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Abstract

Driven by the massive growth in communications data traffic as well as flourishing users’

demands, we need to fully utilize the existing scarce spectrum resource. However, there

have been several studies and reports over the years showing that a large portion of

licensed spectrum is actually underutilized in both temporal and spatial domains. More-

over, aiming at facing the dilemma among the fixed spectrum allocation, the ever enor-

mous increasing traffic demand and the limited spectrum resource, cognitive radio (CR)

was proposed by Mitola to alleviate the under usage of spectrum. Thus, cognitive radio

networking (CRN) has emerged as a promising paradigm to improve the spectrum effi-

ciency and utilization by allowing secondary users (SUs) to utilize the spectrum hole of

primary users (PUs). By using spectrum sensing, SUs can opportunistically access spec-

trum holes for secondary transmission without interfering the transmissions of the PUs

and efficient spectrum utilization by multiple PUs and SUs requires reliable detection

of PUs. Nevertheless, sensing errors such as false alarm and misdetection are inevitable

in practical networks. Hence, the assumption that SUs always obtain the exact channel

availability information is unreasonable. In addition, spectrum sensing must be carried

out continuously and the SU must terminate its transmission as soon as it senses the

re-occupancy by a PU. As a better alternative of spectrum sensing, cooperation has been

leveraged in CRN, which is referred as cooperative cognitive radio networking (CCRN).

In CCRN, in order to obtain the transmission opportunities, SUs negotiate with the PUs

for accessing the spectrum by providing tangible service for PUs.

In this thesis, we study cluster based spectrum sharing mechanism for CCRN, and

investigate on exploiting the cooperative technique in heterogeneous network. First,

we develop cooperation protocols for CRN. Simultaneous transmission can be realized

through quadrature signalling method in our proposed cooperation protocol. The optimal

power allocation has been analyzed and closed-form solution has been derived for amplify
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and forward mode. Second, we study a cluster based spectrum sharing mechanism. The

spectrum sharing is formulated as a combinatorial non-linear optimization problem which

is NP-hard. Afterwards, we solve this problem by decomposing it into cluster allocation

and time assignment, and we show that the result is close to the optimal solution. Third,

we propose a macrocell-femtocell network cooperation scheme for heterogeneous networks

under closed access mode. The cooperation between the femtocell network and macrocell

network is investigated. By implementing the cooperation, not only the macrocell users’

(MUEs’) and femtocell users’ (FUEs’) utility can be improved compared with the non-

cooperation case, but also the energy consumption as well as the interference from the

femtocell network to the macrocell network can be reduced.
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Chapter 1

Introduction

In wireless communication networks, spectrum is a limited and scarce resource that has

been exclusively and statically allocated to various wireless applications through licensing

by regulatory bodies, and there are more and more applications which are desiring for

spectrum, such as e-health networks, vehicular ad hoc networks and smart grid. Specially,

users will go through a level of call volume and high speed data transmission with the fifth

generation (5G) wireless communications. However, the assigned spectrum is significantly

underutilized [1].

Aiming at improving the spectrum efficiency and utilization, cognitive radio (CR) is,

first proposed by Mitola in 1999 in [2], a generic term used to describe a radio that is

aware of the environment around it and can adapt its transmissions parameters according

to the interference it goes through [3]. In CR, secondary users (SUs) opportunistically

access the idle spectrum which are not occupied by the primary users (PUs) at the current

time. Nevertheless, whenever the PUs return to reoccupy the spectrum, the SUs need

to vacate the spectrum in order not to disturb PUs’ transmissions. Therefore, CR can

provide spectrum bandwidth to mobile users via heterogeneous wireless architectures and

dynamic spectrum access techniques.
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Cooperative Cognitive Radio Networking

The main functions for CR can be summarized as follows: spectrum sensing, spectrum

management, spectrum mobility and spectrum sharing. Spectrum sensing is adopted by

the SUs to detect unused spectrum and access the idle spectrum opportunistically without

harmful interference with PUs [4–6]. With spectrum management, the SUs can capture

the best available spectrum to meet their communication requirements [7–9]. Maintaining

seamless communication requirements during the transition to better spectrum can be

achieved through spectrum mobility [10, 11]. Spectrum sharing is used to provide a fair

spectrum scheduling method among coexisting SUs.

1.1 Cooperative Cognitive Radio Networking

1.1.1 Spectrum Sharing Paradigms in Cognitive Radio

There are three paradigms in cognitive radio networking (CRN): underlay paradigm,

overlay paradigm and interweave paradigm. In underlay paradigm, the SUs access the

spectrum only when the interference they cause to the PUs is below a given threshold or

meets a given bound on PUs’ performance degradation. In overlay paradigm, the SUs are

overlaid with PUs which means the SUs transmit simultaneously at the same spectrum

as the PUs. In interweave paradigm, the SUs sense the absence of PUs’ signals in space,

time, or frequency, and access the spectrum opportunistically.

Underlay Paradigm

In underlay paradigm, when exploiting spectrum holes, the SUs can be anywhere in the

primary network, provided that the interference caused to the PUs does not degrade

their receiving performance. Moreover, the SUs can be beyond the coverage area which

is secured by a given guard distance of the primary network, under the constraint on
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Chapter 1. Introduction

the SUs’ transmission power. Therefore, as shown in underlay paradigm is utilizing the

whole spectrum.

The underlay model has the advantage that the SUs can directly occupy the spectrum

without considering the PUs’ traffic patterns. However, a key issue in underlay paradigm

is that the SUs may suffer from bad performance due to the interference from the PUs

and power constraints imposed at the SUs.

Overlay Paradigm

Compared with the underlay paradigm, overlay paradigm does not require strict trans-

mission power constraints at the SUs due to interference caused to the PUs. Cooperative

relaying has emerged as a powerful technique for the overlay paradigm, since it can ex-

ploit spacial diversity and provide higher capacity and reliability in CRN. With the help

of cooperative relaying technique, SUs trustfully negotiate with PUs for transmission

opportunities by providing tangible services that the SUs relay the PUs’ transmission by

cooperative relaying techniques or advanced coding in overlay paradigm.

Interweave Paradigm

The interweave paradigm is based on the idea of opportunistic communication, and was

the original motivation for cognitive radio. In interweave paradigm, the SUs first sense

the availability of spectrum holes which are the spectrum bands that are not occupied by

the PUs. In other words, the SUs estimate the presence and absence of spectrum holes

without help from the PUs. Moreover, the SUs access the spectrum opportunistically

since once the PUs reoccupy the spectrum bands the SUs need to vacate the spectrum

as soon as possible. However, this model is highly sensitive to PU traffic patterns and

sensing errors, since PUs activities change over time and also depend on geographical

locations.
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Cooperative Cognitive Radio Networking

Underlay, overlay and interweave paradigms are shown as Fig. 1.1.

Frequency

PS
D

Primary users Underlay secondary users

Interweave secondary usersOverlay secondary users

Figure 1.1: Underlay, overlay and interweave spectrum sharing paradigms.

1.1.2 Cooperation in Cognitive Radio Networking

Normally, there are two ways for spectrum access in CRN: spectrum sensing and coop-

eration. The aim of spectrum sensing is to detect a spectrum hole precisely in order to

share the spectrum without harmful interference to other users. The term “spectrum

hole” refers to a band of frequencies that are not being occupied at a particular point

of time and specific geographic location by a PU [12]. SUs sense the spectrum holes to

probe for spectrum access opportunities and prevent harmful interference on the ongoing

transmissions of PUs [13–17]. The other way for spectrum access is cooperation. Lever-

aging cooperation in CRN is referred as cooperative cognitive radio networking (CCRN),

which is proposed as an alternative since sensing errors are inevitable in practical network

operations. In CCRN, SUs negotiate with PUs for transmission opportunities by relaying

PUs’ traffic through cooperative communication techniques. SUs cooperate with PUs to

improve the PUs’ performance in terms of transmission rate, reliability, energy efficiency

and so on, and in return gain transmission opportunities. When the channel conditions

of the primary links become poor, PUs are obliged to find an appropriate cooperator to

relay their traffic against performance degradation. Moreover, the surrounding SUs with
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Chapter 1. Introduction

better channel conditions are seeking for spectrum access opportunities at the same time.

Therefore, the cooperation between PUs and SUs are feasible in wireless networks and

beneficial to both user parties.

There is an increasing member of research works focus on the second spectrum access

method: leveraging cooperation in CRN. Many issues are needed to be considered in

CCRN, such as who to cooperate, when to cooperate and how to cooperate.

1.2 Motivations, Objectives and Contributions

1.2.1 Motivations and Objectives

Due to the ever increasing users’ requirements, improving the spectrum efficiency has

always been a fundamental issue in wireless networks. Spectrum sharing is an efficient and

effective method to improve the spectrum efficiency by overcoming the scarce and limited

availability of spectrum. Traditionally, spectrum sharing has been studied broadly in

various wireless networks to improve the utilization of existing spectrum. CR is emerged

as an useful technology for spectrum sharing. However, considering the unique features of

CRN, spectrum sharing in future-generation networks faces new challenges which should

be tackled.

• In CRN, spectrum sensing plays the first and most important role in CR. The

aim of spectrum sensing is to detect the spectrum hole and to share the spectrum

without harmful interference to other users. However, sensing error is inevitable in

practical network operations, which has negative effect on the network performance,

e.g., causing harmful interference to the PUs. Moreover, once the PU returns to

its channel, it is very challenging for the SUs to make the mobility plan of moving

from one channel to another seamlessly. In addition, it is possible that when the
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SU starts to access the previous detected spectrum hole, it is reoccupied by the PU

again. Cooperation adopted in CRN can address the aforementioned problems.

• To fulfill ideal cooperation for CRN, upgraded physical-layer and MAC-layer de-

signs are indispensable. Synchronization between cooperators, coordination of the

cooperation, energy consumption and interference management during multi-user

multi-channel spectrum sharing need to be revisited.

• Since there are considerable wireless users desiring for diverse wireless applications

and services with more spectrum bands and higher transmission rate, there will be

more SUs who do not have their own communication bands searching for spectrum

hole to access. Therefore, competition among the SUs becomes more intense than

before.

These fundamental challenges pose great difficulties for future-generation network

designers, which motivates us to propose novel spectrum sharing mechanisms. Therefore,

the objective of this dissertation is to incorporate the physical layer cooperative relaying

technique in the CRN and design spectrum sharing protocols to reduce interference and

improve spectrum efficiency, energy efficiency as well as network fairness.

1.2.2 Contributions

The first part of this dissertation studies the cooperation protocol design for uplink CRN.

In a traditional three-phase time division multiple access (TDMA) based cooperation pro-

tocol, the PU yields a fraction of time slot for the SUs to access the spectrum in exchange

for cooperation in the form of relaying the primary traffic. In the first phase, the PU

transmits the data to the relaying SUs. The second phase is used for one or multiple

SUs relaying the PU’s data to the primary receiver, aiming at improving the through-

put of the primary link. As a reward, the SUs transmit their own traffic in the third
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Chapter 1. Introduction

phase. However, in this dissertation, we combine the former two phases of the traditional

three-phase framework together using the two degrees of freedom in a 2-dimensional

modulation. Specifically, both the PU and the selected relaying SU use quadrature phase

shift keying (QPSK) which is equivalent to quadrature amplitude modulation (QAM).

But the PU only uses the in-phase component to transmit its data while at the same

time, the SU only uses the quadrature component to relay the PU’s data. In this way, the

transmissions by the PU and the SU together form quadrature signaling. Thus, there will

be no interference and the SU will have more time for its own transmissions. An extensive

analysis on cooperation between the PU and the SU is presented, and we also optimize

the performance of the PU while satisfying the cooperative SU’s QoS requirement.

The second part investigates a spectrum sharing framework for primary cooperative

networking (PCN)/secondary cooperative networking (SCN) cognitive radio networking

which is performed not only between the PUs in the PCN and the selected cooperating

SUs, but also among the cooperating SU and the remaining SUs within a cluster of

SCN. First, the PUs form clusters of PCN. Each PU has an equal chance to serve as the

cluster head. The cluster heads of SCN, whom we call intermediate users (IUs), acquire

some spectrum after relaying PUs’ traffic. Afterwards, the IUs aggregate the acquired

spectrum, and share them with other cluster members. Since the relaying capabilities

of the SUs will vary from slot to slot due to their locations, power levels, or channel

conditions, the SUs can not always be selected as IUs. Specially, we design a cooperative

spectrum sharing mechanism, in which,

• an IU selection scheme is operated by the maximum weighted matching (MWM)

algorithm with the objective of maximizing the ratio of integrated utility to total

energy consumption. Hence, energy efficiency is taken into consideration;

• a cluster based spectrum sharing framework is proposed to improve the network

utility and reliability as well as network fairness by introducing a group of IUs. The
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IU, who is the head of SCN, can benefit more SUs, so that the network fairness can

be improved. Network coding is implemented during the spectrum sharing process

within the cluster of SCN to increase communication utility and reliability;

• the spectrum sharing problem within the clusters of SCN is formulated. Since this

problem is NP-hard, we decompose it into two sub-problems: bandwidth allocation

(i.e., cluster formation) and time allocation, and we derive the bandwidth allocation

by exploiting the two-sided stable matching algorithm, which is a basic and classical

approach in matching theory to solve the matching problems. A stable matching

result can be obtained through using the above mentioned approach, which can

not only take both parties’ (IUs’ and SUs’) interests into consideration, but also

enhance the network robustness.

In the third part, we consider a cooperation scheme in heterogeneous macrocell-

femtocell networks. By adopting CR technology, femtocell networks can efficiently cope

with spectrum scarcity as well as exploit spectrum management in small areas to obtain

high transmission rate for indoor communications. Usually, the cooperation in macrocell-

femtocell networks is performed between the femtocell users (FUEs) and macrocell users

(MUEs). However, femtocell base stations (FBSs) have more powerful relay capability

than the FUEs, and can transmit multiple traffic simultaneously. To this end, we design

a framework for cooperation between one or multiple MUEs and one FBS in closed ac-

cess mode, and the benefit is quantified in terms of utility. MUEs who suffer with a bad

transmission situation are allowed to access an FBS after the cooperation relationship

between the FBS and the MUEs is established, and the FBS acts as a relay for these

MUEs. In return, the cooperative FBS acquires a fraction of spectrum for its serving

FUEs as a reward. The FBSs are equipped with dual modes: relay mode and traditional

base station mode. FBSs relay MUEs’ traffic with relay mode, and serve their FUEs

with traditional base station mode. Cooperating with more MUEs will enable the FBSs

8
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to acquire more spectrum access opportunities for their serving FUEs. Moreover, such

kind of cooperation framework can benefit the scenario that when the MUE is located

at the cell boundary, suffering from a bad performance at its serving macrocell base sta-

tion. Unlike existing macrocell-femtocell architecture, we propose a cooperation model in

which MUEs are granted to communicate with the FBS after the cooperation relationship

between MUEs and FBS has been established, wherein

• we formulate the cooperation as a many-to-one stable matching problem, and the

matching pairs represent the cooperation pairs of the FBS and multiple MUEs.

In the matching process, the interests of both FBSs and MUEs are taken into

consideration, and each FBS and each MUE can have their own preference lists

based on their specific requirements, such as utility, geographical location, energy

efficiency, and delay tolerance. The matching result is a stable matching;

• FBSs are equipped with dual modes: relaying mode and traditional mode with

different power levels. By adopting dual modes, the FBSs can save their energy

and mitigate interference to the macrocell network. FBSs act as relays since they

have more relaying capability than the FUEs as they have higher power limitations

and they can perform concurrent transmissions.

