
RNA Homology Searches Using Pair Seeding

by

Sriram Darbha

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2005

c© Sriram Darbha 2005

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Due to increasing numbers of non-coding RNA (ncRNA) being discovered recently,

there is interest in identifying homologs of a given structured RNA sequence. Exhaustive

homology searching for structured RNA molecules using covariance models is infeasible on

genome-length sequences. Hence, heuristic methods are employed, but they largely ignore

structural information in the query. We present a novel method, which uses secondary

structure information, to perform homology searches for a structured RNA molecule.

We define the concept of a pair seed and theoretically model alignments of random and

related paired regions to compute expected sensitivity and specificity. We show that our

method gives theoretical gains in sensitivity and specificity compared to a BLAST-based

heuristic approach. We provide experimental verification of this gain.

We also show that pair seeds can be effectively combined with the spaced seeds ap-

proach to nucleotide homology search. The hybrid search method has theoretical speci-

ficity superior to that of the BLAST seed. We provide experimental evaluation of our

hypotheses. Finally, we note that our method is easily modified to process pseudo-knotted

regions in the query, something outside the scope of covariance model based methods.

iii

Acknowledgments

I extend my sincere thanks to my supervisor Prof. Ming Li for his guidance throughout

my research. It was during his graduate course in Bioinformatics Algorithms that I came

up with the idea for my research topic. I would also like to express my sincere gratitude

to my co-supervisor Prof. Daniel Brown, who generously gave many hours to mentor

me, well before I was officially his student. Prof. Brown’s graduate course on Genome

Sequence Analysis was illuminating and forms the foundation of my knowledge of this

field.

I thank Prof. Therese Biedl for giving her time to be a reader for my thesis, even

though she was not in town at the time of my thesis submission. I especially enjoyed her

graduate course on Graph Theory. I would also like to thank Prof. Forbes Burkowski for

agreeing to be a reader for my thesis, particularly given his knowledge of algorithms for

structure prediction of RNA molecules. I learnt a lot about RNA in his graduate course

on Structural Bioinformatics.

Thanks are also due to my office-mate Richard Jang and fellow graduate student

Thomas Tang. I found technical discussions with them to be enjoyable as well as fruitful,

and hope that I have enriched their graduate student experience as much as they have

mine.

Finally, I thank NSERC for their generous support through the PGS-M scholar-

ship, and the University of Waterloo for Teaching Assistantships, the Graduate Incentive

Award and the Faculty of Mathematics Graduate Scholarship, all of which provided vital

financial support to my family and myself.

iv

Dedication

I would like to dedicate this work to my daughter Aparna, whose presence reminds

me each day that the best things in life are free. This dedication seems fitting for another

reason – her name has in it, I realized only recently, the term “rna”!

v

Contents

1 Introduction 1

2 Review of Background Material 3

2.1 Seeding in Homology Searching . 3

2.2 Spaced and Vector Seeds . 4

2.3 RNA Homology and Covariance Models 5

2.4 Finding Homologs of a Structured RNA Molecule 7

2.4.1 The RSEARCH Algorithm and Ribosum Matrices 7

2.4.2 BLAST-based Heuristics . 8

2.4.3 The Hidden Markov Model Approach 10

3 Motivating Idea and Key Concepts 12

3.1 Problem Definition . 12

3.2 Motivating Idea . 13

3.3 Definitions of Key Concepts in Pair Seeding 14

3.4 Overview of Proposed Solution . 18

3.5 Pair Kmer Score Distributions . 22

3.6 Composition of Pair Kmers . 28

3.7 Theoretical Sensitivity and Specificity . 30

3.7.1 False Positives for 1-hit Methods: Pair 7-mers and 6-mers 34

vi

3.7.2 False Positives for 2-hit Method: Two Pair 4-mers 36

3.7.3 False Positives for 2-hit Method: Pair 4-mer + Nucleotide 8-mer . 37

3.8 Neighbourhood and Partnership Distributions 39

3.8.1 Number of Pair Kmer Neighbours 40

3.8.2 Number of Nucleotide Kmer Partners 41

4 Algorithms and Implementation 43

4.1 Building Kmer Score Distributions . 43

4.1.1 Alignment of Related RNA Pairs 43

4.1.2 Alignment of Random Pairs . 44

4.1.3 Alignment of RNA Pair to Random Pair 44

4.2 Building Static Tables . 44

4.2.1 The Pair Neighbour Table . 44

4.2.2 The Nucleotide Partner Table . 47

4.3 Target Database Processing Algorithm . 49

4.4 Algorithm to Find Pair Hits to a Given Query 55

4.4.1 1-hit Method – 1 Pair 7-mer . 55

4.4.2 2-hit Method – 2 Pair 4-mers . 56

4.4.3 2-hit Method – 1 Pair 4-mer + 1 Nucleotide 8-mer 56

5 Experiments and Results 58

5.1 Hypotheses . 58

5.2 Experimental Setup . 59

5.2.1 Sensitivity and Specificity Estimation 59

5.2.2 Runtime Estimation . 60

5.3 Experiments to Validate Hypotheses . 62

5.3.1 Experiment 1 – 1-hit Pair 7-mer Approach 62

vii

5.3.2 Experiment 2 – 2-hit Approach with Pair and Nucleotide Seeds . . 62

5.3.3 Experiment 3 – 2-hit Pair 4-mers 64

5.3.4 Experiment 4 – BLAST and PatternHunter [13] Seeds 64

5.3.5 Experiment 5 – Varying Arc Margin 64

5.3.6 Experiment 6 – Human Chromosome 22 65

5.4 Results . 65

5.4.1 Runtimes . 65

5.4.2 Sensitivity and Specificity . 67

5.5 Conclusions . 72

5.6 Future Work . 73

A Structural Details of Queries 77

B Consensus Structures of Query Families 80

viii

List of Figures

2.1 Sequence and structure of the S. cerevisiae Alanine tRna [12] 5

2.2 Secondary structure of the S. cerevisiae Alanine tRNA 6

2.3 Two step heuristic search method of the RFAM database 10

3.1 A RNA query sequence with a single paired region. 13

3.2 Motivating example for pair seeding concepts 14

3.3 Key concepts: (a) a pair kmer, (b) a pair seed hit 14

3.4 Separation of two pair kmers. 16

3.5 Separation of a pair kmer and a nucleotide lmer. 17

3.6 Overview of proposed solution . 19

3.7 Score distribution for a single pair alignment 23

3.8 Score distribution for pair 4-mer alignment 26

3.9 Score distribution for pair 7-mer alignment 27

3.10 Small nucleolar RNA U29 structure [9] . 32

3.11 Plasmid RNAIII structure [9] . 33

3.12 CsrB (carbon storage regulator) RNA structure [9] 33

3.13 Estimated false positives for pair 7-mers 34

3.14 Estimated false positives for pair 6-mers 35

3.15 Estimated false positives for 2-hit pair 4-mers (sep. margin = 3nt) 37

3.16 Estimated false positives for 2-hit pair 4-mers (sep. margin = 10nt) . . . 38

ix

3.17 Estimated false positives for 2-hit nt-pair kmers (sep. margin = 3nt) . . . 39

3.18 Estimated false positives for 2-hit nt-pair kmers (sep. margin = 10nt) . . 40

4.1 Conceptual view of the Static Pair Neighbour table 46

4.2 The Static Nucleotide Partner table . 48

4.3 A potential pair 7-mer in the target sequence 49

4.4 Hashing of target nucleotide sequence . 51

4.5 The Pair Hash table . 53

4.6 Lysine Riboswitch secondary structure . 54

5.1 Runtimes to hash target nucleotide sequence 67

5.2 Variation of false positives with arc margin 72

B.1 Consensus secondary structure of the RF 265 family [9] 80

B.2 Consensus secondary structure of the RF 84 family [9] 81

B.3 Consensus secondary structure of the RF 103 family [9] 81

B.4 Consensus secondary structure of the RF 131 family [9] 82

B.5 Consensus secondary structure of the RF 235 family [9] 82

x

List of Tables

2.1 Ribosum-95 nucleotide alignment scoring matrix [12] 8

2.2 Ribosum-95 pair to pair alignment scoring matrix [12] 9

3.1 Ribosum matrix main diagonal scores . 22

3.2 Ribosum-95 pair to pair alignment probability matrix [12] 24

3.3 Hit rates and threshold scores for pair 4-mers, 6-mers and 7-mers 27

3.4 Difference in the number of all and relevant neighbours 29

3.5 Number of neighbours versus threshold score for pair 7-mers 31

3.6 True versus false positives for pair 7-mers 36

3.7 Neighbours distribution for T = 29.86 and 31.49 41

3.8 Neighbours distribution for T = 32.79 and 33.9. 41

3.9 Nucleotide partners distribution for T = 29.86 and 31.49 42

3.10 Nucleotide partners distribution for T = 32.79 and 33.9 42

4.1 Size of pair 7-mer Static Pair Neighbours file versus threshold score . . . 46

4.2 Memory requirements of static tables for 7-mers 49

4.3 Paired regions of Lysine Riboswitch . 54

5.1 Seed multiple sequence alignment of the let-7 RNA family 61

5.2 RFAM families used in experiments . 63

5.3 Homology methods used in experiments 66

xi

5.4 Summary of experimental results: true hits 68

5.5 Summary of experimental results: false hits 68

5.6 False positives for the human chromosome 22 sequence 71

A.1 Structure details of queries – Part I . 78

A.2 Structure details of queries – Part II . 79

xii

Chapter 1

Introduction

Homology searching is one of the most basic tasks in the field of computational biology.

Given a target sequence and a query sequence, homology searching refers to finding

“close” matches to the given query in the target. This is useful in numerous contexts

for researchers in the life sciences. For example, having identified and sequenced a novel

murine gene, a researcher could use a homology search tool to discover functionally related

genes in the genome of another mammal, such as the human.

Evolution proceeds so as to conserve the function of biological molecules across related

species. For example, the sequences of genes that code for the Histone H4 proteins (which

package DNA into condensed form during cell division) are strongly conserved across

diverse eukaryotic species from the pea plant to the cow, indicating how crucial those genes

are for the viability of these organisms [10]. In contrast, a DNA sequence that does not

code for useful elements experiences no such selective pressure across related species, and

eventually diverges over time. Like protein-coding DNA, a functionally active non-coding

RNA (ncRNA) molecule experiences selective pressure to conserve its function across

species. However, unlike DNA, ncRNA molecules often exhibit characteristic secondary

structures, resulting from the pairings of complementary bases within their sequences.

For example, the bases A and U form a complementary pair, as do bases G and C. These

pairings are called Watson-Crick (W-C) pairings, after James Watson and Francis Crick

who discovered the structure of DNA. In addition, RNA also contains G-U pairings, which

are weaker than the W-C ones. In this work, we refer to the 4 W-C pairings, along with

G-U and U-G as relevant pairings. The remaining 10 pairings, such as G-G, A-C etc.,

are rare in RNA molecules.

1

Traditional homology search methods, such as BLAST [1] 1, have been designed to

look only at conservation patterns in the primary sequence, i.e., the sequence of nu-

cleotides. This is a satisfactory approach when searching for homologs of generic DNA

and protein-coding genes, since a lot of the information content in such sequences is in the

primary sequence alone. However, there is growing evidence that ncRNA genes conserve

secondary structure more than primary sequence [8]. That is, they carry information as

part of their structures, in addition to primary sequence. Since search techniques based

on primary sequence alone ignore this structural information, they can potentially miss

distant homologs when the query is a structured RNA sequence.

To address this deficiency, homology search methods based on covariance models

were developed to allow exhaustive searches of homologs of structured RNA molecules

[7]. These methods are computationally intensive, requiring cubic time in the size of

the model, and are thus too slow to be executed on larger genomic sequences. This has

resulted in the development of heuristic approaches for RNA homology [9, 15]. However,

much as for the previously existing heuristics like BLAST, these heuristic methods ignore

crucial secondary structural information in the query RNA sequence.

In this thesis, we present a prototype heuristic method to find homologs of a single

structured RNA sequence. This problem is related to, though different from, searching for

homologs of an RNA family. We define the concept of a pair seed and use it to develop an

efficient algorithm that incorporates structural information into the search technique. The

rest of this thesis is organized as follows: Section 2 reviews the background information

for this work, starting with the concept of seeding used in traditional homology search

methods. We briefly review recent work to find homologs of a single structured RNA

molecule. Section 3 introduces our idea of a pair seed and motivates its application to

the area of RNA homology searching. We demonstrate the theoretical superiority of

our approach via calculations of expected sensitivity and specificity. Section 4 presents

the algorithms we developed that comprise our homology search technique. Section 5

summarizes the experiments we performed to evaluate our approach, and concludes with

a discussion of our results and future work in this area.

1The term BLAST refers in this thesis to the BLASTN method to perform nucleotide-based searches.

2

Chapter 2

Review of Background Material

2.1 Seeding in Homology Searching

Homology searching refers to finding close matches to a given query sequence in a target

sequence database. For nucleotide sequence alignments, the quality of an alignment is

often measured simply by scoring matching nucleotides as +1, mismatches ones as −1

and using affine penalties to score gaps. For protein sequence alignments, closeness is

typically measured using pairwise scoring matrices such as BLOSUM [11] and PAM [5].

BLAST [1] and 2-hit BLAST [2] are among the most popular homology search meth-

ods currently in use. Both methods are based on a “seeding” approach that employs two

steps: in the first step, so-called seed hits are identified. These are ungapped regions in

the query and target that match each other. In the second step, seed hits are extended on

either side, to find high-scoring regions of homology. BLASTN requires a single seed hit

of size 11. In contrast, 2-hit BLASTN requires two seed hits – with the required length

of each being smaller than for a single BLASTN seed hit. The two hits are required to

have no net insertions or deletions in the sequence between them – in other words, they

are on the same diagonal of the dynamic programming matrix for the two sequences.

All pairs of seeds that satisfy these criteria are extended in the second stage. BLASTN

identifies seed hits relatively fast, while spending a larger fraction of the time extending

them into potential homologous regions; 2-hit BLASTN, on the other hand, spends more

time identifying pairs of seeds to extend, spending relatively less time in the second stage

extending those hits [14].

3

Seed length has direct implications on sensitivity and specificity of the homology

method. Sensitivity is a measure of how many of the total homologs of the query are

identified in the target; 100% sensitivity is the ideal. Specificity is a measure of how many

of the identified matches are real homologs. Again, as high a specificity as possible is

desirable. Increasing the seed size in the first step results in fewer seed hits to extend in

the second step, and consequently high specificity. However, increasing seed size means

fewer true hits because many alignments do not include a hit, which results in lower

sensitivity. Conversely, decreasing the seed size results in higher sensitivity at the expense

of specificity.

This balance between sensitivity and specificity is common when attempting to opti-

mize a seeding method’s performance. We show here that, under certain assumptions, it

is possible to seed RNA homology searches so that we achieve gains in both sensitivity

and specificity, as compared to a BLAST-based approach.

2.2 Spaced and Vector Seeds

Recently, Ma et al. [13] extended the concept of seeds by inventing spaced seeds. A

spaced seed is composed on 1’s and 0’s, the 1’s identifying positions which require a

match and the 0’s identifying “don’t care” positions that do not have to match, but

could. Using their terminology, an example of a length-18 seed that requires 11 matches is

11 1010 0101 0011 0111. For example, the sequences AAAAAAAAAAAAAAAAAA and

AAAGAGGAGAGGAAGAAA would be considered hits to each other using the above

seed, since they match in all the 1-positions of the seed. With this notation, the length-

11 BLASTN seed is simply 111 1111 1111 since it requires 11 consective nucleotides to

match, for a hit to be recorded. Note than the two sequences given above would not be

considered hits to each other using the BLASTN seed.

Ma et al. showed that spaced seeds deliver a significant gain in sensitivity compared

to the contiguous seed used by BLASTN. Using a model of related sequence that treats

each position as an independent Bernoulli trial with a fixed homology level, Ma et al.

showed that the optimal spaced seed is 50% more sensitive that the default BLASTN

seed (with comparable specificity), assuming a probability of 0.7 for individual nucleotide

conservation. Subsequently, Brejová et al. [4] developed a protein-coding region model

of sequence, and showed that the predicted and empirical sensitivity of spaced seeds

optimized under that model are provably better than those of the BLASTN seed.

4

More recently, the YASS [14] algorithm generalized these concepts by allowing mul-

tiple, possibly overlapping, seeds to be “chained” together to form a hit that is then

extended.

Later, Brejová et al. developed vector seeds [3] to extend the idea of seeding to protein

homology searches. A vector seed, like a spaced seed, is composed of a seed template

of 1’s and 0’s. In addition, it also has an associated threshold score, based on a given

scoring matrix e.g. BLOSUM-62. For example, the vector seed (1101, 13) would score

the alignment of two 4-residue peptide sequences as the sum of the alignment scores of

residues 1, 2 and 4; the alignment would be recorded as a hit if the total score is 13 or more.

Vector seeds are more expressive than spaced seeds (any spaced seed can be represented

as a vector seed). Vector seeds have been shown to result in increased sensitivity and

specificity in protein homology searching using BLOSUM scoring matrices.

Pair seeds, which we introduce in this work, are similar to vector seeds in that they

are associated with a scoring matrix and a threshold score. However, each position in a

pair seed represents two nucleotides, whereas in nucleotide seeds it is only one.

2.3 RNA Homology and Covariance Models

Recently, there are has been increased interest in identifying homologs of non-coding RNA

(ncRNA) genes, which code for RNA products that are not translated to protein. The

number of ncRNA genes discovered has been increasing rapidly [8]. These sequences are

different from other nucleotide sequences in a crucial way: their nucleotides can internally

bond. This internal pairing of an RNA molecule gives it a characteristic “secondary”

structure, which is made up of long-range, variable length complementary pairing between

positions in the sequence. An example is given in Figure 2.1, and the corresponding

secondary structure is shown in Figure 2.2.

Figure 2.1: Sequence and structure of the S. cerevisiae Alanine tRna [12]

5

Figure 2.2: Secondary structure of the S. cerevisiae Alanine tRNA

Hidden Markov models (HMM) have been employed previously in homology search-

ing [6]. However, HMMs cannot capture nested correlations of variable separation, since

their topology restricts them to processing sequences in a left-to-right linear manner.

Hence, they are not well-suited for capturing secondary structure information in ncRNA

molecules.

To this end, Eddy developed covariance models (CM) to capture features of a set of

structured RNA molecules [7]. Covariance models are based on stochastic context free

grammars (SCFG). For protein and nucleotide sequences, profile HMMs [6] are used to

model characteristics of a set of related sequences, such as a family of genes. Covariance

models can be thought of as more complex versions of profile HMMs, in that they capture

nested dependencies, by modeling the sequence as a set of segments built recursively from

the outside in. We do not consider covariance models in any more detail in this thesis.

