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Abstract

Microwave near-field testing is a promising nondestructive testing method because of its

unique capability to interrogate metallic surfaces and multi-layer dielectric structures. Due

to today’s need for lighter, stronger, and more-durable materials, enhanced dielectrics are

increasingly being used to replace or coat metals. Consequently, conventional testing meth-

ods, with their limited penetration, are no longer adequate, but microwave testing sensors

transmit signals that can penetrate into dielectrics and so detect surface and subsurface

anomalies.

Due to the growing use of microwave near-field sensors for different daily life applica-

tions, there is an ongoing need to improve their performance. Recently, artificial engineered

electromagnetic materials (metamaterials) have been utilized to demonstrate strong local-

ization and enhancement of electrical fields around sensing elements in order to improve

probes sensitivities. Metamaterials are being used to enhance sensors design at the hard-

ware level for better anomaly and flaw detection. Currently, microwave sensors are being

used to capture large and complex information, but doing so requires better integration

of signal processing methods. Implementing artificial intelligence algorithms to process

information collected by microwave sensors can address the challenge associated with in-

formation complexity or obscure pattern changes.

To address this gap in microwave near-field evaluation, this study integrates machine

learning techniques with microwave near-field testing. Machine learning is a subset of

artificial intelligence that denotes a set of methods that can automatically detect patterns

in data to build a learning model. The learned model is then used for decision making

about unseen data. Employing machine learning techniques for building classification

models, this work combines machine learning algorithms with microwave near-field testing.

In particular, it aims to build machine learning models that enhance flaw and anomaly

detection in microwave near-field testing. The trained machine models can be integrated

or embedded in a portable device or rack mounted microwave near-field testing equipment.

The value of this approach is confirmed through numerical simulations and laboratory

measurements.
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Chapter 1

Introduction

Microwaves refer to alternating current signals or electromagnetic waves with frequencies

between 300 MHz and 30 GHz, with a corresponding wavelength range of 1000 –10 mm.

The penetration of microwaves through conducting materials is small due to the skin depth

effect; however, they have good penetration in nonmetallic materials. Microwave testing

has the advantages of low cost, good penetration in nonmetallic materials, good resolution,

and contact-less testing.

1.1 Motivation

During the last decade, the sensitivity of near-field microwave sensors has experienced

unique enhancement due to the use of single and double negative materials, commonly

referred to as metamaterial. This enhancement takes the form of higher sensitivity, im-

proved resolution and/or lower operating frequency [1, 2, 3, 4, 5]. For instance, Figure

1.1 shows two scenarios of 2-dimensional microwave images generated by x-y scanning of a

1mm crack on a metallic surface using a waveguide sensor. Figure 1.1 (a) is the enhanced

image obtained when the sensor is loaded with a single negative material. On the other

1



hand, Figure 1.1 (b) is the image obtained when the sensor is used directly, and so suffers

from low lateral resolution [3]. In another example, loading near-field microwave sensors

with metamaterial particles has led to sensor miniaturization, improving the quality factor,

and increasing the sensors’ sensitivity as in [6]. The use of metamaterial to enhance the

sensitivity of near-field microwave sensors is performed in the hardware of the sensors by

adding metamaterial particles or layers to confine the electric fields to a small region .

Figure 1.1: Image of 1 mm crack obtained by scanning the waveguide in x-y plane (a) with

an 0.85 mm single negative layer having 0.2 loss tangent; (b) same scan without a single

negative layer (reproduced with permission) [3].

The encouraging increase in the sensitivity of near-field microwave sensors can be fur-

ther improved by adding additional enhancement at the signal processing level. Incorpo-

rating recent advances of machine learning for processing signals obtained from near-field

microwave sensors leads to enhanced sensitivity through the detection of small changes

and discovery of hidden patterns.

Based on reviewing recent work about near-field microwave testing, one can conclude

the following: first, research interest has been partially focused on the integration of ma-
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chine learning and signal processing with near-field microwave testing [7, 8, 9, 10, 11].

Furthermore, the research that utilized machine learning for near-field microwave test-

ing available in the literature is generally directed towards ultra-wide band antennas for

tissue imaging or material characterization, and less on anomaly detection. Second, ma-

chine learning implementation [7, 8, 9, 10, 11], is limited to one model, such as neural

networks or support vector machines. On the other hand, utilizing advanced machine

learning techniques like boosting, adaptive boosting or other classifier combination tech-

niques mentioned in [12] can improve machine learning model accuracy and generalization.

Nowadays, due to advances in material science, lighter, stronger, and more durable

dielectric materials can be used to replace or coat metals. These new materials require

suitable testing approaches, as conventional methods may not be able to inspect these

new materials [13]. In recent years, near-field microwave testing and evaluation attracted

intense research because it has advantages over the conventional testing and evaluation

methods such as eddy current, acoustic emission, and ultrasonic techniques [14, 15, 16].

Some of the advantages of the near-field microwave testing [13, 17] are:

1. Microwave sensors are sensitive to dielectric property variation or buried anomalies

and defects.

2. Microwave sensors are highly sensitive to conductor surface properties such as cracks,

corrosion, paint, coating , etc.

3. Microwave sensors operate over a large available bandwidth.

4. Near-field microwave measurement systems are relatively inexpensive and adaptable

because they are:

• Robust and repeatable;

• Non-contact;

• Compact and small;

• Low power;
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• One-sided/double sided sensing systems.

Signals captured by near-field microwave sensors are mainly processed based on human

eye observations using vector network analyzers. Relying on human processing of near-

field microwave captured signals greatly limits the capability of such testing due to the

following:

1. Small frequency shifts and changes in amplitude or/and phase are usually if not

always overlooked.

2. Microwave sensors available nowadays allow the capture of large amounts of infor-

mation (datasets). However, large datasets are associated with complex and hidden

information and require advanced signal processing.

3. Conventional vector network analyzers are needed to plot collected signals limits in

situ testing.

4. The need for human observations and decisions prevents fully automated testing and

evaluation and can be prone to human errors.

5. Building microwave images from collected datasets is not feasible based on human

processing.

For instance, crack detection on metallic surfaces using a microwave waveguide sensor

in a conventional scenario is based on plotting reflected data on a vector network analyzer

screen, and then trained technicians check for changes in the reflection coefficient pattern,

which would indicate the presence of a crack [5]. However, if the crack depth is not large,

then observation of a change in the reflection coefficient becomes a challenge for the human

eye. Thus, the pattern of the reflection coefficient from some cracked surfaces can hardly be

distinguished from that in non-cracked surfaces. Figure 1.2 shows four measured reflection

coefficients for cracked and non-cracked metallic surfaces. The difference between the first

two plots is noticeable, whereas the variation between the last two is subtle and can easily
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Figure 1.2: Reflection coefficient magnitude from different cracked and non-cracked metallic

surfaces.

be overlooked. Therefore, there is a need for a mechanism that enhances testing and

evaluation so as to overcome such limitations at the signal possessing level.

Based on the ability of machine learning to automatically detect patterns in data with

high sensitivity, this work incorporates different machine learning algorithms for near-field

microwave testing in order to address some of the current limitations. The learned machine

models can be integrated or embedded in near-field microwave testing equipment, either

portable devices for in situ testing or rack-mounted ones for laboratory evaluation.

1.2 Contribution

To enhance the performance of near-field microwave testing by addressing some of the issues

mentioned in the motivation section, this work integrates machine learning techniques with

near-field microwave testing. This integration was intended to contribute the following

outcomes:

• Detection of surface and sub-surface anomalies and flaws with improved accuracy
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in dielectric materials and metallic structures, using machine learning classification

models.

• Construction of microwave images of objects under test for visual anomaly and flaw

characterization using single metamaterial particle microwave sensor.

• Building of microwave images of objects under test using a novel pixel classification.

• Use of feature engineering (normalization, cleaning, selection or extraction) of cap-

tured signals to address issues arising from using different stand-off distances or

background noise.

• Development of machine leaning agents to pave the road towards automating of the

microwave testing process to save time and effort.

1.3 Thesis Outline

This thesis is structured as follows: Chapter 1 sheds light on the motivation and contri-

bution of this work. Chapter 2 reviews the relevant literature and discusses some open

issues about near-field microwave sensors. Furthermore, Chapter 2 provides background

on machine learning, with a focus on supervised learning using neural networks, random

forest and support vector machines. Chapter 3 presents experimental work for applying

artificial intelligence to improve surface near-field microwave testing performance. Chapter

4 presents experimental measurements and numerical simulation work for implementing

intelligent subsurface anomaly detection. Chapter 5 concludes the work and outlines re-

maining challenges and possible topics for future work.
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Chapter 2

Near-Field Microwave Testing:

Literature Review

2.1 Introduction

There are several well known non-destructive testing and evaluation (NDT&E) techniques,

including acoustic emission testing [18], eddy current [19], pulsed eddy current [20], ultra-

sonic [21], and magnetic flux leakage testing [22]. Eddy current method is widely used for

surface defect detection as it can examine large areas very quickly and does not require

the use of coupling liquids. However, eddy current method has some crucial limitations;

for instance, it can be used only for electrically conducting materials, the surface under

test must be accessible, and it cannot detect defects with large stand-off distance (the

distance between the sensor and the material under test). Ultrasonic inspection is limited

by high attenuation in the material. Magnetic flux leakage can be used only for alloy and

ferromagnetic materials [14].

Removal of surface coating, or using liquids to facilitate defect detection, is an unde-

sirable procedure due to cost, time and environmental concerns [14]. Currently, there is a

need for lighter and more durable dielectric materials to replace or coat metals to address
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these cost or environmental requirements. These new materials require alternative testing

approaches, as conventional non-destructive testing (NDT) methods may not be applicable

due to attenuation and scattering caused by various layers, low electrical conductivity as-

sociated with the layers, and thin planar anomalies and imperfections that are commonly

present in such structures [13]. Alternatively, microwave near field techniques are well

suited for testing these structures since microwave and millimeter signals can interact with

them and respond to multi-layer structures and any buried defects. For relatively low-loss

materials, the penetration depth depends on the operation frequency and the complex

permittivity ε = ε
′
+ jε

′′
. This depth is given by

δd =
λ
√
ε′

2ε′′
, (2.1)

where λ is the operating-frequency wavelength [15].

Near-field (N-F) microwave testing methods are attracting an increasing research in-

terest , as a result of their additional advantages such as remote detection, detection of

filled and covered defects, estimation of the physical dimensions and orientation of defects,

and ease of operation [23, 24]. For instance near-field open-ended rectangular waveguide

technique has been used successfully for detecting surface cracks or disbonds within layered

structures [25]. The waveguide sensing method operates by scanning metal surfaces (coated

or uncoated) using an open-ended waveguide, while defects are detected by analyzing the

reflection coefficient of the incident electric field. Rectangular waveguide sensors need to

operate at relatively high frequency to detect small defects [15, 25]. However, with recent

advances in metamaterials, near-field microwave sensors have been loaded with metama-

terials’ structures to enhance sensitivity, as explained next.
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2.2 Metamaterial Enhanced Near-Field Microwave

Sensors

Metamaterials are artificially engineered electromagnetic materials consisting of periodi-

cally arranged metallic elements which are (λ/10) or smaller of the wavelength of the in-

cident electromagnetic wave in size [26]. These materials can manipulate electromagnetic

waves in unconventional ways and demonstrate some unusual electromagnetic properties

[26], such as backward propagation, reverse Dopler effect [27], negative refraction [28, 29],

imaging beyond diffraction-limit [30, 31], and cloaking [31, 32]. The extraordinary proper-

ties of electromagnetic waves in metamaterials strongly depend on the geometry of meta-

material particles [32]. Pendry et al. [28] proposed metamaterials in 1999; later Smith et

al. [29] demonstrated experimental work for building metamaterial structure. Since then,

metamaterials have attracted increasing interest from various microwave research groups

and physicists. As a result applications and implementation of metamaterials have been

extended to include a wide range of the electromagnetic spectrum such as far-, mid-, and

near-infrared regimes and even optical frequencies [26, 33]. Figure 2.1 shows a picture of

the split ring resonator (SRR) stacked with electric LC (ELC) resonators to build up a

negative index material sample [34].

An attractive property of metamaterials for NDT is their ability to demonstrate a

strong localization and enhancement of fields so that they can be used to improve sensor

sensitivity in detecting small anomalies or defects [26, 35]. Different novel or enhanced

applications of metamaterials have been proposed recently. For example, Alu and Engheta

have proposed a method of dielectric sensing by near-zero narrow waveguide channels [36],

and Shreiber, Gupta and Cravey developed a novel microwave nondestructive evaluation

sensor by using a metamaterial lens to detect material defects smaller than the operat-

ing wavelength [37]. Huang and Yang studied the performance of metamaterial sensors

and they showed that the sensitivity and resolution of sensors can be greatly enhanced

by metamaterials [26, 38]. Integration of metamaterials and near-field microwave sensors

has opened more degrees of freedom in sensor design and sensitivity [26]. Thus, the inter-
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Figure 2.1: (a) split ring resonator dimensions: a=0.3mm, d=3.333mm, f=1.2mm,

g=0.6mm, h=2.9mm, and p=1.8mm (b) electric LC resonator dimensions: a=0.3mm,

b=0.2mm, e=0.75mm, c=2.9mm, and d=3.333mm. (c) Picture of the split ring resonator-

ELC negative index material sample (reproduced with permission [34]).
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Top View

Side View

Figure 2.2: Complementary split ring resonator senor layout , and an illustration of the

sensor for thickness and permittivity measurement in multi-layered dielectric structures.

disciplinary boundary between the metamaterial field and sensing technology has become

a rich area for new technological and industrial developments. For instance, a near field

microwave sensor based on metamaterial structure (shown in Figure 2.2) was used for thick-

ness and permittivity measurement in multi-layered dielectric structures in the microwave

range [39].

The following points explain how sensing devices can use metamaterials to detect small

defects and anomalies [26]:

• Conventional sensors face a trade-off between the need to operate at low frequency to

avoid background and substrate absorption, and the need to have a small layout for

high resolution. In contrast, metamaterial-loaded sensors can operate at relatively

low frequency while having a small layout and field confinement in small areas [26].

• Conventional sensing devices need to produce a strong and measurable readout signal
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with a sharp resonant behavior to accurately track shifts in the transmission or re-

flection signals. Alternatively, metamaterial-loaded sensors, by design, have a higher

Q factor than conventional sensors [26].

Based on the outcomes of the above mentioned studies and other similar works available

in the literature it is clear that metamaterials have added a new dimension to near-field

microwave sensors by improving their sensitivities and resolution to detect small or hid-

den flaws and anomalies. The encouraging enhancement of the sensitivity in near-field

microwave sensors due to utilizing metamaterial particles has opened a door for the need

for advanced signal processing techniques in near-field microwave testing. This need can

be addressed by integrating advanced machine learning methods to process signals (data)

obtained from near-field microwave sensors.

Sensor development depends on the following two main aspects: investigative instru-

ments and data analysis [40] . The advanced investigative instruments available nowadays

allow the capture of large amounts of data about materials or objects under test. However,

the obtained data may contain complex information or small variations. That being the

case, sensor systems increasingly depend on advanced data processing techniques to make

decisions and predictions based on trained classification and regression models. Machine

learning is becoming important for developing novel sensors and effectively helps with data

analysis and mining to accomplish correct predictions and knowledge modeling [40]. In gen-

eral, the machine learning process can be divided into three phases: data pre-processing,

feature extraction and dimension reduction, and system modeling and tuning [40, 12]. The

next section provides a background on machine learning.