1.3 Outline of the Thesis

This thesis is organized as follows: we model the CCRN based on orthogonal signaling in

Chapter 2, and study the cooperation protocols for cognitive radio networking with the

design of spectrum-energy efficiency. The spectrum sharing mechanism for PCN/SCN

cognitive radio networking is investigated in Chapter 3. In Chapter 4, we focus on

heterogenous cognitive femtocell networks in which the FBSs cooperate with the MUEs

to enhance the utility of the MUEs and gain spectrum access opportunities for the FUEs.
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Finally, conclusion remarks and future potential research issues are presented in Chapter

5.
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Chapter 2

Cooperation Protocols for Cognitive

Radio Networking

CRN has recently emerged as a promising paradigm to improve the spectrum efficiency

and utilization by allowing SUs to opportunistically utilize the spectrum holes of PUs.

By using spectrum sensing, SUs can access spectrum holes for secondary transmission

without interfering with the PUs [18], and efficient spectrum utilization by multiple PUs

and SUs requires reliable detection of PUs. Nevertheless, sensing errors are inevitable

due to feedback delays, estimation errors and quantization errors in practical networks.

Hence, the assumption that SUs always obtain the exact channel availability information

is unreasonable. Most of the previous works have focused on opportunistic resource allo-

cation for CRN without considering sensing errors. Only a few publications investigate

the imperfection of spectrum sensing in CRN, which causes higher computational com-

plexity. In addition, spectrum sensing must be carried out continuously and SU must

terminate its transmission as soon as it senses the re-occupancy by a PU. Therefore,

cooperation is exploited in CRN to solve the above mentioned problems.
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2.1 Literature Review

In wireless networks, channel fading caused by multi-path propagation is a particularly

severe issue that can be mitigated through the use of diversity [19]. Multiple antennas,

and diversity techniques such as space, time and frequency diversity are attractive to have

the performance gain. Cooperation among the users can achieve space diversity which is

also referred as cooperative diversity. Cooperation protocols are widely investigated in

the following areas.

2.1.1 Relaying Communications

In the literature, many works on relaying communications have been investigated. The

original idea of relaying communications can be traced back to the cutting-edge work

of Cover and El Gamal on the information theoretic properties of relay channel in [20].

The authors develop the capacity of a three-node network wherein contains a source,

a destination, and a relay. However, in relay channels, the relays’ only purpose is to

help the sources, whereas in cooperative relaying communication system, the users act

both as sources and relays. There are three fundamental cooperative relaying mech-

anisms in the wireless networks: amplify-and-forward (AF), decode-and-forward (DF)

and compress-and-forward (CF). In AF cooperative relaying protocol, the signal is am-

plified at the relay and forwards to the destination. Besides the desired signal, the relay

also amplifies and propagates the interference and noise from the source-relay link. As

the relay does not decode the received signal, the relayed signal would also cause inter-

ference to the destination. The advantage of this protocol is its low cost and simplicity

implementation. In DF cooperative relaying protocol, the relay decodes the signal and

re-encodes it before forwarding it to the destination. With the DF protocol, noise can

be completely eliminated, but the coding/decoding processes for cooperation are needed

12



Chapter 2. Cooperation Protocols for Cognitive Radio Networking

which will increase the implementation cost. In CF cooperative relaying protocol, the

relay attempts to generate an estimate of the received signal, and then compresses and

encodes the signal and transmits the compressed encoded signal to the destination. The

CF protocol is especially suitable for the situation where the channel between the source

and the relay is worse than that between the source and the destination. In [21] and [22],

the cooperation scheme in which each user acts as a relay for others adopting the AF

relaying protocol is investigated. The DF and CF protocols are developed for relay net-

works with many relays, antennas, sources, and destinations in [23]. In [24], space-time

coded cooperative diversity protocols with AF and DF for combating multi-path fading

are developed to enable simultaneous transmission of all relays. A DF design which is

referred as turbo-coded cooperation is proposed in [25] to achieve better performance.

2.1.2 Exploiting Cooperation in Various Networks

Cooperative communications have been extensively studied in the literature which can

increase the transmission rate, save the energy, enhance the reliability and so on. Due to

the benefits of cooperative networking, there is a strong benefits to introduce cooperation

to the CRN to deal with challenges of spectrum sensing and better explore spectrum

access opportunities.

Cooperation techniques have been widely exploited in various types of wireless net-

works for different reasons. In cellular networks, relays are used to enlarge the coverage

areas as well as increase communication reliability [26]. A fractional base station cooper-

ation in cellular network is developed in [27] to achieve performance gains both within the

cell and at the cell-edge with limited complexity. In multi-hop ad hoc networks, relays are

used to increase the transmission rate. The authors in [28] investigate the cooperation in

wireless ad hoc networks, and they propose a distributed and scalable acceptance scheme

which is exploited by the users to decide whether to accept or reject to be a relay for
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other users. The authors in [29] derive the theoretical bounds for half-duplex cooperative

channels in ad hoc network, where the two transmitters and two receivers simultaneously

cooperate. In [30], the upper and lower bounds for the information-theoretic capacity of

four nodes ad hoc networks using cooperative diversity are developed. In [31], relay users

are introduced to enable single antenna users share their antennas to create a virtual

multiple antennas transmitter. Therefore, transmission diversity is achieved and network

capacity can be increased. A cooperative transmission strategy for wireless ad hoc and

sensor networks is proposed in [32]. The strategy exhibits a substantial gain in through-

put, especially when the coexistence gain factor is high, and a broadcast approach is

incorporated into the transmission strategy suggesting further throughput benefits. The

vehicular network performance using amplify-and-forward relaying technique for an inter-

vehicular cooperative protocol relayed by a roadside access point is investigated in [33].

In [34], Liang et al. discuss the benefits and possibilities for coordinated operation with

cooperative wireless networking and smart grid wireless networking. Based on that, util-

ities are able to improve power system operation efficiency and reliability via acquiring

more accurate and timely information.

2.1.3 Cooperation Protocols

Spectrum sensing is normally adopted by SUs to probe for spectrum access opportuni-

ties and prevent harmful interference on the ongoing transmissions of PUs. However,

in practice, sensing errors are inevitable in network operations, such as quantization,

estimation and delayed feedback, which adversely affect the network performance. As

an alternative, CCRN is proposed, in which cooperation is leveraged in CRN to avoid

sensing errors, and gain spectrum access opportunity for SUs. In CCRN, SUs negoti-

ate with PUs for their own transmissions by relaying PUs’ traffic through cooperative

communication techniques, such as cooperative relaying or advanced coding [35]. SUs
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cooperate with PUs to improve the latter’s performance in terms of transmission rate,

reliability, energy efficiency and so on, and in return gain transmission opportunities.

When the channel conditions of the primary links become poor, PUs are obliged to find

an appropriate cooperator to relay their traffic against performance degradation. More-

over, the surrounding SUs with better channel conditions are seeking for spectrum access

opportunities at the same time. Therefore, the cooperation between PUs and SUs are

feasible in wireless networks and beneficial to both user parties.

In CCRN, cooperation between PUs and SUs have attracted considerable attention

and have been extensively investigated in recent years. In [36], a three-phase TDMA

based scheme is proposed. The PU allocates a fraction of time for the SUs to access the

spectrum in exchange for cooperation in the form of relaying the primary data. In the

first phase, the PU transmits the data to the relaying SUs. The second phase is used for

one or multiple SUs relaying the PU’s data to the primary receiver, aiming at improving

the throughput of the primary link. As a reward, the SUs transmit their own traffic in

the third phase. Han et al. in [37] present a two-phase cooperation scheme in CCRN.

The PU transmits its own traffic in the first phase while the cooperating SU transmits

the PU’s traffic and its own traffic at the same time by using different power levels in the

second phase. In [38], a two-phase cooperative scheme is proposed, which can be achieved

at the expense of using multiple antenna systems. The SUs relay the primary traffic and

transmit the secondary traffic by spatially located multiple antennas simultaneously. In

[39], a distributed secondary user selection scheme, which optimizes the performance

of the secondary system without degrading the performance of the primary system, is

proposed.

Nevertheless, most of the existing works on CCRN mainly focus on cooperations

between PUs and SUs at the link-level [37, 38, 40–47], i.e., on the parameter settings

between one PU and multiple SUs by performing the time slot allocation for direct and
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forwarding transmissions, and/or adjusting the transmission power levels. A cooperation

scheme between a PU and multiple SUs in a TDMA manner is presented in [41, 42], where

a time slot allocation is investigated. To maximize the QoS in terms of throughput, the

PU leases an amount of spectrum to the SUs in exchange for cooperation. By performing

the time slot allocation, the PU decides when to cooperate and how to cooperate with

the SUs. In [37, 38, 44, 45], the cooperation schemes between a PU and an SU are

studied. Han et al. in [37, 43] investigate the cooperative SU’s power allocation in a

cooperative framework. In order to improve the cooperation performance, after the PU

transmits its traffic, the cooperating SU forwards the PU’s traffic and transmits its own

traffic at the same time by using different power levels. An algorithm is proposed in [44]

to maximize the PU’s throughput as long as the relaying SU’s performance requirement

is satisfied by adjusting the allocated time slots and the cooperating SU’s power level. A

cooperation scheme which adopts cooperative space time coding at the SU’s transmitter

to effectively cancel out the interference from the secondary transmission to the primary

transmission is studied in [45]. Another two-phase cooperation scheme between a PU

and single SU is investigated in [46]. Nevertheless, in a real network, the cooperation

is usually more complicated since there usually exist multiple concurrent transmission

pairs. Therefore, it is necessary to develop a cooperative approach from the perspective

of the whole network. Yi et al. in [47] investigate the cooperation between a primary

network and multiple secondary networks. However, it still investigates the cooperation

scheme between PUs and SUs with the purpose of increasing the throughput.

2.2 System Model

In a CRN, the spectrum bands are allocated to the PUs. The SUs do not have any

exclusive spectrum and can only try to opportunistically send their data by utilizing idle
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primary channels [48]. In our model, the SUs do not perform sensing and supervision of

the spectrum due to the complexity and cost. The PU chooses an SU for cooperation

and allows the selected SU to access the idle spectrum. The objective of the cooperation

is to optimize the utility of the PU when the performance requirement of the SU is also

satisfied.

2.2.1 Network Topology

We consider a CCRN consisting of a pair of PU (PU-Tx and PU-Rx) and multiple SUs,

as shown in Fig. 2.1. The PU owns a unique licensed channel while one of the SUs

is allowed to access the channel through cooperation with the PU. As per cooperation,

the PU and the selected SU use two orthogonal channels by exploiting two quadrature

components of the QAM modulation to transmit simultaneously. If there is a building

or a wall obstructing the communication between the PU-Tx and PU-Rx or the PU-Tx

is far from PU-Rx, the quality of the primary link is reduced dramatically. In this case,

there is a desire for the PU to find a relay node to send the data to its receiver. Different

from previous works, where the SUs access the spectrum opportunistically by sensing, the

PU chooses the best appropriate cooperating SU according to the information provided

by the SUs, and allows the selected SU to access the spectrum in the remaining time.

Furthermore, we assume that the PU completely trusts the SUs and there is no false

information offered by the SUs. Through cooperation, the PU can improve transmission

performance, while the SU can earn possibilities to access the spectrum. Therefore, our

cooperation scheme is based on mutual benefit.

In Fig. 2.1, PU-Tx, PU-Rx and D-SU denote primary transmitter, primary receiver

and secondary receiver, respectively. The solid line represents the primary transmission

while the dash line denotes the secondary transmission. We consider a PU, with a single

antenna, co-located with several SUs seeking transmission opportunities. The SUs are

17



System Model

equipped with two antennas. The PU-Tx broadcasts the request for cooperation when

its performance is reduced dramatically, expecting to improve the performance through

cooperation with the SU. The time period is then divided into two phases. In phase

one, the PU-Tx transmits its packet to the cooperating SU using the in-phase channel of

QPSK and this SU forwards the previously received packet to the PU-Rx simultaneously

using the quadrature channel of QPSK. In phase two, the SU transmits its own traffic to

the D-SU.

PU-Tx

SU

SU

SU

SUD-SU

PU-Rx

Phase Two

Phase One

Phase One

Primary Transmission

Secondary Transmission

Figure 2.1: Scenario of CCRN.

Three Phase Cooperation

Usually, the cooperation scheme is performed with three-phase. The PU transmits its

traffic to the BS as well as the cooperative SU during the first phase, and then, the

SU relays PU’s traffic to the BS in the second phase. Based on that, the SU obtains

its spectrum access opportunity and transmits in the third phase. Otherwise, the PU

transmits traffic to the SU in the first phase, then the PU and SU transmit PU’s traffic to

the BS simultaneously in the second phase. At last, the SU transmits to its destination,
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the access point (AP), in the third phase. The above two three-phase cooperation scheme

are shown as the following time slot frame:

PU--BS
PU--SU SU--BS SU--AP

   (1-     )α α β α β1-

Figure 2.2: Three-phase cooperation scheme (1).

PU--SU PU--BS
SU--BS SU--AP

    (1-    )α β α β α1-

Figure 2.3: Three-phase cooperation scheme (2).

Two Phase Cooperation

Aiming at improving spectrum efficiency, many researchers focus on squeezing three-

phase cooperation scheme to a two-phase cooperation scheme. In this chapter, we address

the cooperation between PUs and SUs within two phase, which is illustrated in Fig. 2.4

PU --SU/BS
SU--BS SU--AP

1-α α

Figure 2.4: Proposed two-phase cooperation scheme.
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2.2.2 Relaying Strategy

Cooperation among users in a wireless network can substantially improve the performance

of communication in terms of reliability or transmission rate [21]. For direct transmission,

the relaying protocols in which the relay either amplifies what it receives, or fully decodes,

re-encodes, and retransmits the source message. We call these options AF and DF,

respectively [49]. In this chapter, the AF mode is used by the cooperating SU to relay

the PU’s traffic.

We consider a distributed CRN without the help of either information exchange among

SUs or a central controller. The time slot frame structure for the PU cooperating with

one SU is shown in Fig. 2.5.

Choosing a
Cooperative SU

Cooperation between PU and SU:
PU-Tx Transmits to SU
SU Transmits to PU-Rx

SU Transmission

PU Broadcasts SU Transmits the
Optimal Value to PU

PU Makes a Decision and
Transmits the First Data

Spectrum in use Spectrum hole

Figure 2.5: Time frame structure.

When the performance is dramatically reduced, such as the PU-Tx is far away from

its corresponding PU-Rx or there are some obstacles blocking the link, the PU needs a

suitable cooperator to help improve transmission performance and reliability. The PU

broadcasts request for cooperation, selects a cooperator from the nearby SUs and sends

its own parameters to the SUs, i.e., transmission power and the location information.

Then, the SUs determine the optimal parameters for cooperation to maximize the PU’s

utility and send back to the PU. Based on the information provided by the SUs, the

PU chooses the most suitable SU as the cooperator and sends the first packet to the
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selected SU. Likewise, PU-Tx transmits the nth packet to this SU while SU transmits

the (n−1)th packet received earlier to PU-Rx simultaneously using quadrature signaling.

It is assumed that the SU can transmit and receive at the same time via two antennas

covering two different regions. In addition, the PU and the SU cooperate using two

orthogonal channels without interfering each other, which can improve the performance

of the CCRN system. When there is no continuous traffic received from the PU-Tx, the

SU starts to transmit its own traffic during the secondary transmission.

The duration for cooperation is denoted by T , which is further divided into two

phases. Specifically, a fraction β (0 ≤ β ≤ 1) of time slot T is used for the cooperative

transmission. The cooperating SU is allowed to transmit its own data to the correspond-

ing destination in the remaining duration of (1−β)T . In previous work in the literature,

the two-phase cooperative relaying only works on the spectrum which is utilized by the

PU and the idle spectrum is wasted. In contrast, we treat the spectrum in use and spec-

trum hole together as a whole time slot T , wherein all the occupied spectrum is used

for relaying and the spectrum hole is used for secondary transmission. With cooperative

communication, there is no need for the SUs to perform spectrum sensing and spectrum

monitoring. Moreover, the right for the SU to access the licensed spectrum is dedicated.

