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Abstract 

To make sense of the world, humans build mental models that guide actions and 

expectations. These mental models need to be receptive to change and updated when they 

no longer accurately predict observations from an environment. Although ubiquitous in 

our everyday lives, research is still uncovering the factors that guide mental model 

building and updating. A significant challenge arises from the need to characterize how 

mental models can be both robust to noisy, stochastic fluctuations, while also being 

flexible to environmental changes. The current thesis explores this trade-off by 

examining some of the main components involved in updating. Chapter 2 proposes a 

novel task to measure the influence of prior mental models on the way new information is 

integrated. Chapter 3 tests the role of unexpected, ‘surprising’ events on our ability to 

detect changes in the environment. Chapter 4 measures the strategies used to explore new 

mental models, after a change has been detected, and how specific forms of brain damage 

influence these strategies. The results from this thesis provide novel insights into the 

behavioural and neural mechanisms that underlie mental model updating. The last chapter 

situates these results in existing literature, and suggests directions for future research. 
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Chapter 1: Introduction 

Humans have a remarkable ability to compress complex, noisy, and dynamic 

information into coherent mental models of the world (Johnson-Laird, 2013; Johnson-

Laird, 2004; Tenenbaum, Kemp, Griffiths, & Goodman, 2011). We use these models to 

inform everyday decisions: if I leave at 7:00 a.m. will I make it to work on time? Should I 

invest in a particular stock?  

However, the world is noisy and the information we receive from our 

environment often exceeds our perceptual capacities (Barlow, 1961; Summerfield & 

Tsetsos, 2015; Bach & Dolan, 2012). Given these perceptual limitations, our mental 

models are, by necessity, incomplete representations of larger concepts (Johnson-Laird, 

1983; Tenebaum et al., 2011, Bach & Dolan, 2012). Therefore, an equally important 

ability involves updating mental models when faced with new information. That is, 

mental models are not static – they need to be receptive to environmental changes and 

adapt accordingly.  

For example, consider a batter in baseball. To predict the next pitch, the batter 

relies on a mental model built from prior observations of the pitcher’s throwing patterns. 

Using this mental model, the batter may predict the next pitch will be a fastball. If the 

pitch is a fastball, the batter’s model is confirmed and no updating is required. If, instead, 

a curveball is thrown, something unexpected has happened in the context of the batter’s 

mental model. Here the batter must determine whether the unexpected pitch represents 

noise (no updating required), or conversely, an important data point that needs to either 

be integrated into the old model (fine tuning) or used to create a new mental model. 
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Given the importance of updating in human learning and decision making, 

considerable research has attempted to understand its component processes (Wilson, 

Nassar, & Gold, 2010; Glaze, Kable, & Gold, 2015; Collins & Koechlin, 2012; Behrens, 

Woolrich, Walton, & Rushworth, 2007; Stöttinger, Filipowicz, Danckert, & Anderson, 

2014; Danckert, Stöttinger, Quehl, Anderson, 2012; McGuire, Nassar, Gold, Kable, 2014; 

O’Reilly et al., 2013). From this research, updating can be characterized as having three 

main stages: first a mental model must be built in order to compare it with events from 

the environment (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006; Griffiths & 

Tenenbaum, 2006; Tenenbaum et al., 2011; Green, Benson, Kersten, & Schrater, 2010). 

Next, to update a model, it is necessary to detect mismatches between a current mental 

model and the observations it is meant to predict (O’Reilly et al., 2013; Nassar et al., 

2010; Glaze et al., 2015; Wilson et al., 2010). Finally, once a mismatch has been 

detected, it becomes necessary to explore alternative mental models, which can explain 

the discrepancies between what was expected and what is observed (Collins & Koechlin, 

2012; Donoso, Collins & Koechlin, 2014; Stöttinger, Filipowicz, Danckert, et al., 2014). 

Once a new, more accurate mental model has been identified, this model is then 

compared with observations and the cycle continues. 

Although previous research agrees on these main updating components, questions 

still remain about how these different processes operate. A large body of research 

demonstrates that humans are extremely proficient at learning from the statistics in their 

environment (Saffran, Aslin, & Newport, 1996; Nissen & Bullemer, 1987; Jueptner, 

Stephan, et al., 1997; Jueptner, Frith, Brooks, Frackowiak, & Passingham, 1997; Orbán, 

Fiser, Aslin, & Lengyel, 2008; Toni, Krams, Turner, & Passingham, 1998; Turk-Browne, 
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2005). This ability has led some researchers to propose that the mechanisms that drive 

mental model building and updating follow optimal rules of probability (Chater, 

Tenenbaum, & Yuille, 2006; Costello & Watts, 2014; Fiser, Berkes, Orbán, & Lengyel, 

2010; Griffiths & Tenenbaum, 2006; Lewandowsky, Griffiths, & Kalish, 2009; Nassar, 

Wilson, Heasly, & Gold, 2010; Tenenbaum et al., 2011). Others note that this optimal 

interpretation of mental model building and updating is difficult to reconcile with 

research demonstrating consistently suboptimal use of probabilistic information (Bowers 

& Davis, 2012a; Jones & Love, 2011; Nickerson, 1998; Dawson & Abkes, 1987; 

Gigerenzer & Gaissmaier, 2011; Hilbert, 2012;  Tversky & Kahneman, 1981; Tversky & 

Koehler, 1994; Kahneman, 2011). 

The current thesis seeks to clarify some of these disparate findings related to 

mental model building and updating. Each chapter examines one of the of the three main 

updating component processes. Chapter 2 introduces a novel task to measure how prior 

beliefs influence mental model building, while addressing some of the limitations evident 

in previous studies. Chapter 3 goes on to measure how unexpected, or surprising events 

influence our ability to detect changes in our environment. Lastly, Chapter 4 examines 

different strategies used to explore alternative mental models, after a change has been 

detected, and how specific forms of brain damage influence these processes. 

Together, the results from this thesis provide insights into the processes involved 

in the different stages of updating. The final chapter summarizes the primary results from 

this thesis while discussing limitations and suggestions for future research. 
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Chapter 2: The Influence of Priors on Mental Model Building1 

2.1. Introduction 

To measure updating, it is important to accurately represent the mental model a 

person is using to interpret information in the environment. The importance of this is not 

trivial: research shows that the models we use to interpret events can have a significant 

impact on decision making (Green, et. al, 2010; Hogarth & Einhorn, 1992; Lee & 

Johnson-Laird, 2012; Park & Sloman, 2014; Patrick & Ahmed, 2014; Stöttinger, 

Filipowicz, Danckert, et al., 2014; Collins & Koechlin, 2012). But how do we measure a 

participant’s mental model? Chapter 2 introduces some of the challenges faced when 

representing participant expectations, and presents a novel method to address limitations 

found in previous research.  

A common way to represent a person’s expectations is to examine response trends 

over multiple trials (Jueptner, Stephan, et al., 1997; Jueptner, Frith, et al., 1997; Nissen & 

Bullemer, 1987; Robertson, Tormos, Maeda, & Pascual-Leone, 2001; Toni et al., 1998; 

Vulkan, 2000). Participant responses are aggregated over multiple trials to measure how 

closely they represent observed events. However, while such measures enable exploration 

of how closely participants manage to match task contingencies, they give only limited 

information as to the mental models that drive responses. As highlighted by Stöttinger 

and colleagues (2014), data trends from individual responses alone can result from a 

                                                
1 A version of this chapter has been published as Filipowicz, A., Valadao, D., Anderson, B., & 
Danckert, J. (2014) Measuring the influence of prior beliefs on probabilistic estimations. In P. Bello, 
M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Conference of the 
Cognitive Science Society (pp. 2198-2203). Austin, TX; Cognitive Science Society. It is reproduced 
here with permission. 
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number of different mental models that may be unknown to the experimenter (Stöttinger, 

Filipowicz, Marandi, Quehl, Danckert, & Anderson, 2014).  

Recent work has made use of probabilistic methods to gain a detailed 

representation of participant mental models. A large body or research demonstrates that 

humans have a keen ability to learn from statistics in the environment (Nissen & 

Bullemer, 1987; Mayr, 1996; Jueptner, Stephan, et al., 1997; Jueptner, Frith, Brooks, 

Frackowiak, & Passingham, 1997; Orbán et al., 2008; Toni, Krams, Turner, & 

Passingham, 1998; Filipowicz, Danckert, & Anderson, 2014; Saffran et al., 1996; Turk-

Browne, 2005). This ability has led some researchers to imply that cognitive processes, 

such as mental model building and updating, follow optimal rules of probabilities (Chater 

et al., 2006; Costello & Watts, 2014; Fiser et al., 2010; Griffiths & Tenenbaum, 2006; 

Lewandowsky et al., 2009; Nassar et al., 2010; Tenenbaum et al., 2011). Under these 

frameworks, mental models are represented as probability distributions, where events in 

an environment are expected based on how frequently they were experienced in the past 

(Griffiths & Tenenbaum, 2006; Knill & Pouget, 2004; Tenenbaum et al., 2011; O'Reilly 

et al., 2013; O'Reilly, 2013; Summerfield & Tsetsos, 2015; Collins & Koechlin, 2012; 

Costello & Watts, 2014; Behrens et al., 2007). 

One prominent framework proposes that mental models are built and updated 

following approximations of Bayes’ theorem:  

 

	 P(M | E) = P(M )×P(E |M )
P(E)

	 (2.1) 

 



 6 

where P(M|E) – the posterior probability – represents the probability that a mental model 

M is true given the evidence E; P(M) – the prior probability – represents the probability 

that a mental model is true before observing E; P(E|M) – the likelihood – represents the 

probability that E would have been obtained from the mental model M; and P(E) 

represents the probability of the evidence E.  

Tracking participant mental models is at the core of Bayesian models of 

cognition, and research demonstrates that in certain circumstances, the behavioural and 

neural processes underlying updating behave in Bayesian-like ways (Doya, Ishii, Pouget, 

& Rao, 2007; Nassar et al., 2010; Wilson et al., 2010; O’Reilly et al., 2013; Griffiths & 

Tenenbaum, 2006; Knill & Pouget, 2004; Tenenbaum et al., 2011). This approach, 

however, has been met with criticism. It is at odds with a large body of research in 

decision making demonstrating suboptimal use of probabilistic information (Nickerson, 

1998; Dawson & Abkes, 1987; Gigerenzer & Gaissmaier, 2011; Hilbert, 2012;  Tversky 

& Kahneman, 1981; Tversky & Koehler, 1994; Kahneman, 2011). Furthermore, critics 

have noted that some Bayesian models rely too heavily on specific assumptions to obtain 

an optimal fit (Bowers & Davis, 2012a, 2012b; Jones & Love, 2011; see Griffiths, 

Chater, Norris, & Pouget, 2012 for a response).  

One main point of contention concerns the ways in which Bayesian models 

characterize priors – the mental models participants bring to a task before observing any 

new events. As demonstrated by Bowers & Davis (2012a), the success of a Bayesian 

model depends heavily on which prior is selected, and unprincipled prior selection can be 

used to fit nearly any pattern of data.  A common approach to characterize priors rests on 

the assumption that participants begin an unfamiliar task in a state of maximal 
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uncertainty, where all options are equally probable (Bestmann et al., 2008; Harrison, 

Duggins, & Friston, 2006; Mars et al., 2008; Strange, Duggins, Penny, Dolan, & Friston, 

2005). A participant’s expectations regarding each event’s occurrence are then updated 

over time relative to the frequency with which distinct events are observed. Although 

plausible, the notion that all participants begin a task without any biases or expectations 

is often unaccompanied by any empirical evidence.  

Another approach is to characterize a participant’s beliefs by fitting their 

responses to distributions approximating the events they are estimating (Griffiths & 

Tenenbaum, 2006; Lewandowsky et al., 2009; Nassar, Rumsey, Wilson, Prikh, Heasly, & 

Gold, 2012; Nassar et al., 2010; McGuire et al., 2014; O'Reilly et al., 2013). A 

participant’s prior is assumed to match the overall shape of the distribution of events they 

are estimating, and the prior’s parameters are updated as new events occur. As with 

assumptions of maximal uncertainty, participant priors are rarely measured before 

observing any events. As already noted, this method has also been criticized as it relies 

heavily on the selected prior chosen for a given model – a prior selected by the 

researchers (Bowers & Davis, 2012a; Jones & Love, 2011).  

Regardless of how they are characterized, methods using uniform or parametric 

priors assume that participant priors are homogeneous – that is, all participants start a 

novel task with the same prior mental models. This is an important assumption, but one 

that is not often explicitly tested. Indeed, certain statistically suboptimal behaviours have 

been accounted for through a better understanding of idiosyncratic participant priors. For 

example, studies have shown that the statistically suboptimal behaviour associated with 

probability matching (Vulkan, 2000; Koehler & James, 2009) depends on participant 
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beliefs regarding the mechanisms generating the events they are predicting (Green et al., 

2010), and the strategies used to interpret stochastic events (Otto, Taylor, & Markman, 

2011). Additionally, simple manipulations of participant priors can reduce or eliminate 

these suboptimal behaviours (Shanks, Tunney, & Mccarthy, 2002). This shows that the 

mental models participants hold before observing events, and the way these beliefs 

evolve after observing new events strongly impact decisions (Stöttinger Filipowicz, 

Danckert, et al., 2014; Collins & Koechlin, 2012; Lee & Johnson-Laird, 2013). 

