, a) = max
a

max
x:x∈π−1

w (a)
v(w,x)− q(w,x, a) (3.7)

where π−1
w is the inverse of policy πw, and therefore x : x ∈ π−1

w (a) denotes the subset
of states that have a as the action chosen by policy πw. Thus, instead of searching over the
whole state space, we only need search over this restricted subset. Also,

πw(x) = arg max
a

q(w,x, a)
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is the implicit greedy policy defined by w for v(w, ·). Now consider the search for some
fixed a1

max
x:x∈π−1

w (a1)
v(w,x)− q(w,x, a1) ≡ max

x
v(w,x)− q(w,x, a1) (3.8)

subject to q(w,x, a1) ≥ q(w,x, a2)
...
q(w,x, a1) ≥ q(w,x, a`)

We solve this with a branch and bound [45] search on state variables in x, as shown in Al-
gorithm 5, which is a general branch-and-bound procedure modified to fit our requirements.

Algorithm 5 Branch-and-Bound Search
1: activeset ← {〈[], [x1, . . . , xn]〉}, lowerbound ← +∞, currentbest ←

anything
2: while activeset not empty do

3: choose tuple k = 〈[a1 . . . ak], [xk+1 . . . xn]〉 ∈ activeset
4: activeset ← activeset − {tuple k}
5: for ak+1 ∈ Dom(xk+1) do

6: upperbound ← upper bound([a1 . . . ak+1], [xk+2 . . . xn])

7: if upperbound ≥ lowerbound andk + 1 = n then

8: lowerbound ← upperbound

9: currentbest ← [a1 . . . ak+1]

10: else if upperbound ≥ lowerbound then

11: activeset ← activeset ∪ {〈[a1 . . . ak+1], [xk+2 . . . xn]〉}
12: return currentbest and lowerbound
where the activeset variable is the current set of tuples of partial assignments to state
variables (ai), and the upper bound() procedure calculates the upper bound using the La-
grangian as described below.

To calculate upper bounds, consider the Lagrangian of Equation 3.8

L(x,µ) = v(w,x)− q(w,x, a1) + µ2[q(w,x, a1)− q(w,x, a2)]
...
+ µ`[q(w,x, a1)− q(w,x, a`)]

(3.9)
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For any µ ≥ 0 we know that maximizing Equation 3.9 over x gives an upper bound on
Equation 3.8.

max
x

v(w,x)− q(w,x, a1) + µ2[q(w,x, a1)− q(w,x, a2)]
...
+ µ`[q(w,x, a1)− q(w,x, a`)]

≥ max
x:x∈π−1

w (a1)
v(w,x)− q(w,x, a1) + µ2[q(w,x, a1)− q(w,x, a2)]

...
+ µ`[q(w,x, a1)− q(w,x, a`)]

≥ max
x:x∈π−1

w (a1)
v(w,x)− q(w,x, a) for µ ≥ 0

Therefore, any µ ≥ 0 gives us an efficient way of calculating an upper bound on Equation
3.8 since maxx L(x,µ) can be efficiently calculated using variable elimination.

This upper bound can actually be improved by updating µ in a negative subgradient
direction. That is, starting with µ0, let x0 = arg minx L(x,µ0). Then a subgradient
direction is given by

∇̃µL(x0,µ0) =




q(w,x0, a1)− q(w,x0, a2)
...

q(w,x0, a1)− q(w,x0, a`)




Thus, a tighter upper bound can be obtained by updating µ in the negative subgradient
direction

µt+1 = µt − α∇̃µL(xt,µt), for α > 0

Since we also want to maintain the constraint that µ ≥ 0 (and for other reasons) we prefer
the exponentiated subgradient update

µt+1 = µtβ−e∇µL(xt,µt), for β > 1

Overall, this suggests that reasonable upper bounds on Equation 3.8 can be calculated after a
few alternating rounds of variable elimination (maximizing over x) and subgradient update
steps. It is critical to obtain good upper bounds on Equation 3.8 because the quality of these
bounds strongly determines the efficiency of a branch and bound search over x.
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3.3 Experiments—Calculating the Bellman Error

3.3.1 Motivation, Goals, and Setup

Just from the fact that this algorithm performs a branch-and-bound search and knowing its
theoretical limitations we can conclude that one can always find a problem that will force
the method to spend an inordinate computation time. However, sometimes, in practice, one
can observe much better behavior and, lacking theory to predict it, one is left only with the
choice of performing an empirical evaluation. This is our case as well.

We test the practicality of the branch-and-bound algorithm by running experiments on
the cycle and 3legs problems, with a discount factor of 0.95. The two problems are
suitable for this type of experimentation due to their ease of scalability and understanding.
We describe the two problems in in detail in Appendix A. The code was written in Matlab
and run on 750MHz Pentium III level machines.

We set up the simulation as follows. The solution for each problem is approximated by
the weighted sum of basis functions including the constant 1 function and bit identity func-
tions (which we call singletons because they take as argument the value of only one state
variable). Since we would like to be able to calculate the Bellman error particularly of solu-
tions from our algorithms, we obtain the weights using our approximate linear programming
with constraint generation algorithm2 that we cover in detail in Chapter 4.

3.3.2 Results and Discussion

We varied the cycle problem’s size between 12 and 32 state variables and the 3legs size
between 13 and 28 state variables; the largest instances of these problems featured 4e10 and
3e9 states respectively. Although we are not aware of other algorithms which can compute
the Bellman error efficiently for instances of similar size, we do not consider these problems
very large. Table 3.1 gives an indication of the computation times needed to calculate the
Bellman error. Naturally, the trend in computation time is exponential, but the growth is
not monotonic; this can be seen on the 3legs problem on instances of 22, 25, and 28 state
variables, where the branch-and-bound algorithm jumped from 866 seconds to a little over

2We kindly ask for the reader’s understanding when we pre-maturely mention an algorithm that has yet to
be described; although for the general assessment of the branch-and-bound error calculation any approximate
solution—vector of finite values w—would have sufficed, calculating the Bellman error of solutions obtained
using one of our algorithms seems a somewhat better fit to this thesis.
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The cycle Problem

n = 12 15 18 20 24 28 32
N = 4e4 3e5 3e6 1e7 2e8 3e9 4e10
Time (s) 63 131 225 279 451 959 1086

The 3legs Problem

n = 13 16 19 22 25 28
N = 8e4 7e5 5e6 4e7 3e8 3e9
Time (s) 525 291 3454 866 14639 2971

Table 3.1: Calculating the Bellman error: results using singleton bases.

four hours and then down again to about 50 minutes. The same behavior is not seen on
the cycle problem whose times grow in a more monotonic fashion. We confess to be in
the same predicament as those who use similar branch-and-bound algorithms and are not
able to predict on which problem instance the search will behave well or not. In spite of the
inherent danger of such practices, if we ventured to draw any conclusion about the frequency
of spiked times from the tabulated results, it would be that this does not happen very often.
Thus it is to be expected that once in a while, the branch-and-bound computation will take
a long time to finish.

Since the exponential trend is unmistakable, these results point out that on very large
problems of over 40 state variables the branch-and-bound method will most likely be inade-
quate. However, for problems smaller than 40 variables but larger than around 30 variables
our method remains the more efficient algorithm.

Although the size of the Bellman error is of more interest in Chapter 4 and becomes the
principal subject of Chapter 5, we highlight here the trend in error growth versus problem
size. Figure 3.1 shows plots of the error for the two problems we experimented on. It is a
pleasant surprise to see that the error plots have an almost perfectly linear trend. This gives
us hope that the choice of approximating architecture coupled with our optimization method
does not deteriorate the solution as the problem size increases; we defer a more detailed
look at this to following chapters.
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Figure 3.1: The Bellman error calculated using the branch-and-bound method for a sequence
of instances of the cycle and 3legs problems.
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Chapter 4

Obtaining an MDP Approximate

Solution
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4.1 Introduction

When it comes to actually solving factored MDPs, the approximate policy iteration of
Guestrin et al. can be considered state of the art. However, it would be desirable to get
rid of the “default action” assumption, and, in the same time to obtain a solution faster. The
goal of this chapter is to address these two issues, in the context of a given compactly repre-
sented MDP and solution approximated via a linear combination of given basis functions.

The conceptual layout of the chapter is as follows: we start by showing in Section
4.2 the direct method which forms the basis for further solutions we use and then move
on to our contribution. The contribution of Section 4.3 is the introduction of two novel
algorithms for solving factored MDPs, based on the primal of a linear program. Section
4.4’s contribution is the introduction of the branch-and-bound approximate policy iteration,
which no longer uses the “default action” assumption by representing the policy implicitly.
Section 4.5 investigates the possibility of obtaining an approximate solution via the linear
programming dual. While principled, the LP dual based method eventually produces results
of poor accuracy and thus, unless positively changed, is not of practical interest to us.

4.2 Approximate Linear Programming

A more direct way to solve an MDP than approximate policy or approximate value iteration
has also been introduced by Schweitzer and Seidmann [54]. This method employs linear
programming, and is almost identical to Algorithm 3 from Section 2.7 except for using
V̂ = Φw instead of V as the approximating step. Although Schweitzer and Seidmann
have not observed it, the algorithm can be used in larger problems if they exhibit the type of
structure we are able to cope with and was described above. We will show how this works
shortly. The general form of the method is shown in Algorithm 6 below. The LP featured in
this algorithm is feasible, provided one of the columns of Φ is 1 [54]. Left in this general
form, the LP is practically intractable for large problems. To bring the computation back to
the doable realm the following assumptions—presented on page 28 and repeated here for
ease of reading—are in order:

• basis functions depend on few state variables,

• the dynamic Bayes net representing the transition probability distribution has next

state variables with few parent current state variables (see Figure 2.3),
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Algorithm 6 Approximate Linear Programming – General Form
1: Solve the linear program:

minw(Φw)T
1

subject to
Φw ≥ Ra + γP a

Φw ∀a
2: return πgre(Φw)

where the parameter vector w is unrestricted.

• the number of actions is small,

• the reward function decomposes additively and each factor is a function of few state
variables.

It is important to note that the default action assumption employed by Koller, Parr, and
Guestrin is no longer needed for making Algorithm 6 efficient.

Algorithm 6 can be brought to a specific form more suitable for scaling up which takes
advantage of the assumptions above. First, the objective function can be reduced to a simpler
calculation as follows:

(Φw)T
1 =

∑

x

K∑

i=0

φi(x)wi

=
K∑

i=1

wi

∑

xj :xj=x−Dom(φi)




∑

xi:xi=Dom(φi)

φi(xi)




=
K∑

i=1

wi 2n−|Dom(φi)|
∑

xi:xi=Dom(φi)

φi(xi)

= [ϕ0ϕ1 · · ·ϕK ] w

= ϕT w (4.1)

where xi is the subset of state variables x which form the domain of basis function φi, and
ϕi = 2n−|Dom(φi)|

∑
xi:xi=Dom(φi)

φi(xi).
Note: the second line of Equation 4.1 explicitly wrote the summation over all state vari-

ables as two summations, one over those variables which are part of φi’s domain, and the
other over those variables which are not; 2n−|Dom(φi)| is the number of “

∑
xi:xi=Dom(φi)

φi(xi)”
terms in the “

∑
xj :xj=x−Dom(φi)

” summation, hence the substitution.

47



Therefore, the LP objective is represented as a K-dimensional inner product between a
vector of coefficients and the LP variables w. Each of these coefficients can be determined
prior to solving the LP in time exponential in the number of variables each basis function
is defined on. Assuming that each basis function has a small domain makes this calculation
fast.

In its general form the linear program of Algorithm 6 has N constraints, which is prob-
lematic. There are two ways to bypass this difficulty and solve the LP more efficiently. On
the one hand, the constraints can be transformed using an almost identical procedure to that
of Guestrin et al. (detailed in Section 4.3.1). On the other hand, constraints can be left in
their original form, but not used all at once, instead generating constraints as needed [53]
(Shown in Section 4.3.2).

4.3 Obtaining an Approximation Using the Primal LP

4.3.1 Approximate Linear Programming Via Compact Constraints

We have already shown how to transform constraints to a more compact form on pages
30–33; the resulting method, shown in Algorithm 7, is a new algorithm, introduced inde-
pendently by Schuurmans and Patrascu [53] and Guestrin et al. [28]. This produces a weight
vector w which in turn can be used to obtain an implicit greedy policy. The reason for the
policy being implicit is that, since the default action assumption has been abandoned, the
policy can no longer be represented compactly using a decision list. However, for any given
state x an action can efficiently be obtained thus resulting in a well defined policy (see
Algorithm 7).

4.3.2 Approximate Linear Programming With Generated Constraints

The technique of solving large LPs using constraint generation is related to the more general
method of cutting planes and is well established [13, 4] in the optimization literature. More
recently it was used by Trick and Zin [57] specifically to solve large MDPs. They report on
several versions of constraint generation; however, not all are applicable here.

Our version of constraint generation sufficiently differs in practice from Algorithm 7
that we describe it here separately. The idea behind Algorithm 8 (and in general constraint
generation) is based on the fact that the optimal solution of a linear program with many
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Algorithm 7 Approximate Linear Programming – Guestrin et al. transformed constraints
1: Solve the linear program:

w∗ = arg min
[w u]T

[
ϕT

0
]
[

w

0

]

subject to

Guestrin et al. transformed constraints

2: return πgre(V̂ (x),x) = πgre(
∑K

i=1 φi(x)w∗
i ,x) for any x ∈ S

where the parameter vector w is unrestricted, and the parameter vector u is obtained using
the transformation described earlier.