It is known for HMMs that the Viterbi and forward algorithms are able to identify the

optimal parse of a given sequence through a given HMM [6]. These algorithms execute

in linear time in the size of the HMM. However, due to the additional complexity of a

CM, the corresponding parsing algorithm for CMs, the forward algorithm, requires cubic

time in the size of the query [6]. Durbin et al. point out that if the maximum match

size is limited to D nucleotides, the runtime can be written as O(MD2L), where M is

the model size and L is the database size. Regardless, this effectively limits the sizes of

problems against which CM-based algorithms can be executed.

6

2.4 Finding Homologs of a Structured RNA Molecule

This work deals with the problem of identifying homologs of a single structured RNA

molecule. While this problem is solvable by several approaches, there are some drawbacks

to each method. We outline the known work in this area below.

2.4.1 The RSEARCH Algorithm and Ribosum Matrices

Klein and Eddy introduced the RSEARCH [12] program, the first to find homologs of

a given structured RNA molecule. This is an exhaustive CM-based method that first

builds a CM of a given query sequence and structure. It uses new scoring matrices [12]

to score alignments of the query to the target sequence. Note that the aligned query

and target sequences could contain unpaired as well as paired regions. The search is

fully sensitive but suffers from the drawback of being very slow, as the underlying SCFG

parsing algorithms require cubic time. In fact, the authors note that the approach is too

slow to run on genome-scale sequences. One approach they propose is a multi-processor

implementation.

The Ribosum family of matrices developed by Klein and Eddy allow scoring of align-

ments of two nucleotide pairs, in addition to alignments of two single nucleotides. We

briefly outline the salient features of Ribosum matrices here. The discussion below bor-

rows material heavily from their original paper [12], to which the interested reader is

referred for an in depth discussion of how the matrices are generated.

There are a total of 170 matrices in the RSEARCH v1.0 release. Table 2.2 shows

one matrix, the Ribosum-95. These matrices are developed, as per the authors, using a

method that is analogous to that employed for generating the BLOSUM [11] matrices for

protein sequence alignments. Specifically the method uses a multiple sequence alignment

of a set of related RNA molecules. Ribosum matrices are names using the convention

“RibosumXX-YY”, where XX is the percentage clustering value and YY is a second

parameter, the percent identity value. Pairs of sequences that have at least XX% identity

are clustered together into groups. Pairs of sequences with less than YY% identity are

not considered during the clustering operation. If not specified, the second parameter

YY defaults to zero. For example, the Ribosum75 matrix has percentage clustering set

to 75% and percent identity set to 0, so that all pairs of sequences are considered during

clustering. A Ribosum matrix contains a 16x16 part for scoring alignments of nucleotide

7

pairs to pairs, and a 4x4 part to score alignments of single nucleotides, shown in Tables 2.1,

2.2. We come back to Ribosum matrices in Section 3.5.

Table 2.1: Ribosum-95 nucleotide alignment scoring matrix [12].

A C G U

A 1.96

C -1.33 0.99

G -0.91 -1.69 0.85

U -0.97 -0.62 -1.10 1.37

2.4.2 BLAST-based Heuristics

To get around the prohibitively slow speed of CM algorithms, heuristic approaches have

been employed to speed up RNA homology searches. An example is the approach used by

the RFAM database. RFAM [9] is a database of known ncRNA families and their member

sequences. The database allows the searching of an unannotated genome for homologs of a

given RNA family, where each RFAM family is represented by a corresponding CM. Each

family’s CM is built from a hand-curated multiple sequence alignment of all sequences

that belong to that family. The problem of searching for homologs of a given RNA family

is similar to the problem we consider in this work, that is, searching for homologs of a

single structured RNA molecule. Annotation of a target with homologs of an RFAM

family occurs in two stages: In the first stage, a BLAST search is executed with the

nucleotide sequence of every member of a given RNA family, against the target database.

All hits so found are used to demarcate “windows” of interest in the target sequence. In

the second stage, the CM algorithm is executed only within the windows identified in the

first step. The idea is to filter out most of the target, so that the exhaustive algorithm is

only executed on a fraction of it.

There are two drawbacks of using a BLAST preprocessing step. Firstly, Ma et al.

showed [13] that the all-1’s seed used by BLAST has poor sensitivity, in comparison to

other spaced seeds of the same weight. It follows that a substantial gain in sensitivity

could be achieved through the use of optimized spaced seeds. Secondly, a nucleotide-

only search essentially discards information related to long-range internal pairings in the

sequence. As mentioned previously, the function of a ncRNA molecule is often tied to

its secondary structure that results from pairings between complementary bases in the

8

Table 2.2: Ribosum-95 pair to pair alignment scoring matrix [12]. All positive scores are shown in boldface and correspond
to alignments more likely in RNA than at random. The units are log-base-2 likelihood ratios.

AA AC AG AU CA CC CG CU GA GC GG GU UA UC UG UU

AA -2.84

AC -8.54 -2.06

AG -9.17 -9.34 -1.33

AU -4.96 -1.63 -5.89 4.22

CA -9.97 -10.36 -10.35 -5.61 -6.19

CC -13.47 -8.79 -14.75 -2.48 -11.36 -3.69

CG -3.83 -5.35 -2.56 2.06 -3.14 -5.02 5.22

CU -11.94 -10.61 -9.50 -4.13 -8.34 -6.95 -4.33 -2.68

GA -6.95 -7.67 -9.63 -3.86 -7.99 -12.70 -5.85 -7.60 -1.65

GC -5.18 -2.70 -6.11 2.89 -5.34 -3.70 2.82 -2.20 -2.61 5.50

GG -9.66 -10.14 -4.36 -4.81 -11.46 -11.71 -4.66 -9.31 -9.51 -4.64 -2.19

GU -6.42 -4.68 -7.08 0.74 -6.09 -6.99 0.26 -4.45 -6.24 1.43 -5.52 3.31

UA -2.49 -5.39 -2.84 1.90 -2.90 -6.31 2.96 -4.32 -4.74 1.94 -6.22 0.09 4.71

UC -11.83 -8.91 -7.96 -4.30 -7.83 -8.56 -4.27 -4.58 -7.14 -4.06 -10.72 -4.57 -3.55 -3.99

UG -3.65 -7.12 -5.78 -0.37 -6.10 -8.23 1.22 -6.41 -7.63 0.32 -4.28 -1.33 1.05 -4.24 3.18

UU -8.89 -8.30 -9.54 -2.40 -8.87 -6.51 -3.04 -5.40 -9.79 -2.94 -5.03 -2.63 -1.59 -6.03 -3.68 -0.74

9

Target

Query

Target Windows Identified

Figure 2.3: Two step heuristic search method of the RFAM database

molecule. The four bases A, C, G, U could pair to form the “Watson-Crick” pairs A–U

and C–G. In addition, weaker pairings G–U are also seen frequently in RNA. Hence, an

A–U pairing in an RNA molecule would be conserved over evolution if it mutates to a

G–C pairing. Since such pairings are common and often form a significant portion of a

ncRNA molecule, the nucleotide- only approach loses pairing information. Hence, distant

homologs are likely to be missed by a BLAST search, if the RNA molecule has evolved

in a such a manner that pairings between correlated positions have been conserved,

even though the individual nucleotides have not been. From Ribosum-95 probabilities in

Figure 3.2, it is seen that while Pr[nucleotide conserved] = 0.65 in paired regions, Pr[W-

C pair conserved] = 0.76. Further, Pr[pair conserved] = 0.95, if we allow the pair to be

a Watson-Crick pair or one of UG, GU. Hence, in general the chance that a nucleotide

in a paired region mutates so as to conserve pairing is higher than the chance that it is

itself conserved, between homologous RNA molecules.

2.4.3 The Hidden Markov Model Approach

Recently, Weinberg and Ruzzo [15] formulated a HMM-based approach for the problem

of searching for homologs of a given RNA family. Their approach requires the existence

of a CM for the given family, and knowledge of a family-specific threshold score. Starting

with the CM, they discard pairing information and distill the remaining model into a

profile HMM. Despite throwing away useful information, they employ a novel mechanism

to parameterize their HMM, so that any sequence whose CM parse scores above the

threshold is guaranteed to have a HMM parse that scores above a corresponding threshold.

Thus, their method benefits from the speed of the Viterbi algorithm for HMMs while

10

maintaining 100% sensitivity. However, the method does have some drawbacks as applied

to single structured RNA molecules. Firstly, it relies on the existence of an accurate,

hand-curated CM for a given family, and a family-specific threshold score. Hence it is

currently unable to search for homologs of a single RNA sequence whose family is not

known. It may be likely that one could get around this limitation by first using the

RSEARCH [12] method to build a “general” CM for the given RNA sequence, and using

that CM as input to Weinberg’s approach. However, it is not clear how the family-specific

threshold score would be determined for the CM auto-generated by RSEARCH. This

score is necessary in parameterizing the profile HMM and delivering efficiency in database

filtering. Further, and perhaps more importantly, it is not clear if a general CM auto-

generated by RSEARCH is comparable in sensitivity to one built from a hand-curated

multiple sequence alignment. Finally, their algorithm is not able to handle pseudo-knotted

structures, so that any information regarding pseudo-knotted paired regions in the query

is simply ignored. In pointing out this limitation, the authors claim that “studies suggest

that pseudoknots contain little information” [15].

The pair seeding approach we have developed is easy to apply to a single structured

RNA sequence. With a slight runtime penalty, our algorithm successfully hashes locations

of paired regions, in expected linear time. This is significant, since both the BLAST

preprocessing and the profile HMM methods discard pairing information during searches.

Further, it is an interesting and unintended consequence that, with minimal modifications,

our method can incorporate pseudo-knotted paired regions into the search algorithm (we

describe later how to do this). A drawback of our approach is that its applicability to

RNA molecules with fragmented paired regions is limited.

11

Chapter 3

Motivating Idea and Key

Concepts

In this section, we define the problem of finding homologs of a single structured RNA

sequence, and then present the key ideas behind our proposed solution.

3.1 Problem Definition

We are given an unannotated target nucleotide sequence t = t1 . . . tn. We are also provided

a query RNA sequence q = q1 . . . qm and its corresponding secondary structure, where

pairings between nucleotides in the query are denoted as pairs of indices (l, r), where l is

less than r. We can define an ungapped alignment between a query substring qi . . . qj and a

target substring tk . . . tk+j−i, such that for all pairings (l, r) in the query, either both l and

r are within the range i . . . j, or neither of them is. The score of such an alignment is de-

fined as Score =
∑

unpaired l∈i...j M(ql, tl+k−i)+
∑

pairing (l,r), l,r∈i...j M(qlqr, tl+k−itr+k−i),

given the scoring matrix M to score alignments of nucleotides and pairings. The first sum-

mation considers unpaired nucleotides and the second deals with pairings of nucleotides.

We are given a nucleotide seed sN defined exactly as per Ma et al. [13]. We de-

fine a pair seed sP similarly, having length L and weight W , as sP = sP
1 . . . sP

L , where

sP
i = 0 or 1, i = 1 . . . L. Ma et al. have applied spaced seeds to ungapped nu-

cleotide alignments. Our key idea is to use short ungapped alignments of paired re-

gions as seeds. An ungapped paired region in the query of length L with outermost

12

pairing (l, r) consists of the two subsequences ql . . . ql+k−1 and qr−k+1 . . . qr. The align-

ment of these query subsequences to the target, such that the query pairing (l, r) is

aligned to the hypothetical pairing (a, b) in the target, is scored using the pair seed sP

as Score =
∑L

i=1(s
P
i .M(ql+i−1qr−i+1, ta+i−1tb−i+1)). A seed hit is one that scores above

a given threshold score T .

3.2 Motivating Idea

Our key idea is to model paired regions in the query RNA as sequences of pair symbols,

and to use short ungapped paired regions as seeds.

For example, consider the query sequence in Figure 3.1. A nucleotide based homology

method would simply treat this as the sequence GGGCCUU . . . AAGGCUC, ignoring the

internal pairing in the query. However, by noting the internal pairing, we can say that

there is a “pair 7-mer” GC-GU-GC-CG-CG-UA-UA in the sequence.

GGGCCUUAUUACGCGCAAGGCUC

Figure 3.1: A RNA query sequence with a single paired region.

Let us say that the third pair GC in this query has mutated to an AU in a related RNA

in a different species. A traditional homology method trying to find hits to the sequence

in Figure 3.1 would note mismatched nucleotides in position 3 and 21 (in GGGCCUU

versus GGACCUU, and a second one in AAGGCUC versus AAGGUUC). However, an

alignment method that knows that G and C in the query are paired could score GC against

AU, and recognize that the two nucleotide mismatches actually conserve the complemen-

tarity of pairing. Since this is much more likely in RNA than in random sequence, such a

method could distinguish homologs of RNA paired regions despite nucleotide mismatches.

To this concept of pair kmers, we add the well-known concepts of a seed for hashing,

and of hits to query regions using the given seed.

13

3.3 Definitions of Key Concepts in Pair Seeding

Here we define key concepts necessary to present our proposed solution. We use the

hypothetical example in Figure 3.2 to introduce the quantities being defined.

GACG CGUC

CGCCGGCG
20 33

1765 1774

GAUG CAUC
1798 1827

GAUG CAUC
55 74

q1 q2

t2t1

separation = 22

separation = 24

Target position

Query position

Figure 3.2: Motivating example for pair seeding concepts

ls rs

(a)
SEQUENCE
NT

TQ

lsq rsq lst rst

(b)

arc

Figure 3.3: Key concepts: (a) a pair kmer, (b) a pair seed hit

Definition 1 A pair kmer is defined as the ordered pair pk = (ls, rs), where ls(left start),

rs(right start) are positions in a nucleotide sequence. A pair kmer represents a sequence

of k pair symbols. The k nucleotides starting at ls and those starting at rs are paired in

complementary fashion, so that the nucleotide in position ls + i− 1 is paired with that in

position rs + k − i, for i = 1, . . . , k. Please see Figure 3.3(a).

For example, Figure 3.2 shows the pair 4-mers q1 = (20, 33), q2 = (55, 74) in the

query sequence, and the pair 4-mers t1 = (1765, 1774), t2 = (1798, 1827) in the target

sequence. The 4-mers in terms of their pair symbols are q1 = GC-GC-CG-GC, q2 =

GC-AU-UA-GC, t1 = GC-AU-CG-GC and t2 = GC-AU-UA-GC.

14

Definition 2 The arc of a pair kmer is a positive integer value, defined as the distance

between its left and right paired segments. That is, arc = rs − ls, as illustrated in Fig-

ure 3.3(a).

For example, in Figure 3.2, arc(q1) = 13, arc(q2) = 19, arc(t1) = 9 and arc(t2) =

29. Note that the arc of a pair kmer does not have an analogous quantity in ungapped

nucleotide alignments.

Definition 3 A pair seed is defined as a sequence of 1’s and 0’s, where a 1-position

requires a match and a 0-position is a “don’t care”. A pair seed’s weight is the number

of 1’s in it. A pair seed’s length is the number of 1’s and 0’s. Note that this is exactly

as per the definition of a spaced nucleotide seed [13].

For example, the pair seed 10111 has weight 4 and length 5, while the ungapped pair

seed 1111 has equal weight and length of 4.

Definition 4 The arc difference ad of the alignment of one query and one target pair

kmer is an integer value, defined as ad = |arcq−arct|, where arcq and arct are arc values

of the query and target kmers respectively.

Consider Figure 3.2. For the alignment of q1 to t1, ad = |13 − 9| = 4, while for

the alignment of q2 to t2, ad = |29 − 19| = 10. The arc difference of an alignment is

loosely analogous to the concept of “diagonal” in nucleotide alignments, in the sense that

both values quantify the degree to which insertions or deletions have occurred in the

sequence bounded by the kmers. A diagonal shift of zero means that there have been no

net insertions and deletions between two nucleotide hits. Similarly, an arc difference of

zero for a pair kmer alignment means that the left and right segments of both kmers are

separated by an equal number of nucleotides with no net insertions or deletions.

Definition 5 The arc margin am for a homology search is the maximum allowed arc

difference between a query and a target pair kmer, for the alignment to be considered a

hit.

An alignment between a pair kmer Y = y1y2 . . . yn in the query and another Z =

z1z2 . . . zn in the target is a pair kmer seed hit if its score
∑n

i=1 myi,zi
is equal to or

15

exceeds the threshold T using the scoring matrix M , and ad ≤ am, where ad is the arc

difference of the alignment and am is the arc margin for the homology search.

A pair seed hit h is defined as a tuple h = (lsq, rsq, lst, rst,ps) which uniquely iden-

tifies the left and right segments of the two pair kmers aligned to each other and the pair

seed model used, as illustrated in Figure 3.3(b).

Consider Figure 3.2, where q2 is a perfect match to t2 in terms of their pair symbols.

However, if we use am = 5, t2 would not be considered a hit to q2 since their arc difference

10 exceeds the arc margin.

Consider Figure 3.2 and the Ribosum-95 scoring matrix. The alignment of q1 and

t1 scores 19.11 while that of q2 and t2 scores 19.65. For T ≤ 19.11 and am = 10, both

alignments would be considered hits. For T ≤ 19.10 and am = 5, only the first would

be considered a hit, even though the second one scores higher, as it has too large an arc

difference. For T = 19.6 and am = 10, the latter alignment would quality as a hit, while

the former would not, as it scores too low. Finally, for T = 19.6 and am = 5, neither

alignment would be a hit. These examples show that variations in the arc margin and

threshold can result in different hits being identified by the homology method.

The quantities defined above relate to a 1-hit method of homology searching, that is,

where a single pair kmer match forms a seed hit for extension by use of a CM algorithm.

We may also use a 2-hit model, where two seed hits are chained together to form an

extensible hit, we define the additional quantities below.

RLL RL R L R

L RL R

(a) (b)

(c)

Figure 3.4: Separation of two pair kmers. Each pair kmer is shown with its left (L) and
right (R) paired regions. There are three possible orientations of the two pair kmers:
they can be (a) separate, (b) nested one within the other, (c) in a “pseudo-knotted”
configuration.

16

Definition 6 The separation sep of two pair kmers pk1, pk2 is an integer defined as:

sep(pk1, pk2) =

{

lspk2
− rspk1

, if pk1, pk2 are separate, as in Fig. 3.4(a)

lspk2
− lspk1

, if pk1, pk2 are nested, as in Fig. 3.4(b)

The separation is defined only for two kmers that are disjoint, that is, without overlaps

of their paired segments. Assuming they are disjoint, two kmers can either be nested one

inside the other, occur one after the other, or be pseudo-knotted. These three cases are

shown in Figure 3.4. (Note that for each of these three cases, the left end of pk1 can

occur before or after that of pk2, giving a total of six cases. The duplicate cases are

not shown for the sake of brevity.) For the current implementation, we have chosen to

define separation only for cases (a) and (b), disallowing the pseudo-knotted case, but it is

trivial to extend this definition to the pseudo-knotted case if required. For the example

in Figure 3.2, sep(q1, q2) = 22 and sep(t1, t2) = 24.