In summary, questions remain about some of the assumptions used to measure 

mental models. The current chapter seeks to address these limitations by directly 

measuring both the priors participants bring to a task, and how new information is 

integrated over time. Using a task based on the game ‘Plinko’, participants estimated the 

likelihood that balls would fall in a range of slots. Estimates were made in the form of 

probability distribution that could be changed with new information. In this task, 

estimates were provided before any events were observed, making it possible to measure 

participant priors, whether these priors differ between individuals, and how these priors 

influence learning. 

 

2.2. Experiment 2.1: Methods 

Participants 

One hundred and nineteen University of Waterloo undergraduates (76 female, 

mean age = 19.57 years, SD = 2.22 years) participated in Experiment 2.1 in exchange for 

course credit. The University of Waterloo’s Office of Research Ethics approved the study 

protocol and participants gave informed consent before participating. 
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Plinko task environment 

Mental models were measured using a computerized version of the game 

‘Plinko’2. The task environment was programmed in Python using the PsychoPy library 

(Pierce, 2009). Unless otherwise specified, the general Plinko task environment described 

below was identical in Experiment 2.1 from the current chapter, and Experiments 3.1 and 

3.2 in chapter 3.  

During the task, a red ball fell through a triangle of pegs into one of 40 possible 

slots. The triangle consisted of 29 rows of black pegs that increased in number from the 

top to the bottom of the triangle (i.e., the top row contained 1 peg and the bottom row 

contained 29 pegs). A rectangle was located below the 40 slots spanning their width. 

Participants were instructed to make their responses in this space (Figure 2.1). 

 

 

 

 

 

 

                                                
2  Based on the game found on the American game show The Price is Right 
(http://www.thepriceisright.com).  



 10 

 

Figure 2.1. Schematic of Plinko Task. Participants were informed that a red ball would 
fall through a triangle of pegs and land in one of a number of slots below (note: 7 slots 
are pictured here for illustrative purposes). They were instructed to draw bars using the 
computer mouse to indicate the most likely locations the ball would land in – higher bars 
indicate an expectation of higher likelihood. They drew their first set of bars before 
seeing any ball drops, and could adjust their bars at the start of each subsequent trial. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ball falls through pegs Ball lands in slot - participant 
can adjust estimates

Participant sets initial 
distribution

Task begins

Trial 1 Trial 2...n
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Bars were drawn using the computer mouse: the height of the bars could be 

adjusted by holding down the left mouse button and dragging the cursor. The height of 

the bar would match the position of the cursor within the limits of the rectangle below the 

slots. Participants could also erase any single bar by right-clicking with the cursor on the 

bar they wished to delete, or by clicking the backspace key to delete all bars on screen. 

The bars were not assigned any value; participants were simply told that taller bars 

represented a higher probability that a ball would fall in a slot, shorter bars a lower 

probability, and no bars represented zero probability. Participants were informed that 

they had the option of adjusting their bars at the start of every trial and that they had to 

have at least one bar on screen before proceeding with the trial. Once participants had 

indicated their likelihood estimates, they pressed the spacebar to proceed with the trial 

(Figure 2.1). 

After completing the task, participants completed a brief questionnaire, asking if 

they had noticed any structure to the locations of the ball drops, if they had noticed that 

the structure had changed at any point during the task, and to elaborate on any strategies 

they used to adjust their bars. 

 

Experimental conditions 

Participants were exposed to a sequence of ball drops generated from one of three 

distributions (note that the mean and variance refer to slot numbers): 1) a Gaussian3 with 

a mean of 18 and standard deviation of 6 (Wide Gaussian 1), 2) a Gaussian with a mean 
                                                
3 It is important to note that the distributions of ball drops participants were exposed to, along 
with the distributions participants drew as a part of the Plinko task, were all discrete in nature, 
and thus not true Gaussian distributions. The term “Gaussian”, used here and later in this thesis to 
describe sequences of ball drops or participant responses, refers to discrete approximations of 
Gaussian distributions.  
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of 17 and standard deviation of 6 (Wide Gaussian 2), 3) a Gaussian with a mean of 17, 

and a standard deviation of 1.9 (Narrow Gaussian). Participants in each separate 

distribution condition were exposed to identical sequences of events, and provided their 

estimates before seeing any ball drops. They could then modify these estimates as they 

saw new events. Participants were not informed that there was any structure to the 

distribution of ball drops.  

 

Measuring accuracy 

Participant bars were normalized by dividing the height of each bar by the sum of 

the heights of all bars drawn on screen. This normalization process provided a discrete 

probability distribution on each trial for every participant. 

Accuracy A was measured as the proportion of overlap between a participant’s 

drawn distribution on any trial and the discrete distribution of ball drops they were being 

presented with. The proportion of overlap was calculated by summing the minimum 

probability value x of every slot i between a participant’s distribution P on any trial t and 

a computer’s distribution C for any block of trials j: 

 

	
	

(2.2) 

 

Participant accuracy could range between 0 and 1, with 0 indicating no overlap between 

the participant’s distribution and the computer’s distribution for a particular block, and 1 

indicating perfect overlap. 

 

At = min P(xit ),C(xij )( )
i=1

40

∑
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Measuring learning rates 

Once participant accuracy was calculated on each trial, standard exponential 

learning curves were fit to participant accuracy scores over time (e.g., Estes, 1950; 

Healthcote, Brown, & Mewhort, 2000; Ritter & Schooler, 2001): 

 

	 	 (2.3) 

 

where t denotes the trial number, Ât a participant’s estimated accuracy on trial t, a0 a 

participant’s starting accuracy, a∞ asymptotic accuracy, and α a constant rate coefficient 

to capture how quickly participants reached their asymptote from their starting accuracy. 

This function was fit to each participant’s accuracy scores using a nonlinear least squares 

function in the R statistical package (‘nls’ function; R Core Team, 2014). Given that 

participant accuracy could only range between 0 and 1, the function’s lower and upper 

limits for a participant’s minimum starting accuracy and maximum asymptote value were 

set to 0 and 1 respectively. To characterize participant performance over time, the 

estimated starting accuracy was used to represent a participant’s starting accuracy value, 

learning rate to capture how quickly they reached their asymptote from their starting 

value, and a participant’s estimated accuracy on the last trial of the distribution they were 

estimating to indicate a final level of accuracy achieved.  

The estimated last trial accuracy was obtained by computing a participant’s 

accuracy using equation (2.3), with the participant’s three fit parameters (asymptote, 

starting accuracy, and learning rate), and the value for t set to the total number of trials in 

the distribution they were estimating. Since participants were exposed to each distribution 

Ât = a∞ − (a∞ − a0 )e
−αt
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for 100 trials, the value of t was always set to 100. This last parameter was used instead 

of the asymptote value because the asymptote reflects a participant’s maximal estimated 

accuracy after an unspecified number of trials, not necessarily the estimated accuracy at 

the end of a finite block of trials. For example, a participant with a fitted starting value of 

.5, an asymptote of .95, and a learning rate of .01 would only reach asymptotic 

performance after more than 1000 trials, whereas their performance after 100 trials, the 

length of each of the distributions participants were asked to estimate in the current 

experiment, would be a closer to .78. 

 

Characterizing participant prior mental models 

To characterize prior mental models, the distributions participants drew on trial 

one, before having seen any ball drops, were classified into different ‘prior groups’ based 

on distribution shape. Prior groups were first categorized using a density clustering 

algorithm (Rodrigez & Laio, 2014). This clustering method provided the general ability 

to separate between participants with uniform priors (i.e., where equal or near equal 

probability was assigned to each slot) and Gaussian priors (i.e., when participant 

estimates approximated Gaussian distributions). However, as described below, a large 

proportion of participants started the task with a type of bimodal prior, where low 

probability was assigned to middle slots, and high probability to the left and right of 

central slots. In some cases, the number of slots separating the two modes was very small, 

and the clustering algorithm failed to reliably distinguish bimodal priors from Gaussian 

priors. As such, to better capture the variability in participant priors, a qualitative 

approach was used to classify participants into different prior groups. 
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2.3 Experiment 2.1: Results 

Participants exhibit heterogeneous prior mental models 

Initially two types of prior mental models were expected. Those familiar with 

statistics may know that the distribution of ball drops in a fair Plinko game should be 

approximately Gaussian, with a mean centered on the ball’s starting position (Galton, 

1889). This assumption fits with research assuming participant priors match actual event 

distributions (Griffiths & Tenenbaum, 2006; Nassar et al., 2010). Alternatively, those 

unfamiliar with the task may choose a state of maximal uncertainty, selecting a uniform 

distribution as their prior. This assumption fits with research characterizing participant 

priors as uniform across all possible options (Harrison et al., 2006; Mars et al., 2008; 

Strange et al., 2005).  

Of the 119 participants in both studies, 36 (30%) participants began with a 

Gaussian-like distribution: 33 participants drew Gaussian distributions centered around 

the middle of the row of slots whereas three drew Gaussian distributions centered to the 

right of the row of slots with either a negative or positive skew (labeled as ‘Skewed’).  Of 

the remaining 83 (70%) participants, 11 (9%) began with a uniform distribution, 33 

(28%) indicated a bimodal distribution, and 39 (33%) began with ‘jagged’ distributions, 

where initial estimates were minimally composed of a few interspersed bars (in some 

cases only one bar; Figure 2.2). This conclusively demonstrates that, far from being 

homogeneous, participants come to the task with varying prior beliefs about where the 

balls would fall. 
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Figure 2.2. Participant Prior Distribution Groups. Estimates participants provided 
before seeing any ball drops were categorized based on their shape. The left panels 
provide individual exemplars of responses on the first trial whereas the right panels 
displays group mean estimates for each category. The number of participants (n) in each 
group are included next to the group titles. 
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Prior group performance when exposed to Wide Gaussian distributions 

Performance in each prior distribution group was first examined for the two wide 

Gaussian distributions. Of the 41 participants exposed to the first wide Gaussian, 17 

indicated they expected to see a Gaussian, seven indicated they expected a Bimodal 

distribution, and 13 indicated they expected a Jagged distribution. Of the 39 participants 

exposed to the second wide Gaussian, nine participants indicated they expected to see a 

Gaussian, 14 indicated they expected a Bimodal distribution, and 12 indicated they 

expected a Jagged distribution.  

Repeated measures ANOVAs with Trial Accuracy as a dependent variable, Trial 

Number (1 to 100) as a within subject factor, and Prior Group (Gaussian, Bimodal, and 

Jagged) as a between subject factor revealed main effects in both wide distribution 

conditions of Trial Number (Wide Gaussian 1: F(99,3366)=18.157, MSE=.063, p<.001; 

Wide Gaussian 2: F(99,3168)=23.908, MSE=.068, p <.001) and Prior Group (Wide 

Gaussian 1: F(2,34)=7.575, MSE=3.457, p<.002; Wide Gaussian 2: F(2,32)=7.33, 

MSE=3.505, p<.003), along with Trial Number x Prior Group interactions (Wide 

Gaussian 1: F(198,3366)=4.135, MSE=.014, p<.001; Wide Gaussian 2: 

F(198,3168)=4.225, MSE=.012, p<.001). These results indicate that learning rates 

differed across the three main groups when exposed to wide Gaussian distributions. 

To examine these interactions more closely participant exponential curve fit 

parameters were compared between the three prior groups using one-way ANOVAs on 

each parameter. For both wide Gaussian distributions, estimated starting values differed 

between prior distribution groups (Wide Gaussian 1: F(2,34)=41.33, MSE=.600, p<.001; 

Wide Gaussian 2: F(2,32)=26.9, MSE=.393, p<.001). Tukey’s Honest Significant 
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Difference (HSD) post-hoc tests confirmed that participants in the Jagged group started 

with lower accuracy than both the Gaussian and Bimodal groups (Wide Gaussian 1 and 2: 

all ps<.001), and that there were no differences between the starting values of the 

Gaussian and Bimodal groups (Wide Gaussian 1: p=.195; Wide Gaussian 2: p=.415). 

Learning rates did not differ between prior distribution groups (Wide Gaussian 1: 

F(2,34)=0.284, MSE=.023, p=.754; Wide Gaussian 2: F(2,32)=1.368, MSE=.029, 

p=.269), and although estimated last trial accuracy tended to be lower in the Jagged group 

compared to the Gaussian and Bimodal groups, their estimated last trial accuracy was 

only found to be significantly lower when exposed to the first wide Gaussian 

(F(2,34)=3.911, MSE=.019, p<.03; Tukey’s HSD - Gaussian-Jagged: p<.05, Bimodal-

Jagged: p=.07; Bimodal-Gaussian: p=.927) but not when exposed to the second wide 

Gaussian (F(2,32)=1.734, MSE=.011, p=.193; Figure 2.3; Table 2.1). 
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Figure 2.3. Prior distribution group performance for each distribution (Wide 
Gaussian 1, Wide Gaussian 2, Narrow Gaussian). Graphs A-C display performance of 
the three largest groups (i.e., Gaussian, Jagged, and Bimodal); Graphs D-F display 
performance of the two smaller prior distribution groups (i.e., Uniform and Skewed). The 
histograms in graphs A-C represent the distribution of ball drops participants were 
exposed to in each condition. The solid lines represent mean accuracy scores, and 
shading represents ± 1 standard error. The dotted lines represent the mean last trial 
accuracy averaged across all participants in all conditions. 
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Table 2.1. Mean performance parameters for prior distribution groups. 

