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Abstract

Risk measures have been extensively studied in actuarial science in the guise of premium

calculation principles for more than 40 years, and recently, they have been the standard tool for

financial institutions in both calculating regulatory capital requirement and internal risk man-

agement. This thesis focuses on two topics: risk sharing and risk aggregation via risk measures.

The problem of risk sharing concerns the redistribution of a total risk among agents using risk

measures to quantify risks. Risk aggregation is to study the worst-case value of aggregate risks

over all possible dependence structures with given marginal risks.

On the first topic, we address the problem of risk sharing among agents using a two-parameter

class of quantile-based risk measures, the so-called Range-Value-at-Risk (RVaR), as their prefer-

ences. The family of RVaR includes the Value-at-Risk (VaR) and the Expected Shortfall (ES),

the two popular and competing regulatory risk measures, as special cases. We first establish an

inequality for RVaR-based risk aggregation, showing that RVaR satisfies a special form of subad-

ditivity. Then, the Pareto-optimal risk sharing problem is solved through explicit construction.

We also study risk sharing in a competitive market and obtain an explicit Arrow-Debreu equilib-

rium. Robustness and comonotonicity of optimal allocations are investigated, and several novel

advantages of ES over VaR from the perspective of a regulator are revealed.

Reinsurance, as a special type of risk sharing, has been studied extensively from the perspec-

tive of either an insurer or a reinsurer. To take the interests of both parties into consideration,

we study Pareto optimality of reinsurance arrangements under general model settings. We give

the necessary and sufficient conditions for a reinsurance contract to be Pareto-optimal and char-

acterize all such optimal contracts under more general model assumptions. Sufficient conditions

that guarantee the existence of the Pareto-optimal contracts are obtained. When the losses of

an insurer and a reinsurer are measured by the ES risk measures, we obtain the explicit forms of

the Pareto-optimal reinsurance contracts under the expected value premium principle.

On the second topic, we first study the aggregation of inhomogeneous risks with a special

type of model uncertainty, called dependence uncertainty, in individual risk models. We establish

general asymptotic equivalence results for the classes of distortion risk measures and convex

risk measures under different mild conditions. The results implicitly suggest that it is only

reasonable to implement a coherent risk measure for the aggregation of a large number of risks with

dependence uncertainty. Then, we bring the well studied dependence uncertainty in individual
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risk models into collective risk models. We study the worst-case values of the VaR and the ES of

the aggregate loss with identically distributed individual losses, under two settings of dependence

uncertainty: (i) the counting random variable and the individual losses are independent, and

the dependence of the individual losses is unknown; (ii) the dependence of the counting random

variable and the individual losses is unknown. Analytical results for the worst-case values of ES

are obtained. For the loss from a large portfolio of insurance policies, the asymptotic equivalence

of VaR and ES is established, and approximation errors are obtained under the two dependence

settings.

v



Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisors Professor Jun Cai

and Professor Ruodu Wang. I am really lucky to be their student, and I benefited a lot from their

advice and expertise during my years at the University of Waterloo. Without their guidance and

support, I would not have completed this thesis. Professor Cai’s critical thinking questions and

Professor Wang’s sharp insights significantly improved this work. Professor Wang has been very

generous with his time, and I have enjoyed the numerous and inspirational meetings we had.

I would also like to thank the rest of my PhD thesis committee: Professor David Laudriault,

Professor Xuyang Ma, Professor Etienne Marceau, and Professor Yi Shen, for their valuable time

and suggestions.

I was lucky to meet Tiantian at the University of Waterloo, who has been a great friend. Her

strong sense of humour made my graduate studies full of laughter and wonderful memories, and

I am grateful for her help and encouragement during her stay in Waterloo. I thank Tiantian and

Bin for helpful discussions. I would like to thank all of my friends in Waterloo for the enjoyable

time we had here.

Finally, but most importantly, I would like to thank my parents and my sisters, in particular

my mother, who has always been my cheerleader. Without your unconditional love and support,

I would not be where I am today.

vi



Dedicated to my parents

vii



Table of Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Generalized Inverse and Quantile Functions . . . . . . . . . . . . . . . . . . 6

1.2.2 Common Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Quantile-based Risk Sharing 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Risk Sharing Problems and Quantile-based Risk Measures . . . . . . . . . . 12

2.1.2 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Contribution and Structure of the Chapter . . . . . . . . . . . . . . . . . . 15

2.2 The RVaR Family and Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Quantile Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Optimal Allocations in Quantile-based Risk Sharing . . . . . . . . . . . . . . . . . 20

viii



2.4.1 Inf-convolution and Pareto-optimal Allocations . . . . . . . . . . . . . . . . 20

2.4.2 Optimal Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Competitive Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 An Arrow-Debreu Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.2 An Equilibrium Model for Expected Profit minus Cost of Capital . . . . . . 31

2.5.3 A Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Model Misspecification, Robustness and Comonotonicity in Risk Sharing . . . . . . 33

2.6.1 Robust Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.2 Robust Allocations for Quantile-based Risk Measures . . . . . . . . . . . . 35

2.6.3 Comonotonicity in Optimal Allocations . . . . . . . . . . . . . . . . . . . . 37

2.7 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7.1 Summary of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7.2 Implications for the Choice of a Suitable Regulatory Risk Measure . . . . . 38

2.8 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8.1 Comonotonic Risk Sharing for Distortion Risk Measures . . . . . . . . . . . 40

2.8.2 Proof of Theorem 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8.3 Proof of Proposition 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8.4 Proof of Proposition 2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8.5 Proof of Theorem 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.8.6 Proof of Theorem 2.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 Pareto-optimal Reinsurance Arrangements 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Pareto Optimality in Reinsurance Policy Design . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ix



3.2.2 Necessary and Sufficient Conditions for Pareto-optimal Contracts . . . . . . 57

3.2.3 Existence of Pareto-optimal Reinsurance Contracts . . . . . . . . . . . . . . 61

3.2.4 Special Cases: VaR and TVaR . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Pareto-optimal Reinsurance Contracts under TVaRs . . . . . . . . . . . . . . . . . 63

3.4 Best Pareto-optimal Reinsurance Contracts under TVaRs . . . . . . . . . . . . . . 71

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6.1 Proof of Theorem 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.6.2 Proof of Theorem 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Asymptotic Equivalence of Risk Measures under Dependence Uncertainty 92

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Vanishing Risks and Exploding Risks . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Asymptotic Equivalence for Distortion Risk Measures . . . . . . . . . . . . . . . . 97

4.3.1 Some Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3.2 Asymptotic Equivalence for Distortion Risk Measures . . . . . . . . . . . . 99

4.3.3 Remarks on the Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Asymptotic Equivalence for Convex Risk Measures . . . . . . . . . . . . . . . . . . 105

4.4.1 Some Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.2 Asymptotic Equivalence for Convex Risk Measures . . . . . . . . . . . . . . 107

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Full Proof of Theorem 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Collective Risk Models with Dependence Uncertainty 114

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

x



5.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.2 Stochastic Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.3 VaR-ES Asymptotic Equivalence in Risk Aggregation . . . . . . . . . . . . 119

5.3 Collective Risk Models with Dependence Uncertainty . . . . . . . . . . . . . . . . . 119

5.3.1 Setup and a Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3.2 VaR and ES Bounds for Collective Risk Models . . . . . . . . . . . . . . . . 121

5.4 Asymptotic Results for Classic Collective Risk Models . . . . . . . . . . . . . . . . 126

5.4.1 Setup and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4.2 VaR-ES Asymptotic Equivalence . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4.3 Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4.4 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 Asymptotic Results for Generalized Collective Risk Models . . . . . . . . . . . . . 133

5.5.1 VaR-ES Asymptotic Equivalence . . . . . . . . . . . . . . . . . . . . . . . . 133

5.5.2 Rate of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5.3 A Remark on the Dependence of Collective Risk Models . . . . . . . . . . . 136

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.7 Additional Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Concluding Remarks and Future Research 140

Bibliography 142

xi



List of Tables

2.1 Numerical comparison between the initial allocation and the equilibrium allocation. 33

3.1 Key values with an exponential ground-up loss and α = 0.95 < β = 0.99 . . . . . . 74

3.2 Key values with an exponential ground-up loss and α = 0.99 > β = 0.95 . . . . . . 74

3.3 Key values with an exponential ground-up loss and α = β = 0.95 . . . . . . . . . . 74

3.4 Best Pareto-optimal reinsurance contracts I∗λ∗ with an exponential ground-up loss . 74

3.5 Key values with a Pareto ground-up loss when α = 0.95 < β = 0.99 . . . . . . . . . 76

3.6 Key values with a Pareto ground-up loss when α = 0.99 > β = 0.95 . . . . . . . . . 76

3.7 Key values a Pareto ground-up loss when α = β = 0.95 . . . . . . . . . . . . . . . . 76

3.8 Best Pareto-optimal reinsurance contracts I∗λ∗ with a Pareto ground-up loss . . . . 76

xii



List of Figures
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Chapter 1

Introduction

1.1 Background

What is risk? Risk refers to “hazard, a chance of bad consequences, loss or exposure to mischance”

in the Concise Oxford English Dictionary. However, risk means not only possible losses, but also

possible gains, which is related to an uncertain future value of a position such as buying a stock.

Mathematically, risk is characterized by randomness that can be measured precisely (see e.g.

Knight (1921)), and it is modelled by loss random variables. A negative realization of a loss

random variable indicates a gain. In this thesis, we consider risks in the context of finance and

insurance.

The standard tool to measure risks is risk measures. A risk measure is a mapping from a set of

risks to real numbers, and it has to be implemented with certain models, either internal models of a

financial institution or external models designed by the regulator. The most popular risk measures

in practice are the Value-at-Risk (VaR) and the Expected Shortfall (ES, or Tail-Value-at-Risk).

Both are implemented in modern financial and insurance regulation. There have been extensive

debates on the comparative advantages of VaR and ES in regulation; the reader is referred to

the survey papers Embrechts et al. (2014), Emmer et al. (2015), and Föllmer and Weber (2015).

Related debates in regulatory documents by the Basel Committee on Banking Supervision and

the International Association of Insurance Supervisors can be found in BCBS (2013) and IAIS

(2014). In particular, BCBS (2013) proposed a shift from VaR to ES for determinating capital

charges of internal models although it is difficult to back-test ES and ES is not elicitable. Whereas
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there is a tendency to move from VaR to ES, for a while to come both risk measures will coexist for

regulatory purposes. Our results in Chapter 2 add some guidance potentially useful in reaching

more widely acceptable solutions.

Denneberg (1990) and Wang (1996) introduced the distortion risk measures and later Wang

et al. (1997) used an axiomatic approach to characterize the price of an insurance risk as a

Choquet integral representation with respect to a distorted probability. For more developments

on distortion risk measures, see e.g. Kusuoka (2001), Frittelli and Rosazza Gianin (2002), Song and

Yan (2009), Dhaene et al. (2012), Grigorova (2014), Wang et al. (2015) and the references therein.

Artzner et al. (1999) presented four axioms for the so called coherent risk measures and Kusuoka

(2001) characterized law-invariant coherent risk measures with the Fatou property. Föllmer

and Schied (2002) introduced the concept of convex risk measures and proved a corresponding

representation theorem, which was further generalized by Frittelli and Rosazza Gianin (2002,

2005) and Kaina and Rüschendorf (2009).

Risk measures have been extensively studied in insurance in the guise of premium calculation

principles for more than 40 years (see e.g. Bühlmann (1970), Deprez and Gerber (1985), Wang

et al. (1997)). It can be used to determine the insurance premium for transferring part of

a risk from an insurer to a reinsurer. Moreover, as the insurer’s or the reinsurer’s objective

functional, risk measures come into play in reinsurance optimization problems. On the one hand,

the insurer reduces his or her risk exposure by buying a reinsurance contract. On the other

hand, the insurer has to incur additional cost in the form of reinsurance premium payable to the

reinsurer. Naturally, the more of a risk is transferred to the reinsurer, the more of the reinsurance

premium is. So there is a risk and reward tradeoff faced by the insurer or the reinsurer. Optimal

reinsurance designs from either the insurer’s perspective or the reinsurer’s point of view have

been well investigated in the literature. However, as pointed out by Borch (1969), “there are two

parties to a reinsurance contract, and that an arrangement which is very attractive to one party,

may be quite unacceptable to the other.” Hence, an interesting question in optimal reinsurance

designs is to consider the interests of both the insurer and the reinsurer; see e.g. Borch (1960).

And we study Pareto-optimal reinsurance contracts by minimizing the convex combination of

the objective functionals of both parties under a general reinsurance setting. A Pareto-optimal

reinsurance policy is one in which neither of the two parties can be better off without making

the other worse off, and hence Pareto optimality is a good starting point to study reinsurance

problems when an insurer and a reinsurer have conflicting interests.
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In the past two decades, risk measures have also been the standard tool for financial insti-

tutions in both calculating regulatory capital requirement and internal risk management. The

value ρ(X) assigned by the risk measure ρ to a risk X is the amount of cash, or the regulatory

capital requirements that a bank or a financial institution has to hold so that taking the risk X is

acceptable for the regulator. This risk X could be an individual risk or a sum of individual risks

X1 + · · ·+Xn, where X1, . . . , Xn represent different risks or the claims of a portfolio. Generally,

the regulator wants a company to hold sufficiently high level of capital so that the company will

meet its obligations, but the company may seek a way such as risk sharing to minimize regulatory

capital because holding too much capital will be costly.

The problem of risk sharing concerns the redistribution of a total riskX into n partsX1, . . . , Xn

with X1 + · · ·+Xn = X. For i = 1, . . . , n, the redistributed risk Xi is allocated to agent i who is

equipped with a monetary risk measure ρi. The target is to optimize over all possible allocations

(X1, . . . , Xn) such that the following sum

n∑
i=1

ρi(Xi) subject to X1 + · · ·+Xn = X, (1.1.1)

is minimized. Such an allocation (X1, . . . , Xn) is called an optimal allocation of X, and for

monetary risk measures, optimal allocations are Pareto-optimal (see Section 2.4.1).

The risk sharing problem (1.1.1) can be formulated in various contexts; below we list a few

interpretations.

(i) Regulatory capital reduction for a single firm. In this context, we consider a firm with

a one-period total risk X, and a risk measure ρ is used to calculate the regulatory capital

needed for holding the risk. Assume that the firm has n separate affiliates, and decides to

split the total position X over the n affiliates. Then the total capital this firm is required

to hold is
∑n

i=1 ρ(Xi) subject to X1 + · · ·+Xn = X. The minimization of
∑n

i=1 ρ(Xi) is a

special form of problem (1.1.1). Under this setting as well as the next one, risk measures

are regulatory capital principles; this is the the original interpretation of risk measures as

introduced in Artzner et al. (1999).

(ii) Regulatory capital reduction for a group of firms. In this context, there are n

firms in an economy and firm i is required to hold a regulatory capital ρ(Xi) for taking a

risk Xi, i = 1, . . . , n. The n firms may want to share the total risk X, while minimizing∑n
i=1 ρ(Xi) subject to X1 + · · ·+Xn = X, is a special form of problem (1.1.1).

3



(iii) Insurance-reinsurance contracts and risk-transfer. In this context, agent 1 is an

insured and agent 2 is an insurer, or agent 1 is an insurance company and agent 2 is a

reinsurer (there may also be more than one reinsurer involved, and in that case agents

2, 3, . . . , n represent reinsurers involved). ρ1 is the disutility functional1 of the insured and

ρ2 is the pricing function of the insurer. X represents the initial risk the insured faces, and

X2 represents the portion of risk which the insured would like to transfer to the insurer

by paying ρ2(X2) as the insurance premium. Under this setting, the insured would like to

minimize over ρ1(X1 + ρ2(X2)) subject to X1 +X2 = X, which is the overall disutility of

her retained loss. For a monetary risk measure ρ1, ρ1(X1 +ρ2(X2)) = ρ1(X1) +ρ2(X2), and

hence this set-up corresponds to problem (1.1.1).

(iv) Risk redistribution among investors. In this context, investors 1, . . . , n hold respective

risks (or assets) ξ1, . . . , ξn. They seek for a redistribution (X1, . . . , Xn) of the total risk

X = ξ1 + · · · + ξn so that (1.1.1) is minimized, and each of the investors is better-off

compared to their initial position, that is, ρ(Xi) 6 ρ(ξi), i = 1, . . . , n. Under this setting,

ρ1, . . . , ρn are disutility functionals of the investors.

As the most commonly used families of risk measures, VaR and ES are unified in a more general

two-parameter family of risk measures, called the Range-Value-at-Risk (RVaR). The family of

RVaR was introduced in Cont et al. (2010) as a robust risk measure. More importantly, RVaR

can be seen as a bridge connecting VaR and ES. This embedding of VaR and ES into RVaR

helps us to understand properties and comparative advantages of the former risk measures, and

hence we choose RVaR as the underlying risk measures in the problem of risk sharing discussed

in Chapter 2. We will focus on two different and also well connected risk sharing problems:

cooperative risk sharing and competitive risk sharing. The former aims to find Pareto-optimal

allocations with respect to the sum of individual risk measures or (1.1.1), while the latter aims

to find equilibrium allocations with respect to each individual risk measure since generally every

agent acts in their own interest.

Besides risk sharing, another topic we are interested in is risk aggregation under dependence

uncertainty. Typically, a risk measure has to be implemented with certain models, either internal

models of a financial institution or external models designed by the regulator. By specifying a

1A disutility functional ρ of an agent describes her preference: for risks X and Y , she prefers X to Y if and

only if ρ(X) 6 ρ(Y ). A risk measure can be interpreted as a disutility functional.
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model, uncertainty always arises as an important issue in practice. One particular type of uncer-

tainty that we focus on is the dependence uncertainty in risk aggregation. In the framework of

dependence uncertainty, we assume that in a joint model (X1, . . . , Xn), the marginal distribution

of each of X1, . . . , Xn is known, but the joint distribution is unknown. Denote by F the set of

univariate distribution functions. For F1, . . . , Fn ∈ F , let

Sn = Sn(F1, . . . , Fn) = {X1 + · · ·+Xn : Xi ∈ L0, Xi ∼ Fi, i = 1, . . . , n}.

That is, Sn is the set of aggregate risks with given marginal distributions, but an arbitrary

dependence structure.

For a given risk measure ρ and some joint model (X1, . . . , Xn) with unknown dependence

structure, we are interested in the value of the risk aggregation ρ(X1 + · · · + Xn). Obviously,

ρ(X1 + · · · + Xn) lies in a range, and oftentimes the worst-case and the best-case values are of

interest. The value ρ̄(Sn) := supS∈Sn ρ(S) represents the worst-case measurement of the aggregate

risk in the presence of dependence uncertainty. If ρ is not coherent, the value of ρ̄(Sn) is in general

difficult to calculate. In Chapter 4, we aim to find an approximation of ρ̄(Sn) when ρ is a non-

coherent distortion or convex risk measure for large n. In other words, we show the asymptotic

equivalence of ρ̄(Sn) and another quantity ρ̄∗(Sn), where ρ∗ is the smallest law-invariant coherent

risk measure dominating ρ.

Moreover, we bring the framework of dependence uncertainty into collective risk models. Sup-

pose

SN = Y1 + Y2 + · · ·+ YN , (1.1.2)

where Y1, Y2, . . . are random variables representing claims sizes and N is the number (random or

deterministic) of claims that takes values in non-negative integers. Equation (1.1.2) is called a

collective risk model (an individual risk model) when N is random (deterministic). In practice,

the claims or losses Y1, Y2, . . . , in individual risk models or collective risk models are dependent,

and they may also be dependent on the number of claims N . We assume that Y1, Y2, . . . are

identically distributed, but we do not assume a particular model for the dependence structure

among random variables in (1.1.2). Two practical settings of dependence will be considered in

Chapter 5:

(i) N is independent of Y1, Y2, . . . and the dependence structure of Y1, Y2, . . . is unknown.
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(ii) The dependence structure of N,Y1, Y2, . . . is unknown.

From the perspective of risk management, we are interested in quantifying SN by certain risk

measures under dependence uncertainty, a crucial concern for risk management in the presence

of model uncertainty. In particular, we study the worst-case values of VaRα(SN ) and ESα(SN ),

under the two settings (i) and (ii) above, which may find application in ruin theory.

1.2 Preliminaries

1.2.1 Generalized Inverse and Quantile Functions

Definition 1.1. For a non-decreasing function F : R → R with F (−∞) = limx↓−∞ F (x) and

F (∞) = limx↑∞ F (x), the generalized inverse F−1 : R→ R̄ = [−∞,∞] of F is defined by

F−1(y) = inf{x ∈ R : F (x) > y}, y ∈ R, (1.2.1)

with the convention that inf ∅ =∞. If F : R→ [0, 1] is a distribution function, F−1 : [0, 1]→ R̄
is also called the quantile function of F .

Proposition 1.1 (Proposition 1 of Embrechts and Hofert (2013)). Let F : R → R be a non-

decreasing function with F (−∞) = limx↓−∞ F (x) and F (∞) = limx↑∞ F (x).

(i) F−1 is non-decreasing. If F−1(y) ∈ (−∞,∞), F−1 is left continuous at y and admits a

limit from the right at y.

(ii) F−1(F (x)) 6 x. If F is strictly increasing, F−1(F (x)) = x.

(iii) Let F be right continuous. Then F−1(y) <∞ implies F (F−1(y)) > y.

(iv) F (x) > y implies x > F−1(y). The other implication holds if F is right-continuous. Fur-

thermore, F (x) < y implies x 6 F−1(y).

(v) F is continuous if and only if F−1 is strictly increasing on [inf ran F, sup ran F ], where

ran F := {F (x) : x ∈ R} is the range of F .

(vi) F is strictly increasing if and only if F−1 is continuous on ran F .
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For any distribution function F and α ∈ (0, 1), F−1(α) is as defined in (1.2.1). Define UX

as a uniform random variable on [0, 1] such that F−1(UX) = X almost surely, where F is the

distribution function of the random variable X. If X is continuously distributed, UX = F (X)

almost surely. For a general random variable X, the existence of UX is guaranteed; see for instance

Proposition 1.3 of Rüschendorf (2013). Moreover, F−1(U)
d
= X, where U is any U[0, 1]-distributed

random variable.

1.2.2 Common Risk Measures

Assume that all risks are defined on an atomless probability space (Ω,A,P) throughout the thesis.

A probability space (Ω,A,P) is said to be atomless if A ∈ A and P(A) > 0 imply that there exists

a B ∈ A such that B ⊂ A and 0 < P(B) < P(A). Let Lp be the set of all random variables

in (Ω,A,P) with finite p-th moment, p ∈ [0,∞), L∞ be the set of essentially bounded random

variables, and L+ be the set of non-negative random variables. A functional on Lp is said to be

Lp-continuous, p ∈ [1,∞], if it is continuous with respect to the Lp-norm. We treat almost surely

equal random variables as identical.

A risk measure is a mapping ρ : X → (−∞,+∞], where X is a set of risks and it is a convex

cone such that L∞ ⊂ X ⊂ L0 (⊂ is the non-strict set inclusion). X will be specified for particular

risk measures. Below we list some standard properties studied in the literature of risk measures.

For any X,Y ∈ X :

(a) Monotonicity : if X 6 Y P-a.s, then ρ(X) 6 ρ(Y );

(b) Cash-invariance: for any m ∈ R, ρ(X −m) = ρ(X)−m;

(c) Convexity : for any λ ∈ [0, 1], ρ(λX + (1− λ)Y ) 6 λρ(X) + (1− λ)ρ(Y );

(d) Subadditivity : ρ(X + Y ) 6 ρ(X) + ρ(Y );

(e) Positive homogeneity : for any α > 0, ρ(αX) = αρ(X);

(f) Law-invariance: if X and Y have the same distribution under P, denoted as X
d
=Y , then

ρ(X) = ρ(Y ).

We refer to Föllmer and Schied (2016, Chapter 4) and Delbaen (2012) for interpretations of

these standard properties of risk measures.
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Definition 1.2. A monetary risk measure is a risk measure satisfying (a) and (b), a convex

risk measure is a risk measure satisfying (a)-(c), and a coherent risk measure is a risk measure

satisfying (a),(b),(d), and (e).

Definition 1.3. The Value-at-Risk (VaR) of a random variable X at confidence level α ∈ (0, 1)

is defined as

VaRα(X) = inf{x ∈ R : P(X 6 x) > α}, X ∈ L0, (1.2.2)

and the Tail-Value-at-Risk (TVaR) or Expected Shortfall (ES) of a random variable X at confi-

dence level α ∈ (0, 1) is defined as

TVaRα(X) = ESα(X) =
1

1− α

∫ 1

α
VaRγ(X)dγ, X ∈ L0, (1.2.3)

where VaRγ(X) is defined in (1.2.2). In general TVaR can be infinite for non-integrable random

variables.

Remark 1.1. Note that we use the notation ES in Chapters 2, 4, and 5 and TVaR in Chapter

3 as ES is more often used in finance while TVaR appears more in insurance. Moreover, in

Chapters 1, 3, 4, and 5, we adopt Definition 1.3 for VaR and TVaR (or ES) with VaRα(X) being

the 100α% quantile of the random variable X for α ∈ (0, 1). However, to simplify our results in

Chapter 2 (see Remark 2.1), we redefine VaRα(X) as the 100(1 − α)% quantile of the random

variable X and the same notation is applied to ES in Chapter 2.

Both VaR and TVaR are monotone, cash-invariant, positive homogeneous, and law-invariant,

but VaR is not necessarily subadditive while TVaR always is. A simple example of VaR being

not subaddtive is that for α ∈ (0, 0.715), VaRα(X1 + X2) > VaRα(X1) + VaRα(X2), where X1

and X2 are independent and identically distributed as exponential distribution with mean 1.

VaRα has been criticized for taking no consideration of the risk beyond the confidence level

α and the lack of subadditivity. TVaRα is proposed as an alternative risk measure which is a

coherent risk measure and takes the values beyond the confidence level α into account. For a con-

tinuous random variable X, TVaRα(X) is the expected loss given that X exceeds VaRα(X). See

McNeil et al. (2015) for properties of the two regulatory risk measures and for discussions on the

various uses and misuses of VaR as a regulatory risk measure in Quantitative Risk Management.

The following proposition provides some well-known properties of VaR and TVaR which will

be used in later chapters.
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Proposition 1.2. For a random variable X and α ∈ (0, 1), we have

(i) VaRα(X) 6 TVaRα(X) and TVaRα(X) is a non-decreasing function of α;

(ii) For any non-decreasing and left continuous function g, VaRα (g (X)) = g (VaRα(X));

(iii) The TVaR in (1.2.3) is equivalent to

TVaRα(X) = VaRα(X) +
1

1− α
E
[
(X −VaRα(X))+

]
, X ∈ L1. (1.2.4)

Moreover, for all X ∈ L1, we have

E[X] =

∫ 1

0
VaRγ(X)dγ.

Now we introduce the class of distortion risk measures (see e.g. Wang et al. (1997)), which

includes VaR and TVaR as special cases. Let H be the set of increasing (in the non-strict sense)

functions h supported on [0, 1] with h(0) = h(0+) = 0 and h(1−) = h(1) = 1.

Definition 1.4. A distortion risk measure ρh : X → (−∞,∞] with a distortion function h ∈ H
is defined as

ρh(X) =

∫
R
xdh(F (x)), X ∈ X , X ∼ F, (1.2.5)

provided that (1.2.5) is well-posed for all X ∈ X . Note that for a given set X , h may need to

satisfy some conditions to avoid some ill-posed cases. If X is either L∞ or L+, (1.2.5) is well-posed

for all h ∈ H and X ∈ X .

Note that the distortion functions of VaRα and TVaRα are h1(t) = I{t>α} and h2(t) =

I{t>α}
t−α
1−α , respectively. When h is continuous, through a change of variable, ρh can be written

as

ρh(X) =

∫ 1

0
VaRt(X)dh(t), X ∈ X . (1.2.6)

Any distortion risk measure ρh is monotone, cash-invariant, positively homogeneous, and law-

invariant. ρh is subadditive if and only if h is convex; this dates back to Yaari (1987, Theorem 2).

The key feature which characterizes ρh is comonotonic additivity. Let us first recall the definition

of comonotonic random variables.
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Definition 1.5. Two random variables X and Y are comonotonic if

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) > 0 for (ω, ω′) ∈ Ω× Ω (P× P)-a.s.

Comonotonicity of X and Y is equivalent to the existence of a random variable Z ∈ L0 and

two non-decreasing functions f and g, such that X = f(Z) and Y = g(Z) almost surely. See

Dhaene et al. (2002) for an overview on comonotonicity.

(g) Comonotonic additivity : ρ(X + Y ) = ρ(X) + ρ(Y ) if X and Y are comonotonic.

For a subadditive risk measure ρ interpreted as a tool for capital calculation, comonotonic

additivity is particularly important: For comonotonic risks X and Y , the lack of comonotonic

additivity (that is, ρ(X+Y ) < ρ(X)+ρ(Y )) means a diversification benefit (reduction in capital)

for non-diversified risks, an undesirable property for risk management.

1.3 Outline of the Thesis

This thesis is organized as follows. In Chapter 2, we first establish a powerful inequality for the

RVaR family, which is crucial in proving the main results on quantile-based risk sharing, and it

implies that the risk measures RVaR, including VaR and ES as special cases, satisfy a special form

of subadditivity. The optimal risk sharing problem with different RVaRs as the risk measures is

solved explicitly. A Pareto-optimal allocation is given through an explicit construction. We also

study competitive risk sharing in which each agent optimizes their own preferences, regardless of

other participants. Under suitable assumptions, we obtain an Arrow-Debreu equilibrium, which is

the same as the aforementioned Pareto-optimal allocation. Moreover, the equilibrium pricing rule

can be obtained explicitly. Robustness and comonotonicity of optimal allocations are discussed.

As a consequence, several novel advantages of ES-based risk management are revealed.

In Chapter 3, we give the necessary and sufficient conditions for a reinsurance contract to be

Pareto-optimal and characterize all Pareto-optimal reinsurance contracts under a general rein-

surance setting. When the risk measures are chosen as TVaRs, we find explicit Pareto-optimal

reinsurance contracts under the expected value premium principle.

In Chapter 4, we study the aggregate risk of inhomogeneous risks with dependence uncertainty,

evaluated by a generic risk measure. We first present two examples showing that without some
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regularity conditions the asymptotic equivalence of two risk measures may fail to hold. Then we

study the asymptotic equivalence for distortion or convex risk measures under different conditions.

In Chapter 5, we bring the framework of dependence uncertainty in Chapter 4 into collective risk

models. We first derive some convex ordering inequalities for collective risk models and thereby

obtain analytical formulas for the worst-case values of ES. Asymptotic equivalence of the worst-

case values of VaRα(SN ) and ESα(SN ) under dependence settings (i) and (ii) are given.

Chapter 6 ends the thesis with some concluding remarks.

The thesis resembles the following papers and manuscripts: Embrechts et al. (2017), Cai et

al. (2017a,b), and Liu and Wang (2017).
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Chapter 2

Quantile-based Risk Sharing

2.1 Introduction

2.1.1 Risk Sharing Problems and Quantile-based Risk Measures

The problem of risk sharing concerns the redistribution of a total risk (random variable) X into

n parts X1, . . . , Xn with X1 + · · ·+Xn = X. Each of the parts is allocated to an agent and for

i = 1, . . . , n, agent i is equipped with a risk measure ρi. In this chapter, ρ1, . . . , ρn are chosen as

monetary risk measures (see Section 1.2.2). We focus on two different and also well connected

risk sharing problems. One concerns cooperative risk sharing, in which we aim to find optimal

allocations with respect to the sum of individual risk measures (equivalent to Pareto optimality;

see Section 2.4); the other concerns competitive risk sharing, in which we aim to find equilibrium

allocations (see Section 2.5).

The risk sharing problem considered in this chapter can be formulated in various contexts. For

instance, it may represent regulatory capital reduction within the subsidiaries of a single firm,

equilibrium among a group of firms with costs associated with regulatory capital, insurance-

reinsurance contracts and risk-transfer, or risk redistribution among investors. Throughout this

chapter, we generally refer to a participant in the risk sharing problem as an agent, which may

represent a subsidiary, a firm, an insured, an insurer, or an investor in different contexts.

The most commonly used families of risk measures in practice are the Value-at-Risk (VaR)

and the Expected Shortfall (ES), which are unified in a more general two-parameter family of risk
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measures, called the Range-Value-at-Risk (RVaR). The family of RVaR was introduced in Cont

et al. (2010) as a robust risk measure (see Section 2.2). More importantly, RVaR can be seen

as a bridge connecting VaR and ES, the two most popular but methodologically very different

regulatory risk measures. This embedding of VaR and ES into RVaR helps us to understand many

properties and comparative advantages of the former risk measures, and hence motivates our

concentration on RVaR as the underlying risk measures in the problem of risk sharing discussed

in this chapter.

Since each of VaR, ES and RVaR can be represented as average quantiles of a random variable,

we refer to the problems considered in this chapter as quantile-based risk sharing. We hope that

the methodological results obtained in this chapter will be helpful to risk management and policy

makers in designing risk allocations and appropriate regulatory risk measures.

2.1.2 Related Literature

In a seminal paper, Borch (1962) showed that within the context of concave utilities, Pareto-

optimal allocations between agents are comonotonic. Since the introduction of coherent and

convex risk measures by Artzner et al. (1999), Föllmer and Schied (2002) and Frittelli and Rosazza

Gianin (2002, 2005), the problem of Pareto-optimal risk sharing has been extensively studied

when the underlying risk measures are chosen as convex or coherent. As a relevant mathematical

tool, the inf-convolution of convex risk measures was obtained in Barrieu and EI Karoui (2005).

For law-invariant monetary utility functions, or equivalently, convex risk measures, Jouini et al.

(2008) showed the existence of an optimal risk sharing for bounded random variables, which

is always comonotonic. This result was generalized to non-monotone risk measures by Acciaio

(2007) and Filipović and Svindland (2008), to multivariate risks by Carlier et al. (2012) and to

cash-subadditive and quasi-convex risk measures by Mastrogiacomo and Rosazza Gianin (2015).

Pareto-optimal risk sharing for Choquet expected utilities is studied by Chateauneuf et al. (2000).

See Heath and Ku (2004), Tsanakas (2009) and Dana and Le Van (2010) for more on risk sharing

with monetary and convex risk measures. On the design of insurance and reinsurance contracts

using risk measures, see Cai et al. (2008), Cui et al. (2013) and Bernard et al. (2015). A summary

on problems related to inf-convolution of monetary utility functions can be found in Delbaen

(2012). For some recent developments on efficient risk sharing and equilibria of the Arrow and

Debreu (1954) type with risk measures and rank-dependent utilities (RDU), see Cherny (2006),

Carlier and Dana (2008, 2012), Madan and Schoutens (2012), Xia and Zhou (2016) and Jin et al.
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(2016). In particular, Xia and Zhou (2016) studied the existence of Arrow-Debreu equilibria for

RDU agents and obtained solutions for the state-price density. As far as we are aware of, there

is little existing research on non-convex monetary risk measures in risk sharing, and there are no

explicit results on equilibrium allocations under such settings.

The extensive debate on desirable properties of regulatory risk measures, in particular VaR

and ES, is summarized in Embrechts et al. (2014) and Emmer et al. (2015); see also BCBS (2016)

for a recent discussion concerning market risk under Basel III and Sandström (2010, Chapter

14) for an overview in the context of Solvency II. For a critical voice on risk measures and

capital requirements in the case of Solvency II, see Floreani (2013). Whereas there is a tendency

to move from VaR to ES, for a while to come both risk measures will coexist for regulatory

purposes. Our results add some guidance potentially useful in reaching more widely acceptable

solutions. Many quantitative concepts may enter into this discussion; below we highlight some

issues relevant for our discussion. An overriding concept no doubt is model uncertainty in its

various guises. Robustness of risk measures is addressed in Cont et al. (2010), Kou et al. (2013),

Krätschmer et al. (2012, 2014) and Embrechts et al. (2015); some recent papers on elicitability1

and backtesting are Bellini and Bignozzi (2015), Ziegel (2016), Acerbi and Székely (2014), Kou

and Peng (2016), and Delbaen et al. (2016); some recent papers addressing model uncertainty

in risk aggregation are Embrechts et al. (2013), Bernard and Vanduffel (2015) and Wang et al.

(2015), amongst others; the problems of currency exchange and regulatory arbitrage are discussed

in Koch-Medina and Munari (2016) and Wang (2016).

An important feature of our contribution is the introduction of a concept of robustness into

the problem of risk sharing. It is well-known that various concepts and applications of robustness

exist in different fields. In the realm of statistics, Huber and Ronchetti (2009) is an excellent place

to start. For a broad discussion of the concept of robustness in economics, see the classic book

Hansen and Sargent (2008), and also Gilboa and Schmeidler (1989) and Maccheroni et al. (2006)

in the theory of preferences. Within the theory of optimization, a standard reference is Ben-Tal

et al. (2009). The concept of robustness in this chapter relates to the practical consideration of

model misspecification, and hence it is different from the problem of risk sharing under robust

utility functionals as in the recent paper Knispel et al. (2016).

1The concept of elicitability dates back to Osband (1985). Earlier results on a necessary condition for the

elicicitability of risk measures are established in Weber (2006).
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2.1.3 Contribution and Structure of the Chapter

First, some basic definitions and preliminaries on the risk measures used in this chapter are given

in Section 2.2.

Our theoretical contributions start with establishing a powerful inequality for the RVaR family

in Section 2.3. This inequality later serves as a building block for the main results on quantile-

based risk sharing; it implies that the risk measures RVaR, including VaR and ES as special cases,

satisfy a special form of subadditivity.

Section 2.4 contains results on (Pareto-)optimal allocations for agents whose preferences are

characterized by the RVaR family. We first solve the optimal risk sharing problem by charac-

terizing the inf-convolution of several RVaR measures with different parameters. An optimal

allocation is given through an explicit construction.

In Section 2.5, we study competitive risk sharing in which each agent optimizes their own

preferences, regardless of other participants. We show that, under suitable assumptions, the

optimal allocation obtained in Section 2.4 is an Arrow-Debreu equilibrium. Moreover, the equi-

librium pricing rule can be obtained explicitly; it has the form of a mixture of a constant and the

reciprocal of the total risk.

We then proceed to discuss some relevant issues on optimal allocation in Section 2.6. In

particular, we show that in general, a robust optimal allocation exists if and only if none of the

underlying risk measures is a VaR, and a comonotonic optimal allocation exists only if there is

at most one underlying risk measure which is not an ES.

Finally, in Section 2.7 we summarize our main results, and discuss some practical implications

of our results for risk management and policy makers. As a consequence, we reveal several novel

advantages of ES-based risk management.

2.2 The RVaR Family and Basic Terminology

Let X be the set of real, integrable random variables (i.e. random variables with finite means)

defined on (Ω,F ,P). We assume that for any X ∈ X , there exists a Y ∈ X independent of X.

To simplify the main results, throughout this chapter, the Value-at-Risk of X ∈ X at level
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α ∈ R+ := [0,∞) is defined as the 100(1− α)% (generalized) quantile of X, that is,

VaRα(X) = inf{x ∈ [−∞,∞] : P(X 6 x) > 1− α}. (2.2.1)

Note that according to (2.2.1), for α > 1, VaRα(X) = −∞ for all X ∈ X . Certainly, only the case

α ∈ [0, 1) is relevant in risk management; we do however allow α to take values greater than 1 in

order to unify the main results in this chapter. The risk measures VaRα, α > 0, are monotone,

cash-invariant, positive homogeneous, and law-invariant, but in general not subadditive

The key family of risk measures we study in this chapter is the family of the Range-Value-at-

Risk (RVaR), a truncated average quantile of a random variable. For X ∈ X , the RVaR at level

(α, β) ∈ R2
+ is defined as

RVaRα,β(X) =

{
1
β

∫ α+β
α VaRγ(X)dγ if β > 0,

VaRα(X) if β = 0.
(2.2.2)

For X ∈ X and α + β > 1, since VaRα+β−ε(X) = −∞ for all ε ∈ [0, α + β − 1], we have

RVaRα,β(X) = −∞.

The family of RVaR is introduced by Cont et al. (2010) as robust risk measures, in the sense

that for α > 0 and α+ β < 1, RVaRα,β is continuous with respect to convergence in distribution

(weak convergence). Similar to the case of VaRα, RVaRα,β is also only relevant in practice for

α + β < 1. An RVaR belongs to the large family of distortion risk measures. Though some

of our results hold for the broader class of distortion risk measures, for the reason of practical

relevance we restrict our attention to RVaR. This also allows for the explicit derivation of risk

sharing formulas.

For all X ∈ X , VaRα(X) is non-increasing and right-continuous in α > 0, and hence we have

RVaRα,0(X) = VaRα(X) = lim
β→0+

RVaRα,β(X), α > 0.

Another special case of RVaR is the Expected Shortfall, defined as

ESβ(X) = RVaR0,β(X), β > 0.