(a)

RL NT

RLNT

NTL R

(b)

(c)

Figure 3.5: Separation of a Pair kmer and a Nucleotide lmer. The pair kmer is shown
with its left (L) and right (R) paired regions. The nucleotide lmer is marked “NT”. There
are three possible orientations of the disjoint kmer and lmer: The nucleotide lmer is (a)
after, (b) nested inside, (c) before the pair kmer.

Separation can also be defined for a pair kmer pk = (ls, rs) and a nucleotide lmer.

Note that a nucleotide lmer is defined as ntl = (nt) since its starting position nt identifies

it uniquely. This situation is shown in Figure 3.5, where the pair kmer has left and right

segments of length k, while the nucleotide lmer is a single stretch of length l (possibly

different from k). This definition is useful for a 2-hit algorithm which requires one hit to

be a pair kmer match and the second hit to be a nucleotide match, each possibly using

different seeds. We consider such a 2-hit algorithm in Section 4.4.3. In this case, we

17

differentiate between the cases when ntl occurs before, inside or after pk.

sep(pk, ntl) =

nt − rs, if ntl is after pk, as in Fig. 3.5(a)

nt − ls, if ntl is inside pk, as in Fig. 3.5(b)

ls − nt, if ntl is before pk, as in Fig. 3.5(c)

Definition 7 The separation distance sd of a pair of query kmers and a pair of target

kmers is defined as the difference in separations of the query kmers and the target kmers.

That is, sd((q1, q2), (t1, t2)) = |sep(q1, q2) − sep(t1, t2)|.

The separation distance is again analogous to the concept of “diagonal” in nucleotide

alignments, just as the arc margin of 1-hit pair kmer alignments described above is. For

example, in Figure 3.2, sd((q1, q2), (t1, t2)) = |22 − 24| = 2. Intuitively, this quantity is

a measure of how many net insertions and deletions have occurred between the pair of

query kmers on one hand, and the pair of target kmers on the other.

Definition 8 The separation margin sm of a 2-hit homology search method is a positive

integer, and is the maximum allowed separation distance between two query pair kmers

and their corresponding hits in the target, in order for the four pair kmers to be considered

an extensible hit.

Consider Figure 3.2 again. If a 2-hit homology search is performed with sm = 3 (and

am, T set so that t1 is a hit to q1, and t2 is a hit to q2) then the pair t1–t2 is a hit to the

pair q1–q2. However, if sm = 1, a hit is not recorded for these kmers.

3.4 Overview of Proposed Solution

In the last section, we defined the quantities necessary for describing our approach. In

this section, we present an overview of our proposed solution to the problem of finding

homologs of a single structured RNA molecule. Figure 3.6 summarizes the steps in our

approach.

The first step is to choose a scoring matrix M , a pair seed s and a threshold score

T . This is performed before the search algorithm executes. We describe in Section 3.5

18

Choose matrix M,
pair seed s, and
threshold T

Build (or load from
file) Static Pair Kmer
Neighbourhoods

Hash Target
Nucleotide
Sequence

Pair Kmer Neighbour−
hoods are known when
this step completes.

The Pair Hash
table contains
locations of
potential pair
kmers after this
step completes.

Find pair hits
to query pair
kmers

The Pair Hash
table is searched
for hits to the
query RNA.

Query Sequence + Structure

Target Sequence

Some
alignment
algorithm

Figure 3.6: Overview of proposed solution. The solution consists of a first step in which
parameter values are chosen. The three subsequent algorithmic steps together form the
hit-finding phase of our homology search algorithm. The last step, performed by some
alignment algorithm, involves extending seed hits to full alignments. The alignment
algorithm for this step is independent of the algorithms for the three preceding steps. For
a description of the steps, please see the text.

the rationale for choosing the Ribosum-95 matrix in our experiments. In Section 3.7, we

outline why we choose pair 7-mers for 1-hit homology searches and pair 4-mers for the

2-hit method.

Using the Ribosum-95 matrix, the 7-mer x1 = GC-GU-GC-CG-CG-UA-UA scores

34.17 when aligned to itself, and 29.86 when aligned to x2 = GC-GU-AU-CG-CG-UA-

CG (third and last pairs mutated). These are both strongly positive log-odds scores,

indicating that both scenarios are very likely in homologous RNA. However x1, aligned

to another 7-mer x3 = UC-GU-UC-CG-GG-UA-GA (also with exactly four mismatched

nucleotides), scores -4.28, indicating that such a match is unlikely in homologous RNA.

For a positive threshold score such as T = 30.0, we say that x1 and x2 are neighbours of

x1, but x3 is not. Choosing a threshold too low would result in finding all true hits but

would also return a high number of false hits. While a higher threshold would decrease

false positives, it may cause some true hits to be missed. In Section 3.7, we theoretically

model true and false positives for a range of thresholds, and show how an appropriate

value for T is chosen.

Next, for a threshold T , scoring matrix M and seed s of weight k, we compute neigh-

bourhoods of pair kmers. Neighbourhoods allow us to differentiate “close” matches from

19

unrelated kmers and distant matches. Given the set P of pair symbols, the neighbour-

hood is computed for all |P |k kmers, where each kmer can have up to |P |k neighbours.

We show in Section 3.6 that using P = {AU, CG, GC, UA, GU, UG} is an acceptable

tradeoff to using the entire set P = {AA, AC, AG, AU, CA, . . . , UU}. Brejová et al. [3]

have described an efficient algorithm to compute such neighbourhoods. Our simpler im-

plementation for this step is briefly outlined in Section 4.2, which results in the Static

Pair Neighbour (SPN) table being populated. The term “static” denotes that the table

is independent of the target and query sequences.

The next step of hashing the target nucleotide sequence is crucial to, and forms the

basis of, our pair seeding homology search method. The target is a nucleotide sequence

in which locations of pair kmers have to be identified. Only then can alignments be made

of query pair kmers to target ones. This steps resolves the nucleotide sequences in the

target into high-scoring, potential pair kmers. To do so, we define the window size of

hashing.

Definition 9 The window size w of hashing is the maximum distance in nucleotides

allowed between two nucleotides that pair to form a pair symbol.

Note that the window size as defined above is independent of the query and target

sequences. The only condition is that it be larger than the maximum arc of expected

query pair kmers, as otherwise the algorithm will fail to find matches to the given query.

This quantity is specified at the time the target is hashed, and we have used a default

value of 300nt.

We are given a target sequence of length n, a query RNA sequence of length q, window

size w, arc margin a and separation margin r. Along with a default window size of 300,

we have used default values of 10 for the arc margin and 3 for the separation margin.

For example, a 200 nucleotide query RNA that uses an arc margin of 10 allows for up

to 10 nucleotides to be inserted in a homologous sequence. Our analysis of false positive

rates in Section 3.7 uses the range 1–20 for the arc margin and values of 3 and 10 for

the separation margin, ranges which are sufficient to identify homologs of the families we

have experimented with.

To hash a target using straightforward nucleotide hashing, with a seed of weight k,

takes Θ(nk) time. However, pair hashing involves additional work. First, each position

may have to be hashed twice – once with the seed s, again with the reverse seed sR – if

20

the seed is not palindromic. Then, for each nucleotide kmer so hashed, up to w candidate

kmers have to be checked, in the worst case, to form potential high-scoring pair kmers

homologous to the query. The worst-case runtime of the target hashing algorithm is thus

Θ(2nk + nwk) = Θ(nwk). We present our implementation in Section 4.3 that runs much

faster on average. As a result of the target hashing step, locations of potential pair kmers

in the target are stored in the Pair Hash table. Assuming the target is random noise DNA,

the expected number N of pair kmers added to the Pair Hash table can be estimated as

N = nw(6
16)k(1 − f), where k is the seed weight and f is the fraction between 0 and 1

of the SPN table entries that have zero neighbours. We have experimentally estimated f

(which is a function of T) over a range of 7-mer thresholds, and presented the values in

Table 3.5. Thus, the number of Pair Hash table entries is Θ(nw).

Next, we process the query – a trivial operation that takes Θ(q) time – to identify

O(q) pair kmers in it. For the 1-hit method, checking each query kmer against possible

candidates in the Pair Hash table takes Θ(nwq) time, since there are O(q) query kmers

and Θ(nw) Pair Hash table entries in the worst case. The expected number of seed hits

is Θ(nwqa), from which it follows that false positives grow linearly with the arc margin.

For the 2-hit method requiring two pair kmer hits, the hashing time is still Θ(nwk).

The hit finding time is Θ((nwq)2) for a näıve implementation, in which Θ((nw)2) pairs of

target hits are examined for each of Θ(q2) pairs of disjoint query kmers. We have improved

this somewhat by partitioning the target into blocks of size b, so that the effective runtime

is Θ(nb(wq)2) – see Section 4.4.3. The number of seed hits is Θ((nwqa)2r), from which it

follows that false positives for this method vary linearly with the separation margin and

quadratically with the arc margin.

Finally, for the 2-hit method requiring one pair kmer hit and one nucleotide l-mer

hit, the hash time is Θ(nwk + nl), since a pair hash table and a nucleotide hash table

are required. The hit finding time is Θ(nb(wq)2) for reasons analogous to the above case.

The number of hits varies as Θ((nwq)2ar), from which it follows that false positives vary

linearly with the arc margin and the separation margin. Note that the efficiency of the

2-hit algorithms we have presented can likely be improved considerably, for instance by

using additional data structures to sort hits by arc, and further sorting pairs of hits by

separation. We have not investigated these ideas, but identify them as potential future

work in this area.

21

3.5 Pair Kmer Score Distributions

As mentioned earlier, Ribosum [12] matrices allow us to score the alignment of one nu-

cleotide pair to another. Hence, these matrices can be used to score alignments of a

pair kmer to another pair kmer. However, given a scoring matrix M , we still have to

determine a suitable choice for the threshold score T , so that we can identify alignments

that score above T as candidates to be extended using the exhaustive algorithm. In this

section, we describe how an appropriate threshold score T is chosen, given a scoring ma-

trix M . But before doing so, we briefly justify the use of the Ribosum-95 matrix in all

our investigations.

The Ribosum matrices, as mentioned earlier, number 170 in all. The large number

of matrices results from varying two parameters in the construction of these matrices.

To choose a matrix for our experiments, we considered the alignment scores for perfect

matches of the Watson-Crick and UG/GU pairs. These are presented for a range of

matrices in Table 3.1 below.

Table 3.1: Ribosum matrix main diagonal scores. For example, the score for a GC-to-GC
alignment in the Ribosum-85 is 5.51. Please see the text for a discussion of these values.

Matrix AU CG GC GU UA UG

Ribosum100 4.25 5.22 5.49 3.32 4.72 3.19

Ribosum95 4.22 5.22 5.5 3.31 4.71 3.18

Ribosum90 4.18 5.21 5.5 3.29 4.69 3.16

Ribosum85 4.09 5.2 5.51 3.23 4.6 3.11

Ribosum80 3.95 5.2 5.52 3.11 4.42 2.97

Ribosum75 3.79 5.29 5.63 2.96 4.15 2.8

Ribosum70 3.77 5.3 5.65 2.97 4.11 2.76

Ribosum65 3.57 5.44 5.8 2.9 3.97 2.59

Ribosum60 3.34 5.64 6.02 2.76 3.85 2.55

Ribosum55 3.66 5.52 5.84 3.06 4.19 2.9

Table 3.1 shows that the scores change abruptly in the Ribosum-60 matrix, relative

to the matrices before and after it. Further, scores in the lower half of the rows are more

variable from row to row, as compared to those in the Ribosum-90, -95 and -100 matrices.

The stability of values is a factor in favour of choosing a matrix from the upper rows.

Secondly, we computed the “GC-to-AU” ratio, or the ratio of GC-GC to AU-AU

22

scores. This ratio is greater in the lower rows of the table – for the Ribosum-60 matrix, it is

6.02/3.34, while for the Ribosum-95 it is 5.5/4.22. A large GC-to-AU ratio is undesirable,

since such a matrix would score poorly even perfect alignments of AU-rich paired regions,

at the expense of GC-rich ones. In contrast, a matrix such as the Ribosum-95 gives

relatively closer scores to matches of AU-rich and GC-rich regions. Ribosum matrices are

derived from a specific RNA family (SSU rRNA) and imply pair frequencies inherent in

that family. But it is possible that a homology search involves a query RNA sequence

with very different pair frequencies. Hence, to prevent skewing our algorithm strongly

against AU-rich families, we have chosen the Ribosum-95 matrix – from the mid-range

of matrices with low, stable GC-to-AU ratios – for our experiments.

The Ribosum scores are log-base-2 odds ratios, and hence from the matrix, we can

derive the underlying probabilities of aligning each pair to every other pair, to generate

a probability matrix that is analogous to the score matrix in Table 2.2. This probability

matrix is shown in Table 3.2.

−14 −12 −10 −8 −6 −4 −2 0 2 4 6
0

0.25

0.5

0.75

1
Score Distribution for a Single Pair Alignment

Pair Alignment Score

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

RNA to RNA

RNA to DNA

DNA to DNA

Figure 3.7: Score distribution for a single pair alignment. The curves from left to right
are distributions for: (1) random DNA pair aligned to random DNA pair, (2) RNA pair
aligned to random DNA pair, (3) related RNA pairs aligned. The median score for true
alignment of pairs is 3.8, and for false alignments is -2.9.

23

Table 3.2: Ribosum-95 pair to pair alignment probability matrix [12]. Each cell is the probability (×10−5) of finding the
corresponding pairs aligned in related RNA sequence. Note that the matrix is generated such that the triangle values
sum to 1.0. Hence, to convert this into rectangular probability matrix, every non-diagonal entry [a, b] is halved and
replicated into entry [b, a].

AA AC AG AU CA CC CG CU GA GC GG GU UA UC UG UU
AA 63
AC 2 77
AG 1.8 1.3 230
AU 25 210 15 6300
CA 0.76 0.49 0.67 13 4.4
CC 0.057 1.2 0.027 100 0.2 17
CG 61 18 160 3100 84 19 15000
CU 0.16 0.35 1 32 1.7 3.8 31 37
GA 8.4 4.3 1.4 61 3.4 0.11 17 3.8 180
GC 24 110 14 5600 18 47 5900 130 160 19000
GG 1.4 0.88 65 36 0.35 0.25 45 1.3 1.8 45 170
GU 10 29 7.5 1200 11 5.0 1000 29 13 2300 25 4300
UA 130 15 120 2500 88 7 5800 28 33 2920 13 820 8900
UC 0.18 1.1 3.0 29 2.4 1.2 33 20 5.3 38 0.51 27 49 15
UG 71 5.4 18 590 11 2.1 2000 7.7 5.1 1000 60 350 1600 34 4000
UU 1.4 1.8 1.0 110 1.2 5.2 79 11 0.87 85 27 100 190 7.6 52 150

24

Given the scoring matrix and corresponding probability matrix for alignment of a

single pair to a pair, we can trivially compute the cumulative probability distribution

(against the alignment score) for a single pair, for example, an AU-to-GC alignment.

The results are shown in Figure 3.7, in the form of three curves:

1. The right-most curve is of the score of an RNA pair aligned to another RNA pair.

We used the probability matrix generated by RSEARCH [12] shown in Table 3.2,

along with corresponding scores in Table 2.2. The distribution favours strongly

positive scores, as expected. About 95% of the time, such an alignment gives

a positive score. The rest of cases are due to GU-to-UG matches (which score

negatively) and alignments of pairs not composed of complementary bases.

2. The leftmost curve is the score distribution of aligning a random DNA pair to

another random DNA pair, but scoring with the Ribosum matrix. For this, we

generated a probability matrix (such as the one in Table 3.2) to capture probabilities

of pairs in random DNA. The details of the calculations are in Section 4.1.

3. The middle curve is the distribution of scores for a random DNA pair aligned to

an RNA pair. In this case, we generated a matrix that captured the probabilities

of aligning one RNA pair to a pair in random DNA. (Please see Section 4.1 for the

details.) In this case, the expected scores are still negative, though less so than the

first curve. This is so since in DNA all 16 pairs are more or less equally likely. But

in RNA the 6 pairs that are very frequent are high-scoring, the other 10 being rare,

so the RNA pair biases us towards more high-scoring pairings.

From the distribution in Figure 3.7, we can derive the alignment score distribution for

a pair kmer, that is, a sequence of k pairs aligned to another sequence of k pairs, where

the pair in each position has score distributed as per Figure 3.7. An algorithm to do this

based on polynomial convolution has been described by Brejová et al. [3]. We present

our implementation in Section 4.1. The resulting score distributions, for pair 4-mers and

7-mers, are given in Figures 3.8 and 3.9 respectively.

These distributions allow us to choose a threshold score T .

Let us define the “hit rate” of a threshold score to be the probability that a pair kmer

within an alignment will score above that threshold. Hence, if we choose a threshold score

so that 98% of the scores lie below it, then that threshold has a hit rate of 2%. We can

25

−40 −30 −20 −10 0 10 20
0

0.25

0.5

0.75

1
Score Distribution for a Pair 4−mer Alignment

Pair 4−mer Alignment Score

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

RNA to RNA

RNA to DNARNA to DNA

DNA to DNA

Figure 3.8: Score distribution for pair 4-mer alignment. The curves from left to right are
distributions for: (1) random DNA aligned to random DNA, (2) RNA pairs aligned to
random DNA, (3) related RNA pairs aligned. The median score for true hits is 14.31,
and -8.41 for false hits (RNA to DNA).

relate the hit rate r to the approximate number of trials that are required to achieve a

seed hit. Assuming independent, identically distributed trials, if we choose integer n to

satisfy (1 − r)n ≤ 0.2, then we will achieve a seed hit 80% of the time, by using n trials,

that is, n independent query kmers. (While the independence assumption is invalidated

by overlapping kmers, it is sufficient for the purposes of estimation here.)

From the data in Figures 3.9 and 3.8, we can identify the threshold score that relates

to any given hit rate, for a particular seed size. Table 3.3 shows a range of hit rates and

their corresponding thresholds – for pair 4-mers, 6-mers and 7-mers.

Table 3.3 also gives the approximate number of kmers required for a hit 80% of the

time, for that particular hit rate of a single trial. Note that the BLAST seed of size 11

has a 2% hit rate at a homology level of 0.7. Hence on average, 80 11-mers are required

to achieve a hit 80% of the time, since 1 − (1 − 0.2)80 ≈ 0.8.

Once a threshold is chosen (e.g. T = 31.49) for a given seed size (e.g. k = 7) we can

also compute the expected false positives for those choices. This can be done from the

26

−60 −50 −40 −30 −20 −10 0 10 20 30 40
0

0.25

0.5

0.75

1
Score Distribution for Pair 7−mer Alignment

Pair 7−mer Alignment Score

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

RNA to RNA

RNA to DNA

DNA to DNA

Figure 3.9: Score distribution for pair 7-mer alignment. The curves from left to right are
distributions for: (1) random DNA aligned to random DNA, (2) RNA pairs aligned to
random DNA, (3) related RNA pairs aligned. The median score for true hits is 24.69,
and -14.47 for false hits (RNA to DNA).