Algorithm 8 Approximate Linear Programming – Constraints Generation
1: C ← ∅, w(0) ← 0, i← 0, ε← small positive real number, δ ← 0.
2: repeat

3: i← i + 1

4: δ ← minx,a

{
∆(x, a,w(i−1))

}

5: xa ← arg minx

{
∆(x, a,w(i−1))

}
∀a

6: if δ + ε < 0 then

7: C ← C ∪ {ca : ca is the constraint corresponding to state xa},∀a
8: Solve the linear program:

minw(i) ϕT w(i)

subject to constraints C

9: until δ + ε ≥ 0

10: return πgre(V̂ (x),x) = πgre(
∑K

i=1 φi(x)wi,x) for any x ∈ S

where ∆(x, a,w) = wi

∑K
i=1 φi(x)wi −R(x, a)− γ

∑
x′ P (x′|x, a)

∑K
i=1 φi(x) and the

parameter vector w is unrestricted.
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more constraints than variables (or vice versa) depends entirely on a small number of con-
straints, usually referred to as the active or binding constraints. Except for maligned cases,
the number of active constraints is equal to the number of LP variables, which in our case is
K. Therefore the algorithm aims at iteratively building a set of constraints, initially empty,
that will include—in a small number of iterations—all active constraints. The choice of
constraints to add at each iteration i is motivated by the simplex method of solving linear
programming problems; in our case, for each action a the constraint featuring greatest vio-
lation with respect to current weights w(i) is found (Steps 4 and 5) and included in the set of
current constraints C (Step 7). The algorithm terminates when all constraints are satisfied,
a condition necessary and sufficient for the linear programming to be solved (within a given
tolerance ε).

We already showed that the LP objective coefficients can be calculated efficiently and
therefore the algorithm’s efficiency depends heavily on how efficient the minimization of
Steps 4 and 5 can be performed. Again, using the variable elimination inspired procedure of
Guestrin et al. [27], this minimization poses no problems subject to the stated assumptions.
The search for the state-action pair which minimizes the LP constraint expression

wi

K∑

i=1

φi(x)wi −R(x, a)− γ
∑

x′

P (x′|x, a)
K∑

i=1

φi(x)

differs from the procedure explained on page 32 in that no variables are introduced to replace
each inner min operation; rather, the min operation is actually carried out. The difficulty of
the search is dictated by the domain sizes of basis functions and the degree to which these
domains share state variables.

4.3.3 Experiments with the Primal LP Approximation

Motivation, Goals, and Setup

This section illustrates some of the main features of interest regarding the approximate meth-
ods described above. We would like to compare the novel direct LP approximating methods
(compact and generated constraints) with the approximate policy iteration of Guestrin et al.
The main items we would like to address through these simulations are the quality of an
approximate solution and the speed with which it was computed.

We ran simulations on the cycle and 3legs problems with up to 40 variables using
a discount factor of 0.95. Detailed description of these two problems—including transition
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probabilities and reward function values—is given in Appendix A.1. The code was written
in Matlab and we called CPLEX 7.5 routines whenever we needed the LP solver.

As calculating the L∞ or Bellman error is impractical for such large systems, we mea-
sure the approximation error via the upper bound on the Bellman error normalized by the
maximum reward Rmax. Recall the Bellman error is:

BellErr(Φw) = ‖Φw −max
a
{Ra + γP a

Φw} ‖∞
= max

s
|Φw −max

a
{Ra + γP a

Φw} |
= max

s
|min

a
{Φw −Ra − γP a

Φw} |
= max (max

s
max

a
{Ra + γP a

Φw −Φw} ,

max
s

min
a
{Φw −Ra − γP a

Φw} ). (4.2)

The left hand side of the max operator in Equation 4.2 is efficiently computed under the
stated assumptions by switching order of the maxs maxa operators as maxa maxs. How-
ever, maxs mina cannot be switched with equality:

max
s

min
a
{Φw −R− γP a

Φw} ≤ min
a

max
s
{Φw −R− γP a

Φw} , (4.3)

which results in the upper bound

BellErr(Φw) ≤ max (max
a

max
s
{R + γP a

Φw −Φw} ,

min
a

max
s
{Φw −R− γP a

Φw} ). (4.4)

Results and Discussion

The approximate policy iteration with compact constraints introduced by Guestrin et al. [27]
is labeled API and this is the state of the art method we are comparing against. A variation
of approximate policy iteration (which we thought of trying for the sake of completeness),
using constraint generation instead of compact constraints, is labeled APIgen. The plain
approximate linear programming of Algorithm 6 which builds and uses the entire constraint
set is labeled ALP. The approximate linear program using constraint generation is labeled
ALPgen.

So far we have not addressed the issue of choosing the set of basis functions. Guestrin
et al. have used in their experiments the set of constant basis function (φ0(x) = 1,∀x) plus
basis indicator functions (φi(x) = xi,∀x, i = 1, . . . , |x|). To facilitate a comparison with
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their results, APIgen, ALP, and ALPgen all use the constant and indicator basis functions.
However, as a prelude to the next chapter, to empirically verify the effect of expanding the
set of basis functions we also report results obtained using approximate linear programming
with constraints generation (ALPgen2) which, in addition to the constant and indicator basis
functions, it also uses a set of basis functions over pairs of adjacent state variables. This set
includes, for each pair of adjacent variables (xi, xi+1), the four basis functions (conjunc-
tions):

φk1(x) = xi ∧ xi+1

φk2(x) = ¬xi ∧ xi+1

φk3(x) = xi ∧ ¬xi+1

φk4(x) = ¬xi ∧ ¬xi+1.

The principal feature of the two problems we solve, also used in simulations by Guestrin
et al. , is that, although the structure they exhibit fits very well the methods we want to
compare, the problems are general enough and easily scalable to warrant drawing more than
just narrow conclusions.

Although we experimented with domains of over 100 variables, we only report results
for up to n ≤ 40 variables so that we compare with the results of Guestrin et al. [27]. A
number of quantities of interest are shown in Tables 4.1 and 4.2. In both problems, cycle
and the 3legs , the number of total constraints ultimately satisfied by the linear program
is lowest by a significant margin for ALPgen. One can also observe that the technique of
constraint generation is useful when used with approximate policy iteration in that it reduces
the number of constraints its linear program would have to satisfy.

Although ALPgen iteratively expands the constraint set and resolves the LP it does show
the lowest CPU times, with dramatic savings such as from 7.5 hours for API to 7 seconds
for ALPgen. This performance increase does come at a price though.

Using the normalized upper bound as an error measure it can be seen that ALPgen has
about twice the error of API.2

However, since ALPgen is much faster than API, the question arises whether one can
1These numbers are estimated from published results [27] (graphs). The exact probabilities and computer

used for the simulations were not reported in that paper, so we cannot assert an exact comparison. However,
perturbed probabilities have little effect on the performance of the methods we tried, and it seems that overall this
is a loosely representative comparison of the general performance of the various algorithms on these problems.

2This is to be expected, since ALPgen minimizes an upper bound on the L1 approximation error whereas
API minimizes the Bellman error itself.
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The cycle Problem—Time

n = 12 16 20 24 28 32 36 40
N = 4e3 6e4 1e6 2e7 3e8 4e9 7e10 1e12
API1 7m 30m 50m 1.3h 1.9h 3h 4.5h 7.5h
APIgen 39s 1.5m 2.3m 4.0m 6.5m 13m 22m 28m
ALP 4.5s 23s 1.4m 4.1m 10m 23m 47m 2.4h
ALPgen 0.7s 1.2s 1.8s 2.6s 3.5s 4.5s 5.9s 7.0s
ALPgen2 14s 37s 1.2m 2.8m 4.7m 6.4m 12m 17m

The cycle Problem—Number Constraints

n = 12 16 20 24 28 32 36 40
N = 4e3 6e4 1e6 2e7 3e8 4e9 7e10 1e12
APIgen 420 777 921 1270 1591 2747 4325 4438
ALP 1131 2023 3171 4575 6235 8151 10K 13K
ALPgen 38 50 62 74 86 98 110 122
ALPgen2 166 321 514 914 1223 1433 1951 2310

The cycle Problem—Bound on Bellman Error

n = 12 16 20 24 28 32 36 40
N = 4e3 6e4 1e6 2e7 3e8 4e9 7e10 1e12
API 0.36 0.34 0.33 0.33 0.32 0.32 0.32 0.31
APIgen 0.36 0.34 0.33 0.33 0.32 0.32 0.32 0.31
ALP 0.85 0.82 0.80 0.78 0.78 0.77 0.76 0.76
ALPgen 0.85 0.82 0.80 0.78 0.78 0.77 0.76 0.76
ALPgen2 0.12 0.14 0.08 0.08 0.10 0.08 0.07 0.07

Table 4.1: Table of results using ALP and constraint generation for the “system administra-
tor” domain, in a cycle configuration.
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The 3legs Problem—Time

n = 13 16 22 28 34 40
N = 8e4 6e4 4e6 3e8 2e10 1e12
API1 5m 15m 50m 1.3h 2.7h 5h
APIgen 28s 1.6m 3.9m 12m 23m 33m
ALP 0.7s 1.6s 6.0s 20s 56s 2.2m
ALPgen 0.7s 1.0s 1.5s 2.4s 3.4s 4.7s
ALPgen2 17s 33s 1.9m 5.4m 9.6m 23m

The 3legs Problem—Number Constraints

n = 13 16 22 28 34 40
N = 8e4 6e4 4e6 3e8 2e10 1e12
APIgen 363 952 1699 3792 6196 7636
ALP 729 1089 2025 3249 4761 6561
ALPgen 50 69 90 114 135 162
ALPgen2 261 381 826 1505 1925 3034

The 3legs Problem—Bound on Bellman Error

n = 13 16 22 28 34 40
N = 8e4 6e4 4e6 3e8 2e10 1e12
API 0.50 0.46 0.42 0.39 0.38 0.37
APIgen 0.50 0.46 0.42 0.39 0.38 0.37
ALP 0.96 0.82 0.78 0.78 0.77 0.76
ALPgen 0.96 0.82 0.78 0.78 0.77 0.76
ALPgen2 0.21 0.22 0.15 0.06 0.07 0.03

Table 4.2: Table of results using ALP and constraint generation for the “system administra-
tor” domain, in a 3legs configuration.
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improve the accuracy of the ALPgen’s approximation by allowing it to use more basis func-
tions, as implemented by ALPgen2. Indeed ALPgen2’s solving time is longer than ALPgen,
but still very competitive with the other methods. Its approximation error as measured by
the upper bound is however brought to about half or better than that of API.

These experiments are by no means exhaustive, rather, while trying to investigate the
practicality of using linear programming in conjunction with constraint generation to pro-
duce an approximate value function, they show a promising trend. In practice the algorithm
seems to be computationally very competitive with existing algorithms while producing sim-
ilar or better approximations. Furthermore, since solving the linear program does not seem
to be the bottleneck, the approximation error can be reduced by expanding the set of basis
functions and resolving the LP. However, this begs the question of where the additional ba-
sis functions should come from, or, similarly, what the provenance of the initial set of basis
functions is. In our experiments we arbitrarily chose a set of basis functions to use, but how
is one to know which basis functions to add to the current set so that the error decreases?
The next chapter attempts to answer these and other related questions.

4.4 Obtaining an Approximation Using Branch-and-Bound Ap-

proximate Policy Iteration

Another important question, obtaining an approximate solution via minimizing the Bellman
error, remains an open problem to the best of our knowledge, and we do not have an efficient
exact method. Nevertheless, a similar branch-and-bound search strategy as used for calcu-
lating the Bellman error (described in Section 3.2) can be used to implement an approximate
policy iteration scheme. The procedure is shown at a high level in Algorithm 9. It uses a
linear program to recover the weight vector w(i+1) that minimizes the one step error in ap-
proximating the value of the current policy πw(i) defined by w(i). This linear program is
indeed very large and would require enumerating constraints for all variable configurations
(states), however, not all constraints are needed for the optimal solution. Therefore, if we
could generate constraints efficiently, then we could obtain the optimal solution just as we
did before. The other wrinkle is that we do not want to represent πw(i) explicitly, which
makes it hard to see how this could be done if the constraints in Equation 4.5 remain written
so. This part requires some further explanation.
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Algorithm 9 Branch-and-Bound Approximate Policy Iteration (BB-API)
1: Start with an arbitrary w(0), i← 0.
2: repeat

3: Solve the linear program for w and δ:

w(i+1) ← arg min
(w,δ)

δ subject to:

v(w,x)− q(w,x, πw(i)(x)) ≤ δ

q(w,x, πw(i)(x))− v(w,x) ≤ δ

}
for all x (4.5)

δ ≥ 0 (4.6)

4: i← i + 1.
5: until w(i+1) = w(i)

Here the process of constraint generation consists of two searches: one easy,

max
x

q(w,x, πw(i)(x))− v(w,x)− δ,

and one hard,
max

x
v(w,x)− q(w,x, πw(i)(x))− δ.

In both cases given are the current intermediate solution, w, value function parameters from
the previous step, w(i), and the current intermediate solution δ.

The harder search is equivalent to

max
x

min
a

v(w(i),x)− q(w(i),x, a)− δ,

and can be done using the branch-and-bound procedure already outlined in Section 3.2. Note
the subtlety that, although the search uses parameters from the previous step—so as to find
the action corresponding to πw(i) , the constraint that is added to the current set will use the
current LP solution w. In essence, the closest we come to representing the greedy policy of
the previous iteration explicitly is the set of constraints, one for each generated state xg and
its greedily best action with respect to the value function induced by w(i), πw(i)(xg).

If one does not want to pay the price of a full branch-and-bound scheme, then a cheaper
heuristic search for maximally violated constraints can be conducted by just running sub-
gradient optimization until it stops making progress in reducing the upper bound. In fact,
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this can lead to an effective way to calculate the initial assignment to x for a full branch-
and-bound search: just start out with the best feasible solution xt encountered during a
preliminary subgradient optimization search. 3

The overall procedure generalizes that of Guestrin et al. [27], and produces the same
solutions in cases where both apply. However, this new technique does not require the
additional assumption of a “default action” nor an explicit representation of the intermediate
policies (in their case, a decision list). The drawback is that one has to perform a branch and
bound search instead of solving cost networks to generate the constraints.