2.3 Integration of Near Field Microwave Sensors and

Machine Learning

Machine learning is a subset of artificial intelligence that denotes a set of methods that

can automatically detect patterns in data, and then use the detected patterns to build a
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model that can predict future data or perform other kinds of decision making under some

uncertainty [41].

Machine learning is usually divided into three main types: supervised, unsupervised,

and reinforcement learning. In supervised learning, the goal is to learn a mapping from

inputs (x) to outputs (y), given a labeled set of input-output pairs: D = {(xi, yi)}Ni=1.

Here, D is called the training set, and N is the number of training examples. Each training

input xi is a d-dimensional vector. Elements of xi vector are called features, variables or

attributes. In general, xi can be an image, a sentence, an email message, a time series,

a molecular shape, a graph, etc. Similarly the form of the output or response variable

yi can be a categorical or nominal variable from some finite set, yi ∈ 1, ..., C, or it can

be a real-valued scalar. If yi is categorical, the problem is known as classification or

pattern recognition, and when yi is real-valued, the problem is known as regression [41]. In

unsupervised learning approach we are only given inputs D = {xi}Ni=1, and the goal is

to find attractive patterns in the data, which is sometimes called knowledge discovery. This

process is a much-less well-defined problem, since we are not told what kinds of patterns to

look for, and there is no obvious error metric to use (unlike in supervised learning, where

one can compare a prediction of y for a given x to the observed value). The third type

of machine learning reinforcement learning, is useful for learning how to act or behave

based on occasional reward or punishment signals [41].

Supervised learning

Supervised learning is the form of machine learning most widely used in practice and can

be either classification or regression type. The coming sections explain both types and give

examples from daily-life activities.

Classification

For any classification model, the goal is to learn a mapping from inputs x to outputs y,

where y ∈ 1, ..., C, with C being the number of classes. If C = 2, this is called binary
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Figure 2.3: First 6 test Modified National Institute of Standards images.

classification, while if C > 2, this is called multiclass classification. Classification can be

formalized as function approximation. By assuming y = f(x) for some unknown function

(f), the goal of learning is to estimate the function (f) given a labeled training set, and

then to make predictions using ŷ = f̂(x). (The hat symbol is used to denote an estimate.)

The final goal of a classifier is to maximize right predictions on new input data (data that

the model has not seen during the training phase); this is called model generalization.

Image classification for handwriting recognition is a daily life classification example, for

instance, handwriting recognition is being used to classify a postal or ZIP code on a letter.

One standard dataset used for training and testing handwriting recognition applications

is known as Modified National Institute of Standards. This dataset contains gray scale

images of the digits 0 to 9 written in different ways. Figure 2.3 shows the first six images

of the test dataset.

There are many types of classifiers, and one of their most important distinguishing char-

acteristics is the number of parameters. Classifiers that have a fixed number of parameters

are called parametric, whereas classifiers with parameters that grow with the dimension of

training data are called non-parametric. Parametric classifiers have the advantage of often
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being faster to use, but they have the disadvantage of making stronger assumptions about

the nature of the data distributions. Non-parametric classifiers are more flexible, but often

computationally intractable for large datasets. For example, Naive Bayes classifier is a

simple probabilistic classifier. It is based on Bayes theorem with independence assump-

tions between predictors and easy to build. Naive Bayesian classifier is simple and useful

in performance measurement of more-complex classifiers in working on large datasets. In

other words, it can be used as a baseline for more-sophisticated classifiers performance

[41, 42]. On the other hand, K-Nearest Neighbors is a non-parametric classifier. K-Nearest

Neighbors simply looks at the K points in the training set that are nearest to a new test

input [41]. Additionally, Support Vector Machine is a nonparametric model and considered

to be among the top classifiers.

Regression

The second type of supervised learning is regression. It is similar to classification, ex-

cept that response variable is continuous (a real-valued number). Figure 2.4(a) shows an

illustration of a linear regression where a single real-valued input xi ∈ R, are projected

to a single real-valued response yi ∈ R. Furthermore, Figure 2.4 (b) depicts a nonlinear

regression model of the same data. Among examples of a regression problem are:

• Predicting tomorrow’s stock market price given current and previous market condi-

tions.

• Predicting the price of a house using area, age, district, etc.

In unsupervised learning, data only is given, without any labels. The goal is to discover

useful clusters in the data. Unlike supervised learning, the model cannot be told what the

desired output is for each input. Instead, an unsupervised model formalizes the task as a

density estimation of the form p(xi|θ). Two differences distinguish unsupervised learning

from supervised learning. First, unsupervised learning is unconditional density estimation;

whereas supervised learning is conditional density estimation. Second, in unsupervised
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Figure 2.4: (a) Linear regression on 1-d data. (b) Same data with polynomial regression.

leaning multivariate probability models must be built. By contrast, in supervised learning,

yi is usually just a single variable that the model is trying to predict. For most supervised

learning problems, univariate probability models (assuming input-dependent parameters)

can be used. Unsupervised learning is arguably more typical of human learning. It is

also more widely applicable than supervised learning, since it does not require a human

expert to manually label the data. Labeled data is not only expensive to acquire, but

it also contains relatively little information, certainly not enough to reliably estimate the

parameters of complex models [41]. There follow two examples of unsupervised learning:

• Document clustering, the aim is to group similar documents. For example, news

reports can be subdivided as those related to politics, sports, fashion, arts, and so

on [43].

• Image compression. In this case, a clustering program assigns pixels with similar

colors to be the same color to reduce image size [43].
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Figure 2.5: Monopole probe used for measurement of complex permittivity utilizing neural

networks.

Earlier Works

Microwave near-field testing integrated with machine learning [7, 8, 9, 10] is mainly directed

towards human tissue detection or material characterization. Figure 2.5 depicts the set-up

of using monopole antenna used for measurement of complex permittivity using artificial

neural networks. The configuration incorporates two networks, same in architecture, but

differ in weight matrices and outputs. Outputs of both networks then combined together

to reconstruct the complex permittivity of the material under test, as in Figure 2.6 [10].

Limited work orientated for integrating machine learning and near field microwave for

NDT applications [11, 44, 45]; regardless of, the task of near field microwave sensors in

NDT is distinguishing flawed or anomalous structures from healthy or normal structures

(which perfectly suites machine learning classification.) Furthermore, machine learning

implementation in near field microwave sensing as in [8, 9, 10], has been based on a single

AI model. Utilizing advanced machine learning techniques such as boosting, adaptive

boosting or other classifier combination techniques as in [12] can improve the accuracy
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Figure 2.6: Two neural networks combined together to reconstruct the complex permittiv-

ity of the material under test.

and generalization of AI models. The implementation of machine learning in this thesis

is focused on supervised algorithms of machine learning. Neural networks (NN), random

forest (RF), and support vector machines (SVM) are the main algorithms implemented,

because they can achieve higher out of sample accuracy rates than other classifiers [46, 45,

11]. Utilizing NN, RF, and SVM requires understating important concepts about them for

better model training and parameter tuning. Sections 2.4, 2.5 and 2.6 summarize NN, RF

and SVM algorithms as studied in [46, 47, 48].

2.4 Neural Networks

A basic neural network is as a series of functional transformations, where the basic function

is a nonlinear function operates on a linear combination of the inputs. For M hidden unit

constructing M linear combinations of the input variables x1, ..., xN yields the activation

aj , which is given by
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Input Layer Hidden Layer Output Layer

Figure 2.7: Three layer neural network configuration

aj =
N∑
i=1

w
(1)
ji xi + w

(1)
j0 zj = h( aj) (2.2)

where j = 1, ...,M (total number of hidden units) The superscript (1) indicates that

the corresponding parameters are in the first layer of the network. Parameters w
(1)
ji refer

to weights and w
(1)
j0 to biases. The activations are then transformed using a differentiable,

nonlinear activation function h(θ), which is given by

zj = h( aj) (2.3)

where zj corresponds to the outputs of the hidden units.

A basic NN model consists of an input layer, a hidden layer, and an output layer as

shown in Figure 2.7.

The nonlinear functions h(θ) are generally chosen to be sigmoid functions; then outputs

of the hidden units are linearly combined to give output unit activations

19



ajk =
N∑
i=1

w
(2)
ki zj + w

(2)
k0 (2.4)

where k = 1, ..., K, and K is the total number of outputs or labels. The transformation

in Eq. 2.4 corresponds to the 2nd layer of the network, and the w
(2)
k0 are bias parameters.

In the end, the output unit activations are transformed using an appropriate activation

function to give a set of network outputs yk. The selection of the activation function is

controlled by the data nature and the assumed distribution of the labels. For multiple

binary classification problems, each output unit activation is transformed using a logistic

sigmoid function so that

yjk = σ(ak) (2.5)

where

σ ( a) =
1

1 + e−a
(2.6)

For multi-class problems, a soft-max activation function of the form Eq 2.7 is used.

p (ckx) =
eak

( 1 +
∑

j e
aj )

(2.7)

One can combine equations to get the overall network function, for sigmoidal output

unit activation functions, which takes the form

yk (x,w) = σ

(
M∑
j=1

w
(2)
ki h

(
N∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(2.8)

where, the set of all weight and bias parameters have been grouped together into a

vector w. Hence, the NN model is a nonlinear function from a set of input variables xi to

a set of output variables yk controlled by a vector w of adaptable parameters. The process
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of evaluating Eq. 2.8 can then be interpreted as a forward propagation of information

through the network.

In feed-forward architecture each hidden or output unit computes a function given by

zk = h

(∑
j

wkjzj

)
(2.9)

where, the sum runs over all units that send connections to unit k (the a bias parameter

is included in the summation). For a given set of values applied to the inputs of the network,

successive application of Eq. 2.9 allows the activations of all units in the network to be

computed including the output units.

Network Training

During the network training phase, a training data set {xn} of input vectors with a cor-

responding true label/target vector {tn},where n = 1, ..., N, , the goal is minimizing the

following error function

E(W) =
1

2

N∑
n=1

‖y(xn,w)− tn ‖ 2 (2.10)

In the case of binary classification t = 1 denotes class C1 and t = 0 denotes class C2.

So a single output unit whose activation function is a logistic sigmoid as in Eq. 2.11 can

address the task .

y = σ ( a) ≡ 1

1 + e−a
(2.11)

So any estimated label y(x,w) is bounded such that 0 ≤ y(x,w) ≤ 1. One can interpret

y(x,w) as the conditional probability p(C1|x), with p(C2|x) given by 1 − y(x,w). The

conditional distribution of labels given inputs is then a Bernoulli distribution of the form

P (t|x,w) = y(x,w)t{1− y(x,w)}1−t (2.12)
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Considering a training set of independent examples/samples, then the error function

(which is given by the negative log likelihood) can be treated as a cross-entropy error

function of the form

E (w) = −
N∑
n=1

{tn ln(y(xn ,w)) + (1− tn ) ln(1− y(xn ,w)} (2.13)

Using the cross-entropy error function instead of the sum-of-squares for a classification

problem leads to a faster training and enhanced generalization. In case of K separate

binary classifications, then a network with K outputs can be used. Each of the K outputs

has a logistic sigmoid activation function and each output is related with a binary class

label tk ∈ 0, 1, where k = 1, ..., K. Assuming that the class labels are independent then

the conditional distribution of the labels is

P (t|x,w) =
K∏
k=1

yk(x,w)tk [1− yk(x,w)]1−tk (2.14)

Taking the negative logarithm of the corresponding likelihood function yields the following

error function:

EE (w) = −
N∑
n=1

K∑
k=1

{tnk ln(ynk ) + (1− tnk )ln(1− ynk )} (2.15)

where ynk denotes yk(xn,w).

The derivative of the error function with respect to the activation for a particular

output unit takes the form (yk− tk) just as in a regression case. In multi-class classification

problem each input is assigned to one of K mutually exclusive classes. Thus the binary

labels tk ∈ 0, 1 have a 1-of-K coding scheme indicating the class, and the network outputs

are interpreted as yk(x,w) = p(tk = 1|x),with error function depicted by

E (w) = −
N∑
n=1

K∑
k=1

tkn ln( yk (xn,w) ) (2.16)
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As no analytical solution to the equation ∇E(w) = 0 , we go for numerical procedures.

Optimization continuous nonlinear functions is a broadly studied. Most techniques start

with some initial value w(0) for the weight vector and then moving through weight space

in a succession of steps of the form

w(τ+1) = w(τ) + ∆w(τ) (2.17)

here τ is the iteration step. Algorithms have different options for the weight vector

update ∆w(τ). Gradient information is widely used which require the value of ∇E(w) to

be evaluated at the new weight vectorw(τ + 1) after each update. Next section studies

gradient descent optimization basics.

Gradient information optimization

In gradient information simplest approach is to select the weight update in Eq. 2.17 to

make a small step in the direction of the negative gradient, such that

w(τ+1) = w(τ) − α∇E(w(τ) ) (2.18)

where the parameter (α > 0) is the learning rate. After each update, the gradient is re-

evaluated for the new weight vector in repeated manner. In this context the error function

is defined with respect to a training set, thus each step needs that the entire training set

to be processed in order to evaluate ∇E. The weight vector is moved in the direction of

the greatest rate of decrease of the error function in each step. This approach is known

as gradient descent or steepest descent. Techniques that handle the whole dataset at once

are called batch methods. For batch optimization, there are more efficient techniques

such as conjugate gradients which are much more robust and much faster than simple

gradient descent. Unlike gradient descent, in each iteration conjugate gradient methods

the error function always decreases, except the weight vector has reached a local or global

minimum. It may be necessary to run a gradient-based algorithm multiple times using a
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different randomly chosen starting point; to find a sufficiently good minimum. Then the

performance compared using an independent validation set. The on-line version of gradient

descent is a practical for training neural networks on large data sets. The Error functions

based on maximum likelihood for a set of independent examples/samples represent a sum

of terms, one for each data point given by

E (w) =
N∑
n=1

En (w) (2.19)

The on-line gradient descent (also known as sequential gradient descent or stochastic

gradient descent) updates to the weight vector based on one data point at a time, so that

w(τ+1) = w(τ) − α∇En(w(τ) ) (2.20)

The update process is repeated by cycling through the data either sequentially or

randomly with replacement. One advantage of on-line methods over the batch methods is

the efficient handling of redundancy in the data. Additionally the on-line gradient descent

has high possibility of escaping local minima, since a stationary point with respect to the

error function for the whole data set will generally not be a stationary point for each data

point individually.

Error back propagation

In training a feed-forward neural network the target is to find an efficient technique to

evaluate the gradient of the error function E(w). Once the gradient of the error function

E(w) at the output layer has been computed, the gradient information is sent backward

through the network ( this process is known as error back propagation). The term

back propagation is used to describe the training of a multilayer perceptron using gradient

descent applied to a sum-of-squares error function. Generally training algorithms imply

an iterative procedure for minimization of error functions, through weight adjustments.

Hence, the derivatives of the error function with respect to the weights are needed. Later
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the derivatives are used to compute needed adjustments of weights. Derivatives can be

calculated using optimization methods. Gradient descent or conjugate gradients are some

examples.