Table 3.3: Hit rates and threshold scores for 4-mers, 6-mers and 7-mers using the
Ribosum-95 matrix. For example, to achieve a hit rate of 5.2% using 6-mers, a threshold
score of 28.17 or lower has to be used. Using T = 28.17, we expect on average that 30
query kmers would be required to give at least one seed hit 80% of the time.

Cumulative Hit Rate # Kmers Scores
Probability (CP) (= 1 - CP) Needed 4-mer 6-mer 7-mer

98.000% 2.0% 80 20.87 29.55 33.90

97.353% 2.6% 60 20.60 29.22 33.46

96.056% 3.9% 40 20.11 28.67 32.79

94.777% 5.2% 30 19.60 28.17 32.28

92.269% 7.7% 20 19.10 27.43 31.49

89.826% 10.2% 15 18.71 26.87 30.85

85.133% 14.9% 10 18.08 25.98 29.86

27

curves in Figures 3.8 and 3.9. To calculate the rate of false positives, the middle curve

(and not the leftmost one) would be considered. This is because query kmers, being from

known RNA molecules, are distributed as per the RNA pair frequencies, while the target

is random DNA. The curves immediately show, as expected, that a larger seed size gives

a greater separation (and hence, better ability to distinguish) between true and false hit

curves.

However, an alternate method to compute false positives is to use directly the values

of average number of neighbours for a given threshold. We choose the latter approach

and present the expected false positive values in Section 3.7.

3.6 Composition of Pair Kmers

The above score distributions and the concept of neighbourhood consider 16 possible pair

symbols in each position in a pair kmer. However, as can be seen from the scoring matrix

in Table 2.2, only 20 of the total 136 scores are positive. In particular, 6 pairs are very

frequent in RNA – the relevant pairs – and others are very rare. From the Ribosum-95

probabilities, it can be deduced that the probability of a relevant pair is 0.975, while that

of a non-relevant pair is 0.025. For the purposes of this discussion, kmers composed solely

of relevant pairs are called relevant kmers. For example, AU-GC-UG-GU is a relevant

4-mer; AU-GG-CA-UA is not since it contains the pairs GG, CA.

Since the 10 non-relevant pairs are rare in RNA, can we ignore them in hashing pair

kmers? Doing this results in smaller memory requirements for hash tables. For example,

there are 167 = 268, 435, 456 entries in the space of all 7-mers of 16 pair symbols, and

67 = 279, 936 entries in the space of 7-mers of relevant pairs only.1

The latter size is aprroximately 1000 times smaller than the former, so we would have

a significantly smaller hash table by using only relevant pairs. Despite this benefit, using

relevant kmers is potentially less accurate. For example, the 7-mers x = GC-GC-GC-GC-

GC-GC-GC and y = GC-GC-GC-GC-GC-GC-AC score 30.3 when aligned to each other,

though the AC pairing is non-standard. For a threshold T = 30.0, they would properly

be considered neighbours. But by hashing relevant 7-mers only, we would miss this since

1In practice, efficient hashing requires a fixed number of bits per symbol, so the total number of hash

entries is greater than these values. Still, 16 symbols require four bits per symbol while a 6-symbol

alphabet only requires three bits per symbol – a saving of 7 bits if hashing pair 7-mers.

28

y is not a relevant 7-mer. We seek here to quantify how often such neighbours, that are

not relevant kmers, occur. In particular, given a particular relevant pair kmer p and a

threshold T , how many neighbouring kmers does p have in the space of all kmers and in

the space of relevant kmers? If the difference in these two values is small on average –

over the space of all relevant kmers, for the thresholds generally used – we could conclude

that hashing with relevant kmers only is an acceptable approximation.

Table 3.3 shows some thresholds and their corresponding hit rates. Note that using

a threshold with a hit rate higher than, say, 14% will give more hits, but also result in a

large number of false positives – see Section 3.7. Hence such thresholds are not of practical

use. We have chosen the four lowest score thresholds from Table 3.3 – these would give

the largest difference between the number of relevant neighbours and all neighbours. For

a given seed size and threshold (e.g. 7-mers with T = 30.85), we computed two values:

RN , the number of relevant neighbours, and AN , the number of all neighbours, for

every relevant kmer – using the algorithm in Section 4.2.1. For each kmer, we found

the difference between the two values computed, as a fraction of AN . This process was

performed for 4-mers, 6-mers and 7-mers, for four thresholds in each case, for a total of

twelve cases.

Table 3.4: Difference in the number of all and relevant neighbours for 4-mers, 6-mers and
7-mers. Columns 2, 3, 4 give the average difference between the number of all and relevant
neighbours for the threshold and kmer size specified, as a fraction of all neighbours. For
example, the entry in row 3, column 3 (1.66E-6) says that for the average relevant pair
7-mer at T = 30.85, the number of total neighbours exceeds the number of relevant kmers
by a factor of 1.00000166.

Hit Average Difference in No. of Neighbours
Rate for 4-mers for 6-mers for 7-mers

5.223% 0 0 0

7.731% 0 0 0

10.174% 0 0 1.66 × 10−6

14.866% 0 0 3.65 × 10−5

The results for the twelve cases are summarized in Table 3.6. The values demonstrate

that, on average, the number of all and relevant neighbours are very close to each other,

differing by factors of (1 + ε), ε being the fractions in Table 3.6. For smaller seed sizes,

that is, for 4-mers (which are used in a 2-hit approach) and 6-mers, there is no difference

29

in accuracy between using relevant and all kmers.

While the average differences are small, we also looked at the overall distribution of

the difference between AN and RN values for the two lowest thresholds for pair 7-mers:

T = 29.86 and 30.85. Both of these are among the lowest practically used thresholds and

represent worst-case behavior.

For T = 29.86, we found that only 2,024 7-mers of a total of 279,937 have non-zero

differences between AN and RN values – about 0.7% of the total space of 7-mers. The

average difference over all 7-mers was 3.65 × 10−5. For T = 30.85, only 98 of 279,937

7-mers have non-zero difference values – only 0.03% of the space of 7-mers. In this case,

the average difference is 1.66 × 10−6.

For both thresholds above, for a small fraction of 7-mers over the entire range, the

difference value peaks well above the average. For example, the average difference for the

T = 29.86 case is 3.66×10−5, but the peak value is 3.66×10−2, about 1,000 times larger.

For T = 30.85, the peak value is 5.59 × 10−3, compared to the average of 1.66 × 10−6 –

a difference of a factor of 3,367. While these are large deviations from the average, they

are still small in absolute terms: at its peak the difference between AN and RN values is

the factor 1.0366 for T = 29.86 and 1.00559 for T = 30.85. More importantly, note that

for higher thresholds that would be actually used in practice (such as T = 31.49), the

factors are zero. Hence, we conclude that hashing using relevant pairs is an acceptable

tradeoff.

Using relevant pairs only, we have computed distributions of number of pair kmer

neighbours for several pair 7-mer thresholds, capturing the average as well as the maxi-

mum numbers in each case. The results are given in Table 3.5.

3.7 Theoretical Sensitivity and Specificity

It is clear from the score distributions shown earlier that a large seed size results in lower

false positives for the same true positives. For example, the threshold that achieves a 2%

hit rate for pair 7-mers (T = 33.90) gives a lower false positive rate than the threshold

(T = 29.55) that achieves the same hit rate for pair 6-mers. This means that a larger

seed would result in better performance of the search algorithm.

Two factors prevent the use of an arbitrarily large seed. Firstly, a larger seed would

require a larger Static Pair Neighbour (SPN) table. For example, pair 11-mers would

30

Table 3.5: Number of neighbours versus threshold score for pair 7-mers. For example,
with T = 31.49, there are on average 2.53 pair 7-mers that align with any given pair 7-mer
to score above 31.49. Further, there is a pair 7-mer that aligns with 288 pair 7-mers to
score above 31.49, and no other pair 7-mer has more than 288 neighbours. Finally, using
T = 31.49 results in a hash table that has 66.0% of the entries empty, that is, with zero
neighbouring 7-mers.

Threshold Score # Neighbouring 7-mers % Empty Entries
Average Maximum

33.90 0.146 29 92.8%

33.46 0.26 29 89.5%

32.79 0.578 120 83.3%

32.28 1.05 162 77.2%

31.49 2.53 288 66.0%

30.85 4.91 351 54.8%

29.86 13 742 39.2%

require a table with 611 or 362 million entries. If each pair 11-mer had only 20 neighbours

on average, the table would require about 29 Gbytes of memory. Since this table is needed

during target hashing and hit finding, it has to be maintained in memory during those

steps. This would tax the resources of a typical machine and limit the maximum pair

seed size.2

In the case of RNA molecules, a second factor limits how large the seed can be. There

is a fair amount of variability in the structures of RNA molecules. Some of them have very

little paired content, and consist largely of unpaired sequence with occasional pairs. An

example, the small nucleolar RNA U29, is shown in Figure 3.10. Other RNA molecules

like the Plasmid RNAIII, shown in Figure 3.11, are distinguished by large, contiguous

regions of pairing. Still other RNAs contain paired content, but in a fragmented fashion,

such as the CsrB RNA (carbon storage regulator) shown in Figure 3.12. In practice, it is

rare to find paired regions in typical RNA sequences that are longer than 8 pairs. Even

if one member of a family has a paired region of length 10, it is common that a related

RNA has inserted nucleotide(s) within that region, breaking it into two or more smaller

2Note that the Pair Hash table does not grow in the same manner with increasing seed size. For

example, pair-hashing a random 250,000 nucleotide target sequence using pair 7-mers would require about

200 Kbytes of memory, in addition to the memory footprint of the empty Pair Hash table. However, pair-

hashing the same target using pair 11-mers would require at most an additional 8 Kbytes! These estimates

are based on the expressions in Section 3.4.

31

paired regions. For example, suppose we hash a query RNA sequence using pair 10-mers,

and search for hits to one 10-mer q. If a true homolog of q in the target sequence has

mutated to become two paired 5-mers, hashing using 10-mers would miss it. Hence, for

practicality, we limit the length of pair seeds in this study to 7-mers or less. Further, we

use continuous seeds, that is seeds with the same weight and length, in our work, due to

the restrictive lengths of paired regions.

Figure 3.10: Small nucleolar RNA U29 structure [9]

We have already related threshold scores to true hits rate, for various seed sizes, as

shown in Table 3.3. Here, we relate the same thresholds to false positive rates, for 1-hit

and 2-hit methods outlined earlier.

Table 3.5 shows how the average and maximum number of neighbouring pair 7-mers

varies with the threshold score. To compute the false positive rates in this section, we

use the average number of neighbouring pair kmers, as shown in this table. For example,

using T = 31.49, we know that there are 2.53 pair 7-mers (out of a maximum of 167

in random DNA) that align with any given 7-mer to score above the threshold. Hence

the probability of a false hit at a fixed target position is 2.53/167. We have also shown

the maximum number of neighbours in Table 3.5 to highlight that, performance can be

noticeably poorer in the worst case than in the average case. For example, T = 31.49

has an average of 2.53 and a maximum of 288 neighbours – a difference of two orders of

magnitude. This means that to get predictably better performance from a pair seed, we

would ideally like to have about two orders of magnitude difference between the false hit

rate of the BLAST seed and that of our pair seed with an appropriately chosen threshold.

32

Figure 3.11: Plasmid RNAIII structure [9]

Figure 3.12: CsrB (carbon storage regulator) RNA structure [9]

33

Note that this situation is not specific to RNA homology searches, since it could occur

in the case of DNA searches as well. Consider a 60% A-T and 40% G-C sequence. The

probability of a match at one position on average is 2 × 0.32 + 2 × 0.22 = 0.26. So an

11-mer on average matches with probability 0.2611, while the 11-mer AAAAAAAAAAA

matches with probability 0.311, which is 5 times the average, and 90 times the probability

of the 11-mer GGGGGGGGGGG matching, which is 0.211.

3.7.1 False Positives for 1-hit Methods: Pair 7-mers and 6-mers

The simplest homology search using pair seeds is to use a 1-hit approach that involves

finding a hit to a given pair kmer.

2 4 6 8 10 12 14 16 18 20
10

−10

10
−9

10
−8

10
−7

10
−6

Estimated False Positive Rates for Pair 7−mers

Arc Margin (nucleotides)

P
ro

ba
bi

lit
y[

F
al

se
 h

it
at

 a
 fi

xe
d

po
si

tio
n

in
 ta

rg
et

] BLAST

29.86

30.85

31.49

32.28

32.79

33.46

33.9

Figure 3.13: Estimated false positive rates for pair 7-mers. Each curve gives the theoret-
ical probability of a false positive hit for the given threshold score, over a range of values
for the arc margin. The dark horizontal line is the false positive rate for the BLAST
size-11 seed, assuming equal nucleotide probabilities. Over a range of thresholds and arc
margins, pair 7-mers outperform the BLAST seed.

In this case, we estimate the false positive rate for arc margin a as Pr[false hit of pair

k-mer] = 1 − (1 − p)a, where p = Pr[false hit of pair k-mer with a = 1nt]. For the sake

of comparison, the figures also show where the false hit probability of the BLAST size-11

34

2 4 6 8 10 12 14 16 18 20
10

−8

10
−7

10
−6

10
−5

10
−4

Estimated False Positive Rates for Pair 6−mers

Arc Margin (nucleotides)

P
ro

ba
bi

lit
y

[F
al

se
 h

it
at

 a
 fi

xe
d

po
si

tio
n

in
 ta

rg
et

]

BLAST

28.49
28.03

27.41

26.92

26.13

25.52

24.61

Figure 3.14: Estimated false positive rates for pair 6-mers. Each curve gives the theoret-
ical probability of a false positive hit for the given threshold score, over a range of arc
margin values. The dark horizontal line is the false positive rate for the BLAST size-11
seed, assuming equal nucleotide probabilities. The BLAST seed has lower false positives
compared to, and hence performs better than, pair 6-mers over a wide range of thresholds
and arc margins.

seed falls. Figures 3.14 and 3.13 show the estimated probability of a single false positive

hit (at a fixed location in the target sequence) for pair 6-mers and 7-mers, respectively.

From Figure 3.14 it is evident that for most thresholds, the false positive rates for pair 6-

mers are higher than those achieved by the BLAST seed. This indicates that pair 6-mers

would give poor performance in practice, compared to a simple BLAST-based search.

Pair 7-mers fare better, with expected false positive rates for several thresholds (e.g. T

= 31.49) being lower than the BLAST seed’s, if the arc margin is low enough. Since the

arc margin used would most often be in the 5 – 10 nucleotide range, a 1-hit approach

using pair 7-mers is possibly a better alternative to a BLAST heuristic. We investigate

the performance of 1-hit pair 7-mers and present the results later in this work. Below,

Table 3.6 relates the hit rate (that is, the true positives rate) to the false positive rate of

pair 7-mers.

35

Table 3.6: True versus false positives for pair 7-mers. We relate the true hit rate of each
threshold to the false hit rate fp shown below, based on an arc margin of 1 nucleotide.
For a larger arc margin am, the false positive rate is 1− (1− fp)fp. For comparison, the
BLAST seed achieves a true hit rate of 0.020 and a false hit rate of 2.38×10−7, assuming
random sequence with equal base probabilities.

Threshold Score True Hit Rate False Hit Rate

33.90 0.020 5.44 × 10−10

33.46 0.026 9.69 × 10−10

32.79 0.039 2.15 × 10−9

32.28 0.052 3.91 × 10−9

31.49 0.073 9.42 × 10−9

30.85 0.101 1.83 × 10−8

29.86 0.149 4.84 × 10−8

3.7.2 False Positives for 2-hit Method: Two Pair 4-mers

As was mentioned earlier, it is not uncommon to see paired regions in RNA molecules

be interrupted by single unpaired nucleotides. Hence, we investigated false positive rates

for a 2-hit method that requires two non-overlapping or disjoint pair 4-mer hits. Both

4-mer hits use the same threshold score. Since two hits are chained together to give an

extensible hit, this method uses an additional parameter called the separation margin,

discussed in Section 3.3. This quantity is analogous to the “distance” between the two

hits. The margin determines how much variability is tolerated between the distances in

the query and target sequences.

Figures 3.15 and 3.16 show expected false positive rates for separation margins of 3

and 10 nucleotides, respectively. The false positive rates vary linearly with the separation

margin.3 We compute the probability of a false hit here as the product of the probability

of a false 4-mer hit, and that of a having at least one 4-mer hit within a window of size

equal to the separation margin s. Thus, if p is the probability of a false hit of one pair

4-mer for a given threshold and arc margin, then the probability of a false hit of two

pair 4-mers is approximately p× [1− (1− p)s]. This computation assumes independence

of overlapping hits, which is not strictly accurate, but is sufficient for the purposes of

3Note that the rates vary quadratically with the arc margin, since there are two hits, each of which

has a false hit rate that varies linearly with its arc margin; if we double the frequency of false pair hits,

the frequency of false 2-hit matches is quadrupled.

36

estimation.

The resulting plots indicate that the false positive rates for frequently used thresholds

(e.g. T = 19.6 for 4-mers) are approximately as good as those of 1-hit pair 7-mers. This

reinforces our idea that the 2-hit method in general could work as well as the 1-hit pair

7-mer approach, with the added advantage that fragmented paired regions (of length 4

or more) could be hashed using this method.

2 4 6 8 10 12 14 16 18 20
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

Estimated False Positive Rates for 2−hit Pair 4−mers −− Separation Margin = 3nt

Arc Margin (nucleotides)

P
ro

ba
bi

lit
y

[F
al

se
 h

it
at

 a
 fi

xe
d

po
si

tio
n

in
 ta

rg
et

]

BLAST

18.08

18.71

19.1

19.6

20.11

20.6

Figure 3.15: Estimated false positive rates for 2-hit pair 4-mers, separation margin =
3 nucleotides. Each curve gives the theoretical probability of a false positive hit made
of two 4-mer hits, for the given threshold 4-mer score. The x-axis shows the arc margin
value used for each single 4-mer hit. The separation margin is the variation allowed in the
separation of the two hits between the query and target. The dark horizontal line is the
false positive rate for the BLAST size-11 seed, assuming equal nucleotide probabilities.

3.7.3 False Positives for 2-hit Method: Pair 4-mer + Nucleotide 8-mer

Finally, we present estimated false positive rates for the 2-hit method that requires one

hit to be a pair 4-mer, but the second hit to be a nucleotide 8-mer hit. As was shown

earlier, some RNA families have low paired content. For such queries, a 2-hit method

that only hashes pair kmers would ignore the majority of the content (that is, unpaired

regions) in the RNA query. This method, in contrast, takes into consideration unpaired

37

2 4 6 8 10 12 14 16 18 20
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

Estimated False Positive Rates for 2−hit Pair 4−mers −− Separation Margin = 10nt

Arc Margin (nucleotides)

P
ro

ba
bi

lit
y

[F
al

se
 h

it
at

 a
 fi

xe
d

po
si

tio
n

in
 ta

rg
et

]

BLAST

18.08

18.71

19.1

19.6

20.11

20.6

Figure 3.16: Estimated false positive rates for 2-hit pair 4-mers, separation margin =
10 nucleotides. Each curve gives the theoretical probability of a false positive hit made
of two 4-mer hits, for the given threshold 4-mer score. The x-axis shows the arc margin
value used for each single 4-mer hit. The separation margin is the variation allowed in the
separation of the two hits between the query and target. The dark horizontal line is the
false positive rate for the BLAST size-11 seed, assuming equal nucleotide probabilities.
A higher separation margin results in higher false positives, for the same thresholds.

content in RNA molecules in performing the search, and hence improves the sensitivity

of the search. We have shown here the computations for a single case: one nucleotide

8-mer chained to a pair 4-mer. As in the case above, the separation margin is set to 3

and 10 nucleotides, to generate the plots shown in Figures 3.17 and 3.18.