4.4.1 Experiments Using BB-API

We have tested the branch-and-bound approximate policy iteration procedure (BB-API) on
two instances of the system administrator problem domain, namely the cycle and 3legs
problems with up to 10 state variables, and a discount factor of 0.95. Full description of
the domain can be found in Appendix A.1. The experiments were encoded and run in the
Matlab environment and carried out on 750MHz Pentium III level machines. We used the
CPLEX 7.5 optimization suite to solve linear programs whenever it was needed.

The objective of these experiments was to obtain an error bound and run time trends
for problem instances of increasing sizes. Unfortunately, more than ten state variables (n)
tended to make the run times prohibitively long. Even so, we can easily see a trend develop-
ing in Table 4.3. For these experiments we used singleton identity basis functions; i.e. the
constant function (φ0(x) = 1) plus a function for each state variables (φi(x) = xi), defined
to return the variable’s value. For each instance we report the exact Bellman error of the
approximate solution as calculated by the branch-and-bound method, the time in seconds,
and the number of policy iterations. In addition, we also report what we call the practicality

score (Pract. Score) which tries to convey how practical the methods is, with higher score
being better. This score is computed as the inverse of the product of error and time (in
seconds).4

The results in Table 4.3 show that the BB-API is, as expected, much more expensive than
straight approximate linear programming (ALP), but clearly produces better approximations
given the same set of basis functions. Although BB-API’s error is about half that of ALP,

3Sometimes a subgradient optimization search can accidentally solve the constrained optimization problem,
and moreover know that it has the optimum.

4Assuming the exclusion of algorithms which take zero seconds to finish.
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we need to keep in mind that the branch-and-bound method directly tries to minimize the
Bellman error, whereas ALP actually minimizes the L1 error. We have not compared the
two methods in terms of their L1 error, though it might give interesting results. To give an
idea how large the worst error is, we mention that it comprised about 5% of the largest state
value.

Another important fact to remember is that BB-API does not fully minimize the Bellman
error of the final weight vector. Instead it achieves a bounded approximation of the Bellman
error of the optimal weight vector [27]. Overall, as the exponential trend in run time seems to
suggest, this method appears to be too costly in comparison with ALP to justify the modest
gains in accuracy it offers. Another summary number that supports this conclusion is the
average practicality score, which is higher for ALP than for BB-API (.15 versus .0022).

ALP BB-API
n B.Err. Time (s) Pract. Score B.Err. Time (s) Pract. Score Iters.

cycle problem, singleton bases
5 2.8 2 0.18 0.9 160 0.00694 10
8 4.1 8 0.03 1.8 1,600 0.00034 16

10 6.7 14 0.01 2.4 5,672 0.00007 22
3legs problem, singleton bases

4 1.8 1 0.55 0.6 383 .00435 7
7 4.0 3 0.08 1.0 697 0.00143 14

10 3.9 9 0.03 1.8 16,357 0.00003 19

Table 4.3: API versus ALP results

4.5 Obtaining an Approximation Using the Dual LP

Another way of obtaining an approximate solution, a trivial derivative of previously men-
tioned methods, has remained unexplored in the literature. This method involves the use of
the dual linear program. Although we do not promote this method, we feel that our attempt
should be mentioned as a potential warning sign regarding its impracticality. As far as we
know an empirical investigation of the direct approximation based on the dual LP has not
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been published.5

Recall that in Algorithm 3 we presented the linear programming formulation of solving
an MDP. The dual method can be derived from either probability principles, or from duality
theory. We will derive these next.

4.5.1 Deriving the Dual

We adapt here a formulation from [52]. Suppose the initial states of the MDP are drawn
from the probability distribution ν, that is,

P (s0) = ν(s0)

We want to find the policy π which maximizes

E

{
∞∑

n=0

γnR(sn, π(sn))

}

In this derivation we will allow for stochastic policies. That is, the action a in state s is
drawn from a distribution over actions P (a|s) = π(a|s). For a given policy π let ysa denote
the expected discounted time that the process is in state s and action a is chosen. That is,

ysa = Eπ

{
∞∑

n=0

γnI{sn=s,an=a}

}
(4.7)

where for any event B,

IB =

{
1, if B occurs
0, otherwise

First, we want to derive the time that the process spends in a given state s, when acting
according to policy π:

5Guestrin [26] has investigated the approximate dual LP theoretically.
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∑

a

ys′a =
∑

a

Eπ

{
∞∑

n=0

γnI{sn=s′,an=a}

}

=
∑

a

Eπ

{
γ0I{s0=s′,a0=a} + γ1I{s1=s′,a1=a} + γ2I{s2=s′,a2=a} + · · ·

}

=
∑

a

(γ0Eπ[I{s0=s′,a0=a}] + γ1Eπ[I{s1=s′,a1=a}] +

γ2Eπ[I{s2=s′,a2=a}] + · · · )
=

∑

a

(γ0P (s0 = s′, a0 = a) + γ1P (s1 = s′, a1 = a) +

γ2P (s2 = s′, a2 = a) + · · · ) (4.8)

= γ0P (s0 = s′) + γ1P (s1 = s′) + γ2P (s2 = s′) + · · · ) (4.9)

= γ0E[I{s0=s′}] + γ1E[I{s1=s′}] + γ2E[I{s2=s′}] + · · · (4.10)

= E

{
∞∑

n=0

γnI{sn=s′}

}

A few remarks:

• in Step 4.8 we use the definition the expected value with respect to the distribution
induced by the policy and transitions;

• Step 4.9 marginalizes over the action variable,

• and Step 4.10 re-uses the expected value definition.

Now we will show what happens if we sum ysa over both states and actions. Let us start
from Step 4.9 above.

∑

s′

∑

a

ys′a =
∑

s′

(γ0P (s0 = s′) + γ1P (s1 = s′) + γ2P (s2 = s′) + · · · )

= γ0 + γ1 + γ2 + · · ·
=

1

1− γ
(4.11)

There are two more parts to the derivation of a linear programming method; to show that
∑

a

ys′a = νs′ + γ
∑

s

∑

a

P (s′|s, a)ysa (4.12)
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and that the numbers ysa which satisfy Equations 4.11 and 4.12 can be interpreted as the
expected discounted time that the process is in state s′ and action a is chosen when the
initial state is chosen according to the probabilities ν and the policy π given by

π(s, a) =
ysa∑
a′ ysa′

(4.13)

is used. To derive the first part we start from Step 4.10:
∑

a

ys′a = γ0E[I{s0=s′}] + γ1E[I{s1=s′}] + γ2E[I{s2=s′}] + · · · (4.14)

= γ0P (s0 = s′) +

γ1
∑

s

∑

a

E[I{s0=s,a0=a}] P (s1 = s′|s0 = s, a0 = a) +

γ2
∑

s

∑

a

E[I{s2=s′,a2=a}] P (s2 = s′|s1 = s, a1 = a) + · · ·

(4.15)

= γ0P (s0 = s′) + γ
∑

s

∑

a

P (s′|s, a)

∞∑

n=0

E[γnI{sn=s,an=a}]

(4.16)

= γ0P (s0 = s′) + γ
∑

s

∑

a

P (s′|s, a)E[
∞∑

n=0

γnI{sn=s,an=a}]

(4.17)

= ν(s′) + γ
∑

s

∑

a

P (s′|s, a)ysa (4.18)

Going from Step 4.14 to 4.15 is based on the following identity:

I{sn+1=s′} =
∑

s

∑

a

I{sn=s,an=a}I{sn+1=s′}

Taking expectations of both sides, we obtain:

E[I{sn+1=s′}] =
∑

s

∑

a

E[I{sn=s,an=a}I{sn+1=s′}]

=
∑

s

∑

a

P (sn+1 = s′, sn = s, an = a)

=
∑

s

∑

a

P (sn+1 = s′|sn = s, an = a)P (sn = s, an = a)

=
∑

s

∑

a

P (sn+1 = s′|sn = s, an = a)E[I{sn=s,an=a}]

(4.19)
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Then, for Step 4.16 we observe that the transition probabilities are not time dependent, as
the process is stationary, and P (s′|s, a) can be factored out of the infinite sum. The last step,
4.18 uses the definition of ysa given in 4.7.

Therefore the set of numbers ysa, i.e. one number for each (s, a) pair, which satisfy
Equations 4.11 and 4.12 can be interpreted as the expected discounted time that the process
is in state s′ and action a is chosen when the initial state is chosen with probability νs′ and
the policy π is given by:

π(s, a) =
ysa∑
a′ ysa′

.

However, we need to find the set of numbers ysa corresponding to the optimal policy, and
given the definition of ysa′ , we need to solve the following linear program:

max
ys′a,a∈A,s′∈S

∑

a

∑

s′

ys′ar(s
′, a)

subject to:
∑

a

∑

s′

ys′a =
1

1− γ

ys′a ≥ 0, ∀s′, a
∑

a

ys′a = ν(s′) + γ
∑

s

∑

a

P (s′|s, a)ysa, ∀s′ (4.20)

Before we do that, we need to draw a connection between the primal and dual LPs.
First we will re-formulate 4.20 in matrix form. Let y be a vector of NM variables, y =


ya1

ya2

...
yaM




where each yaj is a N × 1 vector. Let

C =




I

I
...
I



− γ




P a1

P a2

...
P aM




, and r =




Ra1

Ra2

...
RaM




where each Raj is a N × 1 vector of rewards.
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Then 4.20 can be written as:

max
y

rT y

subject to: CT y = ν

y ≥ 0 (4.21)

For the moment we will leave the constraint
∑

a

∑
s′ ys′a = 1

1−γ
out.

Suppose we want an upper bound on the objective of 4.21, rT y. Then, for any N × 1

vector v, the quantity
rT y + vT (ν − CT y) (4.22)

is an upper bound. Re-arranging Equation 4.22 yields

vT ν + (rT − vT CT )y (4.23)

However, this upper bound can be driven to +∞ unless we restrict v such that (rT −
vT CT ) ≤ 0 and thus Cv ≥ r. Furthermore, we are interested in an instance of v which
gives us the smallest upper bound. To achieve this we either minimize 4.23 or just vT ν

which remains an upper bound if Cv ≥ r. Putting all together, we now have a linear pro-
gramming optimization which is almost identical to the primal LP we used earlier. The only
difference is the use of the initial probability distribution ν in the LP objective.

min
v

νT v

subject to: Cv ≤ r (4.24)

In summary, we derived the dual LP from first principles. Then, while minimizing an
upper bound on the dual objective, we arrived at the primal LP. Note that we left out one
of the constraints, which does not change the resulting optimal policy solution. This holds
true also whether we use ν or 1 as coefficients in the primal objective, because there are no
artificially imposed restrictions on the solution. If we restricted the value function to some
particular class of functions, such as that spanned by a set of basis functions, then the choice
of coefficients in the primal objective can make a difference [15].

From linear programming fundamentals we know that the primal can be solved and the
dual solution is just the primal Lagrange multipliers (sometimes referred to as prices), or
vice versa, the dual can be solved and the primal solution is the dual Lagrange multipliers.
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Given the primal LP, the dual LP can be easily derived. From now on, unless otherwise
stated, the primal LP will be just as we have used it in earlier chapters,

min
v

1
T v

subject to: Cv ≤ r (4.25)

and its dual will be:

max
y

rT y

subject to: CT y = 1

y ≥ 0 (4.26)

4.5.2 Approximating the Dual

We are ready now to develop an approximate method for solving MDPs. We start with the
dual LP from 4.26 and replace variables y by a weighted combination of basis functions,
such that ysa ≈

∑
k φka(s)uka. Thus each action will have its set of basis functions and

its own variables. The approximate dual LP will then have only KM variables, instead of
NM .6 Tentatively, we could just replace the exact y variables with the approximate version
and leave the exact dual LP as is:

max
u

rT
Υu

subject to: CT
Υu = 1

Υu ≥ 0 (4.27)

where
Υ = [Φa1 · · · ΦaM ]

and u =




ua1

ua2

...
uaM




such that each uaj is a K × 1 vector.

6This is true if, for simplicity, we assume K basis functions per action. However, we could instead have a
different number of basis functions for each action, and then we would need a variable for each action and basis
function.
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The difficulty is clear immediately: the strict equality constraints might make the LP
infeasible if the set of basis functions is not accommodating enough. Instead, we could just
minimize the amount by which constraints are not satisfied:

max
u,δ

rT
Υu− δ

subject to: |CT
Υu− 1| ≤ δ

δ ≥ 0

Υu ≥ 0 (4.28)

or

max
u,δ

rT
Υu− δ

subject to: CT
Υu− 1 ≤ δ

1− CT
Υu ≤ δ

δ ≥ 0

Υu ≥ 0 (4.29)

Recall that the policy induced by a dual solution y is defined as:

π(s, a) =
ysa∑
a′ ysa′

Similarly, given a solution u for the approximate dual (4.29), the induced randomized policy
would be:

πu(s, a) =

∑
k φka(s)uka∑

a′

∑
k φka′(s)uka′

4.5.3 Experiments with the Dual LP Approximation

Although we ran simulations on the cycle , 3legs , and 3loops problems, we omit show-
ing here the results; rather, we will only comment on them. The dual LP approximating
method was competitive with the primal based methods in terms of run times, but produced
approximate solutions with much larger error. We do not fully understand why this would
be the case, but, from preliminary experimentation, we deduced that the exact dual LP so-
lution, which can be interpreted as a discounted state visitation count, is much harder to
represent by a linear combination of basis functions than the exact solution of the primal
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LP (i.e. the value function). This became clear once we tried to fit the exact dual solution
using regression. Unfortunately, it seems that the exact dual solution lives in a space far
from that spanned by the basis functions we tried. Given these negative results, we feel that
it is fair to mention them here as a warning that further exploration of this direction may not
be warranted.
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Chapter 5

Improving the Approximate Solution
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5.1 Introduction

While approximately solving an MDP from scratch is desirable, we would also like to be
able to improve an existing solution, regardless of its origin. There are several reasons for
wanting to improve a given solution; for instance it might come from an unreliable source,
in which case we may not want to assume that its error is small, or perhaps we made the
effort and calculated its large error using the branch-and-bound technique of Section 3.2.