Evaluation of error-function derivatives

Considering a simple linear model in which the outputs yk are linear combinations of the

input variables xi , such that

yk =
∑
i

wkixi (2.21)

Hence sum of squares error function, for a particular input n, is:

En =
1

2

∑
i

(ynk − tnk ) 2 (2.22)

where ynk = yk(xn, w) and the tnk is the true label of nth example. So the gradient of

this error function with respect to a weight wji is:

∂En
∂wji

=
1

2
(ynj − tnj)xni (2.23)

Eq. 2.23 can be interpreted as a local computation involving the product of an error

signal(ynjtnj) of the link wji and the variable xni associated with the input end of the same

link. Generally in feed-forward networks each unit computes a weighted sum of its inputs

as:

aj =
∑
i

wjizi (2.24)

where zi is the activation of a unit, or input, that sends a connection to unit j, and

wji is the weight associated with that connection. By introducing an extra input unit with
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activation fixed at (+1) the bias terms can be included in this sum. The sum in Eq. 2.24

is transformed by a nonlinear activation function h(θ) to give the activation zj of unit j in

the form

zj = h( aj) (2.25)

Applying the related input vector to the network and computing the activations of

all of the hidden and output units by successive application of Eq. 2.24 and Eq. 2.25

is called forward propagation. Forward propagation can be observed as a forward flow of

information through the network.

Considering evaluation of the derivative of En with respect to a weight wji, the outputs

of the various units will depend on the particular input example n. However, En depends

on the weight wji only via the summed input aj to unit j. Therefore one can apply the

chain rule to obtain

∂En
∂wji

=
∂En
∂aj

∂aj
∂wji

(2.26)

To simply the formulas the following notation is introduced

δj ≡
∂En
∂aj

(2.27)

where the δ ’s are often referred to as errors.

By using Eq. 2.24, the following derivative is obtained

∂aj
∂wji

= zi (2.28)

Finally, substituting Eq. 2.27 and Eq.2.28 into Eq. 2.26, yields

∂En
∂wji

= δj zi (2.29)
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Equation 2.29 indicates that the required derivative is calculated simply by multiplying

the value of δ for the unit at the output end of the weight by the value of z for the unit at

the input end of the weight ( z = 1 in the case of a bias unit). Therefore, to evaluate the

derivatives, one needs only to calculate the value of δj for each hidden and output unit in

the network, and then apply Eq. 2.29 . The error for the output units is given by

δk = yk − tk (2.30)

To evaluate the δ’s for hidden units, we apply the chain rule for partial derivatives

δj ≡
∂En
∂aj

=
∑
k

∂En
∂ak

∂ak
∂waj

(2.31)

where the sum runs over all units k to which unit j sends connections. By substituting

the definition of δ in Eq. 2.27 into Eq. 2.31 and using Eq. 2.24 and Eq. 2.25, the back

propagation formula illustrated as

δj = h′(aj)
∑
k

wkjδk (2.32)

Equation2.32 shows that the value of δ for a specific hidden unit can be obtained by

propagating the δ’s backwards from units higher up in the network. In Eq. 2.32 the

summation is taken over the first index on wkj (related to the error information backward

propagation ); however, in the forward propagation Eq. 2.9 the summation is taken over the

second index. Having the values of the δ’s for the output units and recursively evaluating

Eq. 2.32 the δ’s for all of the hidden units in a feed-forward network can be calculated.

the following steps summarize the back propagation process:

• Apply an input vector xn to the input of the network then forward propagate through

the network by Eq. 2.24 and Eq. 2.25 to evaluate the activations of all the hidden

and output units.
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• Compute the δk for all the output units using Eq. 2.30.

• Back propagate the δ’s using Eq. 2.32 to find δj for the hidden units in the network.

• Use Eq. 2.29 to compute the required derivatives.

2.5 Support Vector Machines

Support vector machines (SVM) algorithm has become one of the top algorithms for solving

problems in classification and regression. An important feature of support vector machines

is that the choice of the model parameters corresponds to a convex optimization problem.

The SVM is a decision machine and does not provide posterior probabilities.

Considering SVM for classification of a two-class problem using linear models of the

following form:

y (x) = wTφ (x) + b (2.33)

where φ(x) denotes a fixed feature-space transformation , and b is the bias parameter.

Eq. 2.33 can be represented using a dual expression in terms of kernel functions, to

avoid working explicitly in feature space (also known as kernel trick). Training with data

set with x1, ...,xN , input vectors, and binary label vector of {t1, ..., tN} where tn ∈ {1,−1}
, then new data points x are classified according to the sign of y(x). In case of linearly

separable data at least one choice of the parameters w and b exist such that Eq. 2.33

satisfiesy(xn) > 0 for points having tn = +1 and y(xn) < 0 for points having tn = −1.

That being the case tny(xn) > 0 for all training data points.

By implementing support vector machines the decision boundary between classes is

selected to be the one for which the margin is maximized see Figure 2.8. Furthermore, the

desirable solutions are in which all data points are correctly classified, so that tny(xn) > 0

for all n. Thus the distance of a point xn to the decision surface is given by
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Figure 2.8: Support vectors based classification system, support vectors are the solid shapes

and the decision boundary is the solid line.

tny (xn)

‖w‖
=
tn(wTφ (xn) + b)

‖w‖
(2.34)

The margin is the perpendicular distance to the closest point xn from the data set,

and the task is to optimize the parameters w and b to maximize this distance (margin).

Therefore, the maximum margin solution is found by solving the following equation

arg maxw,b{
1

‖w‖
{min

n

[
tn(wTφ (xn) + b)

]
} (2.35)

Because w does not depend on n the factor 1/‖w‖ has been taken outside the optimiza-

tion over n . Handling this optimization problem directly is complex; however, converting

it into an equivalent problem is easier to handle. Rescaling w→ kw and b→ kb does not

change the distance from any point xn to the decision surface and we have the following

equation for the point that is closest to the surface.

tn
(
wTφ (xn) + b

)
= 1 (2.36)
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In this scenario, all data points will satisfy the constraints given by

tn
(
wTφ (xn) + b

)
≥ 1, n = 1, .., N (2.37)

This gives the canonical representation of the decision hyper plane. For some data

points the equality holds and they are called active constraints, however, the rest of the

data points they are called inactive. All the time there will be at least one active constraint,

as there will always be a closest point. There will be at least two active constraints once

the margin has been maximized. This optimization requires maximizing ‖w‖(−1) , which

is equal to minimizing‖w‖2. Thus, we need to solve the following optimization problem

subject to the constraints given by Eq. 2.37

arg min w,b

1

2
‖w‖ 2 (2.38)

This is a quadratic programming problem in which a quadratic function need to be

minimized subject to a set of linear inequality constraints. The bias parameter b is deter-

mined implicitly via the constraints, due to changes to ‖w‖ be compensated by changes

to b.By introducing Lagrange multipliers an ≥ 0, with one multiplier an for each of the

constraints in Eq. 2.37 this optimization can be handled

L (w, b, a) =
1

2
‖w‖ 2 −

N∑
n=1

an {tn
(
wTφ (xn) + b

)
− 1} (2.39)

where a = (a1, ..., aN)T . The minus sign in front of the Lagrange multiplier term, as the

goal is minimizing with respect to w and b, and maximizing with respect to a. By setting

the derivatives of L(w, b, a) with respect to w and b equal to zero leads to the following

two conditions

w =
N∑
n=1

an tnφ (xn) (2.40)
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0 =
N∑
n=1

an tn (2.41)

Using these conditions we can eliminate w and b from L(w, b, a) to get dual represen-

tation of the maximum margin problem in following form, in which the task is maximizing

with respect to a subject to the constraints in Eq. 2.43 and Eq. 2.44

L (a) =
N∑
n=1

an −
1

2

N∑
n=1

N∑
m=1

anamtnatm k(xn,xm) (2.42)

an ≥ 0, n = 1, N, (2.43)

N∑
n=1

an tn = 0 (2.44)

kernel function in Eq. 2.42 is defined by k(x,x′) = φ(x)Tφ(x′) . Eq. 2.42 is a quadratic

programming problem in which the goal is to optimize a quadratic function of a subject

to a set of inequality constraints. Quadratic programming problems in M variables in

common have solutions with computational complexity of O(M3). Making the use of

dual formulation switches the original optimization problem of minimizing Eq. 2.38 over

M variables , into the dual problemEq. 2.42, of N variables . For a fixed set of basis

functions whose number M is smaller than the number N of data points ( samples), the

switch to the dual problem appears not attractive. Nonetheless, using it the model can be

represented using kernels, thus the maximum margin classifier can be applied efficiently

to feature spaces whose dimensionality exceeds the number of samples. Classifying new

samples using the trained model, requires only evaluating the sign of y(x) defined by

Eq. 2.42. This can be expressed in terms of the parameters {an} and the kernel function

by substituting for (w) using Eq. 2.40 to obtain

y (x) =
N∑
n=1

antnk (x,xm) + b (2.45)
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This constrained optimization satisfies theKarush−Kuhn−Tucker(KKT ) conditions,

where the following three properties hold

an ≥ 0 (2.46)

tny (xn)− 1 ≥ 0 (2.47)

an{tny (xn)− 1} ≥ 0 (2.48)

Thus for each sample, either an = 0 or tny(xn) = 1. Any sample for which an = 0 will

not contribute to the sum in Eq. 2.45 and it has no role about making predictions for new

samples. Remaining samples are called support vectors, where they satisfy tny(xn) = 1.

Therefore support vectors correspond to samples that lie on the maximum margin hyper

planes in the feature space, as illustrated in Figure 2.8. After training the model, a

significant proportion of the samples can be ignored and only the support vectors retained.

Once the quadratic programming problem has been solved and a value for a has been

found, the value of the threshold parameter b can be determined as any support vector xn

satisfies tn y(xn) = 1. Using Eq. 2.45 this leads

tn

(
N∑

m∈S

amtmk (xn,xm) + b

)
= 1 (2.49)

where S denotes the set of indices of the support vectors. Solving Eq. 2.49 for b

numerically gives a stable solution by first multiplying by tn, making use of tn2 = 1, and

then averaging these equations over all support vectors and solving for b to obtain

b =
1

NS

∑
n∈S

(
tn −

∑
m∈S

amtmk (xn,xm)

)
(2.50)

where NS is the total number of support vectors.

This ends the summary about NN and SVM adopted from [46].
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2.6 Decision Trees and Random Forests

A decision tree is a hierarchical model for supervised learning in which the local region is

identified in a sequence of recursive splits in a smaller number of steps. A decision tree is

composed of internal decision nodes and terminal leaves. Each decision node implements

a test function fm(x) with discrete outcomes labeling the branches. At each node, given

an input, a test is applied and one of the branches is taken depending on the outcome.

This process starts at the root and is repeated recursively until a leaf node is hit, at

which point the value written in the leaf constitutes the output [47]. A decision tree is a

nonparametric model, in fact we do not assume any parameters about class densities and

the tree structure is not fixed but only the tree grows, branches and leaves are added. In a

decision tree, a complex function is broken down into a series of simple decisions. Different

decision tree methods assume different models for the test function fm(.), and the model

class defines the shape of the discriminant regions. Each leaf node has an output, which in

the case of classification is the class label and in regression is a numeric value. A leaf node

defines a localized region in the input space where instances falling in this region have the

same labels (in classification), or very similar numeric outputs (in regression). Decision

trees have the advantage of interpret-ability. in fact , they can be converted to a set of

IF-THEN rules that are easily understandable [47]

Random Forest

Random forests are a combination of tree predictors where each tree depends on the values

of a random vector sampled independently using the same distribution for all trees in the

forest. The generalization error converges to a limit for a large number of trees in the forest

. Moreover, for forest of tree classifiers the generalization error depends on the strength

of the individual trees in the forest and the correlation between them. Splitting features

using a random selection of features at each node yields error rates that are more robust

with respect to noise [48].

A random forest classifier consists of a collection of tree-structured classifiers
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h(x,Θk), k = 1, ... where the Θk are independent identically distributed random vectors

and each tree casts a unit vote for the most popular class at input x. Significant improve-

ments in classification accuracy have been achieved from growing an ensemble of trees and

letting them vote for the most popular class. In order to grow these ensembles, often ran-

dom vectors are generated that govern the growth of each tree in the ensemble. To grow

each tree of the ensemble a random selection is made from the samples in the training set.

In random split selection Θ consists of a number of independent random integers between

1 and K best splits. The type and dimensionality of Θ depends on its use in tree con-

struction. finally,after a large number of trees is generated, they vote for the most popular

class [48].

2.7 Discussion

This Section provides an introduction to some key ideas in machine learning classification

that can help with model selection, tuning, and evaluation. During the training of classifiers

one needs to be careful to avoid overfitting the training data. That is, reducing training

error by fitting the noise and minor fluctuations in the training data. Overfitted classifiers

cannot generalize well during test stage and consequently have high test error rates [41].

For classifier evaluation the simplest form of the performance measure is error rate, that is,

the percentage of number of examples the classifier miss classified to the total number of

examples. The error rate and accuracy rate are complementaries and used interchangeably.

The error rate is useful if the class distribution in the data is uniform. Otherwise we need to

go for more advanced measures like the f-measure or confusion matrix which provides class

by class details. As in the recent years more computational resources become more available

classifier combination becomes affordable. Thus, instead of having one classifier to address

the problem a group of base classifiers (usually weak learners) are used to make the final

decision. Different methods have been developed to structure how the base classifiers are

combined like boosting, adaptive boosting (Adaboost), bootstrap aggregating (Bagging) ,

etc.[12].
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Due to their high accuracy rates NN, RF, and SVM are considered strong classifiers.

Neural networks training is time consuming in order to tune the network parameters to

avoid over-fitting the training data. However the testing phase of NN classifiers is faster

than the training stage, because once the optimized weights are obtained testing becomes

simply matrix multiplication (a feature can be implemented in hand-held testing devices).

Random selection of features at each node in RF classification improves error rates, thus

they are less vulnerable to noise. Moreover, SVM classifiers have the advantages of con-

vex optimization problem and margin maximization. For training models purposes, one

needs to have datasets with equal class distribution as possible. In case of skewed dataset

advanced performance metrics are needed such as the confusion matrix and F-score. More-

over, using combined machine learning models is more reliable than depending on one model

as the combined model consolidates the strong features of each individual classifier.
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Chapter 3

Intelligent Microwave Detection of

Surface Anomalies

3.1 Introduction

Microwave sensor performance at the hardware level has been implemented using metama-

terials to make strong localization of electrical fields around the sensing element, leading

to improved sensitivity and resolution of microwave near-field sensors [49, 38, 5]. One-

dimensional or two-dimensional metamaterial particle arrangements enhance the sensors

sensitivity to detect small anomalies [49, 38]. Thus, increasing use of near-field microwave

sensors necessitates improving their performance, not only at the sensor design level but

also at the signal post processing level. Due to the lack of advanced post-processing, small

signal changes and variations captured by microwave sensors available nowadays are subject

to numerous errors when measured with the human eye. In effect, the collected information

(raw datasets) requires advanced signal processing to make accurate decisions. In some

occasions, decisions are supercritical, for instance, decisions about the structural health of

aircraft fuselages or structures of nuclear reactors, as discussed in Chapter 2, ML theories

offer a natural framework for addressing damage detection. Hence, the next case stud-

ies present an implementation of artificial intelligent models for detecting sub-millimeter
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cracks in metallic surfaces using a waveguide sensor loaded with split-ring resonators. Split-

ring resonators, which are constituent elements used in a variety of metamaterial designs,

were recently found to enhance the sensitivity of waveguide sensors [5]. The conventional

method for sub-millimeter crack detection in metallic surfaces using waveguide sensors

consists of observing any frequency shifts in the magnitude of the reflection coefficient

(|S11|) pattern. Additionally, some research has been carried out in which the frequency

shift was changed to voltage levels[14]; these voltage levels were then used to detect cracks.