The transmission links are assumed to conform to a Rayleigh flat fading model. There-

fore, the channel condition remains static during slot time T , but varies over the slots.

In CRN, the channel state information (CSI) can be acquired by the SU.
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2.3 Cooperation Optimization for CCRN

2.3.1 Problem Formulation

The cooperation involves the PU selecting the most suitable SU and the SU determining

the power allocation coefficient to maximize the performance of the PU. We formulate the

decision procedure as a nonlinear optimization problem and then derive the closed-form

solution.

The PU and the selected SU cooperate by exploiting two orthogonal channels to avoid

the interference between different transmissions. Let P1 and P2 denote the transmitting

power of the PU and the SU, respectively. The SU forwards the PU’s traffic with power

αP2 and transmits its own traffic with power (1− α)P2. The channel gain from the

PU-Tx to SU, from the SU to PU-Rx and from the SU to its own receiver in each slot

are denoted as h1, h2 and h3, respectively. Cth is the desired performance value of the

relaying SU. To determine the SNR, we apply a Rayleigh fading channel model, where

F is the fading and follows an independent exponential distribution. Let N0 be the one-

sided power spectral density of the noise and W be the bandwidth. As a result of fading

channel environment, the SNR is FP
N0W

= hP , where h = F
N0W

. For simplicity, we always

have N0 = 1.

To choose the most appropriate cooperative SU for the PU, a performance optimiza-

tion problem under certain utility and power constraints is formulated. We consider that

the selected SU uses the AF relaying mode to transmit the PU’s traffic and maximizes the

performance of the PU with the constraint that the minimum requirement of secondary

transmission needs to be satisfied. The utility of the PU through cooperation is βT ·

W log2

(
1 + αh1h2P1P2

h1P1+αh2P2+1

)
. The utility of the SU is (1− β)T ·W log2 [1 + (1− α)h3P2].
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Therefore, the optimization problem is described as follows:

maximize βT ·W log2

(
1 +

αh1h2P1P2

h1P1 + αh2P2 + 1

)
subject to (1− β)T ·W log2 [1 + (1− α)h3P2] ≥ Cth

Pmin ≤ P2 ≤ Pmax

0 < α < 1.

(2.1)

For simplicity, we let the bandwidth W = 1 and T = 1.

2.3.2 Utility Optimization

Since β, h1, h2, h3, P1 and Cth are all known, we can denote c0 = β, c1 = h1P1, c2 = h2,

c3 = h3 and c4 = Cth. Then this optimization problem is equivalent to:

minimize f(α, P2)

subject to (1− c0) log2 [1 + (1− α) c3P2]− c4 ≥ 0

Pmin ≤ P2 ≤ Pmax

0 < α < 1

(2.2)

where f(α, P2) = −c0 log2

(
1 + αc1c2P2

c1+αc2P2+1

)
.

The optimization problem as in (2.1) or (2.2) is very complex to solve. It is preferable

to linearize and solve the optimization in dual space, but the resultant computation is

intensive. For our purpose, it is feasible to solve the problem as discussed below.

Using First-Order Necessary Conditions, we are considering the following program.

Since the objective function is a continuous function, we can rewrite the constraints as

Pmin ≤ P2 ≤ Pmax and 0 ≤ α ≤ 1, which implies the feasible solution of this optimization

problem is a closed set.

Proposition: In problem (2.2), there must be a feasible solution and the solution

reaches the optimal point at the boundary.
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Proof : Let x0 = (α∗, P ∗2 ) be an optimal solution and we assume that the point x0

is not at the boundary, which means x0 is within the region Pmin < P2 < Pmax and

0 < α < 1. The resulting optimization formulation can be rewritten as:

minimize f(x)

subject to ci(x) ≥ 0, i ∈ I
(2.3)

x0 is defined as the feasible solution of problem (2.3). Therefore, the active set is A (x0) =

{i ∈ I : ci(x0) = 0}.

Lemma (LICQ): Given the point x and the active set A (x), we say that the linear in-

dependence constraint qualification (LICQ) holds if the set of active constraint gradients

{∇ci (x) , i ∈ A (x)} is linearly independent.

According to the above lemma, LICQ holds at x0 if and only if {∇ci (x) , i ∈ A (x)}

are linearly independent. In our case, there is only one active set ci (x), which is

(1− c0) log2 [1 + (1− α) c3P2]− c4 ≥ 0. We have,

∇ci (α, P2) =


(1− c0) c3P2 ln 2

1 + (1− α) c3P2

(1− c0) (1− α) c3 ln 2

1 + (1− α) c3P2

 (2.4)

Because of 0 < c0 < 1, P2 > 0 and 0 < α < 1, ∇ci (α, P2) is not equal to 0 which means

the set of {∇ci (x) , i ∈ A (x)} is linearly independent. Since x0 is a local solution, if

LICQ holds at x0, Karush-Kuhn-Tucker (KKT) conditions must be satisfied. Using the

Lagrange multiplier method, we have

L (α, P2, λ) = f (α, P2)− λg (α, P2) (2.5)

where f(α, P2) is the same as in formulation (2.2) and g(α, P2) = (1− c0) log2 [1 + (1− α) c3P2]−

c4. The gradient of (2.5) is:

∇L (α, P2, λ) =


∂L (α, P2, λ)

∂α
∂L (α, P2, λ)

∂P2

 (2.6)
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where,

∂L (α, P2, λ)

∂α
= −c0 ·

c1c2P2 (c1 + 1) ln 2

(c1 + αc2P2 + 1) · A

+ λ (1− c0) · c3P2 ln 2

1 + (1− α) c3P2

∂L (α, P2, λ)

∂P2

= −c0 ·
c1c2α (c1 + 1) ln 2

(c1 + αc2P2 + 1) · A

− λ (1− c0) (1− α) c3 ln 2

1 + (1− α) c3P2

where A = (c1 + αc2P2 + αc1c2P2 + 1). Since λ ≥ 0, 0 < c0 < 1, ci > 0 (i = 1, 2 and 3),

P2 > 0 and 0 < α, β < 1, we can obtain that equation 2.6 does not equal to 0, which is

in conflict with the KKT conditions.

As mentioned above, we can see that the LICQ holds but the KKT conditions are

not satisfied. Therefore, the assumption is not true and the optimal solution should be

reached at the boundary. In Fig. 2.7, we notice that the value of the objective function

increases while P2 becomes larger, so we have P ∗2 = Pmax. Then, the optimal power of

SU can be expressed as:

α∗ = 1− 2
Cth
1−β − 1

h3Pmax
. (2.7)

2.4 Numerical Results

In this section, we present the numerical results to show the performance of the proposed

scheme in terms of SUs’ power consumption, cooperation time allocation and so on.

First, energy efficiency is illustrated with different time allocation coefficient β. Then,

simulations are carried out to evaluate the performance of the PU in cooperation with

the selected SU, which is compared to that of the PU without cooperation. Moreover,

different scenarios are considered and compared in the simulations. Afterwards, the
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performance effected by the factor β, which indicates the cooperative transmission time

slot ratio, is discussed. In addition, the utility of the PU for different time allocation

coefficients β with different power is demonstrated. Finally, we compare the proposed

cooperation scheme with a traditional cooperation scheme.

Fig. 2.6 shows the energy efficiency with respect to the transmission power of the

SU, for different time allocation coefficient β, given the PU’s transmission power is fixed.

The power of PU is 1mW, the power of SU varies from 0.1mW to 1mW, and time slot

window length is 1s. It can be seen that the cooperation performance cannot be always

increased as β grows. Actually, a larger β leads to a smaller optimal transmission power

of SU, and vice versa. The reason is that for a greater allocation time β, the SU needs

less transmission power to relay PU’s traffic as it takes a longer time. However, as the

duration for cooperation becomes longer, the selected SU may be reluctant to relay PU’s

traffic with less transmission power since they desire for larger transmission opportunity.

Hence, there is a tradeoff between the allocation time β and SU’s transmission power.

But it is worth noting that β is not the only factor for the SU to choose its transmission

power, and the channel condition also matters.
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Figure 2.6: The relationship between time allocation β and SU’s consuming power.
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The simulation parameters are set as follows: h1 = 25.2, h2 = 26.1 and h3 = 12.3; the

power of PU is set as 1mW, Pmin and Pmax represent the minimum power and maximum

power of SU which are set as 0.3mW and 1.2mW, respectively; the desired utility of SU

is Cth = 1 and β = 3
5
. It is shown in Fig. 2.7 that the performance of PU improves as

α increases whereas the performance of SU decreases. It can be explained that the more

energy the cooperating SU spends for transmitting PU’s traffic, the less energy is devoted

to its own transmission. In addition, an increment in the SU’s power consumption for

relaying and its own transmission will result in an increment in the performance of both

PU and SU. For the scenario that the PU-Tx is far away from its receiver or the link

between the PU-Tx and PU-Rx is blocked by buildings, the performance with cooperation

is much better than that without cooperation when α is beyond a certain threshold. In

Fig. 2.7, it is necessary for the PU to choose the SU to cooperate with SU’s maximum

power when α is larger than 0.09 and the SU with its minimum power when α is larger

than 0.35, respectively.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

α

P
er

fo
rm

an
ce

 

 

PU−co (P
min

)

PU−co (P
max

)

SU (P
min

)

SU (P
max

)

PU−non co

Figure 2.7: Comparison performance of PU and SU with different α.

In Fig. 2.8, the maximum performance of the SU is achieved when α is around 0.68
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while the desired utility of SU is also satisfied, which is consistent with the result obtained

from (2.7). We analyze the following three cases shown in Fig. 2.8. We have randomly

generated two groups of uniform distributed channel coefficients which refers as poor

channel condition group and strong channel condition group, and the average value of

two groups are set as 5 and 40 respectively. Case 1 corresponds to the scenario that

the SU is within the region, which is in the middle of the links from the PU-Tx to the

cooperating SU and from the SU to PU-Rx. In case 2, h1 and h2 fall in the poor channel

condition group and strong channel condition group, which means the link between the

SU and the PU-Rx is strong whereas the link between the PU-Tx and the SU is weak

since the cooperating SU is far away from PU-Tx, which is the same as PU’s receiver. In

case 3, h1 and h2 fall in the strong channel condition group and poor channel condition

group, respectively, which correspond to the scenario that, even the link between the

PU-Tx and the SU is strong, while the link between the SU and the PU-Rx is weak due

to shadowing or deep fading. It is seen that, in cases 2 and 3, the performance of PU is

much poorer than that in case 1.
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Figure 2.9: The performance of PU effected by the factor β.

Fig. 2.9 shows the trends of the PU’s performance versus the power allocation coef-

ficient α, for different parameters of β (the fraction of time slot used for relaying trans-

mission). It is seen that the performance of the PU increases with α, and as the factor

β increases, the performance is improved accordingly. Specially, when β = 1, the SU

only helps forward the PU’s traffic without transmitting its own traffic, which is referred

to as the conventional relaying scenario. When β = 0, the SU transmits its own traffic

without relaying the PU’s traffic.

Fig. 2.10 shows the utility of the PU for different time allocation coefficients β. The

power of SU is fixed to 2mW, and the power of PU varies from 1mW to 3mW. It can be

seen that when β = 1/3, the PU’s utility through cooperation with the SU is even lower

than that with the direct transmission. Therefore, in this case, the PU will not choose to

cooperate. However, for β = 3/5 and β = 3/4, the PU’s utility is much better through

cooperating with the SU, compared with that using the direct transmission. Therefore,

the PU is willing to cooperate with the SU.
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Figure 2.10: PU’s utility with and without cooperation with the SU.

Fig. 2.11 compares the performance of the proposed cooperation scheme with the

traditional cooperation scheme. In traditional cooperation scheme, the PU transmits the

traffic to the BS first, and then the cooperating SU relays the traffic. Finally, the SU

acquires the remaining time slot spectrum for its own transmission. From this figure,
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it can be seen that with the proposed cooperation scheme outperforms the traditional

one. In addition, it can also be seen that the utility of SU increases, given the PU’s

performance remains the same.

2.5 Summary

In this chapter, we have proposed a novel cooperative strategy in CRN, based on quadra-

ture signaling. By employing the two orthogonal channels, the three-phase relaying

process can be integrated into two-phase without interference. We have considered the

underutilized spectrum and spectrum hole as a whole time slot. When the channel con-

dition between the PU and its receiver is poor, the PU’s performance can be improved

through cooperation with an assistant cooperative relaying SU. We have formulated this

model as a nonlinear optimization problem. Through exploiting the optimal algorithm,

the PU’s utility can achieve the optimal value. As a reward, the second phase is allocated

to the SU for its own traffic. The optimal power allocation have been analyzed and the

closed-form solution has been derived for AF mode.
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PCN/SCN Cognitive Radio

Networking

A salient feature of a cluster of PUs is that every member has equal channel access

ability. Collectively, a cluster of PUs will have more power and multiple heads to connect

with multiple cluster heads of multiple clusters of SUs. Thus, in PCN/SCN, the system is

capable of supporting multiple PCN and SCN connections. PCN/SCN is fair and robust.

3.1 Literature Review

3.1.1 Cooperative Partner Selection

In PCN/SCN, cooperation is adopted to achieve higher transmission rate and lower

energy consumption. However, the first step of cooperation is how to select the best

cooperator to cooperate. Therefore, cooperative partner selection which is also referred

as relay selection has raised many interest in recently years.

Some works investigate in relay selection [50–54].In [50], a partner selection algorithm
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is studied in cellular networks, and a novel non-bipartite stable matching algorithm is

developed in which the overall energy-consumption rate is minimized in the network by

appropriately grouping users and setting their power levels according to their QoS re-

quirements. A relay selection problem which takes the effect of PU interference into

consideration is proposed in cognitive radio networks in [51]. In [52], a QoS aware opti-

mal relay selection, power allocation and subcarrier assignment approach under a total

power constraint is proposed, and the authors simulate the relay selection scheme based

on LTE-Advanced (LTE-A) network. Partner selection schemes both in distributed and

centralized manner are investigated in [53] for cooperative communication in wireless

networks. In [54], cooperative relaying in an IEEE 802.15.4 compatible wireless sensor

network is investigated, and the simulation shows that cooperation can provide a signif-

icant energy saving by pursuing a similar performance in terms of outage and error rate

compared with non-cooperation scenario.

In CCRN, PU has the privilege to determine its relay nodes while SUs evaluate their

own utility gains in the cooperation with the specific PU, which are the unique features

in the relay selection. Therefore, to improve the performance of CCRN, it is essential to

study how to choose an appropriate relaying SU set.

3.1.2 Spectrum Sharing

Spectrum sharing plays an important role in CRN because it can eventually result in more

efficient utilization of spectrum. There are many ways to category spectrum sharing:

centralized and distributed, cooperative and non-cooperative. In centralized spectrum

sharing, the spectrum allocation and access procedures are controlled by a central entity.

In [55], competition by users is considered through a central spectrum policy server, while

in distributed spectrum sharing, spectrum allocation and access are based on local (or

possibly global) policies that are performed by each node distributively [56]. A common
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technique used in cooperative spectrum sharing schemes is forming clusters to share

interference information locally. This localized operation provides an effective balance

between a fully centralized and a distributed spectrum sharing mechanism. A single-hop

flow spectrum sharing with five rules that tradeoff performance with communication costs

and implementation complexity in an non-cooperative manner is considered in [57]. Since

interference in other CR nodes is not considered, non-cooperative spectrum sharing may

result in reduced spectrum utilization. However, non-cooperative spectrum sharing do

not require exchanging massage frequently between neighbors as in cooperative spectrum

sharing.

Recently, many spectrum sharing mechanisms have been proposed: game theory based

methods [58, 59], contract based schemes [60, 61], auction based approaches [62, 63], etc.