Figures 3.17 and 3.18 show that, for the given ranges of thresholds and arc margin

values, the false positives for this approach are noticeably superior to those of the earlier

two approaches. We investigate the practical performance of all three approaches later

in this work.

In closing, we note that keeping false positives low ensures that the hit extension phase,

that follows the hit finding phase, is executed on fewer potential matches, decreasing the

overall runtime. However, the overall runtime of a homology search method depends on

more than the false positive rate for 2-hit models. Though the 2-hit models may offer

38

2 4 6 8 10 12 14 16 18 20
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

Estimated False Positive Rates for 2−hit NT & Pair Kmers −− Separation Margin = 3nt

Arc Margin (nucleotides)

P
ro

ba
bi

lit
y

[F
al

se
 h

it
at

 a
 fi

xe
d

po
si

tio
n

in
 ta

rg
et

]

BLAST

18.08

18.71
19.1

19.6

20.6

20.11

Figure 3.17: Estimated false positive rates for 2-hit made of 1 nucleotide 8-mer + 1
pair 4-mers with separation margin = 3 nucleotides. Each curve gives the theoretical
probability of a false positive hit made of two smaller hits: a nucleotide and a pair hit,
for the given threshold 4-mer score. The x-axis shows the arc margin value used for the
pair 4-mer hit. The separation margin is the variation allowed in the separation of the
two hits between the query and target. The dark horizontal line is the false positive rate
for the BLAST size-11 seed, assuming equal nucleotide probabilities.

lower false positive rates, the runtime overhead they incur in the hit finding phase is

considerable, in comparison to the 1-hit model, as we note in Section 5.4.1. Further, the

choice of the hit extension algorithm, which we do not consider in this work, would also

have a big impact on the overall runtime.

3.8 Neighbourhood and Partnership Distributions

In this section, we provide details of the distributions of neighbourhoods for pair 7-mers.

In addition, we introduce the concept of nucleotide kmer partnerships and present details

of their distributions as well.

39

2 4 6 8 10 12 14 16 18 20
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

Estimated False Positive Rates for 2−hit NT & Pair Kmers −− Separation Margin = 10nt

Arc Margin (nucleotides)

P
ro

ba
bi

lit
y

[F
al

se
 h

it
at

 a
 fi

xe
d

po
si

tio
n

in
 ta

rg
et

]

BLAST

18.08

18.71

19.1
19.6

20.11

20.6

Figure 3.18: Estimated false positive rates for 2-hit made of 1 nucleotide 8-mer + 1
pair 4-mers with separation margin = 10 nucleotides. Each curve gives the theoretical
probability of a false positive hit made of two smaller hits: a nucleotide and a pair hit,
for the given threshold 4-mer score. The x-axis shows the arc margin value used for the
pair 4-mer hit. The separation margin is the variation allowed in the separation of the
two hits between the query and target. The dark horizontal line is the false positive rate
for the BLAST size-11 seed, assuming equal nucleotide probabilities.

3.8.1 Number of Pair Kmer Neighbours

As noted previously, varying the threshold score for a pair kmer hit changes the contents of

static neighbourhood tables. To better understand these changes, we chose four threshold

scores for pair 7-mers, and computed the distribution of the number of neighbours for all

kmers, for each choice of threshold. The results are summarized in Tables 3.7 and 3.8

below. These tables show that the majority of the 7-mers have relatively low number of

neighbours, in the lower 25%-33% of the range. For example, with T = 31.49, the number

of 7-mers with more than 90 neighbours is less than 0.2% of the total number of 7-mers.

40

Table 3.7: Distribution of neighbours for T = 29.86 (left) and 31.49 (right). For example,
for T = 29.86, there are 268,637 7-mers that have between 0 and 74 neighbours. The
average number of neighbours for each threshold is 13.0 and 2.53, respectively.
No. of Neighbours No. of Kmers

0 – 74 268637

75 – 149 6321

150 – 224 2597

225 – 299 1393

300 – 374 393

375 – 449 427

450 – 524 70

525 – 599 35

600 – 674 35

675 – 749 29

No. of Neighbours No. of Kmers

0 – 29 275140

30 – 59 3206

60 – 89 889

90 – 119 210

120 – 149 316

150 – 179 77

180 – 209 70

210 – 239 21

240 – 269 7

270 – 299 1

Table 3.8: Distribution of neighbours for T = 32.79 (left) and 33.9 (right). The average
number of neighbours for each threshold is 0.578 and 0.146, respectively.
No. of Neighbours No. of Kmers

0 – 12 275833

13 – 25 3368

26 – 38 574

39 – 51 98

52 – 64 35

65 – 77 21

78 – 90 0

91 – 103 0

104 – 116 0

117 – 129 8

No. of Neighbours No. of Kmers

0 – 2 277128

3 – 5 1610

6 – 8 210

9 – 11 140

12 – 14 252

15 – 17 365

18 – 20 161

21 – 23 42

24 – 26 21

27 – 29 8

3.8.2 Number of Nucleotide Kmer Partners

Once we have derived the neighbourhood relations between pair kmers, we can then

infer from that distribution the one for partnerships of nucleotide kmers of the same

size. Briefly, if a pair 7-mer GC-GC-GU-GC-AU-AU-AU has at least one neighbour for

a given threshold, then the nucleotide 7-mer GGGGAAA is a “partner” of UUUCUCC.

Essentially, two nucleotide kmers are partners if and only if they form a complementary

paired region between them. Section 4.2.2 outlines how the table with these partnerships

(the Static Nucleotide Partner table) is built. Tables 3.9 and 3.10 summarize the results.

41

Table 3.9: Distribution of nucleotide partners for T = 29.86 (left) and 31.49 (right).
For example, for T = 31.49, there are 6,720 nucleotide 7-mers that have between 3
and 5 partners. The average number of partners for each threshold is 10.39 and 5.81,
respectively. The fraction of kmers with no partners is 0.01% and 0.99%, respectively.
No. of Partners No. of Kmers

0 – 6 4239

7 – 13 8232

14 – 20 2499

21 – 27 1148

28 – 34 245

35 – 41 0

42 – 48 21

49 – 55 0

56 – 62 0

63 – 69 1

No. of Partners No. of Kmers

0 – 2 2279

3 – 5 6720

6 – 8 4256

9 – 11 2310

12 – 14 469

15 – 17 273

18 – 20 21

21 – 23 56

24 – 26 0

27 – 29 1

Table 3.10: Distribution of nucleotide partners for T = 32.79 (left) and 33.9 (right). For
example, for T = 32.79, there are 2,499 nucleotide 7-mers that have between 14 and 20
partners. The average number of partners for each threshold is 2.85 and 1.23, respectively.
The fraction of kmers with no partners is 10% and 36%, respectively.
No. of Partners No. of Kmers

0 – 1 5142

2 – 3 5999

4 – 5 3409

6 – 7 1484

8 – 9 148

10 – 11 140

12 – 13 42

14 – 15 0

16 – 17 21

No. of Partners No. of Kmers

0 5939

1 5090

2 2639

3 1701

4 553

5 280

6 168

7 14

8 1

42

Chapter 4

Algorithms and Implementation

In this section, the different algorithms we developed to implement our ideas are presented

and analyzed.

4.1 Building Kmer Score Distributions

Here, we describe how we generated the score distributions for pair 4-mers, 6-mers and

7-mers, given the scoring matrix for aligning pairs to pairs. As given in Section 3.5, these

distributions were used to determine appropriate choices of the threshold score T .

We downloaded the RSEARCH package [12], including its source code, along with the

complete multiple sequence alignment of the SSU rRNA family. With its source code, we

extracted frequency counts and probabilities of alignment for each set of pairs.

4.1.1 Alignment of Related RNA Pairs

We divided the range of scores in the Ribosum-95 matrix into “buckets”, where the size

of each bucket is 0.01, and the value of each bucket is the probability of a random score

falling into it. This gives us the coefficient of a generating function representation of the

score distribution of one pair. The polynomial exponents do not start at zero, since a

score of -11.4 falls into bucket with exponent -1140. To get the score distribution of a

kmer, we simply convolve the polynomial, to raise it to the kth power, keeping in mind

the above offsets of exponents.

43

4.1.2 Alignment of Random Pairs

We assume equal background probabilities of the four nucleotides. From these, we com-

pute probabilities of pairs in random DNA by Pr[pair XY] = Pr[nt X].Pr[nt Y]. Thus

we get 16 probabilities for the occurrence of each of 16 pairs. By performing a cross-

product operation of this size-16 vector to itself, we generate a rectangular matrix whose

cell in location (x, y) gives the probability of alignment of pair x to pair y in random

sequence. For the choices of Pr[A] = 0.25, Pr[C] = 0.25, Pr[G] = 0.25, Pr[T] = 0.25, all

the probabilities compute to 4−k.

4.1.3 Alignment of RNA Pair to Random Pair

We also generated a probability matrix for the case where a nucleotide pair from a random

sequence is aligned to an RNA pair. This is the case of an RNA query being aligned to

random DNA that is not a homolog. The probability of a pair A to pair B alignment

is the product of probability of pair A in RNA sequence and that of pair B in random

sequence. The probabilities of pairs in random sequence are computed exactly as given

above. Probabilities of pairs in RNA are computed from Table 3.2.

4.2 Building Static Tables

In this section, we describe algorithms to build tables of possible hit sequences that are

independent of the query and target strings. These tables are built only once, after which

they could be maintained in memory for use with multiple target and query sequences.

4.2.1 The Pair Neighbour Table

Given a query pair kmer qi, our key idea rests on identifying a region in the target that

forms a pair kmer p such that p is a “close” match to qi. An alignment is deemed a close

match if its score is above a specified threshold, as per the given scoring matrix. For

example, using the Ribosum-95 scoring matrix in Table 2.2, the 6-mer AU-GC-GU-GC-

CG-CG aligned to AU-CG-GU-CG-CG-AU scores 20.45, while the same 6-mer aligned

to UA-UA-UA-GU-GU-UG scores only 6.84. For a threshold T = 20.0, the former would

qualify as a “hit” while the latter would not (even though both have positive log odds

44

scores). Given the threshold T and a kmer q, we would like to compute the set S of

all kmers that count as hits when aligned with q – we denote this set N(q). Each kmer

t ∈ N(q) is a neighbour of the kmer q. Note that, in order to compute the set of

all neighbours of kmer q, it is not necessary to know the target sequence or the query.

Hence this computation can be performed once at startup, and the neighbourhood of each

kmer so computed is stored in the Static Pair Neighbours table. An efficient algorithm

to compute neighbourhoods based on a pairwise scoring matrix has been described by

Brejová et al. [3]. We briefly describe our implementation below.

Algorithm 1 Static Pair Neighbour Table Construction

for every kmer q ∈ {AU, CG, GC, GU, UA, UG}k do

for every kmer t ∈ {AU, CG, GC, GU, UA, UG}k do

if q aligned to t scores above T then

add t to the set N(q)

This brute-force algorithm is straight-forward, but executing it for 6-mers or 7-mers

takes an excessive amount of time. We use a simple idea to speed it up significantly.

Notice that if the 6-mers p1p2p3p4p5p6 and p7p8p9p10p11p12 are neighbours, where pi ∈ P ,

then it follows that p3p1p6p2p4p5 is a neighbour of p9p7p12p8p10p11, and vice versa. In

fact, given two neighbouring kmers k1 and k2, if we permute both of them in the same

manner to yield kmers k′

1, k′

2 respectively, then k′

1 and k′

2 are neighbours of each other.

We assume an ordering of the set P , e.g. AU = 1, CG = 2, . . . , UG = 6. Now,

each kmer formed from these symbols can be represented numerically, e.g. AU-GC-

GU-GC-CG-CG = 134322. Note that this 6-mer can be permuted to give the 6-mer

AU-CG-CG-GC-GC-GU = 122334, the latter having a lower numerical value than the

former. We modify the above algorithm as follows: we only compute the neighbourhood

of a pair kmer q if it is in sorted order. If the kmer q is not sorted, we can compute N(q)

from N(q′) since every neighbour of q has one and only one corresponding entry in N(q ′).

Figure 4.1 shows a conceptual view of the Static Pair Neighbour table.

For a given threshold and matrix, once the kmer neighbourhoods are computed, they

can be written to a file. Reading in this file and populating the static tables for 7-mers

can be done quickly, given that the sizes of the resulting files are not excessively large.

Table 4.1 below gives the sizes of this file, for a range of thresholds for pair 7-mers, using

the Ribosum-95 matrix. Note that as the threshold is lowered, the file size increases but

is easily handled for the range of thresholds considered (e.g. T = 31.49).

45

AU−AU−AU−CG−CG−GU−CG AU−AU−AU−CG−CG−GU−CG

.

.

.

UG−UG−AU−GC−GC−GC−GC

.

.

.

UG−UG−AU−GC−GC−GC−GC UG−UG−AU−GC−GC−GC−GCUG−UG−AU−GC−GC−GC−GC

GC−GC−GU−AU−GC−AU−UG

Figure 4.1: Conceptual view of the Static Pair Neighbour table for pair 7-mers with T
= 31.49. The pair 7-mer AU-AU-AU-CG-CG-GU-CG has exactly one neighbour, itself.
The pair 7-mer GC-GC-GU-AU-GC-AU-UG has no neighbours, that is, there is no pair
7-mer which aligns with this one to score above 31.49. The pair 7-mer UG-UG-AU-GC-
GC-GC-GC has three neighbouring 7-mers, as shown. The number of neighbours in these
examples is small, but in practice it can be quite large, depending on the threshold. For
example, the pair 7-mer GC-GC-GC-GC-GC-GC-GC has 288 neighbours at T = 31.49.

Table 4.1: Size of pair 7-mer Static Pair Neighbours file versus threshold score

Threshold Score Hit Rate File Size (Mbytes)

33.90 2.00% 3.43

33.46 2.64% 3.67

32.79 3.94% 4.31

32.28 5.22% 5.26

31.49 7.73% 8.26

30.85 10.17% 13.08

29.86 14.86% 29.41

Note that the Static Pair Neighbour table is analogous to the use of a hash table of

neighbourhoods by a protein homology method that employs scoring matrices.

46

4.2.2 The Nucleotide Partner Table

Once static pair neighbourhoods have been computed, they have to be converted to a

form that allows hashing of pairs in the target sequence. This is because the target is a

sequence of nucleotides, not of pair symbols. To this end, we first build a second static

table, the Nucleotide Partner table.

We first motivate the need for this table, and then describe how to construct it.

Suppose that we are hashing pair 6-mers and using a threshold score of 28.4 (which

achieves a 2% hit rate). Then, the Static Pair Neighbour table tells us that the pair

6-mer p1 = UA-UA-UA-UA-UA-UA has zero neighbours, while the 6-mer p2 = UA-UA-

CG-GC-GC-CG has seven neighbours. That is, there are seven other pair 6-mers which,

when aligned to p2, score above 28.4, and no pair 6-mer exists that scores above 28.4

when aligned to p1. This implies that if p2 occurs in a target sequence, the algorithm

needs to keep track of its location, in case any given query sequence contains a pair kmer

that is one of the seven neighbours of p2. Similarly, the algorithm can safely ignore all

occurrences of the pair kmer p1 in the target, since no query kmer can align to it and

score above the threshold. In this way, we first identify all pair kmers with at least one

neighbour. These are the pair kmers whose locations we would like to hash in the target.

The next step is to convert this list of pair kmers into a list of nucleotide kmers.

Consider the pair 6-mer p2 = UA-UA-CG-GC-GC-CG. It is made up of two nucleotide

6-mers, nleft = UUCGGC, nright = GCCGAA. Note that, as the names suggest, nright has

to occur after nleft in the sequence, in order for the pair 6-mer p2 to be possible. Further,

note that nright is in reverse order in relation to nleft , since the pairings among their

nucleotides are nested. We denote this situation by saying that UUCGGC is a partner

nucleotide 6-mer of GCCGAA, since the two nucleotide 6-mers are partners in forming

the pair 6-mer p2. In general, for a pair kmer p made up of nleft and nright , we mark

nleft as being a partner of nright . This is illustrated in Figure 4.2. The static Nucleotide

Partner table is built by the following algorithm, where P (q) is the set of partners of the

nucleotide kmer q, and N(r) is the set of neighbours of the pair kmer r:

Algorithm 2 Static Nucleotide Partner Table Construction

for every pair kmer q ∈ Static Pair Neighbour table with |N(q)| > 0 do

compute nucleotide kmers nleft , nright of pair kmer q
add nleft to the list P (nright)

47

UUCGGC GCCGAA...

UA−UA−CG−GC−GC−CG

(a) (b)

GCCGAA

UUCGGC

AAAAAA

UUUUUU

Figure 4.2: The Static Nucleotide Partner table. (a) The pair 6-mer UA-UA-CG-GC-
GC-CG and its corresponding nucleotide 6-mers in their linear orientation in a nucleotide
sequence. (b) A snapshot of the 6-mer Nucleotide Partner table showing each entry with
a list of pointers, where each pointer is to a partner of that entry. For example, the
entry “GCCGAA” contains a pointer to its partner “UUCGGC”, indicating that they
form the pair 6-mer in part (a). Note that partnership relations in this table are 1-way.
That is, the entry “UUCGGC” may not necessarily have a partner pointer to the entry
“GCCGAA”.

Note that for nucleotide kmers n1, n2, if n1 is a partner of n2, it does not automatically

imply the inverse relation, that is, it is possible that n2 is not a partner of n1. To

understand why, consider the above example. If nright is a partner of nleft , it implies that

the pair kmer p′2 = GC-CG-CG-GC-AU-AU has at least one pair kmer as a neighbour.

However, from Table 2.2, it is seen that AU versus AU scores 4.22, while UA versus UA

scores 4.71. Hence it is possible, for an appropriately chosen threshold, for p′2 to have no

neighbours, even though p2 does.

Finally, we briefly comment on the memory requirements of the static tables in mem-

ory. Table 4.2 below shows the combined footprint in memory of the Static Pair Neighbour

and Static Nucleotide Partner tables, for a range of thresholds for pair 7-mers. The val-

ues have been captured at runtime and indicate that the requirements of these tables are

easily within the limits of a typical desktop machine for our prototype implementation.

48

Note that since these tables are independent of the target and query sequences, their sizes

only depend on the threshold score and the scoring matrix.