Different from RVaR and VaR, an ES is subadditive. Therefore, ESβ, β ∈ [0, 1] are law-invariant

and coherent risk measures on X . Note that by definition, for all X ∈ X , RVaRα,β(X) is non-

increasing in both α ∈ R+ and β ∈ R+, and RVaRα,β−α(X) is non-increasing in α ∈ [0, β].
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Throughout this chapter, we divide the set of risk measures {RVaRα,β : α, β ∈ R+} into three

subcategories. A risk measure VaRα, α > 0 is called a true VaR, a risk measure RVaRα,β, α, β > 0

is called a true RVaR, and ESβ, β > 0 is simply called an ES.

Remark 2.1. The definition of VaR in this chapter is different from the one in Definition 1.3.

Mainly for notational convenience we write VaRα(X) for the 100(1−α)% quantile of the random

variable X; the same notation is applied to ESβ. Whereas this convention (small α, β > 0) can be

widely found in the academic literature (see for instance Föllmer and Schied (2016) and Delbaen

(2012)), we are well aware that in practice the notation VaRα(X) typically refers to the 100α%

quantile of X (thus α is close to 1) as in Chapters 3, 4, and 5. With this notational convention, our

main results like Theorems 2.1 and 2.4 below admit a much more elegant formulation. Moreover,

the generic results of this chapter on risk sharing are independent of this notational issue. As a

consequence, the applicability for practice remains fully accessible to the (regulatory or industry)

end-user.

Recall that for p ∈ (0, 1) and any distribution function F , F−1(p) is defined in (1.2.1). We say

that a random variable with distribution F is doubly continuous if both F and F−1 are continuous.

For any β1, . . . , βn ∈ R, write
∨n
i=1 βi = max{β1, . . . , βn} and

∧n
i=1 βi = min{β1, . . . , βn}.

2.3 Quantile Inequalities

The following theorem establishes the relationship between the individual RVaR and the aggregate

RVaR. To unify our results for all possible choices of α1, . . . , αn and β1, . . . , βn, from now on the

indefinite form ∞−∞ is interpreted as −∞. Note that RVaRα,β(X) = ∞ may only happen in

the very special case where X ∈ X is unbounded above and α = β = 0.

Theorem 2.1. For any X1, . . . , Xn ∈ X and any α1, . . . , αn, β1, . . . , βn > 0, we have

RVaR∑n
i=1 αi,

∨n
i=1 βi

(
n∑
i=1

Xi

)
6

n∑
i=1

RVaRαi,βi(Xi). (2.3.1)

Proof. We only show the case of n = 2; for n > 2, an induction argument is sufficent. For any

X1, X2 ∈ X , we consider the following three cases respectively.
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(i) α1 + α2 + β1 ∨ β2 < 1.

Let A1 = {UX1 > 1− α1} and A2 = {UX2 > 1− α2} . Then P(A1 ∪A2) 6 P(A1) + P(A2) =

α1 + α2. Take

Y1 = IAc1X1 −mIA1 , Y2 = IAc2X2 −mIA2 , (2.3.2)

where m is a real number satisfying m > −min{VaRα1+β1(X1),VaRα2+β2(X2)}. It is

straightforward to verify RVaRα1,β1(X1) = ESβ1(Y1) and RVaRα2,β2(X2) = ESβ2(Y2). It

follows that

RVaRα1,β1(X1) + RVaRα2,β2(X2) = ESβ1(Y1) + ESβ2(Y2) > ESβ1∨β2(Y1 + Y2), (2.3.3)

where the last inequality holds since ESβ(X) is subadditive and non-increasing in β > 0.

Moreover, for γ ∈ [0, 1], we will show

VaRγ(Y1 + Y2) > VaRγ+(α1+α2)(X1 +X2). (2.3.4)

Inequality (2.3.4) holds by the definition of VaR if γ + α1 + α2 > 1. If γ + α1 + α2 < 1, we

have (Y1 + Y2)IAc1∩Ac2 = (X1 +X2)IAc1∩Ac2 and hence for any x ∈ R,

P(Y1 + Y2 > x) > P(X1 +X2 > x,Ac1, A
c
2) > P(X1 +X2 > x)− P(A1 ∪A2).

Therefore,

VaRγ(Y1 + Y2) > VaRγ+P(A1∪A2)(X1 +X2) > VaRγ+(α1+α2)(X1 +X2). (2.3.5)

Hence (2.3.4) holds. If β1 ∨ β2 > 0, by (2.3.3) and (2.3.4), we have

RVaRα1,β1(X1) + RVaRα2,β2(X2) > ESβ1∨β2(Y1 + Y2)

=
1

β1 ∨ β2

∫ β1∨β2

0
VaRα(Y1 + Y2)dα

>
1

β1 ∨ β2

∫ β1∨β2

0
VaRα+(α1+α2)(X1 +X2)dα

= RVaRα1+α2,β1∨β2(X1 +X2). (2.3.6)

If β1 ∨ β2 = 0, then by using (2.3.6), we have

RVaRα1,0(X1) + RVaRα2,0(X2) = lim
β→0+

(RVaRα1,β(X1) + RVaRα2,0(X2))

> lim
β→0+

RVaRα1+α2,β(X1 +X2)

= RVaRα1+α2,0(X1 +X2).
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In either case,

RVaRα1,β1(X1) + RVaRα2,β2(X2) > RVaRα1+α2,β1∨β2(X1 +X2). (2.3.7)

(ii) α1 + α2 < 1 and α1 + α2 + β1 ∨ β2 = 1.

In this case, (2.3.7) follows from the proof in (i) by using the left-continuity of RVaRα,β(X)

in β for 0 < β 6 1− α.

(iii) α1 + α2 > 1 or α1 + α2 + β1 ∨ β2 > 1.

In this case, (2.3.7) holds trivially since RVaRα1+α2,β1∨β2(X1 +X2) = −∞.

In summary, (2.3.1) holds for n = 2; the case of n > 3 is obtained by induction.

By setting α1 = · · · = αn = 0 and β1 = · · · = βn, Theorem 2.1 reduces to the classic

subadditivity of ES. By setting β1 = · · · = βn = 0, we obtain the following inequality for VaR.

Corollary 2.2. For any X1, . . . , Xn ∈ X and any α1, . . . , αn > 0, we have

VaR∑n
i=1 αi

(
n∑
i=1

Xi

)
6

n∑
i=1

VaRαi(Xi). (2.3.8)

Theorem 2.1 and Corollary 2.2 imply that RVaR and VaR enjoy special forms of subadditivity

as in (2.3.1) and (2.3.8). For n = 2, (2.3.1) reads as

RVaRα1+α2,β1∨β2 (X1 +X2) 6 RVaRα1,β1(X1) + RVaRα2,β2(X2),

for all X1, X2 ∈ X , α1, α2, β1, β2 ∈ R+. This subadditivity involves a combination of the

summation of the random variables X1, . . . , Xn ∈ X , and the summation of the parameters

(α1, β1), . . . , (αn, βn) ∈ R2
+ with respect to the two-dimensional additive operation (+,∨). Note

that ∨-operation is known as the tropical addition in the max-plus algebra; see Richter-Gebert

et al. (2005) and also Remark 2.4.

Remark 2.2. Recall that X is the set of integrable random variables in Theorem 2.1 and Corol-

lary 2.2. For non-integrable random variables, the definition of VaR in (2.2.1) is still valid, and it

is straightforward to see that (2.3.8) in Corollary 2.2 holds for all random variables X1, . . . , Xn.

For the case of RVaR, the definition (2.2.2) may involve ill-posed cases such as ∞ − ∞. For

instance, the integral
∫ 1

0 VaRγ(X)dγ = E[X] is only properly defined on X . Therefore, to make

all results consistent throughout this chapter, we focus on integrable random variables.
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2.4 Optimal Allocations in Quantile-based Risk Sharing

In this section we study (Pareto-)optimal allocations in a risk sharing problem where the objec-

tives of agents are described by the RVaR family, and the target is to minimize the aggregate risk

value defined below. This setting is the most suitable if one assumes that the agents collectively

work with each other to reach optimality. This may be interpreted as, for instance, the case

where a single firm redistributes an aggregate risk among its divisions, which are assessed regu-

latory capital separately (e.g. these divisions are geographical and regulated by different national

authorities). Competitive optimality, in which each agent optimizes their own objective without

cooperation, will be discussed in Section 2.5.

2.4.1 Inf-convolution and Pareto-optimal Allocations

Given X ∈ X , we define the set of allocations of X as

An(X) =

{
(X1, . . . , Xn) ∈ X n :

n∑
i=1

Xi = X

}
. (2.4.1)

In a risk sharing problem, there are n agents equipped with respective risk measures ρ1, . . . , ρn

and they will share a risk X by splitting it into an allocation (X1, . . . , Xn) ∈ An(X). Throughout,

we refer to ρ1, . . . , ρn in a risk sharing problem as the underlying risk measures, X as the total

risk, and for an allocation (X1, . . . , Xn), we refer to
∑n

i=1 ρi(Xi) as the aggregate risk value. The

problem we consider here is an unconstrained allocation problem, that is, X1, . . . , Xn in (2.4.1)

can be chosen over all integrable random variables.

The inf-convolution of n risk measures ρ1, . . . , ρn is a risk measure defined as

n
�
i=1

ρi(X) := inf

{
n∑
i=1

ρi(Xi) : (X1, . . . , Xn) ∈ An(X)

}
, X ∈ X . (2.4.2)

That is, the inf-convolution of n risk measures is the infimum over aggregate risk values for all

possible allocations.

Definition 2.1. For risk measures ρ1, . . . , ρn and X ∈ X ,

(i) an n-tuple (X1, . . . , Xn) ∈ An(X) is called an optimal allocation of X if
∑n

i=1 ρi(Xi) =

�ni=1 ρi(X);
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(ii) an n-tuple (X1, . . . , Xn) ∈ An(X) is called a Pareto-optimal allocation of X if for any

(Y1, . . . , Yn) ∈ An(X) satisfying ρi(Yi) 6 ρi(Xi) for all i = 1, . . . , n, we have ρi(Yi) = ρi(Xi)

for all i = 1, . . . , n.

In this chapter, whenever an optimal allocation is mentioned, it is with respect to some

underlying risk measures which should be clear from the context. The following statement,

unifying optimal allocations and Pareto-optimal ones, can be found in Barrieu and EI Karoui

(2005) and Jouini et al. (2008) in the case of convex risk measures. One can easily check that the

statement also holds for all monetary risk measures.

Proposition 2.3. For any monetary risk measures ρ1, . . . , ρn, an allocation is Pareto-optimal if

and only if it is optimal.

Proof. It is trivial to check that an optimal allocation is always Pareto-optimal. To show the other

direction, suppose that (X1, . . . , Xn) ∈ An(X) is not optimal. Then there exists an allocation

(Y1, . . . , Yn) ∈ An(X) such that
∑n

i=1 ρi(Yi) <
∑n

i=1 ρi(Xi). Take ci = ρi(Xi)−ρi(Yi), i = 1, . . . , n

and c =
∑n

i=1 ci > 0. Then we have

(Y1 + c1 − c/n, . . . , Yn + cn − c/n) ∈ An(X),

and

ρi(Yi + ci − c/n) < ρi(Yi + ci) = ρi(Xi).

Therefore, (X1, . . . , Xn) is not Pareto-optimal.

In the sequel, we do not distinguish between optimal allocations and Pareto-optimal ones. In

order to find an optimal allocation, we simply need to minimize the aggregate risk value over all

allocations. In some situations, the n agents in a sharing problem have initial risks ξ1, . . . , ξn,

respectively, and the total risk is X = ξ1 + · · · + ξn. With a given total risk X, the initial risks

ξ1, . . . , ξn do not affect Pareto-optimality and we do not take them into account in this section.

They do play a role in the formulation of a competitive equilibrium; see Section 2.5.

2.4.2 Optimal Allocations

In this section, we find an optimal allocation of X ∈ X such that (2.4.2) is attained when

ρ1, . . . , ρn are from the family of RVaR. The main result is the following theorem.
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Theorem 2.4. For α1, . . . , αn, β1, . . . , βn > 0, we have

n
�
i=1

RVaRαi,βi(X) = RVaR∑n
i=1 αi,

∨n
i=1 βi

(X), X ∈ X . (2.4.3)

Moreover, if p :=
∑n

i=1 αi +
∨n
i=1 βi < 1, then, assuming βn =

∨n
i=1 βi, an optimal allocation

(X1, . . . , Xn) of X ∈ X is given by

Xi = (X −m) I{1−
∑i
k=1 αk<UX61−

∑i−1
k=1 αk}

, i = 1, . . . , n− 1, (2.4.4)

Xn = (X −m) I{UX61−
∑n−1
k=1 αk}

+m, (2.4.5)

where m ∈ (−∞,VaRp(X)] is a constant and UX is defined as in Section 1.2.1.

Proof. Write ρi = RVaRαi,βi , i = 1, . . . , n. Since the order of (αi, βi), i = 1, . . . , n is irrelevant

in (2.4.3), we may assume without loss of generality βn =
∨n
i=1 βi. To show (2.4.3), it suffices to

show
n
�
i=1

ρi(X) 6 RVaR∑n
i=1 αi,βn

(X); (2.4.6)

indeed, Theorem 2.1 guarantees the other direction of the inequality. In all the following cases,

take (X1, . . . , Xn) in (2.4.4)-(2.4.5) with some m ∈ R. It is easy to see X1 + · · ·+Xn = X, and

for i = 1, . . . , n − 1, we have ρi(Xi) 6 0 since P(Xi > 0) 6 αi. We discuss the following four

cases.

(i) p < 1.

Take m 6 VaRp(X). It is easy to verify ρn(Xn) = RVaR∑n
i=1 αi,βn

(X). Thus,

n
�
i=1

ρi(X) 6
n∑
i=1

ρi(Xi) 6 RVaR∑n
i=1 αi,βn

(X).

Therefore (2.4.6) holds, and (X1, . . . , Xn) is an optimal allocation.

(ii) p > 1.

Take m < 0. If αn + βn > 1 then (2.4.6) holds trivially since
∑n

i=1 ρi(Xi) = −∞. If
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αn + βn 6 1, using the subadditivity of ES, we have

ρn(Xn) = RVaRαn,βn

(
XI{UX61−

∑n−1
k=1 αk}

+mI{UX>1−
∑n−1
k=1 αk}

)
6 ESαn+βn

(
XI{UX61−

∑n−1
k=1 αk}

+mI{UX>1−
∑n−1
k=1 αk}

)
6 ESαn+βn

(
XI{UX61−

∑n−1
k=1 αk}

)
+ ESαn+βn

(
mI{UX>1−

∑n−1
k=1 αk}

)
=

{
ESαn+βn

(
XI{UX61−

∑n−1
k=1 αk}

)
+m p−1

αn+βn
if
∑n

i=1 αi < 1

m if
∑n

i=1 αi > 1

→ −∞ as m→ −∞.

This shows �ni=1 ρi(Xi) = −∞ and (2.4.6) holds.

(iii) p = 1, βn = 0.

Since P(Xn > m) 6 αn, one has VaRαn(Xn) 6 m → −∞ as m → −∞. This shows

�ni=1 ρi(Xi) = −∞ and (2.4.6) holds.

(iv) p = 1, βn > 0.

If αn + βn = 1 then ρn(Xn) = ρn(X) = RVaRαn,βn(X), and (2.4.6) holds.

If αn + βn < 1, take m = VaRq(X) for q ∈ (αn + βn, 1) ∩ (1− βn, 1). We have

ρn(Xn) = RVaRαn,βn

(
XI{UX6αn+βn} + VaRq(X)I{UX>αn+βn}

)
=

1

βn

(∫ q

1−βn
VaRγ(X)dγ + (1− q)VaRq(X)

)
→ 1

βn

∫ 1

1−βn
VaRγ(X)dγ as q → 1.

This shows �ni=1 ρi(Xi) 6 1
βn

∫ 1
1−βn VaRγ(X)dγ = RVaR1−βn,βn(X) and (2.4.6) holds.

Combining the cases (i)-(iv), the proof is complete.

If X > 0, then by setting m = 0 in (2.4.4)-(2.4.5), the optimal allocation is

Xi = XI{1−
∑i
k=1 αk<UX61−

∑i−1
k=1 αk}

, i = 1, . . . , n− 1, (2.4.7)

Xn = XI{UX61−
∑n−1
k=1 αk}

. (2.4.8)
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The interpretation of the above allocation is clear: for each i = 1, . . . , n− 1, agent i takes a risk

Xi with probability of loss P(Xi > 0) = αi. This implies RVaRαi,βi(Xi) = 0. The last agent

(agent n) takes the rest of the risk, and RVaRαn,βn(Xn) = RVaR∑n
i=1 αi,βn

(X) which is positive

if X > 0. For each agent i, the parameter βi can be seen as the sensitivity with respect to a

loss exceeding the αi-probability level. In view of the above discussion, we will refer to βi as the

tolerance parameter of agent i, and agent n as the remaining-risk bearer, who has the largest

tolerance parameter among all agents.

Remark 2.3. Some observations on the optimal allocation in Theorem 2.4:

(i) Assuming p < 1 in Theorem 2.4, each X1, . . . , Xn is a function of UX in the optimal allo-

cation (2.4.4)-(2.4.5). If X is continuously distributed, then X1, . . . , Xn are also functions

of X, since UX can be taken as F (X) where F is the distribution of X. In this case, the

optimal allocation in (2.4.4)-(2.4.5) can be written as

Xi = (X −m) I{F−1(1−
∑i
k=1 αk)<X6F−1(1−

∑i−1
k=1 αk)}, i = 1, . . . , n− 1, and (2.4.9)

Xn = (X −m) I{X6F−1(1−
∑n−1
k=1 αk)} +m, (2.4.10)

where m ∈ (−∞,VaRp(X)].

(ii) If αi = βi = 0 for some i = 1, . . . , n, assuming n > 2, one can always choose Xi = 0 in

an optimal risk sharing (X1, . . . , Xn) ∈ An(X). This is because for any α, β ∈ R+ and

X1, X2 ∈ X ,

RVaRα,β(X1 +X2) + VaR0(0) 6 RVaRα,β(X1 + VaR0(X2)) = RVaRα,β(X1) + VaR0(X2).

That is, it is not beneficial to allocate any risk to agent i, since she is extremely averse to

taking any risk. This is already reflected in the construction in (2.4.4).

(iii) If
∑n

i=1 αi +
∨n
i=1 βi > 1, as RVaR∑n

i=1 αi,
∨n
i=1 βi

(X) = −∞, no optimal allocation exists.

There exists an allocation (X1, . . . , Xn) ∈ An(X) such that
∑n

i=1 RVaRαi, βi(Xi) < −m for

any m ∈ R. If
∑n

i=1 αi +
∨n
i=1 βi = 1, from the proof of Theorem 2.4 parts (iii) and (iv), it

follows that, depending on the choice of (αi, βi), i = 1, . . . , n, an optimal allocation may or

may not exist.

The following corollary for VaR follows directly from Theorem 2.4.
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Corollary 2.5. For α1, . . . , αn > 0, we have

n
�
i=1

VaRαi(X) = VaR∑n
i=1 αi

(X), X ∈ X .

Moreover, if p :=
∑n

i=1 αi < 1, an optimal allocation of X ∈ X is given by (2.4.4)-(2.4.5) where

m ∈ (−∞,VaRp(X)].

Similarly to Corollary 2.2, Corollary 2.5 also holds for non-integrable random variables; see

Remark 2.2.

Remark 2.4. From Theorem 2.4 and Corollary 2.5, the subset G of risk measures on X ,

G =
{

RVaRα,β : (α, β) ∈ R2
+

}
,

forms a commutative monoid (semi-group) equipped with the addition �. Moreover, this monoid

is isomorphic to the monoid R2
+ equipped with the addition (+,∨). The identity element in the

monoid (G,�) is RVaR0,0 = ES0 = VaR0, and the identity element in the monoid (R2
+, (+,∨))

is simply (0, 0). The submonoid GV = {VaRα : α ∈ R+} of (G,�) is isomorphic to the monoid

(R+,+), and the submonoid GE = {ESβ : β ∈ R+} of (G,�) is isomorphic to the monoid (R+,∨).

2.5 Competitive Equilibria

In Section 2.4, (Pareto-)optimal allocations are obtained for the quantile-based risk sharing prob-

lem, which is more suitable for the study of cooperative games. If the agents represent a group

of individual firms, there might not be a central coordination for these self-interested firms to

reach Pareto-optimality. In this section, we investigate settings of non-cooperative equilibria. We

shall see that the optimal allocation obtained in Section 2.4 is indeed part of an Arrow-Debrew

equilibrium under a condition on the distribution function of X..

2.5.1 An Arrow-Debreu Equilibrium

We consider a classic Arrow-Debreu economic equilibrium model (Arrow and Debreu (1954)) for

agents whose objectives are characterized by the RVaR family. All discussions are based on the

underlying risk measures RVaRα1,β1 , . . . ,RVaRαn,βn , αi, βi ∈ [0, 1) satisfying

n∑
i=1

αi +

n∨
i=1

βi < 1, βn =
n∨
i=1

βi. (2.5.1)
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Note that we are assuming without loss of generality that the n-th agent has the largest tolerance

parameter among all agents.

For i = 1, . . . , n, assume that agent i has an initial risk ξi ∈ X . Let X =
∑n

i=1 ξi be the

total risk, and assume X > 0. Let Ψ be the set of bounded non-negative random variables ψ.

The random variable ψ ∈ Ψ presents the pricing rule for the microeconomic market among the

agents, that is, by taking a risk Y in this market, one receives a monetary payment of E[ψY ].

For each i = 1, . . . , n, agent i may trade the initial risk ξi for a new position Xi ∈ X , and

receive the monetary amount E[ψ(Xi − ξi)]. For a given ψ ∈ Ψ, the agent’s objective is

to minimize RVaRαi,βi(Xi − E[ψ(Xi − ξi)]) (2.5.2)

over Xi ∈ X satisfying 0 6 Xi 6 X; that is, one is not allowed to take more than the total risk,

or take less than zero2. Obviously, ξi is irrelevant in optimizing (2.5.2). By cash-invariance of

RVaR, (2.5.2) is equivalent to

to minimize Vi(Xi) = RVaRαi,βi(Xi)− E[ψXi]

over Xi ∈ X , 0 6 Xi 6 X,
i = 1, . . . , n. (2.5.3)

To reach an equilibrium, the market clearing equation

n∑
i=1

X∗i = X =
n∑
i=1

ξi

needs to be satisfied, where X∗i solves (2.5.3), i = 1, . . . , n.

The constraint 0 6 Xi 6 X is essential to the optimization (2.5.3). Note that the functional

Xi 7→ RVaRαi,βi(Xi) − E[ψXi] is positively homogeneous. If we allow Xi to be taken over the

full set X , then the infimum value of (2.5.3) will always be either 0 or −∞ (one cannot expect a

non-trivial equilibrium to exist). In view of this, we consider non-negative random variables and

write X+ = {X ∈ X : X > 0}. Below we adopt Definition 3.60 of Föllmer and Schied (2016) for

an Arrow-Debreu equilibrium3.

2In the formulation of competitive equilibria, typically there is a budget constraint of the form E[ψYi] > E[ψξi]

in the minimization of a target Vi(Yi). Note that in (2.5.2), Yi = Xi − E[ψ(Xi − ξi)] and it always satisfies

E[ψYi] = E[ψξi]. Hence we omit the budget constraint in our formulation. Optimization over Y with the constraint

0 6 Y 6 X is a generalization of the problem considered in Schied (2004), where 0 6 Y 6 K for a constant K ∈ R
is studied. See p.180 of Föllmer and Schied (2016) for equilibria under this constraint.

3There are several different models for the Arrow-Debreu equilibria in finance (see e.g. Starr (2011) and Xia and

Zhou (2016)), often involving an extra individual consumption optimization. In the definition we adopt (following

Föllmer and Schied (2016)), individual consumptions are omitted for simplicity.
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Definition 2.2 (Arrow-Debreu equilibrium). Let X ∈ X+. A pair (ψ, (X∗1 , . . . , X
∗
n)) ∈ Ψ×An(X)

is an Arrow-Debreu equilibrium for (2.5.3) if

X∗i ∈ arg min {Vi(Xi) : Xi ∈ X , 0 6 Xi 6 X} , i = 1, . . . , n. (2.5.4)

The pricing rule ψ in an Arrow-Debreu equilibrium is called an equilibrium pricing rule, and the

allocation (X∗1 , . . . , X
∗
n) in an Arrow-Debreu equilibrium is called an equilibrium allocation.

For an introduction of Arrow-Debreu equilibria in finance, see Föllmer and Schied (2016,

Section 3.6). Certainly, the equilibrium pricing rule ψ, assuming it exists, is arbitrary on the set

{X = 0}. Explicit solutions of Arrow-Debreu equilibria for non-convex objectives (or non-concave

objectives in the framework of utility maximization), including the RVaR family, are very limited

in the literature. We are not aware of any explicit solutions. For some recent development on

Arrow-Debreu equilibria for rank-dependent utilities, see Xia and Zhou (2016) and Jin et al.

(2016).

We first establish a connection between an Arrow-Debreu equilibrium and an optimal alloca-

tion.

Proposition 2.6. Let X ∈ X+ and assume (2.5.1) holds. Suppose that (ψ, (X∗1 , . . . , X
∗
n)) ∈

Ψ × An(X) is an Arrow-Debreu equilibrium for (2.5.3). Then (X∗1 , . . . , X
∗
n) is necessarily an

optimal allocation for RVaRα1,β1 , . . . ,RVaRαn,βn.

Proof. By the construction in (2.4.7)-(2.4.8), there exists (Y1, . . . , Yn) ∈ An(X) such that

n∑
i=1

RVaRαi,βi(Yi) = RVaRα,β(X)

and 0 6 Yi 6 X, i = 1, . . . , n, where α =
∑n

i=1 αi and β =
∨n
i=1 βi. Since (ψ, (X∗1 , . . . , X

∗
n)) is an

Arrow-Debreu equilibrium, we have for i = 1, . . . , n,

RVaRαi,βi(X
∗
i )− E[ψX∗i ] 6 RVaRαi,βi(Yi)− E[ψYi].

It follows from
∑n

i=1X
∗
i = X =

∑n
i=1 Yi that

n∑
i=1

RVaRαi,βi(X
∗
i )− E[ψX] =

n∑
i=1

(RVaRαi,βi(X
∗
i )− E[ψX∗i ])

6
n∑
i=1

(RVaRαi,βi(Yi)− E[ψYi]) = RVaRα,β(X)− E[ψX].
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Therefore
∑n

i=1 RVaRαi,βi(X
∗
i ) 6 RVaRα,β(X). By Theorem 2.4, (X∗1 , . . . , X

∗
n) is an optimal

allocation.

Proposition 2.6 is a special version of the First Welfare Economics Theorem4 for the optimiza-

tion (2.5.3), stating that an equilibrium allocation is Pareto-optimal under suitable assumptions

(see e.g. Arrow (1951) and Arrow and Debreu (1954)).

Next we shall see that, with an extra condition on the value of P(X > 0), the optimal

allocation in Theorem 2.4 is indeed an equilibrium allocation, and the corresponding equilibrium

pricing rule is explicit. Recall that for X > 0 and assuming (2.5.1), an optimal allocation in

Theorem 2.4 is given by

X∗i = XI{1−
∑i
k=1 αk<UX61−

∑i−1
k=1 αk}

, i = 1, . . . , n− 1, (2.5.5)

X∗n = XI{UX61−
∑n−1
k=1 αk}

. (2.5.6)

The following theorem establishes an explicit Arrow-Debreu equilibrium for (2.5.3).

Theorem 2.7. Write α =
∑n

i=1 αi, α =
∧n
i=1 αi and β =

∨n
i=1 βi = βn. Assume α+ β < 1, and

X ∈ X+ satisfies P(X > 0) 6 max{α+ β, α}. Let (X∗1 , . . . , X
∗
n) be given by (2.5.5)-(2.5.6), and

ψ = min

{
x

Xβ
,

1

β

}
I{Xβ>0} where x = VaRα(X). (2.5.7)

Then (ψ, (X∗1 , . . . , X
∗
n)) is an Arrow-Debreu equilibrium for (2.5.3).

Proof. Recall that RVaRαn,βn(X∗n) = RVaRα,β(X) and RVaRαi,βi(X
∗
i ) = 0 for i = 1, . . . , n − 1.

We consider two cases separately.

(i) Suppose P(X > 0) 6 α. This implies RVaRαn,βn(X∗n) = RVaRα,β(X) = 0, x = 0 and ψ = 0.

On the other hand, for any 0 6 Xi 6 X, we have RVaRαi,βi(Xi)−E[ψXi] = RVaRαi,βi(Xi) >

0. Thus X∗i satisfies (2.5.4), and hence (ψ, (X∗1 , . . . , X
∗
n)) is an Arrow-Debreu equilibrium.

(ii) Suppose α < P(X > 0) 6 α + β. This implies x, β > 0. For i = 1, . . . , n, take any Xi ∈ X
such that 0 6 Xi 6 X. Note that by definition, ψX 6 x/β. We have

E[ψI{UXi>1−αi}Xi] 6 E[ψI{UXi>1−αi}X] 6 E
[
x

β
I{UXi>1−αi}

]
=
xαi
β
. (2.5.8)

4The First Welfare Economics Theorem has many versions, and it usually requires completeness of the market,

which is not the case for our formulation.
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On the other hand, using ψ 6 1/β and P(Xi > 0) 6 P(X > 0) 6 αi + β,

E[ψI{UXi<1−αi}Xi] 6
1

β
E[I{UXi<1−αi}Xi]

=
1

β

∫ 1

αi

VaRγ(Xi)dγ

=
1

β

∫ αi+β

αi

VaRγ(Xi)dγ = RVaRαi,β(Xi) 6 RVaRαiβi(Xi). (2.5.9)

Combining (2.5.8) and (2.5.9), we have

E[ψXi] 6
xαi
β

+ RVaRαiβi(Xi).

Equivalently,

RVaRαiβi(Xi)− E[ψXi] > −
xαi
β
.

Next we verify that RVaRαi,βi(X
∗
i )− E[ψX∗i ] is equal to −xαi/β. Write

Ai =

{
1−

i∑
k=1

αk < UX 6 1−
i−1∑
k=1

αk

}
⊂ {UX > 1− α}.

Note that ψ = x
Xβ I{UX>1−α} + 1

β I{UX<1−α}. We have X∗i = XIAi for i = 1, . . . , n − 1, and

X∗n = XIAn +XI{UX<1−α}. For i = 1, . . . , n− 1,

RVaRαi,βi(X
∗
i )− E[ψX∗i ] = −E[ψX∗i ] = −E

[
x

Xβ
I{UX>1−α}XIAi

]
= −E

[
x

β
IAi

]
= −xαi

β
.

For the last agent, we have

E[ψX∗n] = E
[
x

Xβ
I{UX>1−α}XIAn

]
+ E

[
1

β
I{UX<1−α}X

]
=
xαn
β

+
1

β

∫ 1

α
VaRγ(X)dγ

=
xαn
β

+
1

β

∫ α+β

α
VaRγ(X)dγ =

xαn
β

+ RVaRα,β(X).

Rearranging the above equation, and using RVaRαn,βn(X∗n) = RVaRα,β(X), we obtain

RVaRαn,βn(X∗n)− E[ψX∗n] = RVaRα,β(X)− E[ψX∗n] = −xαn
β
.
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In summary, for i = 1, . . . , n,

RVaRαiβi(Xi)− E[ψXi] > −
xαi
β

= RVaRαi,βi(X
∗
i )− E[ψX∗i ].

Therefore, (ψ, (X∗1 , . . . , X
∗
n)) is an Arrow-Debreu equilibrium.

From Theorem 2.7, there are two cases for the equilibrium pricing rule ψ on {X > 0}:

(i) if P(X > 0) 6 α, then ψ = 0;

(ii) if α < P(X > 0) 6 α+ β, then

ψ = min

{
x

Xβ
,

1

β

}
=

x

Xβ
I{UX>1−α} +

1

β
I{UX<1−α} where x = VaRα(X). (2.5.10)

The above case (i) is perhaps less interesting. In this case, each agent takes a “free-lunch”

risk XIAi which does not contribute to their measure of risk. It is then not surprising to see that

the equilibrium price of any risk is zero.

On the other hand, the above case (ii) is somewhat remarkable. The equilibrium pricing rule

ψ in (2.5.10) consists of two parts. If X > x, the pricing rule is given by ψ = x
Xβ , a constant

times the reciprocal of X. This form of equilibrium pricing rule is found in the Arrow-Debreu

equilibrium for log utility maximizers (see e.g. Example 3.63 of Föllmer and Schied (2016)). If

0 < X < x, ψ is equal to the constant 1/β. If X = 0, as mentioned before, ψ is arbitrary

and its value does not affect the optimization problem. For simplicity one can take ψ = 1/β to

unify with the previous case, so that ψ is a non-increasing function of X. The distribution of the

equilibrium pricing rule ψ is a mixture of a scaled reciprocal of X given X > x and a constant

1/β given X < x. We are not aware of any existing literature containing this particular form of

equilibrium pricing rules.

Remark 2.5. The condition P(X > 0) 6 max{α + β, α} is crucial for the above Arrow-Debreu

equilibrium. One can verify that if P(X > 0) > max{α+β, α}, then (ψ, (X∗1 , . . . , X
∗
n)) in (2.5.5)-

(2.5.7) is no longer an Arrow-Debreu equilibrium. It is not clear yet whether an Arrow-Debreu

equilibrium exists in this case. We conjecture that the solution depends on other distributional

properties of X.
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2.5.2 An Equilibrium Model for Expected Profit minus Cost of Capital

Let αi, βi, ξi, ψ, i = 1, . . . , n be as in Section 2.5.1. Previously, we considered an Arrow-Debreu

equilibrium in which each agent’s objective is to minimize their risk measure RVaRαi,βi . This

can be interpreted as a setting of minimizing each firm’s regulatory capital, where the regulatory

capital is calculated by RVaRαi,βi(Xi − E[ψ(Xi − ξi)]) for firm i to bear the risk position Xi.

Admittedly, it is simplistic to suggest that regulatory capital is the only concern of a firm in

managing its risk. A more comprehensive model for the objective of firm i, for i = 1, . . . , n, may

be chosen as

to maximize Ui(Xi) = E
[
ui

(
wi + E[ψ(Xi − ξi)]−Xi − ciRVaRαi,βi(Xi)

)]
, (2.5.11)

where wi ∈ R is the initial wealth of firm i, ui : R → R is the utility function of the firm, and

ci > 0 is a constant which represents the cost of raising one unit of capital for this firm5. In other

words, the objective in (2.5.11) is to maximize the expected utility of the initial wealth wi plus

the cash received E[ψ(Xi − ξi)], minus the cost of capital ciRVaRαi,βi(Xi) and the potential loss

Xi.

Solving an Arrow-Debreu equilibrium for general preferences modeled by (2.5.11) is quite

challenging and is beyond the scope of this chapter. Below we shall illustrate that, in the special

case when u1, . . . , un are linear, the equilibrium allocation in Section 2.5.1 is again an equilibrium

allocation under a slightly stronger condition.

Assume that u1, . . . , un are linear utility functions. Under this setting, wi and ξi in (2.5.11)

can be omitted, and the optimization problem (2.5.11) is equivalent to

to minimize Vi(Xi) = E[Xi] + ciRVaRαi,βi(Xi)− E[ψXi]

over Xi ∈ X , 0 6 Xi 6 X,
i = 1, . . . , n. (2.5.12)

It is not surprising that the cost-of-capital coefficients c1, . . . , cn play a non-negligible role in

an equilibrium for (2.5.12). In the following, let di = βi/ci represent the tolerance-to-cost ratio

of agent i, i = 1, . . . , n. Without loss of generality, we assume dn =
∨n
i=1 di. That is, an agent

with the largest tolerance-to-cost ratio is rearranged to be the n-th agent.

5Here, for simplicity, we assume that the cost of the regulatory capital is ciRVaRαi,βi(Xi) regardless of the

initial wealth and the cash received.
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Theorem 2.8. Write α =
∑n

i=1 αi, η =
∧n
i=1(αi + βi) and d =

∨n
i=1 di = dn. Assume α +∨n

i=1 βi < 1, and X ∈ X+ satisfies P(X > 0) 6 max{η, α}. Let (X∗1 , . . . , X
∗
n) be given by

(2.5.5)-(2.5.6), and

ψ = 1 + min

{
x

Xd
,

1

d

}
I{Xd>0} where x = VaRα(X). (2.5.13)

Then (ψ, (X∗1 , . . . , X
∗
n)) is an Arrow-Debreu equilibrium for (2.5.12).

The proof of Theorem 2.8 is similar to that of Theorem 2.7 and is given in Section 2.8.2.

Theorem 2.8 suggests that for the objectives in (2.5.12), there exists an Arrow-Debreu equilibrium

in which the allocation is again (2.5.5)-(2.5.6), albeit the remaining-risk bearer (see Remark 2.3)

in this problem is the agent with the largest tolerance-to-cost ratio, instead of the one with the

largest tolerance parameter as in Theorem 2.7.

Remark 2.6. Noting η =
∧n
i=1(αi + βi) 6

∧n
i=1 αi +

∨n
i=1 βi, the constraint P(X > 0) 6

max{η, α} is slightly stronger than the one in Theorem 2.7, where P(X > 0) 6 max{
∧n
i=1 αi +∨n

i=1 βi, α} is required. This technical condition was caused by the introduction of the possibly

different coefficients c1, . . . , cn, and does not seem to be dispensable.

2.5.3 A Numerical Example

To illustrate our results, in this section we present a simple example, in which three agents share

a homogenous credit risk portfolio, to illustrate our result. Take αi = 0.01, βi = 0.25, i = 1, 2, 3

and c1 = 0.1, c2 = 0.08, c3 = 0.05. This setting corresponds to that the three agents are subject

to the same regulatory risk measure RVaR0.01,0.25 with different cost-of-capital coefficients. The

use of RVaR0.01,0.25 may be seen as a robust approximation of ES0.26 as suggested by Cont et al.

(2010). Agent 3 has the smallest cost-of-capital coefficient, therefore the largest tolerance-to-cost

ratio.

Let ξi =
∑100

j=1 Li,j where Li,j , i = 1, 2, 3, j = 1, . . . , 100 are iid Bernoulli random variables

with parameter p = 0.001. Each Li,j represents the loss from a single credit event and for

simplicity we assume that they are all iid. The total risk X = ξ1 + ξ2 + ξ3 has a Bin(300, 0.001)

distribution, and we can calculate P(X > 0) = 0.259293.

We consider the competitive equilibrium in Section 2.5.2. The following quantities are straight-

forward from Theorem 2.8: d = 5, x = VaR0.03(X) = 2 and ψ = 1 + 2
5X I{X>2} + 1

5 I{X61}. A

32



i = 1 i = 2 i = 3

initial expected loss E[ξi] 0.1 0.1 0.1

initial risk measure RVaRαi,βi (ξi) 0.3412 0.3412 0.3412

initial price of risk E[ψξi] 0.1197 0.1197 0.1197

equilibrium expected loss E[X∗i ] 0.0239 0.0200 0.2561

equilibrium risk measure RVaRαi,βi (X
∗
i ) 0 0 0.9444

equilibrium price of risk E[ψX∗i ] 0.0279 0.0240 0.3073

initial objective value E[ξi] + ciRVaRαi,βi (ξi) 0.1341 0.1273 0.1171

equilibrium objective value E[X∗i ] + ciRVaRαi,βi (X
∗
i )− E[ψ(X∗i − ξi)] 0.1157 0.1157 0.1157

initial total risk measure
∑3
i=1 RVaRαi,βi (ξi) 1.0236

equilibrium total risk measure
∑3
i=1 RVaRαi,βi (X

∗
i ) 0.9444

Table 2.1: Numerical comparison between the initial allocation and the equilibrium allocation.

comparison between the initial allocation and the equilibrium allocation are reported in Table

2.16. From Table 2.1, each of the agents has an improved objective value, with agent 3 being

the remaining-risk bearer, whose improvement is the smallest among the three agents. It is not

a coincidence that the equilibrium objective values of the three agents in Table 2.1 are identical.

This is because E[X∗i ] + ciRVaRαi,βi(X
∗
i ) − E[ψ(X∗i − ξi)] = E[ψξi] − xαi

d (see (2.8.9)) which is

the same for i = 1, 2, 3.

2.6 Model Misspecification, Robustness and Comonotonicity in

Risk Sharing

As shown in Sections 2.4 and 2.5, the optimal allocations in (2.4.4)-(2.4.5) are prominent to various

settings of risk sharing and equilibria when using the RVaR family of risk measures. In this section

we discuss a few issues related to the above optimal allocations. If an allocation (X1, . . . , Xn)

is determined by X, it can be written as (X1, . . . , Xn) = (f1(X), . . . , fn(X)) ∈ An(X) for some

functions f1, . . . , fn. We denote by Fn the set of sharing principles (f1, . . . , fn) where each

6RVaRαi,βi(ξi), E[X∗i ], i = 1, 2, 3 and RVaRα3,β3(X∗3 ) are calculated by the average of 100 repetitions of simu-

lations of size 100,000. Other quantities are calculated analytically.
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fi : R→ R, i = 1, . . . , n, has at most finitely many points of discontinuity, f1(x)+ · · ·+fn(x) = x

for all x ∈ R, and fi(X) ∈ X for X ∈ X , i = 1, . . . , n. As discussed in Remark 2.3, the cases

in which
∑n

i=1 αi +
∨n
i=1 βi < 1 and αi + βi > 0 for each i = 1, . . . , n are most relevant for the

existence of an optimal allocation, and we shall make this assumption in the following discussions.