However, the aforementioned works only address the scenario of a single PU. In reality,

there are multiple PUs and multiple SUs coexisting in the network. Hence, a more

complicated scenario brings some new challenges, which require new designs. Various

extended frameworks are proposed to investigate the multiple PUs scenario in CRN.

Evolutionary games are applied in [64, 65] to implement the spectrum allocation in

dynamic spectrum sharing networks with multiple PUs. In [66], the scenario of multiple

PUs interacting with multiple SUs through a coalitional game is discussed. Unfortunately,

similar to the single PU scenario, these works still consider the cooperation individually.

Therefore, we investigate the spectrum sharing problem based on cluster, in which each

PU has equal spectrum access ability and can be the cluster head who cooperates with

the selected SU. The CRN is integrated as a PCN/SCN, and the PCN/SCN system can

support multiple connections between PUs and SUs.
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3.1.3 Matching Theory

Matching theory can describe the mutually beneficial relationships between two disjoint

groups [67]. In the matching, agents in one group are matched to the agents in the other

group based on their declared preference ranking lists. It is essential to study how to

choose an appropriate relaying SU set. Maximum weighted matching (MWM) algorithm

is employed in [68–70]. In [68], MWM is adopted to solve the data retrieval scheduling

problem in a wireless data broadcast system, and the scheduling problem in vehicular

networks and in wireless ad hoc networks are investigated in [69] and [70], respectively.

However, the MWM algorithm used in CCRN is different since we need to consider the

utility of both the primary network and the secondary network.

3.2 Problem Definition

In CRN, there are two parties of users: PUs and SUs. On one hand, PUs desire to improve

their utility. On the other hand, SUs want to obtain the spectrum access opportunity.

Therefore, cooperation is adopted to benefit both sides of users in the CRN. However,

only the cooperating SUs who help the PUs relay primary traffic can benefit. In fact,

a large number of SUs are searching for spectrum. Each PU cooperates with multiple

SUs may be one solution for the above starving SUs problem, but more cooperator SUs

will lead to higher cooperation cost for the PUs. To this end, a cluster based two-phase

spectrum sharing mechanism among the users in CRN is proposed.

In order to improve the performance of primary network, the PUs find the cooperators

from the SUs to cooperate. Nevertheless, in practice, some SUs might not be willing to

cooperate with the PU, as it is quite energy consuming to relay the PU’s traffic while the

utility gain might be relatively low, i.e., the ratio of utility to power consumption is low.

But the SUs still desire to gain secondary transmission opportunity so as to improve their
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utility. Moreover, only the SUs who cooperate with the PUs can benefit, while there may

be many starving SUs in the surrounding areas. Some works concentrate on a scenario

that a PU cooperates with multiple SUs to benefit more SUs, but the PU may not be

always willing to do so. On one hand, the coordination overhead and the complexity of

the allocation algorithm grow with the number of participating SUs. If the SUs are not

selected carefully, it would become a big issue and may nullify the benefit from multiuser

diversity due to the increasing coordination cost. An appropriate SU selection process

should guarantee that the PU can improve its QoS through cooperation, and it would be

sufficient even if one single SU can achieve the goal. On the other hand, under current

relay-and-pay strategy in which only the relaying SU can access the remaining time slot,

while other SUs may be starving due to the less attractive relay capability. In this case,

the spectrum access opportunities will be reduced from the perspective of the whole

network. Therefore, the fairness of the network needs to be further considered.

To address the aforementioned issues, a group of users, IUs, are assigned by the PCN

clusters. After obtaining the spectrum access opportunity by cooperating with the PUs

who are the cluster head of PCN, the selected IUs cooperate with other SUs to share the

spectrum to benefit these SUs in the cluster of SCN. However, an IU may not be always

selected as the cooperator of the PU, it sacrifices itself and expects to obtain benefit in

the future when it is not selected as the IU. Because of such kind of mechanism, the

cooperation framework have the motivations to keep working.

The research objective of this chapter is to develop a spectrum sharing mechanism

in CRN to improve spectrum efficiency as well as network utility. First, the PUs are

formed clusters of PCN based on their locations, and the cluster heads are chosen. Then,

a subset of SUs which are referred as IUs are selected to relay the head PUs’ traffic. In

this way, head PUs’ utility can be improved. After the IUs cooperate with the head PUs,

the IUs form clusters with other SUs and assume the role of cluster heads of SCN. Hence,
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the head PU only conducts transactions with the cluster head of SCN as the first phase

in the cooperative networking which will reduce the cooperation cost compared with PU

cooperating with every SU in SCN. The sharing of transmission opportunities within the

cluster is the second phase of the cooperation so that the members in the cluster can

acquire the spectrum access opportunities. Therefore, the proposed spectrum sharing

mechanism benefits the PU, the cluster head IU as well as every SU in the cluster.

3.3 System Model

3.3.1 Network Model

It is considered that a CCRN consists of PCN and SCN. In PCN/SCN, a base station

(BS), PUs, IUs and SUs are uniformly located in the same area. The BS serves the

PUs, and the IUs who relay for the PUs can also communicate with the BS. The PUs

form the PCN clusters, and some of them can be the cluster heads who cooperate with

selected SUs (IUs). Spectrum frequencies of the cluster heads of PCN are assigned with

bandwidth Wi (i = 1, 2, · · · ,M). When the performance of PCN cluster becomes poor or

the PUs desire to improve the cluster’s performance, the PCN’s cluster head asks the BS

broadcasting the availability of spectrum opportunities to SUs over a dedicated control

channel. If an SU wants to cooperate with this head PU, it will send its feedback to

the BS through the control channel. Then, the selected SU works as the IU by relaying

traffic for head PU. Head PUs select the IUs based on their cooperation utility, and each

IU may be selected by one or multiple cluster heads of PCN. Each cluster head PU uses

βiT for transmission and leases (1 − βi)T to the IU, where T is the slot time, and βi

denotes the cooperation time fraction. The IU then allocates the acquired spectrum to

its cluster members of SCN. This scheme can be implemented through a TDMA based

medium access control (MAC) strategy in a way similar to the MAC in IEEE 802.16
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standards. As mentioned above, the scenario can be separated into two parts: PCN and

SCN, which are shown in Fig. 3.1 and Fig. 3.2, respectively.

In Fig. 3.1, the PUs form PCN clusters which are shown by clouds in the figure,

in which every PU can act as cluster head for channel access, i.e., each PU has equal

right. The cluster heads of PCN can cooperate with the IUs. Within the cluster of PCN,

the PUs who are performed as the cluster heads of PCN act as a local control center

to coordinate the transmission. In order not to be confused, the following mentioned

PUs are referred to the cluster head PUs. The cluster size can be optimized by low

energy adaptive clustering hierarchy (LEACH) protocol which is proposed in [71]. The

transmission time of PUs is divided into time slot, and the proposed scheme uses slotted

TDMA for channel access. In Fig. 3.2, without leading confusion, only the cluster heads

of PCN are shown. Each IU forms its own cluster with surrounding SUs who are desiring

for spectrum access, and within the SCN cluster, the IU and SUs share the aggregated

spectrum together.
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Fig. 3.1: Primary cooperative networking (PCN) scenario.
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Fig. 3.2: Secondary cooperative networking (SCN) scenario.

3.3.2 Channel Model

Transmission channels are assumed to conform to a Rayleigh flat fading model in which

the channel conditions are stable during a fix time slot T , but vary independently from

one slot to another. The CSI is assumed perfect, but it is estimated in practice using

techniques such as minimum mean-square-error (MMSE) estimation, least squares (LS)

estimation, fusion and sampling, etc., indicating that CSI is imperfect in practice.

Primary Cooperative Network (PCN)

In PCN, the cooperation between cluster heads of PCN and selected IUs is implemented.

After the BS send the cooperation request from the PUs in PCN cluster, the SUs who

accept the request will send their feedback to the BS. Each PCN cluster will be considered

as a whole while selecting the IUs, and the cluster heads choose the same the cooperator

IU based on the total utility they can acquire through cooperation. When an SU is

selected as the IU by multiple PUs, it relays the traffic from the PUs to the BS using

M-ary phase shift keying (MPSK) modulation with different power levels.
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During the cooperation between PUs and the selected IU, the received signal from

PUi (i = 1, 2, · · · ,M) at the BS and IUq (q = 1, 2, · · · , Q) in a fixed time slot can be

written respectively as follows:

ri0 =
√
Pihi0xi + ni0 (3.1)

riq =
√
Pihiqxi + niq (3.2)

where Pi is the transmission power of PUi, and xi is the transmission signal of PUi.

The channel fading coefficients from PUi at the BS and the IUq are denoted by hi0 and

hiq, respectively. ni0 and niq are AWGNs with variance N0Wi (N0 denotes the one-sided

power spectral density of the noise, and Wi is the bandwidth of PUi), where N0 = 1 for

simplicity.

Each cooperative IU employs an AF scheme to relay PU’s traffic. When an IU is

selected by the PCN cluster with multiple cluster heads PUs, its power is divided for

relaying PUs’ traffic. After IUq receives the signal riq from the PUi, it relays the signal

by transmitting

rq0 =
Lx∑
i=1

(√
ξiPqhq0γqriq

)
+ nq0 (3.3)

where Pq is the total transmission power of IUq, and Lx is the number of cluster head

PUs in each PCN cluster. ξi is the power fraction of Pq which is allocated for delivering

PUi’s traffic, and hq0 represents the channel fading coefficient from IUq to the BS. nq0 is

also the AWGN, and γq is the amplification gain.

The utility of PUi obtained through cooperation is

Ui = βiT ·Wi log2

(
1 + h2

i0Pi +
ξih

2
iqh

2
q0PiPq

h2
iqPi + ξih2

q0Pq + 1

)
(3.4)

where βi is the time fraction used for cooperative transmission between PU and IU.

Each PU has equal bandwidth for simplicity which means W = Wi (i = 1, 2, . . .M). For

Rayleigh channels, h2
i0, h2

iq and h2
q0 follow exponential distribution.
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Before the handshake of the selected IU and PCN cluster, the selected IU need to

optimize the total utility that they can help with the PUs within the same PCN cluster.

The formulated optimization problem is shown as follows:

maximize
ξi

Lx∑
i=1

βiT ·Wi log2

(
1 + h2

i0Pi +
ξih

2
iqh

2
q0PiPq

h2
iqPi + ξih2

q0Pq + 1

)
subject to 0 < ξi < 1

Lx∑
i=1

ξi = 1

(3.5)

where i = 1, 2, ..., Lx. The above optimization function is a convex function. Therefore,

according to KKT conditions, we can obtain the following equations:

∂U

∂ξ1

=
∂U

∂ξ2

= · · · = ∂U

∂ξLx
,

Lx∑
i=1

ξi = 1

(3.6)

where U is given by the objective function of (3.5). We can solve above equations, and

obtain the values of ξi, since ∂U
∂ξi

> 0, and
∑Lx

i=1 ξi = 1, we can obtain the optimal solutions

of ξi which are feasible.

Secondary Cooperative Network (SCN)

If the IU excludes the rewarded spectrum bands, the utility of IUq through cooperation

with PCN cluster can be shown as

Uq = (1− βi) · LxWi log2

(
1 + h2

qPq
)

(3.7)

where Pq denotes the transmission power of IUq, and hq represents the channel gain of IUq

transmitting to its own destination. Lx is the member of cluster heads in PCN cluster.
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Otherwise, if the IU forms the SCN cluster, and shares the acquired spectrum bands

with other surrounding SUs, the SNR of user j within cluster i is described by

SNRij =
h2
jPij

N0Wi

(3.8)

where i = 1, 2, · · · ,M , and j = 0, 1, 2, · · · , Y (j = 0 denotes IU, other js denote the SUs;

Y is the number of users in SCN cluster). Pij represents the transmission power of user

j who joins in cluster i, and hj denotes the channel gain of user j joining in a cluster.

The transmission rate of user j associated with cluster i is

Rij = LxWi log2 (1 + SNRij) . (3.9)

Therefore, the utility of user j associates with cluster i of SCN is given by

Vij = tij ·Rij (3.10)

where tij denotes the time slot assigned to user j within cluster i.

3.4 Proposed Spectrum Sharing Mechanism

A cluster based two-phase spectrum sharing mechanism is proposed. When an IU is

selected by the PU as the relay, the IU forms a cluster with other SUs and assumes the

role of cluster head. The PU only conducts transactions with the SCN cluster head as

the first phase in the cooperative networking. The sharing of transmission opportunities

within the SCN cluster is the second phase of the cooperation. The proposed spectrum

sharing scheme benefits the PU, the IU as well as every SU in the cluster.

3.4.1 Overview of the Spectrum Sharing Structure

The spectrum sharing frame structure consists of three parts: uplink transmission, down-

link transmission and a guard period (GP), which is required between the uplink and
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downlink to avoid transmission interference. Uplink transmissions are from the users

to the BS, while the downlink transmissions are from the BS to the users. The spec-

trum sharing adopted during the uplink transmission period is studied, and the downlink

transmission can be analyzed in a similar way. The spectrum sharing structure for one

time slot is illustrated in Fig. 3.3. The IU selection is performed in advance of the two-

phase cooperation, and then the two-phase cooperation is performed. IUs are a subset

of SUs, who have better link conditions such as channel fading coefficients, power levels

and locations than other SUs. Each of the IUs, acting as a cluster head of SCN, forms a

cluster with other SUs, who act as cluster members. The IU shares the spectrum gained

by assisting the cluster heads of PCN with all cluster members of SCN in a fair manner.

IU
Selection  First Phase Cooperation Second Phase Cooperation

Cluster heads of PCN (PUs) cooperate with cluster
heads of SCN (IUs) Cooperation within the cluster of SCN

Figure 3.3: Spectrum sharing frame structure.

3.4.2 IU Selection

In order to improve the performance of the primary network, the PUs find the cooperators

from the SUs to cooperate. However, in practice, some SUs might not be willing to

cooperate with the PU, as it is quite energy consuming to relay the PU’s traffic and the

utility gain might be relatively low, i.e., the ratio of the utility to the power consumption

is low. But these SUs still desire to gain the secondary transmission opportunity so as

to improve the utility. Based on the aforementioned, a group of IUs are selected. After

obtaining the spectrum access opportunity by cooperating with the PU, the selected IU

cooperates with other starving SUs to share the spectrum to benefit these SUs in the

cluster. Therefore, we address the cooperation by the introduction of IUs. An IU may
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not be always selected as the cooperator of the PU. In this case, the SU expects to obtain

the benefits in the future when it is not selected as the IU. Nevertheless, with whom to

cooperate is a challenging issue since it affects the performance of the cooperation pair.

We perform the MWM to solve the IU selection and maximize the cooperation utility of

the PUs and IUs.

The procedure is as follows: the PUs let the BS broadcasts the cooperation selection

requirement which includes the information of cluster number i, the number of cluster

head in cluster i and the transmission power of each cluster head to the SUs. The SUs,

who participate in the cooperation with the PUs, send feedbacks wherein contains their

transmission power values Pq which they want to devote in delivering PUs’ traffic to the

BS as well as the value of ξi. After the BS collects all of the information, it chooses

the optimal value of βi, and calculates the ratios of utility to energy consumption of the

PUs and SUs through cooperation which will be formulated later in (3.15), and then

performs the bipartite maximum weighted matching to obtain the cooperation pairs of

the network, which means the IUs are selected.

3.4.3 Cluster based Two-phase Cooperation

The cluster based two-phase cooperation is depicted in Fig. 3.4. We only illustrate the

case that PCN has one cluster head (PU) to simplify the statement. The IU cooperates

with the PU in a TDMA manner. The PU broadcasts its traffic to the BS and cooper-

ating IU, and then the IU relays PU’s traffic to the BS. The aforementioned first phase

cooperation is shown in the left part of Fig. 3.4. The right part of Fig. 3.4 illustrates

the second phase cooperation, where the SCN cluster consists of one cluster head IU and

two cluster members (the cluster size needs to be optimized, which is not the main focus

of this thesis).