Again, we adopt the regular assumptions of previous sections, that the MDP is com-
pactly described using a DBN and the solution is based on a bunch of basis functions. Thus,
given the basis functions and assuming that the MDP has been solved for an approximate
solution already, the question is: how to obtain a new solution with a smaller error. Another
debate can ensue on the relative merit of different error measures, and which one should be
decreased by the new solution. Although it is desirable that a new solution would bring a
decrease in all error measurements, this would be an unrealistic expectation. While—based
on its relation to the L∞ error—some prefer that the Bellman error is decreased, we have
already seen how computationally inefficient this can be, even with improved algorithms
such as the branch-and-bound technique of Section 3.2. Instead, encouraged by the success
of minimizing the weighted L1 error in the previous chapter, we opt in its favor for the new
task of improving an existing solution. Note that no ideals have been given up with certainty.
In fact, significantly reducing the L1 error is bound to eventually reduce the other errors as
well.1

The question then is: how to reduce the error? Since the approximate linear program-
ming method coupled with constraint generation showed promising results, we start with it
as the basis for a new algorithm. Recall that as soon as the approximate LP has been solved,
there is nothing else to be done. That is, the optimization has a clearly defined stopping cri-
terion: when no more constraints can be generated (are violated). There are two directions
that can be explored from here:

1. find a new vector of coefficients for the LP objective (state relevance weights), or

2. find new basis functions to augment the current set.

De Farias and van Roy [15] show that the choice of state relevance weights can be impor-
1Intuitively, if the L1 error is reduced below the maximum per state error (L∞) then all other errors must

have been reduced.
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tant, and point to heuristics in choosing these weights, though, how practical and efficacious
these heuristics are is not clear. Besides common sense being in favor of searching for more
basis functions, we also produced evidence in the last chapter that more basis functions can
drastically reduce some error bound. Another advantage of improving the solution with new
basis functions is that, in theory, one can keep on adding basis functions until the error drops
below a threshold or vanishes. Although impractical, this point is based on the fact that a
finite number of basis functions is sufficient for an exact solution.

We are not aware of any procedure that can find the optimal state relevance weights. In
this chapter we present methods for discovering and producing basis functions with the goal
of reducing the approximation error.

The rest of the chapter is comprised of Section 5.2, which introduces the last contri-
bution of this thesis, namely the algorithm to produce new basis functions such that the
approximation error is reduced.

5.2 Incrementing the Set of Basis Functions

In this section we develop procedures for creating and comparing new basis functions. Sup-
pose we are given a basis function. We do not know what impact it will have on the solution
should we decide to use it, unless we re-solve the LP and calculate the error of the new
solution. However, since the concrete goal of the optimization is to minimize the LP objec-
tive, why not use it as a less expensive means of gauging the goodness of a basis function,
instead of a full blown branch-and-bound error calculation? Thus, we want to find new basis
functions which, when used in the value function representation, improve (i.e. reduce) the
linear program objective. Whether one can improve it optimally or not is not clear yet.

Recall that a basis function is defined over a set of multivalued variables whose totality
of configurations comprises the domain of the function, and returns a scalar for each of these
configurations. Therefore, whenever we talk about creating a basis function, we mean that
we produce a subset of state variables,2 and a set of values, one for each configurations of
variables. As mentioned before, we also want to be able to order basis functions, i.e. to
associate a value with each, which would be indicative of how desirable the basis function
is.

2We abuse the meaning of domain by sometimes referring to the set of variables as the domain, instead of
explicitly saying the set of configurations of variables.
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In summary, there are three issues when considering the creation (or discovery) and
addition of a basis function:

• decide state variables that should be part of its domain,

• construct a basis function given the candidate domain, i.e. produce a table of real
values, one per configuration,

• and score the effect of using the candidate basis function.

Putting it all together leads effortlessly to a high level method as shown in Algorithm 10.
Perhaps some steps in this algorithm can be collapsed into one (e.g. generating the basis

Algorithm 10 Expanding The Basis Function Set
1: B ← φ0, w

(0) ← 0, i← 0

2: while NOT SATISFIED WITH SOLUTION w(i) do

3: i← i + 1

4: generate candidate domains xj ⊆ x, where j = 1, 2, . . . , J

5: for each xj , j = 1, 2, . . . , J do

6: construct basis function φij
(xj)

7: score ability of φij
(xj) to reduce LP objective

8: B ← B ∪ {φik
: score(φik

) ≥ score(φij
), j = 1, . . . , k − 1, k + 1, . . . , J .

9: w(i) ← result of solving LP using the new set of basis functions B

function values as well as producing a score), but that does not change the essence of the
method.

The three main issues require individual attention.

5.2.1 Choosing a Basis Function Candidate Domain

In choosing candidate domains we want to maintain two requirements: candidate domain
sizes should remain small, such that the cost networks do not become unwieldy, and the set
of candidate domains should be exhaustive; i.e., eventually the procedure should produce
a set that includes every choice of subset of state variables less than or equal to a given
size—once only for binary variables.
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With these goals in mind we propose three approaches that differ mainly in how aggres-
sively they move from small domains to considering larger domains. The more aggressive
the expansion, the more computationally expensive it is.

The first method, which we call sequential, is the most conservative; it first considers
singleton domains until they are exhausted, then doubleton, and so on. The second approach,
which we call lattice because its expansion follows a subset of lattice, considers a candidate
domain if and only if all of its proper subsets have already been used as domains in the
current set of basis functions. For instance, if the current set of domains was

{}, {a}, {b}, {c}, {a, b}, {a, c}

then {a, b, c} could not be added to the set, but {b, c} could. Only after adding a basis
function defined on variables {b, c}, could another be added on {a, b, c}.

The least conservative approach, neighbors, considers all candidate domains which can
be constructed as the union of one of its current domains and a new state variable.

5.2.2 Scoring the Basis Function

Although Algorithm 10 needs to construct a basis function before scoring it, it is essential
to understand the scoring methods first.

Let us assume that the current set of basis functions is Φ = [φ1φ2 · · ·φk−1] and, as
noted before, to obtain an approximate value function we must solve the linear program:

min
w

ϕT w subject to Φw ≥ Ra + γP a
Φw ∀a

or, re-arranging,

min
w

ϕT w subject to (I − γP a)Φw ≥ Ra ∀a.

To further simplify notation let

C =




(I − γP a1)Φ

(I − γP a2)Φ
...

(I − γP am)Φ



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and

r =




Ra1

Ra2

...
Ram




so that the LP becomes
min

w
ϕT w subject to Cw ≥ r. (5.1)

We will call C the coefficient constraint matrix, or, simply the constraint matrix. We will
also call Equation 5.1 the primal of the linear program. From duality theory [12] we have
that the dual of this LP is

max
λ

λT r subject to λT C = ϕ,λ ≥ 0. (5.2)

Assume we have solved the primal and dual linear program and obtained a solution pair
(w,λ).

Now we want to measure the impact that adding a basis function φk has on the linear
program objective with current solution pair (w,λ) and the set [φ1φ2 · · ·φk−1] as current
basis functions. The new basis function induces a new column c:,k in the constraint matrix,
and a new entry ϕk in the LP objective. A new LP variable w′

k is also needed. The new
primal will be

min
w′

ϕ′T w′ subject to C ′w ≥ r,w′ ≥ 0 (5.3)

where
w′ = [w′

1 w′
2 · · · w′

k]
T

ϕ′ = [ϕ1 ϕ2 · · · ϕk]
T

C ′ = [c:,1 c:,2 · · · c:,k].

The ideal scenario would be to add a basis function which reduces the LP objective max-
imally. That is, given the current LP solution w we would like a basis function φk such
that

ϕT w −ϕ′T w′ ≥ ϕT w −ϕ′T u′, ∀u′.

The obvious approach to achieve this goal is to simply add the new basis function to the
current set and resolve the entire LP. Since our objective is to quantify this effect so that we
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can compare candidate functions, we define score flp(φk) to be the value of the LP objective
after solving it with the new basis function included:

score flp(φk) = ϕ′T w∗′.

It should be clear that the main limitation of this approach is its cost. Resolving the entire
linear program for each candidate function is hardly a desirable feature.

At the other end of the spectrum—as far as computation cost goes—stands an approach
inspired from duality theory. This approach gives up the optimal reduction of the LP objec-
tive in favor of a potential reduction, no matter how small, but which is scored in a com-
putationally efficient manner. Recall that, for a solution pair (w,λ), all primal constraints
are satisfied. The column c:,k induced by the newly added basis function φk corresponds to
the dual constraint cT

:,kλ = ϕk. If this constraint is satisfied, then φk is guaranteed not to
provide any improvement in the LP solution. Therefore we define

score dual(φk) = max

{
| min
c:,k,ϕk

cT
:,kλ− ϕk|, | max

c:,k,ϕk

cT
:,kλ− ϕk|

}
.

Thus this score is higher if the new dual constraint is unsatisfied by a larger amount, on
either side of 0. Note that whereas before λ were the unknowns, now λ are given, while
c:,k and ϕk are (indirectly) the variables. An implementation detail is that the real variables
are, of course, the basis function parameters, or table values, which induce c:,k and ϕk. The
linear optimization needed to produce this score requires further treatment and is explained
in detail in the next section, where it fits better conceptually.

For now, we propose yet another approach which offers a compromise—both in terms
of computational cost and accuracy of prediction—between score flp() and score dual().
Assume again having a current LP solution pair (w,λ) and a candidate basis function φk.

According to complementary slackness properties from linear programming we have
that:

if λi > 0 then ci,:w = ri

if λi = 0 then ci,:w ≥ ri

where ci,: and c:,j are the i-th row and j-th column of C, and i = 1, 2, . . . ,mN , j =

0, 1, . . . ,K. In other words, the primal/dual constraints corresponding to non-zero solution
parameters are satisfied with no slack (i.e. we have an equality expression) and are called ac-
tive constraints. Let B = {i : λi > 0} be the set of indexes of the primal active constraints,
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then
CBw = rB

w = C−1
B rB (5.4)

where CB is square and invertible for non-ill posed problems.
If we impose that the solution of the new LP—the one using φk as well—has an active

constraint set B′ inclusive of the original constraint set B (B ⊂ B ′), we then have the
following linear program:

min
w′

k−1∑

j=0

ϕjw
′
j + ϕkw

′
k subject to





C ′
Bw′ = rB

C ′
Nw′ ≥ rN

w′ ≥ 0

(5.5)

where N = {i : λi = 0}. The first constraint expression of this linear program can also be
written as:

C ′
Bw′ = rB

CB




w′
1

w′
2

...
w′

k−1




+ cB,kw
′
k = rB

CBw′

1:k−1 + cB,kw
′
k = rB

from which we solve for w′
1:k−1

w′
1:k−1 = C−1

B rB −C−1
B cB,kw

′
k

= w −C−1
B cB,kw

′
k, (5.6)

where the last line follows from Equation 5.4. Re-writing Equation 5.5 as

min
w′

ϕT
1:k−1w

′
1:k−1 + ϕkw

′
k subject to





CBw′
1:k−1 + cB,kw

′
k = rB

CNw′
1:k−1 + cN,kw

′
k ≥ rN

w′ ≥ 0
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and substituting w′
1:k−1 reduces the linear program from k variables to just one:

min
w′

k

ϕT
1:k−1

(
w −C−1

B cB,kw
′
k

)
+ ϕkw

′
k

subject to



CB

(
w −C−1

B cB,kw
′
k

)
+ cB,kw

′
k = rB

CN

(
w −C−1

B cB,kw
′
k

)
+ cN,kw

′
k ≥ rN

w′ ≥ 0

. (5.7)

This can be further simplified to finally obtain:

min
w′

k

(
ϕk −ϕT

1:k−1C
−1
B cB,kw

′
k

)
w′

k

subject to{ (
cN,k −CNC−1

B cB,k

)
w′

k ≥ rN −CNw

w′
k ≥ 0

. (5.8)

At a first glance Equation 5.8 looks deceivingly simple (really, it is a one variable linear
program only), however, one must keep in mind that for large problems this simple LP
will have many constraints, and constraint generation may be required as a more efficient
implementation.

The difference between the objective corresponding to the given solution pair (w,λ)

and the objective value of Equation 5.8 is defined as score plp():

score plp(φk) = ϕT w −
(
ϕk −ϕT

1:k−1C
−1
B cB,kw

′
k

)

Thus, each of the three scoring methods can determine with certainty whether the LP
objective will be improved on or not.

5.2.3 Constructing the Basis Function Given a Candidate Domain

Finally, given a set of state variables, the task is to construct a non-linear3 basis function
with the set as its domain. An important issue in constructing this function may be the
choice of representation (for compactness reasons); however, one of our assumptions was
that the domain of the function remain small and the representation then can be just a look-
up table. For binary variables the look-up table would be exponential in the number of
variables making up the function domain.