2.6.1 Robust Allocations

In this section we discuss risk sharing in the presence of model uncertainty by studying the

resulting aggregate risk value when the distribution of the total risk X ∈ X is misspecified. We

will see that this in general implies serious problems for VaR but not for RVaR or ES. This

relates to the issue of the robustness of VaR and RVaR; for a relevant discussion on robustness

properties for risk measures, see Cont et al. (2010), Kou et al. (2013), Krätschmer et al. (2014)

and Embrechts et al. (2015); see also Remark 2.8 below. In contrast to the above literature, we

are interested in the robustness of the optimal allocation instead of the robustness of the risk

measures themselves.

Definition 2.3. For given risk measures ρ1, . . . , ρn on X , X ∈ X and a pseudo-metric7 π de-

fined on X , an allocation (f1(X), . . . , fn(X)) ∈ An(X) with (f1, . . . , fn) ∈ Fn is π-robust if the

functional Z →
∑n

i=1 ρi(fi(Z)) is continuous at Z = X with respect to π.

Commonly used pseudo-metrics π in risk management include the Lq metric for q > 1, the

L∞ metric (assuming X is bounded), or the Lévy metric πW
8, which metrizes weak convergence

(convergence in distribution). As we take the common domain X as the set of integrable random

variables, we shall analyze the cases π = L1, L∞ and πW in the following.

In Definition 2.3, X represents an agreed-upon underlying risk. The n agents design a sharing

principle (f1, . . . , fn) based on the knowledge of a model X. The true risk Z is unknown to the

agents, and can be slightly different from the model X. If an optimal allocation is robust in the

sense of Definition 2.3, then under a small model misspecification, the true aggregate risk value∑n
i=1 ρi(fi(Z)) would not be too far away from the optimized value for X. On the other hand,

for a non-robust optimal allocation, a small model misspecification would destroy the optimality

of the allocation.

7A pseudo-metric is similar to a metric except that the distance between two distinct points can be zero. For

instance, a metric on the set of distributions, such as the Lévy metric, induces a pseudo-metric on X .
8More rigorously, πW is the pseudo-metric on X induced by the the Lévy metric on the set of distributions.
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Proposition 2.9. Let X ∈ X be a continuously distributed random variable. Suppose that

Zj → X weakly as j →∞, then for αi, βi ∈ [0, 1), αi+βi < 1, i = 1, . . . , n, and (f1, . . . , fn) ∈ Fn,

we have

lim inf
j→∞

n∑
i=1

RVaRαi,βi(fi(Zj)) >
n∑
i=1

RVaRαi,βi(fi(X)).

The proof of Proposition 2.9 is given in Section 2.8.3. Proposition 2.9 suggests that if the

actual risk Z is misspecified as X, then the aggregate risk value for an allocation of Z is asymptot-

ically larger than that for an allocation of X. Proposition 2.9 remains valid if weak convergence

is strengthened to L1-convergence or L∞-convergence.

The next proposition discusses the connection between the robustness property of the inf-

convolution risk measure and that of the optimal allocation.

Proposition 2.10. For given risk measures ρ1, . . . , ρn on X , X ∈ X and a pseudo-metric

π defined on X , if there exists a π-robust optimal allocation of X, then �ni=1ρi is π-upper-

semicontinuous at X.

The proof of Proposition 2.10 is given in Section 2.8.4. In Section 2.6.2 below we shall see that

π-continuity (stronger than π-upper-semicontinuity) of �ni=1ρi is not sufficient for the existence

of a π-robust optimal allocation. More discussions on the relationship in Proposition 2.10 for the

RVaR family and convex risk measures are presented in Remark 2.8.

Remark 2.7. Recently, Krätschmer et al. (2012, 2014) and Zähle (2016) developed robustness

properties for statistical functionals (including law-invariant risk measures) on Orlicz hearts with

respect to ψ-weak topologies. These concepts are well suitable for studying convex risk measures;

see Cheridito and Li (2009) for more on risk measures on Orlicz hearts. For RVaRα,β with

α > 0, the tail distribution of a risk beyond its (1 − α)-quantile level does not play a role, and

hence the notions of Orlicz hearts and ψ-weak convergence are hardly relevant. In the case of

ESβ = RVaR0,β, the corresponding Orlicz heart is L1 and the corresponding gauge function ψ is

linear; see Krätschmer et al. (2014).

2.6.2 Robust Allocations for Quantile-based Risk Measures

In the following we characterize robust optimal allocations in the RVaR family. For technical rea-

sons, we assume that the total risk X under study is doubly continuous; this includes practically
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all models used in risk management and robust statistics. Note that this does not imply that the

random variables in an optimal allocation are continuously distributed.

Theorem 2.11. For risk measures RVaRα1,β1 , . . . ,RVaRαn,βn, αi, βi ∈ [0, 1), αi + βi > 0, i =

1, . . . , n,
∑n

i=1 αi +
∨n
i=1 βi < 1 and a doubly continuous random variable X ∈ X , the following

hold.

(i) There exists an L1-robust optimal allocation of X if and only if β1, . . . , βn > 0.

(ii) If X is bounded, then there exists an L∞-robust optimal allocation of X if and only if

β1, . . . , βn > 0.

(iii) There exists a πW -robust optimal allocation of X if and only if β1, . . . , βn > 0 and αi > 0

for some i = 1, . . . , n.

A proof of Theorem 2.11 is given in Section 2.8.5. From Theorem 2.11, if all of the underlying

risk measures are true RVaR or ES, then an L1-robust optimal allocation can be obtained. More

interestingly, as soon as one of the underlying risk measures is a true VaR, not only the allocation

in (2.4.9)-(2.4.10) is non-robust, but any optimal allocation is non-robust with respect to any

commonly used metrics.

A true RVaR is known to have a strong form of robustness (πW -continuity), and hence it is

not surprising that the strongest robustness in the optimal allocation is found for true RVaR.

On the contrary, if one of β1, . . . , βn is zero, even if �ni=1RVaRαi,βi is πW -continuous, and each

of RVaRαi,βi is πW -continuous at X (a VaR is πW -continuous at any doubly continuous random

variable), an L∞-optimal allocation does not exist, not to say L1- or πW -robust ones. Thus,

individual robustness of the underlying risk measures does not imply the existence of robust

optimal allocations.

Remark 2.8. In the literature of risk measures, there is a well-known conflict between con-

vexity and robustness. This is due to the fact that any convex risk measure is not πW -upper-

semicontinuous on the set of bounded random variables (see Bäuerle and Müller (2006) and Cont

et al. (2010)). If the underlying risk measures ρ1, . . . , ρn are convex risk measures, then �ni=1ρi

is also a convex risk measure (Barrieu and EI Karoui (2005)). In this case, there does not exist

a πW -robust optimal allocation by Proposition 2.10. On the other hand, from Theorem 2.11

(iii), for a πW -robust optimal allocation to exist, some of the underlying risk measures can be
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convex (ES), at least one of them is a true RVaR, which is not convex. To summarize, the conflict

between convexity and robustness still exists, and this only applies to weak convergence, not to

L∞ and L1 metrics; to allow for a robust optimal allocation, some (but not all) of the underlying

risk measures may be convex.

2.6.3 Comonotonicity in Optimal Allocations

Another important concept in the literature of risk sharing is comonotonicity, which relates to a

type of moral hazard among collaborative agents sharing a risk. As we have seen from (2.4.4)-

(2.4.5) in Theorem 2.4, the optimal allocation we construct may not be comonotonic. If the

allocations are constrained to be comonotonic, general results on risk sharing for a general class

of risk measures including RVaR are already known in the literature; see Jouini et al. (2008) and

Cui et al. (2013). In this section we discuss whether an optimal allocation in a quantile-based

risk sharing problem can be chosen as comonotonic.

In the following theorem, we show that, in a quantile-based risk sharing problem, a comono-

tonic optimal allocation exists if and only if all underlying risk measures are ES except for the

one with the largest tolerance parameter.

Theorem 2.12. For risk measures RVaRα1,β1 , . . . ,RVaRαn,βn, αi, βi ∈ [0, 1), αi + βi 6 1, i =

1, . . . , n, and any continuously distributed random variable X ∈ X , there exists a comonotonic

optimal allocation of X if and only if there exists i = 1, . . . , n, such that for all j = 1, . . . , n, j 6= i,

αj = 0 and βi > βj.

To prove Theorem 2.12, we need some results on risk sharing problems with allocations con-

fined to comonotonic ones; see Section 2.8.1. The proof of the theorem is given in Section 2.8.6.

Remark 2.9. Comonotonicity is closely related to convex-order consistency and convexity (see

Rüschendorf (2013) and Föllmer and Schied (2016)). Within the RVaR family, the latter two

properties are only satisfied by ES. In view of this, it is not surprising that the existence of

comonotonic optimal allocations relies on the presence of ES as the underlying risk measures.
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2.7 Summary and Discussions

2.7.1 Summary of Main Results

For underlying risk measures RVaRα1,β1 , . . . ,RVaRαn,βn , αi, βi > 0, i = 1, . . . , n, we solve the

optimal risk sharing problem of a total risk X ∈ X and construct corresponding Arrow-Debreu

Equilibria. The mathematical results are summarized below.

We first establish an inequality in Theorem 2.1,

RVaR∑n
i=1 αi,

∨n
i=1 βi

(
n∑
i=1

Xi

)
6

n∑
i=1

RVaRαi,βi(Xi),

which applies to all random variables X1, . . . , Xn ∈ X and αi, βi ∈ R+, i = 1, . . . , n.

Assuming
∑n

i=1 αi +
∨n
i=1 βi < 1, a Pareto-optimal allocation (X1, . . . , Xn) ∈ An(X) can be

constructed explicitly as in Theorem 2.4, with the aggregate risk value

n∑
i=1

RVaRαi,βi(Xi) = RVaR∑n
i=1 αi,

∨n
i=1 βi

(X).

This optimal allocation turns out to be an Arrow-Debreu equilibrium allocation in the settings

of Theorems 2.7 and 2.8, and the equilibrium pricing rule is obtained explicitly.

Some properties of the above optimal allocation are further characterized. In particular, in

Theorems 2.11 and 2.12 we show that, to allow for an L1-robust optimal allocation of X, the

underlying risk measures should all be ES or true RVaR, and to allow for a comonotonic optimal

allocation of X, all but one of the underlying risk measures should be ES.

2.7.2 Implications for the Choice of a Suitable Regulatory Risk Measure

As mentioned in the introduction, there has recently been an extensive debate on the desirability

of regulatory risk measures, and in particular, VaR or ES, in banking and insurance. It is a

fact that currently VaR and ES coexist as regulatory risk measures throughout the broader

financial industry. For example, within banking, where VaR used to rule as “the benchmark”

(see Jorion (2006)), ES as an alternative is strongly gaining ground. This is for instance the case

for internal models within the new regulatory guidelines for the trading book; see BCBS (2014).
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The “coexistence” becomes clear from the fact that Credit Risk is still falling under the VaR-

regime. For Operational Risk we are at the moment in a transitionary phase where VaR-based

internal models within the Advanced Measurement Approach (AMA) may be scaled down fully;

see BCBS (2016). This less quantitative modeling approach towards Operational Risk is already

standard in insurance regulation like the Swiss Solvency Test (SST) and Solvency II. Within the

latter regulatory landscapes, we also witness a coexistence of VaR (Solvency II) and ES (SST)

making the results of this chapter more relevant.

Below we discuss some relevant implications of our results to the above regulatory debates on

risk measures. In particular, we discover some new advantages of ES, supporting the transition

initiated by the Basel Committee on Banking Supervision. We like to stress however that, through

various explicit formulas, our results are relevant for the ongoing discussion on the use of risk

measures within Quantitative Risk Management more generally.

(i)Capturing tail risk “Tail risk” is currently of crucial concern for banking regulation. Below

we quote the Basel Committee on Banking Supervision, Page 1 of BCBS (2016), Executive

Summary:

“... A shift from Value-at-Risk (VaR) to an Expected Shortfall (ES) measure of risk under

stress. Use of ES will help to ensure a more prudent capture of “tail risk” and capital

adequacy during periods of significant financial market stress.”

From our results in Section 2.4, for any risk X > 0 with P(X > 0) < nα, one has

�ni=1VaRα(X) = VaRnα(X) = 0. Therefore, in the optimization of risks under true VaR

(or true RVaR), there is a part of the loss which is undertaken by the firms, but its riskiness

is completely ignored; this should be also clear from the optimal allocation presented in

Theorem 2.4.

Although the fact that VaR cannot capture tail risk is often argued, our results explain this

fact mathematically for the first time in the framework of risk sharing and optimization.

Within the RVaR family, to completely avoid such a phenomenon, one requires αi = 0,

i = 1, . . . , n, which means that the regulator needs to impose ES as the regulatory risk

measure.

(ii)Model misspecification Due to model uncertainty, a non-robust allocation may lead to a

significantly higher aggregate risk value for the agents, that is, far away from the optimal

39



one. Any model for the total risk X suffers from model uncertainty, be it at the level of

statistical (parameter) uncertainty or at the level of the analytic structure of the model

(e.g. which economic factors to include). The 2007 - 2009 financial crisis (unfortunately)

gave ample proof of this, especially in the context of the rating of mortgage based derivatives;

see, for instance, Donnelly and Embrechts (2010).

From our results in Section 2.6, as soon as one of underlying risk measures is a true VaR,

an optimal allocation cannot be robust. Therefore, a true RVaR or an ES is a better choice

than a VaR in the presence of model uncertainty. Our conclusion is consistent with the

observations in Cont et al. (2010) that RVaR has advantages in robustness properties over

VaR and ES, albeit our results come from a different mathematical setting. Remarkably,

ES is more robust than VaR in our settings of risk sharing.

(iii)Understanding the least possible total capital Let ρ be a regulatory risk measure in

use for a given jurisdiction. Note that, via sharing, be it cooperative (e.g. fragmentation of

a single firm; see Section 2.4) or competitive (see Section 2.5), the total risk in the economy

remains the same while the total regulatory capital is reduced.

The mathematical results obtained in the chapter give a guideline for calculating the least

possible aggregate capital
∑n

i=1 ρ(Xi) in the economy, when the regulatory risk measure is

chosen within the RVaR family. In practice, a regulator may not know how risks are (will

be) distributed among firms before she designs a regulatory risk measure; there are many

possibilities. Our results can be seen as a worst-case scenario (least amount) total regulatory

capital in the economy. Our results also suggest that, within a VaR-based regulatory

system, constraints on the within-firm fragmentation have to be imposed; otherwise the

total regulatory capital may be artificially reduced.

2.8 Technical Details

2.8.1 Comonotonic Risk Sharing for Distortion Risk Measures

For α, β ∈ [0, 1) and α + β 6 1, RVaRα,β belongs to the class of distortion risk measures of the

form

ρh̄(X) =

∫ 1

0
VaRα(X)dh̄(α), X ∈ X , (2.8.1)
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for some non-decreasing and left-continuous function h̄ : [0, 1] → [0, 1] satisfying h̄(0) = 0 and

h̄(1) = 1, such that the above integral is properly defined, where VaR is defined in (2.2.1).

Note that equations (2.8.1) and (1.2.6) are identical with h̄(t) = 1 − h(1 − t), and h̄ is also a

distortion function, called the dual distortion function of h. In this section, whenever we mention

a distortion function, it is h̄ in (2.8.1). A distortion risk measure ρh̄ is coherent if h̄ is concave.

For α, β ∈ [0, 1) and α+ β 6 1, the distortion function of RVaRα,β(X) is given by

h̄(α,β)(t) :=

{
min{I{t>α} t−αβ , 1} if β > 0,

I{t>α} if β = 0,
t ∈ [0, 1]. (2.8.2)

The set of comonotonic allocations is defined as

A+
n (X) = {(X1, . . . , Xn) ∈ An(X) : Xi ↑ X, i = 1, . . . , n} ,

where Xi ↑ X means that Xi and X are comonotonic.

The constrained inf-convolution of risk measures ρ1, . . . , ρn is defined as

n
�
i=1

ρi(X) := inf

{
n∑
i=1

ρi(Xi) : (X1, . . . , Xn) ∈ A+
n (X)

}
.

Definition 2.4. Let ρ1, . . . , ρn be risk measures and X ∈ X . An n-tuple (X1, X2, . . . , Xn) ∈
A+
n (X) is called an optimal constrained allocation of X if

∑n
i=1 ρi(Xi) = �ni=1 ρi(X).

It is obvious that �ni=1 ρi(X) 6 �ni=1 ρi(X). Hence, if an optimal allocation of X is comono-

tonic, then it is also an optimal constrained allocation, and �ni=1 ρi(X) = �ni=1 ρi(X). In Jouini

et al. (2008) it is shown that for law-invariant convex risk measures on L∞, optimal constrained

allocations are also optimal allocations. This statement remains true if the underlying risk mea-

sures preserve convex order; this is based on the comonotone improvement in Landsberger and

Meilijson (1994) and Ludkovski and Rüschendorf (2008).

A solution to the optimal constrained allocation can be found in Jouini et al. (2008) for convex

risk measures and in Cui et al. (2013) for general distortion risk measures in the context of the

design of optimal reinsurance contracts. We give a self-contained proof here which we believe is

simpler than the existing ones in the literature.

Proposition 2.13. For n distortion functions h̄1, . . . , h̄n such that ρh̄i is finite on X for i =

1, . . . , n, we have
n
�
i=1

ρh̄i(X) =

∫ 1

0
VaRα(X)dh̄(α), X ∈ X , (2.8.3)
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where h̄(t) = min{h̄1(t), . . . , h̄n(t)}. Moreover, an optimal constrained allocation (X1, . . . , Xn) of

X ∈ X is given by Xi = fi(X), i = 1, . . . , n, where

fi(x) =

∫ x

0
gi(t)dt, x ∈ R,

and

gi(t) =

{
0 if h̄i(1− F (t)) > h̄(1− F (t)),

1/k(t) otherwise,

for t ∈ R and k(t) = #{j = 1, . . . , n : h̄j(1− F (t)) = h̄(1− F (t))}.

Proof. We first show

n
�
i=1

ρh̄i(X) >
∫ 1

0
VaRα(X)dh̄(α). (2.8.4)

For two left-continuous distortion functions f and g, we have ρf (X) 6 ρg(X) if f 6 g (see Lemma

A.1 of Wang et al. (2015)). Therefore, for any (X1, X2, . . . , Xn) ∈ A+
n (X), by the comonotonic

additivity of VaR, we have∫ 1

0
VaRα(X)dh̄(α) =

∫ 1

0
(VaRα(X1) + · · ·+ VaRα(Xn)) dh̄(α) 6

n∑
i=1

ρh̄i(Xi).

Thus, (2.8.4) holds. Conversely, let F be the distribution of X. Since f1(t), . . . , fn(t) are Lipschitz

continuous and non-decreasing, we have

n∑
i=1

ρh̄i(fi(X)) =
n∑
i=1

∫ 1

0
VaRt(fi(X))dh̄i(t)

=
n∑
i=1

∫ 1

0
fi(VaRt(X))dh̄i(t)

=
n∑
i=1

∫ 1

0

∫ VaRt(X)

0
gi(s)dsdh̄i(t)

=
n∑
i=1

(∫ ∞
0

h̄i(1− F (s))gi(s)ds−
∫ 0

−∞
(1− h̄i(1− F (s)))gi(s)ds

)
=

∫ ∞
0

h̄(1− F (s))ds−
∫ 0

−∞
(1− h̄(1− F (s)))ds = ρh̄(X),

42



where the fourth equality follows from Fubini’s Theorem and the last equality

ρh̄(X) =

∫ ∞
0

h̄(1− F (x))dx−
∫ 0

−∞
(1− h̄(1− F (x)))dx (2.8.5)

is given in, for instance, Theorem 6 of Dhaene et al. (2012). Thus,

n
�
i=1

ρh̄i(X) 6
∫ 1

0
VaRα(X)dh̄(α).

The desired result follows.

Since RVaRs belong to the family of distortion risk measures, their optimal constrained allo-

cations can be constructed analogously, as summarized in the following corollary.

Corollary 2.14. For α1, . . . , αn, β1, . . . , βn ∈ [0, 1) such that αi + βi 6 1, i = 1, . . . , n, we have

n
�
i=1

RVaRαi,βi(X) =

∫ 1

0
VaRα(X)dh̄(α), X ∈ X , (2.8.6)

where h̄(t) = min{h̄(α1,β1)(t), . . . , h̄(αn,βn)(t)}, t ∈ [0, 1].

2.8.2 Proof of Theorem 2.8

Proof. Similarly to the proof of Theorem 2.7, we consider two cases separately.

(i) Suppose P(X > 0) 6 α. This implies RVaRαi,βi(X
∗
i ) = 0 for i = 1, . . . , n, and ψ = 1.

On the other hand, for any 0 6 Xi 6 X, we have E[Xi] + ciRVaRαi,βi(Xi) − E[ψXi] =

ciRVaRαi,βi(Xi) > 0. Thus X∗i satisfies (2.5.4), and hence (ψ, (X∗1 , . . . , X
∗
n)) is an Arrow-

Debreu equilibrium.

(ii) Suppose α < P(X > 0) 6 η. This implies one of β1, . . . , βn is positive, and therefore

d > 0. For i = 1, . . . , n, take any Xi ∈ X such that 0 6 Xi 6 X. Note that by definition,

(ψ − 1)X 6 x/d. We have

E[(ψ − 1)I{UXi>1−αi}Xi] 6 E[(ψ − 1)I{UXi>1−αi}X] 6 E
[x
d

I{UXi>1−αi}

]
=
xαi
d
. (2.8.7)
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On the other hand, using (ψ − 1) 6 1/d and P(Xi > 0) 6 P(X > 0) 6 αi + βi,

E[(ψ − 1)I{UXi<1−αi}Xi] 6
1

d
E[I{UXi<1−αi}Xi] 6

ci
βi

∫ 1

αi

VaRγ(Xi)dγ

=
ci
βi

∫ αi+βi

αi

VaRγ(Xi)dγ

= ciRVaRαi,βi(Xi). (2.8.8)

Combining (2.8.7) and (2.8.8), we have

E[(ψ − 1)Xi] 6
xαi
d

+ ciRVaRαiβi(Xi).

Equivalently,

E[Xi] + ciRVaRαiβi(Xi)− E[ψXi] > −
xαi
d
.

Next we verify that Vi(X∗i ) is equal to −xαi/d. Write Ai = {1 −
∑i

k=1 αk < UX 6

1 −
∑i−1

k=1 αk} ⊂ {UX > 1 − α}. We have X∗i = XIAi for i = 1, . . . , n − 1, and X∗n =

XIAn +XI{UX<1−α}. For i = 1, . . . , n− 1,

E[Xi] + ciRVaRαi,βi(X
∗
i )− E[ψX∗i ] = E[(1− ψ)X∗i ] = −E

[ x
Xd

I{UX>1−α}XIAi

]
= −E

[x
d

IAi

]
= −xαi

d
.

For the last agent, we have

E[(ψ − 1)X∗n] = E
[ x
Xd

I{UX>1−α}XIAn

]
+ E

[
1

d
I{UX<1−α}X

]
=
xαn
d

+
1

d

∫ 1

α
VaRγ(X)dγ

=
xαn
d

+
cn
βn

∫ α+β

α
VaRγ(X)dγ

=
xαn
d

+ cnRVaRα,β(X).

Therefore,

E[X∗n] + cnRVaRαn,βn(X∗n)− E[ψX∗n] = cnRVaRα,β(X)− E[(ψ − 1)X∗n] = −xαn
d
.

In summary, for i = 1, . . . , n,

Vi(Xi) > −
xαi
d

= Vi(X∗i ). (2.8.9)

By definition, (ψ, (X∗1 , . . . , X
∗
n)) is an Arrow-Debreu equilibrium for (2.5.12).
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2.8.3 Proof of Proposition 2.9

Proof. For fixed i = 1, . . . , n, we will show that for any α, β ∈ [0, 1), α+ β < 1, the inequality

lim inf
j→∞

RVaRα,β(fi(Zj)) > RVaRα,β(fi(X)). (2.8.10)

holds. Then the proposition follows from taking (α, β) = (αi, βi) in (2.8.10) and summing up

over i = 1, . . . , n.

Since X is continuously distributed, by the Continuous Mapping Theorem, we have fi(Zj)→
fi(X) weakly. Then, VaRγ(fi(Zj)) → VaRγ(fi(X)) for almost every γ ∈ (0, 1). By noting that

VaRα+β(X) > −∞, we have that VaRα+β(Zj) is bounded below for j ∈ N, and hence Fatou’s

Lemma gives us

lim inf
j→∞

RVaRα,β(fi(Zj)) >
1

β

∫ α+β

α
lim inf
j→∞

VaRγ(fi(Zj))dγ = RVaRα,β(fi(X)), β > 0. (2.8.11)

For any γ > 0, since VaRγ(X) is non-increasing in γ ∈ [0, 1), using (2.8.11), we have

lim inf
j→∞

VaRα(fi(Zj)) > lim inf
j→∞

RVaRα,γ(fi(Zj)) > RVaRα,γ(fi(X)).

By letting γ ↓ 0, we obtain

lim inf
j→∞

VaRα(fi(Zj)) > VaRα(fi(X)). (2.8.12)

Therefore, (2.8.10) follows from (2.8.11)-(2.8.12).

2.8.4 Proof of Proposition 2.10

Proof. Let (f1(X), . . . , fn(X)) ∈ An(X) be a π-robust optimal allocation of X. For any Zj → X

in π as n→∞, we have

�ni=1ρi(Zj) 6
n∑
i=1

ρi(fi(Zj))→
n∑
i=1

ρi(fi(X)) = �ni=1ρi(X).

Therefore, �ni=1ρi is π-upper-semicontinuous at X.
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2.8.5 Proof of Theorem 2.11

Proof. Since the risk sharing problem is invariant under a constant shift in X, without loss of

generality we may assume VaRp(X) = 0, where p =
∑n

i=1 αi +
∨n
i=1 βi < 1. Similar to the proof

of Theorem 2.4, we may also assume βn =
∨n
i=1 βi. Let F be the distribution of X.

Part 1. We first show that, in all cases (i)-(iii), the optimal allocation in (2.4.9)-(2.4.10) is

robust. The optimal allocation in (2.4.9)-(2.4.10) can be written as (f1(X), . . . , fn(X)), where

fi(x) = xI{F−1(1−
∑i
k=1 αk)<x6F−1(1−

∑i−1
k=1 αk)}, i = 1, . . . , n− 1, x ∈ R, and (2.8.13)

fn(x) = xI{x6F−1(1−
∑n−1
k=1 αk)}, x ∈ R. (2.8.14)

To show the cases (i) and (ii), suppose that β1, . . . , βn > 0. Let Zj ∈ X , j ∈ N, be a sequence

of random variables such that Zj → X in L1, j → ∞. Note that this implies that {Zj : j ∈ N}
is uniformly integrable. By the Continuous Mapping Theorem, we have fi(Zj) → fi(X) in

probability. For each i = 1, . . . , n, since fi(x) 6 xI{x>0} and {Zj : j ∈ N} is uniformly integrable,

{fi(Zj) : j ∈ N} is also uniformly integrable. Hence, we have fi(Zj) → fi(X) in L1. Note that

RVaRα,β, α, β > 0, is continuous with respect to weak convergence (see Cont et al. (2010)) and

ESβ, β > 0 is continuous with respect to L1-convergence (see Emmer et al. (2015)). Therefore,

as j →∞, for i = 1, . . . , n,

RVaRαi,βi(fi(Zj))→ RVaRαi,βi(fi(X)). (2.8.15)

Thus, (f1(X), . . . , fn(X)) is an L1-robust optimal allocation of X. Note that if X is bounded,

then L∞-robustness is weaker than L1 robustness, and hence (f1(X), . . . , fn(X)) is an L∞-robust

optimal allocation of X.

To show the case (iii), suppose that β1, . . . , βn > 0 and α1 > 0 without loss of generality

(in fact, if α1 = 0, then f1(X) = 0 and we can proceed to consider the next agent). Let

Zj ∈ X , j ∈ N, be a sequence of random variables such that Zj → X in πW , j → ∞. By the

Continuous Mapping Theorem, we have fi(Zj) → fi(X) weakly. Since RVaRα,β, α, β > 0, is

continuous with respect to weak convergence, we have

RVaRα1,β1(f1(Zj))→ RVaRα1,β1(f1(X)). (2.8.16)

Note that all fi(X), i = 2, . . . , n are bounded above by VaRα1(X). By a simple argument of the

Dominated Convergence Theorem, we have, for i = 2, . . . , n, regardless of whether αi = 0,

RVaRαi,βi(fi(Zj))→ RVaRαi,βi(fi(X)). (2.8.17)
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Thus, (f1(X), . . . , fn(X)) is an πW -robust optimal allocation of X.

Part 2. Next we show the other direction of the statements in (i)-(iii).

(1) (i) and (ii), n = 2 : Suppose that βk = 0 and αk > 0 for some k = 1, . . . , n. We first look at

the case n = 2, and we may assume that the first agent uses a true VaR. That is, α1 > 0 and

β1 = 0. Recall that we have assumed VaRα1+α2+β2(X) = 0.

Suppose that (X1, X2) is an optimal allocation of X where X1 = f1(X) and X2 = f2(X) for

some (f1, f2) ∈ F2. Since (X1 + c,X2 − c) is also optimal for any c ∈ R and the robustness

property of (X1 +c,X2−c) is the same as (X1, X2), we may assume without loss of generality

VaRα1(X1) = 0. As (X1, X2) is optimal, we have, from Theorem 2.4,

VaRα1(X1) + RVaRα2,β2(X2) = RVaRα1+α2,β2(X). (2.8.18)

Writing (2.8.18) in an integral form, we have

β2VaRα1(X1) +

∫ β2

0
VaRα2+β(X2)dβ =

∫ β2

0
VaRα1+α2+β(X)dβ. (2.8.19)

Note that from Corollary 2.2, we have, for any β > 0,

VaRα1(X1) + VaRα2+β(X2) > VaRα1+α2+β(X). (2.8.20)

Therefore, the inequalities in (2.8.20) are equalities for almost every β > 0. By noting that

both sides of (2.8.20) are right-continuous, the inequalities in (2.8.20) are indeed equalities

for all β > 0. In particular, we have

VaRα1(X1) + VaRα2+β2(X2) = VaRα1+α2+β2(X). (2.8.21)

Thus,

VaRα1(X1) = VaRα2+β2(X2) = VaRα1+α2+β2(X) = 0, (2.8.22)

which implies P(X2 > 0) 6 α2 + β2.

Let A1 = {UX1 > 1−α1}, A2 = {UX2 > 1−α2} and A = {UX2 > 1−α2−β2}. Note that by

(2.8.22), {X1 > 0} ⊆ A1 and {X2 > 0} ⊆ A. However, since P(X > 0) = α1 + α2 + β2, and

{X > 0} ⊆ ({X1 > 0} ∪ {X2 > 0}),
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we have

α1 + α2 + β2 6 P({X1 > 0} ∪ {X2 > 0}) 6 P(X1 > 0) + P(X2 > 0)

6 P(A1) + P(A) = α1 + α2 + β2. (2.8.23)

Therefore, all the inequalities in (2.8.23) are equalities, and in particular, P({X1 > 0}∪{X2 >

0}) = P(X1 > 0) + P(X2 > 0) implies

P(X1 > 0, X2 > 0) = 0. (2.8.24)

From (2.3.6) in the proof of Theorem 2.1, we can see that (2.8.18) implies that the inequalities

in (2.3.5) are equalities for almost every γ ∈ [0, β2], where Y1, Y2 are defined in (2.3.2) and m

is some constant. In particular, by taking γ ↓ 0 in

VaRγ(Y1 + Y2) = VaRγ+α1+α2(X) for almost every γ ∈ [0, β2],

and since both sides are right-continuous in γ, we have

VaR0(Y1 + Y2) = VaRα1+α2(X).

That is, X 6 VaRα1+α2(X) almost surely on Ac1 ∩Ac2, and equivalently,

{X > VaRα1+α2(X)} ⊂ (A1 ∪A2) a.s.

It follows that

α1 + α2 = P(X > VaRα1+α2(X)) 6 P(A1 ∪A2) 6 P(A1) + P(A2) = α1 + α2,

and therefore all the inequalities above are equalities. In particular, we have P(X > VaRα1+α2(X)) =

P(A1 ∪A2) and hence

{X > VaRα1+α2(X)} = (A1 ∪A2) a.s.

From P(X1 > 0, X2 > 0) = 0 in (2.8.24), X2 6 0 almost surely on A1. Finally, since

X1 = X −X2, we have X1 > VaRα1+α2(X) almost surely on A1, and this further implies

{X1 > VaRα1+α2(X)} = A1 a.s. (2.8.25)

We consider the cases β2 > 0 and β2 = 0 separately:
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(a) If β2 > 0, then since VaRγ(X) is strictly decreasing in γ ∈ [0, 1] (implied by the continuity

of F ; see Proposition 1.1), we have VaRα1+α2(X) > VaRα1+α2+β2(X) = 0.

(b) If β2 = 0, since f1 and f2 have at most finitely many discontinuity points, there is a

constant c ∈ (0,VaR0(X)) such that f1 and f2 are continuous on the interval (0, c).

Since VaRγ(X) = F−1(1 − γ) is continuous and strictly decreasing in γ, we have that

for any subinterval (a, b) ⊂ (0, c), one has P(X ∈ (a, b)) > 0. From (2.8.24), we have

P(f1(X) > 0, f2(X) > 0) = 0, and hence for almost every x ∈ (0,VaR0(X)), f1(x) > 0

implies f2(x) 6 0. Moreover, since f1(x) + f2(x) = x, x ∈ (0, c), we know that f1(x) and

f2(x) cannot be in the interval (0, x). By the continuity of f1 and f2, we know that either

f1(x) 6 0 for all x ∈ (0, c) or f2(x) 6 0 for all x ∈ (0, c). Without loss of generality,

assume f1(x) 6 0 for all x ∈ (0, c). Then, together with P(f1(X) > 0, f2(X) > 0) = 0,

we have {X1 > c} = A1 almost surely.

In both (a) and (b), there is a constant c0 > 0 such that {X1 > c0} = A1 almost surely.

Define

B = {x ∈ R : f1(x) > c0},

and thus {X ∈ B} = {X1 > c0}. From (2.8.25), P(X ∈ B) = P(X1 > c0) = P(A1) = α1. For

ε > 0, let Yε be a Uniform[−ε, ε] random variable independent of X and

Zε = X + YεI{X 6∈B}.

We can easily see that Zε → X in L1 (in L∞ if X is bounded) as ε ↓ 0, and P(Zε ∈ B) > α1

which means VaRα1(f1(Zε)) > c0. On the other hand, from (2.8.10), we have

lim inf
ε↓0

RVaRα2,β2(f2(Zε)) > RVaRα2,β2(f2(X)),

and hence

lim inf
ε↓0

(VaRα1(f1(Zε)) + RVaRα2,β2(f2(Zε)))− (VaRα1(f1(X)) + RVaRα2,β2(f2(X)))

> c0 > 0.

Thus, (f1(X), f2(X)) is not L1-robust (and not L∞-robust if X is bounded).

(2) (i) and (ii), n > 2 : We may assume α1 > 0, β1 = 0, that is, the first agent uses a true VaR.

Suppose that (f1(X), . . . , f(Xn)) is an optimal allocation of X where (f1, f2, . . . , fn) ∈ Fn.
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Write α =
∑n

i=2 αi, β =
∨n
i=2 βi and g(x) = f2(x) + · · ·+ fn(x), x ∈ R; it is easy to see that

(f1, g) ∈ F2. From Theorems 2.1 and 2.4,

RVaR∑n
i=1 αi,

∨n
i=1 βi

(X) =
n∑
i=1

RVaRαi,βi(fi(X)) > VaRα1(f1(X)) + RVaRα,β(g(X))

> RVaR∑n
i=1 αi,

∨n
i=1 βi

(X).

Hence, the above inequalities are all equalities, and in particular,

VaRα1(f1(X)) + RVaRα,β(g(X)) = RVaRα+α1,β(f1(X) + g(X)).

Thus, (f1(X), g(X)) is an optimal allocation of X for the underlying risk measures VaRα1

and RVaRα,β. From part (ii), we know that there exists Zε, such that Zε → X in L1 as ε ↓ 0

and

lim inf
ε↓0

(VaRα1(f1(Zε)) + RVaRα,β(g(Zε)))− (VaRα1(f1(X)) + RVaRα,β(g(X))) > 0.

Using Theorem 2.1 again, we have, for ε > 0,

VaRα1(f1(Zε)) +
n∑
i=2

RVaRαi,βi(fi(Zε)) > VaRα1(f1(Zε)) + RVaRα,β(g(Zε)).

Therefore,

lim inf
ε↓0

(
VaRα1(f1(Zε)) +

n∑
i=2

RVaRαi,βi(fi(Zε))

)
− RVaR∑n

i=1 αi,
∨n
i=1 βi

(X) > 0.

Thus, (f1(X), . . . , fn(X)) is not robust (and not L∞-robust if X is bounded).

(3) (iii): Suppose that there exists a πW -robust optimal allocation. Since πW -robustness is

stronger than L1-robustness, we know that β1, . . . , βn > 0. If α1 = . . . = αn = 0, then

�ni=1RVaRαi,βi = ESβn(X). As ESβn is not upper-semicontinuous at any X with respect to

weak convergence (see Cont et al. (2010)), by Proposition 2.10 there cannot exist any πW -

robust optimal allocation. Hence, in order to allow for a πW -robust optimal allocation, all of

β1, . . . , βn have to be positive, and at least one of α1, . . . , αn has to be positive.
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2.8.6 Proof of Theorem 2.12

Proof. For the “if” part, take Xi = X and Xj = 0 for j 6= i. We can see that

n∑
j=1

RVaRαj ,βj (Xj) = RVaRαi,βi(X) =
n
�
i=1

RVaRαi,βi(X)

and thus the “if” part holds.

In the following we show the “only-if” part. Suppose that there exists a comonotonic optimal

allocation. This implies
n
�
i=1

RVaRαi,βi(X) =
n
�
i=1

RVaRαi,βi(X).

By Theorem 2.4 and Corollary 2.14, we have

n
�
i=1

RVaRαi,βi(X) = RVaR∑n
i=1 αi,

∨n
i=1 βi

(X),

and
n
�
i=1

RVaRαi,βi(X) =

∫ 1

0
VaRα(X)dh(α),

where h is given in Corollary 2.14.

Let α =
∑n

i=1 αi, β = max{βi : i = 1, . . . , n}, and g(t) = h(α,β)(t), t ∈ [0, 1]. It is easy to see

h(t) > g(t). By (2.8.5), we have

0 =

∫ 1

0
VaRγ(X)dh(γ)−

∫ 1

0
VaRγ(X)dg(γ) =

∫ +∞

−∞
(h(1− F (x))− g(1− F (x))) dx,

where F is the distribution of X. Since h(t) > g(t), we have h(1 − F (x)) = g(1 − F (x)) for

almost every x ∈ R, and as X is continuously distributed, this leads to h(t) = g(t) for almost

every t ∈ [0, 1]. Thus, h(α,β)(t) = min{h(α1,β1)(t), . . . , h(αn,βn)(t)}. Simple algebra shows that

there exists i ∈ {1, . . . , n} such that for all j 6= i, αj = 0 and βi > βj .
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Chapter 3

Pareto-optimal Reinsurance

Arrangements

3.1 Introduction

Reinsurance, as a type of risk sharing, has been extensively studied in actuarial science. Generally,

there are two parties in a reinsurance contract, an insurer and a reinsurer. Suppose that the

insurer faces a nonnegative ground-up loss X ∈ X , where X is a set of random variables containing

all random variables involved in the reinsurance contract. The reinsurer agrees to cover part of

the loss X, say I(X), and the insurer will pay a reinsurance premium π (I (X)) to the reinsurer.