As per cooperation in phase I, the PU and the selected IU cooperate with each
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Figure 3.4: Two-phase cooperation process.

other. During phase II, the IU initializes the cluster with surrounding SUs, and the SCN

cluster is formed with the SUs who have better link conditions than other users who

are not selected as cluster members. Each cluster is formed with the size based on its

own capability, and the spectrum in a cluster is divided into orthogonal channels shared

by cluster members. The IUs transmit their traffic to the corresponding access points

(APs), and then each cluster member SU combines IU’s traffic and its own traffic through

network coding and transmits to the AP. It is worth noticing that the network coding is

only adopted when the channel condition between the IU and the AP is poor, such as

when the IU is far away from its AP or there is a building blocking the link between the

IU and its AP. Otherwise, the SUs only transmit their own traffic to the AP.

3.4.4 Weights Calculation

In a time slot T , after cooperation with PUs, the IU can acquire the remaining time slot

(1− βi)T as well as a factor ω∗ij(t) as a reward, and ω∗ij(t) is a ratio between 0 and 1.

The factor ω∗ij(t) will affect the time allocation of the spectrum sharing process within

the cluster and can be calculated by

ω∗ij(t) = Gi ·
Pij

P j
max

(3.11)
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where t represents the tth (t = 1, 2, 3, · · · ) spectrum sharing process, and Gi is an ad-

justable factor determined prior to the IUs being selected. The IU selection competition

will become more intensive as the value of Gi increases. Pij denotes the transmission

power of IU in cluster i, and P j
max is the power limitation of the IU.

When the spectrum sharing is implemented for the first time, i.e., t = 1, the weights

are initialized for each user within cluster i which is given by

ωij(t) =


ω∗ij(t) +

1− ω∗ij(t)
Ki + 1

, j = 0

1− ω∗ij(t)
Ki + 1

, j ≥ 1

(3.12)

where j = 0, 1, 2, · · · , Ki, j = 0 and j ≥ 1 denote the IU and the SUs in the cluster,

respectively. Ki is the number of SUs in cluster i. Hence, there are Ki + 1 users in the

cluster including the cluster head IU and cluster members SUs.

During the spectrum sharing process, the users may cooperate with each other when

some poor links exist among them. If a user cooperates with others, it will receive a

reward ω+
ij(t), a positive value. Otherwise, if it receives help from other users, a penalty

ω−ij(t), a negative value, will be assigned. In each round of the spectrum sharing with

cooperation transmission, ω−ij(t) = −ω+
ij(t)

Li
is required to guarantee the stability of the

rewards, where Li is the number of cooperators.

The rewards of users in the cluster at the beginning of the next round spectrum

sharing are calculated by

ωij(t+ 1) =

ωij(t) + ω∗ij(t+ 1) + ω+
ij(t) + ω−ij(t), j = 0

ωij(t) + ω+
ij(t) + ω−ij(t), j ≥ 1

(3.13)

where ω+
ij(0) = 0 and ω−ij(0) = 0.

In addition, at the beginning of each round of time slot allocation, the reward of each

user will be a part of the total rewards of the users in the cluster to ensure the summation
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of the rewards equals to 1, i.e.,
∑Ki

j=0 ωij(t) = 1 for ∀t, i. Therefore, each SU’s weight will

change proportionally to the weight of IU, which may effect the preference ranking lists

of the SUs.

3.5 Optimization Design for Spectrum Sharing

3.5.1 Maximum Weighted Matching

IU selection is performed over the network to select the IUs who cooperate with PUs,

with the objective of maximizing the total utility of both the PUs and the IUs.

The IU candidates (SUs) can obtain the utility through cooperation represented by

Uij = (1− βi) · LxWi log2

(
1 + h2

jPj
)

(3.14)

where Pj denotes the transmission power of SUj, and hj represents the channel gain of

SUj transmitting to its own destination. Lx denotes the number of cluster heads in each

PCN cluster which SUj cooperates with, and βi should be the same within each PCN

cluster.

Energy efficiency is considered in the system by using a ratio of utility to energy,

which enables a tradeoff between utility and energy consumption, and the IU selection

is formulated as the following optimization problem:

maximize
aij

X∑
i=1

N∑
j=1

µij · aij
(

ΣLi
x=1Ui + Uij

ΣLi
x=1Ei + Eij

)

subject to
N∑
j=1

aij ≤ 1, aij ∈ {0, 1}

µij ∈ {0, 1} , ∀i, j

0 < Pij 6 P j
max

(3.15)
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where Ui is described in (3.4) while Uij is given in (3.14). Ei and Eij represent the energy

consumption of PUi and SUj during the cooperation, respectively. Li denotes the number

of cluster heads in PCN cluster i. µij and aij are binary numbers which belong to the

set {0, 1}. Let µij = 1 define that SUj can be selected as the potential IU with PCN

cluster i. If aij = 1, it means SUj is selected as the IU to cooperate with PCN cluster

i. The power limitation of SUj is P j
max. The objective function is expressed by the ratio

of the integrated throughput to energy consumption, which denotes the utility obtained

per joule energy.

The optimization problem of the IU selection described in (3.15) is transformed into

an MWM problem on an X×N bipartite graph indicating X PCN clusters, N SUs. This

MWM problem can be solved in polynomial time in a centralized network. The value of

the utility/power is taken as the objective function, since it can save the transmission

power. It is not true that the more energy devoted, the more gain obtained. It is

necessary for each IU to choose an appropriate transmission power in order to make a

tradeoff between the gain and the cost.

We focus on the case that channels of the PUs are orthogonal in which no interference

exists between PUs and IUs. An edge represents the link that exists between PCN cluster

i and SUj of a bipartite graph if SUj can be selected as the cooperator node by PCN

cluster i (i = 1, 2, · · · , X and j = 1, 2, · · · , N). The weight of this edge is given by(
ΣLi
x=1Ui + Uij

)
/
(
ΣLi
x=1Ei + Eij

)
, which forms the weight matrix Φ.

The PCN clusters and the SUs form a set V of vertexes in the graph, and E represents

the cooperation relationship between PCN clusters and SUs. Φ is a weight matrix for

matching V and E in which the weights denote the total utility per joule of the PCN

cluster and the cooperating SU obtained from the cooperation. G = (V,E) is a bipartite

graph, where x ∈ S, y ∈ T , V = S
⋃
T , and (x, y) ∈ E. Given weights on the edges

w (x, y) from matrix Φ for each (x, y) ∈ E, define the feasible labeling as a function:
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` (x) + ` (y) > w (x, y);

` (x) = maxy∈T w (x, y), if x ∈ S;

` (y) = 0, if y ∈ T ;

E` = {(x, y) ∈ E|` (x) + ` (y) = w (x, y)}.

Hence, an equality subgraph of G = G` has been defined, i.e., G` = (V,E`). By using

equality subgraph, any maximum matchingM found is an optimal matchingM∗. If we

do not have a maximum matching, we have to modify G` → G`∗ by updating `∗ (v) and

continue to find another matching M in G`∗ . Then, the matching with the maximum

utility to energy consumption ratio can be obtained. The maximum weighted matching

algorithm is illustrated as in Algorithm 1.

Algorithm 1 Maximum weighted matching algorithm.
Input:

A set of PCN clusters S, a set of SUs (IU candidates) T , and a weight matrix Φ;

Output:

The cooperation pairs, maximum matching M∗;

1: Construct a weighted bipartite graph G (V,E);

2: Random select a matching M in G;

3: if set T is saturated then

4: current M is the maximum matching M∗ ;

5: else

6: flip current matching M, and update G;

7: end if

8: repeat

9: step 3 – step 7;

10: until find the maximum weighted matching M∗.
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The current matching updated process can be described by the steps as follows:

1. Starting with ` (x), ` (y) as above, determine G` and choose Q in G`. Let u be an

unsaturated vertex in X, S ← {u}, T ← 0;

2. If NG`(s) ⊃ T , go to step 3); else NG`(s) = T , @Q∗ in G`, determine `∗ to modify G`

and compute α` = minx∈S,y /∈T {` (x) + ` (y)− w (x, y)}. If v ∈ S, `∗ (v) = ` (v)−α`;

if v ∈ T , `∗ (v) = ` (v) + α`; otherwise, `∗ (v) = ` (v). Update ` (v) by `∗ (v), and

G` by G`∗ ;

3. Expand matching, choose y in NG`(s) \ T . If y is saturated, with x, y ∈ Q, replace

S by S ∪{x}, T by T ∪{y} and go to step 2); else let Q be augmenting (u, y) path

in G`, and substitute M by Q.

When there is no such maximum matching result, i.e., there is no appropriate SU

to be selected, the BS will not perform the matching until all the PCN clusters have

the candidates IUs. However, this seldom happens in practice. We give an example

by forming a scenario as shown in the following matrix. The values in the matrix µij

are attained based on the feedback information from the IU candidates SUs. If the SU

desires to cooperate with the cluster head PU in PCN cluster, the value is 1 in the matrix,

otherwise, the value is 0.

µi,j =


1 1 1 0 0 0

0 1 1 1 0 0

0 0 1 0 1 1

0 0 1 0 1 1


There are four PCN clusters and six SUs in the CCRN given in our example. The

utility per joule attained through cooperation between the PCN cluster and the SUs can
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be represented by a 4× 6 weight matrix Φ as follows:

Φ =


3 5 4 1 2 1

1 5 6 5 1 1

2 1 7 1 4 5

1 1 6 2 5 6


The values in the matrix can be attained through the connection states shown in

matrix µij and the objective function described in (3.15). After maximum matching by

the proposed algorithm, the results are attained. The total utility of the matched network

is u1,2 + u2,4 + u3,3 + u4,6 = 23 (individual values in the squares as shown in the weight

matrix), and the matching results are cluster 1, cluster 2, cluster 3, cluster 4 cooperating

with SU2, SU4, SU3, SU6, respectively, i.e., the maximum weighted matching is obtained

by using the bipartite matching algorithm. Therefore, the maximum utility per joule of

the cooperation pairs is acquired. According to our assumption, SU3 can serve cluster 1,

cluster 2 and cluster 4. However, it can only make an agreement with one cluster finally,

since there are no selected node in the same column. The result can also be shown in

Fig. 3.5.
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(b) After matching

Figure 3.5: Solving the partner selection problem in a bipartite graph.
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3.5.2 Cluster based Spectrum Sharing Formulation

In CCRN, the PUs who are the cluster heads of PCN cooperate with the selected IUs, who

are cluster heads of SCN, aiming at improving their transmission performance. Then,

the IUs acquire a fraction of spectrum as a reward for relaying PUs’ traffic, aggregate

and share the acquired spectrum with other cluster members of SCN in a fair manner.

Let aij = 1 denote SUj joins into cluster i of SCN, and aij = 0 represent the opposite.

For each SU, since it can only access one cluster, we have the constraint
∑X

i=1 aij ≤ 1

to satisfy the aforementioned condition. In addition, for each cluster, the number of

SUs, who access the cluster, is limited by the factor of channel capability and spectrum

efficiency, and we consider the case that every user is “completely” matched. Hence, the

constraint
∑N

j=1 aij = Ki is added to ensure the above requirement. Finally, we formulate

the proposed spectrum sharing problem as follows:

maximize
aij ,tij

X∑
i=1

(
N∏
j=0

(
Vij − V j

min

)aij ·ωij)

subject to Vij ≥ V j
min

N∑
j=0

tij = (1− βi)T,∀i

Ki∑
j=0

ωij = 1, ∀i

X∑
i=1

aij ≤ 1,∀j

N∑
j=1

aij = Ki, ∀i

aij ∈ {0, 1}

(3.16)

where Vij is given by (3.10), and V j
min denotes the minimum utility requirement for user j.

ωij represents the weight of user j who associates with cluster i of SCN, and
∑Ki

j=0 ωij = 1
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for any i. (1− βi)T is the time slot for spectrum sharing among the IU and SUs, and

Ki represents the number of SUs assigned to each SCN cluster. The value of Ki varies

from cluster to cluster according to the cluster channel capability C such as the size

of the aggregated channels, i.e., bandwidth. For instance, if Ci−1 < Ci < Ci+1, then

Ki−1 < Ki < Ki+1.

However, the above optimization problem is a combinatorial nonlinear problem, which

is NP-hard. As mentioned earlier, we decompose the problem into two-subproblems:

bandwidth allocation and time allocation. First, we form the clusters according to the

requirements of both the IU and the SUs, such as the location and bandwidth, i.e., attain

the combination values of aij. Then, we optimize the utility of the clusters by assigning

the IU and SUs different time slots.

Usually, the bandwidth allocation (cluster formation) problem is performed among the

SUs, and the goal is to maximize the SCN clusters’ total performance, such as throughput,

utility and transmission rate, which are considered only from the users’ side since there

is no priority for the bandwidth to select the users. However, the allocation problem

for our work is different since we consider the allocation problem as a cluster formation

problem. From the IU’s perspective, it is willing to share the spectrum with the members

who have better link conditions or have more powerful transmission capabilities, i.e. the

power level, in order that they can share the spectrum more efficiently and cooperate

with each other when it is necessary. Meanwhile, from the SUs’ perspective, they desire

to access the frequency band or cluster with a wider bandwidth or more sharing time to

gain higher utility. Consequently, we implement the spectrum sharing scheme by taking

into consideration the interests of both sides. The users, both the IUs and the SUs, have

their own preference ranking lists associated with each side’s preference, ranging from

the most preferred ones to the least preferred ones. According to the ranking lists, a

stable matching can be established by deploying the two-sided many-to-one matching
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algorithm, and the stable matching indicates that there is no more IU and SU who prefer

each other over their matching results in the matching.

Moreover, for fairness, the spectrum sharing of the SCN is performed based on

weights by scaling the contributions of the users during previous spectrum sharing pro-

cess. Within each cluster, the time slots are assigned to each member depending on the

weights they have, and the objective of time allocation is to optimize the total utility of

the SCN cluster.

Cluster Formation

When the cooperation between the PUs and the IUs is completed, the IUs have the

opportunity to access the remaining spectrum, and share the acquired spectrum with

other SUs. The IU and SUs form the SCN cluster in which the IU works as the cluster

head and the SUs are the cluster members. Bandwidth allocation (i.e., channel allocation)

is the first step of the spectrum sharing process.

Regarding spectrum sharing for CRN in this dissertation, bandwidth allocation is

formulated as a cluster configuration problem, and there are two groups of users: IUs

and SUs. From IUs’ perspective, they want to form a cluster that the cluster members

have higher transmission rate so that the spectrum efficiency can be further improved.

However, from the SUs’ perspective, they intend to choose the cluster which can provide

them the longer transmission time, which is effected by many factors such as channel

bandwidth, IU’s weight and cluster size. Therefore, not only the location and power

factors, but also the spectrum bandwidth and channel conditions are taken into consid-

eration. In order to satisfy both sides of the users, we solve the cluster formation problem

by using two-sided stable matching algorithm.

Therefore, with the aim to solve the optimization problem described in (3.16), we

first need to solve the subproblem, i.e., bandwidth allocation, which is also referred as
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cluster formation of SCN. The cluster formation problem consists of two sets of users:

the set I = {x1, x2, · · · , xM} of IUs, and the set S = {y1, y2, · · · , yN} of SUs (where

M < N). Each user has a preference ranking list of acceptable users on the other side.