 Wide Gaussian 1 Wide Gaussian 2 Narrow Gaussian 

Prior Groups SV LR LTA SV LR LTA SV LR LTA 

Gaussian .63 .14 .73 .62 .06 .72 .37 .02 .59 

Bimodal .56 .22 .75 .53 .05 .69 .33 .07 .72 

Jagged .27 .21 .67 .22 .14 .66 .28 .08 .70 

Uniform .47 .17 .70 .59 .03 .68 .32 .05 .62 

Skewed .00 .19 .67 .56 .07 .73 .00 .20 .77 

Note. SV: Start Value; LR: Learning Rate; LTA: Last Trial Accuracy 
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Performance from participants in the Uniform and Skewed groups was 

qualitatively examined given their small size. Of the participants exposed to the first wide 

Gaussian, three participants indicated they expected a uniform distribution and one 

expected a positively skewed Gaussian with a mean to the right of center. Participants in 

the Uniform condition had priors that covered a large number of slots leading to a starting 

accuracy that was slightly lower than the starting accuracy of the Bimodal and Gaussian 

groups (mean starting value = .47). However, participants in this group adjusted their 

distributions rapidly (mean learning rate Uniform group = .17) to match the higher 

probability of ball drops occurring near the center-left while also lowering or deleting 

bars under peripheral slots. By the end of the block, participants with Uniform priors 

ended with similar estimated last trial accuracy (mean = .70) as participants in the other 

groups (Figure 2.3D).  

Of those exposed to the second wide Gaussian, three participants indicated a 

Uniform prior and one indicated they expected a negatively skewed Gaussian with a 

mean to the right of center. The performance of the three participants with a Uniform 

prior was difficult to fit using exponential curves because at certain points throughout the 

task two of the participants made large changes to their distributions, events not well fit 

by exponential curves (Figure 2.3E). This strategy was best characterized as ‘wiping the 

slate clean’ (see spikes on trials 14, 26 and 43 in Figure 2.3E), followed by rapidly 

improving estimates of the distribution of ball drops being shown – a strategy shown to 

be quite successful for one participant who finished with a final accuracy of .81.  

In both wide distribution conditions, participants with Skewed priors tended to 

start with low estimated accuracy (mean start value = .29) given that the bulk of their 



 22 

expected distributions were to the right of center, whereas the computer’s distribution fell 

slightly left of center. Nevertheless, this group rapidly reached an accuracy level similar 

to the Gaussian and Bimodal groups (Figure 2.3D, E).  

 

Prior group performance when exposed to Narrow Gaussian distribution 

The influence of priors was next examined when exposed to the narrow Gaussian 

distribution. Once again, performance differences were first examined between the three 

main prior distribution groups. Of the 39 participants exposed to the narrow Gaussian, 

seven indicated they expected to see a Gaussian, 12 indicated they expected a Bimodal 

distribution, and 14 indicated they expected a Jagged distribution. A factorial ANOVA 

with Trial Accuracy as a dependent variable, Trial Number (1 to 100) as a within subject 

factor, and Prior Group (Gaussian, Bimodal, Jagged) as a between subject factor revealed 

no significant Trial Number x Prior Group interaction (F(198,2970)=1.117, MSE=.006, 

p=.133), and no main effects of Prior Group (F(2,30)=2.287, MSE=2.717, p=.119). 

Separate one-way ANOVAs revealed no significant differences between prior groups in 

estimated start values (F(2,30)=.829, MSE=.020, p=.446), learning rate (F(2,30)=.667, 

MSE=.009, p=.520), or estimated last trial accuracy, despite the Gaussian group finishing 

with a nominally lower mean last trial accuracy than the other groups (F(2,30)=2.04, 

MSE=.037, p=.148; Figure 2.3C; Table 2.1).  

Five participants indicated that they expected a Uniform distribution, and one 

reported expecting a negatively Skewed distribution with a mean to the right of center. 

The five participants with uniform priors performed much like those in the larger groups, 

with similar starting values, learning rates, but slightly lower last trial accuracy (Table 
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2.1; Figure 2.3F). The one participant reporting a Skewed prior performed particularly 

well: despite an estimated starting value of 0 (i.e., no overlap between their estimate and 

the computer’s distribution), within 8 trials this participant reached an accuracy of .75 

and remained within this range for the rest of the task (Figure 2.3F).  

Evidence was also found for an opposite effect, such that the prior expectations of 

some participants seemed to impair their ability to adjust to the narrow distribution. Of 

the seven participants indicating Gaussian priors, three ended with raw accuracy scores 

between .41 and .45, the lowest among all participants exposed to the narrow distribution. 

These participants began with Gaussian priors centered on the middle of the array (mean 

= 20.93) with large variance (average SD = 8.79; i.e., expected ball drops spanning 16 

slots around a mean of slot 21). Although they did shift the means of their estimates to 

better match the computer’s distribution (average last trial mean=17.24), they did not 

adjust the variance of their estimates to reflect the narrow variance in the computer’s 

distribution (average last trial SD=7.22). In other words, although these participants 

correctly estimated the area of highest probability of the computer’s distribution, they did 

not adapt to the absence of events in the outer limits of their estimates.  

These results were not true of all participants with a Gaussian prior: the other four 

participants in the Gaussian group started with similarly wide estimates (average first trial 

mean = 20.63; average first trial SD = 8.17), but ended with higher raw accuracy scores, 

ranging from .63 to .90. That is, the accuracy achieved by the latter group was derived 

from the fact that they narrowed the variances of their distribution (average last trial SD 

= 2.78).  
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2.4. Experiment 2.1: Discussion 

The goal of Chapter 2 was to develop a task that allows for a detailed 

representation of participant mental models, and test some of the assumptions of previous 

updating models. Experiment 2.1 was meant to capture the prior mental models 

participants bring to a task, and examine how these priors influence their ability to learn 

distributions of events.  

Contrary to methods that assume homogeneous participant priors, the mental 

models participants brought to a task differed between participants. In this particular task, 

priors tended to cluster into three main groups: Gaussian, Bimodal, and Jagged. Priors 

from the first two groups were likely based on information gleaned at the start of the task. 

While drawing their initial distributions, participants could see the triangle of pegs the 

ball would fall through, and could see that the ball’s start position was centered on the top 

peg. Given that the expected distribution of a Plinko table is known to approximate a 

Gaussian distribution (Galton, 1889), participants in the Gaussian group may have used 

this knowledge to draw their distributions. This is consistent with some participant 

responses in the post-experimental questionnaire. Thirteen of the participants in the 

Gaussian prior group reported expecting the ball pattern to be “shaped like a bell-curve” 

or “normally distributed”. Participants in the Bimodal group seemed to behave in a 

similar way, but using a more direct assessment of their environment to set their bars. 

Three of the participants with Bimodal priors mentioned that the ball’s starting position 

would make it more likely for it to fall left or right of center, and less likely to land in the 

center.  
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Conversely, the estimates made by the Uniform and Jagged groups seemed to 

have resulted from uncertainty about task contingencies. This is most easily explained in 

the Uniform group: given that participants had never been exposed to this task and had 

not observed any events, they assigned equivalent probability to all possible outcomes – a 

strategy that matches the general assumption made by researchers who represent maximal 

uncertainty using uniform priors. Participants indicating Jagged priors also seemed to be 

expressing a form of uncertainty, but in a different way than participants with Uniform 

priors. Six participants in the Jagged group reported drawing a few bars on screen for the 

sole purpose of getting more information about the task. After having observed the first 

trial, the majority of participants in the Jagged group that provided information about the 

strategies they used to adjust their distributions (30 of 38) indicated that they used a type 

of frequency matching strategy, where they adjusted bars every few trials to match where 

the ball had landed. Although participants in this group generally started each distribution 

with a low starting accuracy, they eventually reached the same level of accuracy as the 

groups starting with higher accuracy, although in some circumstances (i.e., estimating the 

wide Gaussian), taking longer to do so.  

At an individual level, some priors were found to help or hinder learning. Some 

participants that started with priors that contrasted strongly with the computer’s 

distribution seemed to update rapidly (e.g., participants with ‘Skewed’ priors). This 

suggests that strong mismatches between participant priors and the events they must 

predict may influence the efficiency of updating mental models. There were also 

situations in which participants had more trouble adapting their distributions to reflect the 

absence of predicted events. When exposed to wide-Gaussian distributions, participants 
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with wide-Gaussian priors were at an advantage, starting the task with a high degree of 

accuracy. However, when this same group was exposed to a narrow-Gaussian 

distribution, approximately half of the participants had difficulty representing the 

narrowed variance of the distribution they observed. These types of effects on updating 

are explored more thoroughly in Chapter 3. 

Taken together, these findings demonstrate that participants start a task with a 

number of different priors, and that these priors influence how effectively they learn the 

probabilistic contingencies underlying events. Some participants may start with priors 

based on prior knowledge or educated guesses, while others may start with few to no 

assumptions, choosing instead to seek evidence of the events they are predicting. In either 

case, using a method that requires fewer assumptions, the current results do not support 

the notion that participants start a task with homogenous priors. They also highlight the 

importance of capturing idiosyncratic priors that participants bring to a task if we are to 

appropriately characterize the factors driving their learning and updating behaviour. 
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Chapter 3: The Role of Surprise in Change Detection4 

3.1. Introduction 

In addition to building accurate mental models of the world, it is equally 

important for these models to be updated when faced with environmental changes. One of 

the difficulties for an observer is to know when new observations reflect a relevant 

change in the environment, and when they reflect random variation: if a bus comes 10 

minutes late, does this reflect a change to the schedule, or simply a ‘one-off’ event? 

Predicting when and to what extent a model has been updated continues to be a difficult 

challenge (Glaze et al., 2015; O’Reilly, 2013). Whereas Chapter 2 explored the influence 

of priors on the way mental models are built, Chapter 3 examines some of the factors that 

drive updating when the environment itself is changing. 

Research demonstrates that we pay close attention to surprising information when 

judging probabilities (Fisk, 2002), and the concept of surprise plays an important role in 

current studies of updating (Nassar et al., 2010; McGuire et al., 2014; O’Reilly et al., 

2013; Mars et al., 2008). In the context of learning and decision making, surprise 

describes our reaction to an unexpected and/or novel event, particularly one that is 

contrasted with another, more expected event (Teigen & Keren, 2003). This definition 

implies that surprise is a subjective experience, one that depends on a person’s current 

expectations. Thus, surprise can only properly be measured insofar as a person’s 

expectations can be measured. Indeed, updating does not occur in a vacuum – it depends 

largely on the mental model an observer is using to interpret their environment 
                                                

4 A version of this chapter has been published as Filipowicz, A., Valadao, D., Anderson, B., & 
Danckert, J. (2016) Rejecting Outliers: surprising changes do not always improve belief 
updating. Decision. Advanced online publication. DOI: 10.1037/dec000007. It is reproduced here with 
permission. 
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(Stöttinger Filipowicz, Danckert, et al., 2014; Collins & Koechlin, 2012; Lee & Johnson-

Laird, 2012).  

Previous research measuring the effect of surprise on updating has generally 

approximated mental models based on participant responses. As highlighted in Chapter 2, 

these approximations are often obtained by building ideal observers (O’Reilly et al., 

2013; Mars et al., 2008), or by fitting participant responses to computational models (e.g., 

Bayesian change-point models: Nassar et al., 2010, 2012; McGuire et al., 2014). A 

measure of surprise is then obtained by measuring the discrepancy between these mental 

model approximations, and the observations the mental model is attempting to predict – 

the larger the discrepancy, the higher the calculated surprise of the event. This research 

has consistently found that participants update more quickly with increasing 

discrepancies between their predictions and current observations, suggesting that surprise 

is positively and linearly related to updating (Nassar et al., 2010, 2012; McGuire et al., 

2014).  

There are, however, some questions related to the ubiquity of this relationship. Do 

we always update when faced with surprising events? As outlined in Chapter 2, Bayesian 

models of updating inherently assume that all new information is integrated equally in a 

mental model. As such, these models should, by design, always find a positive monotonic 

relationship between surprise and updating. In some cases however, we treat discrepant 

information with a sort of skepticism, and discount it when building a representation of 

our environment (De Gardelle & Summerfield, 2010). For example, when attempting to 

classify an array of objects based on color, participants were found to base their 

responses more on coherent objects in the array while rejecting the contribution of items 
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that deviated strongly from the rest (De Gardelle & Summerfield, 2010). Although these 

rules have primarily been found in studies of human perception, some researchers have 

argued that these tendencies are also present in decision making, leading us to sometimes 

treat highly surprising events as a type of ‘outlier’ (Summerfield & Tsetsos, 2015). 

Similarly, studies relating to heuristic decision making strategies find consistent 

examples of confirmation biases, situations in which surprising information is ignored in 

favor of information that supports a current mental model (Nickerson, 1998; Hollard & 

Massoni, 2015; Miller, Spengler & Spengler, 2015). This suggests that rather than blindly 

integrating any surprising information, there may be situations in which we can be 

resistant to highly surprising changes.  

The current chapter explores the relationship between surprise and updating in 

more detail. Using the Plinko task introduced in Chapter 2 to capture detailed measures 

of mental models, participants were exposed to two experiments in which distributions of 

ball drops changed at an unannounced point. Experiment 3.1 was meant to gain a general 

sense of how effectively participants could use the Plinko task to detect and update to 

changes. Experiment 3.2 specifically explores the relationship between surprise and 

updating. In contrast to prior work, updating was not always positively related to the 

degree of surprise. Instead, there were some situations in which surprise and updating 

were negatively correlated, such that, rather than integrate highly surprising events, 

participants devalued them.  
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3.2. Experiment 3.1: Methods 

Participants 

Thirty-seven undergraduates from the University of Waterloo (21 female; mean 

age = 20.07 years, SD = 2.06 years) participated in Experiment 3.1, with 18 participants 

assigned to a break condition (10 female, mean age = 19.55, SD = 1.50 years), and 19 

participants to a continuous condition (11 female, mean age = 20.58 years, SD = 2.06 

years; conditions explained below). 