3A linear function of these variables would just be vacuous.
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We consider two methods of constructing basis functions on a given domain. The sim-
pler one is an XOR4 like function defined as

bk(xk) = bk(xk1 , xk2 , . . . , xkl
) = (−1)xk1 (−1)xk2 · · · (−1)xkl

The advantages offered by this method are:

• each new basis function is linearly independent of those in the current set of functions;

• the method is easy to implement and understand;

• basis functions are computationally easy to create.

Its downside is that it is not based on any insights or theory that would indicate produc-
tion of quality basis functions. Therefore we are left with the task of testing the method
experimentally with little known of what to expect.

The second method optimizes the basis function lookup table values for the given do-
main, to maximize score dual(). Recall that the dual score of a function φk was partly5 (and
superficially) defined as

max
cT
:,k,ϕk

cT
:,kλ− ϕk. (5.9)

We can now put simplicity aside and reveal all details necessary to easily understand the
optimization’s solution. Let us suppose that the domain of φk is binary variables xk, and
also that it is parameterized by the vector ξ, denoted by φk,ξ. This implies a one-to-one cor-
respondence between configurations of xk and elements of ξ. Thus the connection between

4The careful reader will have easily observed that the function thus presented relies on the fact that state
variables xk1

, xk2
, . . . , xkl

take 0/1 values. Although we can extend this type of basis function construction to
multivalued variables using ideas from construction of Hadammard matrices, we only experimented with basis
function construction on binary variables.

5Two identical linear optimizations have to be performed, one for a max and one for a min; we show only
one here for obvious reasons.
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c:,k, ϕk, and the parameters of φk,ξ becomes evident:

c:,k =




(I − γP a1)φk,ξ

(I − γP a2)φk,ξ

...
(I − γP am)φk,ξ




(5.10)

= A




φk,ξ

φk,ξ

...
φk,ξ




(5.11)

ϕk = 2n−|Dom(φk,ξ)|
∑

xk

φk(xk)

= 2n−|Dom(φk,ξ)|
∑

j

ξj (5.12)

where it is obvious what matrix A is.
Suppose that the current solution pair is (w,λ). There are two problems with the op-

timization in Equation 5.9. First we observe that the current dual solution vector λ has
as many elements as there are states, hence making the optimization impractical. Luckily
we are saved by the fact that most of the λ vector is filled with zeros. In fact—using pre-
vious notation—we can concentrate our attention on the non-zero part of the the vector:
λB . There are as many non-zero entries as there are active constraints in the LP, a number
which is also equal to the number of primal variables (size of w). We can use this fact right
away in Equation 5.9, and also substitute the expressions from Equations 5.10 and 5.12 into
Equation 5.9:

max
ξ

∑

i∈B

ci,kλi − ϕk (5.13)

≡ max
ξ

∑

i∈B

ci,kλi − 2n−|Dom(φk,ξ)|
∑

j

ξj (5.14)

≡ max
ξ

∑

i∈B

Ai,kξiλi − 2n−|Dom(φk,ξ)|
∑

j

ξj (5.15)

≡ max
ξ

τ T ξ (5.16)

The only step requiring clarification is from Equation 5.15 to the vector dot product of
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Equation 5.16. This is possible simply by factoring out each ξi, thus obtaining its coefficient
τi.

The second difficulty to overcome (and, instead of using Equation 5.9 we use Equation
5.16) is that, left this way, the variables can shoot to infinity; in other words, the optimization
is unbounded. The typical solution is to constrain variables artificially to some reasonable
values. For example, we could add the constraint that a norm of ξ equals 1:

max
ξ

τ T ξi

subject to ||ξ|| = 1 (5.17)

The choice of norm depends (from our point of view) partly on what effect it has on
the optimization: does it make it impractical?—or leaves it unchanged. We consider three
norms: L1, L2, and L∞. Using an L1 normalization yields a non-linear program of several
variables and one constraint. A naı̈ve linearization would end up with an exponential num-
ber of constraints. Using L2 and L∞ results in linear objectives with non-linear constraints,
which cannot naively be made into linear programs. Considering that we might need to con-
struct and score many basis functions, and therefore, computing one of these optimizations
many times, the prospects of either an exponential number of constraints or, worse, non-
linear optimizations is not very good. However, behind each of the three methods is hidden
a simple linear time6 operation.

Optimizing a Basis Function Whose Parameters are L1 normalized

In this section we want to show that

max
ξ

τ T ξ

subject to
∑

i

|ξi| = 1 (5.18)

can be solved in linear time.
The optimal ξ∗ is found by Algorithm 11:

Lemma 5.2.1 A convex combination of a finite number of finite reals is at most as large as

the largest of them.

6Linear in the number of parameters of the basis function being created.
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Algorithm 11 Basis function creation with L1 constraint
1: ξ∗ = 0

2: i∗ = arg maxi |τi|
3: ξi∗ = sign(τi∗)

where the sign function returns -1, 0, and 1 for respectively negative, zero, and positive
arguments.

Proof. Let x ∈ R
n, and −∞ < xi < ∞, ∀i = 1 . . . n, and w ∈ R

n,
∑n

i=1 wi = 1,
and wi ≥ 0, ∀i = 1 . . . n. We want to show that xT w ≤ maxi xi. Suppose the opposite
holds: xT w > maxi xi. Then, to avoid the trivial case, there must be at least two elements
participating in the sum; i.e. xjwj +xkwk > maxi xi, and

∑
i,i6=j,i6=k wi = 0, wj +wk = 1.

We either have:

1. wj = 1 and wk = 0 which implies that xj > maxi xi, a contradiction,7 or

2. wj = 0 and wk = 1 which implies xk > maxi xi, another contradiction, or

3. 0 < wj < 1 and wk = 1 − wj , which implies that wj(xj − xk) + xk > maxi xi.
Now, either xj = xk, which leads to the contradiction that xk > maxi xi, or xj < xk

which implies the contradiction that a number slightly smaller than xk is greater than
the max, or, finally, xj > xk, which leads to the contradiction that a number slightly
larger than xk but smaller than xj is larger than the max.

Hence, our supposition that xT w > maxi xi holds must have been false. �

Proposition 5.2.2 Algorithm 11 solves the optimization of Equation 5.18 in O(|ξ|) time.

Proof. A quick glance at the algorithm suffices to be convinced that it is a linear time
operation. To prove that it produces the optimal ξ we first observe that the L1 normalization
constraint imposed on the ξ variables implies also that 0 < |ξi| < 1. Also, for any given
ξ, if any of its elements have negative signs, we can make them positive provided that we
change the signs of the corresponding elements in τ , and the optimization will not change.
Using Lemma 5.2.1 on this optimization proves the proposition. �

7No other element can be greater than the max.
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Optimizing a Basis Function Whose Parameters are L2 normalized

In this section our goal is to show that

max
ξ

τ T ξ

subject to
√∑

i

ξ2
i = 1 (5.19)

can be solved with a linear time operation.

Proposition 5.2.3

ξ∗ =
τ

||τ ||2
Proof. Suppose the angle between τ and ξ is θ. Then, by the definition of cosine,

cos(θ) =
τ T ξ

||τ ||2 ||ξ||2
(5.20)

Helpful facts: the cosine function achieves a max when it is equal to 1; we have a constraint
that ||ξ||2 = 1. Substituting this in Equation 5.20 we get

τ T ξ

||τ ||2
= 1

We conclude that the optimal value for ξ is τ
||τ ||2

, since

1 =
τ T ξ

||τ ||2
(5.21)

=
τ T τ

||τ ||2||τ ||2
(5.22)

=
τ T τ√

τ T τ
√

τ T τ
(5.23)

= 1 (5.24)

�
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Optimizing a Basis Function Whose Parameters are L∞ normalized

In this section we want to show that

max
ξ

τ T ξ

subject to max
i
|ξi| = 1 (5.25)

which can easily be converted into a linear program:

max
ξ

τ T ξ

subject to −1 ≤ ξi ≤ 1 ∀i (5.26)

is actually only a linear time procedure.

Proposition 5.2.4

ξ∗i = sign(τi) ∀i

Proof. Since the smallest and largest values of any element in ξ are bounded by -1 and 1
respectively, the largest objective can be obtained by simply changing the sign of negative
entries in τ . �

5.3 Experiments

Motivation, Goals, and Setup

We have proposed new methods for solution improvement by automatically constructing
basis functions; however, it is difficult to ascertain with certainty the goodness of all the
combinations of our proposed methods. We would like to be able to answer the following
questions.

• Do our methods work at all?—that is, does at least the L1 error decrease as the number
of basis functions used increases?

• Do our methods decrease the other error measures (L∞, Bellman error) as well?

• How rapidly, or according to what type of trend do the different errors decrease?
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• To what extent is the decrease in different error measures correlated (helps in predict-
ing more expensive error measures without calculating them)?

• Does the error indeed reduces to zero after adding enough basis functions?

In an effort to obtain more heterogeneous results we conducted experiments on a number
of different problems: the system administrator domain (Appendix A.1), in three
configurations: cycle , 3legs , and 3loops , the resource problem (Appendix A.3),
the robot problem (Appendix A.2), and the advisor problem (Appendix A.4). To be
able to answer the last question, we must be able to generate all the necessary basis functions
to arrive at the exact solution. For large problems this can be prohibitively time consuming;
therefore, we chose problem sizes that enabled us to finish the experiments in a reasonable
time. Hence these experiments are not to showcase how large a problem we can efficiently
obtain an approximation for; rather, they focus on providing answers to the posed questions.
We used seven binary state variables for the cycle , 3legs , and 3loops problems, such
that 128 basis functions suffice to solve the problem exactly. If we were to hand pick basis
functions it would be as easy as matching each of the 128 states to one basis function, which
returns a 0 for all other states but its own (a state indicator function)—but they would not
have a compact representation, making them unsuitable but for small problems, and it would
defeat the purpose. By any accounts these are small problems, which helps our investigation
by allowing us to compute the exact solution and any error our approximations may incur.

Similarly, we set parameters for the resource , robot , and advisor to facilitate
comparison of results; only the advisor problem requires 125 basis functions while the
resource and robot problems require 128 basis functions.

All the problems used a discount factor of 0.95;8 other problem parameters (e.g. tran-
sition probabilities, reward function) are set as described in the appendix. The code has
been written in Matlab but we called the CPLEX 7.5 linear programming solver when ever
needed. All simulations were run on 750MHz PCs.

Our methods offer 18 combinations for each problem:

• three ways of scoring basis functions, full LP (score flp), partial LP (score plp), and
dual LP (score dual);

8Other values for the discount factor had no impact on the conclusions we could draw from experiments.
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• two ways of constructing basis functions, XOR (xor) and optimization with L1 nor-
malization (optl1);

• three methods for choosing the basis functions’ domains, sequential, lattice, and
neighbor.

Although we developed and showed earlier three ways of optimizing a new basis function,
using L1, L2, and L∞ normalization, we show only results done with an L1 normalization;
the other two normalization criteria did not offer significantly better (or worse) results, and
we decided to omit their account.

Results and Discussion

The first series of simulations we performed aimed at comparing scoring methods. For the
first three problems all 18 combinations were tried, while for the last three problems we
excluded XOR basis function construction.

All figures are plots of an error measure on the y axis and number of used basis functions
on the x axis. More pertinent details are given on each plot. For instance, the error measures
shown are L1 at the top, Bellman error in the middle, and L∞ at the bottom. We have also
prepared plots of the LP objective value against the number of basis functions but omit them
for brevity, since their shape has been without exception almost identical to that of the L1

plots. All the plots can be found in Appendix B.
Answers to some of the questions we posed are evident even after a quick glance at these

figures. All plots show that the more basis functions are added, the more the error decreases.
It is also clear that, as the last necessary basis function is added, the exact result is obtained
and the error vanishes. In all cases the error seems to drop by a very significant amount after
the first few basis functions are added (on average after about 15% of the total number of
basis functions the L∞ error dropped by about 83%). Among the six problems tried here,
resource and advisor seem to have the more amenable structure for approximation, as
they seem to require fewer basis functions than the other problems to achieve small error.

In all these plots the L1 and L∞ error plots are smoother and easier to see a trend in,
while the Bellman error tends to jump all over the place. Even so, it is quite easy to see that
the curves are highly correlated in all cases, especially the L1 and L∞ errors. In light of the
fact that one is not able to minimize the L∞ or Bellman error directly and efficiently, this
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is an exciting result; it gives one hope that minimizing the L1 error instead can result in a
similar diminishing trend in the L∞ error.

However, as we expected, there are significant differences among the different method
combinations we investigate, and we would like to learn which is more advantageous to
choose. We start by comparing scoring methods. While in this section we present only
highlights, resulting plots comparing full LP, partial LP, and dual LP are shown in their
entirety in Appendix B, pages 122–135.

As scoring methods go, we expected that score flp would be more accurate in predicting
the goodness of a basis function than score plp, which in turn would be more accurate than
score dual. Although the expectation held, the difference in error measures is quite insignif-
icant. In many cases using score dual the error curve is very close to the that of score flp

and score plp: this can be seen especially when optimizing the basis functions (optl1) and
not using xor (e.g. Figure 5.1), on all problems but robot with neighbor domain selec-
tion (Figure 5.2). In general a marked—but not very big—difference between score dual

and the other two scoring methods can be seen when using the xor basis functions, on the
cycle , 3legs , and 3loops problems especially when the domain was chosen with the
neighbor method. This is good news, since we want to avoid the costlier methods and only
use score dual, which is a constant time operation9 in the best case and linear in the worst
(for xor functions).

Another point of interest is whether constructing basis functions via optimization or the
xor method is better. To compare the two methods we show detailed plots in the appendix
on pages 136–140. Having drawn a comparison on scoring methods, we continue with
score dual as the preferred procedure. The results are quite consistent across the three
problems that we restrict our attention to in this comparison: cycle , 3legs , and 3loops .
Slightly better performance is obtained by optl1, especially when domains are chosen via
lattice and neighbor (e.g. Figure 5.3). When domains are chosen with sequential the curve
shapes for xor and optl1 are almost identical, as illustrated in Figure 5.4.