Table 4.2: Memory requirements of static tables for 7-mers. For example, to hash pair
7-mers, with T = 31.49, the algorithm would build and maintain static tables that require
less than 12 Mbytes of memory.

Threshold Score Size in Memory (Mbytes)

33.90 8.29

32.79 8.86

31.49 11.16

29.86 22.56

4.3 Target Database Processing Algorithm

This section describes the algorithm devised to process the unannotated target sequence.

The intent of processing the target nucleotide sequence is to identify the locations of

high-scoring, potentially paired regions, given a threshold score T , a scoring matrix M ,

and a seed s. These potentially paired regions can then be checked against query paired

regions to identify extensible hits. An example of a potential paired region is shown in

Figure 4.3.

10 20 30 40

CAUCGAAUUUGAGGAACAGGUUUAGACUGUUCCAUCCUAC

27

Figure 4.3: A potential pair 7-mer in the target sequence. Using the pair seed 1011
1111, the nucleotide 7-mers GxGGAACA and UGUUCCxU partner together to form the
pair 7-mer GU-GC-GC-AU-AU-CG-AU. Hence, the pair kmer GU-GC-GC-AU-AU-CG-
AU occurs at position (11, 27), as shown. For a given seed, the left and right positions
uniquely identify this potential pair 7-mer among all others in the target sequence.

The outcome of the target processing algorithm is that locations of every high scoring

pair kmer are stored in the Pair Hash table. This is analogous to a nucleotide kmer hash

table that is used in BLAST or PatternHunter. For a given k, e.g. k = 11, the BLAST

hash table has 411 entries, each entry storing a list of locations of that particular 11-mer.

49

In the Pair Hash table, there are a total of 6k entries, where each entry stores the location

of that particular pair kmer. The location of a pair kmer, as shown in Figure 4.3, is a

tuple of integers (leftStart, rightStart) that identify the start positions of the left and

right paired regions.

Given a database of size n, and a window size w, there are Θ(nw) possible pair kmers.

However, we expect that most of those pair kmers would be unlikely in RNA sequence,

e.g. GG-UC-AA-CA-CC-AG-AU, which contains low-scoring pairs such as GG, UC and

CC. There is no value in hashing locations and separations of such pair kmers. We would

like to identify those pair kmers that are likely to be found in RNA, and furthermore,

will score above the specified threshold when aligned to another RNA pair kmer. By

building the Static Pair Neighbour table, we already have captured the static list of all

high-scoring pair kmers (and their neighbours). Further, from that list, we have identified

nucleotide kmers that pair together to form those pair kmers – this is captured in the

Static Nucleotide Partner table.

Hence, what remains is to identify occurrences of those nucleotide kmers in the target,

and to pair such occurrences together to identify high-scoring pair kmers. In order to

achieve this, given a seed s, we have to hash the target nucleotide sequence simultaneously

with seed s and its reverse sR, to find possible pairs. For example, the reverse of the seed

11011111 is 11111011. The seed 1111 is palindromic, that is, its reverse seed is itself. The

algorithm is listed below, followed by an explanation.

Algorithm 3 Target Database Processing

for target position pos from 1 to n do

compute lkmer = kmer at pos using seed s
hash lkmer into Left Nucleotide Kmer table
compute rkmer = kmer at pos using seed sR

for each partner ∈ P (rkmer) in the Static Nucleotide Partner table do

for each location loc ∈ Locations(partner) in the Left Nucleotide Kmer table do

if pos is within window size of loc then

store pair kmer (loc, pos) in Pair Hash table

Each position in the sequence is hashed twice – once with the pair seed s and again

with the reverse seed sR. We use the convention that hashing any position p with seed

s gives the “left” kmer lp, and hashing it with seed sR gives the “right” kmer rp. If the

sequence starting at position p participates in a pair kmer, then lp serves as the left half

(pairing with a downstream right half), and rp serves as the right half (pairing with an

50

b

(b)

Direction of hashing

Window (size w)

TARGET
SEQUENCE

(a)

Static Nucleotide
Partner table

x

ba xcurrent

Left Nucleotide
Kmer table

...

current

a ...

l
l

l

l

x

b

a

current

r
b

current

r

r

current

a

a b

l

l

l l

Figure 4.4: Hashing of target nucleotide sequence. The figure is a snapshot at the instant
the position current is being hashed. (a) Positions a, b form the pair kmer (a, b) as
shown. Further, (a, current) and (b, current) are both potential pair kmers. However, the
algorithm ignores pair kmers that have an arc greater than the maximum specified window
size w. The kmer at position x could also form a high scoring pair kmer (current, x) which
is not discovered until the algorithm is at position x. (b) The Static Nucleotide Partner
table and the Left Nucleotide Kmer table are shown at the instant that position current
is being hashed. Note that lcurrent and rcurrent – for left and right kmers – are the
nucleotide kmers at position current, using the seeds s and sR respectively. For details
of the algorithm, please see the accompanying text.

upstream left half). See Figure 4.3 for an example.

Now consider Figure 4.4. First, note that before hashing of the target starts, the Static

Nucleotide Partner (SNP) table has been fully populated. For example, it identifies the

kmers la, lb as partners of rcurrent.

When the position current is hashed, first the kmer lcurrent is marked in the Left

Nucleotide Kmer (LNK) table as occurring in the position current. This is to allow

discovery of all pair kmers (current, x) later, where x > current, as shown. Next, the

kmer rcurrent is computed and the SNP table searched for its partners. As lb is such a

51

partner in the SNP table, the LNK table is searched for all occurrences of the kmer lb.

One occurrence is found at position b, which is within the window size w from position

current. Thus, the pair kmer (b, current) is marked in the Pair Hash table. Note that

as a result of how we build the LNK table, each list in it is sorted in ascending order.

Our algorithm is efficient as it takes advantage of this fact by iterating backwards from

the last element, ensuring that only elements within the window size w are processed.

The SNP table also identifies la as a partner of rcurrent. The LNK table is searched

for occurrences of la. The closest one is found to be at position a, which is outside the

window allowed. Hence, the algorithm concludes that (a, current) is not a valid pair

kmer.

This completes the hashing at position current. The algorithm moves to position

current + 1 and repeats the above procedure. When at position x, it is found that rx

has the partner lcurrent in the SNP table. Further, lcurrent is seen (in the LNK table) to

occur at position current, which is within the window at position x. Thus, the pair kmer

(current, x) is discovered. Further, if position b also participated in a pair kmer as the

right half, such a kmer e.g. (a, b) is discovered when position b is hashed, as shown in

Figure 4.4. In this way, all high scoring pair kmers in the target sequence are discovered

in a single pass through the nucleotide sequence, and recorded in the Pair Hash table.

Figure 4.5 shows a conceptual view of the Pair Hash table. It is analogous to a

nucleotide hash table which stores, for every kmer, the positions in the target where it

occurs. Simlarly, the Pair Hash table stores, for each pair kmer, the locations of the left

and right paired segments that make up the pair kmer.

If we are given a target sequence of size n, and a window size w, there are Θ(nw)

possible pair kmers that need to be hashed. If for every target position, we examined

a window of size w around it, the algorithm would take Θ(nw) time, which is quite

inefficient even though it is linear in n (for constant window size). The above algorithm

is much more efficient on average, since it only looks “back” among the w positions from

current if there are high-scoring nucleotide kmers there.

Finally, the Pair Hash table, once built, contains all the information necessary to find

high-scoring hits between query and target pair kmers. After the target is hashed, the

LNK table is deleted since its purpose is only to aid in creation of the Pair Neighbour

table.

Once the algorithm has completed, the Pair Hash table is fully built. We recorded the

52

AU−AU−AU−CG−CG−GU−CG (3, 24)

.

.

.

GC−GC−GU−AU−GC−AU−UG (421, 482)

.

.

.

UG−UG−AU−GC−GC−GC−GC (654, 800)(88, 99)

(25, 77)

Figure 4.5: Conceptual View of the Pair Hash table. For each pair kmer, the locations in
the target where it occurs are stored. Note that each location record is made up of two
integer values – the positions of the left and right segments that make up the pair kmer.
For example, the pair 7-mer GC-GC-GU-AU-GC-AU-UG occurs in the target once, with
its left segment starting at position 421, and the right at position 482. The lengths of
these segments is the length of the seed with which this table was hashed, 7 in this case.

size of the Pair Hash table for all the target sequences used in our experiments. These

sizes in memory were captured at runtime, for targets ranging from 7 to 258 Kbases. We

found that, over that range of target sizes, the table varies in size from 8.4 to 8.8 Mbytes,

indicating that it can be contained within an average desktop machine’s RAM. For the

entire human chromosome 22 sequence (47 Mbases), the resulting Pair Hash table is of

size 47.5 Mbytes (for 7-mers with T = 31.49), easily contained within a desktop machine’s

RAM. There is one interesting difference between a nucleotide hash table and the Pair

Hash table: two different targets t1, t2 of the same length would result in nucleotide

hash tables of the same size; however, targets t1, t2 of the same length may result in

Pair Hash tables of different sizes, depending on their nucleotide content. For instance,

a target sequence of all A’s (e.g. AAAAAA. . .), regardless of its length, would result in

zero entries in the Pair Hash table.

Given the nucleotide sequence and secondary structure strings of the query, as for

Figure 2.1, it is a trivial matter to parse them and extract all pair kmers in the query.

Figure 4.6 is an example of a query sequence and structure. The corresponding list of

unpaired and paired regions that result from parsing it are shown in Table 4.3.

53

Figure 4.6: Lysine Riboswitch secondary structure

Table 4.3: Paired regions of Lysine Riboswitch

No. Left start Right Start L/R Segment Size

1 31 56 8

2 15 70 9

3 82 104 12

4 116 133 11

5 145 157 7

6 5 168 6

54

4.4 Algorithm to Find Pair Hits to a Given Query

We have shown in Section 4.3 how the target nucleotide sequence is processed to yield

a hash table of locations of pair kmers and how a given query sequence is resolved into

pair kmers. We must find hits between the query and target pair kmers.

4.4.1 1-hit Method – 1 Pair 7-mer

As mentioned previously, a hit is an alignment of a query pair kmer and a target pair

kmer that scores above a predefined threshold score. In the 1-hit pair 7-mer method, we

seek to find a pair 7-mer in the target that is a high-scoring hit to any pair 7-mer in the

query. When such a hit is found, a “window” around the hit is marked to identify where

the query would be located if this hit is a true one. The algorithm to find pair hits in the

target is straight-forward and given below:

Algorithm 4 1-hit Target Hit Finding (1 Pair Kmer)

for each query pair kmer qk from qk1 to qkn do

for each neigh ∈ N(qk) in Static Pair Neighbours table do

for each pair kmer pk ∈ Locations(neigh) in Pair Hash table do

if |arc(qk) − arc(pk)| ≤ arc margin then

pk is a valid hit to qk

Briefly, this algorithm iterates over all the pair kmers of the query. For each query

kmer qk, it looks in the SPN table to find its neighbouring kmers, that is, kmers that score

above T when aligned with qk. Assume that neigh is one such kmer. Then, the Pair Hash

table contains all locations in the target of the kmer neigh. Hence, the algorithm finds

the target kmer pk at each location of the kmer neigh, checking if the arc of pk is close to

that of qk – if so, a hit has been found. For example, if qk = (7, 20) and pk = (1800, 1844),

then the arc(qk) = 13 and arc(pk) = 44. For an arc margin of 10 nucleotides, these are

too far apart to be considered a hit. Note that in our implementation, entries of the form

p = (l, r) in the Pair Hash table are sorted in increasing order of r. But entries with the

same value of r are not sorted by l. If that were so, then identifying pair kmers with close

arc values could be done more efficiently – we identify this for future work.

We could have chosen to find hits differently, by iterating over each entry in the Pair

Hash table while checking for matches to query pair kmers. We have chosen our current

55

implementation since we expect on average the number of query kmers will be smaller

than the number of entries in the Pair Hash table.

4.4.2 2-hit Method – 2 Pair 4-mers

We also investigated a 2-hit approach in which two smaller pair hits are required (specif-

ically, pair 4-mers) instead of a single pair 7-mer hit. We expect this approach to work

better for RNA queries that have paired content that is short and discontinuous. Fig-

ure 3.4 shows how the two pair hits could be oriented with respect to each other. The

algorithm for finding an extensible hit using this approach is given below. Note that this

algorithm uses the above one to find hits to a single pair kmer. In addition, this algorithm

has to verify that two candidate hits have the same relative orientation as the query pair

kmers they correspond to. Lastly, the “separation” of query kmers has to be within a

“margin” of that of the target kmers.

Algorithm 5 2-hit Target Hit Finding (2 Pair Kmers)

for each set of two disjoint query pair kmers (qk1, qk2) do

querySep = separation of qk1 and qk2

qk1Hits = find hits to qk1 by method in Sec.4.4.1
qk2Hits = find hits to qk2 by method in Sec.4.4.1
for each hit hit1 ∈ qk1Hits do

for each hit hit2 ∈ qk2Hits do

if hit1, hit2 are overlapping, pseudoknotted, or in wrong orientation then

they cannot form a valid hit
else

targetSep = separation of hit1 and hit2
if |targetSep − querySep| ≤ separation margin then

(hit1, hit2) is a valid hit to (qk1, qk2)

4.4.3 2-hit Method – 1 Pair 4-mer + 1 Nucleotide 8-mer

We also experimented with a 2-hit approach that requires one hit to a (shorter) pair 4-

mer and a second hit to a nucleotide 8-mer. This approach is similar to the case of using

two pair hits, except that since one hit is a nucleotide hit, a separate nucleotide hash

table is required (in addition to the Pair Hash table). Also, note that only two relative

orientations of the two hits are possible – shown in Figure 3.5. The two above methods

56

find extensible hits solely based on paired regions, which could be a disadvantage if a

query RNA sequence has low paired content. In contrast, this method takes into account

both the paired and unpaired content in the query, and may perform better on RNA

query sequences with low paired content.

The algorithm to find an extensible hit using this approach is given below.

Algorithm 6 2-hit Target Hit Finding (1 Pair Kmer + 1 Nucleotide Lmer)

for each set of two disjoint query pair and nucleotide kmers (qp, qn) do

queryOrient = orientation of qp w.r.t. qn

querySep = separation of qp and qn

qpHits = find hits to qp by method in Sec.4.4.1
qnHits = find hits to qn using a nucleotide kmer hash table
for each hit hitp ∈ qpHits do

for each hit hitn ∈ qnHits do

if hitp, hitn are overlapping or in wrong orientation then

continue
targetSep = separation of hitp and hitn
if |targetSep − querySep| ≤ separation margin then

(hitp, hitn) is a valid hit to (qp, qn)

Note that since our goal is to evaluate the sensitivity and specificity of the three

methods presented above, the 2-hit algorithms presented above are not optimal in terms

of runtime performance. Typically, 2-hit methods can be implemented by sorting each

seed hit based on its “diagonal”, that is, a value related to (xt−xq), where xt and xq are the

target and query positions of the kmers that form the hit, respectively. In the next step,

hits in the same (and possibly “nearby”) diagonal lists are compared to find valid pairs

of hits. In this work, we have instead chosen a simpler implementation for 2-hit methods

that partitions the target sequence into smaller blocks and pair-hashes each partition

in turn, allowing a big enough overlap between adjacent partitions to accommodate the

largest window size of a pair kmer. This avoids having to build additional data structures

to store details of hits by diagonals, and a reference from each hit to its query pair kmer.

As we note later, a future area of work would be to investigate data structures that

achieve more efficient runtime performance of the 2-hit methods, possibly by sorting hits

by diagonal.

57

Chapter 5

Experiments and Results

Based on the theoretical specificity and sensitivity computations presented in previous

sections, we have arrived at hypotheses about the performance of pair seeding in detecting

homologs of a single RNA molecule in a given target sequence. In this section, we first list

the hypotheses whose validity we want to evaluate. Then, we describe the experiments

to perform such an evaluation. All experiments use the Ribosum-95 scoring matrix.

5.1 Hypotheses

1. The 1-hit pair 7-mer approach, with a suitable threshold, delivers the same sensi-

tivity and higher specificity than the BLAST size-11 nucleotide seed. This is for a

small arc margin between the query pair kmer and hit. The runtime of this method

will be higher than for a BLAST-seed approach, but comparable for high thresholds.

2. The 2-hit approach using 1 pair 4-mer and 1 nucleotide 8-mer will achieve better

specificity than BLAST for the same sensitivity, for small arc margin and separation

margin values. Further, for queries with a lower proportion of paired content, this

method will outperform the 1-hit pair 7-mer approach in sensitivity, as it does not

ignore unpaired query sequence. The runtime here will be considerably slower than

that of the 1-hit method in our current implementation. (For a more efficient version

that sorts hits by arc and separation margins, it may be possible to approximate

the runtime of the 1-hit method, but we leave this for future work.)

58

3. The 2-hit approach using 2 pair 4-mers will give lower false positives than the

BLAST seed as well as the 1-hit 7-mer approach, for small arc margin and separation

margin values. However, this method will do poorly on queries with low paired

content. This method also involves more processing than the 1-hit approach so will

have high runtimes.

5.2 Experimental Setup

5.2.1 Sensitivity and Specificity Estimation

All experiments are based on data from the RFAMSEQ [9] database of nucleotide se-

quences; each RNA family within the RFAM database has homologs identified in RFAM-

SEQ. RFAM captures the member sequences of each RNA family as a multiple sequence

alignment (hand-curated by the creators of RFAM). One such alignment is shown in

Table 5.1, for the let-7 microRNA precursor family (RF00027 in RFAM). Below the

alignment of nucleotide sequences is the consensus secondary structure of this molecule

in bracket notation.

For example, the second member in the alignment occurs in a human sequence with

the EMBL Accession# AL158152.18. Note that the let-7 RNA family has three members

that are from this EMBL entry, located in the intervals 40779 – 40863nt, 38291 – 38377nt

and 37901 – 37981nt.

We treat a particular sequence/structure as the query, and we execute a homology

search using a given seeding method, e.g. 1-hit pair 7-mers with T = 31.49, over the

target sequence AL158152.18. We repeat the search using the same query, with all other

target sequences in the multiple sequence alignment one by one. Then, we repeat this

process for each query in the family, effectively searching for every query in every target.

In each homology search, a window for hit extension is identified around each seed hit.

The window size is set to the length of the query sequence taking into account the relative

position of the seed hit within the query. Since we assume that the RFAM annotation

contains all true hits, we can infer that any window identified outside the range of the

known true hits is a false hit.1

1Note that the RFAM database is annotated using a BLAST search of member sequences. Hence, it

is quite possible in practice that an EMBL database file has “real” homologs of a RFAM family that are

59

The more true hits and the fewer false hits an algorithm marks, the better it is

deemed to have performed. Consider the RF 265 family as an example. It has three

query sequences, each of which occurs in a target sequence. Each target has a reverse-

complement version, giving eighteen searches. Since we do not double-count hits – if q1

hits t2 and q2 hits t1, we count that as 1 true hit – this gives a total of nine true hits for

this family. Over the eighteen executions, the total target sequence length is 2,069,322

nucleotides. Of these, we count all falsely marked nucleotides – these are the false hits

for that particular method.