The function I ∈ I0 : R+ → R+ is called the ceded loss function, where R+ = [0,∞) and I0 is

a non-empty set of all feasible reinsurance contracts. With the reinsurance contract (function) I

and the premium principle π : X → R, the loss random variables

CI = CI(X) = X − I(X) + π (I (X)) and RI = RI(X) = I(X)− π (I (X)) (3.1.1)

represent the risk exposures of the insurer and the reinsurer under the reinsurance contract,

respectively. Note that CI +RI = X and the set {(CI , RI) : I ∈ I0} is a constraint subset of the

set of allocations in (2.4.1) when n = 2. Furthermore, let ρ1 : X → R and ρ2 : X → R be the

objective functionals of the insurer and the reinsurer, respectively. The functionals describe the

preferences of the insurer and the reinsurer. Precisely, the insurer prefers X over Y if and only

if ρ1(X) 6 ρ1(Y ), and the reinsurer prefers X over Y if and only if ρ2(X) 6 ρ2(Y ). We call the
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5-tuple (X, ρ1, ρ2, π, I0) a reinsurance setting. In this setting, the general objective functionals ρ1

and ρ2 can be risk measures, variances, and disutility functionals. Moreover, up to a sign change,

the objective functionals ρ1 and ρ2 can also be mean-variance functionals, expected utilities,

rank-dependent expected utilities, and so on.

An optimal reinsurance design under the setting (X, ρ1, ρ2, π, I0) can be formulated as an

optimization problem that tries to find an optimal contract I∗ ∈ I0 such that an objective func-

tion is minimized at I∗. Optimal reinsurance designs from either the insurer’s perspective (e.g.

minI∈I0 ρ1(CI)) or the reinsurer’s point of view (e.g. minI∈I0 ρ2(RI)) have been well investigated

in the literature. However, as pointed out by Borch (1969), “there are two parties to a rein-

surance contract, and that an arrangement which is very attractive to one party, may be quite

unacceptable to the other.” Hence, an interesting question in optimal reinsurance designs is to

consider both the insurer’s preference and the reinsurer’s preference. To address this issue, Borch

(1960) derived the optimal retentions of the quota-share and stop-loss reinsurances by maximiz-

ing the product of the expected utility functions of the two parties’ terminal wealth; Hürlimann

(2011) obtained the optimal retentions of the combined quota-share and stop-loss reinsurances

by minimizing the sum of the variances of the losses of the insurer and the reinsurer; Cai et

al. (2013) proposed the joint survival and profitable probabilities of an insurer and a reinsurer

as optimization criteria to determine optimal reinsurances; Cai et al. (2016) developed optimal

reinsurances that minimize the convex combination of the VaRs of the losses of an insurer and a

reinsurer under certain constraints; and Lo (2017b) discussed the generalized problems of Cai et

al. (2016) by using the Neyman-Pearson approach.

Obviously, an insurer and a reinsurer have conflicting interests in a reinsurance contract. A

celebrated economic concept used in optimal decision problems with conflicting interests is Pareto

optimality, which has been well studied under various settings in insurance and risk management.

For instance, Gerber (1978) discussed Pareto-optimal risk exchanges and Golubin (2006) studied

Pareto-optimal insurance policies when both the insurer and the reinsurer are risk averse. In

addition, Pareto-optimality in risk sharing with different risk measures can be found in Jouini et

al. (2008), Filipović and Svindland (2008), Embrechts et al. (2017), and references therein. Most

of the existing results in optimal risk sharing/exchange can not be used to determine optimal

reinsurance contracts since the model settings for reinsurance designs are usually different from the

ones for risk sharing problems. In particular, a reinsurance setting often has practical constraints

such as the constraint that the shared risks should be non-negative and comonotonic or the

condition that the risk measure of the insurer’s loss is not larger than a given value, or the
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requirement that the expected net profit of an reinsurer is not less than a given amount or the

restriction that the reinsurance premium is not bigger than an insurer’s budget.

In this chapter, we will use the concept of Pareto-optimality to study Pareto-optimal rein-

surance contracts under a general reinsurance setting (X, ρ1, ρ2, π, I0). Generally speaking, a

Pareto-optimal reinsurance policy is one in which neither of the two parties can be better off

without making the other worse off and it can be defined mathematically as follows. The fol-

lowing definition of Pareto optimality is a special form of Definition 2.1 under the setting of

reinsurance.

Definition 3.1. Let (X, ρ1, ρ2, π, I0) be a reinsurance setting. A reinsurance contract I∗ ∈ I0

is called Pareto-optimal under (X, ρ1, ρ2, π, I0), if there is no I ∈ I0 such that ρ1(CI) 6 ρ1(CI∗)

and ρ2(RI) 6 ρ2(RI∗), and at least one of the two inequalities is strict, where CI and RI are

defined in (3.1.1).

First, similar to Pareto-optimal problems in other fields such as risk exchanges (e.g. Gerber

(1978)) and risk allocations (e.g. Barrieu and Scandolo (2008)), it is easy to see that a Pareto-

optimal reinsurance contract exists if there is a contract that minimizes the convex combination of

the objective functionals of the insurer and the reinsurer. Indeed, the following proposition gives

a sufficient condition for a reinsurance contract to be Pareto-optimal in a general reinsurance

setting (X, ρ1, ρ2, π, I0).

Proposition 3.1. In a reinsurance setting (X, ρ1, ρ2, π, I0), if

I∗ ∈ arg min
I∈I0

{λρ1(CI) + (1− λ)ρ2(RI)}, (3.1.2)

for some λ ∈ (0, 1), then I∗ is a Pareto-optimal reinsurance contract under the setting (X, ρ1, ρ2, π, I0).

Proof. If I∗ is not Pareto-optimal, then there exists an Î ∈ I0 such that ρ1(CÎ) 6 ρ1(CI∗) and

ρ2(RÎ) 6 ρ2(RI∗), and at least one of the two inequalities is strict. Then λρ1(CÎ)+(1−λ)ρ2(RÎ) <

λρ1(CI∗)+(1−λ)ρ2(RI∗). Thus, I∗ /∈ arg minI∈I0{λρ1(CI)+(1−λ)ρ2(RI)}, a contradiction.

Proposition 3.1 holds without any assumptions on (X, ρ1, ρ2, π, I0). Nevertheless, the mini-

mization problem in (3.1.2) for λ ∈ (0, 1) may have no solutions. Furthermore, the conditions

in Proposition 3.1 are not necessary for a Pareto-optimal reinsurance contract. Indeed, there

are other Pareto-optimal reinsurance contracts that are not the solutions to the minimization
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problem minI∈I0{λρ1(CI) + (1 − λ)ρ2(RI)} for λ ∈ (0, 1). In fact, as showed in Theorem 3.2,

under certain assumptions on (X, ρ1, ρ2, π, I0), Pareto-optimal reinsurance contracts also exist

in the solutions to the minimization problems minI∈I0{ρ1(CI)} and minI∈I0{ρ2(RI)}, and all

Pareto-optimal reinsurance contracts are included in the solutions to the minimization problem

min
I∈I0
{λρ1(CI) + (1− λ)ρ2(RI)}, λ ∈ [0, 1]. (3.1.3)

Therefore, the key to find Pareto-optimal reinsurance contracts is to solve the problem (3.1.3).

Theorem 3.5 establishes the sufficient conditions that guarantee the existence of the solutions to

the problem (3.1.3) or for the existence of Pareto-optimal reinsurance contracts under the setting

(X, ρ1, ρ2, π, I0).

The problem (3.1.3) itself is also of interest. Mathematically, when λ = 1 and λ = 0, the

problem (3.1.3) is reduced to the problems of finding the optimal reinsurance contracts that

minimize an insure’s objective functional and a reinsurance’s objective functional, respectively.

In addition, from an economical point of view, if the reinsurer is designing a contract based on

the solutions to the problem (3.1.3), such a contract will be more attractive to the insurer than

ones designed based on the solutions to the problem minI∈I0 ρ2(RI). On the other hand, if the

insurer is asking the reinsurer to sell a contract based on the solutions to the problem (3.1.3),

the reinsurer is more willing to sell such a contact than ones designed based on the solutions to

the problem minI∈I0 ρ1(CI).

Although Theorem 3.5 gives the conditions such that the solutions to the problem (3.1.3)

exist, it is not a trivial work to find the solutions to the problem (3.1.3) even for simple choices

of ρ1, ρ2, and π. In the literature, many researchers studied the problem (3.1.3) in the case of

λ = 0 or λ = 1 with special choices of ρ1, ρ2, π, and I0. See e.g. Chi and Tan (2011), Bernard

and Tian (2009), Cui et al. (2013), Cheung et al. (2014), Cheung and Lo (2015), and Lo (2017a)

for minimization of Value-at-Risk (VaR) / Tail-Value-at-Risk (TVaR), tail risk measures, general

distortion risk measures, general law-invariant convex risk measures, and insurer’s risk–adjusted

liability, respectively, Kaluszka and Okolewski (2008) and Cai and Wei (2012) for maximization

of the expected utility, and Bernard et al. (2015) for maximization of rank-dependent expected

utility. For the problem (3.1.3) with λ ∈ [0, 1], Cai et al. (2016) solved the problem with certain

constraints when the functionals ρ1 and ρ2 are VaRs; Jiang et al. (2017) discussed the problem

without constraints when the functionals ρ1 and ρ2 are VaRs, and Lo (2017b) investigated the

problem using the Neyman-Pearson approach. In this chapter, we will also solve the problem
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when the functionals ρ1 and ρ2 are TVaRs. Although the approach proposed in Lo (2017b) can

solve the problem (3.1.3) for several special cases, the approach does not work for the problem

(3.1.3) when the functionals ρ1 and ρ2 are TVaRs as pointed out in Lo (2017b). In addition, note

that there are many Pareto-optimal reinsurance contacts under the setting (X, ρ1, ρ2, π, I0). In

this chapter, we will also use numerical examples to discuss how to choose the weight λ in (3.1.2)

so that the feasible deals of Pareto-optimal contracts can be made from the practice purpose.

The rest of the chapter is organized as follows. In Sections 3.2, we give the necessary and

sufficient conditions for a reinsurance contract to be Pareto-optimal and characterize all Pareto-

optimal reinsurance contracts under a more general setting (X, ρ1, ρ2, π, I0). We also obtain the

sufficient conditions that guarantee the existence of the solutions to the minimization problem

(3.1.3). In Sections 3.3, we solve the problem (3.1.3) explicitly when the functionals ρ1 and ρ2

are TVaRs and π is the expected value premium principle. In Section 3.4, we use two numerical

examples to illustrate the solutions derived in Section 3.3 and discuss how to choose the weight λ

in (3.1.2) to obtain the feasible Pareto-optimal reinsurance contracts from the practice purpose.

Some conclusions are drawn in Section 3.5. Some technical proofs are in Section 3.6.

3.2 Pareto Optimality in Reinsurance Policy Design

3.2.1 Model Assumptions

In a reinsurance setting (X, ρ1, ρ2, π, I0) with X ∈ X , to avoid moral hazard, a reinsurance

contract I ∈ I0 should satisfy that I(0) = 0 and 0 6 I(x) − I(y) 6 x − y for all 0 6 y 6 x. We

denote by I the set of all contracts that satisfy this property, namely,

I := {I : R+ → R+ | I(0) = 0 and 0 6 I(x)− I(y) 6 x− y, for all 0 6 y 6 x} .

Hence, we have I0 ⊂ I. Note that I0 does not have to be equal to I. Such a set I0 can be a finite

set of contracts or an infinite set of contracts such as the set of stop-loss contracts, multi-layer

contracts, quota-share contracts, or all the contracts in I with some budget/solvency constraints.

Moreover, for any I ∈ I and any nonnegative random variable X, the random variables X,

X − I(X), and I(X) are comonotonic. Recall that random variables X1, . . . , Xn with n > 2 are

comonotonic if there exist non-decreasing functions f1, . . . , fn and a random variable Z ∈ L0 such

that Xi = fi(Z) almost surely for i = 1, . . . , n.
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Throughout we let X be a convex cone of random variables containing L∞ satisfying I(X) ∈
X+ for all X ∈ X+ and I ∈ I, where X+ = {X ∈ X : X > 0}. Note that X+ is still a convex cone.

The set X is the set of all random losses that are of our interest. In the context of reinsurance,

X may be chosen as L1, L∞ or L0 depending on the specific problems.

For any random loss X ∈ X+, a reinsurance contract I ∈ I, and a premium principle π : X →
R, the two loss random variables CI and RI defined in (3.1.1) are in X , but they may not be in

X+. In particular, if π(I(X)) > 0, then CI ∈ X+ but RI may not be in X+.

For a given X ∈ X , all random variables involved in a reinsurance contract under the setting

(X, ρ1, ρ2, π, I0), such as CI and RI , are in the set

C(X) = {Y ∈ X : Y , X − Y and X are comonotonic}. (3.2.1)

Also, we have I(X) ∈ C(X) for I ∈ I.

In the following we aim to establish necessary and sufficient conditions for the existence of

the Perato-optimal reinsurance policies in a general reinsurance setting (X, ρ1, ρ2, π, I0).

3.2.2 Necessary and Sufficient Conditions for Pareto-optimal Contracts

To obtain the necessary condition for a reinsurance contract to be Pareto-optimal in a general

reinsurance setting (X, ρ1, ρ2, π, I0), we have to make some assumptions on (X, ρ1, ρ2, π, I0). To

do so, we introduce the following definition and notation. A functional ρ is said to be semilinear

on a set Y if ρ(λX + Y ) = λρ(X) + ρ(Y ) for all λ > 0, X,Y ∈ Y. For a reinsurance setting

(X, ρ1, ρ2, π, I0), denote

K(λ) = arg min
I∈I0

{λρ1 (CI) + (1− λ)ρ2 (RI)}, λ ∈ [0, 1], (3.2.2)

K∗(0) = arg min
I∈K(0)

{ρ1 (CI)} , K∗(1) = arg min
I∈K(1)

{ρ2 (RI)} , and K∗(λ) = K(λ), λ ∈ (0, 1),

(3.2.3)

where CI and RI are defined in (3.1.1). Note that K(0) (resp. K(1)) is the set of contracts

minimizing the objective functional of the reinsurer (resp. insurer) while K∗(0) (resp. K∗(1)) is

the set of the contracts that are in K(0) (resp. K(1)) and minimize the objective functional of

the insurer (resp. reinsurer). For λ ∈ (0, 1), K(λ) is the set of contracts minimizing the convex

combination of the objective functionals of the insurer and the reinsurer.
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As shown in the following theorem, the sets K∗(λ), λ ∈ [0, 1], characterize all Pareto-optimal

contracts in the reinsurance setting (X, ρ1, ρ2, π, I0). The proof of the following theorem follows

the ideas similar to those used in Gerber (1978) for Pareto-optimal risk exchanges.

Theorem 3.2. Let (X, ρ1, ρ2, π, I0) be a reinsurance setting. If π is semilinear on C(X), ρ1, ρ2

are convex on C(X), and I0 is a convex set, then I∗ ∈ I0 is a Pareto-optimal contract under the

setting (X, ρ1, ρ2, π, I0) if and only if there exists λ ∈ [0, 1] such that I∗ ∈ K∗(λ), where K∗(λ) is

defined in (3.2.3).

Proof. “ =⇒” Define the set S = {(ρ1 (CI) , ρ2 (RI)) : I ∈ I0} ⊂ R2. For any set T ⊂ R2, we

say that (x∗, y∗) ∈ T is a Pareto-optimal point of T if there is no (x, y) ∈ T such that

(x, y) 6= (x∗, y∗) and (x, y) 6 (x∗, y∗); here and below the inequality between vectors are

component-wise inequalities. Let S̄ be the convex hull of S. The agenda for the proof is the

following. (a) First, we verify that for any (x̄, ȳ) ∈ S̄, there exists a point (x, y) ∈ S such

that (x, y) 6 (x̄, ȳ). (b) Second, use (a) to show that for any Pareto-optimal point (x∗, y∗)

of S, there exists λ ∈ [0, 1] such that (x∗, y∗) ∈ arg min(x,y)∈S{λx + (1 − λ)y}. (c) Third,

use (a) and (b) to prove the necessary conditions for a contract to be Pareto-optimal.

For any I1, I2 ∈ I0 and θ ∈ [0, 1], let I = θI1 + (1− θ)I2 ∈ I0. The convexity of ρ1 and the

semilinearity of π on C(X) imply

θρ1 (CI1) + (1− θ)ρ1 (CI2) > ρ1 (θCI1 + (1− θ)CI2)

= ρ1 (X − (θI1(X) + (1− θ)I2(X)) + θπ(I1(X)) + (1− θ)π(I2(X)))

= ρ1 (X − I(X) + π (I(X))) . (3.2.4)

Similarly,

θρ2 (RI1) + (1− θ)ρ2 (RI2) > ρ2 (I(X)− π (I(X))) . (3.2.5)

Therefore, for any (x̄, ȳ) ∈ S̄, there exists (x, y) = (ρ1(CI), ρ2(RI)) ∈ S such that (x, y) 6

(x̄, ȳ).

Next we take a Pareto-optimal point (x∗, y∗) of S. If there exists (x̄, ȳ) ∈ S̄ such that

(x̄, ȳ) 6 (x∗, y∗) then from the second statement above, we have, there exists (x, y) ∈ S

with (x, y) 6 (x̄, ȳ). From the Pareto-optimality of (x∗, y∗) in S we know (x, y) = (x̄, ȳ) =

(x∗, y∗). This shows that (x∗, y∗) is a Pareto-optimal point of S̄.

58



Define T = {(x, y) ∈ R2 : (x, y) 6 (x∗, y∗)}. Note that both T and S̄ are convex sets,

and by the Pareto-optimality of (x∗, y∗) in S̄, the interiors of S̄ and T are disjoint. By the

Hyperplane Separation Theorem (e.g. Theorem 11.3 of Rockafellar (1970)), there exists a

vector (a, b) ∈ R2, (a, b) 6= (0, 0) such that sup(x,y)∈T {ax+ by} 6 inf(x,y)∈S̄{ax+ by}. Note

that sup(x,y)∈T {ax+ by} <∞ and for any (x, y) ∈ T , we have (x− 1, y) ∈ T . It follows that

sup
(x,y)∈T

{ax+ by} > sup
(x,y)∈T

{a(x− 1) + by} = sup
(x,y)∈T

{ax+ by} − a,

which implies a > 0. Similarly we have b > 0. Therefore sup(x,y)∈T {ax+ by} = ax∗+ by∗ 6

inf(x,y)∈S̄{ax+ by}. This shows that (x∗, y∗) minimizes ax+ by over (x, y) ∈ S̄.

Now, suppose that I∗ is Pareto-optimal for the reinsurance design problem. Then (ρ1(CI∗), ρ2(RI∗))

is a Pareto-optimal point of S. The aforementioned arguments suggest that there exist

a, b > 0, a+ b > 0 such that

aρ1(CI∗) + bρ2(RI∗) = min
(x,y)∈S

{ax+ by} = min
I∈I0
{aρ1(CI) + bρ2(RI)}.

By setting λ = a/(a + b) in the above equation, we conclude that I∗ ∈ K(λ) for some

λ ∈ [0, 1]. If λ ∈ (0, 1), then K∗(λ) = K(λ) and I∗ ∈ K∗(λ). Below suppose λ = 0 and take

any I ∈ K(0). By the definition of K(0), ρ2(RI) = ρ2(RI∗). From the Pareto optimality of

I∗, we have ρ1(CI∗) 6 ρ1(CI). Therefore, I∗ ∈ arg minI∈K(0){ρ1(CI)} = K∗(0). The case

λ = 1 is analogous. To summarize, I∗ ∈ K∗(λ) for some λ ∈ [0, 1].

“⇐= ” Suppose I∗ ∈ K(λ) for some λ ∈ [0, 1]. For λ ∈ (0, 1), one can obtain from Proposition

3.1 that I∗ is Pareto-optimal. If λ = 0, take I ∈ I0 such that ρ1(CI) 6 ρ1(CI∗) and ρ2(RI) 6

ρ2(RI∗). By the definition of K(0) and noting that I∗ ∈ K(0), we have ρ2(RI) = ρ2(RI∗),

thus I ∈ K(0). Further, by the definition of K∗(0), we have ρ1(CI∗) 6 ρ1(CI). Therefore,

ρ1(CI) = ρ1(CI∗) and ρ2(RI) = ρ2(RI∗). This shows that I∗ is Pareto-optimal.

We point out that the assumptions in Theorem 3.2 are easily satisfied by many functionals

of ρ1 and ρ2, premium principles of π, and feasible sets of I0, including many practical choices

considered in the literature (see discussions below). In addition, in Theorem 3.2, the function-

als ρ1, ρ2 and π are assumed to satisfy the corresponding properties on the subset C(X) ⊂ X .

In fact, in many applications, the specified functionals ρ1, ρ2 and π can satisfy the correspond-

ing properties globally or on X . We first give the definitions of comonotonic-semilinearity and

comonotonic-convexity for a functional as follows.

59



Definition 3.2. A functional ρ : X → R is said to be comonotonic-semilinear if ρ(λX + Y ) =

λρ(X)+ρ(Y ) for any comonotonic random variables X,Y ∈ X and λ > 0 and to be comonotonic-

convex if ρ(λX+(1−λ)Y ) 6 λρ(X)+(1−λ)ρ(Y ) for any comonotonic random variables X,Y ∈ X
and λ ∈ [0, 1].

The property of comonotonic-convexity has been studied and characterized in Song and Yan

(2009). Now, we can reformulate Theorem 3.2 based on the global properties of the functionals

below.

Corollary 3.3. Let (X, ρ1, ρ2, π, I0) be a reinsurance setting. If π is comonotonic-semilinear,

ρ1, ρ2 are comonotonic-convex, and I0 is a convex set, then I∗ ∈ I0 is Pareto-optimal under the

setting (X, ρ1, ρ2, π, I0) if and only if there exists λ ∈ [0, 1] such that I∗ ∈ K∗(λ), where K∗ is

defined in (3.2.3).

Proof. Note that C(X) ⊂ X and every element in C(X) is comonotonic with X. Hence, the

assumptions of Corollary 3.3 imply that the assumptions of Theorem 3.2 hold.

Below we make a few observations on the conditions assumed in Theorem 3.2 and Corollary

3.3.

(i) Comonotonic-convexity is a weaker property than comonotonic-semilinearity or convexity.

If functional ρ is comonotonic-semilinear or convex, then it is comonotonic-convex. This

property of comonotonic-convexity can be satisfied by many functionals studied in the lit-

erature such as distortion risk measures, convex risk measures, convex functionals including

concave expected utilities (up to a sign change), and so on.

(ii) The comonotonic-semilinearity of π is essential to Theorem 3.2 and Corollary 3.3, and it

cannot be weakened to comonotonic-convexity. The reason is that ρ(CI) has a positive

term π(I(X)) while ρ(RI) has a negative term −π(I(X)). To obtain both inequalities

(3.2.4) and (3.2.5), one needs to assume that π has a linear structure in these values. The

property of comonotonic-semilinearity can be satisfied by the expected value premiums,

Wang’s premiums, and others.

(iii) In Theorem 3.2, we assume that the set of contracts I0 ⊂ I is convex. The convex as-

sumption on I0 allows us to consider the minimization problem (3.1.3) with constraints if
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the constraints form a convex subset of I. Interesting examples of such constraints include

I0 = {I : ρ1(CI) 6 r}, where ρ1 is a convex risk measure and r ∈ R is an acceptable risk level

under the risk measure ρ1 (see Cai et al. (2016) and Lo (2017b)), or I0 = {I : π(CI) 6 p},
where π is a convex premium principle and p ∈ R is an acceptable budget for the insurer,

or I0 = {I : E[π(CI) − I(X)] > w}, where π is a convex premium principle and w ∈ R is

an acceptable amount for the reinsurer’s expected net profit. Also note that I itself is a

convex set.

3.2.3 Existence of Pareto-optimal Reinsurance Contracts

By Theorem 3.2, we know that the sets of contracts K∗(λ), λ ∈ [0, 1], characterize all Pareto-

optimal contracts in a reinsurance setting (X, ρ1, ρ2, π, I0). However, we do not know whether

K∗(λ) is non-empty. Hence, it would be important to give some conditions under which K∗(λ)

is not empty, or in other words, to give the conditions under which the minimization problem

(3.1.3) has solutions (minimizers). To obtain such conditions, we recall the following definition.

We say that a set of functions is pw-closed if it is closed with respect to point-wise convergence.

Note that I is pw-closed.

Lemma 3.4. Let I0 ⊂ I be pw-closed. For any sequence {In, n ∈ N} ⊂ I0, there exists a

subsequence {Ink , k ∈ N} pointwise converging to an I∗ ∈ I0.

Proof. Define G =
{
g : [0,∞)→ [0, 1) | g(·) = 1− 1

I(·)+1 , I ∈ I0

}
. Since any I ∈ I is continuous

and increasing, so is any g ∈ G. For any sequence {In, n ∈ N} ⊂ I0, {gn := 1− 1
In+1 , n ∈ N} ⊂ G

is uniformly bounded and by Helly’s theorem (see e.g. Klenke (2013)), there exists a function

g∗ and a subsequence {gnk , k ∈ N} such that {gnk , k ∈ N} pointwise converges to g∗. For any

x ∈ [0,∞), Ink(x) 6 x and 0 6 gnk(x) 6 1 − 1
x+1 < 1, therefore {Ink(x) = 1

1−gnk (x) − 1, k ∈ N}
converges to I∗(x) := 1

1−g∗(x) − 1. Since I0 is closed with respect to pointwise convergence, we

have I∗ ∈ I0. Therefore, there exists a subsequence {Ink , k ∈ N} ⊂ I0 pointwise converging to

I∗.

Furthermore, we say that a functional ρ is as-continuous on a set Y ⊂ L0 if ρ is continuous

with respect to almost sure convergence for sequences in Y. We say that a reinsurance setting

(X, ρ1, ρ2, π, I0) is proper if infI∈I0 ρ1(CI) > −∞ and infI∈I0 ρ2(RI) > −∞. One can easily verify

that if ρ1, ρ2, π are non-decreasing functionals on C(X), then ρ1(CI) > ρ1(π(0)) and ρ2(RI) >
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ρ2(−π(X)), thus both ρ1(CI) and ρ2(RI) are bounded from below, and hence the corresponding

reinsurance setting is proper.

Theorem 3.5. Let (X, ρ1, ρ2, π, I0) be a proper reinsurance setting. If π, ρ1, ρ2 are as-continuous

on C(X) and I0 is pw-closed, then K∗(λ) is non-empty for each λ ∈ [0, 1].

Proof. Define the set S = {(ρ1 (CI) , ρ2 (RI)) : I ∈ I0} ⊂ R2. Since the reinsurance design

problem is proper, there exists M ∈ R such that (x, y) > (M,M) for all (x, y) ∈ S, and also

note that S is not empty. Next, for K∗(λ) to be non-empty, it suffices to verify that S is a

closed set. For a sequence of {In ∈ I0, n ∈ N} such that ρ1 (CIn) → a and ρ2 (RIn) → b, where

a, b ∈ R, it suffices to show that there exists I∗ ∈ I0 such that ρ1 (CI∗) = a and ρ2 (RI∗) = b.

By Lemma 3.4, there exists a subsequence {Ink , k ∈ N} of {In, n ∈ N} converging pointwise to,

say I∗ ∈ I0. Therefore, {Ink(X)} converges to I∗(X) almost surely (indeed, for all ω ∈ Ω). The

limits ρ1 (CI∗) = a and ρ2 (RI∗) = b follow from the assumed continuity of ρ1, ρ2 and π.

Similar to Corollary 3.3, we can replace the condition of the as-continuity on C(X) in Theorem

3.5 by a global condition of Lp-continuity on Lp if X is in Lp as stated in the following corollary.

Corollary 3.6. Let (X, ρ1, ρ2, π, I0) be a proper reinsurance setting, in which X ∈ X = Lp

for some p ∈ [1,∞]. If π, ρ1, ρ2 are Lp-continuous on Lp and I0 is pw-closed, then K∗(λ) is

non-empty for each λ ∈ [0, 1].

Proof. We need to verify that {Ink(X)} in the proof of Theorem 3.5 converges to I∗(X) in Lp.

This is implied by the the dominated convergence theorem, noting that Ink(X) is dominated by

X ∈ Lp.

Below we make a few observations on the conditions assumed in Theorem 3.5 and Corollary

3.6.

(i) For X ∈ Lp, p ∈ [1,∞], the as-continuity on C(X) in Theorem 3.5 is weaker than Lp-

continuity in Corollary 3.6.

(ii) If ρ1 and ρ2 are monetary risk measures (monotone and cash-invariant), then they are L∞-

continuous. Thus, for monetary risk measures, the continuity assumption can be removed

if X is bounded.
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(iii) If ρ1 and ρ2 are finite-valued convex risk measures on Lp, p ∈ [1,∞], then they are Lp-

continuous, see e.g. Kaina and Rüschendorf (2009). Hence, all finite-valued convex risk

measures satisfy the conditions for ρ1 and ρ2 in Theorems 3.2 and 3.5.

3.2.4 Special Cases: VaR and TVaR

Throughout this chapter, VaR and TVaR are defined as in Definition 1.3. In this section we

have a closer look at the two popular risk measures, VaR and TVaR (see Section 1.2.2 for their

properties), and put them into the framework of Theorems 3.2 and 3.5. For α ∈ (0, 1), both

VaRα and TVaRα, considered as functionals mapping a set X = L0 or X = L1 to R, are

comonotonic-semilinear, and they are monetary risk measures. In addition, TVaR is also convex

and subadditive.

Now we put VaR and TVaR into the context of Theorems 3.2 and 3.5. Since TVaRα, α ∈ (0, 1)

is L1-continuous and comonotonic-semilinear, for any X in L1, TVaRα satisfies the conditions

for ρ1 and ρ2 in Theorems 3.2 and 3.5. For the case of VaR, for any X in L0, noting that

VaRα (I(X)) = I (VaRα(X)) for any continuous and increasing function I, VaRα is continuous

with respect to the almost sure convergence Ink(X) to I∗(X). Thus, for any X in L0, VaRα

satisfies the conditions for ρ1 and ρ2 in Theorems 3.2 and 3.5. We summarize our findings

above on VaR and TVaR in the proposition below. Write R1 = {VaRα : α ∈ (0, 1)} and

R2 = {TVaRα : α ∈ (0, 1)}.

Proposition 3.7. Suppose that ρ1, ρ2 ∈ R1 ∪ R2, X ∈ L0 (X ∈ L1 if at least one of ρ1, ρ2 is

in R2), π is an additive and as-continuous functional on C(X) and I0 is convex and pw-closed.

Then, the following assertions hold.

(i) I∗ ∈ I0 is Pareto-optimal under the setting (X, ρ1, ρ2, π, I0) if and only if I∗ ∈ K∗(λ) for

some λ ∈ [0, 1].

(ii) For each λ ∈ [0, 1], K∗(λ) is non-empty.

3.3 Pareto-optimal Reinsurance Contracts under TVaRs

In this section, we solve the minimization problem (3.1.3) when the functionals ρ1 and ρ2 are

TVaRs and find the explicit forms of optimal reinsurance contracts. More precisely, in this section,
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in the reinsurance setting (X, ρ1, ρ2, π, I0), we choose the feasible set to be I0 = I. Furthermore,

assume that for any reinsurance contract I ∈ I, the reinsurance premium π (I (X)) is determined

by the expected value principle, namely π (I (X)) = (1 + θ)E [I(X)], where θ is a positive risk

loading factor. Suppose that the insurer and the reinsurer use TVaRα and TVaRβ, respectively,

to measure their own risk, where α, β ∈ (0, 1). Thus, the problem (3.1.3) reduces to the following

minimization problem

min
I∈I
{λTVaRα (X − I(X) + π (I (X))) + (1− λ) TVaRβ(I(X)− π (I (X)))}, (3.3.1)

where λ ∈ [0, 1].

We use the following notation henceforth

θ∗ =
1

1 + θ
, (3.3.2)

m = m(λ) =
λ

1− α
+ (1− 2λ)(1 + θ), (3.3.3)

p = p(λ) = 1− (1− λ)/m, (3.3.4)

q = q(λ) = 1− λ
1−λ
1−β − (1− 2λ)(1 + θ)

. (3.3.5)

The following Theorems 3.8 and 3.9 give explicit solutions to the problem (3.3.1). Theorem

3.8 deals with the case α 6 β and Theorem 3.9 handles the case α > β.

Theorem 3.8. For 0 < α 6 β < 1, λ ∈ [0, 1], and a non-negative integrable ground-up loss

random variable X, optimal reinsurance contracts I∗ = I∗λ to problem (3.3.1) are given as follows:

(i) If 0 6 λ < 1
2 and 1−λ

1−β > m, then

I∗(x) =

{
x ∧VaRp(λ)(X), if (1− α)(1 + θ) > 1;

x ∧VaR1−θ∗(X), if (1− α)(1 + θ) < 1.

(ii) If 0 6 λ < 1
2 and 1−λ

1−β = m, then I∗(x) =
(
x ∧VaRp(λ)(X)

)
I{x6VaRβ(X)}+I(x) I{x>VaRβ(X)},

where I can be any function such that I∗ ∈ I.

(iii) If 0 6 λ < 1
2 and 1−λ

1−β < m, then I∗(x) = x.
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(iv) If λ = 1
2 , then

I∗(x) =

{
I(x) ∧ I(VaRα(X)), if α < β;

I(x), if α = β,

where I can be any function such that I∗ ∈ I.

(v) If 1
2 < λ < 1 and 1−λ

1−β > m > 0, then

I∗(x) =

{
0, if (1− α)(1 + θ) > 1;

(x−VaR1−θ∗(X))+ ∧
(
VaRp(λ)(X)−VaR1−θ∗(X)

)
, if (1− α)(1 + θ) < 1.

(vi) If 1
2 < λ < 1 and 1−λ

1−β = m > 0, then

I∗(x) =
[
(x−VaR1−θ∗(X))+ ∧ (VaRβ(X)−VaR1−θ∗(X))

]
I{x6VaRβ(X)} + I(x) I{x>VaRβ(X)},

where I can be any function such that I∗ ∈ I.

(vii) If 1
2 < λ 6 1 and 1−λ

1−β < m, then I∗(x) = (x−VaR1−θ∗(X))+ .

(viii) If 1
2 < λ < 1 and m = 0, then I∗(x) = 0.

(ix) If λ = 1 and m = 0, then I∗(x) = I(x) I{x>VaRα(X)}, where I can be any function such that

I∗ ∈ I.

(x) If 1
2 < λ 6 1 and m < 0, then I∗(x) = 0.

Proof. The proof of each case is similar. We only give the proof of case (i) here, from which the

reader can grasp the main idea of the proof. The proof for the rest cases is in Section 3.6.1.

For any I ∈ I, define V (I) = λTVaRα (X − I(X) + π (I (X))) + (1 − λ)TVaRβ(I(X) −
π (I (X))). Since X − I(X) and I(X) are comonotonic, by comonotonic additivity and cash

invariance of TVaR, we have

V (I) = λTVaRα (X)− λTVaRα (I(X)) + (1− λ)TVaRβ(I(X)) + (2λ− 1)(1 + θ)E [I(X)] .

With the expression (1.2.4) for TVaR, we have

V (I) = λTVaRα (X)− λ
{

VaRα(I(X)) +
1

1− α
E
[
(I (X)−VaRα (I (X)))+

] }
+ (1− λ)

{
VaRβ(I(X)) +

1

1− β
E
[
(I(X)−VaRβ (I(X)))+

]}
+ (2λ− 1)(1 + θ)E [I(X)] .

(3.3.6)
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Note that for any integrable random variable Y , E[Y ] =
∫ 1

0 VaRr(Y )dr. Thus, V (I) can be

rewritten as

V (I) = λTVaRα (X)− λI(VaRα(X))− λ

1− α

∫ 1

0
[I(VaRr(X))− I(VaRα(X))]+ dr

+ (1− λ)I(VaRβ(X)) +
1− λ
1− β

∫ 1

0
[I(VaRr(X))− I(VaRβ(X))]+ dr

+ (2λ− 1)(1 + θ)

∫ 1

0
I(VaRr(X))dr

= λTVaRα (X)− (1− 2λ)(1 + θ)

∫ α

0
I(VaRr(X))dr −m

∫ β

α
I(VaRr(X))dr

+

(
1− λ
1− β

−m
)∫ 1

β
I(VaRr(X))dr. (3.3.7)

Let ξa = I (VaRα(X)) and ξb = I (VaRβ(X)). Clearly ξa 6 ξb and VaRα(X)−ξa 6 VaRβ(X)−ξb
as I(x) and x − I(x) are nondecreasing for all x > 0 and α 6 β. Note that 0 6 ξa 6 VaRα(X)

and 0 6 ξb 6 VaRβ(X) since 0 6 I(x) 6 x for all x > 0. Recall the definition of m in (3.3.3).

Equality (3.3.6) reduces to

V (I) = λTVaRα (X) + (1− 2λ)I (VaRα(X)) + (1− λ) [I (VaRβ(X))− I (VaRα(X))]

− λ

1− α

∫ ∞
I(VaRα(X))

P(I(X) > z)dz +
1− λ
1− β

∫ ∞
I(VaRβ(X))

P(I(X) > z)dz

+ (2λ− 1)(1 + θ)

∫ ∞
0

P(I(X) > z)dz

= λTVaRα (X) + (1− 2λ)ξa + (1− λ) (ξb − ξa)− (1− 2λ)(1 + θ)

∫ ξa

0
P(I(X) > z)dz

−m
∫ ξb

ξa

P(I(X) > z)dz +

(
1− λ
1− β

−m
)∫ ∞

ξb

P(I(X) > z)dz. (3.3.8)

(i) If 0 6 λ < 1
2 and 1−λ

1−β > m, then m > 0. For the above I ∈ I, define

Î(x) =


x if 0 6 x 6 ξa;

ξa if ξa 6 x 6 VaRα(X);

x−VaRα(X) + ξa if VaRα(X) 6 x 6 ξb − ξa + VaRα(X);

ξb if x > ξb − ξa + VaRα(X).

(3.3.9)

The relationship between I(x) and Î(x) is illustrated by Figure 3.1. One can show that
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ξa

ξa

VaRα(X) ξb − ξa+VaRα(X) VaRβ(X)

I(x)

ξb
Î(x)

Figure 3.1: Relationship between I(x) and Î(x) in case (i)

Î(x) ∈ I and V (I) > V (Î) for any I ∈ I. Indeed, from Figure 3.1, we conclude that for

0 6 x 6 VaRβ(X), I(x) 6 Î(x), and for x > VaRβ(X), I(x) > Î(x). Moreover, since

−(1− 2λ)(1 + θ) < 0, −m < 0, and 1−λ
1−β −m > 0, we have

−(1− 2λ)(1 + θ)

∫ α

0
Î(VaRr(X))dr 6 −(1− 2λ)(1 + θ)

∫ α

0
I(VaRr(X))dr,

−m
∫ β

α
Î(VaRr(X))dr 6 −m

∫ β

α
I(VaRr(X))dr,(

1− λ
1− β

−m
)∫ 1

β
Î(VaRr(X))dr 6

(
1− λ
1− β

−m
)∫ 1

β
I(VaRr(X))dr.

Hence, it follows immediately from (3.3.7) that V (I) > V (Î), where the inequality is strict

if I and Î are not identical almost everywhere, which means that the optimal reinsurance

contract can only take the form of (3.3.9) in case (i). The equivalence of (3.3.7) and (3.3.8)

implies that minI∈I V (I) = min{ξa, ξb} V (Î), where V (Î) is the expression in (3.3.8).

Next, it remains to find the values of ξa and ξb such that V (Î) is minimized. Let s = ξa and

t = ξb − ξa. Clearly 0 6 s 6 VaRα(X) and 0 6 t 6 VaRβ(X)−VaRα(X). Since

P
(
Î(X) > x

)
=


P (X > x) if 0 6 x < ξa;

P (X > x+ VaRα(X)− ξa) if ξa 6 x < ξb;

0 if x > ξb,
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equation (3.3.8) reduces to

V (Î) = λTVaRα (X) + (1− 2λ)s− (1− 2λ)(1 + θ)

∫ s

0
P(X > z)dz

+ (1− λ)t−m
∫ t+VaRα(X)

VaRα(X)
P(X > z)dz. (3.3.10)

Denote by

f(s) = λTVaRα (X) + (1− 2λ)s− (1− 2λ)(1 + θ)

∫ s

0
P(X > z)dz,

g(t) = (1− λ)t−m
∫ t+VaRα(X)

VaRα(X)
P(X > z)dz,

A = {s ∈ R | 0 6 s 6 VaRα(X)} ,

B = {t ∈ R | 0 6 t 6 VaRβ(X)−VaRα(X)} ,

C =
{

(s, t) ∈ R2 | s ∈ A, t ∈ B
}
.

Then V (Î) = f(s) + g(t). Lebesgue differentiation theorem implies that f and g are con-

tinuous in s and t, respectively. Suppose that there exist s∗ ∈ A and t∗ ∈ B such that

mins∈A f(s) = f(s∗) and mint∈B g(t) = g(t∗). Then min(s,t)∈C V (Î) = f(s∗) + g(t∗) because

min(s,t)∈C V (Î) = min(s,t)∈C{f(s) + g(t)} > mins∈A f(s) + mint∈B g(t) = f(s∗) + g(t∗) >

min(s,t)∈C{f(s) + g(t)} = min(s,t)∈C V (Î). Therefore, it remains to find s∗ and t∗, or the

corresponding ξ∗a and ξ∗b , where ξ∗a = s∗ and ξ∗b = t∗ + s∗.