One last comparison we want to make is among domain choice methods. According to
our previous results, we choose to show only the top performers and thus fix the scoring
method to score dual and basis function construction to optl1. Each graph on pages 141–
143 in the appendix shows the error curves obtained by running the algorithms to completion
(until the error vanished) on all six problems. Recall that of the three domain choosing

9The basis function construction produces the score as a side effect.
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procedures, neighbor is the most aggressive in its progression to domains of many variables,
while sequential is the most conservative. The two simulations which show the greatest
difference are those solving the cycle and 3legs problems. For instance, in Figure 5.5,
the L∞ error for neighbor drops the fastest, reaching about 16% of its initial value when
20 basis functions are used, compared to only 32% for sequential and lattice. However,
on the advisor problem it is sequential which drops the error fastest, using only 6
basis functions compared to neighbor using 12 basis functions to achieve the same level of
accuracy (Figure 5.6). Although neighbor does not perform best in all cases, it does seem
to be the better method overall.
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Figure 5.1: Example of good performance for the score dual scoring method.
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Figure 5.2: Example of slightly lower performance for the score dual scoring method.
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Figure 5.3: Example of lower performance when constructing a basis function with xor

versus optl1.
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Figure 5.4: Example of similar performance for both xor and optl1.
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Figure 5.5: Example of good performance for the neighbor domain choosing method.
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Figure 5.6: Example of good performance for the sequential domain choosing method.
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Chapter 6

Conclusions
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It seems that the big thorn in the side of much current research in several subfields of ar-
tificial intelligence is the inability to solve big, complex, real world problems. The desire to
solve such problems, otherwise provably hard from a computational complexity standpoint,
was the driving motivation for us. We feel that this thesis’ contributions constitute progress
in the right direction. Specifically, we believe that being able to compute the Bellman er-
ror without using brute force is progress, being able to compute an approximate solution
in seven seconds where the state of the art algorithm solved it in seven hours is progress,
as is the ability to improve an approximation error to the extent that one’s computational
resources allow.

We are aware that our algorithms do not have optimality theory behind them, and that
this may be unpleasant for some, but we strived to provide convincing empirical evidence
for the features we deemed interesting.

In summary, in Chapter 3 we provided a novel branch-and-bound algorithm for com-
puting the exact Bellman error of approximate solutions in compactly represented MDPs,
in Chapter 4 we developed algorithms based on the direct use of linear programming to ap-
proximately solve such MDPs given a set of basis functions to represent the solution, and in
Chapter 5 we introduced a suite of methods for improving the accuracy of the approximate
solution by expanding the set of current basis functions.

Let us mention some attractive features of our methods:

• the ability to compute the Bellman error without resorting to brute force;

• the ability to solve factored MDPs while minimizing the Bellman error without a
“default action” assumption;

• the ability to drastically reduce the computation time of approximately solving fac-
tored MDPs;

• the ability to improve the current approximation, in effect making it an any-time al-
gorithm;

• a principled way to choose new basis functions such that the error is reduced;

• automatic and efficient construction of basis functions;

• several configuration choices, allowing the designer to custom fit the algorithm to the
problem at hand; alas we cannot claim that the combination we found to work well

94



on the six problems we experimented with will work best on all problems.

There is, however, room for improvement, and we list some possible future research
directions. For every new basis function that gets added to the current set a search is per-
formed over many domains. The domain whose constructed basis function has the highest
score is then chosen. The main source of inefficiency here is the large number of domains to
consider at every iteration and calculate a score for, even though computing the score is fast.
Several heuristic based solutions for this impediment can be further proposed. For instance,
since for many domains a score is computed time and again, one can cache and re-use older
scores. These cached scores would probably be adequate if new scores are re-computed
often enough while the overall algorithm time can be shortened significantly. Another im-
provement could be implemented by adding more than one basis functions to the current set
at each iteration. The choice can be made considering either cached or current scores.

We have also experimented with and obtained very preliminary results from a technique
which eliminates the explicit search over basis function domains. The method uses the fact
that a primal LP column is a dual LP row, and choosing a basis function is for the dual much
like a new constraint is generated when solving the primal LP. We hope that this method can
provide further speed improvements over the methods we introduced, allowing us to solve
even larger problems.

If one sets an upper limit on the number of variables allowed to make up the domain of
basis functions, then choosing the variables may be done using a procedure based on variable
elimination. For any given variable elimination order, intermediate factors are formed whose
size (in number of variables) determines the efficiency of the variable elimination procedure.
Since this efficiency has a direct impact on the search for the maximum violated constraint,
one can choose domains for new basis functions such that they are at most as large as the
upper limit, and that no intermediate factor has size greater than what can be handled safely
with available computing.
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Appendix A

Problem Description

97



A.1 The system administrator Domain

This artificial problem domain is due to Guestrin et al. [27] and its appeal for experimen-
tation can be traced to three features: inherent structure, flexibility, and scalability. The
structure that each instance of this problem exhibits lends itself very well to compact repre-
sentation, and therefore to the algorithms proposed here, just as they do to the algorithms of
Guestrin et al. One can easily create problem instances of various configurations, allowing
great flexibility in choosing how state variables influence each other, and therefore how easy
or difficult the instance is. Finally, given a fixed network configuration, one can easily create
instances as small or large as desired for experimentation.

The system administrator domain is described as a number of computers that
are connected in a network, in a particular configuration, which influences directly the dy-
namics of the system. We experiment with instances in which one of the computers is
designated as server, while the rest are clients. The server is presumed somewhat more im-
portant in a network, and this fact is reflected in both the transition probabilities and the
reward function.

The state of the system is represented as a vector of binary variables, one for each ma-
chine in the network. The value of a variable indicates whether the respective machine is
up (1) or down (0). At each stage a computer can go down according to a probability which
is increased if its neighbors (adjacent machines in the network) were down in the previous
stage. Each machine that is up contributes 1 to the reward, except for the server, who con-
tributes 2. At each stage the system administrator can take the action of either rebooting one
of the machines, in which case it may come up, or not reboot any machine. Machines also
may spontaneously come up with a small probability. The actual transition probabilities we
used were:

• P (x′
i = 1|xi, parent(xi), a = i) = 0.95

• P (x′
i = 1|xi = 1, parent(xi) = 1, a 6= i) = 0.9

• P (x′
i = 1|xi = 1, parent(xi) = 0, a 6= i) = 0.67

• P (x′
i = 1|xi = 0, parent(xi), a 6= i) = 0.01

For all instances of this domain the discount factor we used was γ = 0.95.
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We experimented with a variety of network configurations, and show here results on
three particular layouts. In the first one, the machines are networked in a loop (as shown
in Figure A.1), and influence each other only in one direction: we names this a cycle
configuration.1 The second layout has a three legged star shape with the server in the middle,
as shown in Figure A.2. The third configuration is similar to the star configuration, except
that each of the outward legs forms itself a loop (Figure A.3).

x1 x2

x8 x3

x7 x4

x6 x5

Figure A.1: Graphical depiction of the cycle configuration for the system administration
problem.

1We will also call this the cycle problem, meaning really the system administrator domain with a
cycle configuration.

99



x3

x2

x1

x6 x4

x7 x5

Figure A.2: Graphical depiction of the 3legs configuration for the system administration
problem.

x4

x5 x3

x2

x11 x1 x9

x12 x10 x6 x8

x13 x7

Figure A.3: Graphical depiction of the 3loops configuration for the system administration
problem.
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A.2 The robot Problem

This problem is due to Craig Boutilier [9]. The domain envisions a robot whose task is to
deliver mail and coffee to a number of users. There is a set of n users {U1, . . . , Un}, and a
set of locations {C,M,H,O1, . . . , On}. We model the problem as follows.
State variables:

• Loc ∈ {C,M,O1, . . . , On}, a multi-value variable for encoding locations;

• WC(i) ∈ {0, 1}—user i = 1, . . . , n wants coffee;

• MW (i) ∈ {0, 1}—mail is waiting for user i;

• HC ∈ {0, 1}—robot has coffee;

• HM(i) ∈ {0, 1}—robot has mail for user i;

• BatOK ∈ {0, 1}—robot battery status.

Actions:

• move(H, l) —move from home to any other location l;

• move(l,H) —move from any other location l back home;

• GetCof —get coffee;

• GetMail(i) —get mail for user i;

• DelCof(i) —deliver coffee to user i;

• DelMail(i) —deliver mail to user i;

• ChargeBat —charge battery if BatOK is 0.

Dynamics:

1. move(lj , lk): affects Loc, BatOK, MW (i), and WC(i).

101



Loc′ depends on BatOK and Loc:

P (Loc′ = lk | Loc = lj , BatOK = 1) = p succ the move from lj to lksucceeded, andlk 6= lj ;

P (Loc′ = lj | Loc = lj , BatOK = 1) = 1− p succ move did not succeed, so the robot’s stuck in the same location;

P (Loc′ = lk | Loc = lk, BatOK = 0) = 1 i.e. robot did not move if battery is drained;

P (Loc′ = lj | Loc = lj) = 1, for any lj 6= l1;

where we used p succ = 0.9 as the probability that a move succeeds.

BatOK ′ depends on BatOK: P (BatOK ′ = 1|BatOK) = 1 − pdrain, where
p drain and was set to 0.1 to avoid causing resource contention.

MW (i)′ depends on MW (i):

P (MW (i)′ = 1 | MW (i) = 1) = 1− p wait maili

P (MW (i)′ = 1 | MW (i) = 0) = p wait maili

where we used p wait maili = 0.2 as the probability that mail is waiting at any stage
for user i.

WC(i)′ depends on WC(i):

P (WC(i)′ = 1 | WC(i) = 1) = 1

P (WC(i)′ = 1 | WC(i) = 0) = p want cofi

where p want cofi is the probability that at any instant user i requests coffee and was
set in our experiments to 0.25;

2. DelCof(i): affects HC, WC(i), BatOK, MW (j) (for all j), WC(j) (for all j 6= i)

HC ′ depends on HC and BatOK:

P (HC ′ = 1 | BatOK = 1) = 0

P (HC ′ = 1 | HC,BatOK = 0) = 1

P (HC ′ = 1 | HC = 0, BatOK = 0) = 0
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WC(i)′ depends on HC, Loc, WC(i), BatOK

P (WC(i)′ | HC,Loc = Oi,WC(i), BatOK) = 0.2 (or some failure prob)

P (WC(i)′ = 1 | HC = 0, Loc 6= Oi,WC(i) = 1, BatOK = 1) = 1.0

P (WC(i)′ = 1 | WC(i), BatOK = 0) = 1.0

P (WC(i)′ = 1 | WC(i) = 0) = p want cofi

The parameters for MW (j), WC(j), and BatOK are the same as for the move(lj , lk)

action, for all j.

3. DelMail(i): affects HM(i), MW (i), BatOK, WC(j) (for all j), MW (j) (for all
j 6= i)

HM(i)′ depends on HM(i),BatOK:

P (HM(i)′ = 1 | BatOK = 1) = 0

P (HM(i)′ = 1 | HM(i) = 1, BatOK = 1) = 1

P (HM(i)′ = 1 | HM(i) = 0, BatOK = 1) = 0

MW (i)′ depends on HM(i), Loc, MW (i), BatOK

P (MW (i)′ = 1 | HM(i) = 1, Loc = Oi, BatOK = 1) = 0 (mail always succeeds)

P (MW (i)′ = 1 | HM(i) = 0, Loc 6= Oi,MW (i) = 1, BatOK = 1) = 1.0

P (MW (i)′ = 1 | MW (i) = 1, BatOK = 0) = 1.0

P (MW (i)′ = 1 | MW (i) = 0) = p maili

The parameters for MW (j) (for all j 6= i, WC(j) (for all j), and BatOK are the
same as for the move(lj , lk) action.

4. GetCof : affects HC, WC(j), BatOK, MW (j)

HC ′ depends on HC,BatOK,Loc:

P (HC ′ = 1 | HC = 0, Loc = C,BatOK = 1) = 0.9 (or some pickupcoffee success prob)

P (HC ′ = 1 | HC = 0, Loc 6= C,BatOK = 0) = 0

P (HC ′ = 1 | HC = 1) = 1
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Note: the robot can hold only one cup of coffee.

The parameters for MW (j) (for all j 6= i, WC(j) (for all j), and BatOK are the
same as for the move(lj , lk) action.

5. GetMail(i): affects HM(i), WC(j), BatOK, MW (j)

HM(i)′ depends on HM(i),BatOK,Loc:

P (HM(i)′ = 1 | HM(i) = 0, Loc = M,BatOK = 1) = 0.9 (or some pickupmail success prob)

P (HM(i)′ = 1 | HM(i) = 0, Loc 6= M,BatOK = 0) = 0

P (HM(i)′ = 1 | HM(i) = 1) = 1

Note: we assume that the robot can carry all existent mail.

The parameters for MW (j) (for all j 6= i, WC(j) (for all j), and BatOK are the
same as for the move(lj , lk) action.

6. ChargeBat: affects HM(i), MW (i), WC(i), HC, BatOK

All variables above become false with probability 1 (and have no parents), except for
BatOK, which becomes true with probability 1.

Note: the robot can charge battery wherever it is.

The reward model:

• value of delivering coffee to user i is V Ci;

• value of delivering mail to user i is V Mi;

• reward R(DelCof(i),HC = 1, Loc = Oi,WC(i) = 1, BatOK = 1) = p succi ∗
V Ci;

• reward R(DelCof(i), ·) = 0, i.e. under any other conditions the reward of coffee
delivery is 0;

• reward R(DelMail(i),HM(i) = 1, Loc = Oi,MW (i) = 1, BatOK = 1) =

p succi ∗ V Mi;
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• reward R(DelMail(i), ·) = 0, i.e. under any other conditions, the reward for mail
delivery is 0.