As can be seen, due to the small number of true hits in our experiments, statistical

significance is lacking in those results. However, false hits are counted in nucleotides and

can amount to hundreds of thousands of nucleotides, as shown in Section 5.4. When

executions are over megabases of target sequence, false hits can be used to compare the

various methods. To this end, we performed false hit testing on the human chromosome

22 sequence, as detailed later.

5.2.2 Runtime Estimation

There are two components to the runtime of a pair hashing method. The first relates

to the time it takes to hash a target sequence into pair kmers. As seen in Section 4.3,

hashing pair 7-mers involves additional processing, as compared to the simpler method

of hashing nucleotide 11-mers (as in BLAST). We capture the time to pair-hash database

sequences of various sizes, to determine how it compares to the time to hash the same

target using a nucleotide spaced seed.

The second component of runtime refers to actually finding hits to a given query, once

the target has been pair hashed. This involves the time to process the query into pair

kmers, and to find high-scoring hits to each kmer in the Pair Hash table. For a 1-hit

approach, this time is expected to be very small. For a 2-hit approach, there is additional

processing involved in combining individual hits of smaller seeds to form extensible hits.

not annotated in RFAM, since a BLAST search misses them. However, to identify such hits as homologs

requires a biologist’s expertise in RNA structures. Hence for the purposes of this study, we make the

assumption that the annotation of homologs in RFAM is complete.

60

Table 5.1: Seed multiple sequence alignment of the let-7 microRNA precursor family. Note that the second block gives
sequences that follow those in the first block.

AP001359.4/114553-114478 Hom.sap. CCAGGUUGAGGUAGUAGGUUGUAUAGUUU..A.GA.....AUUACA.UC.....AAGGGAGAUAACUGUACAGCCUCCU

AL158152.18/40779-40863 Hom.sap. CUAGGAAGAGGUAGUAGGUUGCAUAGUUUU.AGGGC.AGGGAUUUUGCCC...ACAAGGAGGUAACUAUACGACCUGCU

AL158152.18/38291-38377 Hom.sap. UCAGAGUGAGGUAGUAGAUUGUAUAGUUGU.GGGGU.AGUGAUUUUACCC.UGUUCAGGAGAUAACUAUACAAUCUAUU

AC048341.22/3536-3622 Hom.sap. CCUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGU.UGUGACAUUGCCC..GCUGUGGAGAUAACUGCGCAAGCUACU

AL049853.1/18009-17931 Hom.sap. UUGGGGUGAGGUAGUAGGUUGUAUAGUUUG..GGGC.......UCUGCCC..UGCUAUGGGAUAACUAUACAAUCUACU

AC094021.2/47340-47253 Hom.sap. CCAGGCUGAGGUAGUAGUUUGUACAGUUUG.AGGGUCUAUGAUACCACCC.GGUACAGGAGAUAACUGUACAGGCCACU

AC018755.3/119936-120011 Hom.sap. CCGGGCUGAGGUAGGAGGUUGUAUAGUU....GAGG....AGGACACC.C.....AAGGAGAUCACUAUACGGCCUCCU

AL049853.1/17069-16987 Hom.sap. .CGGGGUGAGGUAGUAGGUUGUGUGGUUUC.AGGGC.AGUGAUGUUGCCC...CUCGGAAGAUAACUAUACAACCUACU

AL158152.18/37901-37981 Hom.sap. .UGGGAUGAGGUAGUAGGUUGUAUAGUUUU.AGGGU.......CACACCCACCACUGGGAGAUAACUAUACAAUCUACU

AP000962.2/118093-118168 Hom.sap. CCGGGUUGAGGUAGUAGGUUGUAUGGUUU..AGAGU.......UACACCC.....UGGGAGUUAACUGUACAACCUUCU

AF210771.1/1883-1955 Cae.bri. UACGGU.GAGGUAGUAGGUUGUAUAGUUU..AGAAU.......AUUACUC.....UCGGUG..AACUAUGCAAGUUUCU

Z70203.2/12451-12379 Cae.ele. UCCGGU.GAGGUAGUAGGUUGUAUAGUU....UGG....AAUAUUA.CCA.....CCGGUG..AACUAUGCAAUUUUCU

SS cons <<<<<<.<<<<<<<<<<<<<<<<<<<<<....<<<<..........>>>>.............>>>>>>>>>>>>>>>>

AP001359.4/114553-114478 Hom.sap. AGCUUUCCUUG

AL158152.18/40779-40863 Hom.sap. GCCUUUCUUAG

AL158152.18/38291-38377 Hom.sap. GCCUUCCCUGA

AC048341.22/3536-3622 Hom.sap. GCCUUGCUAGU

AL049853.1/18009-17931 Hom.sap. GUCUUUCCUGA

AC094021.2/47340-47253 Hom.sap. GCCUUGCCAGG

AC018755.3/119936-120011 Hom.sap. AGCUUUCCCCA

AL049853.1/17069-16987 Hom.sap. GCCUUCCCUG.

AL158152.18/37901-37981 Hom.sap. GUCUUUCCUAA

AP000962.2/118093-118168 Hom.sap. AGCUUUCCUUG

AF210771.1/1883-1955 Cae.bri. ACCUCACCGAA

Z70203.2/12451-12379 Cae.ele. ACCUUACCGGA

SS cons >>>>>>>>>>>

61

5.3 Experiments to Validate Hypotheses

We describe several experiments below, each one evaluating a different scheme of identi-

fying an extensible seed hit. The list of RFAM families used in the experiments is given

in Table 5.2. The table also gives a brief description of the RNA family along with its

Family ID in the RFAM database. These families were chosen primarily because they

have non-zero number of paired regions of length 7 or more. This feature allows the

1-hit pair 7mer method to be executed on all of them, as well as the remaining two 2-hit

methods, so that the three approaches can be compared. As we noted in Section 3.7, it

is rare to find pairings of length much greater than 7 in RNA families.

5.3.1 Experiment 1 – 1-hit Pair 7-mer Approach

This experiment tests the performance of the 1-hit approach using a single pair 7-mer

hit. Note that this method can be applied only to RNA families that have paired regions

of length 7 or more.

Every query qi is associated with a single target sequence ti, as described above. Thus,

we identify up to n target sequences t1, . . . , tm, m ≤ n that correspond to the queries.

With query q1, we execute a search in all targets t1, . . . , tm using the 1-hit pair 7-mer as

a seed hit. We repeat this procedure for all n queries. In each case, we record the lengths

and locations of windows marked by the algorithm for extension, and whether they cover

the known true hits. We also note the runtime required to hash the target as well as

find hits. We repeat this procedure for all families listed in Table 5.2. This gives us a

summary of the performance of the 1-hit pair 7-mer approach, in terms of sensitivity and

specificity, as well as runtime.

5.3.2 Experiment 2 – 2-hit Approach with Pair and Nucleotide Seeds

Experiment 1 above tested the performance of the 1-hit pair 7-mer approach and com-

pared it to that of the nucleotide BLAST seed. In this experiment we test a 2-hit ap-

proach. A hit is deemed to be extensible only if it involves two smaller non-overlapping

hits that are as “close” to each other as their corresponding query kmers are, within an

acceptable margin. In particular, an extensible hit here is a combination of one pair 4-mer

hit and one nucleotide 8-mer hit of the seed 1111 1111. Closeness is determined by two

62

Table 5.2: RFAM families used in experiments. The Size field shows the average length
of the member sequences of that family. The Members field is the number of sequences in
that family. The 7 − mers field show the number of different (possibly overlapping) pair
7-mer regions in the molecule. These values are also based on the consensus structures of
each family and hence are averages. It is possible for a particular member RNA sequence
to deviate from these values.

Rfam# Family Size Members 7-mers Other Details

84 CsrC RNA 255nt 14 11 Carbon storage reg. C
ncRNA of E. coli, has
1 long, many short
paired regions.

103 mir-1 microRNA 77nt 15 10 Simple structure with
a longer paired region.
Occurs in drosophila,
nematode, human.

131 mir-30 microRNA 72nt 7 11 Like mir-1, but mam-
malian, with a small
discontinuity in struc-
ture.

235 Plasmid RNA III 131nt 9 13 Occurs in various bac-
terial plasmids, e.g.
E. faecalis, with a
branched, more com-
plex structure.

265 snoRNA U69 132nt 3 14 Occurs in human and
mouse, one of many
small nucleolar RNAs,
with a linear structure.

criteria: Firstly, the relative orientation of the pair hit and nucleotide hit has to be the

same as that of their corresponding queries. A nucleotide kmer can be positioned before,

inside or after the pair kmer, as shown in Figure 3.5 of the previous chapter. Secondly,

the distance between the nucleotide 8-mer and pair 4-mer in the query should be “close”

to that in the target. This has been described in the previous chapter in more detail. We

expect that for queries with shorter paired regions, such as those in the RF 84 family,

this method would perform better than the one in Experiment 1.

This method has the advantage over the 1-hit method that it uses the information in

the unpaired regions of the RNA molecule. Further, since several RNA families do not

have long, uninterrupted paired regions, using a shorter pair seed allows the use of pair

63

seeding on those families. The intent is to achieve higher specificity than a nucleotide

seed by combining it with a pair seed, as the latter better discriminates RNA regions

from non-RNA ones.

We followed the same procedure as detailed in Section 5.3.1 to collect statistics about

true and false positives and runtime.

5.3.3 Experiment 3 – 2-hit Pair 4-mers

This experiment evaluates a 2-hit approach that requires both hits to be pair 4-mers.

The two hits are required to be non-overlapping. There are four possible orientations of

pair kmers k1, k2 with respect to each other: two arise from k1 being nested inside k2

or vice versa, and two more from k1 being before k2 in the nucleotide sequence, and vice

versa. (Note that we do not consider the pseudo-knotted orientation for this work; please

see Figure 3.4.) Hence, this method has to ensure that the two hits are oriented in the

same manner as their corresponding query kmers. This requires additional processing to

evaluate each pair of hits, and consequently a larger runtime than the 1-hit method. This

approach, for a properly chosen threshold, can theoretically perform better than a 1-hit

pair 7-mer approach. However, it has the disadvantage of ignoring all query sequence

information that is in unpaired regions, as it does not require a hit of a nucleotide spaced

seed.

5.3.4 Experiment 4 – BLAST and PatternHunter [13] Seeds

We also repeat homology searches using the RFAM queries and targets in Table 5.2 using

the BLAST 11-mer seed 111 1111 1111 and the optimal PatternHunter [13] seed of weight

12 and length 16, 1101 1101 0110 1111. The results of using these pure nucleotide seeds

are compared to those from the above three experiments, to determine if the pair seed

based methods are superior to these or not.

5.3.5 Experiment 5 – Varying Arc Margin

We also repeated the experiments using the same queries and targets as above, this time

varying arc margins of pair hits to determine the variation in false hits. As given in

Section 3.4, the false positive are expected to vary as O((nwq)2ar), or linearly with the

64

separation margin, and linearly with the arc margin for the 2-hit Pair and Nucleotide

Kmer approach.

5.3.6 Experiment 6 – Human Chromosome 22

Using all the queries from the five RFAM families used in the above experiments, we ran

homology searches on the complete 48 Mb human chromosome 22 target sequence. Since

none of the queries used are known to have homologs within this sequence, any hits were

deemed to be false positives. We performed this experiment to identify the differences

in false positive rates between the various methods identified by execution on a large,

multi-megabase sequence, which are more statistically significant than those based on

smaller target sequences.

5.4 Results

We executed the various homology methods – 1-hit, 2-hit, 2-hit pair + nucleotide, Pat-

ternHunter and BLAST – outlined in the last section with specific threshold scores and

seed sizes. Table 5.3 below gives the list of search methods used (for a total of nine), and

the seeds and thresholds used in each case. The label of each method in Table 5.3 is used

later in this section to refer to each method.

5.4.1 Runtimes

Before discussing the sensitivity and specificity findings, we briefly present the experi-

mentally determined runtimes for hashing of target database sequences.

Figure 5.1 shows the captured runtimes for several nucleotide sequences over a range of

lengths from 7,000 to 250,000 bases. Each target sequence was hashed in three diffferent

ways: (1) using a nucleotide hashing method with the BLAST weight-11 seed, (2) hashing

pair 4-mers and nucleotide 8-mers, and (3) hashing pair 7-mers. The results show that

hashing only nucleotides is the fastest method. This is expected since it takes Θ(nk) time,

k = 11, while hashing pair 7-mers takes Θ(nwk), k = 7, w = 300, as per the theoretical

runtime estimates we presented in Section 3.4.

Hashing 7-mers is more expensive than hashing 4-mers mainly due to the larger seed

size. In addition, the factor (6/16)kf in the runtime is influenced by the threshold T as

65

Table 5.3: Homology methods used in experiments

No. Homology Search Method Label

1 1-hit : Pair 7-mers with T = 29.86, arc margin =
10nt. T = 29.86 is among the lowest usable thresh-
olds for pair 7-mers.

7mer(29.86)

2 1-hit : Pair 7-mers with T = 31.49, arc margin =
10nt. T = 31.49 is a suitable threshold for pair 7-
mers.

7mer(31.49)

3 1-hit : Pair 7-mers with T = 32.79, arc margin =
10nt. T = 32.79 is too high to use in practice. It is
here for comparison with other thresholds.

7mer(32.79)

4 2-hit : Pair 4-mer with T = 19.6 + nucleotide 8-mer,
arc margin = 5nt, separation margin = 3nt

NP(19.6)

5 2-hit : Pair 4-mer with T = 19.1 + nucleotide 8-mer,
arc margin = 5nt, separation margin = 3nt

NP(19.1)

6 2-hit : 2 Pair 4-mers with T = 19.6, arc margin =
5nt, separation margin = 3nt

PP(19.6)

7 2-hit : 2 Pair 4-mers with T = 19.1, arc margin =
5nt, separation argin = 3nt

PP(19.6)

8 Optimal length-16 weight-12 spaced seed 1101 1101
0110 1111

PH

9 BLAST weight-11 seed 111 1111 1111 BLAST

well as the seed size k, as described in Section 3.4. We used T = 31.49 for 7-mers, and T

= 19.6 for 4-mers. From Table 3.5, we note that f = 0.34 for T = 31.49. That is, for a

given relevant 7-mer, there is a 34% chance that it will have at least one neighbour, and

hence be stored in the Pair Hash table. Similarly, for T = 19.6, we computed f = 0.12.

Hence, for an arbitrary relevant 4-mer, there is only a 12% chance that it will be hashed

into the Pair Hash table. These results demonstrate that our implementation of pair

hashing runs in linear time. However, since our implementation is not optimized, it is

quite likely that the constant factors in our linear-time algorithm could be reduced.

For the target sizes in Figure 5.1, it is seen that the hashing step takes several tens

to hundreds of milliseconds. The next step to find hits is extremely fast for nucleotide

seeding based (e.g. BLAST) approaches, as well as for the 1-hit pair 7-mer approach.

For both these methods, this step is seen to take tens of microseconds or less. This

is expected as per theoretical estimates of both steps taking Θ(q) time. However, in

66

0 50 100 150 200 250
0

200

400

600

800

1000

1200

Experimental Hash Times for Different Search Methods

Target Size (kB)

T
im

e
to

 H
as

h
(m

s)

Nucleotide

Nucleotide + Pair 4−mer

Pair 7−mer

Figure 5.1: Times to hash target nucleotide sequence using different methods. Hash
times in milliseconds are shown for three methods – (1) simple nucleotide hashing as in
BLAST with a weight-11 seed, (2) pair 7-mer hashing, and (3) nucleotide 8-mer hashing
+ pair 4-mer hashing. It is seen that pair 7-mer hashing is the most expensive operation.
Further, all three methods take linear time to hash.

the 2-hit Pair-Nucleotide method, the hit-finding step takes tens of milliseconds, that is,

approximately the same order of magnitude as the hashing step! As mentioned earlier,

our implementation is not optimal and can potentially be improved. Nevertheless, these

values illustrate how a 2-hit method typically spends considerably more time than a 1-hit

method in the hit finding step.

5.4.2 Sensitivity and Specificity

We now present the results of sensitivity and specificity values achieved by the pair

hashing based methods. Table 5.4 below summarizes the true positives, and Table 5.5

summarizes the false positives, achieved by each of the nine methods listed in Table 5.3.

For the RF 84 family, a total of 14 members were used as queries, with the EMBL

database files they occur in (and their reverse complement versions) as the targets. This

gives a total of 105 true hits. Member sequences of this family have lengths of approxi-

mately 245nt, but there is a single member that is only about 40nt long. Since this one

67

Table 5.4: Summary of experimental results: true hits. The last row, for the BLAST
method, gives the total number of true hits for each RNA family, where each true hit
is a nucleotide window of the size of the RNA homolog. The values in other rows show
how many of those true hits are successfully found by each method. For example, the
7mer(32 .79) method finds only 21 of 45 true hits for the RF 235 family.

Method RF 84 RF 103 RF 131 RF 235 RF 265

7mer(29.86) 91 72 27 45 6

7mer(31.49) 91 58 27 45 6

7mer(32.79) 91 45 9 21 6

NP(19.6) 99 120 27 0 6

NP(19.1) 99 120 27 45 6

PP(19.6) 77 3 3 0 6

PP(19.1) 77 13 27 45 6

PH 103 120 27 45 6

BLAST 103 120 27 45 6

Table 5.5: Summary of experimental results: false hits. Each entry in this table is in
nucleotides. For example, over all the RF 265 target sequences searched, of total length
2,069,322 nucleotides, the BLAST method marks 11,774 nucleotides incorrectly as hits.
In comparison, the 7mer(31 .49) method marks only 923 nucleotides in the same targets
incorrectly.

Method RF 84 RF 103 RF 131 RF 235 RF 265

7mer(29.86) 1,703,356 144,464 20,412 83,838 2,110

7mer(31.49) 504,130 34,158 10,384 29,112 923

7mer(32.79) 198,634 10,950 2,576 7,860 661

NP(19.6) 625,747 1,980 5617 0 5,152

NP(19.1) 1,147,188 13,703 9,381 25,764 8,441

PP(19.6) 111,342 307 288 0 17,785

PP(19.1) 488,780 1,827 5,862 234 20,022

PH 369,906 34,539 2,382 24,085 5,403

BLAST 819,083 100,825 13,830 62,383 11,774

Total 53,762,492 49,666,350 9,870,882 3,390,624 2,069,322

member is so much shorter, and contains no pair 7-mers at all (as shown in Appendix A),

the 1-hit pair 7-mer approach simply does not work on it. Hence, the low true positives

as shown in Table 5.4 for the 7mer(29 .86), 7mer(31 .49) and 7mer(32 .79) methods.

68

However, since all queries contain pair 4-mers, the PP(19 .6) method works well, giving

close to 100% sensitivity with specificity better than the BLAST method. However, the

PH method gives the best sensitivity and specificity.