 

Experimental conditions 

All participants completed a Plinko task in which they saw sequences of 400 ball 

drops that, unbeknownst to them, changed every 100 trials. The sequences were 

generated from four distinct probability distributions: 1) a Gaussian distribution with a 

mean of 18 and standard deviation of 6 (Wide Gaussian; note: the mean and variance 

measures refer to slot numbers), 2) a Gaussian distribution with a mean of 31 and 

standard deviation of 2 (Narrow Gaussian), 3) a bimodal distribution generated by mixing 

two Gaussians with different means (10 and 28 respectively) and the same standard 

deviation of 3 (Bimodal), and 4) a Weibull distribution with a shape parameter of 1 and 

scale parameter of 6 (Skewed). All participants were exposed to the same order of 

distributions: Wide Gaussian, Narrow Gaussian, Bimodal, and Skewed.  

Participants were assigned to either a break condition or a continuous condition. 

In the break condition, participants were exposed to each distribution in separate blocks. 

The purpose of this condition was to determine how effectively participants could learn 

each of the different distributions they were exposed to, and to limit the influence of 
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previous estimations. At the end of each block, participants were given an accuracy score 

that reflected their performance on the just completed distribution (i.e., their accuracy 

score after the most recent 100 trials). They then pressed a computer key when ready to 

begin the next block. At the start of each new block, a participant’s probability estimates 

(i.e., the bars they had drawn) were erased. New estimates were made (i.e., they were 

required to draw a new set of bars) before being exposed to the next distribution of ball 

drops. 

In the continuous condition, participants were exposed to the same order and 

sequences of ball drops as in the break condition, but were not given any breaks, 

accuracy feedback or other indicators between each of the distributions. The purpose of 

this condition was to have participants update to the same distribution changes as in the 

break condition, but relying solely on the information provided by new ball drops to 

update their estimates. In both conditions, participants were not given any information 

about the distributions they would be estimating and were not informed that any changes 

to the distributions would occur. 

 

Computing surprise 

As highlighted by Tiegen & Keren (2003), an event is only surprising insofar as it 

is contrasted with other, more expected events. Therefore, attempts to measure surprise 

need to take into account not only the probability assigned to an event, but how this 

probability contrasts with the probability assigned to other possible events. Information 

theory provides a definition of surprise that accounts for this contrast: the surprise, or 

‘surprisal’, is defined as the negative log probability of an event occurring under a 
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distribution of expectations (cf. Shannon, 1948; Attneave, 1959). This quantity represents 

the information contained by a particular event: the higher the surprisal, the more 

information is contained by the event that cannot be accounted for by a current mental 

model. This method has commonly been used to quantify surprise in learning tasks, 

primarily when participant expectations are characterized as continuous probability 

distributions (O’Reilly et al., 2013; Mars et al., 2008; Strange et al., 2005; Doya et al, 

2007).  

Given that participant distributions in the Plinko task were both discrete, and that 

participants were not required to draw bars under every slot (i.e., potentially leaving some 

slots with a value of 0), a pure measure of negative log odds could not be computed to 

characterize surprise. Instead, two complementary measures of surprise were used and 

compared to account for the discrete nature of participant distributions. 

The first measure used a modification of participant slot probability values to 

make them compatible with a measure of negative log probability. This was done by 

replacing slot values equal to 0 with an arbitrarily small number 1x10-10, which 

approaches 0, but still has a natural logarithm. 

As a second measure, weighted empirical log odds were used to compute surprise 

(Cox & Snell, 1989). The advantage of this measure is that it can be applied directly to 

discrete distributions, and does not require any modifications to participant responses. 

Although not entirely identical, odds and probabilities both provide information about 

likelihoods, and make predictions about how expected certain events are to occur.  
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To compute the weighted empirical log odds of a given probability value the 

empirical log odds (Elog) need to computed. The Elog E of any probability p is defined 

as: 

 

	
	

(3.1) 

 

If the frequency r is known of a specific event compared to the total number of events n 

that were used to compute p, E can also be defined as: 

 

	
	

(3.2) 

 

Elog can be weighted depending on the number of observations n that are used to 

compute p. The variance V of Elog is defined as: 
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of which the inverse can be used to compute a weight W: 
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	 	 (3.5) 

 

Since each distribution consisted of 100 ball drops, the weights for the wElog 

calculation were computed using variance as expressed in equation (3.5) with n = 100 for 

each distribution.  

Using these two measures to quantify surprise, a ‘surprise factor’ S was computed 

for a shift from any first distribution j to any second distribution k as the sum of the ratio 

of the surprise s of each slot i (computed using either NLP or wElog) of each of the two 

distributions: 

 

 
 

(3.6) 

 

This formula computes shifts that include unexpected events to be more 

surprising than shifts that omit previously observed events. This quantification of surprise 

was used to calculate how surprising each distribution shift was to each participant. With 

this calculation of surprise it is important to note that higher levels of surprise are 

represented by larger values of S when calculated using NLP, and smaller values of S 

when calculated using wElog. 

 

Êi = Ei ×Wi

Sjk =
sij
siki=1

40

∑



 35 

3.3. Experiment 3.1: Results 

Updating accuracy is worse with no breaks 

Performance differences were examined between the two conditions. Note that 

the objective evidence, the timing, and location of ball drops were identical in both 

conditions. If participants were simply using the ball drops as evidence and serially 

updating, there should be no difference between conditions.  A mixed factorial ANOVA 

with Trial Accuracy as a dependent variable, Distribution Trial Number (1 to 100) and 

Distribution Type (Wide Gaussian, Narrow Gaussian, Bimodal, Skewed) as within 

subject factors, and Condition (Break, Continuous) as a between subject factor revealed 

main effects of Trial Number (F(99,3465)=116.38, MSE=.007, p<.001), Distribution 

Type (F(3,105)=17.82, MSE=.64, p<.001), and Condition (F(1,35)=49.88, MSE=2.30, 

p<.001), and a three-way Trial Number x Distribution Type x Condition interaction 

(F(297,10395)=5.063, MSE=.004, p<.001), indicating that both the rate and accuracy 

with which each distribution was learned varied between distribution types across the two 

conditions.  

Separate factorial ANOVAs were computed to compare changes in trial accuracy 

between conditions for each distribution type. No main effects of Condition and no Trial 

Number x Condition interaction were expected for performance in the Wide Gaussian 

distribution given that this was the first distribution all participants were exposed to. 

However, main effects of Condition and Trial Number x Condition interactions were 

expected in each of the subsequent distributions.  

As expected, when comparing performance on the Wide Gaussian, there was a 

main effect of Trial Number (F(99,3465)=18.137, MSE=18.137, p<.001), but no main 
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effect of Condition (F(1,35)=1.85, MSE=.423, p=.182) and no Condition x Trial Number 

interaction (F(99,3465)=.504, MSE=.004, p>.99). However, in each of the subsequent 

distributions, in addition to main effects of Trial Number (for each distribution type all 

Fs>55, all ps<0.001), and Condition (across all distributions all Fs>28, all ps<.001), there 

were Trial Number x Condition interactions (across all distributions all Fs>5, all 

ps<0.001; Figure 3.1A).  
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Figure 3.1. Participant learning performance between break and continuous conditions. Panel A displays learning performance 
between participants assigned to the break condition (blue lines) and those in the continuous condition (red lines). The four probability 
distributions participants were exposed to (i.e., Wide Gaussian, Narrow Gaussian, Bimodal, and Skewed) are inset in the left graph. 
The solid lines represent mean accuracy for each condition while shading represents ± 1 standard error. Panel B displays the mean 
probability values participants assigned to each slot on each trial. The black dots represent the slot in which a ball fell on each trial.
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To explore these differences further, fit parameters were compared between 

conditions. Since no performance differences were observed between conditions when 

participants were exposed to the Wide Gaussian distribution (i.e., the first distribution), 

no differences were expected between fit parameters for this distribution. Corrected t-

tests showed no differences between conditions in the Wide Gaussian distribution on 

estimated last trial accuracy, learning rate, or starting values (all ps > .21). However, last 

trial accuracy and learning rates differed between conditions in all subsequent 

distributions (all ps < .012), with steeper learning rates and higher last trial accuracy in 

the break vs. the continuous condition. Starting values were different between conditions 

in the Bimodal and Skewed distributions, with starting values higher in the continuous 

than in the break condition (all ps < .001), but did not differ in the Narrow Gaussian 

distribution (p = .15; Table 3.1). 
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Table 3.1. Experiment 3.2 estimated performance parameters.  

 Wide Gaussian Narrow Gaussian Bimodal Skewed 

Conditions SV LR LTA SV LR LTA SV LR LTA SV LR LTA 

Break .47 .12 .73 .06 .14 .75 .17 .14 .78 .13 .13 .75 

Continuous .41 .23 .71 .12 .04 .52 .41 .03 .55 .31 .06 .55 

Note. SV: Start Value; LR: Learning Rate; LTA: Last Trial Accuracy 
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Participants can represent a number of distinct distributions 

Next, performance was examined to determine how accurately participants could 

represent different distributions. In the break condition, repeated measures ANOVAs 

comparing learning curve parameter fits between the four Distribution Types (Wide 

Gaussian, Narrow Gaussian, Bimodal, and Skewed) revealed no differences in estimated 

last trial accuracy (F(3,54)=1.15, MSE=.006, p=.338) or mean learning rates 

(F(3,54)=.31, MSE=.009, p=.818; Table 3.1). There were differences between mean start 

value estimates, primarily due to initial estimates in the Wide Gaussian distribution 

matching the ball drops they would be exposed to with higher accuracy (F(3,54)=22.2, 

MSE=.028, p<.001). These results demonstrate that participants can effectively represent 

a number of different distributions with equivalent accuracy (Figure 3.1A). 

 

Participants in the continuous condition demonstrate more hysteresis 

The same analysis was conducted on performance in the continuous condition. If 

participants are able to abandon their beliefs when faced with environmental change, last 

trial accuracy should be equivalent across all distributions, similar to the results from the 

break condition. If, however, previous events exerted an influence on updating, this 

should be reflected in differences in performance metrics between distributions. A 

repeated measures ANOVA on performance parameters in the continuous condition 

demonstrated significant differences in estimated last trial accuracy (F(3,51)=9.714, 

MSE=.130, p<.001), leaning rate estimates (F(3,51)=4.874, MSE=.154, p<.005), and 

starting values (F(3,51)=9.714, MSE=.130, p<.001; Figure 3.1A; Table 3.1). Taken 

together, these results demonstrate that, when given a break between distributions, 



 41 

participants learned each of the four distinct distributions with equivalent accuracy; 

however, when switched continuously between distributions, participants were unable to 

adapt their distributions to the same level of accuracy. 

These performance differences between the two conditions seemed to stem from 

participants in the continuous condition having their responses influenced by the previous 

events they had observed – in other words, the continuous group demonstrated a kind of 

hysteresis (cf., Hock, Bukowski, Nichols, Huisman, & Rivera, 2005) in which the just 

learned distribution exerted an influence on their capacity to learn new distributions. As 

is evident in Figure 3.1B, when switched to new distributions, participant estimates from 

the previously observed distribution lingered for a substantial number of trials after the 

switch. In contrast, participants in the break condition show little influence from previous 

events, primarily representing the probability of slots that had more recently received ball 

drops.  

 

Surprise positively predicts updating in the continuous condition 

Next, analyses were performed to examine the influence of surprise on a 

participant’s ability to update in the continuous condition. Surprise factors were 

calculated with both the modified NLP and wElog measures, using the distributions 

participants had drawn before being shifted to a new distribution as the numerator in 

equation 3.6 (i.e., distribution j), and the new distribution participants would be 

subsequently exposed to as the denominator (i.e., distribution k). To estimate the 

influence of surprise on updating, these surprise factors for each shift were compared 

with how accurately participants managed to subsequently represent the new distribution. 
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This comparison was measured using linear mixed effects models (one using the NLP 

measure and one using wElog to compute the value of s in equation 3.6; linear mixed 

effects models were analyzed using the lme4 R package; Bates, Mächler, Bolker, & 

Walker, 2015) that measured the influence of a surprise factor, prior to observing a new 

distribution, with a participant’s mean accuracy on this new distribution. These models 

included random intercepts and random slopes for each subject. Significance was 

measured by comparing the models to null models that assumed no influence of surprise 

on mean accuracy. 

As predicted by previous research, surprise was positively related to updating 

both using the NLP surprise metric (b = .001 ± SEM .001; χ2(1) = 4.12, p < .05, R2 = .06) 

and the wElog surprise metric (b = -.01 ± SEM .003; χ2(1) = 15.56, p < .001, R2 = .28;   

Figure 3.2). 
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Figure 3.2. Relationship between surprise factor (wElog) and updating in the 
continuous condition.  A surprise factor was calculated for each shift in the continuous 
condition and compared to how accurately participants managed to represent each new 
distribution. Surprise was positively related to updating accuracy in the continuous 
condition. The dotted line represents the best fitting regression line. 
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3.4. Experiment 3.1: Discussion 

Experiment 3.1 was meant to examine how participants updated in a Plinko 

environment where distributions of ball drops changed. When distribution changes 

followed breaks, participants were quickly and efficiently able to represent a number of 

different distributions with equivalent accuracy. This was in part due to there being very 

little residual influence from the distributions they had just seen. Conversely, participants 

in the continuous condition represented distributions that followed a shift less accurately. 