Without loss of generality, we assume that IU finds SU acceptable if and only if SU finds

IU acceptable. In this case, we define (x, y) is an acceptable pair. IUx finds at least K

SUs acceptable, and each SU finds at least one IU acceptable. The positive integer K

represents IUx’s quota, the number of SUs that IUx can tolerate, which means IUx is

allowed to admit up to K SUs joining the cluster. Note that we consider a restrictive

model of responsive preferences in which the IUs have preferences over individual SUs

rather than groups of SUs. Each user in set I (or S) has preferences over each user in

set S (or I). Let ψ(x) be the preference function of user x in set I, and let ϕ(y) be

the preference function of user y in set S. Hence, the IUs have preference set ψ(x) for

cluster members, which are sorted by transmission rate Rij, and each SU also has its

own preference set ϕ(y), which are ordered by the expression
(1−ωij)·LxWi

Ki
. The objective

of the matching is to find a stable matching solution.

It is true that in some cases we may find many possible stable matchings for the

bandwidth allocation problem, i.e., cluster formation problem. However, we will choose

the matching that provides the highest network utility. Therefore, the stable matching

in our scenario is unique.

Based on the above statement, we perform the algorithm in Algorithm 2.
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Algorithm 2 Stable matching algorithm.

Input:

A set of IUs I, a set of SUs S, and preference ranking lists ψ(i), ϕ(j) of the IUs and

SUs, respectively.

Initialize µ = Ø and ` = 1;

Output:

The cluster formations in SCN, i.e., many-to-one matching result µ;

1: while (IU x is not fully subscribed) and (ψ(x) 6= Ø) do

2: IU x proposes to the SUs who are the first `th choice in the preference ranking list

ψ(x).

3: if IU x is the first choice in SU y’s preference ranking list ϕ(y) then

4: µ = µ ∪ {(x, y)}, and update the ranking lists ψ(x), ϕ(y) of the IUs and SUs,

respectively;

5: else

6: ` = `+ 1, and go back to step 2;

7: end if

8: end while

9: µ is a stable matching.

In order to specify the cluster formation process, we give an example as follows: there

are three IUs looking for their cluster members from seven SUs. The ranking preference

lists of the IUs and SUs are shown in Table 3.1 and Table 3.2, respectively. After applying

algorithm 2, we can obtain the cluster formation results described by Table 3.3.
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Table 3.1: Quotas and preference lists for the IUs.

IUs Capacity ψ(x)

x1 2 y2, y3, y6, y5, y4, y1, y7

x2 3 y6, y4, y3, y2, y1, y7, y5

x3 2 y7, y1, y4, y6, y2, y3, y5

Table 3.2: Preference lists for the SUs.

SUs ϕ(y)

y1 x2, x1, x3

y2 x1, x2, x3

y3 x1, x2, x3

y4 x2, x1, x3

y5 x1, x2, x3

y6 x2, x1, x3

y7 x3, x2, x1
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Table 3.3: Matching results.

IUs SUs

x1 y2, y3

x2 y1, y4, y6

x3 y5, y7

Optimization for the Weights based Time Allocation

After the SCN cluster formation problem is solved, the weights based time allocation is

described by

maximize
T

Ki∏
j=0

(
Vij − V j

min

)ωij
subject to Vij > V j

min,∀i, j
Ki∑
j=0

tij = (1− βi)T,∀i

Ki∑
j=0

ωij = 1,∀i

(3.17)

where T represents the time allocation matrix of each cluster, and Vij is the utility of user

j within cluster i, which is given by (3.10). ωij represents the weights of user j joining

in cluster i. In order to simplify the optimization function, we rewrite the function as
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follows:

maximize
T

Ki∑
j=0

ωij log2

(
Vij − V j

min

)
subject to Vij > V j

min, ∀i, j
Ki∑
j=0

tij = (1− βi)T,∀i

Ki∑
j=0

ωij = 1,∀i

(3.18)

Since we transform the previous objective function into the above objective function

which becomes a convex function, the proposed problem can be solved by the KKT

condition. The Lagrangian function of (3.18) as a function of tij can be given by

L =

Ki∑
j=0

ωij log2

(
Vij − V j

min

)
+

M∑
i=1

λi

(
Ki∑
j=0

tij − (1− βi)T

)
(3.19)

where λi is the Lagrangian multiplier. By using the KKT condition, we take the derivative

of (3.19) with respect to tij, and obtain

∇L (T, λ) =

Ki∑
j=0

ωijLxWi log2 (1 + SNRij)[
LxWitij log2 (1 + SNRij)− U j

min

]
· ln 2

+
M∑
i=1

λi = 0

(3.20)

where we have Ki×M equations. Hence, the time assignment matrix T can be obtained.

3.5.3 Spectrum Sharing within the SCN Cluster

Network coding is adopted during the second spectrum sharing phase. Furthermore,

multiple cluster members can relay the IUs’ traffic cooperatively if necessary. Therefore,

network coding among the SUs can further improve the performance of both the IU and
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the SUs, but the cooperation complexity will be increased. However, the tradeoff between

performance benefit and increased cooperation cost need to be balanced.

Two cases are considered in the scenario if multiple SUs help relay the IU’s traffic:

the first case is called non-inter-cooperative network coding (NICNC) and the other one

is called inter-cooperative network coding (ICNC). For the NICNC case, the cooperating

SUs do not exchange their data in advance, while the SUs exchange data in advance

for the ICNC case. By performing NICNC, each relayed transmission only contains

information of the IU and one SU’s packets. However, by performing ICNC, losses in

some transmissions could be compensated, since each relayed transmission contains linear

combinations of the IU and all the cooperating SUs’ packets. Therefore, the original

packets could be recovered from the correctly received transmissions. Consequently, by

exploiting network coding, the performance of both the IU and the relaying SUs can be

improved.

For the NICNC case, after the cooperating SUs obtaining the packets from the IU,

the SUs transmit their own packets as well as IU’s packets to the AP. Therefore, the

destination AP can receive all the data together as follows:
ξ00X0

ξ10X0 + ξ11X1

...

ξG0X0 + ξGGXG



=


ξ00 0 · · · 0

ξ10 ξ11 · · · 0
...

...
. . .

...

ξG0 0 · · · ξGG

 ·


X0

X1

...

XG

 ,

(3.22)

where ξij (i = 0, 1, . . . , G and j = 0, 1, . . . , G) denotes the coding coefficient, and G is

the number of cooperating SUs. The first row represents the data from the IU and the
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remaining G rows denote the data from the cooperative SUs. Therefore, the AP can

recover the source data X0, X1, · · · , XG from the IU and G cooperative SUs as long as

the above coefficient matrix has full rank, which means∣∣∣∣∣∣∣∣∣∣∣∣

ξ00 0 · · · 0

ξ10 ξ11 · · · 0
...

...
. . .

...

ξG0 0 · · · ξGG

∣∣∣∣∣∣∣∣∣∣∣∣
6= 0.

For the ICNC case, since the SUs are exchanged their data in advance, the AP can

acquire the data as follows:
ξ00X0 + ξ01X1 + · · ·+ ξ0GXG

ξ10X0 + ξ11X1 + · · ·+ ξ1GXG

...
...

...

ξG0X0 + ξG1X1 + · · ·+ ξGGXG



=


ξ00 ξ01 · · · ξ0G

ξ10 ξ11 · · · ξ1G

...
...

. . .
...

ξG0 ξG1 · · · ξGG

 ·


X0

X1

...

XG

 .

(3.23)

Similarly, the AP can recover the source data X0, X1, · · · , XG from the IU and G coop-

erative SUs as long as the above coefficient matrix has full rank.

In order to specify the network coding process, an example that two SUs help relay

the IU’s traffic is given as follows. The IU transmits the source data X0 to the AP.

After the surrounding SUs obtain this data, the two cooperating SUs combine the IU’s

data and their own data X1 and X2 into ξ10X0 + ξ11X1 + ξ12X2 and ξ20X0 + ξ21X1 +

ξ22X2, respectively. Then, they transmit the combined data to the AP. Therefore, the
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destination AP can obtain three pieces of data together as described bellow:
ξ00X0 + ξ01X1 + ξ02X2

ξ10X0 + ξ11X1 + ξ12X2

ξ20X0 + ξ21X1 + ξ22X2

 , (3.21)

where ξ01 = ξ02 = 0 in our example. If the cooperating SUs exchange their data in

advance, ξ12 6= 0 and ξ21 6= 0; otherwise ξ12 = 0 and ξ21 = 0. Eq. (3.24) can be rewritten

as follows

A =

∣∣∣∣∣∣∣∣∣
ξ01 0 0

ξ11 ξ12 ξ13

ξ21 ξ22 ξ23

∣∣∣∣∣∣∣∣∣ 6= 0.

Only if matrix A is full rank will enable the receiver-AP to recover the source data

as well as other SUs’ data from the information it receives. Therefore, det(A) 6= 0 is

required, which is equivalent to ξ01ξ12ξ23 6= ξ01ξ13ξ22 =⇒ ξ12ξ23 6= ξ13ξ22 since ξ01 6= 0.

For the NICNC case, ξ13 = 0 and ξ22 = 0. Hence, ξ12ξ23 6= 0 is required, which indicates

that the AP can encode the data only when both SUs transmit successfully. For the

ICNC case, the data of the IU and the other SUs can be encoded as long as both SUs do

not lose the data at the same time. Therefore, with cooperation among the cooperating

SUs, the probability of successful transmission can be increased. Generally, there are two

ways to perform decoding, i.e., block decoding and early decoding. Block decoding is

that the receiver collects enough received packets to invert coefficient matrix, and then

decodes the data. In early decoding, the receiver performs Gaussian elimination after

each received packet. Moreover, each node detects and discards non-innovative packets.

Since the coefficient matrix tend to be lower triangular, it usually requires fewer copies to

decode cooperative users’ packets. Therefore, early decoding achieves shorter decoding

delay than block decoding.
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3.6 Numerical Results

In this section, we present numerical results to evaluate the performance of the proposed

spectrum sharing from different aspects. First, the IU selection is compared with ran-

dom selection scheme and nearest selection scheme. Then, the utility comparison of each

cluster with bandwidth division and power division is illustrated. Afterwards, the prob-

abilities of successful transmission during the cooperation between the IU and the SU

with and the one without network coding are compared and illustrated. Moreover, the

cooperation transmission rate is illustrated in four cases, and the fairness among the users

within a cluster of SCN is demonstrated. In addition, the proposed joint bandwidth-time

allocation scheme is evaluated and compared with the optimal solutions, and the simula-

tion results show that the solution of the time allocation is close to the optimal solution.

Finally, the utility of IU with and without spectrum sharing with other SUs is compared.

In Fig. 3.6, we compare the performance obtained by the proposed IU selection (IS)

scheme, random selection (RS) scheme and nearest selection (NS) scheme. RS scheme is

that the IUs are selected from the SUs randomly, and for NS scheme, the PUs select the

cooperative IUs from the SUs who are geographically closest to them. The powers of PUs

and IUs vary from 1mW to 2mW and from 0.5mW to 1.5mW, respectively. The users

are uniformly distributed in a square area. We run the simulation with 20 synthetic cases

for 50 independent rounds with randomly selected channel condition and nodal transmit

power level in each round. It can be seen that the proposed IU selection scheme achieves

a higher network utility than both the random selection scheme and nearest selection

scheme. This is because we find the best pairing using the maximum weighted matching

algorithm in the IU selection scheme, and the proposed scheme consider the benefits for

cluster head and members together.

In Fig. 3.7, the utility comparison of each cluster with bandwidth division and power

division is shown. During the first phase cooperation, the IU can choose two ways
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Figure 3.6: The comparison of the performance attained by three different schemes.

for relaying multiple PUs’ traffic, transmitting on different spectrum bands (bandwidth

division) and transmitting with different powers (power division). From the figure, we can

see that dividing bandwidth leads to more decreasing in utility compared with dividing

power.
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Fig. 3.7: Utility comparison of each cluster with bandwidth division and power division.

Fig. 3.8 shows the probabilities of successful transmission with and without network
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Figure 3.8: Probability comparison.

coding. Packet error rate (PER) denotes the probability of error transmission for the IU

and the cooperating SU, which is assumed to be equal for both, and PER varies from 0

to 1. The blue line and red line show the probabilities of successful transmission of IU

and SU achieved by cooperation, respectively. The black line illustrates the probabilities

of successful transmission of the IU and SU without using the network coding. It can be

seen that the successful transmission probabilities with network coding outperform those

without network coding. Therefore, the SU can enhance the IU’s transmission reliability

as well as its own through the cooperation with IU by exploiting network coding.

Fig. 3.9 shows the IU’s transmission rate with respect to the normalized distance for

different number of SUs. The comparison of cooperation transmission rate is illustrated

in four cases: one SU cooperating with IU, two SUs cooperating with IU, three SUs

cooperating with IU and IU transmitting alone. SUs relay IU’s traffic in a decode and

forward manner, so the transmission rate will be the minimum transmission rate between

the rate from the IU to the cooperative SUs and the rate from the IU to the BS. The

power of IU is 2mW, and the power limitation of SUs are 1.5mW. Time slot window is
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Figure 3.9: Second phase cooperation transmission rate.

1ms, and time allocation coefficient is fixed to 0.5. The straight line corresponds to the

scenario without cooperation. It can be seen that with more surrounding SUs involved in

the cooperation, the regional area for cooperation becomes wider. Even with more other

SUs involved in the cooperation, the IU’s performance stays the same in the final stage

when the other SUs stay away from the IU.

In Fig. 3.10, we demonstrate the fairness within one cluster consisting of three users,

including one IU and two SUs. The weights of the IU and SUs are 0.4, 0.3 and 0.3,

respectively. Moreover, the fairnesses are compared under three schemes: our proposed

time allocation (PA), equal time allocation (EA) and demand based time allocation

(DA). Since the weights of three users are 0.4, 0.3 and 0.3, the utility ratio of three users

approximately equals to 4 : 3 : 3, and the utility shown in the figure is weight based. It

is shown that our scheme achieves better fairness than the other two schemes.

Moreover, we compare the time allocation solutions attained by our proposed scheme

against the optimal time allocation solutions. The simulation is performed in a cluster

with three users, and the time slot assigned for them are drawn in Fig. 3.11. Blue lines
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Fig. 3.10: Fairness comparison of three different time allocation schemes in a cluster with

Ki = 2.
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Fig. 3.11: Solutions compared between optimal solutions and our solutions.
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represent our solutions while red lines denote the optimal solutions. It is clear that our

solutions are very close to the optimal ones.

In addition, the total utility of the cluster achieved by exploiting the proposed spec-

trum sharing scheme is compared with the optimal value under different SNR environ-

ment. In Fig. 3.12, it is demonstrated that the total utility achieved by using our

proposed scheme is very close to the optimal value.
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Fig. 3.12: Utilities compared by the optimal allocation scheme and proposed allocation

scheme under different SNR.

The utility obtained by our proposed scheme and the optimal utility are illustrated

in Table 3.4, and the bias between them is evaluated. We notice that the bias is reduced

as the SNR value increases.
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Table 3.4: Utility comparison under different SNR (dBm).

SNR 0 2 4 6 8 10

Proposed 23.03 25.06 26.99 29.03 30.79 33.00

Optimal 23.23 25.25 27.17 29.20 30.95 33.15

Bias 0.90% 0.75% 0.66% 0.58% 0.52% 0.45%
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Figure 3.13: The comparison of the utility attained of IU with and without sharing with

other SUs.

Fig. 3.13 shows the average utility for the cases with and without spectrum sharing

in the cluster, respectively. We assume the chance for an SU to be the selected IU is 10%,

and the simulation is repeated 100 times to obtain the average utility of the IU. It can be

seen that the utility attained by IU alone is lower than that by sharing with other SUs.
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Moreover, the difference becomes more significant when the time slots increase. From

this figure, it implies that the IUs have the motivation to share the acquired spectrum

with other surrounding starving SUs.