To summarize, for the robot experiments we set parameters to the following values:

Parameter Value

p succ 0.9
p drain 0.1
p wait mail 0.2
p want cof 0.25
p get mail 0.95
p get cof 0.9
p del mail 0.95
p del cof 0.9
R(DelMail(i),HM(i) = 1, Loc = Oi,MW (i) = 1, BatOK = 1) 10
R(DelCof(i),HC = 1, Loc = Oi,WC(i) = 1, BatOK = 1) 15
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A.3 The resource Problem

This is a resource allocation problem, and is due to Craig Boutilier [8]. There is a set of n

tasks which, in order to finish, need some allocation of some of the m available resources.
We choose the straight forward state representation as n + m binary variables: T1, . . . , Tn

are task variables, each taking a value of 1 if the task is currently active (i.e. in need of
resources), and 0 otherwise; similarly, Re1, . . . , Rem are resource variables, each taking
value 1 if the resource is available and 0 otherwise.

Allocating resources corresponds to actions, therefore there are (n + 1)m number of
actions (each resource can either be withhold of assigned to one of the tasks). To encode
actions as binary variables we assume the number of tasks is: n = 2l − 1. Hence, for a
given resource, there are l action variables that will take 2l configurations: one configura-
tion corresponding to the resource not being assigned, and 2l−1 configurations correspond-
ing to respective assignments to tasks. There are therefore ml number of action variables
A11, . . . , Aml.

The resource problem dynamics Generally speaking, tasks become periodically ac-
tive. A task can finish spontaneously for no reason, or because enough resources have suc-
cessfully been allocated to it. Temporally, variable T ′

i depends on its state in the previous
stage, Ti, on all action variables, Ajk, as well as on all resource variables Rej (Figure A.4).
Similarly, variable Re′j depends on its prior status variable Rej and on its corresponding
action variables Aj1, . . . , Ajl (Figure A.5).

More specifically:

• P (T ′
i = 1|Ti = 0, . . .) = p occuri . The probability of any task variable becoming

active is p occuri

•

P (T ′
i = 0|Ti = 1, . . .) =

{
(1− p failsolve)num resourcesi if num resourcesi > 0

p disappeari otherwise

where num resourcesi is the number of resources allocated to task i (basic noisy OR
model), and p disappeari is the probability that task i disappears on its own.
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Current stage Next Stage

A11 · · · Aml

...
...

Ti T ′
i

...
...

R1 R′
1

...
...

Rm R′
m

Figure A.4: Partial view of the DBN for the resource problem: dependence of task
variable T ′

i on action variables and on its prior status.
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Current stage Next Stage

· · · Aj1 · · · Ajl · · ·

T1 T ′
1

...
...

Tn T ′
n

...
...

Rj R′
j

...
...

Figure A.5: Partial view of the DBN for the resource problem: dependence of task
variable R′

j on corresponding action variables and on its prior status. Note, we omitted all
other links from the graph (e.g. those pointing to T ′

i ).
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If the task succeeds (e.g. when a number of resources have been allocated to it), then reward
Ri is received, otherwise, no reward is given. Or:

R(Ti = 1, Aij) = (1− p failsolvenum resourcesi) ∗ Vi

for any action Aij which applies more than zero resources to task i, and zero reward for
any other action or if no resources are allocated to the task. Vi is a scalar, the value of an
objective being accomplished.

The status of each resource Rej depends on its action variables and its prior status:

P (Re′j = 1 | Rej = 1, Aij) =

{
p exhaustj if the action Aij applies Rej to task i

1 if Rej is held back
P (Re′j = 1 | Rej = 0, Aij) = p revivej

We set the numerical values of this problem’s parameters in an effort to make it interest-
ing: a scattering of high value and low value objectives (for accomplished tasks). We also
set some tasks with reasonably high “disappear” probabilities, so that there is urgency to
apply resources to them. And we also set some high value tasks with reasonably high “pop
up” probability: this means that some resources might be held back in reserve in anticipa-
tion of the occurrence of high value tasks. Thus we can make this problem interesting with
only one or two resources. We tried to keep p exhaustj fairly high to ensure there really is
resource contention.
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A.4 The advisor Problem

General Description This problem is due to Judy Goldsmith and Pascal Poupart [24].
It is an artificially constructed problem based on a real world domain from the Master’s
program in computer science at the University of Kentucky.2 The domain is is inspired
from the problem faced by an academic advisor whose job is to help students plan their
course choices for one or more of the upcoming semester, after discussing their background
and considering their transcripts. The advisor must take into consideration the student’s
supporting knowledge of relevant pre-requisite courses, ability to learn, utility of passing
a certain course, and some hard constraints such as overlapping course schedule, periodic
absence from campus, etc. Thus, course inter-dependency and students’ preferences are
important factors in the decision making task.

The problem is modeled as an MDP as follows. The (simplified) objective is the max-
imization of number of credits earned by the student over time. A number of credits is
allocated to each course which is earned by the student should a passing mark be obtained.
Possible grades are A, B, and C for passing, E for failing, and none for never taking the
course. Courses taken repeatedly are only considered if the last grade obtained was a pass-
ing mark. The grade a student is likely to get in a course depends probabilistically on the
grades obtained for passed pre-requisite courses. The transition probabilities are set as show
in the next section. A student is assumed to be able to take up to four courses a year. A
final note concerning hard pre-requisite constraints is that they are encoded in such way that
invalid actions are given a reward of −∞. Thus, these actions are numerically disqualified
automatically if any other choice of actions exist, which offer a finite reward. We assume
that in any MDP state there exists at least one finite-reward action.

State variables Let us assume there are n available courses. State variables encode
whether any of the available courses were taken and the grade obtained. That is: ci ∈
{A,B,C,E, none}, i = 1, . . . , n.

Actions There is one action for each valid choice of courses to take, from no courses taken
up to the maximum number of courses allowed per semester.

2Simplified in various ways.
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The Transition Model The value of a state variable in the next stage either has probabilis-
tic dependency on the values of state variables for pre-requisite courses in the current stage,
if there were any pre-requisites, or it has no dependencies if the course has no pre-requisites.

The following table shows the pre-requisites used in our experiments.

Course Pre-requisites

c1 none

c2 c1

c3 c2

c4 none

c5 c1, c3

c6 none

c7 c5

c8 c2

c9 c1, c4

c10 none

Below we give the actual transition probabilities. The conditional probability table
(CPT) for the “no dependency” case was:

P (c′i = A | take course = i) = 0.5

P (c′i = B | take course = i) = 0.3

P (c′i = C | take course = i) = 0.15

P (c′i = E | take course = i) = 0.05

P (c′i = none | take course = i) = 0

for i = 1, . . . , n.
For dependency on one pre-requisite.

• The grade obtained for the pre-requisite course was A.

P (c′i = A | take course = i, cj = A) = 0.70

P (c′i = B | take course = i, cj = A) = 0.20

P (c′i = C | take course = i, cj = A) = 0.08

P (c′i = E | take course = i, cj = A) = 0.02

P (c′i = none | take course = i, cj = A) = 0
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• The grade obtained for the pre-requisite course was B.

P (c′i = A | take course = i, cj = B) = 0.45

P (c′i = B | take course = i, cj = B) = 0.35

P (c′i = C | take course = i, cj = B) = 0.15

P (c′i = E | take course = i, cj = B) = 0.05

P (c′i = none | take course = i, cj = B) = 0

• The grade obtained for the pre-requisite course was C.

P (c′i = A | take course = i, cj = C) = 0.25

P (c′i = B | take course = i, cj = C) = 0.25

P (c′i = C | take course = i, cj = C) = 0.35

P (c′i = E | take course = i, cj = C) = 0.15

P (c′i = none | take course = i, cj = C) = 0

• The grade obtained for the pre-requisite course was E.

P (c′i = A | take course = i, cj = E) = 0.10

P (c′i = B | take course = i, cj = E) = 0.20

P (c′i = C | take course = i, cj = E) = 0.30

P (c′i = E | take course = i, cj = E) = 0.40

P (c′i = none | take course = i, cj = E) = 0

• The pre-requisite was not taken, therefore we encode it as none.

P (c′i = A | take course = i, cj = none) = 0.20

P (c′i = B | take course = i, cj = none) = 0.25

P (c′i = C | take course = i, cj = none) = 0.30

P (c′i = E | take course = i, cj = none) = 0.25

P (c′i = none | take course = i, cj = none) = 0
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Where i = 1, . . . , n, and cj is the pre-requisite course variable.
For dependency on two pre-requisites. One pre-requisite mark is A.

• The grades obtained for pre-requisite courses were A for the first and A for the second.

P (c′i = A | take course = i, cj = A, ck = A) = 0.8

P (c′i = B | take course = i, cj = A, ck = A) = 0.15

P (c′i = C | take course = i, cj = A, ck = A) = 0.04

P (c′i = E | take course = i, cj = A, ck = A) = 0.01

P (c′i = none | take course = i, cj = A, ck = A) = 0

• The grades obtained for pre-requisite courses were A for the first and B for the second.

P (c′i = A | take course = i, cj = A, ck = B) = 0.65

P (c′i = B | take course = i, cj = A, ck = B) = 0.25

P (c′i = C | take course = i, cj = A, ck = B) = 0.08

P (c′i = E | take course = i, cj = A, ck = B) = 0.02

P (c′i = none | take course = i, cj = A, ck = B) = 0

• The grades obtained for pre-requisite courses were A for the first and C for the second.

P (c′i = A | take course = i, cj = A, ck = C) = 0.5

P (c′i = B | take course = i, cj = A, ck = C) = 0.3

P (c′i = C | take course = i, cj = A, ck = C) = 0.15

P (c′i = E | take course = i, cj = A, ck = C) = 0.05

P (c′i = none | take course = i, cj = A, ck = C) = 0

• The grades obtained for pre-requisite courses were A for the first and E for the second.

P (c′i = A | take course = i, cj = A, ck = E) = 0.3

P (c′i = B | take course = i, cj = A, ck = E) = 0.3

P (c′i = C | take course = i, cj = A, ck = E) = 0.2

P (c′i = E | take course = i, cj = A, ck = E) = 0.2

P (c′i = none | take course = i, cj = A, ck = E) = 0
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• The grades obtained for pre-requisite courses were A for the first and none for the
second which was not taken.

P (c′i = A | take course = i, cj = A, ck = none) = 0.4

P (c′i = B | take course = i, cj = A, ck = none) = 0.3

P (c′i = C | take course = i, cj = A, ck = none) = 0.2

P (c′i = E | take course = i, cj = A, ck = none) = 0.1

P (c′i = none | take course = i, cj = A, ck = none) = 0

One pre-requisite mark is B.

• The grades obtained for pre-requisite courses were B for the first and A for the second.

P (c′i = A | take course = i, cj = B, ck = A) = 0.65

P (c′i = B | take course = i, cj = B, ck = A) = 0.25

P (c′i = C | take course = i, cj = B, ck = A) = 0.08

P (c′i = E | take course = i, cj = B, ck = A) = 0.02

P (c′i = none | take course = i, cj = B, ck = A) = 0

• The grades obtained for pre-requisite courses were B for the first and B for the sec-
ond.

P (c′i = A | take course = i, cj = B, ck = B) = 0.40

P (c′i = B | take course = i, cj = B, ck = B) = 0.50

P (c′i = C | take course = i, cj = B, ck = B) = 0.07

P (c′i = E | take course = i, cj = B, ck = B) = 0.03

P (c′i = none | take course = i, cj = B, ck = B) = 0

• The grades obtained for pre-requisite courses were B for the first and C for the second.

P (c′i = A | take course = i, cj = B, ck = C) = 0.20

P (c′i = B | take course = i, cj = B, ck = C) = 0.35

P (c′i = C | take course = i, cj = B, ck = C) = 0.35

P (c′i = E | take course = i, cj = B, ck = C) = 0.10

P (c′i = none | take course = i, cj = B, ck = C) = 0
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• The grades obtained for pre-requisite courses were B for the first and E for the second.

P (c′i = A | take course = i, cj = B, ck = E) = 0.20

P (c′i = B | take course = i, cj = B, ck = E) = 0.25

P (c′i = C | take course = i, cj = B, ck = E) = 0.30

P (c′i = E | take course = i, cj = B, ck = E) = 0.20

P (c′i = none | take course = i, cj = B, ck = E) = 0

• The grades obtained for pre-requisite courses were B for the first and none for the
second which was not taken.

P (c′i = A | take course = i, cj = B, ck = none) = 0.30

P (c′i = B | take course = i, cj = B, ck = none) = 0.35

P (c′i = C | take course = i, cj = B, ck = none) = 0.25

P (c′i = E | take course = i, cj = B, ck = none) = 0.10

P (c′i = none | take course = i, cj = B, ck = none) = 0

One pre-requisite mark is C.

• The grades obtained for pre-requisite courses were C for the first and A for the second.

P (c′i = A | take course = i, cj = C, ck = A) = 0.50

P (c′i = B | take course = i, cj = C, ck = A) = 0.30

P (c′i = C | take course = i, cj = C, ck = A) = 0.15

P (c′i = E | take course = i, cj = C, ck = A) = 0.05

P (c′i = none | take course = i, cj = C, ck = A) = 0

• The grades obtained for pre-requisite courses were C for the first and B for the second.

P (c′i = A | take course = i, cj = C, ck = B) = 0.20

P (c′i = B | take course = i, cj = C, ck = B) = 0.35

P (c′i = C | take course = i, cj = C, ck = B) = 0.35

P (c′i = E | take course = i, cj = C, ck = B) = 0.10

P (c′i = none | take course = i, cj = C, ck = B) = 0
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• The grades obtained for pre-requisite courses were C for the first and C for the second.