This poorer performance cannot simply be attributed to difficulties representing different 

types of distributions – participants in the break condition managed to represent all four 

distinct distributions with equivalent accuracy. Instead, the lack of breaks in the 

continuous conditions provoked a type of hysteresis, where participants were slower to 

abandon representations of observations they had previously seen.  

Previous research suggests that more surprising shifts could improve a 

participant’s ability to represent environmental changes. When the surprise of each shift 

was measured using a calculated surprise factor, as predicted by previous research, this 

value was positively correlated with updating accuracy. This initial result supports the 

notion that updating and surprise are positively correlated – the more unexpected a shift, 

the more participants abandon their representations of previous events in favor of new 

observations. 

However, the distributions in Experiment 3.1 differed in a number of different 

respects. In all cases, the means, variances, shapes, and degree of overlap between 

distributions differed, making it difficult to assess the specific contribution of surprise per 

se on a participant’s ability to detect changes and update accordingly. Experiment 3.2 
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addresses this limitation by providing a more controlled environment to measure the 

influence of surprise on updating. Distribution switches were controlled to vary on a 

single dimension (i.e., change in mean or in variance), all providing different levels of 

surprise, while holding other dimensions constant (i.e., shape and overlap).  

 

3.5. Experiment 3.2: Methods 

Participants 

Seventy-eight undergraduates (54 female, mean age = 19.64 years, SD = 1.59 

years) from the University of Waterloo participated in Experiment 3.2 in exchange for 

course credit. The University of Waterloo’s Office of Research Ethics approved the study 

protocol and participants gave informed consent before participating. 

 

Experimental conditions 

All participants performed a Plinko task in which they were exposed to a first 

Gaussian distribution of 100 ball drops, then switched to a second Gaussian distribution 

of 100 balls drops without any cues to indicate that a switch had occurred. Participants 

began the task by being exposed to either a wide Gaussian (mean=17, SD=6), or a narrow 

Gaussian distribution (mean=17, SD=1.9). After 100 trials of this first distribution, 

participants were then switched either to a wide distribution (mean=25, SD=6), or a 

narrow Gaussian (mean=19.5, SD=1.9). This resulted in four between subject conditions: 

two mean shift conditions (narrow-narrow, and wide-wide), and two variance shift 

conditions (narrow-wide, and wide-narrow; Figure 3.3). 
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Figure 3.3. Experimental conditions – Experiment 3.2. Participants were assigned to 
one of four switch conditions. Participants saw a first distribution of 100 ball drops that 
was generated from either a wide or narrow Gaussian distribution. They were then 
switched to a second Gaussian distribution of 100 ball drops that either changed in mean 
while holding the variance constant (i.e., wide-to-wide and narrow-to-narrow conditions) 
or changed in variance while holding the mean constant (i.e., wide-to-narrow and narrow-
to-wide). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wide-to-Narrow Wide-to-Wide Narrow-to-Narrow Narrow-to-Wide



 47 

In all conditions, the magnitude of each shift condition was kept equivalent, while 

manipulating the amount of surprise expected from each shift. Shift magnitude is defined 

as the percent overlap between the first and second distribution of ball drops. Overlap 

was computed using the same formula used to compute participant accuracy (eq. 2.2). 

The overlap between the continuous distributions in each of these switches was nearly 

identical, with roughly 50% overlap between the first and second distributions. The 

discrete distributions generated from these continuous distributions were also nearly 

identical in their overlap, with overlap between the first and second distributions ranging 

between 44% and 46%. 

Although equivalent in their overlap, these distribution shifts varied in their 

calculated surprise factor. Using Equation 3.6, the surprise factor s for each shift 

condition was computed using both the modified negative log probability measure (NLP), 

and the weighted empirical log odds measure (wElog). As is evident in Table 3.2, both 

measures predict a similar trend for the surprise factors of each switch condition, with the 

highest surprise factor being predicted for the narrow-wide condition, mid-range surprise 

for both mean shifts (narrow-narrow and wide-wide), and the lowest surprise for the 

wide-narrow condition.  
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Table 3.2. Comparison of expected surprise measures for each switch type. 

Surprise Measure Narrow-Wide Narrow-Narrow Wide-Wide Wide-Narrow 

NLP 124.80 42.71 39.98 26.99 

wElog* 31.51 44.86 52.00 60.02 

Note. NLP: Negative Log Probability; NLO: Negative Log Odds; wElog: Weighted 
Empirical Log Odds; *Lower values indicate higher predicted surprise. 
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3.6. Experiment 3.2: Results 

Updating is worst for low surprise shifts 

Updating accuracy was first examined between the different surprise conditions. 

Separate mixed factorial ANOVAs were run for each distribution participants were 

exposed to (First or Second distribution), with Trial Accuracy as a dependent measure, 

Trial Number as a within subjects factor, and Condition as between subjects factor.  

When examining performance between conditions in the first distribution, there 

were significant main effects of Condition (F(3,74) = 5.852, MSE = 4.712, p <.002) and 

Trial Number (F(99,7326) =  64.749, MSE = .015, p < .001), and a Trial Number x 

Condition interaction (F(99,7326) = 3.227, MSE = .015, p <.001), indicating that there 

were overall differences between groups in mean accuracy over the course of the first 

distribution, and that the rate at which participants managed to learn the first distribution 

varied between switch conditions. Performance in the second distribution also yielded 

main effects of Condition (F(3,74) = 10.41, MSE = 11.87, p <.001) and Trial Number 

(F(99,7326) =  18.276, MSE = .038, p < .001), but no Trial Number x Condition 

interaction (F(99,7326) = .918, MSE = .004, p = .837), suggesting that although mean 

accuracy differed between switch conditions, their accuracy changed at a similar rate 

over the course of the second distribution (Figure 3.4).  
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Figure 3.4. Accuracy performance for each surprise condition. Although all groups 
managed to learn the first distribution with equivalent accuracy, participants exposed to 
the low surprise, wide–narrow shift (i.e., W-N; blue line) finished the second distribution 
with the lowest accuracy of all four groups. There were no accuracy differences between 
participants in the medium-surprise, narrow–narrow and wide–wide conditions (i.e., N-N 
and W-W; purple and pink lines, respectively) and the high surprise, narrow–wide 
condition (i.e., N-W; green line). The lines represent group means for each respective 
condition on each trial and shading represents ±1 standard error of the mean.  
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When exposed to both distributions, post hoc paired samples t-tests indicated that 

raw accuracy values increased from the first trial of each distribution (mean accuracy first 

distribution: .38, second distribution: .48), to the last trial (mean accuracy first 

distribution: .70, second distribution: .60; all ps < .001), indicating that participants were 

effectively learning the distributions they were observing. This demonstrates that the 

changes participants made to their distributions, rather than being random, were directly 

related to the events they observed in the task environment. 

One-way ANOVAs and Tukey HSD post-hoc tests were used to examine how 

participant performance fit parameters differed between different switch conditions. In 

the first distribution, start values differed between switch conditions (F(3,74) = 5.591, 

MSE = .181, p <.002), with higher start accuracy in the wide-narrow condition of the first 

distribution than both the narrow-narrow and narrow-wide conditions (all ps <.04), and 

higher start accuracy in the wide-wide condition than in the narrow-wide condition (p 

<.04). However, there were no differences between conditions when examining their 

learning rates (F(3,74) = .302, MSE = .005, p = .824) or estimated last trial accuracy 

(F(3,74) = 1.953, MSE = .021, p = .128). This indicates that although the groups differed 

in their starting accuracy, participants in all switch conditions learned the first 

distribution they were exposed to with a similar level of accuracy by the end of the 100 

trials (Figure 3.4; see Table 3.3 for mean performance parameters). 
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Table 3.3. Experiment 3.2 estimated performance parameters. 

 First Distribution Second Distribution 

Switch Type SV LR LTA	 SV LR LTA 

Narrow-Narrow .35 .07 .71 .50 .05 .63 

Wide-Wide .46 .08 .67 .51 .02 .63 

Narrow-Wide .30 .05 .65 .51 .04 .62 

Wide-Narrow .51 .07 .72 .35 .01 .48 

Note. SV: Start Value; LR: Learning Rate; LTA: Last Trial Accuracy  
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When comparing participant performance parameters for the second distribution, 

there were differences in switch condition starting values (F(3,74) = 6.308, MSE = .117, 

p <.001) and estimated last trial accuracy (F(3,74) = 5.811, MSE = .098, p <.002). 

However, as indicated by the lack of Trial Number x Condition interaction in the overall 

ANOVA, learning rates did not differ between switch conditions (F(3,74) = 1.451, MSE 

= .006, p = .235).  

As predicted, the wide-narrow switch group, which had the lowest computed 

surprise, had the lowest overall estimated last trial accuracy when compared to all other 

switch groups (all ps <.01) and was also the group with the lowest overall start value (all 

ps <.007). Additionally, as expected, participants in the mean shift conditions (wide-

wide, narrow-narrow) did not differ on any fit parameters (all ps > .50). However, 

contrary to expectations, participants in the high surprise condition (narrow-wide), 

although performing better than participants in the low surprise condition, did not 

perform any better on any parameters than participants exposed to mean shifts (all ps > 

.74; Table 3.3). 

 

High surprise shifts do not always lead to better updating 

To understand why participants in the high surprise condition did not show any 

clear updating advantages over participants in the medium-surprise conditions, the same 

relative surprise factors computed in Experiment 3.1 were compared with updating 

accuracy. These individual surprise factors were computed using the distributions 

participants had drawn after observing all 100 trials of the first distribution as the 

numerator in equation 3.6, and the second computer distribution they would be exposed 
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to on the next 100 trials as the denominator. Each participant’s surprise factor was then 

compared with their estimated last trial accuracy on the second distribution as an estimate 

of how accurately they managed to update. 

  As is evident in Figure 3.5, participants with both the lowest and highest levels 

of estimated surprise seemed to perform more poorly than participants with mid-range 

surprise values. Non-linear regressions comparing the two measures of surprise and 

estimated last trial accuracy on the second distribution found significant quadratic 

relationships when using both NLP (b2 = -.0004, b = .0029; t(75) = -5.458, p <.001, R2 = 

.27) and wElog (b2 = -.0006, b = .0058; t(75) = -5.575, p <.001, R2 = .48; Figure 3.5). 
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Figure 3.5. Relationship between surprise factor (wElog) and updating in 
Experiment 3.2. Surprise factor calculated using weighted empirical log odds and 
updating accuracy plotted for each participant. Updating accuracy was quadratically 
related to surprise factor, with both high and low surprise factor values predicting poor 
updating accuracy. This trend was due to a positive relationship between surprise factor 
and updating accuracy in the low- and medium-surprise conditions (wide-to-narrow, 
wide-to-wide, and narrow-to-narrow) and a negative relationship between surprise factor 
and updating accuracy in the highest surprise condition (narrow-to-wide). The dotted 
lines in the panels below the main figure represent the regression line for each individual 
surprise condition. 
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This quadratic trend seemed driven by a negative relationship between surprise 

and accuracy in the narrow-wide switch condition compared to all other conditions. To 

test this, two separate linear regressions were computed: one for participants in the low-

mid surprise groups (wide-wide, narrow-narrow, and wide-narrow), and one for 

participants in high surprise group (narrow-wide). For the low-mid surprise groups, 

similar to participants in the continuous condition in Experiment 3.1, higher surprise 

values were related to better estimated last trial accuracy using both the NLP measure (b 

= .003; t(57) = 3.941, p <.001, R2 = .20) and wElog (b = -.012; t(57) = -6.940, p <.001, R2 

= .45). In contrast, a linear regression comparing surprise and estimated last trial accuracy 

in the narrow-wide condition, demonstrated the opposite relationship, with higher 

surprise predicting lower estimated last trial accuracy (NLP: b = -.002; t(17) = -5.456, p 

<.001, R2 = .62; wElog: b = .022; t(17) = 5.206, p <.001, R2 = .59; Figure 3.5).  

To better understand what was driving these condition differences, a closer look 

was taken to see how participants in each condition integrated varying levels of 

surprising information. The nature of our high surprise shift was to increase the variance 

of the second distribution relative to the first, exposing participants to balls falling in 

previously unused slots. Participants in the high surprise condition should therefore see a 

higher number of surprising events when switched to the second distribution, largely 

driven by balls falling in slots under which they had not drawn any bars (zero-probability 

slots), and should thus make larger and more frequent changes to their distributions. To 

examine this, the ‘change magnitude’ on each trial was computed as one minus the 

proportion of overlap between a participant’s distribution on the current trial and their 

distribution on the previous trial (with a value of 0 indicating that the participant had 
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made no change to their distribution). To measure the frequency of changes, the number 

of instances in which participants made changes to their distributions was also counted 

(i.e., the number of instances where change magnitude was > 0). 

When learning the first distribution, participant mean change magnitude did not 

differ between conditions (wide-narrow = .015, wide-wide = .031, narrow-narrow = .021, 

narrow-wide = .054; ANOVA F(3,74) = .901, MSE = .006, p = .445), and while 

participants first exposed to wide Gaussians made nominally more frequent changes to 

their distributions, the mean number of changes did not differ significantly between 

conditions (wide-narrow = 41.6, wide-wide = 43.3, narrow-narrow = 28.5, narrow-wide = 

27.8; ANOVA F(3,74) = 2.15, MSE = 1336.6, p = .101). 