If (1−α)(1+θ) > 1, then p > α since m = λ
1−α +(1−2λ)(1+θ) > λ

1−α +(1−2λ) 1
1−α = 1−λ

1−α .

For 0 6 s1 < s2 < VaRα(X), as λ < 1/2 and P(X 6 s2) < α, we have

f(s1)− f(s2) = (1− 2λ)
(

(1 + θ)

∫ s2

s1

P(X > z)dz − (s2 − s1)
)

> (1− 2λ)(1 + θ)(s2 − s1) [P (X > s2)− θ∗] > 0,

which, together with the continuity of f , implies that f(s) is strictly decreasing for s ∈ A
and ξ∗a = s∗ = VaRα(X). On the other hand, 1−λ

1−β > m implies β > 1 − 1−λ
m , that

is, β > p. Thus, VaRp(X) − VaRα(X) ∈ B. Note that if VaRα(X) = VaRβ(X), then

VaRp(X) = VaRα(X) since α 6 p < β. For 0 6 t1 < t2 < VaRp(X)− VaRα(X), as m > 0
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and P(X 6 t2 + VaRα(X)) < p = 1− 1−λ
m , we have

g(t1)− g(t2) = m

∫ t2+VaRα(X)

t1+VaRα(X)
P(X > z)dz − (1− λ)(t2 − t1)

>
(
P(X > t2 + VaRα(X))− (1− λ)/m

)
(t2 − t1)m

>
(

1− p− 1− λ
m

)
(t2 − t1)m = 0.

Therefore, g(t) is strictly decreasing for 0 6 t 6 VaRp(X) − VaRα(X). Similarly, for

VaRp(X)−VaRα(X) < t1 < t2 6 VaRβ(X)−VaRα(X), as m > 0, we have

g(t1)− g(t2) = m

∫ t2+VaRα(X)

t1+VaRα(X)
P(X > z)dz − (1− λ)(t2 − t1)

6
(
P(X > t1 + VaRα(X))− (1− λ)/m

)
(t2 − t1)m

6
(
P(X > VaRp(X))− (1− λ)/m

)
(t2 − t1)m

=
(

1− (1− λ)/m− P(X 6 VaRp(X))
)

(t2 − t1)m 6 0.

Thus, g(t) is increasing for VaRp(X) − VaRα(X) 6 t 6 VaRβ(X) − VaRα(X). Thus

t∗ = VaRp(X) − VaRα(X) minimizes g, ξ∗a = VaRα(X), ξ∗b = VaRp(X), and the optimal

reinsurance contract is I∗(x) = x ∧VaRp(X).

If (1 − α)(1 + θ) < 1, then p < α. Similarly, we can show that ξ∗a = s∗ = VaR1−θ∗(X)

and t∗ = 0. Therefore, ξ∗a = ξ∗b = VaR1−θ∗(X) and the optimal reinsurance contract is

I∗(x) = x ∧VaR1−θ∗(X).

Remark 3.1. When λ = 1, cases (vii), (ix) and (x) of Theorem 3.8 recover Theorem 3.3 of

Cheung et al. (2014). We point out that Theorem 3.3 of Cheung et al. (2014) holds under the

assumption that the ground-up loss random variable X has a continuous and strictly increasing

distribution function. However, Theorem 3.8 does not require the assumption.

Theorem 3.9. For 0 < β 6 α < 1, λ ∈ [0, 1] and a non-negative integrable ground-up loss random

variable X, optimal reinsurance contracts I∗ = I∗λ to problem (3.3.1) are given as follows:

(i) If λ = 0 and (1− β)(1 + θ) > 1, then I∗(x) = x.

(ii) If λ = 0 and (1 − β)(1 + θ) = 1, then I∗(x) = x I{x6VaRβ(X)} + I(x) I{x>VaRβ(X)}, where I

can be any function such that I∗ ∈ I.
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(iii) If 0 6 λ < 1
2 and 1−λ

1−β > m, then I∗(x) = x ∧VaR1−θ∗(X).

(iv) If 0 < λ < 1
2 and 1−λ

1−β = m, then I∗(x) = (x ∧VaR1−θ∗(X)) I{x6VaRα(X)}+I(x) I{x>VaRα(X)},

where I can be any function such that I∗ ∈ I.

(v) If 0 < λ < 1
2 and (1− 2λ)(1 + θ) < 1−λ

1−β < m, then

I∗(x) =

{
x, if (1− β)(1 + θ) > 1;

x ∧VaR1−θ∗(X) +
(
x−VaRq(λ)(X)

)
+
, if (1− β)(1 + θ) < 1.

(vi) If 0 < λ < 1
2 and (1− 2λ)(1 + θ) = 1−λ

1−β , then

I∗(x) = x I{x6VaRβ(X) or x>VaRα(X)} + I(x) I{VaRβ(X)6x6VaRα(X)},

where I can be any function such that I∗ ∈ I.

(vii) If 0 < λ < 1
2 and 1−λ

1−β < (1− 2λ)(1 + θ), then I∗(x) = x.

(viii) If λ = 1
2 , then

I∗(x) =

{
I(x) I{x6VaRβ(X)} + (x−VaRβ(X) + I(VaRβ(X))) I{x>VaRβ(X)}, if α > β;

I(x), if α = β,

where I can be any function such that I∗ ∈ I.

(ix) If 1
2 < λ 6 1 and 1−λ

1−β > m,, then I∗(x) = 0.

(x) If 1
2 < λ 6 1 and 1−λ

1−β = m, then I∗(x) = I(x) I{x>VaRα(X)}, where I can be any function

such that I∗ ∈ I.

(xi) If 1
2 < λ 6 1 and 1−λ

1−β < m, then

I∗(x) =

{ (
x−VaRq(λ)(X)

)
+
, if (1− β)(1 + θ) > 1;

(x−VaR1−θ∗(X))+ , if (1− β)(1 + θ) < 1.

The proof of Theorem 3.9 is in Section 3.6.2.
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3.4 Best Pareto-optimal Reinsurance Contracts under TVaRs

Under a reinsurance setting (X, ρ1, ρ2, π, I) with ρ1 = TVaRα, ρ2 = TVaRβ, and π(I(X)) =

(1 + θ)E(I(X)) for I ∈ I, by Proposition 3.1 or Theorem 3.2, we know that for any λ ∈ (0, 1),

the reinsurance contract I∗ = I∗λ given in Theorems 3.8 or 3.9 is a Pareto-optimal contract for

the case of α 6 β or the case of α > β. However, an interesting and practical question is

that what the Pareto-optimal contracts I∗λ for λ ∈ (0, 1) are the best ones in the sense that

the Pareto-optimal contracts I∗λ could be accepted by both the insurer and the reinsurer. To

address this issue, let us recall that one of the main reasons for an insurer to buy a reinsurance

contact is to reduce its risk measure (required reserves/capitals), while the goal of a reinsurer as

the seller of a contract is to make profits. Before reinsurance, the risk of the insurer is X and

its risk measure is TVaRα(X). Under a Pareto-optimal contract I∗λ, the risk of the insurer is

CI∗λ = CI∗λ(X) = X − I∗λ(X) + π(I∗λ(X)), and the insurer expects its risk measure to be reduced

at least 100(1− γ)% under the Pareto-optimal reinsurance I∗λ, namely

TVaRα(CI∗λ(X)) 6 γ TVaRα(X) (3.4.1)

for 0 < γ < 1. On the other hand, under the Pareto-optimal reinsurance I∗λ, the reinsurer has

an expected gross income E(π(I∗λ(X))) and an expected net profit E(π(I∗λ(X))− I∗λ(X)), and the

reinsurer would like the expected net profit at least to be 100σ% of the expected gross income,

namely

E(π(I∗λ(X))− I∗λ(X)) > σ E(π(I∗λ(X))) (3.4.2)

for 0 < σ < 1. In addition, the reinsurer also has a concern about the TVaR of its risk. Assume

that the reinsurer wishes that under a Pareto-optimal contract I∗, the maximum TVaR of its

risk is not bigger than 100κ% of the TVaR of X if the reinsurer acts as the insurer and has the

ground-up loss X, namely

TVaRβ(RI∗λ(X)) 6 κTVaRβ(X) (3.4.3)

for 0 < κ < 1. Therefore, the best Pareto-optimal reinsurance contacts I∗λ for λ ∈ (0, 1) should

be those such that all of the three conditions (3.4.1), (3.4.2), and (3.4.3) hold.

In the rest of this section, we will use two examples to illustrate how to determine the best

Pareto-optimal reinsurance contacts I∗λ∗ among the available Pareto-optimal reinsurance contracts

I∗λ with λ ∈ (0, 1), such that all of the three conditions (3.4.1), (3.4.2), and (3.4.3) hold.
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Note that if π(I(X)) = (1+θ)E(I(X)) for I ∈ I, then E(π(I∗λ(X))−I∗λ(X)) = θ
1+θ E(π(I∗λ(X))

for any λ ∈ (0, 1) and (3.4.2) holds if and only if σ 6 θ
1+θ .

In the following two examples, we let the safety loading factor be θ = 0.2. Thus, θ∗ =

1/(1 + θ) = 0.8333. Furthermore, let σ 6 θ
1+θ = 0.16667. Thus, (3.4.2) holds for any I∗λ.

Moreover, we let κ = 0.8 and discuss the impacts of the parameter γ and the distribution of the

ground-up loss random variable X on the best Pareto-optimal contracts by setting γ = 0.5, 0.7, 0.8

and assuming that X has an exponential distribution and a Pareto distribution, respectively.

Example 3.1. Suppose that the ground-up loss X follows an exponential distribution with

distribution function F (x) = 1−e−0.001x for x > 0. Then E(X) = 1000, VaRα(X) = −1000 ln(1−
α), and TVaRα(X) = 1000 [1− ln(1− α)]. Thus, VaR1−θ∗(X) = 182.32.

If α < β with α = 0.95 and β = 0.99, then (1 − α)(1 + θ) < 1. When λ = 0.5, which is the

case (iv) of Theorem 3.8, by taking I(x) = x ∧VaR1−θ∗(X) = x ∧ 182.32 in (iv) of Theorem 3.8,

we have that the Pareto-optimal reinsurance can be I∗(x) = x∧ 182.32. When λ = 0.84, which is

the case (vi) of Theorem 3.8, by taking I(x) = VaRp(0.84)(X)− 182.32 in (vi) of Theorem 3.8, we

see that the Pareto-optimal reinsurance can be I∗(x) = (x− 182.32)+∧ (VaRp(0.84)(X)−182.32).

When λ ∈ (0, 0.5), λ ∈ (05, 0.84), and λ ∈ (0.84, 1), the Pareto-optimal reinsurance contracts are

of cases (i), (v), and (vii) of Theorem 3.8, respectively. Therefore, the Pareto-optimal reinsurance

contracts are

I∗λ(x) =


x ∧ 182.32 if λ ∈ (0, 0.5];

(x− 182.32)+ ∧ (VaRp(λ)(X)− 182.32) if λ ∈ (0.5, 0.84];

(x− 182.32)+ if λ ∈ (0.84, 1).

(3.4.4)

It is easy to verify that when λ ∈ (0.5, 0.84], TVaRα(CI∗λ(X)) is decreasing in λ, while TVaRβ(RI∗λ(X))

and E
(
π(I∗λ(X))

)
are increasing in λ. In addition, they are all constants for λ ∈ (0, 0.5] and λ ∈

(0.84, 1), respectively. The values of TVaRα(X), TVaRα(CI∗λ(X)), TVaRβ(X), TVaRβ(RI∗λ(X)),

and E[π(I∗λ(X))] are the key for one to find λ∗ ∈ (0, 1) such that the Pareto-optimal contracts

I∗λ∗ satisfy (3.4.1)-(3.4.3). These key values are presented in Table 3.1.

If α > β with α = 0.99 and β = 0.95, then (1 − β)(1 + θ) < 1. When λ = 0.1599, which is

the case (iv) of Theorem 3.9, the Pareto-optimal reinsurance can be I∗(x) = x∧ 182.32 by taking

I(x) = VaR1−θ∗(X) = 182.32 in (iv) of Theorem 3.9. When λ = 0.5, which is the case (viii) of

Theorem 3.9, then the Pareto-optimal reinsurance can be I∗(x) = x by taking I(x) = x in (viii)

of Theorem 3.9. When λ ∈ (0, 0.1599), λ ∈ (0.1599, 0.5), and λ ∈ (0.5, 1) and the Pareto-optimal
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contracts are of cases (iii), (v), and(xi) of Theorem 3.9, respectively. Thus, the Pareto-optimal

reinsurance contracts are

I∗λ(x) =


x ∧ 182.32 if λ ∈ (0, 0.1599];

x ∧ 182.32 +
(
x−VaRq(λ)(X)

)
+

if λ ∈ (0.1599, 0.5];

(x− 182.32)+ if λ ∈ (0.5, 1).

(3.4.5)

When λ ∈ (0.1599, 0.5], TVaRα(CI∗λ(X))) is decreasing in λ, while TVaRβ(RI∗λ(X)) and E
(
π
(
I∗λ(X)

))
are increasing in λ. The key values in this case are given in Table 3.2.

If α = β = 0.95, then (1 − α)(1 + θ) < 1. By Theorem 3.8 or 3.9, the Pareto-optimal

reinsurance contracts are

I∗λ(x) =


x ∧ 182.32 if λ ∈ (0, 0.5);

ax, a ∈ [0, 1] if λ = 0.5;

(x− 182.32)+ if λ ∈ (0.5, 1).

(3.4.6)

We point out that for the case α = β and λ = 1/2, the Pareto-optimal contract can be any

contract in I. To simplify the discussion of how to determine the best Pareto-optimal contracts,

we consider all of quota-share reinsurances and find the best quota-share reinsurances as the best

Pareto-optimal contracts for the case α = β and λ = 1/2. The corresponding key values are given

in Table 3.3.

Based on those values given in Tables 3.1-3.3 and the forms of Pareto-optimal reinsurance

contracts given in (3.4.4)-(3.4.6), we can easily find λ∗ ∈ (0, 1) such that the corresponding

Pareto-optimal reinsurance contracts I∗λ∗ satisfy (3.4.1)-(3.4.3). Such values of λ∗ are summarized

in Table 3.4.

From Table 3.4 and (3.4.4), we see that if α < β with α = 0.95 and β = 0.99, then the

limited stop-loss reinsurances I∗λ∗(x) = (x− 182.32)+ ∧ (VaRp(λ∗)(X)− 182.32) and the stop-loss

reinsurance I∗(x) = (x− 182.32)+ are the best Pareto-optimal reinsurance contracts for all the

three cases of γ, where the values of λ∗ for each of the three cases of γ are given in Table 3.4.

If α > β with α = 0.99 and β = 0.95, then, from Table 3.4 and (3.4.5), we find that the

stop-loss contract I∗(x) = (x− 182.32)+ is the best Pareto-optimal reinsurance for all the three

cases of γ. Besides, the contracts I∗λ∗(x) = x ∧ 182.32 +
(
x − VaRq(λ∗)(X)

)
+

are also the best

Pareto-optimal reinsurance contracts for the cases of γ = 0.7, 0.8, where the values of λ∗ for each

of the two cases of γ are given in Table 3.4.
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Table 3.1: Key values with an exponential ground-up loss and α = 0.95 < β = 0.99
TVaRα(X) TVaRα

(
(CI∗

λ
(X)

)
TVaRβ(X) TVaRβ

(
(RI∗

λ
(X)

)
E
(
π(I∗λ(X))

)
λ ∈ (0, 0.5] 3995.73 4013.41 5605.17 -17.68 200

λ ∈ (0.5, 0.84] 3995.73 (2122.32, 1370.51] 5605.17 (1873.41, 3433.86] (940, 987.99]

λ ∈ (0.84, 1) 3995.73 1182.32 5605.17 4422.85 1000

Table 3.2: Key values with an exponential ground-up loss and α = 0.99 > β = 0.95
TVaRα(X) TVaRα(CI∗

λ
(X)) TVaRβ(X) TVaRβ

(
(RI∗

λ
(X)

)
E
(
π(I∗λ(X))

)
λ ∈ (0, 0.1599] 5605.17 5622.85 3995.73 -17.68 200

λ ∈ (0.1599, 0.5] 5605.17 (4634.55, 3073.41] 3995.73 (170.33, 922.32] (212.04, 260]

λ ∈ (0.5, 1) 5605.17 1182.32 3995.73 2813.41 1000

Table 3.3: Key values with an exponential ground-up loss and α = β = 0.95
TVaRα(X) TVaRα(CI∗

λ
(X)) TVaRβ(X) TVaRβ

(
(RI∗

λ
(X)

)
E
(
π(I∗λ(X))

)
λ ∈ (0, 0.5) 3995.73 4013.41 3995.73 -17.68 200

λ = 0.5, I∗λ(X) = a x, a ∈ [0, 1] 3995.73 [3995.73, 1200] 3995.73 [0, 2795.73] [0, 1200]

λ ∈ (0.5, 1) 3995.73 1182.32 3995.73 2813.41 1000

Table 3.4: Best Pareto-optimal reinsurance contracts I∗λ∗ with an exponential ground-up loss

κ = 0.8 α = 0.95, β = 0.99 α = 0.99, β = 0.95 α = β = 0.95

γ = 0.5 λ∗ ∈ [0.5376, 1) λ∗ ∈ [0.5, 1) λ∗ ∈ (0.5, 1) or λ∗ = 0.5 with a∗ ∈ [0.7146, 1]

γ = 0.7 λ∗ ∈ (0.5, 1) λ∗ ∈ [0.2845, 1) λ∗ ∈ (0.5, 1) or λ∗ = 0.5 with a∗ ∈ [0.4288, 1]

γ = 0.8 λ∗ ∈ (0.5, 1) λ∗ ∈ [0.1817, 1) λ∗ ∈ (0.5, 1) or λ∗ = 0.5 with a∗ ∈ [0.2858, 1]

If α = β = 0.95, then, from Table 3.4 and (3.4.6), we see that the stop-loss reinsurance

I∗(x) = (x− 182.32)+ and the quota-share reinsurances I∗(x) = a∗ x are the best Pareto-optimal

reinsurance contracts for all the three cases of γ, where the values of a∗ for each case are given

in Table 3.4. �

Example 3.2. Suppose that the ground loss X follows a Pareto distribution with distribution

function 1 −
(

2000
x+2000

)3
for any x > 0. Thus E(X) = 1000, which is the same mean as the

exponential distribution assumed in Example 3.1. In addition, VaRα(X) = 2000
(
(1−α)−1/3−1

)
and TVaRα(X) = 3000(1−α)−1/3−2000. Hence, VaR1−θ∗(X) = 125.32. By using the arguments

similar to those for Example 3.1, we obtain the (best) Pareto-optimal reinsurances for the Pareto

distribution as follows.
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If α < β with α = 0.95 and β = 0.99, then (1 − α)(1 + θ) < 1. By Theorem 3.8, the

Pareto-optimal reinsurance contracts are

I∗λ(x) =


x ∧ 125.32 if λ ∈ (0, 0.5];

(x− 125.32)+ ∧ (VaRp(λ)(X)− 125.32) if λ ∈ (0.5, 0.84];

(x− 125.32)+ if λ ∈ (0.84, 1).

(3.4.7)

When λ ∈ (0.5, 0.84], TVaRα(CI∗λ(X)) is decreasing in λ, while TVaRβ(RI∗λ(X)) and E
(
π(I∗λ(X))

)
are increasing in λ. The key values for this case are given in Table 3.5.

If α > β with α = 0.99 and β = 0.95, then (1 − β)(1 + θ) < 1. By Theorem 3.9, the

Pareto-optimal reinsurance contracts are

I∗λ(x) =


x ∧ 125.32 if λ ∈ (0, 0.1599];

x ∧ 125.32 +
(
x−VaRq(λ)(X)

)
+

if λ ∈ (0.1599, 0.5];

(x− 125.32)+ if λ ∈ (0.5, 1).

(3.4.8)

When λ ∈ (0.1599, 0.5], TVaRα(CI∗λ(X)) is decreasing in λ, while TVaRβ(RI∗λ(X)) and E
(
π
(
I∗λ(X)

))
are increasing in λ. The key values are given in Table 3.6.

If α = β = 0.95, then (1 − α)(1 + θ) < 1. By Theorem 3.8 or 3.9 , the Pareto-optimal

reinsurance contracts are

I∗λ(x) =


x ∧ 125.32 if λ ∈ (0, 0.5);

ax, a ∈ [0, 1] if λ = 0.5;

(x− 125.32)+ if λ ∈ (0.5, 1).

(3.4.9)

The corresponding key values are given in Table 3.7.

Based on those values given in Table 3.5-3.7, and the forms of Pareto-optimal reinsurance

contracts given in (3.4.7)-(3.4.9), we can easily find λ∗ ∈ (0, 1) such that the corresponding

Pareto-optimal reinsurance contracts I∗λ∗ satisfy (3.4.1)-(3.4.3). Such values of λ∗ are summarized

in Table 3.8.

If α < β with α = 0.95 and β = 0.99, from Table 3.8 and (3.4.7), we see that the limited stop-

loss reinsurances I∗λ∗(x) = (x− 125.32)+ ∧ (VaRp(λ∗)(X) − 125.32) are the best Pareto-optimal

reinsurances for all the three cases of γ, where the values of λ∗ for each case are given in Table

3.8.
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Table 3.5: Key values with a Pareto ground-up loss when α = 0.95 < β = 0.99
TVaRα(X) TVaRα(CI∗

λ
(X)) TVaRβ(X) TVaRβ

(
(RI∗

λ
(X)

)
E[π(I∗λ(X))]

λ ∈ (0, 0.5] 6143.25 6155.27 11924.77 -12.02 137.34

λ ∈ (0.5, 0.84] 6143.25 (3739.53, 2061.18] 11924.77 (2403.72, 6147.84] (899.79, 1006.92]

λ ∈ (0.84, 1) 6143.25 1187.98 11924.77 10736.79 1062.66

Table 3.6: Key values with a Pareto ground-up loss when α = 0.99 > β = 0.95
TVaRα(X) TVaRα(CI∗

λ
(X)) TVaRβ(X) TVaRβ

(
(RI∗

λ
(X)

)
E[π(I∗λ(X))]

λ ∈ (0, 0.1599] 11924.77 11936.79 6143.25 -12.02 137.34

λ ∈ (0.1599, 0.5] 11924.77 (7349.98, 3603.72] 6143.25 (860.77, 2539.53] (193.05, 300.21]

λ ∈ (0.5, 1) 11924.77 1187.98 6143.25 4955.27 1062.66

Table 3.7: Key values a Pareto ground-up loss when α = β = 0.95
TVaRα(X) TVaRα(CI∗

λ
(X)) TVaRβ(X) TVaRβ

(
(RI∗

λ
(X)

)
E[π(I∗(X))]

λ ∈ (0, 0.5) 6143.25 6155.27 6143.25 -12.02 137.34

λ = 0.5, I∗λ(X) = a · x, a ∈ [0, 1] 6143.25 [6143.25, 1200] 6143.25 [0, 4943.25] [0, 1200]

λ ∈ (0.5, 1) 6143.25 1187.98 6143.25 4955.27 1062.66

Table 3.8: Best Pareto-optimal reinsurance contracts I∗λ∗ with a Pareto ground-up loss

κ = 0.8 α = 0.95, β = 0.99 α = 0.99, β = 0.95 α = β = 0.95

γ = 0.5 λ∗ ∈ [0.6173, 0.84] λ∗ ∈ [0.2392, 0.5] λ∗ = 0.5 with a∗ ∈ [0.6214, 0.9942]

γ = 0.7 λ∗ ∈ (0.5, 0.84] λ∗ ∈ (0.1599, 0.5] λ∗ = 0.5 with a∗ ∈ [0.3728, 0.9942]

γ = 0.8 λ∗ ∈ (0.5, 0.84] λ∗ ∈ (0.1599, 0.5] λ∗ = 0.5 with a∗ ∈ [0.2486, 0.9942]

If α > β with α = 0.99 and β = 0.95, then, from Table 3.8 and (3.4.8), we find that the

contracts I∗λ∗(x) = x ∧ 125.32 +
(
x − VaRq(λ∗)(X)

)
+

are the best Pareto-optimal reinsurance

contracts for all the three cases of γ, where the values of λ∗ for each case are given in Table 3.8.

If α = β = 0.95, then, from Table 3.8 and (3.4.9), we see that the quota-share reinsurances

I∗(x) = a∗ x are the best Pareto-optimal reinsurance contracts for all the three cases of γ, where

the values of a∗ for each case are given in Table 3.8. �

Both Tables 3.4 and 3.8 show that the higher of the insurer’s requirement (such as a smaller

value of γ), the less of the choices of the best Pareto-optimal reinsurances or the best values of

λ∗. Moreover, the distribution of the ground-up loss random variable and the confidence levels

of TVaRs also have significant influences in the best Pareto-optimal contracts. If α 6 β, which
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means that the TVaR standard of the reinsurer is not lower than the insurer, then the riskier of

the ground-up loss (such as the Pareto loss), the less of the choices of the best Pareto-optimal

contracts or the best values of λ∗. However, if α > β or the insurer has a higher standard on

TVaR than the reinsurer, then a more riskier ground-up loss (the Pareto loss) will result in a

more conservative best Pareto-optimal contract (such as the reinsurance with a limit) for the

reinsurer, while for a less risker ground-up loss (the exponential loss), an unlimited contract such

as the stop-loss reinsurance can be the best Pareto-optimal contract for the reinsurer. All these

observations or findings reflect the conflicting interests between the insurer and the reinsurer.

In addition, we also point out that if an insurer or an insurance has a ‘greedy’ requirement

in a reinsurance contact, such as a very small value of γ or a very large value of σ and κ in

Examples 3.1 and 3.2, then the best Pareto-optimal reinsurance contracts may not exist. Indeed,

the insurer and the reinsurer are not able to make a deal of reinsurance if any of the two parties

has a ‘greedy’ requirement in a reinsurance contact.

3.5 Conclusions

In this chapter, we give a comprehensive study of Pareto-optimal reinsurance arrangements and

show that under general model settings and assumptions, a Pareto-optimal reinsurance contract

is an optimizer of the convex combination of both parties’ preferences, and such optimizers always

exist. This result helps to justify many existing research techniques on the joint optimization

problems for an insurer and a reinsurer. Moreover, we show how to solve an optimal reinsurance

problem by minimizing the convex combination of TVaRs of the insurer’s and the reinsurer’s losses

and to find the best Pareto-optimal reinsurance contracts in the sense that both the insurer’s aim

and the reinsurer’s goal can be satisfied.

3.6 Technical Details

The proofs of Theorems 3.8 and 3.9 are given in this section.

3.6.1 Proof of Theorem 3.8

Proof. (i) This case is proved in Section 3.3.
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(ii) If 0 6 λ < 1
2 and 1−λ

1−β = m, then m > 0. For any I ∈ I, define

Î(x) =



x if 0 6 x 6 ξa;

ξa if ξa 6 x 6 VaRα(X);

x−VaRα(X) + ξa if VaRα(X) 6 x 6 ξb − ξa + VaRα(X);

ξb if ξb − ξa + VaRα(X) 6 x 6 VaRβ(X);

Ĩ(x) if x > VaRβ(X),

where Ĩ can be any function such that Î ∈ I.

The conditions 0 6 λ < 1
2 and 1−λ

1−β = m imply (1−α)(1 + θ) > 1. Then ξ∗a = VaRα(X) and

ξ∗b = VaRp(X). The optimal reinsurance contract is I∗(x) = (x ∧ VaRp(X))I{x6VaRβ(X)} +

Ĩ(x)I{x>VaRβ(X)}.

(iii) If 0 6 λ < 1
2 and 1−λ

1−β < m, then m > 0. For any I ∈ I, define

Î(x) =



x if 0 6 x 6 ξa;

ξa if ξa 6 x 6 VaRα(X);

x−VaRα(X) + ξa if VaRα(X) 6 x 6 VaRα(X) + ξb − ξa;
ξb if VaRα(X) + ξb − ξa 6 x 6 VaRβ(X);

x−VaRβ(X) + ξb if x > VaRβ(X).

One can show that Î(x) ∈ I, V (I) > V (Î) from (3.3.7), and

P
(
Î(X) > x

)
=


P (X > x) if 0 6 x < ξa;

P (X > x+ VaRα(X)− ξa) if ξa 6 x < ξb;

P (X > x+ VaRβ(X)− ξb) if x > ξb.

Let s = ξa and t = ξb − ξa. It follows from (3.3.8)

V (Î) = λTVaRα (X) + (1− 2λ)s+ (1− λ)t− (1− 2λ)(1 + θ)

∫ s

0
P(X > z)dz

−m
∫ t+VaRα(X)

VaRα(X)
P(X > z)dz +

(
1− λ
1− β

−m
)∫ ∞

VaRβ(X)
P(X > z)dz.

Let

g(t) = (1− λ)t−m
∫ t+VaRα(X)

VaRα(X)
P(X > z)dz.
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Then for 0 < t1 < t2 < VaRβ(X)−VaRα (X), as P (X 6 t2 + VaRα (X)) < β, we have

g(t1)− g(t2) = (1− λ)(t1 − t2) +m

∫ t2+VaRα(X)

t1+VaRα(X)
P(X > z)dz

> (t2 − t1) (mP (X > t2 + VaRα (X))− (1− λ)) > 0.

The conditions 0 6 λ < 1
2 and 1−λ

1−β < m implies (1 − α)(1 + θ) > 1, s∗ = VaRα(X) and

t∗ = VaRβ(X) − VaRα (X) minimize V (Î). Therefore, ξ∗a = VaRα(X) and ξ∗b = VaRβ(X)

minimize V (Î) and the optimal reinsurance contract is I∗(x) = x.

(iv) If λ = 1
2 , then m = 1

2(1−α) and p = α. Furthermore, if α = β, then V (I) = 1
2TVaRα(X) for

any I ∈ I; if α < β, then for any I ∈ I,

V (I) =
1

2
TVaRα (X)− 1

2(1− α)

∫ β

α
I(VaRr(X))dr +

1

2

(
1

1− β
− 1

1− α

)∫ 1

β
I(VaRr(X))dr,

(3.6.1)

or equivalently

V (I) =
1

2
TVaRα (X) +

1

2
(ξb − ξa)−

1

2(1− α)

∫ ξb

ξa

P(I(X) > z)dz

+
1

2

(
1

1− β
− 1

1− α

)∫ ∞
ξb

P(I(X) > z)dz. (3.6.2)

where ξa = I (VaRα(X)) and ξb = I (VaRβ(X)). Define

Î(x) =


Ĩ(x) if 0 6 x 6 VaRα(X);

x−VaRα(X) + ξa if VaRα(X) 6 x 6 ξb − ξa + VaRα(X);

ξb if x > ξb − ξa + VaRα(X),

where Ĩ can be any function such that Î ∈ I. According to (3.6.1), it is easy to show that

V (I) > V (Î). By (3.6.2), we have

V (Î) =
1

2
TVaRα (X) +

1

2
(ξb − ξa)−

1

2(1− α)

∫ VaRα(X)+ξb−ξa

VaRα(X)
P(X > z)dz.

Let t = ξb − ξa and g(t) = t − 1
(1−α)

∫ t+VaRα(X)
VaRα(X) P(X > z)dz. For t1, t2 ∈ [0, VaRβ(X) −
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VaRα(X)] and t1 > t2,

g(t2)− g(t1) = t2 − t1 +
1

1− α

∫ t1+VaRα(X)

t2+VaRα(X)
P(X > z)dz

6 (t1 − t2)

[
1

1− α
P(X > t2 + VaRα (X))− 1

]
6 0.

Therefore, g is increasing in t ∈ [0, VaRβ(X) − VaRα(X)] and t∗ = 0 minimizes g. The

optimal solution is I∗(x) = Ĩ(x) ∧ Ĩ(VaRα(X)), where Ĩ can be any function such that

I∗ ∈ I.

(v) If 1
2 < λ < 1 and 1−λ

1−β > m > 0, for any I ∈ I, define

Î(x) =


0 if 0 6 x 6 VaRα(X)− ξa;
x−VaRα(X) + ξa if VaRα(X)− ξa 6 x 6 ξb − ξa + VaRα(X);

ξb if x > ξb − ξa + VaRα(X).

(3.6.3)

We can show that Î(x) ∈ I, V (I) > V (Î) from (3.3.7), and

P
(
Î(X) > x

)
=

{
P (X > x+ VaRα(X)− ξa) if 0 6 x < ξb;

0 if x > ξb.

Let s = ξa and t = ξb − ξa. It follows from (3.3.8)

V (Î) = λTVaRα (X) + (1− 2λ)s+ (1− λ)t− (1− 2λ)(1 + θ)

∫ VaRα(X)

VaRα(X)−s
P(X > z)dz

−m
∫ t+VaRα(X)

VaRα(X)
P(X > z)dz.

If (1− α)(1 + θ) > 1, then 1− θ∗ > α and s∗ = 0. Moreover,

(1− α)(1 + θ) > 1⇐⇒ p 6 α. (3.6.4)

Indeed, recall that p = 1− 1−λ
m andm = λ

1−α+(1−2λ)(1+θ) > 0. It is equivalent to show that

(1−α)m 6 1−λ, i.e., λ+(1−2λ)(1+θ)(1−α) 6 1−λ, which is (1−2λ)(1+θ)(1−α) 6 1−2λ,

or (1 + θ)(1−α) > 1 since 1− 2λ < 0. Thus, p 6 α. One can show that t∗ = 0. As a result,

ξ∗a = 0 and ξ∗b = 0. Thus, I∗(x) = 0 is an optimal contract.

If (1 − α)(1 + θ) < 1, then 1 − θ∗ < α and from (3.6.4), we know p > α > 1 − θ∗ and
1−λ
1−β > m implies p < β. Therefore, s∗ = VaRα (X) − VaR1−θ∗ (X) and t∗ = VaRp (X) −
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VaRα (X) minimize V (Î), which implies ξ∗a = VaRα (X)−VaR1−θ∗ (X) and ξ∗b = VaRp (X)−
VaR1−θ∗ (X). Hence, I∗(x) = (x−VaR1−θ∗ (X))+∧(VaRp(X)−VaR1−θ∗(X)) is an optimal

reinsurance contract.

(vi) If 1
2 < λ < 1 and 1−λ

1−β = m > 0 and note that ξb − ξa + VaRα(X) 6 VaRβ(X), for

any I ∈ I, define Î(x) the same as in (3.6.3) for x 6 VaRβ(X) and define Î(x) = Ĩ(x) for

x > VaRβ(X), where Ĩ can be any function such that Î ∈ I. If α = β, then 1−λ
1−β = m implies

(1−α)(1 + θ) = 1 and p = α, the optimal reinsurance contract is I∗(x) = Ĩ(x)I{x>VaRβ(X)}.

If α < β, then 1−λ
1−β = m implies (1− α)(1 + θ) < 1, the optimal contract is

I∗(x) =
[
(x−VaR1−θ∗(X))+ ∧ (VaRp(X)−VaR1−θ∗(X))

]
I{x6VaRβ(X)} + Ĩ(x)I{x>VaRβ(X)}.

(3.6.5)

Hence, in either case, the optimal contract is given in (3.6.5). Note p = β since 1−λ
1−β = m.

(vii) If 1
2 < λ 6 1 and 1−λ

1−β < m, for any I ∈ I, define

Î(x) =


0 if 0 6 x 6 VaRα(X)− ξa;
x−VaRα(X) + ξa if VaRα(X)− ξa 6 x 6 ξb − ξa + VaRα(X);

ξb if ξb − ξa + VaRα(X) 6 x 6 VaRβ(X);

x−VaRβ(X) + ξb if x > VaRβ(X).

One can show that Î(x) ∈ I, V (I) > V (Î) from (3.3.7), and

P
(
Î(X) > x

)
=

{
P (X > x+ VaRα(X)− ξa) if 0 6 x < ξb;

P (X > x+ VaRβ(X)− ξb) if x > ξb.

Let s = ξa and t = ξb − ξa. It follows from (3.3.8)

V (Î) = λTVaRα (X) + (1− 2λ)s+ (1− λ)t− (1− 2λ)(1 + θ)

∫ VaRα(X)

VaRα(X)−s
P(X > z)dz

−m
∫ t+VaRα(X)

VaRα(X)
P(X > z)dz +

(
1− λ
1− β

−m
)∫ ∞

VaRβ(X)
P(X > z)dz.

As 1− β 6 P (X > t+ VaRα (X)) 6 1− α and m > 0, one can show that t∗ = VaRβ(X)−
VaRα(X). The conditions 1

2 < λ 6 1 and 1−λ
1−β < m implies (1−α)(1 + θ) < 1, thus 1− θ∗ <

α 6 β. s∗ = VaRα(X) − VaR1−θ∗(X) minimizes f . Hence, ξ∗a = VaRα(X) − VaR1−θ∗(X)

and ξ∗b = VaRβ(X)−VaR1−θ∗(X) minimize V (Î). Thus, I∗(x) = (x−VaR1−θ∗(X))+ is an

optimal reinsurance contract.
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(viii) If 1
2 < λ < 1 and m = 0, then 1−λ

1−β −m > 0. For any I ∈ I, define

Î(x) =


0 if 0 6 x 6 VaRα(X)− ξa;
x−VaRα(X) + ξa if VaRα(X)− ξa 6 x 6 VaRα(X);

Ĩ(x) if VaRα(X) 6 x 6 VaRβ(X);

ξb if x > VaRβ(X),

where Ĩ can be any function such that Î ∈ I. It follows from (3.3.8)

V (Î) = λTVaRα (X) + (1− 2λ)ξa + (1− λ) (ξb − ξa)

− (1− 2λ)(1 + θ)

∫ VaRα(X)

VaRα(X)−ξa
P(X > z)dz.

Let s = ξa and t = ξb − ξa. Then t∗ = 0 as 1− λ > 0. Let

f(s) = λTVaRα (X) + (1− 2λ)s− (1− 2λ)(1 + θ)

∫ VaRα(X)

VaRα(X)−s
P(X > z)dz.

For 0 < s1 < s2 6 VaRα(X),

f(s2)− f(s1) = (2λ− 1)

[
(1 + θ)

∫ VaRα(X)−s1

VaRα(X)−s2
P(X > z)dz − (s2 − s1)

]
> (2λ− 1)(s2 − s1) [(1 + θ)P(X > VaRα(X)− s1)− 1]

> (2λ− 1)(s2 − s1) [(1 + θ)(1− α)− 1] > 0,

where the last inequality holds since m = 0 implies (1 − α)(1 + θ) = λ
2λ−1 > 1. Therefore,

s∗ = 0 is the unique minimizer of f . Thus, ξ∗a = ξ∗b = 0 and the optimal contract is I∗ = 0.

(ix) If λ = 1 and m = 0, then (1− α)(1 + θ) = 1. For any I ∈ I, define

Î(x) =


0 if 0 6 x 6 VaRα(X)− ξa;
x−VaRα(X) + ξa if VaRα(X)− ξa 6 x 6 VaRα(X);

Ĩ(x) if x > VaRα(X),

where Ĩ can be any function such that Î ∈ I. It follows from (3.3.8)

V (Î) = TVaRα(X)− ξa + (1 + θ)

∫ VaRα(X)

VaRα(X)−ξa
P(X > z)dz.

It is easy to show that ξ∗a = 0 and the optimal reinsurance contract is I∗ = Ĩ(x)I{x>VaRα(X)}.
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(x) If 1
2 < λ 6 1 and m < 0, then 1−λ

1−β > m. For any I ∈ I, define

Î(x) =



0 if 0 6 x 6 VaRα(X)− ξa;
x−VaRα(X) + ξa if VaRα(X)− ξa 6 x 6 VaRα(X);

ξa if VaRα(X) 6 x 6 VaRβ(X)− (ξb − ξa);
x−VaRβ(X) + ξb if VaRβ(X)− (ξb − ξa) 6 x 6 VaRβ(X);

ξb if x > VaRβ(X).

(3.6.6)

One can show that Î(x) ∈ I, V (I) > V (Î) from (3.3.7),, and

P
(
Î(X) > x

)
=


P (X > x+ VaRα(X)− ξa) if 0 6 x < ξa;

P (X > x+ VaRβ(X)− ξb) if ξa < x < ξb;

0 if x > ξb.

Let s = ξa and t = ξb − ξa. It follows from (3.3.8)

V (Î) = λTVaRα (X) + (1− 2λ)s+ (1− λ)t− (1− 2λ)(1 + θ)

∫ VaRα(X)

VaRα(X)−s
P(X > z)dz

−m
∫ VaRβ(X)

VaRβ(X)−t
P(X > z)dz.

Note that m < 0. The conditions 1
2 < λ 6 1 and m < 0 imply (1 − α)(1 + θ) > 1. Then

s∗ = 0 and t∗ = 0. Hence, ξ∗a = ξ∗b = 0 and I∗(x) = 0 is an optimal reinsurance contract.