For the RF 103 family, there are 15 query sequences employed to search 16 targets, to

give a total of 120 true hits. In this case, the 1-hit pair 7-mer method has poor sensitivity

at the thresholds tested. On further scrutiny (shown in Appendix A), we see that two

query sequences have only one pair 7-mer each that aligns with itself to score above

the threshold! Note that such a situation can be detected at runtime by processing the

query sequence and structure. The NP(19 .6) method works best in this case, as seen in

Table 5.4. The PH method also does well. The PP(19 .6) and PP(19 .1) methods have

poor sensitivity – this is because most queries have only one pair 4-mer that aligns with

itself to score above the threshold. This is clearly inadequate since a 2-hit method requires

that at least two query pair 4-mers exist, that can align to target 4-mers and score high.

Again, such a situation can be detected prior to performing the search by analysing the

query sequence (as we have done, shown in Appendix A). Once it is determined that the

query has only one high-scoring pair 4-mer, the obvious inference is that a 2-hit method

requiring two pair 4-mers hits will not work for this query.

For the RF 131 family, we used 7 query sequences against 6 targets, to get a total

of 27 true hits. As seen in Table 5.4, most pair seeding methods achieve 27 true hits.

Further, several of them – for example, the NP(19 .6) and NP(19 .1) methods – exceed

the performance of the BLAST seed for false positives, as seen in Table 5.5. However, in

this case, the PH method performs better than any pair seed. This family is a further

illustration of the fact that while pair seeding methods can generally exceed BLAST

performance, their thresholds have to be chosen carefully in order for them to do better

than the PH method.

For the family RF 235, we used 9 query RNA sequences against 9 targets. This results

in a maximum 45 true hits. This family offers an interesting example. Table 5.4 shows

that the NP(19 .6) method fails to find even a single hit. Further, it does not find a single

false positive either – see Table 5.5! This behavior can be explained by examining the

contents of query sequences in more detail (shown in Appendix A). It turns out that all

the members of the RF 235 family contain a large proportion (approximately 78%) of AU

and UA pairs, at the expense of GC and CG pairs. However, if we derive the underlying

pair probabilities from the Ribosum-95 scoring matrix shown in Table 2.2, we discover

that the implied frequency of GC/CG pairs is much higher (approximately 40%). This

69

is reflected in the high scores for the alignments GC-GC and CG-CG, in comparison to

those for AU-AU and UA-UA in Table 2.2. Due to this disagreement between the pair

frequencies in the query and those implied by the scoring matrix, the threshold T =

19.6 proves to be too high for an alignment of two pair 4-mers where one of the 4-mers

is from RF 235. Note that this does not indicate a failure of the pair seeding method.

In fact, given an arbitrary query RNA, we can determine at runtime exactly how many

4-mers or 7-mers in it will score above the given T in a perfect match (as we have done

in Appendix A). If the number is zero or close to zero, we can execute the search with

a lower threshold score or execute a search based on nucleotide hashing. It is seen from

Table 5.4 that executing the same 2-hit method with the lower T = 19.1 threshold results

in all the true hits being found, with false positives comparable to the PatternHunter seed

(Table 5.5), and much better than the BLAST method. In fact, the PP(19 .1) method

has the best performance for this family. This suggests that if the threshold is chosen

carefully, it is possible to achieve BLAST sensitivity while significantly improving on

BLAST specificity.

For the RF 265 family, three member sequences were identified as queries. We ex-

ecuted homology searches using all nine seeding methods described in Table 5.3, with

every query against every target sequence – giving a total of eighteen search executions

per method. The total number of true hits expected is six. Table 5.4 shows that all nine

methods find 100% of the true hits. Further, it is seen that the 7mer(31 .49) method

has the lowest false positives – 923nt, compared to the BLAST method’s 11,774nt –

see Table 5.5. While the PH method does better than BLAST with 5,403nt, it is sur-

passed by the 7mer(31 .49) approach. In fact, all three 1-hit Pair 7-mer methods and the

NP(19 .6) method do better than both BLAST and PH methods. These results support

the conclusion that when the queries have long, high-scoring paired regions, the 1-hit

7-mer approach performs better than nucleotide seed based approaches.

Human Chromosome 22 Testing

Using the human chromosome 22 nucleotide sequence as a target, we executed the nine

methods given in Table 5.3 with queries from each of the families RF 84, RF 103, RF

131, RF 235 and RF 265. For each family, we computed the total number of nucleotides

marked as hits by each method – these are the “false positives” for that method. We

then found the ratio of each method’s value to that of the BLAST method. A ratio less

70

than 1.0 indicates that the method did better, while a ratio such as 1.5 indicates it did

worse, than the BLAST one.

Table 5.6 below shows a summary of our testing. The false positive values in each col-

umn have been normalized using the value in the last row (value of the BLAST method).

These values indicate that the 7mer(31 .49) method does consistently better than the

BLAST over all families. Further, the NP(19 .1) and NP(19 .6) methods also do better

than the BLAST method, assuming an appropriate threshold is chosen.

Table 5.6: False positives for the human chromosome 22 sequence. The false positives
in each entry have been normalized using the value in the same column, in the BLAST
row. Hence, a value below 1.0 indicates that the particular method has marked fewer
false positives than the BLAST method in the Chromosome 22 target sequence.

Method RF 84 RF 103 RF 131 RF 235 RF 265

7mer(29.86) 0.674 1.518 1.440 1.052 0.420

7mer(31.49) 0.151 0.235 0.061 0.131 0.067

7mer(32.79) 0.016 0.032 0.012 0.018 0.022

NP(19.6) 0.243 0.061 0.170 0 0.422

NP(19.1) 0.804 0.227 0.291 0.520 0.595

PP(19.6) 0.024 0.002 0.016 0 2.107

PP(19.1) 0.180 0.010 0.129 0.141 2.211

PH 0.248 0.379 0.306 0.438 0.311

BLAST 1.000 1.000 1.000 1.000 1.000

Testing with the chromosome 22 sequence indicated another useful feature of pair

seeding homology methods. With a RF 84 query, the 7mer(31 .49) method marks 159,295

nucleotides as false hits. The BLAST method marks 703,044 nucleotides in the same

target, using the same query, but only 2,704 of those nucleotides overlap with the ones

marked by the 7mer(31 .49) method. In other words, 98.3% of the hits marked by

the 7mer(31 .49) method are novel regions not identified by the BLAST method. This

behavior is confirmed with other query and target sequences. We believe that our pair

seeding methods complement traditional nucleotide seeding based methods, as they are

able to identify potential homologous regions that the latter methods miss.

71

2 4 6 8 10 12 14 16 18 20

5

10

15

20

25

30

35

40

45

50
False Positives for the 2−hit Pair−Nucleotide Kmer Method

Arc Margin (AM) in nucleotides

R
at

io
 o

f F
al

se
 P

os
iti

ve
s

to
 th

os
e

at
 A

M
 =

 1
nt

RF 103

RF 265

RF 84 RF 131

RF 235

Figure 5.2: Variation of false positives with arc margin. We plot the arc margin (AM)
along the x-axis. Along the y-axis is the ratio of false positives for a specific AM to those
at AM = 1 nucleotide. A 2-hit method with pair 4-mers and nucleotide 8-mers was used.

Testing Variation in Arc Margins

Figure 5.2 below shows how the false positives vary with increasing arc margin, for the

5 RNA families we experimented with. We discern a general trend that false positives

increase linearly with increasing arc margin values. This is as expected by the theoretical

estimate of false positives varying as Θ((nwq)2ar) for the method used. This indicates

the importance of choosing a not too large, but large enough, value for the arc margin a.

Note that this quantity is to be specified even with a 1-hit method.

5.5 Conclusions

We have conceptually developed and prototyped a set of RNA homology search methods

based on the novel concept of hashing and aligning pair kmers. We have performed initial

testing on member sequences of five RNA families. Further experiments with more RNA

families would allow a comprehensive evaluation of these methods. Nevertheless, we note

the following observations resulting from our testing.

First, for RNA families that have long, continuous paired regions, the 1-hit and 2-

72

hit pair seed methods achieve BLAST sensitivity while exceeding BLAST specificity.

Secondly, for RNA families that have shorter or discontinuous paired regions, the 2-

hit Pair-Nucleotide method can be used to achieve BLAST sensitivity and better-than-

BLAST specificity, if the query contains enough high-scoring pair 4-mers.

Since query sequence and structure are precisely known prior to performing a target

search, the query can be processed to extract useful information such as the number of

pair 7-mers and pair 4-mers, how many of them would score above a given threshold if

aligned to themselves, and the frequencies of pairs within the query. Appendix A contains

such an analysis of all the queries used in our experiments. These quantities can then be

used to make an advance decision regarding the usefulness of a given search method. If

a given RNA query simply does not have enough paired content to justify a pair seeding

approach, then we can execute a PatternHunter nucleotide search (with a seed of weight

greater than 11), which still offers BLAST sensitivity with better-than-BLAST specificity.

Note that such query analysis is unique to structured RNA molecules, and is not feasible

for DNA and protein homology searches.

Hence, regardless of the RNA query provided, the results in this work suggest that

pair seeding and spaced nucleotide seeds can be combined in a hybrid approach to offer

a method that performs consistently better than a BLAST search. However, for such an

approach multiple hash tables have to be built in memory for the given target, which

imposes increased memory requirements.

5.6 Future Work

An immediate extension to this work would be to perform experiments on a range of

additional RNA families. This would allow a comparison between pair hashing methods

and traditional nucleotide hashing methods that is statistically of higher confidence.

Experiments with additional families could be useful in correlating query properties

with predictions about a pair homology search method and threshold that would outper-

form BLAST and PatternHunter seeds. For example, Appendix A shows that queries in

the RF 235 family have about 23 pair 4-mers, but none of them scores above T = 19.6

when aligned to itself. This tells us that a pair 4-mer based search with T = 19.6 will

fail. However, it is harder to predict whether a particular method (and threshold score)

will work better than any other method. For example, is it possible to state that “if a

73

query has 20 pair 4-mers, 12 of which score above T = 19.6 when aligned to themselves,

then the 2-hit pair 4-mer method will (on average) outperform the 1-hit pair 7-mer, 2-hit

Pair-Nt, PatternHunter and BLAST seed based methods”?

Secondly, the Ribosum scoring matrices were developed based on the SSU rRNA

alignment of sequences from about 2,500 species. Specifically, background frequencies of

nucleotides and pairs, and rates of substitution are as per the SSU rRNA family. From

the experimental data presented above, it is evident that frequencies of pairs can differ

significantly from one RNA family to another. Since such differences can be identified

by analysing a given query, it would be useful to study methods of compensating for this

discrepancy.

Lastly, as mentioned earlier, it would be useful to investigate more efficient algorithms

and data structures to store pair of hits, for use in 2-hit search methods.

74

Bibliography

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local

alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[2] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J.

Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs. Nucleic Acids Research, 25(17):3389–3402, 1997.

[3] B. Brejová, D.G. Brown, and T. Vinar. Vector seeds: an extension to spaced seeds

allows substantial improvements in sensitivity and specificity. In Proceedings of the

Third Workshop on Algorithms in Bioinformatics, pages 39–54, 2003.

[4] B. Brejová, D.G. Brown, and T. Vinar. Optimal spaced seeds for homologous coding

regions. Journal of Bioinformatics and Computational Biology, 1(4):595–610, 2004.

[5] M.O. Dayhoff, R.M. Schwartz, and B.C. Orcutt. A model of evolutionary change

in proteins. In Atlas of Protein Sequence and Structure, pages 345—352. National

Biomedical Research Foundation, 1978.

[6] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.

Cambridge University Press, 1998.

[7] S.R. Eddy. RNA sequence analysis using covariance models. Nucleic Acids Research,

22(11):2079–2088, 1994.

[8] S.R. Eddy. Computational genomics of noncoding RNA genes. Cell, 109:137–140,

2002.

[9] S. Griffiths-Jones, A. Bateman, M. Marshall, A. Khanna, and S.R. Eddy. Rfam: an

RNA family database. Nucleic Acids Research, 31(1):439–441, 2003.

75

[10] L.H. Hartwell, L. Hood, M.L. Goldberg, A.E. Reynolds, L.M. Silver, and R.C. Veres.

Genetics: From Genes to Genomes. McGraw Hill, 2000.

[11] S. Henikoff and J.G. Henikoff. Amino acid substitution matrices from protein blocks.

Proceedings of the National Academy of Sciences, 89(22):10915–10919, 1992.

[12] R.J. Klein and S.R. Eddy. RSEARCH: Finding homologs of single structured RNA

sequences. BMC Bioinformatics, 4:44–59, 2003.

[13] B. Ma, J. Tromp, and M. Li. PatternHunter: Faster and more sensitive homology

search. Bioinformatics, 18(3):440–445, 2002.

[14] L. Noe and G. Kucherov. Improved hit criteria for DNA local alignment. BMC

Bioinformatics, 5(1):149–158, 2004.

[15] Z. Weinberg and W.L. Ruzzo. Faster genome annotation of non-coding RNA fam-

ilies without loss of accuracy. In Proceedings of the Eighth Annual International

Conference on Computational Molecular Biology (RECOMB), pages 243–251, 2004.

76

Appendix A

Structural Details of Queries

We present the results of analyzing all the query sequences that were used in our experi-

ments. Each query’s secondary structure was parsed to yield the following information:

Length. The query sequence’s size in nucleotides.

#7-mers. This is the total number of paired regions of length 7 in the sequence. For

example, the paired region AU-AU-GC-GC-UA-UA-CG-CG-AU-AU of length 10

has four 7-mers.

#Hashed 7-mers. A 7-mer is hashed if it scores above a threshold (e.g. 31.49) when

aligned in a perfect match. The #hashed 7-mers in a query is instructive since any

7-mer that score below 31.49 in a perfect match is of little use in a search with T

= 31.49.

#4-mers, #Hashed 4-mers These are analogous to 7-mer cases, for length-4 regions.

#4-mer Tuples. These are the #tuples (p1, p2) where p1, p2 are disjoint pair 4-mers.

#Hashed 4-mer Tuples. These are the #tuples (p1, p2) where both p1, p2 are hashed

pair 4-mers for some threshold e.g. 19.6.

#Pair-Nt Tuples. These are the #tuples (n, p) where n is a nucleotide 8-mer, p is pair

4-mer and they are disjoint.

77

Table A.1: Secondary structure details of queries used in experiments - Part I.This table presents the queries from the
RNA families RF 265, RF 235 and RF 131. Please see preceding text for an explanation of the fields.

Query Size #7-mers #Hashed 7-mers #4-mer #Hashed 4-mers #4-mer #Hashed Tuples #Pair-Nt #Hashed Tuples
T=31.49 T=19.6 T=19.1 Tuples T=19.6 T=19.1 Tuples T=19.6 T=19.1

RF 265
1 132 14 9 26 4 7 271 5 17 2695 419 733
2 132 14 9 26 4 7 271 5 17 2695 419 733
3 131 11 5 23 4 7 208 5 17 2364 415 726

RF 235
1 131 13 9 26 0 6 274 0 9 2686 0 620
2 131 13 9 26 0 7 274 0 15 2686 0 722
3 128 9 6 22 0 6 192 0 9 2211 0 604
4 131 13 9 26 0 6 274 0 9 2686 0 620
5 131 13 9 26 0 6 274 0 9 2686 0 620
6 131 13 9 26 0 6 274 0 9 2686 0 620
7 131 13 9 26 0 6 274 0 9 2686 0 620
8 128 9 6 22 0 6 192 0 9 2211 0 604
9 128 9 6 22 0 6 192 0 9 2211 0 604

RF 131
1 70 8 5 14 3 5 61 2 8 575 123 205
2 71 11 5 17 2 5 97 0 8 725 84 210
3 70 8 5 14 3 5 61 2 8 575 123 205
4 70 8 5 14 3 5 61 2 8 575 123 205
5 71 11 5 17 2 5 97 0 8 725 84 210
6 72 11 10 17 4 8 97 5 24 742 178 354
7 72 11 10 17 4 8 97 5 24 742 178 354

78

Table A.2: Secondary structure details of queries used in experiments - Part II. This table presents queries from the
RNA families RF 103 and RF 84. Please see the preceding text for explanations of each field.

Query Size #7-mers #Hashed 7-mers #4-mer #Hashed 4-mers #4-mer #Hashed Tuples #Pair-Nt #Hashed Tuples
T=31.49 T=19.6 T=19.1 Tuples T=19.6 T=19.1 Tuples T=19.6 T=19.1

RF 103
1 76 7 6 13 1 3 51 0 2 610 47 140
2 76 7 6 13 1 3 51 0 2 610 47 140
3 76 7 6 13 1 3 51 0 2 610 47 140
4 76 7 6 13 1 3 51 0 2 610 47 140
5 78 12 8 15 1 4 66 0 0 734 49 196
6 77 12 8 15 1 4 66 0 0 719 48 192
7 77 12 8 15 1 4 66 0 0 719 48 192
8 77 10 7 13 1 4 45 0 0 624 48 192
9 77 12 1 15 2 2 66 1 1 719 95 95

10 77 12 8 15 1 4 66 0 0 719 48 192
11 77 10 7 13 1 4 45 0 0 624 48 192
12 77 10 7 13 1 4 45 0 0 624 48 192
13 76 12 1 15 2 2 66 1 1 704 94 94
14 79 5 5 11 1 1 34 0 0 549 50 50
15 79 5 5 11 1 1 34 0 0 549 50 50

RF 84
1 254 11 9 28 10 15 334 38 86 6320 2265 3395
2 254 11 9 28 10 15 334 38 86 6320 2265 3395
3 254 11 9 28 10 15 334 38 86 6320 2265 3395
4 254 11 9 28 10 15 334 38 86 6320 2265 3395
5 254 11 9 28 10 15 334 38 86 6320 2265 3395
6 253 11 9 24 6 11 235 13 44 5390 1353 2477
7 253 11 9 24 6 11 235 13 44 5390 1353 2477
8 253 11 9 24 6 11 235 13 44 5390 1353 2477
9 253 11 9 24 6 11 235 13 44 5390 1353 2477

10 254 11 9 28 10 15 334 38 86 6320 2265 3395
11 42 0 0 4 2 2 3 1 1 80 43 43
12 254 11 9 28 10 15 334 38 86 6320 2265 3395
13 255 4 2 10 2 4 30 1 5 2263 455 907
14 255 5 3 11 3 5 37 2 7 2489 681 1133

79

Appendix B

Consensus Structures of Query

Families

We present below the consensus secondary structures of the five RNA families we used in

our experiments. All the five figures have been reproduced from the RFAM [9] web site.

Figure B.1: Consensus secondary structure of the RF 265 family [9]

80

Figure B.2: Consensus secondary structure of the RF 84 family [9]

Figure B.3: Consensus secondary structure of the RF 103 family [9]

81

Figure B.4: Consensus secondary structure of the RF 131 family [9]

Figure B.5: Consensus secondary structure of the RF 235 family [9]

82