 When switched to a second distribution, as expected, the mean number of balls 

falling in zero-probability slots differed across conditions (Mean ball drops in zero-

probability slots: wide-narrow =  .42, wide-wide = 4.60, narrow-narrow = 2.35, narrow-

wide = 20.32; ANOVA F(3,74) = 10.85, MSE = 1578.9, p < .001) with participants in the 

narrow-wide condition experiencing more ball drops in zero-probability slots after a 

switch had occurred than any of the other conditions (all ps < .001). However, despite the 

fact that participants in the high surprise condition experienced more surprising events 

after a switch in distributions, mean change magnitude did not significantly differ 

between conditions (Mean change magnitude: wide-narrow =  .006, wide-wide = .006, 

narrow-narrow = .009, narrow-wide = .053; ANOVA F(3,74) = 1.513, MSE = .011, p = 

.218), and participants in all conditions made the same average number of changes to 

their distribution (Mean number of distribution changes: wide-narrow =  27.1, wide-wide 
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= 28.6, narrow-narrow = 16.9, narrow-wide = 28.4; ANOVA F(3,74) = .824, MSE = 

626.1, p = .485).  

These results suggest that the negative correlation between surprise and updating 

observed in the narrow-wide condition could be due to participants choosing not to 

integrate highly surprising events. If this were the case, the variance of the last 

distributions drawn by participants should be narrower than the wide distribution 

presented to them after the switch. This was indeed the case. On average, participants’ 

estimates had smaller standard deviations (SD: 6.03 slots) than the actual standard 

deviation of the discrete wide Gaussian distribution presented to them (Computer SD: 

6.99 slots; t(18) = -2.10, SE = .46, p < .05). 

Following from this observation, the next analysis measured whether or not the 

tendency to devalue surprising events generalized across all subjects in our experiment – 

in other words, do participants tend to discount surprising events in all four conditions, 

not just the narrow-wide condition? To do this, the mode of a participant’s distribution 

was calculated on each trial by identifying the slot with the highest assigned probability 

value. On trials where participants had multiple bars with the same highest probability 

value, the mean position of these bars was used as a proxy for the mode. For each trial, 

the absolute difference between a participant’s mode and the location of a ball drop on 

the same trial was calculated. Next, the proportion of changes participants made to their 

estimates of the underlying distribution was computed when a ball fell at different 

distances from their mode. As is evident from Figure 3.6, participants made the fewest 

changes to their distributions when balls fell either near or far away from the mode of 

their distribution. Fewer changes are to be expected at the mode given that these events 
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represent confirmatory evidence. However, the relatively few changes made when balls 

fell far from the mode is suggestive of discounting of outliers (Figure 3.6). 
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Figure 3.6. Proportion of changes made compared to distance from mode. On each 
trial, participants’ mode was identified as the slot with the highest estimated probability. 
The absolute distance was calculated as the distance a ball fell from the participants’ 
mode on trial t, whereas the proportion of change was calculated using the changes 
participants made to their distributions on trial t +1. The black dots represent mean 
proportion values, whereas shading represents ±95% confidence intervals. 
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When participant post-questionnaire responses were examined, a chi-square test 

of independence did not find any performance differences between participants that 

reported detecting a change to the ball distributions compared to those who had not 

detected a change (proportion detected: wide-narrow =  .53, wide-wide = .53, narrow-

narrow = .85, narrow-wide = .76; χ2(3, N = 71) = 6.714, p = .082). However, 

approximately one quarter of the participants reported that they made adjustments based 

on observations from the last few trials (in some cases, using the word “outlier” to refer 

to unexpected ball drops that they chose not to integrate in their estimates). A mixed 

effects logistic regression was used to measure the influence of factors that contributed to 

the likelihood that participants made changes to their distributions, including the 

contribution of the surprise experienced on previous trials. The factors included were the 

participant’s current trial, and the surprise participants had experienced on prior trials. As 

is evident from Table 3.4, the surprise value from the immediately preceding trial (n – 1) 

had the greatest influence on the likelihood that a participant would make an adjustment 

to their distribution. However, similar to participant reports, trials as far as three trials 

back (n – 3) made additional, independent, statistically significant contributions (Table 

3.4). When the same logistic regression was performed on each separate surprise 

condition, this effect was primarily present in participants in the high surprise condition, 

a condition where surprising events were more commonly observed, whereas participants 

in the low and medium surprise conditions relied mostly on the surprise from trial n – 1 

(Table 3.4). 
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Table 3.4. Influence of trial and surprise on likelihood of updating. 

Predictor All Conditions Wide-Narrow Wide-Wide Narrow-Narrow Narrow-Wide 

Trial -.009 *** -.010 *** -.009 *** -.010 *** -.007 *** 

n – 1 .067 *** .055 *** .045 ** .082 *** .074 *** 

n – 2 .007 * .017 * .006 -.016 .010 * 

n – 3 .009 ** .005 .003 .006 .016 *** 

Note. Predictors include the general influence of trials, along with the influence of surprise 
on previous trials (up to trial n – 3). The values in the cells represent beta weights for each 
predictor. *** p < .001, ** p < .01, * p < .05 
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3.7. Experiment 3.2: Discussion 

The goal of Experiment 3.2 was to explore how the surprise of an environmental 

shift influences mental model updating. The first result suggests that switches signaled by 

the absence of previously observed events (low surprise), although similar in magnitude, 

were learned less accurately than shifts signaled primarily by the presence of new events. 

This result mirrors performance from some of the participants in Experiment 1 that had 

started with wide Gaussian priors, but had difficulty adjusting the width of their estimates 

when presented with a narrow Gaussian distribution. Additionally, consistent with 

previous research and similar to findings from Experiment 3.1, there were some 

situations   – the low and medium surprise conditions – in which updating was positively 

correlated with surprise. Taken together, these results support previous research 

suggesting that, under certain circumstances, surprising observations lead to more 

efficient updating (Nassar, 2010; McGuire et al., 2014). However, in addition to these 

positive correlations, the opposite trend was found in the highest surprise condition, 

where higher levels of surprise predicted poorer updating performance (Figure 3.5). 

These results demonstrate that although surprise can play an important role in the 

updating process, highly surprising events do not always predict better updating.  

It is possible that the negative correlation between surprise and updating in the 

high surprise condition stems from a form of outlier devaluation, in which participants 

chose not to integrate highly surprising events into their estimates. This notion is 

supported by studies demonstrating that participants tend to discount highly discrepant 

exemplars when categorizing events (De Gardelle & Summerfield, 2011; Summerfield & 

Tsetsos, 2015; Wei & Stocker, 2015). Participants in the highest surprise condition 
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seemed to take more previous events into consideration when making changes to their 

distributions, rather than relying solely on the last trial seen, as was primarily the case in 

the other conditions. When asked on the post-experimental questionnaire about the 

strategies participants used to update their estimates, approximately one quarter of the 

participants reported waiting for the same event to occur a number of times in quick 

succession before committing to a change (some using the word “outlier” to describe 

unexpected events that they chose not to integrate).  

This last finding is particularly important, as outlier devaluation is not a part of 

any current model of dynamic mental model updating. Current models suggest that any 

surprising event should increase a person’s propensity to update (Nassar et al., 2010; 

McGuire et al., 2014; O’Reilly et al., 2013). These models were built to fit tightly 

controlled experimental environments, where changes are expected, are very similar in 

their nature (e.g., consist primarily of mean shifts), and where participants are encouraged 

to make changes to their beliefs on a trial-by-trial basis. When some of these constraints 

are removed, surprising information can be treated differently than predicted by these 

highly controlled environments. 

Even though participants in this experiment were not made explicitly aware that 

changes would occur, some parallels can be drawn with previous research. In the mean 

shift conditions, which most closely match previous work, surprise was positively related 

to updating. However, this was not the case in one of the variance conditions, suggesting 

that the type of change participants observe can have implications in the way they treat 

surprising information. This is not to suggest that all surprising information is devalued, 
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merely that the type of change needs to be considered when attempting to measure the 

influence of surprise on updating. 

 

3.8. Discussion 

The goal of Chapter 3 was to examine some of the factors that lead us to detect 

changes in the environment. The results from Experiment 3.1 and 2.2 demonstrate that in 

some situations, surprise can be positively related with updating; however, some highly 

surprising changes can be also be rejected or devalued. 

One explanation for these results is that we focus only on the features we believe 

we need, rather than encoding all events equally. Proponents of the ‘efficient coding 

hypothesis’ suggest that we weight perceptual events in proportion to the probability of 

their occurrence (Barlow, 1961; Wei & Stocker, 2015). In essence, we focus primarily on 

modal elements of a distribution. This hypothesis helps integrate the results from 

Experiments 3.1 and 2.2 with previous research. Participants in the continuous condition 

of Experiment 3.1, and those from Experiment 3.2 exposed to changes signaled by mean 

shifts tend to update depending on the level of surprise prompted by the shift. In all of 

these conditions, the modal elements changed between distributions. These change 

properties are also found in many of the previous studies that have reported positive 

relationships between surprise and updating (Nassar et al., 2010, 2012; O’Reilly et al., 

2013; McGuire et al., 2014). However, in the variance shift conditions of Experiment 3.2, 

although the magnitude of the distribution’s change was similar to that of the mean shifts, 

the modal elements of each distribution remained the same. As a result, participants in 

these conditions were either worse overall, or tended not to give as much weight to highly 
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unexpected events. The efficient coding hypothesis provides a plausible explanation for 

these results, and could potentially apply to the way in which we use information to 

inform, and update, our mental models (Summerfield & Tsetsos, 2015). 

The results from this chapter are also reminiscent of the ‘Goldilocks effect’ from 

infant learning studies (Kidd, Piantadosi, & Aslin, 2012; Kidd, Piantadosi, & Aslin, 

2014). This research finds that infant attention is drawn to events that are neither too 

simple (i.e., already known, providing low surprise), nor too complex (i.e., highly 

unknown, or providing high surprise), choosing instead to focus on events providing a 

moderate level of complexity. Mental model updating could potentially operate within a 

similar trade-off: maximizing information gain (i.e., integrating surprising information) 

while also minimizing mental model complexity (i.e., devaluing or ignoring information 

that is too surprising and difficult to integrate into an existing model). Computational 

accounts that take this kind of approach, trading off being receptive to change while also 

being robust to overly complex information, could potentially provide a better 

characterization of the processes underlying mental model updating. 

Taken together, the results from this chapter provide important insights into the 

factors that can lead us to detect environmental change. A better understanding of the 

situations that lead people to integrate or ignore surprising information will help develop 

more accurate models of dynamic updating. 
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Chapter 4: The Influence of Brain Damage on Exploration 

4.1. Introduction 

Chapters 2 and 3 examined aspects of the first two components required for 

updating: building a mental model, and detecting relevant changes in the environment. 

This next chapter examines the mechanisms involved in exploring alternative mental 

models once a discrepancy between a current model and observations has been detected. 

The motivation for this chapter comes from updating deficits observed in patients with 

right hemisphere brain damage. Previous research has suggested that these deficits could 

be classified as problems of exploration, rather than difficulties with either mental model 

building, or change detection (Danckert et al., 2012; Sepavhand , Stöttinger, Danckert, & 

Anderson, 2014; Filipowicz, Anderson, & Danckert, 2016). The aim of the following 

study was to characterize the exploratory processes used by different groups of brain 

damaged patients to examine this relationship in more detail. This introduction begins by 

highlighting the updating deficits observed in right brain damaged (RBD) patients, and 

then introduces a computational approach to characterize exploratory processes.  

A growing body of research demonstrates that right hemisphere lesions impair 

mental model updating (Danckert et al., 2012; Stöttinger, Filipowicz, Marandi, 2014; 

Geng & Vossel, 2013; Decety & Lamm, 2007; Vocat, Saj, & Vuilleumier, 2013; 

Filipowicz et al., 2016). One of the first studies to test this notion directly had RBD 

patients play the children’s game ‘rock-paper-scissors’ (RPS) against a computer 

opponent that adopted changing play strategies (Danckert et al., 2012). The computer 

began by playing a uniform strategy, in which each option (‘rock’, ‘paper’, and 

‘scissors’) was played with equal frequency, before switching to a moderately biased 
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strategy (50% rock), and finally a strongly biased strategy (80% paper). Switches 

occurred at unannounced points throughout the task and patients were instructed to win 

as often by possible by attempting to exploit any strategies they may notice in the 

computer’s play. Both healthy controls and left brain damaged (LBD) patients managed 

to update to the task’s changing contingencies, with some LBD patients actually 

outperforming healthy controls. In contrast, even when shifted to a strong bias, in which 

‘paper’ was played 80% of the time by the computer, RBD patients had much more 

difficulty updating, with many patients continuing to play randomly during this highly 

biased portion of the task (Danckert et al., 2012).  

Although providing evidence for an updating deficit in RBD patients, it was 

unclear from this study whether the observed problems were due to a general inability to 

learn environmental statistics, or were more specifically related to a problem of updating. 

To address this question, Stöttinger and colleagues (2014) had RBD patients perform a 

very similar ‘rock-paper-scissors’ task, this time having the computer start play with a 

strongly biased strategy (80% paper), before switching to a different highly biased 

strategy (80% rock). RBD patients had less difficulty exploiting the first bias, but more 

difficulty updating to the second bias (Stöttinger, Filipowicz, Marandi, et al., 2014). If the 

deficits observed in the original study were due to a general problem with learning 

probabilities, RBD patients should not have been able to learn either strategy.   