Using the conventional approach minor shifts are not easily observable or detectable. The

importance of employing Al models comes from their ability to detect small variations and

to automate the surface scan and crack detection process. Furthermore, AI preprocessing

methods such as feature normalization can significantly improve crack detection in terms of

minimizing the effect of using different stand-off distances [40]. In the experimental stud-

ies presented here, supervised ML was used by labeling training datasets acquired from

scans of cracked and non-cracked surfaces. Then ML classifiers were trained for pattern

recognition to classify new surface scans obtained using the sensor, to validate the con-

cept two case studies are presented. The methodology used in case study 11 is based on

applying AI classification after implementing feature extraction, whereas the implemented

methodology in case study 22 is based on applying AI classification after utilizing feature

selection.

1The material presented in this case study is published in [11].
2The material presented in this case study is published in [45].
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3.2 Detecting Cracks in Metallic Surfaces Using a

Waveguide Sensor: Case Study 1

Sensor Model and Experimental Setup

The sensor used in this work for scanning metallic surfaces was an open-ended waveguide

probe enhanced with an array of split-ring resonator (SRR) cells [5]. The waveguide

operates at the Ku-band of 12-18 GHz and has a cross section of 15.8 mm by 7.9 mm,

with a standard flange with dimensions of 33.30 mm by 33.30 mm. The experimental

setup operates by scanning a metallic plate containing 0.5 mm surface cracks ranging in

depth from 0.5 mm to 2.25 mm, with increments of 0.25 mm. Figure 3.1 below shows a

diagram of a waveguide sensor scanning a metallic plate with cracks. The sensor is placed

at a 0.5 mm stand-off distance, with the long dimension of the waveguide being parallel to

the cracks.

Integrating a metamaterial layer between the waveguide and the surface under test

enhances the sensor’s sensitivity, as presented in [49]. Various shapes for metamaterial

cells are available in the literature, for instance split rings [50], omega shaped [51], AV-

shaped [52] and U-shaped [53] cells. However, for sub-millimeter crack detection a split

ring represents an excellent choice due to the high electrical field confinement in the gap.

When,utilizing the gap as the sensing element, a major frequency shift was observed if the

field in the gap was perturbed by the existence of a crack [5].

A printed circuit board (PCB) with low loss (Rogers 4003) was used to fabricate the

SRRs. Figure 3.2 (a) displays the front and back views of the PCB patch used at the

open end of the waveguide. Figure 3.2 (b) shows a photograph of the waveguide sensor.

In a simplified microwave sensor configuration similar to the one used in this case, the

sensor has only one port, which is connected to a vector network analyzer (VNA) as shown

in Figure 3.3, where the sensor is scanning along the y-axis.

The VNA sends signals to the sensor at different frequencies in a sweep manner and

collects the reflected signals (data) from the sensor. The information reflected back is
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Figure 3.1: Schematic drawing of a waveguide sensor scanning a metallic plate with sur-

face cracks.

Figure 3.2: (a) Photographs of the front and back views of the split-ring resonator (SRR)

array etched on a printed circuit board; (b) Photograph of the sensor.
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Figure 3.3: Photograph of the experimental configuration. Scanning along y-axis at

0.5 mm stand-off.

valuable since it reveals details about the sensor’s environment. For instance, the reflected

data from a non-cracked surface is different from that reflected from a cracked surface.

Figure 3.4 illustrates the reflection coefficient S11 magnitude over the operating frequency

range of the probe from cracked and non-cracked surfaces.

Based on the presence of a crack underneath the sensor, the magnitude of the reflection

coefficient (|S11|) experiences a frequency shift and level change. In other words, the S11

pattern changes according to the presence or absence of cracks. In this experiment, for

each scan, the VNA was swept over a frequency range compatible with that of the sensor

(12 to 18 GHz), with increments of 30 MHz. Then the data was collected and saved in an

array format to be used later by the AI algorithms.
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Figure 3.4: Reflection coefficient magnitude from cracked and un-cracked surfaces at

0.5 mm stand-off.

Data Collection and PCA Processing

The data were collected on three different days. On each day, the experiment configuration

was rebuilt to ensure full reliability in the repeatability of experimental findings. Then the

data were mixed randomly into one dataset, with 415 total samples (scans) and 201 features

(frequency points from 12-18 GHz with 30 MHz increments). Additionally, the distribution

of the samples was intended to be symmetric (207 samples with a crack and 208 with no

crack). In view of the fact that the first class (cracked scans) and the second class (non-

cracked scans) have approximately the same number of samples, the accuracy of the AI

model is expected to give a realistic and accurate evaluation of the detection mechanism’s

performance.

Principal Component Analysis (PCA) was used for data pre-processing. PCA is one

of the most widely used techniques for feature extraction and dimensionality reduction to

build lower dimension datasets from higher ones. PCA finds a set of the most representative
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orthogonal projection vectors, where the projected samples retain the most information

about original samples. PCA also has the ability to remove correlations among variables

and enhance the signal to noise ratio [54],[40]. Another effective feature extraction method

is Independent Component Analysis (ICA), which maps input data onto basis vectors,

that are as statistically independent as possible [54]. An important difference between

PCA and ICA is related to the number of components used in each methodology. In

PCA, this number can be determined by the variance criteria, but in ICA, there are no

criteria for determining how many components represent the dynamic range of the data

[55]. Linear Discrimination Analysis (LDA) is another widely used feature extraction

method for sensor development [40]. Unlike PCA, LDA requires class information (labels)

to find a set of vectors that maximizes between-class scatter while minimizing within-class

scatter [54], [40]. Thus, PCA was implemented in this current study to build datasets

of reduced dimensionality by extracting important features according to their variance

contribution. PCA was applied after scaling the original dataset to zero mean and unity

standard deviation (Z- scaling). Figure 3.5 below shows the PCA results of the first 13

principal components. The PCA analysis shown in Figure 3.5, makes it clear that the first

two principal components contribute more than 75% of the variance. Moreover, the first

eight and first thirteen principal components achieve more that 90% and 95% ,respectively,

of the whole original dataset variance. Data visualization gives a good perspective about

the data distribution and can help with selecting the learning algorithm. However, humans

can handle only up to three dimensions. Therefore, one of the datasets built using PCA

was chosen to be a two-dimensional (2-d).

To visualize the data distribution in two-dimensional space, the first principal compo-

nent was plotted against the second component (Figure 3.6).The green triangles represent

samples/scans for non-cracked surfaces, and the red circles correspond to samples/scans

with cracks. One important observation about Figure 3.6 is that the green triangles are

concentrated in one region of the plot, whereas the red circles are widely spread. These

concentrations differ because scans for surfaces with no cracks have the same pattern,but

scans for cracked surfaces have different patterns as a result of varying crack depths. From

the PCA results, three datasets were built in total: Dataset 1: a matrix of 415 samples and
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Figure 3.5: Variance cumulative sum for the first 13 principal components [11].

2 features ( the first two principal components ); Dataset 2: a matrix of 415 samples and

8 features ( the first eight principal components ); and Dataset 3: a matrix of 415 samples

and 13 features ( the first thirteen principal components that together attained more than

95% of the collected data variance).

Implemented Models

Each feature of the raw data collected by the sensor was normalized to its maximum value.

The normalized dataset was then passed to the feature-extraction stage where PCA was

applied to generate the three reduced datasets. After feature extraction, the resultant

datasets were delivered to the classification stage, where two ANN and one SVM classifiers

were implemented to build a combined AI model. Figure 3.7 provides a flow chart of the

data preprocessing and the Al model architecture. An odd number of classifiers was chosen

to avoid ties during the combination phase. These classifiers were combined using majority

voting process that made the final decision (Figure 3.7).
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Figure 3.6: Plot of the first two principal components, which contributed more than 75%

of the variance.

 

Sensing data (Raw data) 

Feature extraction 

 (Dimensionally reduction)  

Data cleaning and normalization  

Majority voting 

ANN-1  SVM  ANN-2  

Final decision   

Figure 3.7: Implemented model architecture. Majority voting combination is used for

final decision.
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Table 3.1: Size of training ,validation and testing subsets.

Dataset Training Validation Testing

(# of Samples) (# of Samples) (# of Samples)

2-d 38 8 369

8-d 37 9 369

13-d 36 10 369

It is important to mention that each dataset had its own AI model because the model

parameters were a function of the dataset dimensions. For example, the 2-d dataset needed

2 input units and one bias unit for the ANN input layer; whereas the 8 dimensional (8-d)

dataset needed 8 input units and one bias unit.

To maintain a low testing error (out of-sample-error), each dataset was divided into

training, validation, and testing subsets; the model parameters were then tuned based on

minimizing the validation subset error rate. The sizes of training and validation subsets

for each dataset were chosen according to [56]. Table 3.1 illustrates the size (number of

samples) of the training, validation, and testing subsets for each dataset.

Artificial Neural Network Classifiers

The NN classifiers implemented in this work were based on a three-layer fully connected

configuration, as shown in Figure 3.8, with a back-propagation algorithm and a log sigmoid

function. In fact, different types of activation function can be used in NNs, such as linear,

step, or Gaussian. In this work, a log sigmoid activation function has been selected as it

has a convenient derivative (easy to compute from the sigmoid function itself), which is

suitable when training networks using back-propagation algorithms[57]. The log sigmoid

transfer always limits its output to the range between 0 and 1, as given by

g(z) =
1

1 + e−z
(3.1)
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The derivative of the log sigmoid function is given by

g′(z) =
1

1 + e−z
∗ (1− 1

1 + e−z
) (3.2)

In the literature, the back-propagation (BP) algorithm is well studied for ANN train-

ing, and it has been used in various applications [58],[59]. However, it is subject to local

convergence and slowness [60]. On the other hand, particle swarm optimization (PSO) has

been gaining interest in recent years and shows good results as in [60]. The PSO algorithm

shows faster converge during the initial stages of a global search; nevertheless around the

global optimum, the search process is very slow. In contrast, the gradient descend method

used in BP tends to achieve faster convergent speed around the global optimum [61]. More

recent hybrid algorithms have been reported [61], that combine PSO and BP algorithms to

unify the strong global searching ability of the former (PSO) and the strong local searching

ability of the latter (BP).

In the current work, to help the back propagation algorithm avoid local minima, each

NN classifier was started with random weights for each run. Furthermore, the number of

hidden units was optimized based on the validation error (not on the training error) to avoid

over-fitting as much as possible. In addition, a weight decay (regularization parameter)

term was included in the algorithm as an additional measure to prevent or minimize over-

fitting. The output layer has two units. The first unit gives the probability of a scan

belonging to the first class (cracks), and the second unit gives the probability of a scan

belonging to the second class (no cracks). At the end, the algorithm assigns the scan to

the class with the higher probability.

Support Vector Machine Classifier

The support vector machine (SVM) algorithm has become one of the most-effective algo-

rithms for solving problems in classification and regression. An important feature of SVM

is that the determination of the model parameters corresponds to a convex optimization

problem, thus any local solution is also a global optimum [46]. The SVM is a decision

machine and therefore does not provide posterior probabilities.
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Figure 3.8: Three-layer neural network with fully connected configuration.

Considering SVM for classification of a two-class problem using linear models of the

form:

y(x) = W Tφ(x) + b (3.3)

where φ(x) denotes a fixed feature-space transformation, and b is the bias parameter, Eq.

3.2 can be represented using a dual expression in terms of kernel functions to avoid work-

ing explicitly in the feature space (an approach as the kernel trick) [46]. By implementing

support vector machines, the decision boundary between classes has a unique feature, as it

is chosen to be the one for which the margin is maximized [12, 46]. The implemented SVM

classifier in this work was based on a Matlab interface from Libsvm [62] The SVM classi-

fier achieved high classification accuracy, mainly by optimizing the kernel type,degree,and

termination criterion tolerance. To have a baseline for the performance of the proposed

combined models, a Naive Bayes (NB) classifier was employed. NB and SVM and their

variants are often used as baselines in classification tasks, such as in text classification [63].

NB and SVM performance varies significantly depending on the model variant, features,

and dataset used [63],[64]. Since SVM was used in the combined models, the NB was

considered as the baseline. The average accuracy rate was used as a performance measure

by averaging over 1500 runs.
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Table 3.2: First model using Dataset-1 (2-d) performance profile along with a comparison

to Naive Bayes model.

Model Dataset Features
Average Accuracy (Standard Deviation)

Training Validation Testing

Combined Model 1st and 2nd (PCA) 99.93% (0.5) 99.30% (2.9) 99.31% (0.5)

NB Model 1st and 2nd (PCA) 99.92% (0.47) 98.18% (4.99) 98.25% (1.64)

Table 3.3: Second model using Dataset-2 (8-d) performance profile along with a comparison

to Naive Bayes model.

Model Dataset Features
Average Accuracy (Standard Deviation)

Training Validation Testing

Combined Model First Eight (PCA) 100% (0) 99.50% (2.2) 99.60% (0.65)

NB Model First Eight (PCA) 99.98% (0.23) 95.77% (7.28) 95.84% (3.2)

Results and Discussion

The first model was implemented using Dataset-1 (2-d). Each classifier was optimized

individually to maximize the validation accuracy. NN model optimization was performed

by tuning the number of units in the hidden layer and the regularization parameter. Fur-

thermore, to prevent the models from over-fitting, the number of hidden units was kept as

small as possible. During SVM optimization, the model showed that linear kernels achieved

higher validation accuracy rates than non-linear kernels. The models implemented using

Dataset-2 (8-d) and Dataset-3 (13-d) were similarly optimized to maximize validation ac-

curacy. Tables 3.2, 3.3, and 3.4 give the average training, validation, and testing accuracy

rates of each combined model. The standard deviation was also reported to indicate the

accuracy rate distribution.

For Dataset-1 (2-d dataset), the training accuracy rates of the first proposed combined

model and the NB were similar, and as high as 99%. However, the combined model slightly
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Table 3.4: Third model using Dataset-3 (13-d) performance profile along with a comparison

to Naive Bayes model.

Model Dataset Features
Average Accuracy (Standard Deviation)

Training Validation Testing

Combined Model First Thirteen (PCA) 100% (0) 99.65% (1.9) 99.62% (0.65)

NB Model First Thirteen (PCA) 99.98% (2.1) 94.3% (8.21) 94.48% (3.78)

out performed its NB model counterpart, by 1%, during the validation and testing. In the

case of Dataset-2 (8-d dataset), the gap between the training accuracy rates of the second

proposed model and the NB model was very small, and a rate of 100% was achievable by the

proposed model. However,gaps between the validation and test rates of the second proposed

combined model and their NB model equivalent rates were 3.8% and 3.7%, respectively

(Table 3.3).

Results of the Dataset-3 (13-d dataset), shown in Table 3.4, revealed that the training

accuracy of the third combined model and the NB model were 100% and 99.9%, respec-

tively. Nevertheless,the proposed model achieved higher validation and test rates than

its NB equivalent, and the out- performance gaps were increased compared to Dataset-2.