3.7 Summary

In this chapter, we have proposed a cluster based PCN/SCN spectrum sharing scheme

in a CCRN. First, the cooperation between cluster heads of PCN and SCN has been

investigated. Then, the spectrum sharing have been formulated as a combinatorial non-

linear optimization problem which is NP-hard. Afterwards, we have decomposed this

problem into cluster allocation and time assignment. The cluster allocation is solved by

a stable matching algorithm, which is a classical method in matching theory and is very

suitable for addressing our situation. In addition, by solving an optimization problem,

the time allocation results are close to the optimal solutions. Moreover, simulation results

have shown that the utility obtained by performing the proposed aggregated spectrum

sharing scheme can achieve the near optimal performance in our CCRN.
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Chapter 4

Uplink Spectrum Sharing for

Heterogenous Networks

4.1 Literature Review

Mobile users are desiring for ubiquitous wireless spectrum access with high transmission

rate and reliable services, which brings the new challenges for future mobile communi-

cation systems, such as massive device connectivity, higher capacity, higher transmission

rate, lower end to end latency, reduced cost and consistent QoS [72]. It is indicated that

there will be more than 50 billion connected devices by 2020 [73], and the wireless indus-

try has taken on the challenge of cost-effectively supporting a 1000-fold increase in traffic

demand over the next decade [74]. By solving those challenges, the next 5G generation

wireless network is proposed and aim at achieving 1000 times the system capacity, 25

times the average mobile user’s throughput, 10 times the data rate (tens of thousands of

users 1Gbps), energy efficiency, and spectrum efficiency of existing the fourth generation

(4G) system [75, 76], as well as the significantly lower latency.

Due to the increasing demand for higher spectrum efficiency and data transmission
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rates, femtocells have emerged as a solution to expand coverage area and improve system

performance of the next 5G generation wireless networks [77]. Femtocells can be config-

ured in three different types of access modes to either allow or block unsubscribed users as

follows: closed access, open access and hybrid access [78–80]. In closed access mode, the

femtocell base station (FBS) allows only its own subscribed users to establish connection.

Most femtocells deployed in residential areas employ this access mechanism for security

reasons. All types of users, both subscribed femtocell users as well as non-subscribed

macrocell users, are allowed to access the FBS in the open access mode. In hybrid access

mode, non-subscribed users are allowed to access the femtocell but are limited by the

capability of femtocell spectrum resources. According to a survey [81], femtocell users

(FUEs) prefer femtocells with closed access mode, hence we investigate a cooperation

framework based on closed access mode in this chapter.

Deployment of 5G wireless network requires new spectrum management schemes for

serving mobile users exploiting spectrum efficiently and accessing spectrum constantly

[82]. Particularly, an important enabler towards the proper deployment of 5G wireless

networks is the CR technology [83, 84]. CR enables the exploitation of centralized net-

work architectures [85], and improve spectrum efficiency [86]. Femtocell based on CR

technology has the ability to perform sensing, power and frequency adjustment. Thus,

it can monitor and adapt to the surrounding environments [87, 88]. In other words, cog-

nitive femtocell networks (CFNs) can efficiently cope with spectrum scarcity as well as

exploit spectrum resource management in small areas to obtain high transmission rate

for indoor communications. However, such a CFN system needs high capability to satisfy

the required QoS when sharing channels with many other users in the same area. More-

over, macrocell cannot provide good services for indoor users due to spectrum limitations,

particularly with the expected increase in the number of users in the near future. Lots

of works focus on those challenges in CFNs [89–91]. Lien et al. in [89] investigate the
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spectrum resource management problem in CFNs, and they propose a cognitive scheme

which can guarantee the QoS in terms of delay for the femtocell networks. In [90], a

spectrum sensing scheme for the overlay CFNs is proposed, and the throughput using a

Markov chain model is analyzed. Xiang et al. in [91] focus on the downlink spectrum

sharing problem in CFNs. Moreover, mitigating interference is a crucial factor in the

femtocell networks [92], especially in closed access mode. In order to mitigate interfer-

ence, the FBSs have to avoid allocating occupied spectrum that belongs to the macrocell

networks. The key idea of interference mitigation in CFNs is that all FUEs should au-

tonomously estimate the spectrum usage of the macrocell and report the sensing result.

Therefore, the FBSs periodically allocate subframes for FUEs to perform channel sensing.

However, in this case, spectrum sensing may not be accurate, and spectrum handover

is required for the FUEs when the macrocell users (MUEs) reappear. FUEs may either

wait to resume sending data in the original channel or switch to another temporarily idle

channel. To this end, it is important to establish a spectrum coordination framework

between the macrocell network and the femtocell network for coexistence and interference

reduction.

The cooperation frameworks in macrocell network and femtocell network have been

visited in some literatures. In [93], an FUE acts as a relay for an MUE. In return, each

cooperative MUE grants the FUE a fraction of its superframe, and the cooperation is

formulated by a coalitional game. Pantisano et al. in [94] investigate the cooperation

among femtocells as a coalitional game in partition form, wherein cooperative femtocells

use advanced interference alignment techniques to improve their downlink transmission

rate. In [95], a control scheme for cooperation between FUEs and MUEs under both co-

operative relay model and interference model is studied. A subchannel allocation problem

is formulated as a cooperative game among FUEs under the hybrid overlay/underlay ac-

cess mode in [96]. A game-theoretic scheme for strategic resource and power allocation
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problem in cooperative femtocell networks with a high density of femtocell access points

is proposed in [97], and the problem is formulated as an operations research game.

Different from previous work, we develop the cooperation based on stable many-to-one

matching. Examples of two-sided matching problems include marriage problem, kidney

donors and patients matching, college admissions problem, and hospital-intern matching,

etc. The two-sided matching algorithm was first proposed by Gale and Shapley in [98],

in which the authors solved the marriage problem by developing a one-to-one matching

algorithm. In the marriage problem, agents on one side of the market are matched with

at most one agent on the other side. The channel access control problem and spectrum

sensing problem in CRN are investigated in [99] and in [100], respectively, by using the

stable marriage matching algorithm. User-cell association in small cell networks are

studied in [101, 102]. A hospital-intern matching and college admissions matching are

studied in [103, 104] by Alvin, which both belong to a many-to-one matching problem.

A cooperation between FBSs and MUEs by many-to-one stable matching is proposed

in this thesis, so one of the main advantages of this cooperation scheme is that the

matching can be realized by using Gale-Shapley algorithm, which is implemented in a

distributed manner. Another advantage is stability, which is desirable in a non-regulated

heterogeneous network since stability can enhance the network robustness.

4.2 System Model

4.2.1 Network Topology

We consider the uplink transmissions of an orthogonal frequency division multiple ac-

cess (OFDMA) heterogeneous network wherein one macrocell base station (MBS) is de-

ployed, and multiple FBSs are formed temporarily based on the SUs who are desiring

for spectrum access opportunity. The femtocell networks are underlaid with the macro-
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cell networks, and within the femtocell networks, neighboring FBSs are allocated over

orthogonal frequency subchannels. In CFN, it is assumed that each femtocell senses the

spectrum occupation of the adjacent femtocells, and then, the femtocell occupies a dis-

joint set of subchannels, thus, avoiding interference from the neighbor femtocells. Let

M = {1, 2, ...,M} and N = {1, 2, ..., N} denote the sets of MUEs and FUEs within each

cellular, respectively. Let k = {1, ..., K} represent the set of FBSs, and these FBSs are

facilitated with dual operation modes: transmission mode and relaying mode. Both the

MUEs and FUEs are equipped with single antenna.

We assume that all channel realizations are i.i.d Rayleigh fading. The results can be

easily extended to other channel models at the price of more complicated expressions.

The system model is illustrated in Fig. 4.1. The solid lines and dash lines represent the

transmission links with and without cooperation, respectively.
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Fig. 4.1: Scenario of Macrocell-Femtocell Network.

4.2.2 Channel Model

The cooperation between the MUEs and FBSs operates in a time-slotted manner. Trans-

mission links are conformed to a Rayleigh flat fading model, and the channel conditions
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are considered to be stable during a fix time slot T , but vary independently from one

slot to another. The CSI can be available by the users with CR, but in real heterogenous

networks, CSI needs to be estimated by exploiting techniques such as MMSE estimation

and LS estimation [105].

In the non-cooperative approach, the utility of MUEm (m = 1, 2, · · · ,M) to the MBS

can be written as:

Um = T ·B log2

(
1 +

h2
m,0Pm∑

nεΘm
h2
n,0Pn + σ2

)
(4.1)

where B is the bandwidth, and T represents the duration of one time slot. Pm is the

transmission power of MUEm, and Pn is the transmission power of FUEn. The channel

fading coefficients from MUEm to the MBS and from FUEn to the MBS are denoted by

hm,0 and hn,0, respectively. nεΘm is the set of FUEs operating on the same subchannel

with MUEm, and σ2 is the variance of the AWGN.

Mitigating interference is a crucial factor in the femtocell network, especially in closed

access mode that gives permission to register a user with an FBS. In this case, any

unregistered users approaching the FBS will experience harmful interference. The utility

of FUEn (n = 1, 2, · · · , N) to the FBSk (k = 1, 2, · · · , K) is calculated by

Un = T ·B log2

(
1 +

h2
n,kPn∑

mεΘn
h2
m,kPm + σ2

)
(4.2)

hn,k denotes the channel fading coefficients from FUEn to FBSk, and hm,k represents the

channel fading coefficients from MUEm to FBSk. mεΘn is the set of FUEs operating on

the same subchannel with MUEn.

The outage probability of MUE and FUE can be computed as the probability of the

signal to interference plus noise ratio (SINR) below a certain threshold θm and θn, and

are given by

Poutm = Pr

{
h2
m,0Pm∑

nεΘm
h2
n,0 + σ2

≤ θm

}
(4.3)
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Poutn = Pr

{
h2
n,kPn∑

mεΘn
h2
m,k + σ2

≤ θn

}
(4.4)

FUEs are limited by the interference from adjacent MUEs and by the capacity in

terms of the number of available subchannel spectrum resources. On the contrary, MUEs’

performance is decreased by the interference from surrounding FUEs. Hence, cooperation

is adopted between macrocell network and femtocell network to improve both parties’

utility. Therefore, in cooperation mode, the utility of the MUEm is expressed as

UC
m = βT ·B log2

(
1 +

1

σ2
·

h2
m,kh

2
k,0PmPk

h2
m,kPm + h2

k,0Pk +
∑

nεΦm
h2
n,kPn + σ2

)
(4.5)

Pk is the transmission power of FBSk, and β is a time fraction factor. hm,k denotes the

channel fading coefficients from MUEm to FBSk, and hk,0 represents the channel fading

coefficients from FBSk to MBS. Φm is the set of FUEs operating on the same subchannel

with MUEm but not cooperating with the FBS.

Correspondingly, in cooperation mode, the utility of FUEn can be increased through

cooperation with the MUE is shown as

UC
n = (1− β)T ·B log2

(
1 +

h2
n,kPn∑

mεΦn
h2
m,kPm + σ2

)
(4.6)

where ΦnεΘn, and Φn is the set of MUEs operating on the same subchannel with FUEn

but not cooperating with the FBS.

4.3 Problem Formulation

Due to supporting users’ mobility for a wireless network, innovative procedures are re-

quired, which are essential, such as handover, routing, and location updating. In open

access mode, all the users of a cellular provider are allowed to access the femtocells. This

is a hotspot scenario like that in a restaurant or shopping mall. However, the disadvan-

tage of this mode is increasing number of handovers and signaling, and some security
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issues. In close access mode, the aforementioned disadvantages are overcome. Therefore,

we formulate our problem under the closed access mode.

The femtocell networks are temporarily formed based on the spectrum requirement

from geographically close FUEs. The FBSs cooperate with the MUEs who are suffering

from a bad throughput performance, and then the FBSs serving the corresponding FUEs

are operated as relays to help MUEs transmit data, since the FBSs have more relaying

capability than the FUEs. The cooperation between the MUEs and FBSs is a win-to-win

game such that the MUEs can improve their performance, and the FBSs can help their

serving FUEs acquire more spectrum access opportunities.

4.3.1 Cooperation Framework

While the transmission links of the MUEs are in poor condition, they need to find some

cooperators to improve their performance, and they broadcast the searching cooperators

information to surrounding FBSs. Then, the FBSs who are requiring spectrum access

opportunities will accept the requests, and send the feedback information together with

their relaying power Pk and cooperation time fraction β to the MUEs. The MUEs

and FBSs generate their own cooperating preference lists. Subsequently, by solving a

many-to-one stable matching problem, matching cooperation pairs between one FBS and

multiple MUEs can be obtained. After the cooperation is established, the MUEs become

the subscribed users and are allowed to connect to the FBS.

During the cooperation process, FBS cooperates with multiple MUEs within interval

βT . In return, the FBS acquires the remaining time slot (1− β)T frequency bands for

its serving FUEs.
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4.3.2 Many-to-one Stable Matching

Gale and Shapley in 1962 raised the college admission problem which is an example of

a two-sided many-to-one matching market. It is closely-related to the stable marriage

problem, but these two problems are not equivalent since the outcome of college admission

problem can only be one side optimal. In addition, for one-to-one marriage problem, the

men-optimal stable matching and the women-optimal stable matching are symmetric of

each other, while the student-optimal stable matching and the college-optimal stable

matching are not for many-to-one college admission problem. In this dissertation, we

focus on solving the cooperation problem by using many-to-one stable matching.

Notations and Terminologies

The cooperation consists of two sets of agents: K FBSs which are denoted by K =

{k1, k2, . . . , kK}, and M MUEs which are expressed by M = {m1,m2, . . . ,mM}. Each

agent has a strict, transitive, preference ordering of the acceptable agents on the other

side. Let Γ ⊆ K ×M denote the set of acceptable pairs. Associated with FBS k is a

positive integer qk representing its quota, and the interpretation for FBS k is to allow

it to admit up to qk MUEs. Without loss of generality, we assume that (i) k finds m

acceptable if and only if k finds m acceptable, and in this case, we say that (m, k) is an

acceptable pair; (ii) FBS k finds at least qk MUEs acceptable, and each MUE finds one

FBS acceptable. Note that we consider the somewhat restrictive model of preferences in

which the FBSs have preferences over individual MUEs, not over groups of MUEs.

The two-sided many to one matching approach takes both parties’ interests into con-

sideration. Therefore, each user has a preference ranking list of acceptable users on the

other side. Each user in set K (orM) has preference over each user in setM (or K). Let

ψ(k) be the preference function of user k in set K, and let ϕ(m) be the preference func-

tion of user m in set M. Hence, the FBSs have a preference set ψ(k) for MUEs, which
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are sorted by MUEs’ geographic locations, and each MUE also has its own preference set

ϕ(m), which are ordered by the expression UC
m. The incidence matrix xµ is defined by:

xµk,m = 1, if (k,m) ∈ µ, and xµk,m = 0 otherwise (the superscript is omitted when it is not

needed). The objective of the matching is to find a stable matching solution. The fol-

lowing problem formulation contains a straightforward formulation of a stable matching

in terms of its incidence matrix. It is immediately evident that µ is a stable matching of

(Γ, qk) if and only if its incidence matrix x verifies the following inequalities:∑
k:(k,m)∈Γ

xk,m ≤ 1, ∀m ∈M (4.7)

∑
m:(k,m)∈Γ

xk,m ≤ qk, ∀k ∈ K (4.8)

qkxk,m + qk
∑
i�mk

xi,m +
∑
j�km

xk,j ≥ qk, ∀(k,m) ∈ Γ (4.9)

Indeed, the first two inequalities ensure that µ is a matching, and the last inequality

guarantees that the matching is stable. Expression i �z j represents user z prefers i to

j.

MUE-optimal stable matching

There are M MUEs who are applying for cooperation with FBSs, and there are K FBSs

that these MUEs can apply for. Each MUE has a strict preference ordering over all FBSs,

and each FBS also has a strict preference ordering over all MUEs. By strict preference,

it means an MUE is not indifferent between two FBSs, and vice versa. In reality, it is

impossible for an FBS to accept all the MUEs who apply for it, due to limited resources.