3.6.2 Proof of Theorem 3.9

Proof. The proof is similar to that of Theorem 3.8. For any I ∈ I, define

V (I) = λTVaRα (X − I(X) + π (I (X))) + (1− λ)TVaRβ(I(X)− π (I (X)))

and denote by ξa = I (VaRα(X)) and ξb = I(VaRβ(X)). Clearly ξa − ξb 6 VaRα(X)−VaRβ(X)

and ξb 6 VaRβ(X). Note that V (I) can be written as

V (I) = λTVaRα (X)− λ(ξa − ξb) + (1− 2λ)ξb − (1− 2λ)(1 + θ)

∫ ξb

0
P(I(X) > z)dz

+

[
1− λ
1− β

− (1− 2λ)(1 + θ)

] ∫ ξa

ξb

P(I(X) > z)dz +

(
1− λ
1− β

−m
)∫ ∞

ξa

P(I(X) > z)dz

(3.6.7)
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or equivalently

V (I) = λTVaRα (X)− (1− 2λ)(1 + θ)

∫ β

0
I(VaRr(X))dr

+

(
1− λ
1− β

− (1− 2λ)(1 + θ)

)∫ α

β
I(VaRr(X))dr +

(
1− λ
1− β

−m
)∫ 1

α
I(VaRr(X))dr.

(3.6.8)

Let s = ξb and t = ξa − ξb. Then 0 6 s 6 VaRβ(X), 0 6 t 6 VaRα(X)−VaRβ(X).

If λ = 0, then m = 1 + θ > 0. Equations (3.6.7) and (3.6.8) reduce to

V (I) = ξb − (1 + θ)

∫ ξb

0
P(I(X) > z)dz +

[
1

1− β
− (1 + θ)

] ∫ ∞
ξb

P(I(X) > z)dz

= −(1 + θ)

∫ β

0
I(VaRr(X))dr +

(
1

1− β
− (1 + θ)

)∫ 1

β
I(VaRr(X))dr.

(i) If λ = 0 and (1− β)(1 + θ) > 1, for any I ∈ I, define

Î(x) =


x if 0 6 x 6 ξb;

ξb if ξb 6 x 6 VaRβ(X);

x−VaRβ(X) + ξb if x > VaRβ(X).

We have Î ∈ I, V (I) > V (Î) from (3.6.8), and

P
(
Î(X) > x

)
=

{
P (X > x) if 0 6 x < ξb;

P (X > x+ VaRβ(X)− ξb) if x > ξb.

It follows from (3.6.7)

V (Î) = ξb − (1 + θ)

∫ ξb

0
P(X > z)dz +

[
1

1− β
− (1 + θ)

] ∫ ∞
VaRβ(X)

P(X > z)dz.

It is easy to show that V (Î) is strictly decreasing in ξb and ξ∗b = VaRβ(X) minimizes V (Î).

The optimal reinsurance contract is I∗(x) = x.

(ii) If λ = 0 and (1− β)(1 + θ) = 1, for any I ∈ I, define

Î(x) =


x if 0 6 x 6 ξb;

ξb if ξb 6 x 6 VaRβ(X);

Ĩ(x) if x > VaRβ(X),
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where Ĩ can be any function such that Î ∈ I. Clearly V (I) > V (Î) from (3.6.8), and

P
(
Î(X) > x

)
= P (X > x) for 0 6 x < ξb. It follows from the above case that ξ∗b =

VaRβ(X) minimizes V (Î). The optimal reinsurance contract is I∗(x) = xI{x6VaRβ(X)} +

Ĩ(x)I{x>VaRβ(X)}.

(iii) 0 6 λ < 1
2 and 1−λ

1−β > m. If λ = 0, then 1−λ
1−β > m implies (1− β)(1 + θ) < 1, for any I ∈ I,

define

Î(x) =

{
x if 0 6 x 6 ξb;

ξb if x > ξb.

We have Î ∈ I, V (I) > V (Î) from (3.6.8), and

P
(
Î(X) > x

)
=

{
P (X > x) if 0 6 x < ξb;

0 if x > ξb.

It follows that ξ∗b = VaR1−θ∗(X) and the optimal contract is I∗(x) = x ∧VaR1−θ∗(X).

If 0 < λ < 1
2 and 1−λ

1−β > m, then m > 0 and 1−λ
1−β − (1−2λ)(1+θ) > 0. For any I ∈ I, define

Î(x) =


x if 0 6 x 6 ξb;

ξb if ξb 6 x 6 VaRα(X)− (ξa − ξb);
x−VaRα(X) + ξa if VaRα(X)− (ξa − ξb) 6 x 6 VaRα(X);

ξa if x > VaRα(X).

We have Î ∈ I, V (I) > V (Î) from (3.6.8), and

P
(
Î(X) > x

)
=


P (X > x) if 0 6 x < ξb;

P (X > x+ VaRα(X)− ξa) if ξb 6 x < ξa;

0 if x > ξa.

It follows from (3.6.7)

V (Î) = λTVaRα (X)− λt+ (1− 2λ)s− (1− 2λ)(1 + θ)

∫ s

0
P(X > z)dz

+

[
1− λ
1− β

− (1− 2λ)(1 + θ)

] ∫ VaRα(X)

VaRα(X)−t
P(X > z)dz. (3.6.9)

The conditions 0 < λ < 1
2 and 1−λ

1−β > m imply (1− β)(1 + θ) < 1. Then s∗ = VaR1−θ∗(X)

and t∗ = 0 minimize V (Î). The optimal reinsurance contract is I∗(x) = x ∧VaR1−θ∗(X).
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(iv) If 0 < λ < 1
2 and 1−λ

1−β = m, then 1−λ
1−β − (1− 2λ)(1 + θ) > 0. For any I ∈ I, define

Î(x) =


x if 0 6 x 6 ξb;

ξb if ξb 6 x 6 VaRα(X)− (ξa − ξb);
x−VaRα(X) + ξa if VaRα(X)− (ξa − ξb) 6 x 6 VaRα(X);

Ĩ(x) if x > VaRα(X),

where Ĩ can be any function such that Î ∈ I. Clearly V (I) > V (Î) from (3.6.8), and V (Î)

is the same as (3.6.9). The conditions 0 < λ < 1
2 and 1−λ

1−β = m imply (1 − β)(1 + θ) 6 1.

It follows that the optimal reinsurance contract is I∗(x) = x ∧ VaR1−θ∗(X)I{x6VaRα(X)} +

Ĩ(x)I{x>VaRα(X)}.

(v) If 0 < λ < 1
2 and (1− 2λ)(1 + θ) < 1−λ

1−β < m, for any I ∈ I, define

Î(x) =


x if 0 6 x 6 ξb;

ξb if ξb 6 x 6 VaRα(X)− (ξa − ξb);
x−VaRα(X) + ξa if x > VaRα(X)− (ξa − ξb).

One can show that Î(x) ∈ I, V (I) > V (Î) from (3.6.8), and

P
(
Î(X) > x

)
=

{
P (X > x) if 0 6 x < ξb;

P (X > x+ VaRα(X)− ξa) if x > ξb.

It follows from (3.6.7)

V (Î) = λTVaRα (X)− λt+ (1− 2λ)s− (1− 2λ)(1 + θ)

∫ s

0
P(X > z)dz

+

[
1− λ
1− β

− (1− 2λ)(1 + θ)

] ∫ VaRα(X)

VaRα(X)−t
P(X > z)dz +

(
1− λ
1− β

−m
)∫ ∞

VaRα(X)
P(X > z)dz.

If (1−β)(1+θ) > 1, s∗ = VaRβ(X), t∗ = VaRα(X)−VaRβ(X), and the optimal reinsurance

contract is I∗(x) = x.

If (1− β)(1 + θ) < 1, s∗ = VaR1−θ∗(X) minimizes f . Recall q defined in (3.3.5). We claim

that β < q < α. Indeed, 0 < 1−λ
1−β − (1− 2λ)(1 + θ) < λ

1−α implies 1− α < λ
1−λ
1−β−(1−2λ)(1+θ)

,

that is, q < α. Besides, β < q is equivalent to λ < 1− λ− (1− 2λ)(1 + θ)(1− β), which is

0 < (1− 2λ) [1− (1 + θ)(1− β)], that is, (1−β)(1 + θ) < 1 as 1− 2λ > 0. Thus, β < q < α.

Hence, t∗ = VaRα(X) − VaRq(X) and I∗(x) = x ∧ VaR1−θ∗(X) + (x−VaRq(X))+ is an

optimal reinsurance contract.
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(vi) If 0 < λ < 1
2 and (1− 2λ)(1 + θ) = 1−λ

1−β , then 1−λ
1−β < m. For any I ∈ I, define

Î(x) =


x if 0 6 x 6 ξb;

ξb if ξb 6 x 6 VaRβ(X);

Ĩ(x) if VaRβ(X) 6 x 6 VaRα(X);

x−VaRα(X) + ξa if x > VaRα(X),

where Ĩ can be any function such that Î ∈ I. Then V (I) > V (Î) from (3.6.8), and

P
(
Î(X) > x

)
=

{
P (X > x) if 0 6 x < ξb;

P (X > x+ VaRα(X)− ξa) if x > ξa.

It follows from (3.6.7)

V (Î) = λTVaRα (X)− λt+ (1− 2λ)s− (1− 2λ)(1 + θ)

∫ s

0
P(X > z)dz

+

(
1− λ
1− β

−m
)∫ ∞

VaRα(X)
P(X > z)dz.

Clearly t∗ = VaRα(X) − VaRβ(X). Since (1 − 2λ)(1 + θ) = 1−λ
1−β implies (1 − β)(1 + θ) =

1−λ
1−2λ = 1+ λ

1−2λ > 1, similar analysis to the case (iii) yields s∗ = VaRβ(X) and the optimal

reinsurance contract is I∗(x) = x I{x6VaRβ(X) or x>VaRα(X)} + Ĩ(x) I{VaRβ(X)6x6VaRα(X)}.

(vii) If 0 < λ < 1
2 and 1−λ

1−β < (1− 2λ)(1 + θ), then 1−λ
1−β −m < 0. For any I ∈ I, define

Î(x) =



x if 0 6 x 6 ξb;

ξb if ξb 6 x 6 VaRβ(X);

x−VaRβ(X) + ξb if VaRβ(X) 6 x 6 VaRβ(X) + ξa − ξb;
ξa if VaRβ(X) + ξa − ξb 6 x 6 VaRα(X);

x−VaRα(X) + ξa if x > VaRα(X).

One can show that Î(x) ∈ I, V (I) > V (Î) from (3.6.8),

P
(
Î(X) > x

)
=


P (X > x) if 0 6 x < ξb;

P (X > x+ VaRβ(X)− ξb) if ξb 6 x < ξa;

P (X > x+ VaRα(X)− ξa) if x > ξa.
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It follows from (3.6.7)

V (Î) = λTVaRα (X)− λt+ (1− 2λ)s− (1− 2λ)(1 + θ)

∫ s

0
P(X > z)dz

+

[
1− λ
1− β

− (1− 2λ)(1 + θ)

] ∫ VaRβ(X)+t

VaRβ(X)
P(X > z)dz

+

(
1− λ
1− β

−m
)∫ ∞

VaRα(X)
P(X > z)dz.

The conditions 0 < λ < 1
2 and 1−λ

1−β < (1−2λ)(1 + θ) imply 1− β(1 + θ) > 1−λ
1−2λ > 1. Hence,

s∗ = VaRβ(X) and t∗ = VaRα(X) − VaRβ(X) minimize V (Î). The optimal reinsurance

contract is I∗(x) = x.

(viii) If λ = 1
2 , then m = 1

2(1−α) and q = β. Furthermore, if α = β, then V (I) = 1
2TVaRα(X) for

any I ∈ I; if α > β, then for any I ∈ I,

V (I) =
1

2
TVaRα (X) +

1

2(1− β)

∫ α

β
I(VaRr(X))dr +

1

2

(
1

1− β
− 1

1− α

)∫ 1

α
I(VaRr(X))dr

(3.6.10)

or equivalently

V (I) =
1

2
TVaRα (X)− 1

2
(ξa − ξb) +

1

2(1− β)

∫ ξa

ξb

P(I(X) > z)dz

+
1

2

(
1

1− β
− 1

1− α

)∫ ∞
ξa

P(I(X) > z)dz. (3.6.11)

where ξa = I (VaRα(X)) and ξb = I (VaRβ(X)). Define

Î(x) =


Ĩ(x) if 0 6 x 6 VaRβ(X);

ξb if VaRβ(X) 6 x 6 VaRα(X)− (ξa − ξb);
x−VaRα(X) + ξa if x > VaRα(X)− (ξa − ξb),

where Ĩ can be any function such that Î ∈ I. According to (3.6.10), it is easy to show that

V (I) > V (Î). By (3.6.11), we have

V (Î) =
1

2
TVaRα (X)− 1

2
(ξa − ξb) +

1

2(1− β)

∫ VaRα(X)

VaRα(X)−(ξa−ξb)
P(X > z)dz

+
1

2

(
1

1− β
− 1

1− α

)∫ ∞
VaRα(X)

P(X > z)dz.
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Let t = ξa − ξb and g(t) = −t + 1
(1−β)

∫ VaRα(X)
VaRα(X)−t P(X > z)dz. For t1, t2 ∈ [0, VaRα(X) −

VaRβ(X)] and t1 > t2,

g(t1)− g(t2) = t2 − t1 +
1

1− β

∫ VaRα(X)−t2

VaRα(X)−t1
P(X > z)dz

6 (t1 − t2)

[
1

1− β
P(X > VaRα (X)− t1)− 1

]
6 0.

Therefore, g is decreasing in t ∈ [0, VaRα(X) − VaRβ(X)] and t∗ = VaRα(X) − VaRβ(X)

minimizes g. The optimal solution is

I∗(x) = Ĩ(x) I{x6VaRβ(X)} +
(
x−VaRβ(X) + Ĩ(VaRβ(X))

)
I{x>VaRβ(X)},

where Ĩ can be any function such that I∗ ∈ I.

(ix) If 1
2 < λ 6 1 and 1−λ

1−β > m, then (1 − 2λ)(1 + θ) < 0 and 1−λ
1−β − (1 − 2λ)(1 + θ) > 0. For

any I ∈ I, define

Î(x) =



0 if 0 6 x 6 VaRβ(X)− ξb;
x−VaRβ(X) + ξb if VaRβ(X)− ξb 6 x 6 VaRβ(X);

ξb if VaRβ(X) 6 x 6 VaRα(X)− (ξa − ξb);
x−VaRα(X) + ξa if VaRα(X)− (ξa − ξb) 6 x 6 VaRα(X);

ξa if x > VaRα(X).

One can show that Î(x) ∈ I, V (I) > V (Î) from (3.6.8), and

P
(
Î(X) > x

)
=


P (X > x+ VaRβ(X)− ξb) if 0 6 x < ξb;

P (X > x+ VaRα(X)− ξa) if ξb 6 x < ξa;

0 if x > ξa.

It follows from (3.6.7)

V (Î) = λTVaRα (X)− λt+ (1− 2λ)s− (1− 2λ)(1 + θ)

∫ VaRβ(X)

VaRβ(X)−s
P(X > z)dz

+

[
1− λ
1− β

− (1− 2λ)(1 + θ)

] ∫ VaRα(X)

VaRα(X)−t
P(X > z)dz.

One can show that t∗ = 0 minimizes V (Î). The conditions 1
2 < λ 6 1 and 1−λ

1−β > m imply

(1− β)(1 + θ) > 1. Then s∗ = 0 and the optimal reinsurance contract is I∗(x) = 0.
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(x) If 1
2 < λ 6 1 and 1−λ

1−β = m, then 1−λ
1−β − (1− 2λ)(1 + θ) > 0. For any I ∈ I, define

Î(x) =



0 if 0 6 x 6 VaRβ(X)− ξb;
x−VaRβ(X) + ξb if VaRβ(X)− ξb 6 x 6 VaRβ(X);

ξb if VaRβ(X) 6 x 6 VaRα(X)− (ξa − ξb);
x−VaRα(X) + ξa if VaRα(X)− (ξa − ξb) 6 x 6 VaRα(X);

Ĩ(x) if x > VaRα(X),

where Ĩ can be any function such that Î ∈ I. Then V (I) > V (Î) from (3.6.8), and

P
(
Î(X) > x

)
=

{
P (X > x+ VaRβ(X)− ξb) if 0 6 x < ξb;

P (X > x+ VaRα(X)− ξa) if ξb 6 x < ξa.

Then by (3.6.7), we have

V (Î) = λTVaRα (X)− λt+ (1− 2λ)s− (1− 2λ)(1 + θ)

∫ VaRβ(X)

VaRβ(X)−s
P(X > z)dz

+

[
1− λ
1− β

− (1− 2λ)(1 + θ)

] ∫ VaRα(X)

VaRα(X)−t
P(X > z)dz.

The conditions 1
2 < λ 6 1 and 1−λ

1−β = m imply (1− β)(1 + θ) > 1. It follows from case (ix)

that the optimal reinsurance contract is I∗(x) = Ĩ(x)I{x>VaRα(X)}.

(xi) If 1
2 < λ 6 1and 1−λ

1−β < m, then (1− 2λ)(1 + θ) < 0 and 1−λ
1−β − (1− 2λ)(1 + θ) > 0. For any

I ∈ I, define

Î(x) =


0 if 0 6 x 6 VaRβ(X)− ξb;
x−VaRβ(X) + ξb if VaRβ(X)− ξb 6 x 6 VaRβ(X);

ξb if VaRβ(X) 6 x 6 VaRα(X)− (ξa − ξb);
x−VaRα(X) + ξa if x > VaRα(X)− (ξa − ξb).

One can show that Î(x) ∈ I, V (I) > V (Î) from (3.6.8), and

P
(
Î(X) > x

)
=

{
P (X > x+ VaRβ(X)− ξb) if 0 6 x < ξb;

P (X > x+ VaRα(X)− ξa) if x > ξb.
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Then by (3.6.7), we have

V (Î) = λTVaRα (X)− λt+ (1− 2λ)s− (1− 2λ)(1 + θ)

∫ VaRβ(X)

VaRβ(X)−s
P(X > z)dz

+

[
1− λ
1− β

− (1− 2λ)(1 + θ)

] ∫ VaRα(X)

VaRα(X)−t
P(X > z)dz

+

(
1− λ
1− β

−m
)∫ ∞

VaRα(X)
P(X > z)dz.

If (1− β)(1 + θ) > 1, then s∗ = 0. Note that 1−λ
1−β < m implies q < α. In addition, λ > 1/2

and (1− β)(1 + θ) > 1 imply β 6 q. Thus, t∗ = VaRα(X)− VaRq(X) minimizes V (Î) and

I∗(x) = (x−VaRq(X))+ is an optimal contract.

If (1−β)(1+θ) < 1, then s∗ = VaRβ(X)−VaR1−θ∗(X). Note that P (X > VaRα (X)− t) 6
1−β implies t∗ = VaRα(X)−VaRβ(X). Thus, the optimal reinsurance contract is I∗(x) =

(x−VaR1−θ∗(X))+.
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Chapter 4

Asymptotic Equivalence of Risk

Measures under Dependence

Uncertainty

4.1 Introduction

An event is uncertain or ambiguous if its probability is unknown. In this chapter, one particular

type of uncertainty that we focus on is the dependence uncertainty in risk aggregation. In the

framework of dependence uncertainty, we assume that in a joint model (X1, . . . , Xn), the marginal

distribution of each of X1, . . . , Xn is known, but the joint distribution is unknown. This is due to

statistical and modeling challenges in obtaining precise information on the dependence structure

of a joint model; see Embrechts et al. (2014) for more illustrations. Denote by F the set of

univariate distribution functions. For F1, . . . , Fn ∈ F , let

Sn = Sn(F1, . . . , Fn) = {X1 + · · ·+Xn : Xi ∈ L0, Xi ∼ Fi, i = 1, . . . , n}.

That is, Sn is the set of aggregate risks with given marginal distributions, but an arbitrary

dependence structure. Some properties of the set Sn are given in Bernard et al. (2014).

For a given risk measure ρ : X → (−∞,+∞], where the set X is a convex cone of risks,

we are interested in the value of the risk aggregation ρ(X1 + · · · + Xn) for some joint model
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(X1, . . . , Xn) with unknown dependence structure. When we implement the risk measure ρ to

the aggregate risk X = X1 + · · · + Xn, dependence uncertainty always arises as an important

issue in practice. Obviously, ρ(X1 + · · · + Xn) lies in a range, and often the worst-case value

and the best-case value are of particular interest. The value ρ̄(Sn) := supS∈Sn ρ(S) represents

the worst-case measurement of the aggregate risk in the presence of dependence uncertainty. If

ρ is not convex, the value of ρ̄(Sn) is in general difficult to calculate. For the case of VaR, some

analytical results are given in Wang et al. (2013) and Jakobsons et al. (2016). It is common

to calculate VaRp(Sn) by numerical calculation and a popular algorithm is the Rearrangement

Algorithm in Embrechts et al. (2013). If partial dependence information is available, one can

study the values of risk measures in constrained subsets of Sn; see Bernard et al. (2017a,b,c),

Bernard and Vanduffel (2015), Bignozzi et al. (2015) and Puccetti et al. (2017) for research along

this direction. In this chapter we focus on the full set Sn, that is, no dependence information.

We are particularly interested in the case where n goes to infinity, that is, a very large number

of risks. On the one hand, this setting provides mathematical tractability for the behaviour of

risk aggregation; on the other hand, dependence uncertainty among a very large number of risks

is a practical setting due to the statistical challenges arising in high-dimensional models.

Under this setting, an elegant result is that the VaR and the ES at the same confidence

level are asymptotically equivalent. That is, for a given sequence of distributions F1, F2 . . . and

p ∈ (0, 1),

lim
n→∞

supS∈Sn VaRp(S)

supS∈Sn ESp(S)
= 1 (4.1.1)

holds under some conditions.

The equivalence (4.1.1) is known to hold under particular conditions. (4.1.1) is first shown

under a homogeneous setting (that is, F1 = F2 = · · · ) in Puccetti and Rüschendorf (2014)

under an assumption of complete mixability (Wang and Wang (2011)). It is then generalized by

for instance Puccetti et al. (2013) and Wang and Wang (2015), among others, under different

conditions. The inhomogeneous case is finally obtained in Embrechts et al. (2015) under general

moment conditions on the marginal distributions F1, F2, . . ..

An immediate question is whether the asymptotic equivalence in (4.1.1) is not only true for the

pair (VaRp, ESp), but it also holds for larger classes of risk measures. We say that a risk measure

ρ∗ dominates ρ if they are defined on the same set X and ρ 6 ρ∗ on X . It is well known that

ESp is the smallest law-invariant coherent risk measure dominating VaRp; see Kusuoka (2001).
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For a law-invariant risk measure ρ, denote by ρ∗ the smallest law-invariant coherent risk measure

dominating ρ, if such a risk measure exists. It is natural to ask whether the following equivalence

lim
n→∞

supS∈Sn ρ(S)

supS∈Sn ρ
∗(S)

= 1, (4.1.2)

holds and under what conditions. A result of type (4.1.2) is called an asymptotic equivalence for

risk measures ρ and ρ∗.

We focus on two popular classes of risk measures in this chapter. The class of distortion

risk measures, including VaR and ES, is extensively studied as tools for capital calculation (see

e.g. Acerbi (2002) and Cont et al. (2010)), insurance premium calculation (see e.g. Wang et

al. (1997)), and decision making (see e.g. Yaari (1987)). The class of convex risk measures,

introduced by Föllmer and Schied (2002) and Frittelli and Rosazza Gianin (2002) as an extension

of coherent risk measures, is able to reflect non-linearity in the increase of the size of risks, such

as risky positions in a financial market with limited liquidity. See Section 1.2.2 for definitions.

The main results in Wang et al. (2015) imply that (4.1.2) holds in the homogeneous model

(F1 = F2 = · · · ) if ρ is a distortion risk measure or a convex risk measure. The assumption

of homogeneity is nice for mathematical analysis; however, it is not a realistic assumption for

practical applications. In this chapter, our aim is to show (4.1.2) in inhomogeneous models for

general risk measures. This requires regularity conditions on the marginal distributions, which

we will specify later.

The asymptotic equivalence in (4.1.2) has two practical merits. First, it suggests that using

a non-coherent risk measure would lead to roughly the same worst-case value as its coherent

partner if the dependence structure is unknown for a joint model of high dimension; therefore a

regulator may want to directly implement a coherent risk measure instead. This point is relevant

for the search of risk measures in the recent regulatory documents BCBS (2013) and IAIS (2014).

Second, the value ρ̄∗(Sn) can be analytically calculated without specifying a dependence structure,

as the worst-case value for ρ∗ is often simply the sum of the values of ρ∗(X1), . . . , ρ∗(Xn) with

corresponding marginal distributions Xi ∼ Fi, i = 1, . . . , n. As a consequence, (4.1.2) can be

used to approximate ρ̄(Sn) if needed. These merits provide a powerful tool for evaluating model

uncertainty for risk aggregation with non-coherent risk measures.

Mathematically, the main result in this chapter generalizes not only the results in Embrechts

et al. (2015) for VaR and ES, but also those in Wang et al. (2015) for general risk measures in
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the homogeneous setting. More importantly, our methods unify the two streams of research in

this field. A significant mathematical challenge arises as the method in Wang et al. (2015) relies

on the study of the quantity

Γρ(X) = lim
n→∞

1

n
sup{ρ(S) : S ∈ Sn(F, . . . , F )}, X ∼ F,

which cannot be naturally generalized to an inhomogeneous setting. In this chapter, we use an

alternative method by constructing a specific Sn ∈ Sn such that ρ(Sn) and ρ∗(Sn) are close. It

should be noted that the case of distortion risk measures is technically much more involved than

the case of convex risk measures, because we know that the worst-case dependence structure

for convex risk measures is comonotonicity, but not for non-coherent distortion risk measures

in general. The main theorem and its proof reveal the worst-case dependence structure for

general distortion risk measures (Choquet integrals). This dependence structure is valuable to

many other fields where probability distortion is involved, for instance in decision theory (see

for instance Yaari (1987) and Quiggin (1993)), behavioral finance (see for instance He and Zhou

(2016)), reinsurance (see for instance Bernard et al. (2015)) and insurance pricing (see for instance

Wang et al. (1997)).

The structure of this chapter is as follows. In Section 4.2, we present two examples showing

that without some regularity conditions, the asymptotic equivalence may fail to hold. In Section

4.3, we study the asymptotic equivalence for distortion risk measures under some regularity

conditions. In Section 4.4, we study the asymptotic equivalence for convex risk measures under

general conditions. Conclusions are stated in Section 4.5. A proof of the main theorem of Section

4.3 is in Section 4.6.

4.2 Vanishing Risks and Exploding Risks

Before we move on to the main result of this chapter, we present two counter-examples of asymp-

totic equivalence to help the reader understand the nature of the problem. Let Γ be the set of all

pairs (ρ1, ρ2) where ρ1 is a non-coherent monetary risk measure on X and ρ2 is a coherent risk

measure on X dominating ρ1. For (ρ, ρ∗) ∈ Γ, in order to have the general asymptotic equivalence

lim
n→∞

supS∈Sn ρ(S)

supS∈Sn ρ
∗(S)

= 1, (4.2.1)
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some regularity conditions have to be imposed to avoid the following cases of vanishing and

exploding risks. Note that both cases are typically irrelevant in practice. In particular, we can

let (ρ, ρ∗) = (VaR,ES) and the random variable X ∼ U [0, 1] in the following examples.

Example 4.1 (Vanishing risks). For a pair (ρ, ρ∗) ∈ Γ, take X ∈ X such that 0 < ρ(X) < ρ∗(X);

such X always exists since ρ is not coherent and hence ρ 6= ρ∗ for some subset of X . Write

a = ρ(X) and b = ρ∗(X). Let F1 be the distribution of X. For i = 2, 3, . . ., let Fi be a

distribution supported in [0, ki], where {ki, i = 2, 3, . . .} is a sequence of positive numbers such

that
∑∞

i=2 ki < (b− a)/2. From the monotonicity and cash-invariance of ρ and ρ∗, we have

sup
S∈Sn

ρ(S) 6 ρ(X1) +

n∑
i=2

ki 6 a+
1

2
(b− a) =

1

2
(a+ b)

and

sup
S∈Sn

ρ∗(S) > ρ∗(X1) = b.

Then for n ∈ N,
supS∈Sn ρ(S)

supS∈Sn ρ
∗(S)

6
a+ b

2b
< 1.

That is, (4.2.1) does not hold. This example suggests that for (4.2.1) to hold, a regularity

condition has to be imposed to avoid vanishing risks, that is, the scale of individual risks shrinks

too fast as n→∞.

Example 4.2 (Exploding risks). For illustration we take (ρ, ρ∗) ∈ Γ where ρ is positive homoge-

neous. This example includes, for instance, a distortion risk measure and its dominating coherent

distortion risk measure; see Section 4.3 below. Take a random variable X ∈ X supported on

a compact interval [0, 1] such that ρ(X) < ρ∗(X); such X always exists as both ρ and ρ∗ are

positive homogeneous and ρ 6= ρ∗ for some subset of X . Write a = ρ(X) and b = ρ∗(X). Now,

let {ki, i ∈ N} be a sequence of positive numbers such that k1 = 1 and 2
∑n

i=1 ki < (b− a)kn+1

for all n ∈ N. Let Fi be the distribution of kiX for i ∈ N.

From the monotonicity and the cash-invariance of ρ and ρ∗, we have

sup
S∈Sn

ρ(S) 6 knρ(X) +
n−1∑
i=1

ki = kna+
n−1∑
i=1

ki < kna+
1

2
kn(b− a) =

1

2
kn(a+ b)

and

sup
S∈Sn

ρ∗(S) > ρ∗(Xn) = knρ
∗(X) = knb.
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Therefore,
supS∈Sn ρ(S)

supS∈Sn ρ
∗(S)

6
kn(a+ b)

2knb
=
a+ b

2b
< 1.

That is, (4.2.1) does not hold. This example suggests that for (4.2.1) to hold, a regularity

condition has to be imposed to avoid exploding risks. Here, the scale of individual risks grows

too fast as n→∞.

4.3 Asymptotic Equivalence for Distortion Risk Measures

Throughout this section, we take X = L+. As monetary risk measures are cash-invariant, this

assumption is technically equivalent to assuming that each risk is uniformly bounded from below

(bounded gain). Gains are typically not relevant when regulatory risk measures such as VaR and

ES are applied, and hence this is a common assumption in risk management. Throughout this

chapter, VaR and ES are defined as in Definition 1.3 and a distortion risk measure is defined in

Definition 1.4.

4.3.1 Some Lemmas

Before stating the main result of this section, we first provide some necessary lemmas on distortion

risk measures and on the set Sn. A key object for our analysis is the largest convex distortion

function dominated by h, defined as

h∗(t) = sup {g(t) ∈ [0, 1] : g is increasing and convex on [0, 1] and g 6 h} , t ∈ [0, 1]. (4.3.1)

We will use the notation h∗ throughout Section 4.3.

The first lemma formulates an order in two distortion risk measures from the order in their

respective distortion functions.

Lemma 4.1. For two distortion functions h1, h2 ∈ H, if h1(t) 6 h2(t) for all t ∈ [0, 1], then

ρh1(X) > ρh2(X), X ∈ X .

Proof. Let F be the distribution of X ∈ X . For x ∈ R and i = 1, 2, let gi(x) = hi (F (x+)) =

limy→x+ hi(F (y)), that is, gi is the right-continuous correction of hi ◦ F . Since h1 6 h2 on [0, 1],
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we have g1 6 g2 on R. Let Yi be a random variable with distribution function gi, i = 1, 2. Then

we have E[Y1] > E[Y2] from g1 6 g2. Finally, we obtain

ρh1(X) =

∫
R
xd(h1 ◦ F )(x) =

∫
R
xd(h1 ◦ F )(x+) =

∫
R
xdg1(x) = E[Y1] > E[Y2] = ρh2(X),

as desired, where the second equality is due to the facts that the integrand x → x ∈ R is

continuous, X ∈ L+, and h1 ◦ F is increasing.

The next lemma gives ρh∗ as the smallest coherent distortion risk measure dominating ρh. It

was given in Wang et al. (2015) based on Lemma 4.1 for right coutinuous h ∈ H; since Lemma

4.1 is true for all h ∈ H, the next lemma also holds for all h ∈ H. It is also shown in Wang et al.

(2015) that ρh∗ is the smallest law-invariant coherent risk measure dominating ρh.

Lemma 4.2 (Lemma 3.1 of Wang et al. (2015)). For any h ∈ H, h∗ as in (4.3.1) is a continuous

distortion function. Moreover, the smallest coherent distortion risk measure dominating ρh exists

and has distortion function h∗, that is,

ρh∗(X) =

∫ 1

0
VaRt(X)dh∗(t), X ∈ X . (4.3.2)

The following lemma provides a building block for the dependence structure that we need for

the asymptotic equivalence.

Lemma 4.3 (Corollary A.3 of Embrechts et al. (2015)). Suppose that {Fi, i ∈ N} is a sequence

of distributions with bounded support, then there exist random variables Xi ∼ Fi, i ∈ N such that

for each n ∈ N,

|Sn − E[Sn]| 6 Ln, (4.3.3)

where Sn = X1 + · · ·+Xn and Ln is the largest length of the support of Fi, i = 1, . . . , n.

Finally, the following lemma from convex analysis provides an important geometric property

of the pair (h, h∗).

Lemma 4.4 (Lemma 5.1 of Brighi and Chipot (1994)). Suppose h ∈ H is continuous and h∗ is

defined in (4.3.1). The set {t ∈ [0, 1] : h(t) 6= h∗(t)} is the union of some disjoint open intervals,

and h∗ is linear on each of the intervals.
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4.3.2 Asymptotic Equivalence for Distortion Risk Measures

For a given h ∈ H and h∗ defined in (4.3.1), we list two conditions for a sequence of distribution

functions {Fi, i ∈ N} that we work with. In the following, Xi ∼ Fi, i ∈ N.

Condition A1. lim inf
n→∞

1
n

∑n
i=1 ρh∗(Xi) > 0.

Condition A2. limq→1 supi∈N
∫ 1
q F

−1
i (t)dh∗(t) = 0.

Condition A1 requires that ρh∗ of the marginal risks does not vanish, and therefore eliminates

the case of vanishing risks as in Example 4.1. Condition A2 requires that the marginal risks be

uniformly integrable with respect to h∗, and therefore eliminates the case of exploding risks as in

Example 4.2. A1 automatically holds for marginal risks uniformly bounded below away from zero

and A2 automatically holds for marginal risks uniformly bounded above. The following theorem

contains the main result of this chapter.

Theorem 4.5. For h ∈ H and a sequence of distribution functions {Fi, i ∈ N} supported in R+

and satisfying Conditions A1-A2, we have

lim
n→∞

sup {ρh(S) : S ∈ Sn}
sup {ρh∗(S) : S ∈ Sn}

= 1, (4.3.4)

where h∗ is defined in (4.3.1).

Proof. The proof of this theorem is technical and depends on the geometrical relationship between

h and h∗. Here we give the proof for the following nice case, from which the reader should be

able to grasp the main ideas. A full proof can be found in Section 4.6.

Case 1. Assume that h is continuous and there exists p ∈ (0, 1) such that h(t) = h∗(t) for all

t ∈ [p, 1].

Proof of the Theorem for Case 1. Since h is continuous, we directly work with (1.2.6).

From Lemma 4.4, there exist disjoint open intervals (ak, bk), k ∈ K ⊂ N on which h 6= h∗, and

furthermore, p can be taken as p = supk∈K bk < 1. Note that h(t) = h∗(t) for t ∈ [p, 1] and h∗ is

linear on each of [ak, bk], k ∈ K. Define Ik = (ak, bk), k ∈ K. For some U ∼ U[0, 1], let

Scn = F−1
1 (U) + · · ·+ F−1

n (U), (4.3.5)
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and

Rn =

{
F−1

1 (U) + · · ·+ F−1
n (U), if U 6∈ ∪k∈KIk,

E
[
F−1

1 (U) + · · ·+ F−1
n (U) | U ∈ Ik

]
, if U ∈ Ik, k ∈ K.

(4.3.6)

Clearly, F−1
i (U) ∼ Fi, i = 1, . . . , n, and hence Scn ∈ Sn. As

E
[
F−1
i (U) | U ∈ Ik

]
=

∫
(ak,bk) F

−1
i (t)dt

bk − ak
and F−1

Scn
(t) =

n∑
i=1

F−1
i (t) for t ∈ (0, 1),

we have∫
(ak,bk)

F−1
Scn

(t)dh∗(t)−
∫

(ak,bk)
F−1
Rn

(t)dh∗(t)

=
h∗(bk)− h∗(ak)

bk − ak

n∑
i=1

∫
(ak,bk)

F−1
i (t)dt−

n∑
i=1

∫
(ak,bk) F

−1
i (t)dt

bk − ak

∫
(ak,bk)

dh∗(t) = 0.

It follows that

ρh∗(S
c
n)− ρh∗(Rn) =

∫ p

0
F−1
Scn

(t)dh∗(t)−
∫ p

0
F−1
Rn

(t)dh∗(t)

=
∑
k∈K

[∫ bk

ak

F−1
Scn

(t)dh∗(t)−
∫ bk

ak

F−1
Rn

(t)dh∗(t)

]
= 0, (4.3.7)

that is, ρh∗(S
c
n) = ρh∗(Rn). As F−1

i (U) is bounded for U ∈ Ik, k ∈ K, by Lemma 4.3, for

each k, we can find random variables Y1k, . . . , Ynk, independent of U , such that Yik is identically

distributed as F−1
i (U)|U ∈ Ik and independent of U , i = 1, . . . , n, and∣∣Y1k + · · ·+ Ynk − E

[
F−1

1 (U) + · · ·+ F−1
n (U) | U ∈ Ik

]∣∣ 6 max
i=1,...,n

{F−1
i (bk)− F−1

i (ak)}. (4.3.8)

Let X∗i = F−1
i (U)I{U 6∈∪k∈KIk} +

∑
k∈K YikI{U∈Ik}, i = 1, . . . , n. It is easy to check that X∗i ∼ Fi,

i = 1, . . . , n. Denote by

S∗n = X∗1 + · · ·+X∗n. (4.3.9)

Clearly, S∗n ∈ Sn and

|Rn − S∗n| 6 max
i=1,...,n

{F−1
i (bk)− F−1

i (ak)} 6 max
i=1,...,n

{
F−1
i (p)

}
. (4.3.10)
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As h∗ 6 h and ρh∗ is coherent and hence subadditive, by Lemma 4.1, we have ρh(S∗n) 6 ρh∗(S∗n) 6

ρh∗(S
c
n). Integration by parts yields∫ p

0
F−1
Rn

(t)dh∗(t)−
∫ p

0
F−1
Rn

(t)dh(t) =

∫ p

0
(h(t)− h∗(t)) dF−1

Rn
(t)

=
∑
k∈K

∫
(ak,bk)

(h(t)− h∗(t)) dF−1
Rn

(t) = 0 (4.3.11)

where the last equality follows since F−1
Rn

(t) is a constant for t in each (ak, bk). Since h(t) = h∗(t)

on [p, 1], we have

ρh∗(S
c
n)− ρh(S∗n) =

∫ p

0
F−1
Scn

(t)dh∗(t)−
∫ p

0
F−1
S∗n

(t)dh(t)

=

(∫ p

0
F−1
Scn

(t)dh∗(t)−
∫ p

0
F−1
Rn

(t)dh∗(t)

)
+

(∫ p

0
F−1
Rn

(t)dh∗(t)−
∫ p

0
F−1
Rn

(t)dh(t)

)
+

(∫ p

0
F−1
Rn

(t)dh(t)−
∫ p

0
F−1
S∗n

(t)dh(t)

)
6 max

i=1,...,n

{
F−1
i (p)

}
,

where the last inequality follows from (4.3.7), (4.3.10)), and (4.3.11). Condition A2 implies that

for any ε > 0, there exists q > p such that

sup
i∈N

∫ 1

q
F−1
i (t)dh∗(t) < ε.

Hence, by noting that h∗(q) < 1,

max
i=1,...,n

{
F−1
i (p)

}
6 max

i=1,...,n

{
F−1
i (q)

}
<

ε

1− h∗(q)
.

By Condition A1, limn→∞
∑n

i=1 ρh∗(Xi) =∞. Therefore, as n→∞,∣∣∣∣ sup {ρh(S) : S ∈ Sn}
sup {ρh∗(S) : S ∈ Sn}

− 1

∣∣∣∣ 6 maxi=1,...,n{F−1
i (p)}∑n

i=1 ρh∗(Xi)
→ 0.

The desired result follows.
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From the above proof, we can see that for this nice case, Condition A1 can be weakened to

limn→∞
∑n

i=1 ρh∗(Xi) = ∞ and Condition A2 can be weakened to maxi=1,...,n

{
F−1
i (p)

}
< ∞.

Conditions A1 and A2 are necessary for the proofs of other cases discussed in Section 4.6. For

Case 1, indeed we can give a more intuitive condition which is also easy to verify.