More specifically,the difference between the third model validation and test accuracy rates

and their NB model equivalents was larger than 5% . Overall,testing of all proposed models

revealed a better than 99% accuracy rate for crack classification. A visual explanation of

the learned 2-d model is given by Figure 3.9, where the decision boundary (blue line) is

plotted. This boundary separates scans with cracks (red circles) from scans with no cracks

(green triangles). The learned model was relatively linear in general. The figure has two

misclassified samples.However, avoiding perfect classification (over-fitting) during training

is recommended for better out-of-sample generalization.
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Figure 3.9: The combined model decision boundary (2-d Principal Component Analysis

(PCA) dataset).

Conclusions

The case study presented in this section has demonstrated an implementation of combined

AI models on different datasets obtained from a microwave waveguide sensor for sub-

millimeter crack detection on metallic surfaces. The sensitivity of the waveguide sensor

was enhanced with metamaterial particles. First PCA was applied as a feature-extraction

technique to obtain a general view of the data in a 2-d space. Additionally, PCA was used to

build additional reduced datasets of 8-d and 13-d with more than 90% of the variance of the

original dataset. Then, for each dataset, a combined AI model was developed, composed of

two neural network classifiers and one support vector machine classifier. The results using

the three models clearly validate the learning feasibility. A testing accuracy rate of more

than 99% was achieved. In addition, a base line comparison to a Naive Bayes classifier was

implemented as a performance measure.
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3.3 Reducing Sweeping Frequencies in Microwave

Detection: Case Study 2

Introduction

Different microwave NDT sensors proposed in earlier works operate over large frequency

ranges with fine sweeping increments. For instance, metal defect sizing and detection un-

der thick coating using microwaves from 8.2 – 12.4 GHz was reported in [15]. In [5], a

waveguide probe was used for crack detection in metallic surfaces with an operating fre-

quency range of 12 –18 GHz. In [65] detection of cracks in non-metallic materials using a

microwave resonator was implemented by sweeping over a frequency range larger than 1

GHz. More recently, non-invasive measurements of complex permittivity based on sweep-

ing the operating frequency of a microwave sensor from 1.7 – 2.7 GHz was reported in [66].

This case study addresses the need to reduce the number of sweeping frequencies during

microwave NDT to build efficient and cost effective sensors. It does so by implementing

ML feature selection methods. This approach, in turn, leads to a reduction in the detection

circuit complexity and size of acquired data, thereby, reducing the cost of the testing equip-

ment, especially for hand-held devices. Employing feature selection methods to discover

the most influential features among the full feature data set leads to minimizing the number

of testing frequency points needed to perform NTD diagnostics. After selecting a subset of

the important features, future structural health tests can be conducted using the selected

features incorporated with supervised learning techniques for defect and damage detection

using classification models. As a validation study for the concept of reducing sweeping

frequencies using feature selection methods, the microwave waveguide sensor used in Case

Study 1 was used here, and results were compared. The machine leaning implementation

in case study 1 was based on feature extraction using principal component analysis (PCA).

Unlike feature selection, feature extraction methods such as PCA extract the important

features by mapping the original data set to a lower space. Features in the lower space do

not correspond to the sweeping frequencies.
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Feature Selection Techniques

Feature selection is the process of selecting a subset of relevant features for building learning

models. When irrelevant features are eliminated from the original data set, the prediction

accuracy of the models can be improved [67]. Moreover, some features can be redundant,

and have high correlations. Thus, selecting un-noisy and uncorrelated features can in-

crease classifier performance. Feature selection techniques can be classified into two main

categories: filters and wrapper methods [68, 69].

Filter methods select a subset of features as a pre-processing step, independently of

the learning algorithms of the classifiers. Filter methods are based only on general charac-

teristics of the data such as the correlation between variable to be predicted. Filter methods

suppress the least interesting variables and they work independent from data labels. These

methods are particularly efficient in computation time and robust to overfitting.

Wrapper methods utilize the classifiers’ performance to select feature subsets. They

evaluate subsets of variables, thus allowing the possible interactions between variables to

be detected. Wrapper models give better results compared to filter models, however, they

are computationally expensive and classifier specific.

Filter-based feature selection techniques are adopted in this study based on their inde-

pendence from the learning process. Four different filter-based feature selection and ranking

techniques are investigated in order to identify the most important features, namely in-

formation gain, gain ration, and Relief. The following subsections present an overview of

these techniques.

Information Gain (IG)

Information gain is the expected reduction in entropy obtained by partitioning the features

according to a given aspect. The entropy characterizes the uncertainty associated with a

random collection of features; measuring the impurity or disorder of the data set. Informa-

tion gain measures the amount of information in bits about the class prediction based on a

feature and the corresponding class distribution [70, 71]. The entropy of the data set as a
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whole and for each class is needed To select the important features. For a given set of data

D containing c different values (features), the entropy can be calculated as follows[70, 71]:

Entropy(D) = −
c∑
i=1

P (ci)× log2

(
P (ci)

)
(3.4)

Where P (ci) is the probability of getting the ith feature randomly selected from the data

set D. If we make attribute Ai, with the v features, the root of the tree, this will partition

dataset D into v subsets D1, D2, ..., Dv. The expected entropy if Ai is used:

EntropyAi(D) = −
v∑
i=1

| Di |
| D |

× Entropy(Di) (3.5)

Information gained by selecting attribute A to branch or to partition the data set is:

Gain(D,Ai) = Entropy(D)− EntropyAi(D) (3.6)

Equation 3.6 is used to select those features with the highest gain.

Gain Ratio (GR)

Gain ratio is a modified information gain method that prevents bias in information gain.

Eq. 3.7 represents the information generated by splitting the training data set D into v

partitions corresponding to v outcomes of a test on the feature A. Then the gain ratio is

a normalized information gain as in Eq. 3.8. GR takes number and size of branches into

account when choosing an feature. The feature with the highest gain ratio is selected as

the splitting feature. [70, 72].

SplitInfoA(D) = −
v∑
i=1

| Di |
| D |

× log2

| Di |
| D |

(3.7)

GainRatio(D,Ai) = Gain(D,Ai)− SplitInfoA(D) (3.8)
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Relief

Relief is an instance-based algorithm that ranks on features by finding a relevance weight

for each feature [73, 74]. The weight for a each feature indicates its ability to distinguish

between classes. For each chosen example (observation), the nearest instance of the same

class (nearest hit) and opposite class (nearest miss) are found. The feature’s weight is then

updated according to how well its values distinguish the chosen instance from its nearest

hit and nearest miss as in Eq. 3.9. A feature receives a high weight if it differentiates

between observations from different classes and has the same value for observations of the

same class. Relief randomly samples observations from the training data [74].

W new
X = W old

X −
diff(X,R,H)2

m
+
diff(X,R,M)2

m
(3.9)

Where WX is the weight for feature X,R is a randomly sampled observation, H is the

nearest hit, M is the nearest miss, and m is the number of randomly sampled observations.

The function diff calculates the difference between two observations for a given feature.

For nominal attributes it is defined as either 1 (the value of the feature differs between

the two observations) or 0 (the feature has the same value in both observations), while for

continuous attributes the difference is the actual difference normalized to the interval [0;

1]. Dividing by m guarantees that all weights are in the interval [-1, 1] [74].

Experimental Setup

A measured data set is comprised of real measurements of metallic plate scans, obtained

using a waveguide sensor loaded with metamaterial particles [5]. The metamaterial par-

ticles are arranged in an array as shown in Figure 3.10 (a). The waveguide was operated

at the Ku-band, and has a cross section of 15.8 mm by 7.9 mm, with a standard flange

with dimensions of 33.30 mm by 33.30 mm. Figures 3.10 (b) and (c) show the sensor and

the metallic plates with different cracks, respectively. The surface testing was performed

by scanning a metallic plate containing multiple 0.5 mm surface cracks ranging in depth

from 0.5 mm to 2.25 mm (cracks are made using a milling machine ). The sensor was
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Figure 3.10: Photographs of the sensor. (a) Used waveguide sensor side view. (b) PCB

board with split ring resonators. (c) A photograph of metallic plates with different cracks.

connected to a vector network analyzer (VNA) in a one-port configuration, as illustrated

in Figure 3.11. The sensing mechanism consists of the VNA sending signals to the sensor

at different frequencies in a sweep manner and collecting the reflected signals (data) from

the sensor while the sensor scans the surface of the metallic plate under test at 0.5 mm

stand-off distance. The VNA was swept over a frequency range of (12 to 18 GHz) with

increments of 30 MHz to measure the reflection at 201 frequency points (features) for each

scanned position.

Data Set Descriptions

Signals reflected back from the sensor contain information about the health of the scanned

metallic plate. For example, the pattern of the signal reflected from a non-cracked (healthy)
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Figure 3.11: Testing configuration.

surface is different from one reflected from a cracked (unhealthy) surface. Figure 3.12 illus-

trates the reflection coefficient magnitude over the operating frequency range for cracked

and non-cracked surfaces.

Figure 3.12: Reflection coefficient magnitude plots from healthy and unhealthy metallic

surfaces.

As Figure 3.12, depicts the sensor experienced a shift when it encountered a crack, as

highlighted by the circle in Figure 3.12. The highlighted part of Figure 3.12 is the region

around the resonance frequency of the sensor and it is the main informative part in the

plot about the structural health. Figure 3.13 shows a closer illustration of the reflection
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Figure 3.13: Reflection coefficient magnitude plot around the resonance frequency of the

sensors.

coefficient magnitude around the resonance frequency of the sensor. The range from 15.6 to

17.2 GHz is the range of interest for the coming implemented feature selection algorithms.

In total, there were 53 frequency points (features) in this range starting from the 122nd

feature to the 174th feature in the initial data set. The objective of the feature selection

algorithms implemented in coming sections is reducing the number of sweeping frequency

points by selecting the main informative frequency points among these 53. Different clas-

sifiers were trained and tested for crack detection based on reduced data sets. The class

distribution of the measured observations was symmetric (180 observations with a crack

and 180 with no crack) to avoid an unbalanced class scenario.

Pre-Processing

Input normalization data is very important when dealing with parameters of different units

and scales. Therefore, all parameters should have the same scale for a fair comparison

between them. In the absence of normalization, features with large values have a greater

influence on the cost function, which must be considered when the classifier is designed.

The data set understudy was normalized using min-max normalization which restricts the
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values of all features within predetermined ranges. The general formula is given as:

x′ =
x−min(x)

max(x)−min(x)
∗ (b− a) + a (3.10)

where x is the original value, x′ is the normalized value, a and b are the min and max

values of the new scale.

Results and Discussion

This section presents the outputs of the implemented feature selection techniques as well

as their affect on the performance of the built classifiers.

Feature Selection Results

In this study, information gain, gain ratio, and Relief algorithms were implemented using

the R-project [75] to select the top five important features among the set of 53 features

in the vicinity of the sensor’s resonance. The feature weights after these algorithms were

applied are shown in Figures 3.14 (a) to 3.14 (c). In these plots the higher the weight is,

the higher the feature’s importance. As illustrated, weights using IG and GR algorithms

have a common trend. However, Relief algorithm selection was different compared to the

rest of the algorithms.

Table 3.5 summarizes the outcomes of the feature selection algorithms. GR selection

is similar to IG with a difference only in the fifth feature. However, the ordering of feature

when using Relief method was obviously different from that of the other methods, as

depicted in Table 3.5.

Classification Implementation and Results

Deciding which classification algorithm to select for evaluating and classifying the data set

is one of the challenges in machine learning research. Predictive accuracy has often been

used as one of the evaluation criteria for the predictive performance of classification or data
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Figure 3.14: Weight plots of features for implemented algorithms. (a) Weights vs. features

using Information Gain. (b) Weights vs. features using Gain Ratio. (c) Weights vs.

features using Relief.

Table 3.5: Top 5 important feature using implemented feature selection algorithms

Algorithm 1st Feature 2nd Feature 3rd Feature 4th Feature 5th Feature

IG 172 173 174 171 170

GR 172 173 174 171 169

Relief 174 154 173 155 153
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Table 3.6: Classification average accuracy and standard deviation of 10 folds for KNN, NN,

RF, and SVM classifiers using data sets of top 5-features of IG, GR, and Relief algorithms

Model Acc (Top 5 IG) Acc (Top 5 GR) Acc (Top 5 Relief)

KNN 0.9963 (1.16%) 0.9964 (1.13%) 1.00 (0%)

RF 0.9963 (1.16%) 0.9964 (1.13%) 0.9963 (1.16%)

NN 0.9976 (1.16%) 0.9964 (1.13%) 0.9976 (1.16%)

SVM 1.000 (0%) 1.00 (0%) 1.00 (0%)

mining algorithms. To overcome this issue, we have conducted experiments using different

classification algorithms, and used the classifier’s predictive accuracy on the experimental

data set as the evaluation criterion.

Defect (crack) detection using reduced data sets has been evaluated using KNN, RF,

NN, and SVM classifier models. The classifiers were tuned using grid search and cross-

validation. Three levels of search grid where used to tune the parameters of the imple-

mented models. SVM models were tuned in terms of the polynomial kernel degree and

the regularization constant. NN models were tuned in terms of the number of hidden

units and weight decay. Three odd levels (to avoid ties) of nearest neighbors were used

for tuning KNN classifiers. The average classification accuracy was used as a criterion

for model selection. Because the feature selection models returned the the top five fea-

tures, 5-dimensional data sets were used to build the classifiers. Furthermore, additional

2-dimensional data sets were used for defect detection, based on the first two important

features. Results have revealed high classification accuracy rates. Table 3.6 and Table

3.7 summarize the 5-dimensional and 2-dimensional classification models respectively. In

total, 360 samples (observations) were used as follows: 270 observation for training using

10-fold cross validation and 90 observations held for unseen testing. More details about

designing the training and test sets can be found in [76, 56].

The average training accuracy rates were higher than 0.995 for all models. Furthermore,

the classification results indicate that the SVM outperformed the rest of the implemented

models for all data sets, as it scored 100% accuracy rate for all data sets. The strong
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Table 3.7: Classification average accuracy and standard deviation of 10 folds for KNN,

NN, RF, and SVM classifiers using first and second important features of IG, GR, and

relief algorithms

Model Acc (Top 2 IG) Acc (Top 2 GR) Acc (Top 2 relief)

KNN 0.9964 (1.13%) 0.9964 (1.13%) 1.00 (0%)

RF 0.9964 (1.13%) 0.9964 (1.13%) 0.9963 (1.56%)

NN 0.9964 (1.13%) 0.9976 (1.13%) 0.9988 (1.17%)

SVM 1.000 (0%) 1.00 (0%) 1.00 (0%)

performance of SVM can be explained by the fact that the SVM measures the complexity of

the hypotheses based on the margin with which it separates the dataset, not the number of

features used, which in turn leads to better generalization compared to other algorithms[77].

Considering the relationship between the data sets and classification models employed,

the data sets obtained by relief feature selection led to better accuracy, as the KNN classifier

reached an accuracy rate of 100% only when it was working on data sets generated by the

Relief algorithm. Accuracy variation, shown in Figure 3.15 and Figure 3.16 indicate that

the metallic plate surface can be tested with only two frequencies, and an accuracy rate of

100% is achievable using SVM.

The performance of the classifiers implemented, based on the data set obtained using

Relief feature selection technique was studied further in terms sensitivity and specificity,

and results were reported as Kappa density [78] plots as in Figure 3.17 and Figure 3.18 for

5-dimensional and 2-dimensional data sets respectively. The kappa plots show that SVM

and KNN outperformed RF and NN classifiers. Configurations of the classifiers operated

on the data sets selected using Relief feature selection method are listed in Table 3.8.