The results discussed thus far dealt with probabilistic information. In a second 

experiment, patients performed a perceptual updating task to test whether or not the 

updating deficits observed in RBD patients were generic. In this task, patients were 

presented with a series of images that gradually morphed from one object (e.g., a swan) 
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to another (e.g., a cat) passing through a midpoint of perceptual ambiguity. Patients were 

informed that the images would be changing and were asked to tell the experimenter what 

they saw on each image. Updating in this task was measured as the number of images a 

patient saw before identifying the second object. They found that RBD patients required 

more images to identify a second object than either healthy controls, or LBD patients. 

This was not due to a failure to detect changes in the morphing images. The RBD patients 

reported differences in images as they were changing, but interpreted those changes in the 

context of their initial perceptual representation of the first object they had seen. 

Additionally, RBD patient updating performance on this picture morphing task was 

correlated with performance on the RPS task, such that poor performance on one task 

predicted poor performance on the other. No such correlations were found for either HCs 

or LBD patients (Stöttinger, Filipowicz, Marandi, et al., 2014). 

These results support the general claim that the right hemisphere plays an 

important role in mental model updating. However, questions remain regarding the parts 

of the updating process impaired by RBD. Hints can be gleaned from previous research. 

Right hemisphere patients were able to learn a strong bias in their opponent in the ‘rock-

paper-scissors’ game when it was the first strategy they were exposed to, suggesting the 

observed deficits cannot simply be attributed to problems building mental models. 

Additionally, problems in updating mental models in RBD do not seem related to an 

inability to detect environmental changes – RBD patients noticed and reported changes to 

the gradually morphing images. Instead, RBD updating deficits seem better described as 

difficulties exploring alternative mental models once a current model is deemed to be no 

longer valid. The RBD patients in Danckert and colleague’s (2012) original study who 



 70 

presented with updating difficulties were found to explore a very limited space of 

possible ‘rock-paper-scissors’ strategies in response to a change in the computer’s play. 

The few RBD patients who did manage to update were those who explored the largest 

area of strategy space (Danckert et al., 2012). A subsequent computational analysis of 

this data found that RBD patients had difficulty settling on a new effective play strategy 

to match the computer’s plays (Sepavhand et al., 2014). This was due in part to a 

tendency to quickly abandon a strategy when it was not supported by task outcomes. 

Given the stochastic nature of the ‘rock-paper-scissors’ task, this approach to strategy 

selection would make it difficult to find new, reliable strategies. 

The work discussed above suggests that RBD primarily hinders the ability to 

explore novel hypotheses when a current mental model fails to accurately represent 

regularities in the environment. To examine this possibility, it becomes necessary to 

characterize the exploratory policies used by RBD patients to determine how they differ 

from LBD patients and healthy controls. Accurately describing these exploratory policies 

has been challenging to researchers interested in mental model updating (Collins & 

Koechlin, 2012; Wilson et al., 2010; Glaze et al., 2015; McGuire et al., 2014; O’Reilly, 

2013; Behrens et al., 2007; O’Doherty, Dayan, Schultz, Deichmann, Friston, & Dolan, 

2004). One particular challenge is appropriately characterizing the trade-off between 

either incrementally changing or abandoning a mental model when faced with model 

discrepant information.  

Computational models of reinforcement learning (RL) propose that mental 

models change on an observation-by-observation basis, incrementally changing with the 

feedback received from the environment (O’Doherty et al., 2004; Daw et al., 2006; 
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Sutton & Barto, 1998). Although computationally efficient, RL updating is relatively 

slow – a current mental model needs to be ‘unlearned’ before a new one can be learned. 

Reinforcement learning models are also prone to integrating any feedback, making them 

vulnerable to noisy and stochastic environments. While these classes of models seem to 

explain some of the driving principles behind the way mental models are built (Daw et 

al., 2006), they do not provide a full account of the way they are updated. 

Recent research has demonstrated that humans generally update more rapidly than 

predicted by strict RL models (Collins & Koechlin, 2012; Sepavhand et al., 2014; 

Donoso et al., 2014). Collins and Koechlin (2012) developed a computational model of 

adaptive behaviour and executive control (dubbed the PROBE model) that updates a 

mental model by evaluating whether or not it should be abandoned, rather than ‘tweaked’ 

or modified. The PROBE model proposes that at any given point, a mental model is used 

to interact with an environment. If this model is supported by observations, it is 

considered reliable, and the agent is considered to be exploiting this reliable mental 

model. In addition to considering this mental model, the reliability of alternative, 

counterfactual mental models are also considered and compared with current 

observations. These alternatives are based on mental models that were previously deemed 

reliable. When a current mental model no longer matches what is observed in the 

environment, signaling a need to adopt a different model, the agent enters an exploration 

phase, where information from previous mental models are used to find the mental model 

that best exploits the observed changes.  

Whereas RL models assume incremental changes to an existing mental model, the 

PROBE model explores the possibility of alternative candidate models. Although 
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complex, the PROBE model has been validated as a more complete characterization of 

the processes involved in updating than many other classes of computational models of 

updating (Collins & Koechlin, 2012; Donoso et al., 2014).  

The goal of the current study was to test whether updating deficits in RBD could 

be attributed to difficulties with exploring new mental models. Both RBD and LBD 

patients performed an updating task in which they learned stimulus-action mappings that 

changed at unannounced points throughout the task. Their performance was fit using both 

an RL model and the PROBE model to characterize the exploratory strategies used by the 

different patient groups. In addition to these behavioural differences, patient brain scans 

were also compared to examine the contribution of specific brain lesions to any updating 

deficits observed.  

Neuroimaging studies of updating, including a study of the PROBE model, have 

identified a network of frontal brain regions involved in the three different aspects of 

updating. In this network, building and maintaining a mental model is driven by a 

connection between the ventral striatum and ventromedial prefrontal cortex (Daw et al., 

2006; Kolling, Behrens, & Mars, 2012; Donoso et al., 2014). The decision to change is 

represented in the medial prefrontal cortex, including the dorsal anterior cingulate 

(O’Reilly et al., 2013; Behrens et al., 2007; McGuire & Kable, 2015; McGuire et al., 

2014; Donoso et al., 2014), and the exploratory component of updating, particularly the 

evaluation of alternative mental models, is driven by anterior and lateral prefrontal 

regions (Donoso et al., 2014; Koechlin & Summerfield, 2007; Daw et al., 2006; 

Domenech & Koechlin, 2015). In addition to these frontal regions, the inferior parietal 

lobule has also been consistently implicated in the networks involved in updating 
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(Danckert et al., 2012; Stöttinger et al., 2015; O’Reilly et al., 2013; McGuire et al., 2014). 

Its role seems primarily involved in representing mismatching or surprising events with 

activity during updating closely linked to activity in the medial prefrontal cortex 

(O’Reilly et al., 2013). 

Since updating deficits in RBD seemed related to problems of exploration, and 

that these functions have been linked to regions of frontal cortex, an attempt was made to 

include patients whose primary site of damage was found in regions of frontal cortex. 

These patients performed an updating task to try and identify the parts of the updating 

process that are impaired, and the brain regions associated with these deficits.  

 

4.2. Experiment 4.1: Methods 

Participants 

Four groups of participants were recruited to participate in our study: RBD 

patients, LBD patients, healthy older controls (HC-O) and healthy younger controls (HC-

Y).   

Patients with a documented history of stroke extending to the right or left frontal 

cortex were recruited from the Neurological Patient Database at the University of 

Waterloo. A total of 20 patients participated in the study (11 RBD and 9 LBD). Data 

from three patients were excluded. Two patients (one LBD and one RBD patient) could 

not correctly repeat the task instructions, and were unable to complete the initial trials of 

the task. One RBD patient was subsequently excluded when no discernable lesion could 

be identified on the available brain scans. The final patient sample comprised 17 patients 

(9 RBD, 8 LBD). All patients were tested at least three months post-stroke. Complete 
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patient information can be found in Tables 4.1 and 4.2, and lesions traces are displayed in 

Figures 4.1 and 4.2. 
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Table 4.1 Patient demographics for RBD group 
ID Sex MoCA Age Education 

(Years) 
Months 
Since 
Stroke 

Lesion Lesion 
Volume 
(voxels) 

228* F 27 85 14 68 F, T, Ins†, BG, RO 17,450 
384* M 27 41 12 35 F, T, Ins†, BG, RO, 

Cereb 
13,441 

423 M 26 62 10 53 F, T, P, O, Ins†, BG, 
RO 

31,075 

449 M 26 69 18 48 F, T, O, Ins, BG, 
RO 

2,318 

478 F 19 56 17 48 F, Ins 849 
632 F 27 55 17 32 F 1,578 
649* M 27 70 14 13 F 644 
771 M 23 60 12 14 F 145 
874 M 27 55 15 3 F, T, Ins†, BG, RO 12,131 
 
 
Table 4.2 Patient demographics for LBD group 
ID Sex MoCA Age Education 

(Years) 
Months 
Since 
Stroke 

Lesion Lesion 
Volume 
(voxels) 

73* M 13 75 9 3 F, T, Ins†, BG, RO 33,464 
110 M 26 63 12 84 F, Ins, BG 4,131 
269* F 22 75 12 57 F, T, Ins†, BG 1,833 
414* M 17 74 12 54 F, T, Ins†, BG, RO, Th 16,566 
799* M 25 80 11 7 F, Ins†, Cereb 2,400 
872 M 28 71 10 6 F, P, BG 6,963 
894 M 21 62 12 3 F, T, Ins 1,703 
898* M 22 66 8 3 F, T, Ins†, BG, RO 9,352 
Note. Sex: F = female, M = male; Fr = frontal; T = temporal; P = parietal; O = occipital; 
Ins = insula († indicates the inclusion of anterior insular damage); BG = basal ganglia; RO 
= rolandic operculum; Cereb = cerebellum; Th = thalamus; ID numbers with a * indicate 
patients that were identified as ‘Poor Updaters’. 
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Figure 4.1. Traces of right brain damaged (RBD) patient lesions. Lesion traces for all 
nine RBD patients superimposed on an MNI template. Patient numbers marked with a * 
indicate patients classified as ‘Poor Updaters’. 
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Figure 4.2. Traces of left brain damaged (LBD) patient lesions. Lesion traces for all 
eight LBD patients superimposed on an MNI template. Patient numbers marked with a * 
indicate patients classified as ‘Poor Updaters’. 
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Eighteen older healthy controls (HC-O) were recruited from the Waterloo 

Research in Aging Participant Pool and had no history of neurological or psychiatric 

illness (11 females, mean age = 73.72, age range = 63-87).  Patients and HC-O 

participants were paid $10 per hour of study. 

In addition to older controls, a group of young healthy controls (HC-Y) comprised 

of 34 university undergraduates (24 female, mean age = 20.44 years, age range = 17-25) 

participated in exchange for course credits, and an additional $5 for completing the 

second session. This group was meant to serve as a point of comparison with the 

demographic groups tested in previous studies using the PROBE task, especially given 

that this task has never been administered to elderly populations (Collins & Koechlin, 

2012; Donoso et al., 2014). 

Each participant’s testing required two days. All patients and HC-O participants 

performed the Montreal Cognitive Assessment Task (MoCA; Nasreddine et al., 2005) as 

a measure of overall cognitive function on the first day of testing, before the start of the 

first behavioural session. 

The experimental protocol was approved by the University of Waterloo’s Office 

of Research Ethics, and all participants provided written informed consent prior to 

participation. 

 

Lesion tracing and analysis 

Patient brain scans were obtained through the University of Waterloo’s 

Neurological Patient Database. The most recent available clinical CT (15) or MRI (2) 

scans were used to characterize patient brain lesions. All brain images were aligned and 
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centered on the anterior commissure using SPM 8. Lesions were then traced by hand 

using MRIcron (Rorden, Karnath, & Bonilha, 2007) by a single investigator (AF). Traced 

lesion files and scans were then spatially normalized using the Clinical Toolbox for SPM 

(Rorden, Bonilha, Fridriksson, Bender, & Karnath, 2012). This toolbox makes it possible 

to spatially normalize brain images across different scanning modalities (e.g., normalize 

CT and MRI scans into the same space). These normalized images were then compared 

across different patient groups. Brain damaged regions were identified by overlaying 

individual normalized brain lesions on the Automated Anatomical Labeling map 

(Tzourio-Mazoyer et al., 2002), and using MRIcron’s Descriptive tool to obtain a 

summary of the location and size of participant lesions. All analyses were conducted 

using MRIcron and Non-Parametric Mapping software (NPM; Rorden et al., 2007).  

 

PROBE Task 

The behavioural task participants performed was identical to the task administered 

by Donoso and colleagues (2014), except that the breaks participants received differed 

slightly from the original protocol. In this task, participants are required to learn changing 

stimulus-action mappings by using feedback. A specific rule required one of four buttons 

(the ‘j’, ‘k’, ‘l’, and ‘;’ keys on a QWERTY keyboard) to be pressed for each of three 

number stimuli. The set of three numbers could either be {1,3,5} or {2,4,6} with the 

order of the sets counterbalanced between participants.  