Condition A3. For a pre-assigned p ∈ (0, 1),

lim
n→∞

maxi=1,...,n {VaRp(Xi)}∑n
i=1 VaRp(Xi)

= 0. (4.3.12)

Condition A3 simply says that there is no single risk which dominates the sum of all other risks

in terms of VaRp, a reasonable assumption for a joint model of high dimension. A3 is not strictly

comparable to A1 and A2, but it has an important merit: it does not depend on h or h∗ except

for a point p ∈ (0, 1) given beforehand, which may be based on h and h∗. For a practical choice

of {Fi, i ∈ N}, it is often that (4.3.12) holds for all p ∈ (0, 1).

Theorem 4.6. Suppose that h ∈ H is continuous and there exists p ∈ (0, 1) such that h(t) = h∗(t)

for all t ∈ [p, 1]. For a sequence of distribution functions {Fi, i ∈ N} supported in R+ satisfying

Condition A3, we have

lim
n→∞

sup {ρh(S) : S ∈ Sn}
sup {ρh∗(S) : S ∈ Sn}

= 1, (4.3.13)

where h∗ is defined in (4.3.1).

Proof. Following the same proof in Case 1 of the above theorem, we obtain

0 6 ρh∗(S
c
n)− ρh(S∗n) 6 max

i=1,...,n
{VaRp(Xi)} .

As

ρh∗(Xi) =

∫ 1

0
VaRt(Xi)dh

∗(t) >
∫ 1

p
VaRt(Xi)dh

∗(t) > VaRp(Xi)(1− h∗(p)),

we have ∣∣∣∣ sup {ρh(S) : S ∈ Sn}
sup {ρh∗(S) : S ∈ Sn}

− 1

∣∣∣∣ 6 maxi=1,...,n{VaRp(Xi)}∑n
i=1 ρh∗(Xi)

6
maxi=1,...,n{VaRp(Xi)}

(1− h∗(p))
∑n

i=1 VaRp(Xi)
→ 0 as n→∞

by (4.3.12).
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Remark 4.1. The worst-case dependence structure for general distortion risk measures is re-

vealed via the construction of S∗n. For n→∞, to obtain a sum of S∗n, one needs comonotonicity

on the set
(⋃

k∈K Ik
)c

and an extreme negative dependence conditional on each of the intervals Ik,

k ∈ K. For a fixed n, the worst-case dependence structure for a general distortion risk measure

is still not clear, because an extreme negative dependence may not be properly defined for fixed

n unless the marginal distributions satisfies a notion of joint mixability ; see Puccetti and Wang

(2015) for related discussions on the above two notions of negative dependence.

4.3.3 Remarks on the Conditions

In addition to Examples 4.1 and 4.2, we give a more subtle example to show that the uniform

integrability condition A2 is essential. We compare our conditions with the ones in Embrechts et

al. (2015) for VaR and ES. Theorem 3.3 of Embrechts et al. (2015) shows that

lim
n→∞

sup {VaRp(S) : S ∈ Sn}
sup {ESp(S) : S ∈ Sn}

= 1, (4.3.14)

if for Xi ∼ Fi, i ∈ N, the following two conditions are satisfied:

(a*) supi∈N E[|Xi|k] <∞ for some k > 1,

(b*) lim infn→∞
1
n

∑n
i=1 ESp(Xi) > 0.

A natural question is whether k in (a*) can be taken as 1, that is,

(a’) supi∈N E[|Xi|] <∞.

In comparison with the conditions in Embrechts et al. (2015), another question is whether A2

can be weakened to

(A2’) supi∈N ρh∗(Xi) <∞.

For the pair (ρh, ρh∗) = (VaRp,ESp), (b*) is equivalent to our condition A1, and (a’) is equivalent

to A2’ if we only consider X = L+.

The answer to both questions turns out to be negative. In the following example, Conditions

A1and A2’ are satisfied; in other words, conditions (a’) and (b*) are satisfied. We will see that

(4.3.14) fails to hold for all p ∈ (0, 1).
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Example 4.3. Suppose that the probability space is the Lebesgue unit interval ([0, 1],B([0, 1]),P),

where P is the Lebesgue measure. Let

Fi(x) =


0 if x < 0,

1− 1
i2

if 0 6 x < i2,

1 if i2 6 x.

Clearly the support of Fi is nonnegative, i ∈ N. One can calculate

VaRα(Xi) = i2I{α∈(1−1/i2,1)}, i ∈ N.

For Xi ∼ Fi, i ∈ N, supi∈N E[Xi] = 1 <∞. One can also check that for i > 1/
√

1− p, ESp(Xi) =
1

1−p . As a consequence,

lim
n→∞

sup {ESp (S/n) : S ∈ Sn} = lim
n→∞

∑n
i=1 ESp(Xi)

n
=

1

1− p
.

Thus, (a’), (b*), A1 and A2’ are all satisfied.

Next we will show that

lim
n→∞

sup {VaRp(S/n) : S ∈ Sn} = 0.

Note that
∑∞

i=1
1
i2
< ∞. For any ε > 0, which we choose as ε = 1 − p, there exists an N such

that for n > N , we have
∞∑
i=n

1

i2
< ε. (4.3.15)

Take a fixed number k > N such that
∑N

i=1 i
2 < k2, we have for any n > N ,

P(Sn > k2) = P(X1 + · · ·+XN +XN+1 + · · ·+Xn > k2)

6 P(at least one Xi > 0, i = N + 1, . . . , n)

6
n∑

i=N+1

P(Xi > 0) =

n∑
i=N+1

1

i2
< ε.

Thus, VaR1−ε(Sn) 6 k2. Therefore,

0 6 lim
n→∞

sup {VaRp(S/n) : S ∈ Sn} = lim
n→∞

sup {VaRp(S) : S ∈ Sn}
n

6 lim
n→∞

k2

n
= 0.

In summary,

lim
n→∞

sup {VaRp(S) : S ∈ Sn}
sup {ESp(S) : S ∈ Sn}

= 0.
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4.4 Asymptotic Equivalence for Convex Risk Measures

In this section we study asymptotic equivalence for convex risk measures. Compared to the

previous section, the result in this section is less technically involved as the worst-case dependence

structure for convex risk measures is explicitly known as comonotonicity. We assume X = L1,

as the canonical space for law-invariant convex risk measures is L1; see Filipović and Svindland

(2012).

4.4.1 Some Lemmas

First, we recall the Kusuoka representation of law-invariant convex risk measures as established

in Frittelli and Rosazza Gianin (2005) for X = L∞. The extension of the representation to

Lp, p ∈ [1,∞) is established in Svindland (2008). The Fatou property (FP) has to be assumed

throughout Section 4.4 for the representation to hold. A risk measure ρ is said to satisfy the

(L1-)Fatou property if for X,X1, X2, . . . ∈ L1, Xn
L1

−→ X as n→∞ implies lim inf
n→∞

ρ(Xn) > ρ(X).

Lemma 4.7 (Lemma 2.14 of Svindland (2008)). A law-invariant convex risk measure ρ mapping

L1 to R with the Fatou property has a representation

ρ(X) = sup
µ∈P

{∫ 1

0
ESp(X)dµ(p)− v(µ)

}
, X ∈ L1, (4.4.1)

where P is the set of all probability measures on [0, 1] and v is a function from P to R ∪ {+∞},
called a penalty function of ρ.

From now on, we denote by ρv a convex risk measure with penalty function v which maps L1

to R. For a law-invariant convex risk measure, without loss of generality we can assume ρv(0) = 0,

or equivalently, in (4.4.1), inf{v(µ) : µ ∈ P} = 0. If one is interested in a law-invariant convex

risk measure ρ with ρ(0) = c 6= 0, one can define ρ̃(·) = ρ(·)−c so that ρ̃ is a law-invariant convex

risk measure and ρ̃(0) = 0. A result on ρ̃ would simply lead to a result on ρ.

Similarly to the case of distortion risk measures, a convex risk measure is dominated by a

coherent risk measure. The following simple lemma is a combination of Theorem 4.1 and Corollary

4.2 of Wang et al. (2015).
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Lemma 4.8 (Wang et al. (2015)). The smallest law-invariant coherent risk measure dominating

ρv exists, and it is given by

ρv∗(X) = sup
µ∈Pv

{∫ 1

0
ESp(X)dµ(p)

}
, X ∈ L1, (4.4.2)

where Pv = {µ ∈ P : v(µ) < +∞}.

Remark 4.2. A popular subclass of law-invariant convex risk measures is the class of convex

shortfall risk measures in Föllmer and Schied (2016). It is shown that for all convex shortfall risk

measures ρv, the smallest dominating coherent risk measure ρv∗ is always a coherent expectile;

see Proposition 4.3 of Wang et al. (2015).

Unlike the case of general distortion risk measures, the dependence structure of (X1, . . . , Xn)

which gives the maximum value of ρv(X1 + · · · + Xn) for given marginal distributions is always

comonotonicity. Hence, an explicit expression of sup {ρv(Sn) : Sn ∈ Sn} can be obtained. This is

technically convenient to study asymptotic equivalence for convex risk measures.

Lemma 4.9. For a sequence of distribution functions {Fi, i ∈ N},

sup {ρv(S) : S ∈ Sn} = sup
µ∈P

{
n∑
i=1

∫ 1

0
ESp(Xi)dµ(p)− v(µ)

}
, (4.4.3)

where Xi ∼ Fi, i = 1, . . . , n.

Proof. Let Y1, . . . , Yn ∈ L1 be comonotonic random variables such that Yi ∼ Fi, i = 1, . . . , n. We

have ρv(X1 + · · · + Xn) 6 ρv(Y1 + · · · + Yn); see Lemma 5.2 of Bäuerle and Müller (2006). It

follows from Lemma 4.7 that

sup {ρv(S) : S ∈ Sn} = ρv(Y1 + · · ·+ Yn)

= sup
µ∈P

{∫ 1

0
ESp

(
n∑
i=1

Yi

)
dµ(p)− v(µ)

}

= sup
µ∈P

{
n∑
i=1

∫ 1

0
ESp (Yi) dµ(p)− v(µ)

}
.

We obtain (4.4.3) since ESp(Xi) = ESp(Yi), p ∈ (0, 1), i = 1, . . . , n.
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Lemma 4.10. For given ε > 0, n ∈ N, and a sequence of distribution functions {Fi, i ∈ N} such

that sup{ρv∗(S) : S ∈ Sn} <∞, there exists µn ∈ Pv such that

sup {ρv∗(S) : S ∈ Sn} −
n∑
i=1

∫ 1

0
ESp(Xi)dµn(p) < ε, (4.4.4)

where Xi ∼ Fi, i ∈ N.

Proof. By applying Lemma 4.9 to the coherent risk measure ρv∗, we obtain

sup {ρv∗(S) : S ∈ Sn} = sup
µ∈Pv

{
n∑
i=1

∫ 1

0
ESp(Xi)dµ(p)

}
.

By definition, there exists µn ∈ Pv such that (4.4.4) holds.

4.4.2 Asymptotic Equivalence for Convex Risk Measures

Similarly to Section 4.3, we need to assume some conditions on a sequence of distribution functions

{Fi, i ∈ N} for the asymptotic equivalence to hold. In the following, Xi ∼ Fi, i ∈ N.

Condition B1.
∑n

i=1 E[Xi]→∞ as n→∞.

Condition B2. ρv∗(
∑n

i=1 F
−1
i (U)) <∞ for some U ∼ U[0, 1] and all n ∈ N.

Condition B3. There exist ε > 0 and a sequence µn ∈ Pv, n ∈ N satisfying (4.4.4), such that

lim
n→∞

v(µn)∑n
i=1

∫ 1
0 ESp(Xi)dµn(p)

→ 0.

Condition B1 is assumed to avoid the vanishing risks in Example 4.1. Condition B2 is trivial

as we need the denominator in the asymptotic equivalence (4.1.2) to be finite for any given n.

Condition B3 is a technical condition to guarantee convergence in our proof. Note that if v(µ) is

bounded for µ ∈ Pv, then B3 is automatically satisfied when B1 holds.

Theorem 4.11. Given a sequence of distribution functions {Fi, i ∈ N} satisfying Conditions

B1-B3, we have

lim
n→∞

sup {ρv(S) : S ∈ Sn}
sup {ρv∗(S) : S ∈ Sn}

= 1. (4.4.5)
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Proof. First note that for any Sn ∈ Sn, due to Lemma 4.7 and B2, we have

∞ > ρv∗(Sn) > ρv(Sn) >
n∑
i=1

E[Xi],

and hence both sup {ρv(S) : S ∈ Sn} and sup {ρv∗(S) : S ∈ Sn} are positive for large n, and

lim
n→∞

sup {ρv(S) : S ∈ Sn}
sup {ρv∗(S) : S ∈ Sn}

6 1. (4.4.6)

Write λn =
∑n

i=1

∫ 1
0 ESp(Xi)dµn(p) >

∑n
i=1 E[Xi]. We have λn →∞ as n→∞ from Condition

B1. From Lemmas 4.9 and 4.10, we have

lim
n→∞

sup {ρv(S) : S ∈ Sn}
sup {ρv∗(S) : S ∈ Sn}

> lim
n→∞

λn − v(µn)

λn + ε
= lim

n→∞

λn
λn + ε

= 1. (4.4.7)

Combining (4.4.6) and (4.4.7) we obtain (4.4.5).

4.5 Conclusions

In this chapter, we show that the asymptotic equivalence of VaR and ES in Embrechts et al. (2015)

and preceding papers can be generalized to general risk measures for inhomogeneous models under

some regularity conditions. The risk measures that we study include the class of distortion risk

measures and the class of convex risk measures. The main result in this chapter is that under

dependence uncertainty in the aggregation of a large number of risks, the worst-case value of a

non-coherent risk measure is asymptotically equivalent to that of a corresponding coherent risk

measure. This result helps to analyze risk aggregation under dependence uncertainty for financial

regulation and internal risk management.

4.6 Full Proof of Theorem 4.5

Proof. We show the theorem in two steps. First we assume that h is continuous, and then we

approximate the general case by the result for continuous h.

For some intervals {Ik, k ∈ K} which will be specified later, let Scn, Rn, and S∗n be as defined

in (4.3.5), (4.3.6) and (4.3.9).
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The proof in the case of continuous h ∈ H.

Depending on the set {t ∈ [0, 1] : h(t) 6= h∗(t)}, we have the following three cases:

Case 1: For some p ∈ (0, 1), h(t) = h∗(t) for all t ∈ [p, 1]. This case is dealt with in Section 4.3.

Case 2: h 6= h∗ in the intervals (ak, bk), k ∈ K ⊂ N, where supk∈K bk = 1. Moerover, for all

p ∈ (0, 1), there exist t0, t1 ∈ (p, 1) such that h∗(t0) = h(t0) and h∗(t1) 6= h(t1).

Condition A2 and the above property of h and h∗ impliy that for any ε > 0, there exists q

such that

sup
i∈N

∫ 1

q
F−1
i (t)dh∗(t) < ε and h(q) = h∗(q). (4.6.1)

Let Ik in (4.3.6) be (ak, bk) ∩ [0, q], k ∈ K.Then ρh∗(S
c
n) = ρh∗(Rn) and

|S∗n −Rn| 6 max
i=1,...,n

{F−1
i (q)},

which implies ∣∣∣∣∫ q

0
F−1
S∗n

(t)dh(t)−
∫ q

0
F−1
Rn

(t)dh(t)

∣∣∣∣ 6 max
i=1,...,n

{F−1
i (q)}.

∣∣∣∣∫ q

0
F−1
Rn

(t)dh(t)−
∫ q

0
F−1
Rn

(t)dh∗(t)

∣∣∣∣
=

∣∣∣∣F−1
Rn

(t)[h(t)− h∗(t)] | q0 −
∫ q

0
[h(t)− h∗(t)]dF−1

Rn
(t)

∣∣∣∣
=

∣∣∣∣∣F−1
Rn

(q)[h(q)− h∗(q)]−
∑
k∈K

∫
Ik

[h(t)− h∗(t)]dF−1
Rn

(t)

∣∣∣∣∣ = 0.

By (4.3.7),∣∣∣∣∫ q

0
F−1
Rn

(t)dh∗(t)−
∫ q

0
F−1
Scn

(t)dh∗(t)

∣∣∣∣ =

∣∣∣∣∣∑
k∈K

[∫
Ik

F−1
Rn

(t)dh∗(t)−
∫

Ik

F−1
Scn

(t)dh∗(t)

]∣∣∣∣∣ = 0.
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Thus, ∣∣∣∣∫ q

0
F−1
S∗n

(t)dh(t)−
∫ q

0
F−1
Scn

(t)dh∗(t)

∣∣∣∣
6

∣∣∣∣∫ q

0
F−1
S∗n

(t)dh(t)−
∫ q

0
F−1
Rn

(t)dh(t)

∣∣∣∣+

∣∣∣∣∫ q

0
F−1
Rn

(t)dh(t)−
∫ q

0
F−1
Rn

(t)dh∗(t)

∣∣∣∣
+

∣∣∣∣∫ q

0
F−1
Rn

(t)dh∗(t)−
∫ q

0
F−1
Scn

(t)dh∗(t)

∣∣∣∣
6 max

i=1,...,n
{F−1

i (q)}. (4.6.2)

On the other hand,∣∣∣∣∫ 1

q
F−1
S∗n

(t)dh(t)−
∫ 1

q
F−1
Scn

(t)dh∗(t)

∣∣∣∣ 6 ∫ 1

q
F−1
Scn

(t)dh∗(t) =
n∑
i=1

∫ 1

q
F−1
i (t)dh∗(t). (4.6.3)

By Condition A1, s := lim inf
n→∞

1
n

∑n
i=1 ρh∗(Xi) > 0. Then for the above ε > 0, there exists

N > 0 such that for n > N , ∑n
i=1 ρh∗(Xi)

n
> s− ε. (4.6.4)

Hence, for any ε > 0 and n > max{N, 1/(1− h∗(q)), from (4.6.1)–(4.6.4), we have∣∣∣∣ sup {ρh(S) : S ∈ Sn}
sup {ρh∗(S) : S ∈ Sn}

− 1

∣∣∣∣ 6 |ρh(S∗n)− ρh∗(Scn)|∑n
i=1 ρh∗(Xi)

6
maxi=1,...,n{F−1

i (q)}∑n
i=1 ρh∗(Xi)

+

∑n
i=1

∫ 1
q F

−1
i (t)dh∗(t)∑n

i=1 ρh∗(Xi)

6
ε

n(1− h∗(q))(s− ε)
+

ε

(s− ε)

6
2ε

(s− ε)
.

As ε is arbitrary, (4.3.4) follows.

Case 3: h 6= h∗ in the intervals (ak, bk), k ∈ K ⊂ N, where supk∈K bk = 1. Moreover, there

exists a p ∈ (0, 1) such that h(t) 6= h∗(t) for all t ∈ [p, 1) and h∗ is linear on [p, 1] with slope

c > 0.
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Recall that h(1−) = h(1) = 1 and h∗(1−) = h∗(1) = 1. For any ε > 0, take q ∈ [p, 1] such

that

|h(q)− 1| < ε

2
, |h∗(q)− 1| < ε

2
, (4.6.5)

sup
i∈N

∫ 1

q
F−1
i (t)dh∗(t) < cε. (4.6.6)

Equation (4.6.6) implies that

(1− q) sup
i∈N

F−1
i (q) < ε.

Let Ik in (4.3.6) be (ak, bk) ∩ [0, q]. Then ρh∗(S
c
n) = ρh∗(Rn). Similarly to Case 2, we have∣∣∣∣∫ q

0
F−1
S∗n

(t)dh(t)−
∫ q

0
F−1
Rn

(t)dh(t)

∣∣∣∣ 6 max
i=1,...,n

{F−1
i (q)},∣∣∣∣∫ q

0
F−1
Rn

(t)dh∗(t)−
∫ q

0
F−1
Scn

(t)dh∗(t)

∣∣∣∣ = 0,∣∣∣∣∫ 1

q
F−1
S∗n

(t)dh(t)−
∫ 1

q
F−1
Scn

(t)dh∗(t)

∣∣∣∣ 6 n∑
i=1

∫ 1

q
F−1
i (t)dh∗(t).

Moreover, ∣∣∣∣∫ q

0
F−1
Rn

(t)dh(t)−
∫ q

0
F−1
Rn

(t)dh∗(t)

∣∣∣∣ = F−1
Rn

(q) |h(q)− h∗(q)|

6 F−1
Rn

(q)ε = ε
n∑
i=1

∫ 1
p F

−1
i (t)dt

1− p
,

where the last inequality follows by (4.6.5). Thus, for any ε > 0, n > max{N, 1/(1− q)},∣∣∣∣ sup {ρh(S) : S ∈ Sn}
sup {ρh∗(S) : S ∈ Sn}

− 1

∣∣∣∣
6

maxi=1,...,n{F−1
i (q)}∑n

i=1 ρh∗(Xi)
+

∑n
i=1

∫ 1
p F
−1
i (t)dt

1−p ε∑n
i=1 ρh∗(Xi)

+

∑n
i=1

∫ 1
q F

−1
i (t)dh∗(t)∑n

i=1 ρh∗(Xi)

6
ε

n(s− ε)(1− q)
+

ε
1−p

∑n
i=1

∫ q
p F

−1
i (t)dt+ ( ε

1−p + c)
∑n

i=1

∫ 1
q F

−1
i (t)dt

n(s− ε)

6
ε

n(s− ε)(1− q)
+

εn(q−p)
1−p supi∈N F

−1
i (q) + ( ε

1−p + c)nε

n(s− ε)

6
ε

s− ε
+
ε2 q−p

(1−p)(1−q) + ( ε
1−p + c)ε

s− ε
.
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As ε > 0 is arbitrary, the result follows.

The proof in the case of general h ∈ H.

Denote ρ̄h(n) = sup {ρh(S) : S ∈ Sn} for any h ∈ H. Scn is defined as in (4.3.5). Clearly

ρh∗(S
c
n) = ρ̄h∗(n). For any h ∈ H, let hδ ∈ H be continuous such that hδ > h on [0, 1] and hδ → h

weakly as δ → 0+. The existence of such hδ is an exercise for mathematical analysis.

By Lemma A.5 of Wang et al. (2015), for any ε > 0, there exists δ > 0 such that

sup
t∈[0,1]

|h∗δ(t)− h∗(t)| 6 ε. (4.6.7)

Condition A2 implies that for any ε > 0, there exists q ∈ (0, 1) such that

sup
i∈N

∫ 1

q
F−1
i (t)dh∗(t) < ε.

Note that supi∈N F
−1
i (q) < ε

1−h∗(q) <∞. Take M = supi∈N F
−1
i (q). Then

ρh∗(S
c
nI{Scn>Mn}) =

∫
{Scn>Mn}

F−1
Scn

(t)dh∗(t) 6
∫ 1

q
F−1
Scn

(t)dh∗(t) =
n∑
i=1

∫ 1

q
F−1
i (t)dh∗(t) 6 nε.

Condition A1 implies that for ε > 0, there exists N1 ∈ N and s > 0 such that for n > N1,

ρh∗(S
c
n) > ns. By comonotonic additivity and monotonicity of distortion risk measures,

ρh∗(S
c
n) = ρh∗(S

c
n ∧ (Mn)) + ρh∗((S

c
n −Mn)I{Scn>Mn}) 6 ρh∗(S

c
n ∧ (Mn)) + nε.

Thus,

ρh∗(S
c
n ∧ (Mn))

ρh∗(Scn)
> 1− ε

s
, for all n > N1. (4.6.8)

Let Y = Scn ∧ (Mn).

ρh∗(S
c
n ∧ (Mn))− ρh∗δ (S

c
n ∧ (Mn)) =

∫ 1

0
F−1
Y (t)dh∗(t)−

∫ 1

0
F−1
Y (t)dh∗δ(t)

=

∫ 1

0
F−1
Y (t)d(−(1− h∗(t)))−

∫ 1

0
F−1
Y (t)d(−(1− h∗δ(t)))

=

∫ 1

0
[h∗δ(t)− h∗(t)]dF−1

Y (t) 6 εMn,
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where the last inequality follows from (4.6.7). Thus,

ρh∗(S
c
n ∧ (Mn))− ρh∗δ (S

c
n ∧ (Mn))

ρh∗(Scn ∧ (Mn))
6

εMn

(1− ε/s)ns
=

εM

s− ε
,

which implies

ρh∗δ (S
c
n ∧ (Mn))

ρh∗(Scn ∧ (Mn))
> 1− εM

s− ε
for all n > N1.

As ρh∗δ (S
c
n ∧ (Mn)) 6 ρh∗δ (S

c
n) and by the above inequality, we have

ρh∗δ (S
c
n)

ρh∗(Scn ∧ (Mn))
> 1− εM

s− ε
for all n > N1. (4.6.9)

From the first half of the proof, for any ε > 0, there exists N2 ∈ N such that for n > N2,

ρ̄hδ(n)

ρ̄h∗δ (n)
> 1− ε. (4.6.10)

Thus for any ε > 0, there exist δ > 0 and N = N1 ∨N2 such that for n > N ,

ρ̄hδ(n)

ρh∗(Scn)
=
ρ̄hδ(n)

ρ̄h∗δ (n)
×

ρ̄h∗δ (n)

ρh∗(Scn ∧ (Mn))
× ρh∗(S

c
n ∧ (Mn))

ρh∗(Scn)

=
ρ̄hδ(n)

ρ̄h∗δ (n)
×

ρh∗δ (S
c
n)

ρh∗(Scn ∧ (Mn))
× ρh∗(S

c
n ∧ (Mn))

ρh∗(Scn)

> (1− ε)
(

1− εM

s− ε

)(
1− ε

s

)
> 1−

(
1 +

M

s− ε
+

1

s

)
ε,

where the inequality follows from (4.6.8)-(4.6.10). Note that ρ̄h(n) > ρ̄hδ(n). For any ε > 0,

there exists N ∈ N such that for n > N ,

ρ̄h(n)

ρ̄h∗(n)
> 1−

(
1 +

M

s− ε
+

1

s

)
ε,

that is,

lim
n→∞

sup {ρh(S) : S ∈ Sn}
sup {ρh∗(S) : S ∈ Sn}

= 1.
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Chapter 5

Collective Risk Models with

Dependence Uncertainty

5.1 Introduction

In the previous chapter, we showed the asymptotic equivalence results of the classes of distortion

risk measures and convex risk measures under dependence uncertainty for individual risk models.

In this chapter, we address a similar problem of measuring large insurance portfolios using the risk

measure VaR under model uncertainty at the level of the dependence among individual claims

and the number of claims.

The aggregate loss of an insurance company (the total amount paid on all claims occurring

over a fixed period) is often modelled by a sum of random variables,

SN = Y1 + · · ·+ YN , (5.1.1)

where Y1, Y2, . . . are non-negative random variables representing the individual claims and N

(random or deterministic), the number of claims, takes values in non-negative integers.

When N is a non-random positive integer, (5.1.1) is called an individual risk model, in which

Y1, Y2, . . . represent losses from each individual policy and N is the number of policies. When

N itself is random, (5.1.1) is called a collective risk model. For portfolio analysis, individual risk

models are a priori the most natural, whereas for ruin theoretic problems, collective risk models
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are more natural. In the classic treatment of collective risk models, Y1, Y2, . . . are iid random

variables representing individual claim sizes, and the counting random variable N is assumed

to be independent of (Y1, Y2, . . .). This classic assumption on the independence of N,Y1, Y2, . . .

provides great mathematical convenience and elegance, as well as nice interpretations.

In some situations, the claims or losses Y1, Y2, . . . , in individual risk models or collective risk

models are dependent, and they may also be dependent on the number of claims N . Think

about, for instance, the losses from wind and flood damage in a certain region; see Kousky and

Cooke (2009) for related real-life examples. In the context of collective risk models or the closely

related setting of compound Poisson processes, certain types of dependence among N,Y1, Y2, . . .

are studied. For instance, see Cheung et al. (2010), Albrecher et al. (2014) and Landriault et al.

(2014) for recent development on dependent Sparre Anderson risk models.

Due to the high dimensionality of the joint model and sometimes limited data, it is often

difficult to accurately model or justify a dependence structure. When N in (5.1.1) is a non-

random number n, see Chapter 4 for risk aggregation under dependence uncertainty in individual

risk models. In this chapter, we bring the framework of dependence uncertainty into collective

risk models. We assume that Y1, Y2, . . . are identically distributed as in classic collective risk

models, but we do not assume a particular model for the dependence structure among random

variables in (5.1.1). Two different practical settings will be considered:

(i) N is independent of Y1, Y2, . . . and the dependence structure of Y1, Y2, . . . is unknown.

(ii) The dependence structure of N,Y1, Y2, . . . is unknown.

From the perspective of risk management, we are particularly interested in quantifying SN by

certain risk measures under dependence uncertainty, a crucial concern for risk management in

the presence of model uncertainty. Risk measures for individual and collective risk models are

well studied; see for instance Cai and Tan (2007) for optimal stop-loss reinsurance for these

models under VaR and ES, and Hürlimann (2003) for ES bound for compound Poisson risks. It

is well-known that an analytical calculation of the distribution of SN , as well as VaRα(SN ) and

ESα(SN ), is generally unavailable (see Klugman et al. (2012)). Approximation, simulation or

numerical calculation is often needed.

In this chapter, we study the worst-case values of VaRα(SN ) and ESα(SN ), under the two

settings (i) and (ii) above. The recent literature on dependence uncertainty has focused on the
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individual risk model, in which N = n in (5.1.1) is non-random; see Section 4.1 for details.

Meanwhile, as a well-known result, the worst-case value of ESα(SN ) for a non-random N = n is

simply equal to the sum of the individual ESα values, and this worst-case value is attained by

comonotonic Y1, . . . , Yn.

Assuming N is bounded by a fixed number n ∈ N, a collective risk model can be reduced to

an individual risk model as

SN =
N∑
i=1

Yi =
n∑
i=1

YiI{N>i}.

Due to the dependence induced by N among YiI{N>i}, i = 1, . . . , n, using a collective model as in

setting (i) can be seen as one of the ways to introduce partial dependence information into risk

aggregation for individual risk models; see Section 5.7 for details and a comparison.

The main contributions of this chapter are summarized as follows. Based on the classic theory

of stochastic orders, we first derive some convex ordering inequalities for collective risk models

and thereby obtain analytical formulas for the worst-case values of ES. Using the results on ES

for collective risk models, we are able to study the worst-case values of VaRα(SN ) and ESα(SN )

as E[N ] increases to infinity, that is, a very large insurance portfolio. For simplicity the reader

may think of the case where N is Poisson-distributed with parameter E[N ], the most classic

choice for the counting random variable N . In both settings (i) and (ii), under some moment

and convergence conditions, we show that the worst-case values of VaRα(SN ) and ESα(SN ) enjoy

very nice asymptotic properties. In particular, one can approximate them using the asymptotic

equivalent E[N ]ESα(Y1) and the convergence rates are obtained in both settings. The results can

be used to approximate VaR and ES of a large insurance portfolio since it is straightforward to

calculate E[N ]ESα(Y1). Mathematically, our results generalize the asymptotic equivalence results

for homogeneous individual risk models in Wang and Wang (2015).

The rest of this chapter is organized as follows. In Section 5.2, we present basic notation

and definitions, stochastic orders, and some preliminary results on VaR-ES risk aggregation with

dependence uncertainty. In Section 5.3, we study collective risk models with dependence un-

certainty and obtain formulas for the worst-case ES. In Section 5.4, we establish asymptotic

equivalence results under setting (i) and give the convergence rate under this setting. In Section

5.5, asymptotic equivalence results under setting (ii) are given, albeit stronger regularity condi-

tions are needed compared to the case of setting (i). A brief conclusion is drawn in Section 5.6.

Additional discussions are given in Section 5.7.
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5.2 Preliminaries

5.2.1 Notation

Assume that the atomless probability space (Ω,F ,P) is rich enough such that for any random

variable X that appears in this chapter, there exists a random variable independent of X. For a

distribution F , let XF be the set of random variables with distribution F , and for N ∈ L0, let XNF
be the set of random variables in XF independent of N . Let X0 be the set of counting random

variables (i.e. taking value in {0, 1, . . . , }). Throughout this chapter, VaR and ES are defined as

in Definition 1.3.

For a sequence Y = (Yi, i ∈ N), we write (with a slight abuse of notation) Y ⊂ XF if

Yi ∈ XF , i ∈ N, and similarly for Y ⊂ XNF . Denote by YNF the set of random sequences with

marginal distribution F and independent of N , that is,

YNF = {(Y1, Y2, . . .) ⊂ XF : (Y1, Y2, . . .) is independent of N}.

Note that for a sequence Y = (Yi, i ∈ N), there is a subtle difference between Y ⊂ XNF and

Y ∈ YNF : the latter requires independence between the sequence Y and N , whereas the former

only requires pair-wise independence between N and Yi for i ∈ N.

Throughout this chapter, for N ∈ X0 and Y = (Yi, i ∈ N) ⊂ L0, write

SN =
N∑
i=1

Yi,

where by convention
∑0

i=1 Yi = 0. In the following, whenever SN or Sn appears, it implicitly

depends on Y = (Yi, i ∈ N) which should be clear from the context.

In collective risk models, Yi, i ∈ N are always assumed to be identically distributed, since

Yi represents the claim size of the i-th claim from a pool of policies, not the loss from a specific

policy. We also assume Yi, i ∈ N to be integrable; otherwise ESα(Y1) is infinite for α ∈ (0, 1).

In the case when the claim size Y1 is not integrable, ES is not a proper risk measure to use in

insurance practice.

5.2.2 Stochastic Orders

Definition 5.1. For X,Y ∈ L1, X is said to be smaller than Y in convex order (resp. increasing

convex order), denoted by X 6cx Y (resp. X 6icx Y ), if E[f(X)] 6 E[f(Y )] for all convex
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functions (resp. increasing convex functions) f : R → R, provided that the above expectations

exist (can be infinity).

For a general introduction to convex order and increasing convex order, see Müller and Stoyan

(2002) and Shaked and Shanthikumar (2007). Convex order is closely associated with the concept

of comonotonicity (see Section 1.2.2 for definition).

Given random variables X1, X2, . . . , Xn, the following lemma presents an upper bound for

sums Sn = X1 +X2 + · · ·+Xn in the sense of convex order; see Theorem 7 of Dhaene et al. (2002)

and Theorem 3.5 of Rüschendorf (2013). In particular, Rüschendorf (2013, Chapter 3) contains

two different proofs and a brief history of this celebrated result.

Lemma 5.1. For any random vector (X1, . . . , Xn) ∈ (L1)n we have

X1 + · · ·+Xn 6cx X
c
1 + · · ·+Xc

n,

where Xc
i
d
= Xi, i = 1, . . . , n, and Xc

1, . . . , X
c
n ∈ L1 are comonotonic.

Another property about increasing convex order and comonotonicity is given in the following

lemma, which is Corollary 3.28 (c) of Rüschendorf (2013).

Lemma 5.2. For X,Y,Xc, Y c ∈ L1 such that Xc, Y c are comonotonic, X
d
= Xc, Y

d
= Y c and

XcY c ∈ L1, we have

XY 6icx X
cY c.

The stochastic inequality in the above lemma holds for every monotonic supermodular func-

tion of X and Y ; see Theorem 2 of Tchen (1980) and Theorem 2.1 of Puccetti and Wang (2015).

In this chapter, we will frequently use some well-known properties of ES; see Section 1.2.2.

The following lemma is well known in the literature of convex order (see Theorem 4.A.3 of Shaked

and Shanthikumar (2007)).

Lemma 5.3. For X,Y ∈ L1, X 6icx Y if and only if ESα (X) 6 ESα (Y ) for all α ∈ (0, 1).

As a consequence of Lemma 5.3, for α ∈ (0, 1), ESα preserves increasing convex order (and

hence convex order). Another property that will be used later is the L1-continuity of ES below;

for a proof of this property, see, for instance, Svindland (2008).

Lemma 5.4. For α ∈ (0, 1), ESα : L1 → R is continuous with respect to the L1-norm.

118



Recalling the definition of the L1-continuity, the above lemma means that for a sequence of

random variables X1, X2, . . . and X ∈ L1, as n→∞, E[|Xn −X|]→ 0 implies that ESα(Xn)→
ESα(X).

5.2.3 VaR-ES Asymptotic Equivalence in Risk Aggregation

We give some preliminary results on the VaR-ES asymptotic equivalence in risk aggregation,

which will be useful in the proofs of the main results in this chapter.

Lemma 5.5 (Corollary 3.7 of Wang and Wang (2015)). For any distribution F and Y ∈ XF ,

lim
n→∞

supY⊂XF VaRα (Sn)

n
= ESα (Y ) , α ∈ (0, 1). (5.2.1)

The result in (5.2.1) can be rewritten as

lim
n→∞

supY⊂XF VaRα (Sn)

supY⊂XF ESα (Sn)
= 1, α ∈ (0, 1), (5.2.2)

provided that 0 < ESα(Y ) <∞, Y ∈ XF . The convergence rate of (5.2.2) is given in the following

lemma.

Lemma 5.6 (Corollary 3.8 of Wang and Wang (2015)). Suppose that the distribution F has finite

p-th moment, p > 1, and ES at level α ∈ (0, 1) is non-zero. Then as n→∞,

supY⊂XF VaRα (Sn)

supY⊂XF ESα (Sn)
= 1− o

(
n1/p−1

)
.

5.3 Collective Risk Models with Dependence Uncertainty

5.3.1 Setup and a Motivating Example

In this section, we study the worst-case values of VaR and ES for collective risk models. As

mentioned in the introduction, we consider two different settings of dependence uncertainty:

(i) the number of claims N is independent of the claim sizes Y1, Y2, . . . and the dependence

structure of Y1, Y2, . . . is unknown;
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(ii) the dependence structure of N,Y1, Y2, . . . is unknown.

We refer to the setting (i) as the classic collective risk model with dependence uncertainty and

to the setting (ii) as the generalized collective risk model with dependence uncertainty. Using

the notation introduced in Section 5.2, for some distribution F on R+ (i.e. non-negative claim

sizes), setting (i) reads as Y ∈ YNF and setting (ii) reads as Y ⊂ XF . The quantities of interest

in setting (i) are

sup
Y∈YNF

VaRα (SN ) and sup
Y∈YNF

ESα (SN ), (5.3.1)

and the quantities of interest in setting (ii) are

sup
Y⊂XF

VaRα (SN ) and sup
Y⊂XF

ESα (SN ). (5.3.2)

It turns out that under both settings (i) and (ii), the worst-case value of ES is straightforward

to calculate, whereas an analytical formula for the worst-case value of VaR is not available. This

is similar to the well-studied case of individual risk models; see Embrechts et al. (2014) for a

review on worst-case VaR aggregation when N is non-random.

Before we carry out a theoretical treatment, we illustrate with a simple example in the theory

of loss models by comparing an individual risk model and a corresponding collective risk model

formulation. Assume both models admit dependence uncertainty, and we evaluate worst-case ES

for both models as in (5.3.2). We shall see that the ES bound is largely reduced by knowing the

distribution of the claim frequency, as opposed to an uncertain distribution of the claim frequency

implied by the individual risk model with dependence uncertainty.

Example 5.1. Let n = 40000. Consider an individual risk model

S =
n∑
i=1

Xi,

where for i = 1, . . . , n, Xi follows a distribution F such that P(Xi > x) = 1
1000e

−x, x > 0. If we

assume that X1, . . . , Xn are independent, then the collective reformulation of S is given by

SN =

N∑
i=1

Yi,
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where N follows the Poisson distribution with parameter λ = 40 (denoted by Pois(40)), Yi follows

an Exponential distribution with mean 1 (denoted by Expo(1)), i ∈ N, and N,Y1, Y2, . . . are

independent. Below we assume that only N and (Yi, i ∈ N) are independent, but the dependence

among X1, . . . , Xn and the dependence among Y1, Y2, . . . , are uncertain. Take α = 0.95. To

evaluate the corresponding worst-case ESα values, we have1

sup
Y∈YNF

ESα

(
N∑
i=1

Yi

)
= 164.09,

sup
Xi∈XF ,i6n

ESα

(
n∑
i=1

Xi

)
= 800.

As we can see from the numerical results, the knowledge of N ∼ Pois(40) greatly reduces the

worst-case ES value, as compared to the individual risk model. In the sequel, we shall investigate

the VaR and ES bounds for collective risk models under dependence uncertainty.

5.3.2 VaR and ES Bounds for Collective Risk Models

In this section we establish some explicit formulas for VaR and ES bounds in (5.3.1) and (5.3.2).

We first provide a simple result on convex order for collective risk models with unknown depen-

dence.

Lemma 5.7. Suppose that (Yi, N) ∈ L1 × X0, i ∈ N, have identical joint distributions and

NY1 ∈ L1. We have
N∑
i=1

Yi 6cx NY1. (5.3.3)

Proof. First, one can easily verify E[
∑N

i=1 Yi] = E[NY1] and hence both sides of (5.3.3) are in

L1. Let D = {n ∈ {0, 1, . . .} : P(N = n) > 0} be the range of N . Denote by Fn the conditional

distribution of Y1 given N = n for n ∈ D. Let f be a convex function such that both E[f(
∑N

i=1 Yi)]

and E[f(NY1)] are properly defined. For n ∈ D, there exist some U[0, 1]-distributed random

variables Un1 , . . . , U
n
n such that

E[f(Y1 + · · ·+ Yn)|N = n] = E[f(F−1
n (Un1 ) + · · ·+ F−1

n (Unn ))].