Due to SVM classifier’s strong performance in terms of the accuracy and kappa mea-

sures with all data sets, it has been selected as the final model among all implemented

models. The 2-dimensional SVM model has been tested using unseen data, and the deci-

sion boundary learned is plotted in Figure 3.19. As observed from Figure 3.19 the accuracy

rate of 100% was achieved.

61



KNN

NN

RF

SVM

0.94 0.98

Accuracy

(a)

KNN

NN

RF

SVM

0.94 0.98

Accuracy

(b)

KNN

NN

RF

SVM

0.94 0.98

Accuracy

(c)

Figure 3.15: Box-and-whisker diagrams indicating the accuracy variation for the imple-

mented classifiers. (a) Based on the 5 top features using IG. (b) Based on the 5 top

features using GR. (c) Based on the 5 top features using Relief.
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Figure 3.16: Box-and-whisker diagrams indicating the accuracy variation for the imple-

mented classifiers using 2- dimensional data sets. (a) Using IG based data set. (b) Using

GR based data set. (c) Using relief based data set.
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Table 3.8: Configurations of the classifiers built using the data sets selected using relief

feature selection

2-dimnesional,Models 5-dimnesional,Models

SVM
degree (1)

regularization cost (0.25)

degree (3)

regularization cost (0.5)

RF variable per level (2) variable per level (2)

NN
hidden units (3)

weight decay (0)

hidden unit (5)

weight decay (10−4)

KNN k (5) k (9)
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Figure 3.17: Kappa density plots for the implemented classifiers using 5-dimensional data

set using relief feature selection. (a) RF. (b) NN. (c) SVM [45].
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Figure 3.18: Kappa density plots for the implemented classifiers using 2-dimensional data

set using relief feature selection. (a) RF. (b) NN. (c) SVM.
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Figure 3.19: SVM decision boundary (DB) plot and unseen data from both classes.

Conclusions

This work has demonstrated the employment of ML feature selection to reduce sweeping

frequencies in NDT. The experimental measurements required to test metallic surface hasa

been reduced between five and two only. The resultant data sets have been evaluated using

classification models including, RF, NN and SVM. The accuracy rates for all implemented

classifiers’ were higher than 0.995. Furthermore, based on the implemented classifiers’

performance, the Relief selection algorithm was more effective than IG and GR.

Considering the training and testing classification accuracy rates achieved by the SVM

classifier working on the 2d dimensional data set selected using Relief algorithm, the waveg-

uide sensor can operate only at two frequencies (16.59 and 17.19 GHz), and a classification

accuracy rate of 100% is achievable.
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3.4 Discussion

Both case studies have shown that classification results were higher then 99% for out-of-

sample scans (unseen data). As a result of implemented NN and SVM classifiers in case

study 1 classification of any new samples is performed by operating the parameters of

learned models on the new dataset (due to the fact that NN and SVM are model based).

This means that, once the NN has been built (weights have been determined), classification

of new data is merely matrix multiplication, a characteristic that is attractive for hand-held

test equipment. Moreover, the proposed AI models decisions are made without any need

for plotting the captured signals; hence, they can be embedded in in-field crack detection

devices.

Outcomes of case study 2 have shown that utilizing feature selection for minimizing

sweeping frequencies eliminates irrelevant features were from the original data set. Subse-

quently, selecting un-noisy and uncorrelated features leads to higher prediction accuracy

than in case study 1. Moreover, case study 2 results have shown that the SVM classifier

out-performed the NN and the RF classifiers. Furthermore, feature selection algorithms

have indicated that the metallic surface can be tested using only two frequencies with-

out compromising the classification accuracy, as illustrated in Table 3.7. As a major cost

in developing detection systems is the frequency bandwidth; thus build scanning systems

with only two instead of many operating frequencies leads to significant reduction in the

electronic circuitry for portable detection systems and to a significant enhancement in time

efficiency.

In brief, case sturdies 1 and 2 have demonstrated the practical feasibility of intelligent

crack detection in metallic surfaces using AI models and a waveguide sensor. The proposed

AI models were able to classify cracks that can easily be overlooked by the human eye.

Consequently, this work can be generalized for different types of damage such as, corrosion

or precursor pitting.
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Chapter 4

Intelligent Near-Field Microwave

Detection of Subsurface Anomalies

4.1 Introduction

Among1 various non-destructive testing techniques, microwave testing is suitable for de-

tecting buried anomalies in dielectric structures or hidden defects under coating or paint, as

microwaves can penetrate coating layers and interrogate the metallic surfaces underneath

[79, 13, 15]. Microwave-based detection modalities have gained strong interest in recent

years because they do not require mechanical contact or mechanical penetration into the

specimen under test [79, 13]. Near-field microwave-based sensors, in particular, can detect

small flaws that are much smaller than the operating wavelength in free space [80]. In

recent years, metamaterial and electrically small resonators have been used as sensors in

the microwave frequency regime [49, 35, 38, 5]. Metamaterial cells such as complementary

split-ring resonators (CSRR) have been used to detect cracks in metallic and non-metallic

material and to gauge the thickness of substrates [81, 39, 65, 66].

1Part of the material presented in this chapter is published in [44],[89], and [97] and part is in preparation

for publication.
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Figure 4.1: Typical microwave testing system configuration.

In general, microwave testing systems are comprised of transmission and receiving units

that surround the material under test (MUT) as shown in Figure 4.1. However, in certain

applications, only one side of the MUT is accessible. To address this challenge, one-

sided sensors are used. For instance, open-ended waveguides, coaxial cables, and loaded

transmission lines with split-ring resonators have been used for surface and subsurface

detection [80, 49, 82, 83].

The use of near-field microwave sensors for defect detection is becoming increasingly

attractive because results can be presented as images [80, 15, 84]. Mapping microwave

sensing results as two-dimensional (2d) or three-dimensional (3d) images is useful in read-

ily determining the size, shape, orientation and location of surface or buried anomalies

or flaws. Conventional lenses are built from positive index materials and require curved

surfaces to focus electromagnet waves on the image plane. However, finer details of the

image are contained in the evanescent spectrum, which quickly decays before reaching the

image plane [85]. The absence of evanescent waves restricts focusing with conventional

lenses to a resolution on the order of half the operating wavelength. Enhancing the image

resolution requires the contribution of the evanescent spectrum. Metamaterials have been

used to enable sub-wavelength resolution [85, 86] and defects in certain structures can be

imaged at high resolution by microwave sensors utilizing the evanescent spectrum [87].
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Imaging systems using open-ended waveguides that operate at low frequency have a

lower lateral resolution due to the large cross-sections of the waveguides [15]. To improve

the lateral resolution waveguides need to work at high frequency [88]. Coaxial cable sen-

sors have higher resolution than waveguides; however, coaxial cable sensors are sensitive

to the stand-off distance and are time consuming to use [82]. Transmission lines loaded

with CSRRs provide a practical trade-off between lateral resolution and imaging time.

In addition, open-ended waveguide and coaxial cable sensors are one-port systems that

can provide reflection coefficients only. In contrast, transmission line sensors loaded with

CSRRs provide both transmission and reflection coefficients, thereby facilitating construc-

tion of images from transmission or reflection data. By making the sensors’ rings (sensing

elements) very small compared to the operating wavelength, the sensors become electri-

cally small resonators. These sensors are one-sided, low profile and able to provide higher

lateral resolution at lower frequency than waveguide sensors. The majority of microwave

testing and imaging studies have focused on magnitude information [39, 81, 6]. Fewer stud-

ies [25, 83] have considered phase information. The reflection or transmission coefficient

phases provide critical information as their changes show discontinuity patterns due to the

existence of defects within the sensor’s ambient region. In certain applications, this leads

to higher detection sensitivity or sharper images than in cases when the magnitudes are

used. Thus, the phase data of S11 and S21 are considered here.

In our recent work, CSRR based sensor was introduced as a viable sensor for imaging

metallic surfaces [89]. This chapter presents comprehensive simulation and experimental

studies of the CSRR sensor, showing that it can lead to practical and inexpensive imaging

modality for anomaly detection dielectric and coated metallic structures. The magnitude

and phase information were investigated to build two dimensional images and surface plots

with the end goal of detecting surface flaws. The imaging resolution is largely dependent

on the sensing element of the CSRR, which is the gap in the ring, not the arm length of

the CSRR. The CSRRs gap in this study is very small compared to the size of the defect.

The smaller the gap and scanning step are, the higher the resolution. A schematic diagram

describing the imaging system is shown in Figure 4.2
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Figure 4.2: A schematic diagram of the imaging model.

4.2 Sensor Design and Operation

The employed sensor design is based on a microstrip transmission line with a complemen-

tary split-ring resonator (CSRR) etched in the ground plane of a printed circuit board

(PCB). The transmission line is used to excite the CSRR structure, which acts as an

electrically-small resonator whose dimensions were smaller than the operating wavelength.

The sensing region is comprised of two co-centered split-square rings forming an inductor-

capacitor (L-C) structure that resonates at a certain frequency. The CSRR cell is hosted

on a t = 0.735 mm thick Rogers substrate with a dielectric constant of εr = 10.2 and a loss

tangent of tanδ = 0.002. The geometric dimensions of the cell were chosen to maintain

small sensor dimensions at a low frequency range (S-band). Figure 4.3 shows the sensor’s

layout. Figure 4.4 depicts the 3-d structure of the sensor, where the red line is the trans-

mission line on top of the substrate and the green region is the ground plane on the bottom

of the PCB. The CSRR has an arm length of 4 mm, gap of 0.3 mm, distance between inner

and outer rings of 0.3 mm, and copper thickness of 35 µm.

The sensor’s resonance frequency can be perturbed by changing the surrounding envi-
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Figure 4.3: Schematic of sensor layout showing transmission line and etched CSRR in the

ground plane.
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Figure 4.4: The sensor’s structure.

ronment of the L-C circuit (the sensing element) [81, 39].

At resonance, the electric field energy and the magnetic field energy stored in the res-

onating structure are equal to each other. However, when an interacting material perturbs
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the field distribution, the resonance frequency changes. The change in the resonance fre-

quency is related to the interacting material properties and according to prior CSRR sensor

studies, [90, 91, 39] this relationship formula can be presented by

5fr
fr

=

∫
v
(5εE1 · E0 +5µH1 ·H0)dv∫

v
(ε0|E0|2 + µ0|H0|2)dv

, (4.1)

where 5fr is the shift in the resonance frequency fr, 5ε, and 5µ are the changes in the

permittivity and permeability, respectively, and v is the perturbed volume. E0 and H0 are

the field distributions without the perturbation, and E1 and H1 are the field distributions

with the perturbation. If the perturbation is small, then the field distributions are assumed

to be unchanged. Thus, Eq. 4.1 can be simplified to

5fr
fr

=

∫
v
(5ε|E0|2 +5µ|H0|2)dv∫
v
(ε0|E0|2 + µ0|H0|2)dv

(4.2)

When the sensor scans a coated metallic plate or dielectric structure, it resonates at a

certain design frequency. In this work, the resonance frequency was chosen at the S band,

but other frequencies can be used. The reason for choosing the S band was to build a

sensor that operates at low frequency with a sensing region of less than 5mm × 5mm to

achieve high lateral resolution. The initial design of the resonator was proposed in [92]

and studied and used for sensing in [81, 39, 65]. In this work, the resonator was tuned to

operate at 3.8 GHz by fixing the gap and the separation between the rings and altering the

rings’ arms using the driven mode solver of ANSYS R© High Frequency Structure Simulator

(HFSSTM). When the sensor encounters an anomalous region, its resonance frequency

shifts. More precisely, when encountering a flaw such as corrosion, the transmission (S21)

and reflection (S11) coefficients experience frequency and amplitude changes due to changes

in the material’s composition, shape or both. Figure 4.5 shows the |S21| plots for healthy

and corroded surfaces. Figure 4.6 illustrates the simulated sensor’s transmission coefficient

(|S21|) when the sensor is interacting with a healthy two-layer dielectric structure and when

a buried anomaly was introduced in the second layer of the same structure. The following

71



Figure 4.5: Magnitude of the transmission coefficient as a function of frequency.
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Figure 4.6: Transmission coefficient magnitude plots for anomaly-free and anomalous re-

gions in a dielectric plate.

case studies present the ability of the CSRR sensor for detecting hidden anomalies in

metallic and dielectric structures.
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4.3 Imaging of Subsurface Anomalies using Single

Metamaterial Resonator in Coated Metallic

Structures: Case Study 3

In this study, two models of Teflon-coated aluminum plates were simulated. The first

model had only one corroded region, whereas the second had two corroded regions with

different depths. A raster scan around the flaw region(s), shown in Figure 4.7a, was used

to image the MUTs. The resultant scattering matrix was later transferred to a Matlab

environment for post-processing and image construction.

Simulation results and discussion

All simulation results presented in this work were obtained using ANSYS R© HFSSTM [93].The

first simulated MUT was an aluminum plate of 40 mm × 40 mm and a thickness of 5 mm,

with a corroded region of 15 mm × 7.5 mm and depth of 2 mm, under a Teflon sheet of 50

µm. The corrosion parameters (εr = 8.42 − j1.03) used were those reported in [25]. The

Teflon cover is used to emulate paint layers that prevent the efficacy of visual inspection.

The sensor scanned the MUT with a stand-off distance (air gap between the sensor and

the imaged surface) of 0.5 mm, covering an area of 23 mm × 23 mm, in steps of 1mm in

a raster scan pattern to construct an image of 529 pixels. Figures 4.7a and 4.7b show

schematics for the first MUT’s top and side views and the scanning procedure. For each

pixel(scanning position) the frequency was swept over a 2-4 GHz frequency range in in-

crements of 5 MHz. The results of the scattering matrix were transferred to a Matlab

environment for post-processing. The sharpest images for the MUT were obtained near

the higher end of the operating frequency range within the sensor’s resonance frequency.

A constructed image at 3.75 GHz using the magnitude of S21 for this simulation setup is

shown in Figure 4.8a. The blue rectangular region in Figure 4.8a clearly shows the flaw

region, and the yellow and red backgrounds correspond to the rest of the healthy scanned

area. The magnitude of S21 at the center of the corroded region drops to -35 dB. However,
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Figure 4.7: (a) Raster scan around a corroded region in an aluminum plate coated with a

Teflon layer of 50µm, and (b) Cross section view of the MUT.

as the sensor leaves the flaw region, the magnitude of S21 starts to increase, to reach -15

dB around the corroded region (the yellow area in the plot) and increases to -5 dB when

the sensor is far away from the defect (the red area in the plot). Comparing the flaws di-

mensions in the image to its real dimensions (shown in the dashed rectangle in Figure 4.8a)

confirms that the constructed image not only detects the flaw but also characterizes it well

in terms of shape and size. A second representation of the results is given as a surface plot

in Figure 4.8b, which is more suitable for illustrating the flaw position and depth. This

illustration represents the magnitude of S21 in dB of each 1mm × 1 mm of the scanned

area. The plot of S21 magnitude sharply declines at the corroded region to form a cavity

(in the surface plot) that corresponds to the presence of corrosion (the blue part of the

surface plot).

So far, we have used the magnitude of S21 to build images of the corroded regions.

Next, we produce images based on the phase of S21 and images based on the magnitude

and phase of S11. These images are shown in Figures 4.9a-4.11b. We observe that the

transmission coefficient data reveals sharper images than the refection coefficient data. In
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Figure 4.8: Images of an aluminum plate with a corroded region using the magnitude of

S21. (a) Scaled image, and (b) Surface plot over the scanned area of 23 mm × 23 mm.