P (c′i = A | take course = i, cj = C, ck = C) = 0.20

P (c′i = B | take course = i, cj = C, ck = C) = 0.25

P (c′i = C | take course = i, cj = C, ck = C) = 0.40

P (c′i = E | take course = i, cj = C, ck = C) = 0.15

P (c′i = none | take course = i, cj = C, ck = C) = 0

• The grades obtained for pre-requisite courses were C for the first and E for the second.

P (c′i = A | take course = i, cj = C, ck = E) = 0.10

P (c′i = B | take course = i, cj = C, ck = E) = 0.20

P (c′i = C | take course = i, cj = C, ck = E) = 0.30

P (c′i = E | take course = i, cj = C, ck = E) = 0.40

P (c′i = none | take course = i, cj = C, ck = E) = 0

• The grades obtained for pre-requisite courses were C for the first and none for the
second which was not taken.

P (c′i = A | take course = i, cj = C, ck = none) = 0.15

P (c′i = B | take course = i, cj = C, ck = none) = 0.25

P (c′i = C | take course = i, cj = C, ck = none) = 0.35

P (c′i = E | take course = i, cj = C, ck = none) = 0.25

P (c′i = none | take course = i, cj = C, ck = none) = 0

One pre-requisite mark is E.

• The grades obtained for pre-requisite courses were E for the first and A for the second.

P (c′i = A | take course = i, cj = E, ck = A) = 0.30

P (c′i = B | take course = i, cj = E, ck = A) = 0.30

P (c′i = C | take course = i, cj = E, ck = A) = 0.20

P (c′i = E | take course = i, cj = E, ck = A) = 0.20

P (c′i = none | take course = i, cj = E, ck = A) = 0

116



• The grades obtained for pre-requisite courses were E for the first and B for the second.

P (c′i = A | take course = i, cj = E, ck = B) = 0.20

P (c′i = B | take course = i, cj = E, ck = B) = 0.25

P (c′i = C | take course = i, cj = E, ck = B) = 0.35

P (c′i = E | take course = i, cj = E, ck = B) = 0.20

P (c′i = none | take course = i, cj = E, ck = B) = 0

• The grades obtained for pre-requisite courses were E for the first and C for the second.

P (c′i = A | take course = i, cj = E, ck = C) = 0.10

P (c′i = B | take course = i, cj = E, ck = C) = 0.20

P (c′i = C | take course = i, cj = E, ck = C) = 0.30

P (c′i = E | take course = i, cj = E, ck = C) = 0.40

P (c′i = none | take course = i, cj = E, ck = C) = 0

• The grades obtained for pre-requisite courses were E for the first and E for the second.

P (c′i = A | take course = i, cj = E, ck = E) = 0.02

P (c′i = B | take course = i, cj = E, ck = E) = 0.05

P (c′i = C | take course = i, cj = E, ck = E) = 0.23

P (c′i = E | take course = i, cj = E, ck = E) = 0.70

P (c′i = none | take course = i, cj = E, ck = E) = 0

• The grades obtained for pre-requisite courses were E for the first and none for the
second which was not taken.

P (c′i = A | take course = i, cj = E, ck = none) = 0.05

P (c′i = B | take course = i, cj = E, ck = none) = 0.10

P (c′i = C | take course = i, cj = E, ck = none) = 0.30

P (c′i = E | take course = i, cj = E, ck = none) = 0.55

P (c′i = none | take course = i, cj = E, ck = none) = 0
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One pre-requisite mark is none.

• The grades obtained for pre-requisite courses were none for the first and A for the
second.

P (c′i = A | take course = i, cj = none, ck = A) = 0.40

P (c′i = B | take course = i, cj = none, ck = A) = 0.30

P (c′i = C | take course = i, cj = none, ck = A) = 0.20

P (c′i = E | take course = i, cj = none, ck = A) = 0.10

P (c′i = none | take course = i, cj = none, ck = A) = 0

• The grades obtained for pre-requisite courses were none for the first and B for the
second.

P (c′i = A | take course = i, cj = none, ck = B) = 0.30

P (c′i = B | take course = i, cj = none, ck = B) = 0.35

P (c′i = C | take course = i, cj = none, ck = B) = 0.25

P (c′i = E | take course = i, cj = none, ck = B) = 0.10

P (c′i = none | take course = i, cj = none, ck = B) = 0

• The grades obtained for pre-requisite courses were none for the first and C for the
second.

P (c′i = A | take course = i, cj = none, ck = C) = 0.15

P (c′i = B | take course = i, cj = none, ck = C) = 0.25

P (c′i = C | take course = i, cj = none, ck = C) = 0.35

P (c′i = E | take course = i, cj = none, ck = C) = 0.25

P (c′i = none | take course = i, cj = none, ck = C) = 0

• The grades obtained for pre-requisite courses were none for the first and E for the
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second.

P (c′i = A | take course = i, cj = none, ck = E) = 0.05

P (c′i = B | take course = i, cj = none, ck = E) = 0.10

P (c′i = C | take course = i, cj = none, ck = E) = 0.30

P (c′i = E | take course = i, cj = none, ck = E) = 0.55

P (c′i = none | take course = i, cj = none, ck = E) = 0

• The grades obtained for pre-requisite courses were none for the first and none for the
second which was not taken.

P (c′i = A | take course = i, cj = none, ck = none) = 0.25

P (c′i = B | take course = i, cj = none, ck = none) = 0.30

P (c′i = C | take course = i, cj = none, ck = none) = 0.30

P (c′i = E | take course = i, cj = none, ck = none) = 0.15

P (c′i = none | take course = i, cj = none, ck = none) = 0

Where i = 1, . . . , n, and cj and ck are the pre-requisite course variables.

Rewards The reward model is quite simply the sum of mean number of credits for each
course taken.

R(c) =
n∑

i=1

∑

m

P (ci = m) reward(ci)

Where

reward(ci) =

{
num credits(ci) if ci ∈ {A,B,C}
0 otherwise

and the number of credits num credits(ci) is shown in the table below.
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Course Number of credits

c1 3
c2 3
c3 2
c4 4
c5 4
c6 3
c7 3
c8 3
c9 2
c10 4
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Appendix B

Complete Results for Chapter 5

Experiments
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Figure B.1: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the cycle problem, with basis function domains generated in a sequential fashion (seq),
with optimized (opt) basis functions on the left, and XOR (xor) basis function.
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Figure B.2: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the cycle problem, with basis function domains generated in a neighbor fashion (neigh),
with optimized (opt) basis functions on the left, and XOR (xor) basis function.
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Figure B.3: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the cycle problem, with basis function domains generated in a lattice fashion (latt), with
optimized (opt) basis functions on the left, and XOR (xor) basis function.
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Figure B.4: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the 3legs problem, with basis function domains generated in a sequential fashion (seq),
with optimized (opt) basis functions on the left, and XOR (xor) basis function.
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Figure B.5: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the 3legs problem, with basis function domains generated in a neighbor fashion (neigh),
with optimized (opt) basis functions on the left, and XOR (xor) basis function.
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Figure B.6: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the 3legs problem, with basis function domains generated in a lattice fashion (latt), with
optimized (opt) basis functions on the left, and XOR (xor) basis function.
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Figure B.7: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the three loops problem, with basis function domains generated in a sequential fashion
(seq), with optimized (opt) basis functions on the left, and XOR (xor) basis function.
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Figure B.8: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the three loops problem, with basis function domains generated in a neighbor fashion
(neigh), with optimized (opt) basis functions on the left, and XOR (xor) basis function.
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Figure B.9: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on the
three loops problem, with basis function domains generated in a lattice fashion (latt),
with optimized (opt) basis functions on the left, and XOR (xor) basis function.
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Figure B.10: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods
on the resource problem, with basis function domains generated in a sequential fashion
(seq) on the left and neighbor (neigh) on the right, with optimized (opt) basis functions.
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Figure B.11: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the resource problem on the left and the robot problem on the right, with basis function
domains generated in a sequential fashion (seq), and with optimized (opt) basis functions.
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Figure B.12: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the robot problem, with basis function domains generated in a neighbor fashion (neigh)
on the left and lattice (latt) on the right, and with optimized (opt) basis functions.
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Figure B.13: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the advisor problem, with basis function domains generated in a sequential fashion (seq)
on the left and neighbor (neigh) on the right, and with optimized (opt) basis functions.
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Figure B.14: Comparison of the full LP (flp), partial LP (plp) and dual scoring methods on
the advisor problem, with basis function domains generated in a lattice fashion (latt), and
with optimized (opt) basis functions.
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Figure B.15: Comparison of two basis function creation methods: optimized with L1 nor-
malization (optl1) and XOR (xor), on the cycle problem, with basis function domains
generated in a sequential fashion (seq) on the left and lattice (latt) on the right.
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Figure B.16: Comparison of two basis function creation methods: optimized with L1 nor-
malization (optl1) and XOR (xor), on the cycle problem with basis function domains
generated in a neighbor fashion (neigh) on the left, and 3legs problem with basis function
domains generated in a sequential fashion (seq) on the right.
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Figure B.17: Comparison of two basis function creation methods: optimized with L1 nor-
malization (optl1) and XOR (xor), on the 3legs problem with basis function domains
generated in a lattice fashion (latt) on the left and neighbor (neigh) on the right.
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Figure B.18: Comparison of two basis function creation methods: optimized with L1 nor-
malization (optl1) and XOR (xor), on the three loops problem with basis function do-
mains generated in a sequential fashion (seq) on the left and lattice (latt) on the right.
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Figure B.19: Comparison of two basis function creation methods: optimized with L1 nor-
malization (optl1) and XOR (xor), on the three loops problem with basis function do-
mains generated in a neighbor fashion (neigh).

140



 0

 1000

 2000

 3000

 4000

 5000

 6000

 20  40  60  80  100  120

L 1
 E

rr
or

Number of Basis Functions

The cycle Problem--seq vs. latt vs. neigh--L1 Error

seq-optl1-dual
latt-optl1-dual

neigh-optl1-dual

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 20  40  60  80  100  120

L 1
 E

rr
or

Number of Basis Functions

The 3legs Problem--seq vs. latt vs. neigh--L1 Error

seq-optl1-dual
latt-optl1-dual

neigh-optl1-dual

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20  40  60  80  100  120

B
el

lm
an

 E
rr

or

Number of Basis Functions

The cycle Problem--seq vs. latt vs. neigh--Bellman Error

seq-optl1-dual
latt-optl1-dual

neigh-optl1-dual

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20  40  60  80  100  120

B
el

lm
an

 E
rr

or

Number of Basis Functions

The 3legs Problem--seq vs. latt vs. neigh--Bellman Error

seq-optl1-dual
latt-optl1-dual

neigh-optl1-dual

 0

 10

 20

 30

 40

 50

 60

 70

 20  40  60  80  100  120

L ∞
 E

rr
or

Number of Basis Functions

The cycle Problem--seq vs. latt vs. neigh--L∞ Error

seq-optl1-dual
latt-optl1-dual

neigh-optl1-dual

 0

 10

 20

 30

 40

 50

 60

 20  40  60  80  100  120

L ∞
 E

rr
or

Number of Basis Functions

The 3legs Problem--seq vs. latt vs. neigh--L∞ Error

seq-optl1-dual
latt-optl1-dual

neigh-optl1-dual

Figure B.20: Comparison of domain choosing methods sequential (seq), lattice
(latt), and neighbor (neigh) on the cycle problem on the left and the 3legs problem
on the right, using optimized basis function construction with L1 normalization (optl1) and
dual score.

141



 0

 1000

 2000

 3000

 4000

 5000

 6000

 20  40  60  80  100  120

L 1
 E

rr
or

Number of Basis Functions

The 3loops Problem--seq vs. latt vs. neigh--L1 Error

seq-optl1-dual
latt-optl1-dual

neigh-optl1-dual

 0

 5000

 10000

 15000

 20000

 25000

 20  40  60  80  100  120

L 1
 E

rr
or

Number of Basis Functions

The resource Problem--seq vs. latt vs. neigh--L1 Error

seq-optl1-dual
latt-optl1-dual

neigh-optl1-dual

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20  40  60  80  100  120

B
el

lm
an

 E
rr

or

Number of Basis Functions

The 3loops Problem--seq vs. latt vs. neigh--Bellman Error

seq-optl1-dual
latt-optl1-dual

neigh-optl1-dual

 0

 2

 4

 6

 8

 10

 12

 14

 20  40  60  80  100  120

B
el

lm
an

 E
rr

or

Number of Basis Functions

The resource Problem--seq vs. latt vs. neigh--Bellman Error

seq-optl1-dual
latt-optl1-dual

neigh-optl1-dual

 0

 10

 20

 30

 40

 50

 60

 70

 20  40  60  80  100  120

L ∞
 E

rr
or

Number of Basis Functions

The 3loops Problem--seq vs. latt vs. neigh--L∞ Error

seq-optl1-dual
latt-optl1-dual

neigh-optl1-dual

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 20  40  60  80  100  120

L ∞
 E

rr
or

Number of Basis Functions

The resource Problem--seq vs. latt vs. neigh--L∞ Error

seq-optl1-dual
latt-optl1-dual

neigh-optl1-dual

Figure B.21: Comparison of domain choosing methods sequential (seq), lattice
(latt), and neighbor (neigh) on the three loops problem on the left and the
resource problem on the right, using optimized basis function construction with L1 nor-
malization (optl1) and dual score.
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Figure B.22: Comparison of domain choosing methods sequential (seq), lattice
(latt), and neighbor (neigh) on the robot problem on the left and the advisor problem
on the right, using optimized basis function construction with L1 normalization (optl1) and
dual score.
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