1the first value is calculated via Theorem 5.9 (see below) and the average of 100 repetitions of simulation with

a sample of size 100,000, and the second value is calculated analytically.
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It follows from Lemma 5.1 that

E[f(Y1 + · · ·+ Yn)|N = n] 6 E[f(nF−1
n (Un1 ))] = E[f(nY1)|N = n].

Summing up over n ∈ D yields

E[f(Y1 + · · ·+ YN )] 6 E[f(NY1)],

and hence by definition, (5.3.3) holds.

As a special case of Lemma 5.7, if N is in L1 and independent of the identically distributed

random variables Y1, Y2, . . . ∈ L1, then (5.3.3) holds. This particular result will be used later.

To deal with setting (ii) in which the dependence structure between N and Y1, Y2, . . . is

unspecified, we give a result in the following lemma on increasing convex order instead of convex

order. Note that for X,Y ∈ L1, X 6cx Y implies that E[X] = E[Y ]. Since E[SN ] depends on

the dependence structure between N and Y1, Y2, . . ., convex order between collective risk models

under different dependence structures cannot be expected.

Lemma 5.8. Suppose that the distribution F on R+ has finite second moment, and N ∈ X0∩L2.

For Y1, Y2, . . . ∈ XF , we have
N∑
i=1

Yi 6icx NY,

where Y ∈ XF and N,Y are comonotonic.

Proof. Note that NY ∈ L1 by Hölder’s inequality. Define Xn =
∑n

i=1 YiI{N>i}, n ∈ N and

X∞ =
∑∞

i=1 YiI{N>i}. Note that P(X∞ > Xn)→ 0 as n→∞, and hence P(X∞ <∞) = 1. Thus

X∞ is a finite random variable. Then we have Xn → X∞ almost surely and hence Xn → X∞

in distribution. Since F → F−1(γ) is weakly continuous at each F0 for which s → F−1
0 (s) is

continuous at s = γ (see e.g. Cont et al. (2010)), we have

VaRγ(Xn)→ VaRγ(X∞) almost everywhere in γ ∈ [0, 1]. (5.3.4)
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For any Y ⊂ XF and any α ∈ (0, 1), we have

ESα

(
N∑
i=1

Yi

)
= ESα

( ∞∑
i=1

YiI{N>i}

)
=

1

1− α

∫ 1

α
VaRγ(X∞)dγ

(by (5.3.4)) =
1

1− α

∫ 1

α
lim
n→∞

VaRγ(Xn)dγ

(Fatou’s Lemma) 6 lim inf
n→∞

ESα (Xn)

(subadditivity of ES) 6 lim inf
n→∞

n∑
i=1

ESα
(
YiI{N>i}

)
(by Lemmas 5.2 and 5.3) 6 lim inf

n→∞

n∑
i=1

ESα
(
Y I{N>i}

)
(comonotonic additivity of ES) = lim inf

n→∞
ESα

(
n∑
i=1

Y I{N>i}

)
(L1-continuity of ES) = ESα (NY ) .

Since ESα

(∑N
i=1 Yi

)
6 ESα (NY ) for all α ∈ (0, 1), by Lemma 5.3, we have

∑N
i=1 Yi 6icx NY .

Remark 5.1. Using the same proof, the stochastic inequality in Lemma 5.8 can be generalized to

the random sum of non-identically distributed random variables as follows. Suppose that N ∈ X0,

Yi > 0, i ∈ N, and
∑N

i=1 Y
c
i ∈ L1, where Y c

i
d
= Yi, i ∈ N, and Y c

1 , Y
c

2 , . . . and N are comonotonic.

Then we have
N∑
i=1

Yi 6icx

N∑
i=1

Y c
i .

With the help of Lemmas 5.7 and 5.8, we arrive at the worst-case values of ES for collective

risk models under dependence uncertainty.

Theorem 5.9. Suppose that F is a distribution on R+, N ∈ X0 and Y, Y ∗ ∈ XF such that N,Y

are independent and N,Y ∗ are comonotonic.

(i) If Y,N ∈ L1, then

sup
Y∈YNF

ESα(SN ) = ESα(NY ), α ∈ (0, 1). (5.3.5)

(ii) If Y,N ∈ L2, then

sup
Y⊂XF

ESα(SN ) = ESα(NY ∗), α ∈ (0, 1). (5.3.6)
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Proof. Note that NY ∈ L1 since N,Y are independent. Since Y ⊂ XNF for any Y ∈ YNF , we have

sup
Y∈YNF

ESα(SN ) 6 sup
Y⊂XNF

ESα(SN ).

By Lemma 5.3, ES preserves increasing convex order. Further, by Lemmas 5.7 and 5.8, we have

sup
Y∈YNF

ESα(SN ) 6 sup
Y⊂XNF

ESα(SN ) 6 ESα(NY ) and sup
Y⊂XF

ESα(SN ) 6 ESα(NY ∗).

It suffices to take Y1, Y2, . . . to be identical to Y ∈ XNF to show that supY∈YNF
ESα(SN ) >

ESα(NY ) in (i) and to take Y1, Y2, . . . to be identical to Y ∗ ∈ XF to show supY⊂XF ESα(SN ) >

ESα(NY ∗) in (ii).

The results in Theorem 5.9 are consistent with simple intuition. Assume that the riskiness

of an insurance portfolio is measured by an ES. If the number of claims and the claim sizes

are independent, then, in the worst-case dependence scenario, all claims are comonotonic. If

the number of claims and the claim sizes are also dependent, then in the worst-case dependence

scenario, all claims are comonotonic and they are further comonotonic with the number of claims.

This could for instance be close to reality in the case of insurance losses from flood damage in an

area, where the claim sizes and the number of claims are largely determined by the magnitude of

the flood, and hence they are all positively correlated. Thus, the portfolio of insurance policies

with heavy positive dependence has the most dangerous dependence structure, if an ES is the

risk measure in use. Note that such an intuition is not valid for the risk measure VaR.

The values of ESα(NY ) and ESα(NY ∗) in (5.3.5) and (5.3.6) are straightforward to calculate.

For (5.3.5), one needs to calculate the distribution of NY , which is the product of two independent

random variables. This involves a one-step convolution after a logarithm transformation. For

(5.3.6), note that NY ∗
d
= G−1(U)F−1(U), where U is U[0, 1]-distributed and G is the distribution

of N . In that case, its ES is simply

ESα(NY ∗) =
1

1− α

∫ 1

α
G−1(u)F−1(u)du,

which is as simple as calculating the ES of any known distribution.

The following corollary gives an ES ordering for an individual risk model with dependence

uncertainty, a collective risk model under setting (i), and a collective risk model under setting

(ii).
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Corollary 5.10. Suppose that F is a distribution on R+ with finite first moment, N ∈ X0 and

E[N ] ∈ N. We have the following orders

sup
Y⊂XF

ESα
(
SE[N ]

)
6 sup

Y∈YNF
ESα(SN ) 6 sup

Y⊂XF
ESα(SN ), α ∈ (0, 1). (5.3.7)

Proof. Since Y ∈ YNF implies Y ⊂ XF , the second inequality follows immediately. To show the

first inequality, take Y ∈ XNF . Note that from the properties of ES,

sup
Y⊂XF

ESα
(
SE[N ]

)
= E[N ]ESα(Y ) = ESα(E[N ]Y ),

and from Theorem 5.9,

sup
Y∈YNF

ESα (SN ) = ESα(NY ).

By Theorem 3.A.33 of Shaked and Shanthikumar (2007), E[N ]Y 6cx NY . The rest of the proof

follows since ES preserves convex order as in Lemma 5.3.

In the case of N,Y ∈ L2, the order in (5.3.7) can be formulated as follows. For N ∈ X0,

Y
d
= Y ∗ such that N,Y are independent and N,Y ∗ are comonotonic, we have

E[N ]ESα(Y ) 6 ESα(NY ) 6 ESα(NY ∗), α ∈ (0, 1). (5.3.8)

As for the problem of the worst-case value of VaR for collective risk models, there is no simple

analytical formula, as expected from classic results on dependence uncertainty. Note that VaRα

is dominated by ESα, for α ∈ (0, 1); thus VaRα(SN ) 6 ESα(SN ) for all model settings. From

Theorem 5.9, we have

sup
Y∈YNF

VaRα(SN ) 6 ESα(NY ) and sup
Y⊂XF

VaRα(SN ) 6 ESα(NY ∗), (5.3.9)

where F , N , Y and Y ∗ are as in Theorem 5.9. In the next two sections, we will see that

sup
Y∈YNF

VaRα(SN ) ≈ ESα(NY ) and sup
Y⊂XF

VaRα(SN ) ≈ ESα(NY ∗),

if N is large (in some sense). That is, the inequalities in (5.3.9) are almost sharp and can be used

to approximate VaR.

Remark 5.2. In Lemma 5.8 and Theorem 5.9 (ii), we require Y,N ∈ L2 so that NY ∗ ∈ L1;

recall that L1 is the domain of ESα. One may also use the slightly more general assumption that

N ∈ Lp and Y ∈ Lq for some p, q > 1 such that 1/p+ 1/q = 1.
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5.4 Asymptotic Results for Classic Collective Risk Models

5.4.1 Setup and Objectives

The rest of this chapter is dedicated to the study of an analog of the asymptotic equivalence in

(5.2.2) for collective risk models. Recall that throughout we write

SN(v) =

N(v)∑
i=1

Yi, Y = (Y1, Y2, . . .).

For some distribution F on R+, and a counting random variable N(v) with parameter v, the

analog of (5.2.2) in setting (i) is

lim
v→∞

sup
Y∈YN(v)

F

VaRα

(
SN(v)

)
sup

Y∈YN(v)
F

ESα
(
SN(v)

) = 1, (5.4.1)

and the analog of (5.2.2) in setting (ii) is

lim
v→∞

supY⊂XF VaRα

(
SN(v)

)
supY⊂XF ESα

(
SN(v)

) = 1. (5.4.2)

Here, v → ∞ indicates that the expected number of claims goes to infinity. The parameter

v is interpreted as the volume of the insurance portfolio, and it can be chosen as, for instance,

E[N(v)].

One of the key assumptions we propose is N(v)/v → 1 in L1. This assumption naturally

holds if N(v) is a Poisson random variable with parameter v > 0, or N(v) is the partial sum

of a short-range dependent stationary sequence (so that a law of large numbers holds). Indeed,

the problem we study in this chapter first appeared as a question of measuring large insurance

portfolios under dependence uncertainty, where N(v) is a Poisson random variable with a large

parameter. Moreover, an insurance company can analyze effects from potential extension of

business by measuring the insurance portfolio as v increases.

Results under setting (i) are presented in this section and results under setting (ii) are given

in Section 5.5 below. Since vESα(Y ) is straightforward to calculate and thus serves as a basis for

approximation of the two worst-case values of interest, we present our results in terms of the two

ratios
sup

Y∈YN(v)
F

VaRα

(
SN(v)

)
vESα(Y )

and
sup

Y∈YN(v)
F

ESα
(
SN(v)

)
vESα(Y )

.
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We also establish convergence rates in both cases.

5.4.2 VaR-ES Asymptotic Equivalence

Theorem 5.11. Suppose that the distribution F on R+ has finite first moment, Y ∈ XF , and

{N(v), v > 0} ⊂ X0 such that N(v)/v → 1 in L1 as v →∞. Then for α ∈ (0, 1),

lim
v→∞

sup
Y∈YN(v)

F

VaRα

(
SN(v)

)
v

= lim
v→∞

sup
Y∈YN(v)

F

ESα
(
SN(v)

)
v

= ESα (Y ) . (5.4.3)

Proof. By the independence of N(v) and Y , and N(v)
v

L1

→ 1 , we have

E
∣∣∣∣N(v)Y

v
− Y

∣∣∣∣ 6 E
∣∣∣∣N(v)

v
− 1

∣∣∣∣ · E [Y ]→ 0, as v →∞.

Hence, N(v)Y
v

L1

→ Y . Continuity of ES with respect to the L1-norm implies

lim
v→∞

ESα

(
N(v)Y

v

)
= ESα (Y ) . (5.4.4)

From Theorem 5.9 (i), we have

sup
Y∈YN(v)

F

ESα(SN(v)) = ESα (N(v)Y ) . (5.4.5)

By (5.4.4) and the positive homogeneity of ES, we have

lim
v→∞

sup
Y∈YN(v)

F

ESα(SN(v))

v
= ESα (Y ) .

Thus, we obtain the second equality in (5.4.3).

Since L1-convergence implies convergence in probability, N(v)
v

L1

→ 1 yields that for any ε > 0

and δ > 0, there exists an M1 > 0 such that for all v >M1,

P
(∣∣∣∣N (v)

v
− 1

∣∣∣∣ > δ

)
< ε.

Write SN(v) = Y1 + · · ·+ YN(v). Define

S∗N(v) =

{
SN(v) if N(v)/v > 1− δ,

0 if N(v)/v < 1− δ.
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Since SN(v) > S
∗
N(v), we have

VaRα+ε

(
SN(v)

)
> VaRα+ε

(
S∗N(v)

)
= inf

{
t ∈ R : P

(
S∗N(v) 6 t

)
> α+ ε

}
= inf

{
t ∈ R : P

(
SN(v) 6 t,N(v)/v > 1− δ

)
+ P (0 6 t,N(v)/v < 1− δ) > α+ ε

}
> inf

{
t ∈ R : P

(
SN(v) 6 t,N(v)/v > 1− δ

)
> α

}
> inf

{
t ∈ R : P

(
Sb(1−δ)vc 6 t

)
> α

}
= VaRα

(
Sb(1−δ)vc

)
. (5.4.6)

By Lemma 5.5, for any ε2 > 0, there exists an M2 > 1/ε such that for all v > M2,

supY⊂XF VaRα−ε
(
Sb(1−δ)vc

)
b(1− δ)vc

> ESα−ε(Y )− ε2.

Thus, for the above ε > 0 and v > max{M1,M2},

sup
Y∈YN(v)

F

VaRα

(
SN(v)

)
v

>
sup

Y∈YN(v)
F

VaRα−ε
(
Sb(1−δ)vc

)
v

=
supY⊂XF VaRα−ε

(
Sb(1−δ)vc

)
b(1− δ)vc

· b(1− δ)vc
v

> [ESα−ε(Y )− ε2] · (1− δ)v − 1

v

> [ESα−ε(Y )− ε2] (1− δ − ε),

which implies

lim inf
v→∞

sup
Y∈YN(v)

F

VaRα

(
SN(v)

)
v

> ESα (Y ) .

On the other hand,

lim sup
v→∞

sup
Y∈YN(v)

F

VaRα

(
SN(v)

)
v

6 lim
v→∞

sup
Y∈YN(v)

F

ESα(SN(v))

v
= ESα (Y ) .

Therefore,

lim
v→∞

sup
Y∈YN(v)

F

VaRα

(
SN(v)

)
v

= ESα (Y ) .

Thus, we obtain the first equality in (5.4.3).
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Theorem 5.11, together with Lemma 5.5, suggests that for α ∈ (0, 1) and Y ∈ XF , the follow-

ing five quantities are all asymptotically equivalent as v →∞:

(i) sup
Y∈YN(v)

F

VaRα

(
SN(v)

)
;

(ii) sup
Y∈YN(v)

F

ESα
(
SN(v)

)
;

(iii) supY⊂XF VaRα

(
Sbvc

)
;

(iv) supY⊂XF ESα
(
Sbvc

)
;

(v) vESα(Y ).

Hence, one may use (v) above (straightforward to calculate) to approximate the other four quan-

tities. The approximation error, that is, the convergence rate in Theorem 5.11, is studied in the

following section.

Remark 5.3. Since VaRα 6 ESα, the quantity in (i) is smaller than or equal to the quan-

tity in (ii), and similarly for (iii) and (iv). Another observation is that supY⊂XF ESα
(
Sbvc

)
=

bvcESα(Y ) 6 vESα(Y ). From Corollary 5.10, the quantity in (iv) is smaller than or equal to the

quantity in (ii), provided that E[N(v)] = bvc. However, there is no general order between (i) and

(v) (or (iv)); when we approximate sup
Y∈YN(v)

F

VaRα

(
SN(v)

)
with vESα(Y ), it is not clear which

one is larger. See Theorem 5.12 below for more detailed analysis on their relationship.

5.4.3 Rate of Convergence

Theorem 5.12. Suppose that the distribution F on R+ has finite p-th moment, p > 1, Y ∈ XF ,

E[Y ] > 0, and lim supv→∞ v
qE
∣∣∣N(v)

v − 1
∣∣∣ 6 c for some q > 0, c > 0. Then for α ∈ (0, 1),

− 2C1/2v−q/2 + o
(
v1/p−1

)
+ o

(
v−q/2

)
6

sup
Y∈YN(v)

F

VaRα

(
SN(v)

)
vESα (Y )

− 1 6 Cv−q + o
(
v−q
)
,

(5.4.7)

and ∣∣∣∣∣∣
sup

Y∈YN(v)
F

ESα
(
SN(v)

)
vESα (Y )

− 1

∣∣∣∣∣∣ 6 Cv−q + o
(
v−q
)
, (5.4.8)

where C = c
1−α .

Proof. Let δ =
√
Cv−q/2, η =

(
vqE

∣∣∣N(v)
v − 1

∣∣∣− c)
+
, and ε = c+η

δ v−q. Clearly ε =
√
c(1− α)v−q/2+

o(v−q/2). Note that

v−q(c+ η) > E
∣∣∣∣N(v)

v
− 1

∣∣∣∣ > ∫
|N(v)/v−1|>δ

∣∣∣∣N(v)

v
− 1

∣∣∣∣ dP > δ P
(∣∣∣∣N (v)

v
− 1

∣∣∣∣ > δ

)
.
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Hence,

P
(∣∣∣∣N (v)

v
− 1

∣∣∣∣ > δ

)
<
c+ η

δ
v−q = ε.

This implies VaRα

(
SN(v)

)
> VaRα−ε

(
Sb(1−δ)vc

)
as shown in (5.4.6). By Lemma 5.6, we have

sup
Y∈YN(v)

F

VaRα

(
SN(v)

)
vESα (Y )

>
supY⊂XF VaRα−ε

(
Sb(1−δ)vc

)
supY⊂XF ESα−ε

(
Sb(1−δ)vc

) · b(1− δ)vcESα−ε (Y )

vESα (Y )

>
[
1− o

(
v1/p−1

)]
·
(
1− δ − v−1

)
· ESα−ε (Y )

ESα (Y )
. (5.4.9)

Note that∣∣∣∣1− ESα−ε (Y )

ESα (Y )

∣∣∣∣ =

(
1

1−α −
1

1−α+ε

) ∫ 1
α VaRγ (Y ) dγ − 1

1−α+ε

∫ α
α−ε VaRγ (Y ) dγ

ESα (Y )
6

ε

1− α
.

Therefore,
ESα−ε (Y )

ESα (Y )
> 1− ε

1− α
.

Plugging the above inequality into (5.4.9), one has

sup
Y∈YN(v)

F

VaRα

(
SN(v)

)
vESα (Y )

>
[
1− o

(
v1/p−1

)]
·
(
1− δ − v−1

)
·
(

1− ε

1− α

)
= 1− 2

√
Cv−q/2 − o

(
v1/p−1

)
− o

(
v−q/2

)
.

Thus, we obtain the first inequality in (5.4.7).

In the next step we show (5.4.8). From Theorem 5.9 (i),

sup
Y∈YN(v)

F

ESα
(
SN(v)

)
vESα (Y )

=
ESα (N(v)Y )

vESα (Y )
.

By the subadditivity of ES, we have

ESα (Y ) = ESα

(
N(v)

v
Y + Y − N(v)

v
Y

)
6 ESα

(
N(v)

v
Y

)
+ ESα

(
Y − N(v)

v
Y

)
.

Similarly, ESα

(
N(v)
v Y

)
6 ESα (Y ) + ESα

(
N(v)
v Y − Y

)
. It follows that

ESα (Y )− ESα

(
N(v)

v
Y

)
6 ESα

(
Y − N(v)

v
Y

)
6 ESα

(∣∣∣∣Y − N(v)

v
Y

∣∣∣∣) ,
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and

ESα

(
N(v)

v
Y

)
− ESα (Y ) 6 ESα

(
N(v)

v
Y − Y

)
6 ESα

(∣∣∣∣Y − N(v)

v
Y

∣∣∣∣) .
Therefore, ∣∣∣∣ESα

(
N(v)

v
Y

)
− ESα (Y )

∣∣∣∣ 6 ESα

(∣∣∣∣Y − N(v)

v
Y

∣∣∣∣) (5.4.10)

6
1

1− α
E
∣∣∣∣N(v)

v
− 1

∣∣∣∣ · E [Y ] ,

which implies ∣∣∣∣∣∣
ESα

(
N(v)
v Y

)
ESα(Y )

− 1

∣∣∣∣∣∣ 6 Cv−q + o(v−q).

Thus we obtain (5.4.8) as∣∣∣∣∣∣
sup

Y∈XN(v)
F

ESα
(
SN(v)

)
vESα (Y )

− 1

∣∣∣∣∣∣ 6 Cv−q + o(v−q),

and the second inequality in (5.4.7) is automatically implied since VaRα is dominated by ESα.

In Example 5.2 of the next section, we will see that q = 1/2 for Poisson(v)-distributed N(v).

In this case, assuming p > 4/3 (typically true), the convergence rate in the left-hand side of

(5.4.7) is led by O(v−1/4) and the one in (5.4.8) is led by O(v−1/2). Admittedly, the convergence

rate O(v−1/4) is not very fast in general, and its applicability for approximation depends on the

models and the magnitude of v. However, for risk management purpose, one should be on the

conservative side; as such, the faster rate O(v−q) in the right-hand side of (5.4.7) and in (5.4.8)

is more important in practice. In Example 5.5 below, we will see that the term O(v−q) for the

upper bounds in Theorem 5.12 is sharp.

5.4.4 Some Examples

Example 5.2 (Poisson number of claims). As the primary example, suppose that N(v) follows a

Poisson distribution with parameter v. We check the conditions and parameters in Theorems 5.11

and 5.12. Clearly, N(v)/v → 1 in L1 as v → ∞ by the L1-Law of Large Numbers. Indeed, note
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that E |N(v)− v| = 2e−v v
bvc+1

bvc! , and further by Stirling’s formula and some elementary analysis,

one has

2e−v
vbvc+1

bvc!
v−1/2 →

√
2

π
,

which means

lim
v→∞

v1/2E
∣∣∣∣N(v)

v
− 1

∣∣∣∣ =

√
2

π
.

Therefore in Theorem 5.12, c =
√

2
π and q = 1/2.

Example 5.3 (Non-random number of claims). Suppose that N(v) equals bvc. Then q =∞ in

the conditions of Theorem 5.12, and the lower bound on VaR convergence rate given in (5.4.7) is

equivalent to Lemma 5.6.

Example 5.4 (Non-random claim sizes). Suppose that Y is not random and lim supv→∞ v
qE
∣∣∣N(v)

v − 1
∣∣∣ 6

c for some q > 0, c > 0. In this case, we have a convergence rate that is slightly stronger than

the one given in (5.4.7),

1− 2C1/2v−q/2 − o
(
v−q/2

)
6

sup
Y∈YN(v)

F

VaRα

(
SN(v)

)
vESα (Y )

6
sup

Y∈YN(v)
F

ESα
(
SN(v)

)
vESα (Y )

6 1 + Cv−q + o(v−q), (5.4.11)

where C = c
1−α . Compared with Theorem 5.12, the term o(v1/p−1) in the lower bound for VaR

convergence disappears. This is quite natural since the term o(v1/p−1) is due to the randomness of

Y as suggested by Lemma 5.6. To see the first inequality in (5.4.11), let ε = α and δ =
√
Cv−q/2.

For v large enough,

P
(∣∣∣∣N(v)

v
− 1

∣∣∣∣ > δ

)
< ε and P

(
N(v)

v
< 1− δ

)
< α,

which imply

VaRα

(
N(v)

v

)
> 1− δ.

Therefore,

sup
Y∈YN(v)

F

VaRα

(
SN(v)

)
vESα (Y )

=
VaRα (N(v))

v
> 1− δ > 1− 2C1/2v−q/2 − o

(
v−q/2

)
.

The rest of (5.4.11) comes from Theorem 5.12.

132



Example 5.5 (Sharpness of the rate in the right-hand side of (5.4.7) and in (5.4.8)). For some

q > 0, take N(v) = bv + v1−qc and let F be a degenerate distribution of a constant, say 1. In

this case, SN(v) = N(v) is not random, and obviously

VaRα(SN(v))

v
=

ESα(SN(v))

v
= O(v−q).

This shows that the leading term v−q in the right-hand side of (5.4.7) and in (5.4.8) is sharp up

to a constant scale, even in the case when Y1, Y2, . . . and N(v) are deterministic.

5.5 Asymptotic Results for Generalized Collective Risk Models

In this section, we study the more complicated setting (ii) in which N and Y1, Y2, . . . are not

necessarily independent, and their joint distribution is also uncertain. We have similar results as

in Theorem 5.11 and Theorem 5.12 under stronger regularity conditions.

5.5.1 VaR-ES Asymptotic Equivalence

Theorem 5.13. Suppose that the distribution F on R+ has finite second moment, Y ∈ XF , and

{N(v), v > 0} ⊂ X0 such that N(v)/v → 1 in L2 as v →∞. Then for α ∈ (0, 1),

lim
v→∞

supY⊂XF VaRα

(
SN(v)

)
v

= lim
v→∞

supY⊂XF ESα
(
SN(v)

)
v

= ESα (Y ) . (5.5.1)

Proof. From Theorem 5.9, for fixed v > 0, we have

sup
Y⊂XF

ESα
(
SN(v)

)
= ESα (N(v)Y ∗) , (5.5.2)

where Y ∗ ∈ XF is comonotonic with N(v). Hölder’s inequality implies

E
∣∣∣∣N(v)Y ∗

v
− Y ∗

∣∣∣∣ 6
√
E
∣∣∣∣N(v)

v
− 1

∣∣∣∣2 · E [(Y ∗)2]→ 0, as v →∞.

Hence, N(v)Y ∗

v
L1

→ Y ∗. As a consequence, continuity of ES with respect to the L1-norm implies

lim
v→∞

ESα (N(v)Y ∗/v) = ESα (Y ∗) = ESα(Y ).
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Therefore,

lim
v→∞

supY⊂XF ESα(SN(v))

v
= lim

v→∞

ESα (N(v)Y ∗)

v
= ESα (Y ) .

Thus we obtain the second equality in (5.5.1).

For the first equality in (5.5.1), N(v)
v

L2

→ 1 implies that for any ε > 0 and δ > 0, for v large

enough, one has

P
(∣∣∣∣N (v)

v
− 1

∣∣∣∣ > δ

)
< ε.

Similarly to the proof of Theorem 5.12, we have

ESα−ε (Y )

ESα (Y )
> 1− ε

1− α
,

and

supY⊂XF ESα(SN(v))

vESα (Y )
>

supY⊂XF VaRα

(
SN(v)

)
vESα (Y )

>
[
1− o

(
v1/p−1

)]
·
(
1− δ − v−1

)
· ESα−ε (Y )

ESα (Y )
.

Thus,

lim
v→∞

supY⊂XF VaRα

(
SN(v)

)
v

= ESα (Y ) ,

and we obtain the first equality in (5.5.1).

5.5.2 Rate of Convergence

In this section we provide the convergence rate in generalized collective risk models. Similarly to

Theorem 5.13, stronger regularity conditions are required as compared to results in Section 5.4.

Theorem 5.14. Suppose that the distribution F on R+ has finite p-th moment, p > 2, Y ∈ XF ,

E[Y ] > 0, and lim supv→∞ v
rE
∣∣∣N(v)

v − 1
∣∣∣2 6 c for some r > 0 and c > 0. Then we have

−2

(
c

1− α

)1/3

v−r/3 + o
(
v1/p−1

)
+ o

(
v−r/3

)
6

supY⊂XF VaRα

(
SN(v)

)
vESα (Y )

− 1 (5.5.3)

6

∣∣∣∣∣supY⊂XF ESα
(
SN(v)

)
vESα (Y )

− 1

∣∣∣∣∣ 6
√

E[Y 2]

ESα(Y )

√
c

1− α
v−r/2 + o

(
v−r/2

)
. (5.5.4)
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Proof. Let δ =
(

c
1−αv

−r
)1/3

, η =

(
vrE

∣∣∣N(v)
v − 1

∣∣∣2 − c)
+

, and ε = c+η
δ2
v−r. Clearly ε =(

c(1− α)2v−r
)1/3

+ o(v−r/3). Similar to the proof of Theorem 5.12, we have

P
(∣∣∣∣N (v)

v
− 1

∣∣∣∣ > δ

)
< ε and

ESα−ε (Y )

ESα (Y )
> 1− ε

1− α
.

Moreover,

supY⊂XF VaRα

(
SN(v)

)
vESα (Y )

>
supY⊂XF VaRα−ε

(
Sb(1−δ)vc

)
supY⊂XF ESα−ε

(
Sb(1−δ)vc

) · b(1− δ)vcESα−ε (Y )

vESα (Y )

>
[
1− o

(
v1/p−1

)]
·
(
1− δ − v−1

)(
1− ε

1− α

)
> 1− 2

(
c

1− α

)1/3

v−r/3 − o
(
v1/p−1

)
− o

(
v−r/3

)
.

Thus we obtain (5.5.3). The first inequality in (5.5.4) comes from the fact that ESα dominates

VaRα.

By (5.4.10) and Hölder’s inequality, we have

∣∣∣∣ESα

(
N(v)

v
Y

)
− ESα (Y )

∣∣∣∣ 6 ESα

(∣∣∣∣Y − N(v)

v
Y

∣∣∣∣) 6 1

1− α

√
E
∣∣∣∣N(v)

v
− 1

∣∣∣∣2 · E [Y 2].

As a consequence,∣∣∣∣∣supY⊂XF ESα
(
SN(v)

)
vESα (Y )

− 1

∣∣∣∣∣ 6
√

E[Y 2]

ESα(Y )

√
c

1− α
v−r/2 + o

(
v−r/2

)
.

Thus we obtain the second inequality in (5.5.4).

Example 5.6 (Poisson number of claims, revisited). Suppose that N(v) follows a Poisson distri-

bution with parameter v. We can check the parameters in Theorem 5.14. Since E[|N(v)/v−1|2] =

Var(N(v))/v2 = 1/v, we have r = 1 and c = 1. Therefore, the leading term in the left-hand side

of (5.5.3) is O(v−1/3), which converges to zero faster than O(v−1/4) as in Example 5.2 under set-

ting (i). This is intuitive as supY⊂XF VaRα

(
SN(v)

)
> sup

Y⊂XN(v)
F

VaRα

(
SN(v)

)
. The right-hand

side of (5.5.4) remains the same order O(v−1/2).
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5.5.3 A Remark on the Dependence of Collective Risk Models

In Sections 5.4 and 5.5, we studied the asymptotic equivalence of VaR and ES in two settings. A

natural question that follows would be whether an asymptotic equivalence holds also for specified

dependence structures between N(v) and Y1, Y2, . . . other than independence. That is, whether

the following limit

lim
v→∞

sup
Y⊂X̂N(v)

F

VaRα

(
SN(v)

)
sup

Y⊂X̂N(v)
F

ESα
(
SN(v)

) = 1 (5.5.5)

holds, where X̂N(v)
F ⊂ XF is the set of random variables with distribution F and a pre-specified

dependence structure (copula) with N(v). Note that from Lemma 5.7, the worst-case ES can be

calculated as ESα(N(v)Y ), where Y ∈ X̂N(v)
F .

In general, the knowledge on the dependence structure of (N(v), Yi), i = 1, 2, . . ., would

put some restrictions on the dependence structure of (Y1, Y2, . . .); the latter was assumed to be

arbitrary in our settings (i) and (ii), as well as in the classic setup of dependence uncertainty.

With the “effect of dependence uncertainty” demolished, (5.5.5) may no longer hold true. This

is evidenced by the following (rather extreme) example where N(v), Yi are comonotonic for i =

1, 2, . . . (note that this does not necessarily imply that Y1, Y2, . . . are comonotonic since N(v)

is discrete). For other pre-specified dependence structures between (N(v), Yi), i = 1, 2, . . ., the

question of (5.5.5) requires a case-by-case study.

Assume that the distribution F has finite second moment, {N(v), v > 0} ⊂ X0 such that

N(v)/v → 1 in L2 as v → ∞, and Y ∈ X c,vF . Denote by X c,vF ⊂ XF the set of random variables

with distribution F and comonotonic with N(v). In this case one still has the ES convergence as

in Theorem 5.11,

lim
v→∞

supY⊂X c,vF
ESα

(
SN(v)

)
v

= ESα (Y ) , α ∈ (0, 1), (5.5.6)

whereas the VaR convergence

lim
v→∞

supY⊂X c,vF
VaRα

(
SN(v)

)
v

= ESα (Y ) , α ∈ (0, 1), (5.5.7)

may fail to hold.
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To see (5.5.6), by Hölder’s inequality, we have

E
∣∣∣∣N(v)Y

v
− Y

∣∣∣∣ 6
√

E
∣∣∣∣N(v)

v
− 1

∣∣∣∣2 · E [Y 2]→ 0, as v →∞.

Hence, N(v)Y
v

L1

→ Y . From Lemma 5.7, we have supY⊂X c,vF
ESα

(
SN(v)

)
= ESα (N(v)Y ), and

(5.5.6) follows from the continuity of ES with respect to the L1-norm.

To see that (5.5.7) may not hold true, we simply give a counter-example. Take any α ∈ (0, 1).

Let F be a Bernoulli distribution with parameter (1 − α)/2, and assume that for each v > 0,

there exists a positive integer fv such that P(N(v) > fv) = (1 − α)/2. For fixed v and any

Y1, Y2, · · · ∈ Xc,v
F , we have {Yi = 1} = {N(v) > fv} almost surely for each i = 1, 2, . . ., and hence

Y1, Y2, . . . are almost surely equal. As a consequence, there is indeed no dependence uncertainty:

SN(v) = N(v)Y1 almost surely. Since P(N(v)Y1 > 0) 6 P(Y1 > 0) = (1− α)/2, we have

sup
Y⊂X c,vF

VaRα(SN(v)) = VaRα(N(v)Y1) = 0.

Therefore,

lim
v→∞

supY⊂X c,vF
VaRα

(
SN(v)

)
v

= 0.

Thus (5.5.7) does not hold noting that ESα(Y ) > 0.

5.6 Conclusion

In this chapter, we study the worst-case values of VaR and ES of the aggregate loss in collective

risk models under two settings of dependence uncertainty. Analytical formulas for the worst-case

values of ES are obtained. For both settings, an asymptotic equivalence of the VaR and ES

for a random sum of risks is established under some general moment and regularity conditions.

The conditions in our main results are easily satisfied by common models, including the clas-

sic compound Poisson collective risk models. Our main results suggest that under dependence

uncertainty, we can use vESα(Y ) to approximate the worst-case risk aggregation when the risk

measure is VaRα or ESα and v is large enough; the approximation error is also obtained in terms

of some moment and convergence rate of the claim sizes and the claim frequency.
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5.7 Additional Discussions

In this section, we discuss the difference between a collective risk model and a corresponding

individual risk model. Let N be the counting random variable which is bounded by some n ∈ N,

i.e. N 6 n, and Yi ∼ F , i ∈ N (in fact, only Y1, . . . , Yn are used). A random sum SN may be

written in two ways: a collective risk model

SN =
N∑
i=1

Yi (5.7.1)

and an individual risk model

SN =
n∑
i=1

YiI{N>i} =
n∑
i=1

Zi, (5.7.2)

where Zi = YiI{N>i}, i = 1, . . . , n. Note that this setup is different from the collective reformu-

lation in Example 5.1, where one starts with a homogeneous individual risk model with small

probability of loss from each individual risk, and arrives at a Poisson collective risk model.

In the recent literature of dependence uncertainty for an individual risk model, Z1, . . . , Zn in

(5.7.2) are assumed to have an arbitrary dependence. In our collective risk model, although SN

may be written as in (5.7.2), the dependence among Z1, . . . , Zn is not arbitrary anymore, as it is

driven by a common random variable N . There are further essential differences, if we look at the

two formulations more closely under the two settings of dependence uncertainty studied in this

chapter.

(i) N and the sequence Y1, Y2, . . . are independent. In this case, the distribution of Zi

can be determined by that of Yi and N . Denote this distribution by Fi. We can consider

the worst-case risk measure (take an ES for instance) in our model

sup
Y∈YNF

ESα

(
N∑
i=1

Yi

)
(5.7.3)

and in the classic model

sup
Zi∈XFi ,i6n

ESα

(
n∑
i=1

Zi

)
. (5.7.4)

Clearly, through (5.7.1) and (5.7.2), the collective risk model formulation Y ∈ YNF in (5.7.3)

is a submodel of the individual risk model formulation Zi ∈ XFi , i 6 n in (5.7.4), and hence
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the worst-case value in (5.7.3) should be smaller than or equal to the one in (5.7.4). We

shall illustrate this difference with a numerical example where one has

sup
Y∈YNF

ESα

(
N∑
i=1

Yi

)
< sup

Zi∈XFi ,i6n
ESα

(
n∑
i=1

Zi

)
.

See Example 5.7 below.

(ii) The dependence between N and the sequence Y1, Y2, . . . is also unknown. In

this case, the distribution of Zi, and the conditional distribution of Zi given N are both

unknown. Hence, no existing result in the literature of dependence uncertainty that we are

aware of can be applied to this setting.

Example 5.7. Let n = 10. Suppose that for i = 1, . . . , n, Yi follows an exponential distribution

with parameter 1 (denoted by Expo(1)), and N follows the binomial distribution with parameters

n and 1/3 (denoted by Bin(n, 1/3)), independent of {Yi, i ∈ N}. For i = 1, . . . , n, denote the

distribution of YiI{N>i} by Fi. Take α = 0.95. By Theorem 5.9, we can calculate

sup
Y∈YNF

ESα

(
N∑
i=1

Yi

)
= ESα(NY1) = 15.813,

sup
Zi∈XFi ,i6n

ESα

(
n∑
i=1

Zi

)
=

n∑
i=1

ESα(Zi) = 19.026,

where the first value is the average of 100 repetitions of simulation with a sample of size 100,000,

and the second value is calculated analytically.

The above illustration shows that, under the above setting (i), the collective risk model

imposes a special type of dependence through the counting random variable N , and has a smaller

worst-case ES value of the aggregate risk as compared to the corresponding individual risk model

with dependence uncertainty. Thus, using a collective risk model is one of the many ways of

introducing partial dependence information into risk aggregation.
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Chapter 6

Concluding Remarks and Future

Research

We mainly study risk sharing and risk aggregation via risk measures in the thesis. In Chapter

2, for underlying risk measures RVaR, we solve the optimal risk sharing problem of a total risk

and construct a Pareto-optimal allocation in Theorem 2.4 and a corresponding Arrow-Debreu

Equilibria in the settings of Theorems 2.7 and 2.8. The condition on the distribution of the

total risk in Theorems 2.7 and 2.8 and the definition of RVaR guarantee the existence of an

Arrow-Debreu equilibrium. One possible direction for future research is to remove the condition

and prove the existence of an Arrow-Debreu equilibrium under a more general setting. Another

possible direction is to consider the risk sharing problem given that the agents have different

beliefs on the future states of risks.

In Chapter 3, we study Pareto-optimal reinsurance arrangements and show that under general

model settings and assumptions, a Pareto-optimal reinsurance contract is an optimizer of the

convex combination of both parties’ preferences, and such optimizers always exist. In particular,

we solve the optimal reinsurance problem explicitly when the preferences are TVaR. A more

practical setting is to include constraints such as budget limit on the reinsurance premium in an

optimization problem.

Regarding risk aggregation, in Chapter 4, we show the asymptotic equivalence results of

the class of distortion risk measures and the class of convex risk measures for inhomogeneous

individual risk models under some regularity conditions. The main result is that under dependence
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uncertainty in the aggregation of a large number of risks, the worst-case value of a non-coherent

risk measure is asymptotically equivalent to that of a corresponding coherent risk measure. This

result helps to analyze risk aggregation under dependence uncertainty for financial regulation and

internal risk management. In Chapter 5, we obtain similar asymptotic equivalence of VaR and

ES for homogeneous collective risk models under some moment and regularity conditions. The

conditions are easily satisfied by common models such as the compound Poisson models. Besides

choosing distortion or convex risk measures in risk aggregation, one possible choice for future

research is a rank-dependent utility, which is proposed in Quiggin (1982) to model decision under

uncertainty and popular in behavioral finance.
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