(a)

0

5

10

15

20

25

0

5

10

15

20

25

-200

0

200

S
2

1
(d

B
)

S
2

1
 (

d
e
g

) 

(b)

Figure 4.9: Images of an aluminum plate with a corroded region using the phase of S21.

((a) Scaled image, and (b) Surface plot over the scanned area.
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Figure 4.10: Images of an aluminum plate with a corroded region using the magnitude of

S11.(a) Scaled image, and (b) Surface plot over the scanned area.
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Figure 4.11: Images of an aluminum plate with a corroded region using the phase of S11.

(a) Scaled image, and (b) Surface plot over the scanned area.
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fact, the image generated using the phase of S21 (Figure 4.9a is the least-blurry among the

constructed image set, with the defect and its edges clearly detected and depicted as the

light blue rectangular region in the plot. This high resolution in phase images is correlated

to the high contrast between the S21 phase response at the flaw region and the rest of the

MUT. In fact, the phase experienced discontinuity behavior when the sensor reached the

flaw region, and it dropped from 180 to below -40 degrees, as shown in Figure 4.9b.

Images reconstructed using the magnitude of the reflection coefficient are depicted in

Figures 4.10a and 4.10b, with the red region representing the flawed area and the green

background representing the healthy area of the MUT. Figures 4.11a and 4.11b show

the 2d image and surface plot reconstructed from the phase of the reflection coefficient,

with the blue colored regions showing the defect region in the MUT and the red colored

regions showing the healthy areas of the MUT. The surface plot in Figure 4.10b depicts the

amplitude of the reflection coefficient S11 as a red peak; however, the defect is projected

as a dip in the phase surface plot of the reflection coefficient in Figure 4.11b. The contrast

between flawed and healthy regions is higher in images constructed using S21 than in images

constructed using S11.

For the second test case, we considered a Teflon-coated aluminum plate with two cor-

roded regions. The first flaw was a corroded region having an area of 10 mm × 7 mm

and 2 mm depth; and the second flaw was a corroded region having an area of 10 mm ×
7 mm and 1mm depth, as shown in Figure 4.12a. The separation distance between the

regions was 7 mm. The sensor scanned the MUT with a stand-off distance of 0.5mm in

steps of 1mm in a raster scan pattern constructing an image of 609 pixels for a scanned

area of 29 mm × 21 mm. Scaled 2d images for the second simulation setup are given in

Figures 4.13a, 4.14a, 4.15a, and 4.16a. These images clearly show the flaw regions, those

with deeper flaws appearing darker than other regions. However, the image constructed

using the phase ofS21 showed some noise as the sensor approached the edges of the MUT

(Figure 4.14b).

For better flaw depth characterization, the results were depicted as surface plots, shown

in Figures 4.13b, 4.14b, 4.15b, and 4.16b. These plots show the effect of the difference in
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Figure 4.12: (a) Raster scan around two corroded regions in aluminum plate coated with

Teflon layer of 50µm, and (b) cross section view of MUT.
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Figure 4.13: Images of an aluminum plate with two corroded regions, constructed from the

magnitude of S21.(a) Scaled image, and (b) Surface plot over the scanned area.
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Figure 4.14: Images of an aluminum plate with two corroded regions, constructed from the

phase of S21. (a) Scaled image, and (b) Surface plot over the scanned area.
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Figure 4.15: Images of an aluminum plate with two corroded regions, constructed from the

magnitude of S11. (a) Scaled image, and (b) Surface plot over the scanned area
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Figure 4.16: Images of an aluminum plate with two corroded regions, constructed from the

phase of S11. (a) Scaled image, and (b) Surface plot over the scanned area

the flaws’ depths more distinctly, with the 2mm deep corroded region showing a deeper

dip than the 1mm deep region ( Figure 4.13b). The separation distance between the flaw

regions is depicted clearly in the 2d figures and even more distinctly in the surface plots,

where it is shown as a flat region similar to the rest of the healthy part of the MUT.

Fabrication and experimental set-up

The CSRR sensor was fabricated using an RO6010 printed circuit board with a dielectric

constant of εr = 10.2 and a thickness of 0.64mm; Figure 4.17a and Figure 4.17b show top

and bottom views of the fabricated sensor, respectively. An aluminum plate of 100 mm

× 40 mm and a thickness of 12mm, with two rectangular dents, has been fabricated. The

dents were filled with corrosion powder. The aluminum plate was covered using Teflon tape

of a thickness of 80 µm (multi-purpose Teflon tape was used). The first dent (left-hand

side) was 20 mm × 10 mm, with a depth of 2 mm , while the second one was 20 mm × 10

mm, with a depth of 1mm, and the separation distance between the corroded regions was
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Figure 4.17: Fabricated sensor photograph: (a) Top view, (b) Bottom view

10 mm. Figure 4.18a and Figure 4.18b show the MUT preparation process.

Figure 4.19 shows the magnitude of the transmission coefficient S21 for healthy and

corroded aluminum plates. The S21 plots in Figure 4.19 indicate good agreement between

experimental and simulation outcomes, demonstrated by the clear shift (S21) experienced

when the sensor was facing a corroded region. However, there was a small frequency

difference of 50 MHz between the experimental and simulation results, as the thickness of

the Teflon coating in the simulation is 50 µm, while the thickness of the commercial Teflon

tape used in the experiment was was 80 µm.

Then the sensor was used to image the MUT manually in a raster scan with 3 mm

steps in the X and Y directions and a stand-off distance of 0.5 mm to construct an image

of 204 pixels (an area of 50 mm × 36 mm) around the corroded regions. In this set-up, a

vector network analyzer (VNA) was used to obtain S-matrix parameters over a frequency

range of 2 to 4.5 GHz .
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Figure 4.18: MUT preparation process: (a) MUT with two areas filled with corrosion

powder as a flaw, and (b) Teflon coated MUT.

Figure 4.19: Comparison between simulated and measured |(S21)| curves of the CSRR

sensor.
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Experimental results and discussion

The experimental data was transferred to a Matlab environment for digital signal process-

ing. The magnitude and phase of transmission and reflection coefficients were examined

and processed to construct 2d images and surface plots for the MUT, as illustrated in the

following subsections.

Images Based on the Transmission Coefficient

The constructed images based on the measured S21 revealed clear defect detection and

localization using magnitude or phase information. As the simulation results showed, the

2d images constructed using phase data were sharper than images constructed using mag-

nitude data. In particular, the edges of the flaw were exceptionally depicted when using

the phase information, as illustrated in Figure 4.20a and Figure 4.21a. In fact, when the

sensors encountered corrosion, the phase of S21 changed by more than 10◦; however, the

magnitude of S21 changed by less than -7 dB. Also, we observe from Figure 4.20a and Fig-

ure 4.21a that the corroded region with 2mm depth is depicted with a sharper image than

the region with 1 mm depth. Furthermore, in the surface plots, both flaw areas were clearly

shown as blue cavities (Figure 4.20b and Figure 4.21b). Although the scan was performed

manually and with a scanning step three times larger than the simulation scanning step,

the surface plots showed the separation distance between the flaw areas clearly, indicating

good lateral resolution of the CSRR sensors.

Images Based on the Reflection Coefficient

The constructed images based on the measured S11 presented in Figures 4.22a, 4.22b, 4.23a,

and 4.23b indicated the defect regions. The image constructed from the phase data, how-

ever, is more informative and less blurry than the images constructed from the magnitude

data. We also observed that the corroded region with 1 mm depth is depicted more clear

in the image constructed from the phase data of S11 than in the magnitude image. In the

constructed surface plots, the separation distance between the flaw regions was represented
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Figure 4.20: Images of an aluminum plate with two corroded regions, constructed using

measurements of the magnitude of S21. (a) Scaled image, and (b) Surface plot over the

scanned area of 50 mm × 40 mm
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Figure 4.21: Images of an aluminum plate with two corroded regions, constructed using

measurements of the phase of S21. (a) Scaled image, and (b) Surface plot over the scanned

area
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Figure 4.22: Images of an aluminum plate with two corroded regions, using measurements

of the magnitude of S11. (a) Scaled image, and (b) Surface plot over the scanned area
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Figure 4.23: Images of an aluminum plate with two corroded regions, using measurements

of the phase of S11. (a) Scaled image, and (b) Surface plot over the scanned area
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as a flat area between the two peaks when the magnitude data was used. For the phase

measurements, the separation distance between the flawed regions was visible as the flat

area between the two cavities.

Comparing the experimental results revealed that the images constructed using S21

were sharper than the images constructed using S11. Similar to the simulation results,

images generated using the phase information of S21 revealed more accurate information

about the location of the defects than those obtained using the magnitude information.

Conclusion

This work has demonstrated numerically and experimentally the ability of electrically-small

microwave ring resonators to image flaws in coated metallic structures. Results have shown

good images and high lateral resolution for corroded regions in aluminum plates coated

with Teflon sheets. In this study, the transmission coefficient phase has achieved the highest

resolution and best edge detection among the scattering matrix parameters. Phase-based

images of S21 and S11 were observed to be sharper than magnitude-based images, due to

the rapid changes in the phase when the sensor encountered corroded regions. The CSRR

sensor provided good flaw depth characterization as depicted by the surface plots where

the dynamic range of the magnitude or phase change is correlated to flaw depth. Based on

the numerical analysis performed in this study, the lateral resolution in the experimental

results can be enhanced further by reducing the scanning steps.

Compared with sweep frequency microwave waveguide imaging [15, 88], microwave

CSRR based imaging has the advantage of operating at low frequency with enhanced

resolution utilizing evanescent waves. The proposed system operated in the S-band (2

GHz to 4 GHz) to image a coated corrosion of area 7.5 mm × 15 mm while waveguide

imaging methods operated in the K band (18 GHz to 26.5 GHz ) to image the coated

corrosion of an area 30 mm × 30 mm.
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4.4 Imaging Corrosion Under Coatings: An Artificial

Intelligence Approach: Case Study 4

Introduction

The corrosion of metallic structure is considered to be a major problem facing engineers

today. As infrastructure ages, maintenance tasks become more challenging technically

and financially [94]. The problem of metallic-structure corrosion, for instance, may lead

to greater consequences than simple metal loss [95]. In some cases, corrosion related

issues may result in injuries, fatalities, environmental hazards, and reduced infrastructure

performance. To give an idea on the direct cost of corrosion in the U.S., for example, the

National Association of Corrosion Engineers International (NACE) estimated that the cost

will exceed $ 1 trillion in 2013 [96].

Several studies have focused on Non-Destructive Testing (NDT). These NDT approaches

are based on ultrasound, eddy currents, magnetic particle testing, dye penetrant, and vi-

sual testing. However, these technologies face challenges in detecting corrosion under non-

metallic coatings. As coatings increase the stand-off distance between the sensor and target

surface, the difficulty of detecting underneath corrosion increases [13]. Therefore, due to

the good penetration property of electromagnetic waves in dielectrics, microwave sensing

has been applied to detect corrosion under coatings[89, 13]. Motivated by the arguments

above, the idea of having a system that combines artificial intelligence (AI) and microwave

sensing has emerged and been tested on a simulated study of a near-field printed circuit

board (PCB) based sensor. The sensor’s design is studied at the beginning of this chapter.

The current case study is based on using PCB sensors to test metallic plates with defects

and defect-free. The obtained data were then processed using ML models to classify any

defects in the plates. Finally, results were presented as binary images.
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Simulation Set-up and Data Generation

Building an AI classifier model requires training and tuning using labeled data first; then

it becomes ready for classification of unlabeled data during the test phase.

Training Dataset

The method used to collect the training dataset is based on the following simulated models

using ANSYS R©-HFSSTM: (1) A Teflon coated metallic plate was scanned using a raster

scan 0.5 µm stand-off distance. The metallic plate under test has one defected region of 15

mm × 7.5 mm, with a 2 mm depth, as Figure 4.24 illustrates. (2) Another Teflon coated

metallic plate with two corroded regions was scanned at a 0.5 µm stand-off distance . The

corroded regions were 15 mm × 7.5 mm each. However, the defects were designed to have

different depths (1mm and 2mm) as in Figure 4.25. Including the sensor’s response from

different corroded region depths helps the learned classifier to generalize better for different

test scenarios. Collected sensor’s responses (samples) were labeled according to the health

status (a positive label means defect and a negative label means no defect). The AI model

training and evaluation was performed using the R project environment [75].

Support Vector Machine Classifier

The support vector machine (SVM) algorithm has unique property, where it maximizes

the margin between classes. SVM is a binary classifier by default, which suites the case

under study. SVM model parameters correspond to a convex optimization problem, thus

any local solution is also a global optimum [46]. Considering SVM for classification of a

two-class problem using linear models of the form:

y(x) = W Tφ(x) + b (4.3)

where φ(x) denotes a fixed feature-space transformation, and b is the bias parameter.

The SVM classifier achieved high classification accuracy, mainly by optimizing the

kernel type, degree, and termination criterion tolerance as indicated in Figure 4.27. During
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Aluminum plate 

Buried Defect

(Corrosion )
Teflon Coating

(a) (b)

Figure 4.24: Metallic plate with corroded region coated with 50µm Teflon layer (a) top

view (b) side view

Aluminum Plate 

Buried Corroded Region 

with  2mm Depth Teflon Coating

Buried Corroded Region 

with  1mm Depth 

(a) (b)

Figure 4.25: Metallic plate with two corroded regions coated with 50µm Teflon layer (a)

top view (b) side view
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Figure 4.26: Accuracy and kappa density distributions for three repeated 10 fold cross-

validation

SVM optimization, the model showed that a polynomial kernel of degree 3 achieved higher

validation accuracy rates than other polynomial kernels of degree 1 or 2. The accuracy

and kappa density distributions of the selected model are shown in Figure 4.26.

AI Model Testing and Results

Three test scenarios were simulated to validate the effectiveness of the trained (learned) AI

model. Figure 4.28 shows the shape of the defected structure used to test the learned model.

The test procedures were carried at 250 µm , 625 µm, and 750 µm stand-off distances to

evaluate the ability of the built classifier to operate at different stand-off distances

The MUT used to test the learned classifier was a metallic plate with corrosion defects

arranged in an HI shape. The depth of defect arms were 0.5 mm, 1 mm, 2 mm , 3 mm, and

4 mm. The images shown in Figure 4.29 were constructed from the built SVM classifier’s

outputs after it operated on the testing MUT ( Figure 4.28) at different stand-off distances.