In fact, an FBS only accepts a specific number of MUEs (quotas). So, every MUE cannot

possibly get into their top choices. On the other hand, an MUE also can accept offer of

admission from only one FBS. Thus, it is not guaranteed that all MUEs whom an FBS

has made offers of admission will accept the offers.
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The MUE-optimal stable matching can be summarized by the following steps:

• first, the MUEs calculate the transmission rates obtained by cooperating with each

FBS to get the strict preference lists of all FBSs, and sort the preference from the

highest to the lowest. In addition, the FBSs generate their preference lists based

on MUEs’ locations.

• at step ` = 1, each MUE proposes to its first choice of FBS. Each FBS tentatively

holds the most preferred proposals up to its quota and rejects all other MUEs.

• at step ` >= 2, each MUE rejected in step (` − 1) proposes to its next highest

choice. Each FBS considers both new applicants and the MUE (if any) held at step

(`− 1), tentatively holds the most preferred acceptable MUEs up to its quota from

the combined set of MUEs, and rejects all other MUEs.

• Terminate when no more proposals are made. Termination happens in finite time.

Since we consider the MUE-optimal stable matching by deferred acceptance algorithm,

wherein we think of an FBS as qk different colleges with one position each. Then, the

theorem for one-to-one marriage matching applies.

FBS-optimal stable matching

The first step is the same as in MUE-optimal stable matching, the MUEs calculate the

transmission rates obtained by cooperating with each FBS to get the strict preference

lists of all FBSs, and sort the preference from the highest to the lowest. In addition, the

FBSs generate their preference lists based on MUEs’ locations. Then, each FBS proposes

to its top-ranked choice (If a FBS has a quota of qk, then the qk MUEs are top-ranked on

its ranking list), and then the MUE checks whether one of the proposals from the FBSs

is its most preferred MUE according to its preference ranking list. If no such matchings
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are found, the algorithm proceeds to the next step, where the second ranked MUE on

each FBS’s ranking list is matched with the top-ranked MUEs on the FBS’s list. In any

step where no matches are found, the algorithm proceeds to the next step. Otherwise,

the matched pairs are under the tentative-assignment-and-update state. Finally, when

the pairs are under the tentative-assignment-and-update state from the `th step, the

tentative matched pairs, i.e., FBSs and MUEs, are updated in the following way:

• Any FBS who ranks lower than the MUE’s tentatively assigned cluster is deleted

from its ranking list, i.e., the updated ranking of the MUE who is tentatively

assigned to its `th choice lists only is its `th first choice;

• MUE is deleted from the ranking list of any FBS who was deleted from the MUE’s

ranking list.

Since this algorithm is more complicated than the MUE-optimal one, we specify the

algorithm according to the above statement in Algorithm 3.

Theorem 1. A pair (k,m) ∈ Γ blocks µ if (i) k prefers m to at least one of its assigned

MUEs in µ, or if k is assigned fewer than qk MUEs, and (ii) m prefers k to its assigned

FBS in µ, or if m is unmatched.

Theorem 2. A matching result µ is stable if it is not blocked by any pair of users.

Theorems 1 and 2 follow from the following propositions.

Proposition 1. Stable matching can be obtained based on the two-sided many to one

matching algorithm.

Proof. We prove the proposition by contradiction. Let µ be the matching result obtained

by using the two-sided many-to-one matching algorithm. Suppose (k,m) will block µ,

i.e., FBS k and MUE m are not matched indicating that the pair (k,m) does not belong
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Algorithm 3 Two-sided many to one matching algorithm.
Input:

A set of FBSs K, a set of MUEs M, and preference ranking lists ψ(k), ϕ(m) of the

FBSs and MUEs, respectively.

Initialize µ = ∅ and ` = 1;

Output:

The cooperation pairs formation, i.e., many to one matching result µ;

1: while (FBS k is not fully subscribed) and (ψ(k) 6= ∅) do

2: FBS k proposes to the MUEs who are the first `th choice in the preference ranking

list ψ(k).

3: if FBS k is the first choice in MUE m’s preference ranking list ϕ(m) then

4: µ = µ ∪ {(k,m)}, and update the ranking lists ψ(k), ϕ(m) of the FBSs and

MUEs, respectively;

5: else

6: ` = `+ 1, and go back to step 2;

7: end if

8: end while

9: µ is a stable matching.

to µ, but they prefer each other more. Therefore, MUE m prefers FBS k more than

other FBSs on its preference ranking list ϕ(m), i.e., k �m µ(m). Moreover, FBS k must

have proposed to MUE m before the matching algorithm stops. However, they do not

match each other in the matching result µ, which suggests that MUE m must rejects the

proposal of FBS k. In this case, there must be some FBS k′ who has a higher priority

in MUE m’s preference ranking list in µ. As a result, (k,m) will not block µ, which

contradicts the assumption. Hence, matching result µ is a stable matching since there is

no user blocking it.
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Proposition 2. Stable matching for the cooperation pair selection problem is unique.

Proof. We prove the proposition by induction on M . Let K be the number of FBSs with

quota qk, M be the number of MUEs, and µ be the matching for matrix ΓK×M. When

M = 1, the stable matching is definitely unique since the first and best MUEs will be

assigned to the only FBS; when M ≥ 2, let µ be the matching result which can make the

FBSs choose the nearest MUEs for Γ, and let µ′ be the matching we attain by deleting

a FBS k and MUE m to attain Γ′. Suppose µ′ is the unique stable matching for Γ′. If

µ is a stable matching, then µ(k) = m, and µ \ {(k,m)} must be a stable matching. By

induction, we can conclude that µ := µ′ ∪ {(k,m)} is the unique stable matching for Γ.

Therefore, µ is the unique stable matching for Γ.

Proposition 3. The proposed cooperator matching scheme always converges to a stable

matching.

Proof. To see that the scheme converges, note that each MUE can only be rejected at

most K times. Consequently, for each MUE, there exists ` high enough such that in all

rounds of the algorithm past `, the MUE is assigned the same FBS, so the pointwise

limit exists. To see that the limit is a matching, we only have to prove that the measure

of MUEs assigned to each FBS is no more than its capacity. At each round ` of the

algorithm, let R` be the measure of rejected MUEs. Again, because no MUE can be

rejected more than K times, we have R` → 0. But at round `, the excess of MUEs

assigned to each FBS has to be at most R`, so in the limit, each FBS is assigned at most

its quota. Also, if the measure is less than the quota, then we know the FBS has not

rejected any MUEs throughout the algorithm.
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4.4 Numerical Results

In this section, the proposed macrocell-femtocell cooperation scheme is simulated and

evaluated. The performance of the exploited stable matching algorithm is compared

with the optimal solution. In addition, the performance and interference level of MUEs

and FUEs with and without cooperation are compared, respectively. Moreover, the

relationship between cooperation time fraction β and the power of FBS is illustrated,

and energy efficiency of the FBSs with two operation modes is also shown. Finally, we

compare the transmission rate by using three different matching methods.

We consider a single hexagonal macrocell with a radius of 300m within which M

MUEs, and N FUEs are uniformly distributed, and the FUEs are overlaid with the

MUEs on the same subchannels. The MBS serves M MUEs scheduled over M OFDMA

subcarriers with same wide bandwidth. K FBSs serve N FUEs which are also using

OFDMA spectrum access manner, and the FBSs are equipped with dual modes. The

AF mode is used by the cooperating FBS to relay the MUEs’ traffic. For both FUEs

and MUEs, we assume that power control fully compensates for the path loss. A closed

access policy is adopted at each FBS. We set each FBS with maximum transmit power

to Prmax = 30dBm for relay mode and Ptmax = 40dBm for traditional mode, and the

power limitation of MUE is 20dBm.

We compare the scenario of which qk = 1 in our many-to-one matching algorithm

with the Hungarian algorithm which gives the optimal solutions. The number of FBSs

is K = 50, and the number of MUEs M varies from 10 to 100. As we consider qk = 1

in our simulation, the number of FBSs K equals to M . As shown in Fig. 4.2, the blue

stars are the optimal results obtained by the Hungarian method, and the red circles are

the results obtained by our proposed stable matching method, which are very close to

the optimal solutions.
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Fig. 4.2: Matching results of proposed approach compared with that of the optimal

approach.

The number of MUEs M varies from 50 to 500. The number of FBSs N is 10, and each

FBS serves 3 FUEs; in other words, the quota of the FBS is qk = 3. The transmission

power of the MUEs, FBSs and FUEs are set to 20dBm, 30dBm, and 20dBm, respectively.

In Fig. 4.3, we compare the total utility of macrocell and femtocell network attained with

and without cooperation, respectively. It can be observed that the utility obtained with

cooperation outperforms that without cooperation, and the reason is not only because

of FBSs’ relay transmission, but also due to the fact that cooperation between FBSs and

MUEs mitigate the interference to both femtocell and macrocell networks. The total

utility of macrocell network increases as the number of MUEs becomes larger, while the

total utility of femtocell network does not vary too much.

In Fig. 4.4, the interferences to MUE and FUE (with and without cooperation) are

illustrated, respectively. It is indicated that the interference to both MUE and FUE are

mitigated due to the cooperation between the FBS and MUEs. The reason for the inter-

ference mitigation of the FUE is that the cooperative MUEs surround the corresponding
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Fig. 4.3: Utility comparison with and without cooperation.

FBS stop the continuous retransmissions to the MBS since the FBS help them relay their

traffic to the MBS.
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Fig. 4.4: Interference to MUE and FUE with and without cooperation.

In Fig. 4.5, we show the relationship between cooperation time fraction β and the

power of FBS Pk with low, medium and high minimum total utility requirement, and
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from this figure it is observed that the value of Pk decreases dramatically as the increment

of β. Therefore, the FBS does not need to sacrifice by increasing Pk to gain smaller β,

i.e., acquiring more time slot for its serving FUEs. It is wise for the FBS to choose the

proper value of Pk, which is selected to meet the minimum total utility requirement.

Therefore, energy consumption of the FBS with two operation modes in our work is

reduced compared with traditional FBS which works only with one mode.
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Fig. 4.5: Relationship between β and Pk with different levels of minimum total utility

requirements.

Let Pr (relaying power) and Pt (base station transmission power) represent the value

of Pk, and Pr = 10mdB, Pt = 40mdB. As shown in Fig. 4.6, increasing the value of Pk

does not lead to dramatical utility improvement, and this is the reason why we formulate

the FBS equipped with dual modes: relay mode and traditional base station mode with

different power levels. Therefore, while the FBS cooperates with MUEs, it operates in

relay mode with lower power level for relaying MUEs’ traffic.

A simple macrocell-femtocell network scenario wherein there are M = 3 IUs and

N = 15 SUs uniformly distributed is configured in Fig. 4.7. The MBS is represented by
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Fig. 4.6: Total utility as a function of β with different values of Pk.

a solid square which is located at the origin. MUEs and FBSs are deployed uniformly

on the 300 × 300m2 area, and the FBSs are represented by the blue stars serving as

the center of a disc of radius 10m in which FUEs are randomly located. Green triangles

denote the FUEs, and red circles represent the MUEs who communicate with the MBS.

The preference ranking lists of the IUs are obtained according to the CCRN configuration

which is illustrated in Fig. 4.7. The quotas of three IUs are K1 = 3, K2 = 2, and K3 = 2,

respectively. Then, based on the information retrieved from the common control channel,

the SUs can modify their preference lists using the ratio of transmission rate to IU’s

weight. In Fig. 4.8, we compare the cluster total transmission rate attained by the three

different cluster formulation schemes: random matching, maximum power matching and

two-sided many-to-one stable matching, and we also change the member of SUs who are

starving for accessing the spectrum. The random matching process is simulated for 1000

times and the mean value is calculated. It can be observed that the stable matching

scheme outperforms the other two scheme, and the total transmission rate increases as

the number of SUs becomes larger.
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Fig. 4.7: Macrocell-femtocell network deployment.
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Fig. 4.8: Total transmission rate comparison among random matching, maximum power

matching and proposed stable matching.
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4.5 Summary

In this chapter, we have proposed a macrocell-femtocell network cooperation scheme

under closed access mode. The cooperator selection problem is formulated as a many-

to-one stable matching problem, and the matching result is stable and takes both FBSs’

and MUEs’ benefits into consideration. In addition, the FBSs are operated by dual

modes. Therefore, energy consumption can be reduced, and the interference to the

macrocell network can be decreased. Moreover, simulation results show that the utility

obtained by performing the proposed many-to-one stable matching scheme can achieve

the near optimal performance in our scenario, and cooperation can improve both the

MUEs’ and FUEs’ utility compared with the non-cooperation case under closed access

mode. Moreover, we obtain the solution of cooperation time fraction factor β, which can

guarantee the minimum cooperation pairs’ utility.

91



Chapter 5

Conclusions and Future Work

In this chapter, we mainly summarize the contributions of this thesis and propose future

research work.

5.1 Conclusions

This research aims at developing spectrum sharing mechanism for cognitive radio net-

working. We are working on different cooperation aspects, including cooperator selection,

power allocation, time allocation and cluster based bandwidth sharing. Particularly, in

this thesis, we have

• proposed a novel cooperative strategy in CRN, based on quadrature signaling. By

employing the two orthogonal channels, the three-phase relaying process can be

integrated into two-phase without interference. We have considered the underuti-

lized spectrum and spectrum hole as a whole time slot. When the channel condition

between the PU and its receiver is poor, the PU’s performance can be improved

through cooperation with an assistant cooperative relaying SU. We have formulated
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this model as a non-linear optimization problem. Through exploiting the optimiza-

tion algorithm, the PU’s utility can achieve the optimal value. As a reward, the

second phase is allocated to the SU for its own traffic. The optimal power allocation

have been analyzed and the closed-form solution has been derived for AF mode.

• proposed a cluster based PCN/SCN spectrum sharing scheme in a CCRN. First,

the cooperation between cluster heads of PCN and SCN has been investigated.

Then, the spectrum sharing have been formulated as a combinatorial non-linear

optimization problem which is NP-hard. Afterwards, we have decomposed this

problem into cluster allocation and time assignment. The cluster allocation is solved

by our proposed matching algorithm, which can obtain stable matching results.

In addition, by solving an optimization problem, the time allocation results are

close to the optimal solutions. Moreover, simulation results have shown that the

utility obtained by performing the proposed aggregated spectrum sharing scheme

can achieve the near optimal performance in our CCRN.

• proposed a macrocell-femtocell network cooperation scheme under closed access

mode. The cooperator selection problem is formulated as a many-to-one stable

matching problem, and the matching result is stable and takes both FBSs’ and

MUEs’ benefits into consideration. In addition, the FBSs are operated by dual

modes. Therefore, energy consumption can be reduced, and the interference to the

macrocell network can be decreased. Moreover, simulation results show that the

utility obtained by performing the proposed many-to-one stable matching scheme

can achieve the near optimal performance in our scenario, and cooperation can

improve both the MUEs’ and FUEs’ utility compared with the non-cooperation

case under closed access mode. Moreover, we obtain the solution of cooperation

time fraction factor β, which can guarantee the minimum cooperation pairs’ utility.
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5.2 Future Work

In this dissertation, we mainly focus on the cooperative spectrum sharing in cognitive

radio networking. Along this path, there are several research directions towards a more

practical, spectrum and energy efficient cognitive radio networking as listed below.

• The proposed cooperation strategy might be extended to the multiple cooperating

SUs case with the decode-and-forward relaying mode adopted. In addition, the

parameters can be adjustable in order to obtain better performance not only the

PU but also the SUs. Moreover, imperfect CSI would be considered.

• Investigate the relationship between the remaining spectrum capability of the IU

and the maximum number of SUs that can be tolerated in a cluster, and develop a

mechanism to dynamically form clusters and investigate the optimal cluster size.

• Security is a very important and challenge issue during cooperation, since the co-

operation pair needs to trust with each other.
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