Each image shown in Figure 4.29 is 56 pixels (8×7). Although, all training samples were

collected at 0.5 mm, the classifier achieved 100 % accuracy at 250 mm (see Figure 4.29

(a)) and 96 % at 625 µm and 750 µm (only two pixels were misclassified ), as illustrated

in Figure 4.29 (b) and Figure 4.29 (c). To emphasize the ability of the SVM classifier

to maximize the separation margin between classes (a feature that suites the case under
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Support Vector Machines with Polynomial Kernel 

2 classes: 'CR', 'NC' 

Resampling: Cross-Validated (10 fold, repeated 3 times) 

Resampling results across tuning parameters

degree   scale C     Accuracy  Kappa    

1       0.001  0.25  0.9093046  0.7061828

1       0.001  0.50  0.9230186  0.7331740

1       0.001  1.00  0.9393357  0.7739919

1       0.010  0.25  0.9421134  0.7814919

1       0.010  0.50  0.9472416  0.7978441

1       0.010  1.00  0.9588578  0.8522981

1       0.100  0.25  0.9530497  0.8271544

1       0.100  0.50  0.9509518  0.8310294

1       0.100  1.00  0.9618493  0.8724616

2       0.001  0.25  0.9225524  0.7317157

2       0.001  0.50  0.9421134  0.7814919

2       0.001  1.00  0.9421134  0.7814919

2       0.010  0.25  0.9704351  0.9044295

2       0.010  0.50  0.9618493  0.8690447

2       0.010  1.00  0.9618493  0.8685715

2       0.100  0.25  0.9598096  0.8097016

2       0.100  0.50  0.9811577  0.9291802

2       0.100  1.00  0.9702214  0.8751843

3       0.001  0.25  0.9393357  0.7739919

3       0.001  0.50  0.9421134  0.7814919

3       0.001  1.00  0.9479215  0.8066355

3       0.010  0.25  0.9506993  0.8191355

3       0.010  0.50  0.9644522  0.8748263

3       0.010  1.00  0.9862859  0.9560459

3       0.100  0.25  0.9199883  0.6536786

3       0.100  0.50  0.9393357  0.7417908

3       0.100  1.00  0.9311383  0.7078317

Accuracy was used to select the optimal model using  the largest value.

The final values used for the model were degree = 3, scale = 0.01 and C = 1.

Figure 4.27: SVM model resampling results for 10 fold cross-validation

Aluminum Plate 

Buried Corroded Regions 

with  different depthsTeflon Coating

(a) (b)

Figure 4.28: Testing MUT with HI shape corrosion (a)Top view (b) Front view
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Table 4.1: My caption

SVM Accuracy RF Accuracy

Testing MUT at 250 µm stand-off distance 100% 92.8%

Testing MUT at 625 µm stand-off distance 96.5% 83.9%

Testing MUT at 750 µm stand-off distance 96.4% 87.5%

study), RF, NN, and KNN classifiers have been trained on the same training data and

tested as was as the SVM. Results showed that the RF model accuracy rates were higher

than the NN and KNN accuracy rates. However, It is clear from the constructed images

in Figures 4.30 (a), (b), and (c) that the RF model was not able to generalize as the SVM

did (see Figure 4.29) after variations in defect depth and changes in stand-off distances

were introduced. Table 4.1 summaries the testing accuracy rates obtained from the trained

SVM and RF classifiers for the testing MUT shown in the Figure 4.28 .

Conclusion

This work has numerically demonstrated a corrosion imaging system that utilizes a mi-

crowave sensor and Al model. The AI model was implemented using SVM because it

maximizes the margin between classes and can thus generalize effectively with variations

in defect depths and changes in standoff distances. The trained model has been trained for

only two defect depths (1 mm and 2mm ) and one stand-off distance of 500 µm. However,

the trained AI model has shown high classification accuracy rates even for varying defect

depths and stand-off distances.
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Figure 4.29: Constructed images of the testing MUT using pixel classification results ob-

tained from the trained SVM classifier (a) Testing MUT image when the sensor operates

at 250 µm stand-off distance. (b) Testing MUT image when the sensor operates at 625 µm

stand-off distance. (c) Testing MUT image when the sensor operates at 750 µm stand-off

distance.
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Figure 4.30: Constructed images of the testing MUT using pixel classification results ob-

tained from the trained RF classifier (a) Testing MUT image when the sensor operates at

250 µm stand-off distance. (b) Testing MUT image when the sensor operates at 625 µm

stand-off distance. (c) Testing MUT image when the sensor operates at 750 µm stand-off

distance.
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4.5 Revealing Buried Anomalies in Multi-Layered

Dielectric Structures: Case Study 5

Microwave imaging has gained increasing interest in recent years due to its ability to reveal

hidden or buried objects [13]. Additionally, near field microwave sensors have the capability

to detect small anomalies [80]. In different studies, artificially engineered electromagnetic

materials (metamaterials) have been implemented to demonstrate a strong localization

and enhancement of electrical fields around the sensing element in order to improve the

microwave near-field sensor’s sensitivity and resolution [49, 5, 38]. Microwave testing can

be two sided or one sided based on the application and the material under test (MUT). In

one-sided testing one port or multi-port configurations can be used. Reflection coefficient

information is the only available information obtained with one-port configurations. In

contrast, transmission and reflection coefficient information are available with multi-port

configurations.

Different microwave imaging techniques using one-port systems have been studied in-

cluding open-ended waveguides [13, 25, 15] and coaxial cables [82]. Coated metallic surfaces

imaging using a two-port one-sided modality has been reported based on transmission lines

loaded with small resonators using printed circuit board technology (PCB) [89, 97, 44].

This study explores the use of an imaging dielectric in which transmission lines are loaded

with small resonators. By designing the resonators to be electrically-small compared to

the operating wavelength, the sensor is expected to provide high lateral resolution.

Sensor Design and Testing Procedure

The sensor design adopted here is based on a microstrip transmission line with a comple-

mentary split-ring resonator (CSRR) etched in the ground plane of a PCB, similar to the

approach in [89]. The transmission line is used to excite the CSRR structure that acts as

an electrically-small resonator. Figure 4.31 shows the sensor’s layout, where the red line is
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the transmission line (copper) on top of a dielectric substrate, and the olive green region

is the ground plane (copper) on the bottom of the PCB. The sensing region is comprised

of two co-centered split square rings, which form an inductor-capacitor (L-C) structure

that resonates at a certain frequency in air (no MUT loaded). If the sensor is loaded

with dielectric MUT, the resonance frequency changes based on the dielectric constant of

the MUT . Furthermore, if there is a change in the dielectric constant of the MUT due to

anomaly, then the sensors’ resonance frequency shifts. The sensor’s transmission coefficient

magnitude responses for anomaly-free and anomalous regions in a dielectric material are

shown in Figure 4.32 for a MUT with dielectric constant of 2.33 and an anomalous region

with dielectric constant of 10.2 . It can be noticed that there are two distinctive behaviors,

one belonging to an anomalous scanned region (the red line with circular markers in the

figure) and the other to an anomaly-free region (the blue line with square markers). The

sensor’s scattering information was recorded by scanning the frequency over the range of

3-4GHz with 5MHz increments.

Transmission 

Line 

Substrate 

Ground-Plane 

Etched CSRR

a=4 mm

s =0.3 mm

s

Figure 4.31: Schematic for the sensor’s layout: the two co-centered split square rings in

ground plane act as electrically small resonator.
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Figure 4.32: Transmission coefficient magnitude plots for anomaly-free and anomalous

regions in a dielectric structure

Anomaly 

Scanning  Pattern “Raster scan” 

Sensor  
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Figure 4.33: Raster scan around an anomalous region in a dielectric structure
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Image reconstruction for the MUT in this study is based on implementing the sensor

in a raster scan around the regions under test, as shown in Figure 4.33. The resultant

scattering matrix was later transferred to a Matlab environment for post-processing.

Studied Modalities

To study the ability of the N-F microwave CSRR-sensor for dielectric structures imaging,

two dielectric structures with buried anomalies were studied. The goal of the study is

to reconstruct images to reveal the buried anomalies. The first simulated MUT was a

two layer dielectric structure. The second simulated MUT was a multi-layer structure

built using three dielectric layers of different dielectric constants. The goal of this study

is to evaluate the sensor’s lateral resolution through the anomaly shape characterization.

Simulation results presented in this work were obtained using ANSYS R© HFSSTM [93].

Two Layer Dielectric Structure with Buried Anomalies

The structure under test is shown in Figure 4.34(a). The first layer is a dielectric plate of

40 mm × 40 mm and a thickness of 0.3 mm with a dielectric constant of 3 covering a second

dielectric layer of 40 mm × 40mm and a thickness of 3 mm with a dielectric constant of

2.33. A T-shaped anomaly with a dielectric constant of 10.2 is buried in the second layer

of the two-layer dielectric MUT, as depicted in Figure 4.34(b). Figure 4.34 (c) shows the

structure front view and how the sensor is used to scan the MUT. The sensor scanned the

region around the T-shaped anomaly covering an area of 25 mm × 25 mm, in steps of 1

mm to construct an image of 625 pixels. A reconstructed image using the magnitude of

|S21| for the MUT is plotted in Figure 4.35. The red region in Figure 4.35 shows the shape

of the anomaly, whereas the blue region corresponds to the rest of the healthy scanned

area.
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Two-Layer Dielectric Structure  Under Test  

T shaped Anomaly 

Buried in the 2nd

Layer 

2nd Dielectric Layer

1st Dielectric Layer

(a)

1mm

1mm

(b)

𝜀𝑟1=3 

𝜀𝑟2= 2.33

𝐿𝑎𝑦𝑒𝑟 1

𝐿𝑎𝑦𝑒𝑟 2

𝑀𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑖𝑝 𝐿𝑖𝑛𝑒

𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝐺𝑟𝑜𝑢𝑛𝑑 𝑃𝑙𝑎𝑛𝑒
𝑊𝑖𝑡ℎ 𝐶𝑆𝑅𝑅

(c)

Figure 4.34: Subsurface anomaly imaging in dielectric structure (a) Two-layer dielectric

structure under test with T shaped anomaly buried in the second layer. (b) Front view of

structure under test. (c) T-shaped anomaly dimensions.
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Figure 4.35: Reconstructed image using transmission coefficient magnitude for a two-layer

dielectric structure under test with T shaped anomaly buried in the second layer

Multi-Layer Dielectric Structure with Buried Anomalies

The second simulated MUT was a multi-layer structure consisting of three different dielec-

tric layers with a size of 40 mm × 40 mm each and a thickness of 1.5 mm for each of the

first two layers and 2 mm for the third layer. The top and front views of the structure are

illustrated in Figure 4.36(a) and (b), where a T-shaped anomaly with a dielectric constant

of 10.2 is buried in the second layer. Figure 4.36(b) shows the dimensions of the buried

anomaly. The sensor scanned the region around the T-shaped anomaly covering an area of

25 mm × 25 mm, in steps of 1.5 mm, to construct an image of 289 pixels. A reconstructed

image using the magnitude of |S21| for the MUT is plotted in Figure 4.37. The yellow

region in Figure 4.37 shows the shape of the anomaly, whereas the blue region corresponds

to the rest of the healthy scanned area.
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3rd Dielectric Layer

(a)

𝜀𝑟1= 2.33 

𝜀𝑟3= 6.15  

𝜀𝑟2= 3.48 

𝐿𝑎𝑦𝑒𝑟 1

𝐿𝑎𝑦𝑒𝑟 2

𝑀𝑖𝑐𝑟𝑜𝑠𝑡𝑟𝑖𝑝 𝐿𝑖𝑛𝑒

𝐹𝑅4 𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝐺𝑟𝑜𝑢𝑛𝑑 𝑃𝑙𝑎𝑛𝑒
𝑊𝑖𝑡ℎ 𝐶𝑆𝑅𝑅

𝐿𝑎𝑦𝑒𝑟 3

(b) (c)

Figure 4.36: Subsurface anomaly imaging in dielectric structure (a) Multi-layer dielectric

structure under test with T shaped anomaly buried in the second layer. (b) Front view of

structure under test. (c) T-shaped anomaly dimensions.
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Figure 4.37: Reconstructed image using transmission coefficient magnitude for a multi-

layer dielectric structure under test with T-shaped anomaly buried in the second layer

Figure 4.38: Reconstructed image using transmission coefficient phase for a multi-layer

dielectric structure under test with T- shaped anomaly buried in the second layer

Conclusion

The presented case study has demonstrated numerically the ability of a microwave sen-

sor based on electrically-small ring resonators to reveal buried anomalies in two-layer and

multi-layer dielectric structures. The resultant images have revealed the buried anoma-
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lies with high lateral resolution at frequency of 3.5 GHz, which is significantly lower the

frequency needed with other near field microwave sensing techniques based on waveguides

and horn antennas [88, 98]. The buried anomalies’ shapes were clearly captured using mag-

nitude and phase informations of the transmission coefficient. The Outcomes of this study

are applicable to composite materials testing and evaluation.

4.6 Discussion

In this chapter, a PCB transmission line loaded with a single metamaterial particle etched

in the ground plane has been used to reveal anomalies coated metallics as well as multi-

layer dielectric structures. The transmission coefficient magnitude and phase information

have revealed images with high resolution.

Compared to microwave waveguide imaging [15, 88], microwave CSRR based imag-

ing has the advantage of operating at a low frequency with enhanced resolution utilizing

evanescent waves. The proposed system operates in the S-band to detect an area of coated

corrosion of 7.5 mm × 15 mm, while waveguide imaging methods operate in higher fre-

quency bands, such as the K band to visualize an area of coated corrosion of 30 mm × 30

mm [88, 25]. In case study 4 an ML classifier was trained to classify data obtained from

the CSRR sensors and so build binary images for the MUT. For the images reconstructed

using the classification results, all swept frequencies contributed to the classification de-

cision for each pixel. The ML implementation based on the SVM classifier has showed

significant tolerance for changes in the stand-off distance without compromising the classi-

fication accuracy rate. Furthermore, buried anomalies in dielectrics were clearly captured

using magnitude and phase informations of the transmission coefficient of the proposed

sensor.

Outcomes of these studies are applicable to testing and evaluation of coated or painted

metallic structures and dielectric structures such as composite materials. Future work

might take the direction of correlating the sensors response to the physical flaw depths

using curve fitting or regression models.

103



Chapter 5

Conclusion and Future work

This research has introduced a novel approach to near-field microwave NDT by integrating

machine learning techniques and image construction. Currently, near-field (N-F) microwave

NDT depends heavily on the conventional vector network analyzers to plot collected sig-

nals. Additionally, trained technicians are needed to observe plotted signals and to make

decisions about the MUT health condition. Furthermore, building microwave images from

collected datasets is not feasible based on human processing.

The integration of ML with N-F microwave sensors presented in this thesis resolves

the above mentioned open issues in N-F microwave testing. Conducted case studies results

have shown that ML integration enhances sensing sensitivity for detecting small surface and

subsurface anomalies in metallic and dielectric structures. The machine learning modalities

developed eliminate the need for signal plotting screens, making the trained models suitable

for hand-held in situ testing and automated NDT, which save time and effort. Furthermore,

machine learning feature selection has been utilized to select top important frequencies for

performing NTD testing at the selected frequencies instead of operating at a large range

of frequencies, thereby reducing the hardware circuity, which leads to lower costs.
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Construction of microwave images for dielectric and metallic MUTs using single meta-

material particle microwave sensor was achieved with higher lateral resolution and lower

frequency compared to other available sensors. The images have depicted the buried

anomalies clearly due to the small footprint of the sensing element of the CSRR sen-

sor when compared to waveguide sensors. Pixel classification was applied in case study 4

to build binary images based on trained ML models. Images of MUT with higher than

96% accuracy rates were obtained at different stand-off distances. The results from the

conducted case studies have shown that the SVM classifier outperformed the NN and RF

classifiers due to its unique feature of maximizing the separation margin between classes.

Future Work

The ideas studied in this thesis can be improved further along following directions:

• Implementing simulation modalities and experimental studies to use machine learning

regression for characterizing anatomies and flaws.

• Ingratiating machine learning with different microwave sensor types to build a system

based on sensors fusion in order to collect uncorrelated signals and features.

• Implementing advanced methods of digital signal processing for constructed images

to achieve:

– Detecting anomalies using image classification methods.

– Anomalous regions characterization using edge detection techniques.
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