Stimuli were presented on a computer screen. White boxes were shown on a black 

background (Figure 4.3). On each trial, one numeral appeared in all four boxes and the 

participant chose one of four buttons to press. Feedback indicated whether or not the 
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correct button had been pressed. If the correct button was pressed, the number would 

change to green in the box corresponding to the button pressed; if the incorrect button 

was pressed, a red ‘X’ would appear in the box corresponding to the button pressed 

(Figure 4.3). Feedback in this task was noisy with 10% of trials giving participants 

incongruent performance feedback (i.e., on 10% of trials, participants would be given 

either a red ‘X’ for a correct response, or a green number for incorrect responses; Figure 

4.3). 
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Figure 4.3. Schematic of PROBE task. Participants learn mappings between four 
keyboard buttons and three number stimuli. On any given trial, a specific stimulus-
response rule applied, such that each number stimulus was associated with one button 
press (with one button not associated with any stimuli). Participants learned these rules 
through task feedback. On each trial, participants saw four white boxes on a black 
background. These boxes corresponded to the four buttons they could press on each trial. 
At the start of a trial, one of the three number stimuli appeared in all four boxes. This 
number remained on screen until participants pressed the button they thought was 
associated with the number on screen. If participants pressed the correct button, the 
number would turn green in the box corresponding to the participant’s button press 
(positive feedback). If an incorrect button was pressed (i.e., a button other than the one 
associated with the number on screen), a red ‘X’ appeared in the box corresponding to the 
participant’s button press (negative feedback). Rules changed at unannounced points 
every 33-48 trials. Additionally, incongruent feedback was pseudo-randomly provided on 
10% of trials, such that correct participant responses were given negative feedback (i.e., a 
red ‘X’), and incorrect responses were given positive feedback (i.e., the number would 
turn green). Participants were aware that rules would change throughout the task and that 
feedback would be noisy. They were instructed to make as many correct responses as 
possible by learning task rules, and detecting when rules changed. 
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Each stimuli-keypress rule remained in place for 33-48 trials. None of the correct 

responses from a current rule overlapped with the correct responses in the rule that 

followed. Participants were informed that there was a rule that would determine the key 

press-stimulus mappings, and that they had to learn this rule using the feedback they 

received from their responses. Participants were made aware that rules would change at 

unannounced points throughout the task, and that they would have to adapt their 

responses to reflect these changes. Participants were also told that the feedback would be 

noisy, and that the computer would sometimes “lie” to them. However, the frequency of 

the rule changes, and the frequency of the noisy feedback were not explicitly 

communicated to participants. 

All participants performed two experimental sessions over two separate days: a 

recurrent session and an open session. In each session, participants were exposed to 24 

rules split into 6 blocks (i.e., each block containing 4 rules to learn). Between each block 

participants were given a short, self-terminated break. Participants were informed that the 

task was meant to be continuous, and that the breaks were only meant for their comfort. 

They were informed that whichever rule applied at the end of one block would also apply 

at the beginning of the next block. When participants started the next block, they were 

exposed to 6-9 trials of the rule that had applied at the end of the last block before being 

switched to a new rule. In Donoso and colleagues’ original study, participants were asked 

to memorize the rule that applied at the end of each block, and used this memory to start 

the next block of trials. An initial pilot study demonstrated that patients had difficulty 

keeping a memorized rule for the duration of their self-timed break. To facilitate memory 

for a rule, at the end of each block participants were asked to indicate what they believed 
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to be the current correct rule, without any feedback indicating whether or not their reports 

were correct. At the start of the next block, they were reminded of the rule they believed 

applied at the end of the last block, and were instructed to keep using this rule until they 

believed that it no longer applied. 

In the recurrent session, participants were exposed to three rules that repeated 

pseudo-randomly throughout the session. In this session, each of the three rules was non-

overlapping with the other rules (i.e., no two rules had the same response for any given 

number). In the open session, participants were exposed to 24 distinct rules arranged 

pseudo-randomly between participants. Although some rules in the open session had 

overlapping responses, no current rule had any stimulus-responses mappings that 

overlapped with either the rule that preceded it, or the rule that followed. The order in 

which the recurrent and open sessions were completed was counterbalanced across 

participants, and participants were not informed of any differences between the two 

sessions. 

Similar to previous studies, at the end of each session, participants completed a 

post-session questionnaire. They were presented with 6 rules that they were told may or 

may not have applied throughout the session. When they saw each rule, they were asked 

to rate how certain they were that they either had or had not seen each rule throughout the 

session. The ratings ranged from 1 (“I am certain that I DID NOT see this rule”) to 5 (I 

am certain that I DID see this rule”), with 3 indicating uncertainty (“Not sure”). This 

post-test was meant to identify participants that could correctly remember any of the 

three rules that applied in the recurrent session. A memory score was calculated by 

subtracting the sum of the certainty scores for rules participants had seen from the sum of 
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the certainty scores for the rules they had not seen, and dividing the sum of these 

differences by the number of rules they were asked to recall (6). Participant scores could 

range between -2 and 2, with scores greater than 0 indicating more reported certainty for 

rules that had repeated. 

 

Computational Models 

 
Participant performance was characterized using two computational models of 

adaptive behaviour. Both models (PROBE and RL) are identical to the ones presented in 

Collins and Koechlin (2012) and by Donoso and colleagues (2014). It is worth noting that 

contextual elements (e.g., background colour changes that could indicate rule changes) 

are also considered in the original PROBE model (Collins & Koechlin, 2012). Given that 

no contextual elements were present in the current study, these were not included in the 

version of the PROBE model used below (similar to Donoso et al., 2014). The following 

two sections provide overviews of each computational model. Full mathematical 

descriptions can be found in Appendix 1. 

 
PROBE model 

The PROBE model characterizes updating as a forward inference process that 

arbitrates between knowing when to exploit a reliable mental model, and when to explore 

new, alternative mental models. Mental models are characterized as stimulus-action 

mappings that are learned from action outcomes. At any given moment, a single actor 

mental model drives behaviour, and its stimulus-action mappings are updated with new 

trial outcomes. In addition to these mappings, the reliability of a mental model (i.e., the 
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likelihood that it this model is correct given observations in the environment) is also 

monitored and updated with each new outcome. In addition to the actor, participants are 

assumed to have a working memory “buffer” that concurrently monitors the reliability of 

a limited number of alternative, counterfactual mental models. These counterfactuals are 

composed of mental models that were previously used at some point in the past. In order 

for a mental model to become an actor, it needs to become more reliable than any other 

monitored mental model. When an actor is reliable, the PROBE model is said to be in a 

state of exploitation. The PROBE model also assumes that all past reliable mental models 

are stored in a long-term memory component, but their reliability is not actively 

monitored.  

If an actor becomes unreliable (i.e., when environmental contingencies change), 

the reliabilities of the monitored counterfactuals mental models are examined. If a 

counterfactual is found to be reliable, the previous actor is placed in the buffer, and the 

reliable counterfactual becomes the new actor. If no monitored counterfactual is reliable, 

the PROBE model enters a state of exploration. In this state, the unreliable actor is added 

to the buffer and a new provisional actor is created based on a mixture of the mental 

models stored in long-term memory. This provisional actor drives behaviour during the 

exploration stage. It is initially unreliable and is probed by adjusting its stimulus-action 

mappings in response to new outcomes. There are two ways for the PROBE model to exit 

exploration. If the provisional actor eventually becomes reliable, it is confirmed, and 

becomes the new actor, effectively ending the exploration phase. Once confirmed, the 

new actor is stored in long-term memory and the old actor is kept in the memory buffer, 

replacing the buffer’s least recently used mental model. If, however, during the 
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exploration phase one of the monitored counterfactual mental models becomes reliable, 

the provisional actor is rejected, and the PROBE model exits exploration with the reliable 

counterfactual as its new actor.  

Overall, the PROBE model contains 7 free parameters that can vary between 

subjects: 

Buffer capacity (N). An integer value that corresponds to the number of mental 

models, including the actor, that can concurrently be monitored. It is worth noting that 

the provisional actors are added to this buffer during periods of exploration.  

Perceived volatility (�). A parameter ranging between 0 and 1 that represents the 

likelihood that an environmental change will occur at any given point throughout the 

task. 

Recollection entropy (�). A continuous parameter ranging between 0 and 1 that 

determines how much a provisional actor’s mappings rely on mappings stored in long-

term memory (with values closer to 1 indicated less influence from long-term memory). 

Prior reliability bias (�). Participants may be more or less inclined to confirm 

rather than reject newly created provisional actors. The � parameter scales the deviation 

of a probe actor’s prior reliability from an uninformative prior to the reliability threshold 

of 0.5 required to confirm an actor (see Appendix 1 for full details).  

Learning rate (�). Standard reinforcement learning rate parameter that can range 

between 0 and 1, and determines the weight given to an outcome when an actor updates 

its stimulus-action mappings. 

Inverse temperature (�). Standard continuous reinforcement learning parameter 

that scales the ‘greediness’ of an actor’s action selection. Higher values of � indicate 
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higher biases towards actions that maximize reward output. 

Noise (�). Standard continuous reinforcement learning parameter that can vary 

between 0 and 1, and accounts for lapses in subject responses. The larger this parameter, 

the more lapses unaccounted for by the model. 

 

Reinforcement Learning (RL) Model 

Participant performance was also fit using a standard reinforcement learning 

model (RL) that uses past outcomes to build and update stimulus-action mapping. This 

model does not compute mental model reliabilities or monitor counterfactuals. Instead, 

updating is characterized as continuous adjustments made to an existing model that 

follow reinforcement learning rules (see Appendix 1). This RL model contains three free 

parameters: α (learning rate), β (temperature), and ε (noise). 

 
 

Model fitting methods 

 
The set of best fitting parameters for both models was obtained by finding the set 

of parameters that maximized the log likelihood of the model’s responses compared to 

each participant’s responses. To find the best fitting RL parameters for each subject, 

maximum likelihood estimates were obtained by sampling from the parameter space 

likelihood function using a slice sampling algorithm (Neal, 2003). Four independent slice 

sampling Markov chains were launched from independent starting points in parameter 

space to sample likelihood values from a broad range of parameter values. A gradient 

ascent was then run on the highest likelihood value obtained over the four chains, and the 
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parameter set corresponding to the maximum likelihood estimate was used as the best 

fitting RL parameters for each subject. 

A similar method was used for the PROBE model with an added step (identical to 

the one used by Donoso et al., 2014). The buffer capacity (N) in this model is a discrete 

parameter, while the remaining six parameters are continuous. To identify the best buffer 

capacity, the best sets of parameters were identified for buffer sizes ranging from 1-5, 

with the best fitting set of parameters determining specific buffer sizes for each 

individual participant. These parameters were obtained for each buffer size using the slice 

sampling and gradient ascent methods outlined above. The buffer size with the set of 

parameters providing the highest likelihood values determined both the discrete buffer 

size parameter, and the set of continuous parameters used for each subject. 

 

4.3. Experiment 4.1: Results 

Demographic differences 

Patient and HC-O demographic information was compared using independent t-

tests to determine whether any of these factors differed between participant groups. The 

first set of analyses compared participants from the HC-O group to all patients involved 

in the study. The HC-O group were significantly older than the patient group (HC-O 

mean age (95% CI): 73.7 years, (70.4-77.1); patient mean age: 66.0 years, (60.8-71.1); 

t(27.72)=2.47, p < .03), had significantly more years of education (Mean years of 

education (95% CI) – HC-O: 15.4 years (14.4-16.4), Patients: 12.3 years (11.0-13.5); 

t(31.39)=3.74, p <.001), and, as would be expected, had significantly higher MoCA 
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scores (Mean MoCA scores (95% CI) – HC-O: 27.3 (26.5-28.2), Patients: 23.7 (21.7-

25.7); t(21.82)=3.25, p < .04). 

Next, demographic and lesion information was compared between LBD and RBD 

patients. RBD patients had significantly more years of education than LBD patients 

(Mean years of education (95% CI) – RBD: 13.7 years (11.9-15.4), LBD: 10.8 years (9.7-

11.8); t(13.15)=2.76, p < .02). There were also trending but non-significant differences in 

patient group age (Mean age (95% CI) – RBD: 61.7 years (53.5-69.8), LBD: 70.8 years 

(66.3-75.3); t(12.33)=1.93, p = .08) and MoCA scores (Mean MoCA scores (95% CI) – 

RBD: 25.4 (23.7-27.2), LBD: 21.8 (18.4-25.1); t(10.728)=1.89, p = .09). There were no 

significant differences in lesion volume between patient groups (Mean lesion volume 

(95% CI) – RBD: 8,848 voxels (1909-15787), LBD: 9,552 voxels (2008-17095); 

t(15.67)=.13, p = .89) or in time post-stroke (Mean time since stroke (95% CI) – RBD: 

34.9 months (20.8-49.0), LBD: 27.3 months (4.8-49.8); t(11.95)=.56, p = .59). 

 

Behvavioural Performance 

The first analysis examined performance differences between all four participant 

groups. To measure rule learning, the proportion of correct responses for each group was 

computed for each trial. The trial number in this analysis was relative to the last rule 

switch. Group performances were compared using linear mixed-effects modeling, with 

Proportion Correct as a dependent variable, Participant Group (HC-Y, HC-O, LBD, and 

RBD) as a fixed factor, and Participant and Trial as random intercept factors. This model 

was compared to a null model, which assumed no effect of Participant Group, and the 

likelihood ratios of these models were used to determine whether or not Participant 
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Group was a significant predictor of correct response rate. As is evident from Figure 4.4, 

there was a significant main effect of Participant Group (χ2(3) = 18.587, p < .001). 
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Figure 4.4. Participant correct response rates on the PROBE task. Participant correct 
response rates were averaged over all task trials since the last rule change and compared 
between participant groups. Healthy younger adults (HC-Y - cyan) had higher correct 
response rates than any other group. Performance did not differ between older adults 
(HC-O – purple), right brain damaged (RBD - green) and left brain damaged (LBD - 
pink). Solid lines represent group means and shading represents ± one standard error of 
the mean. 
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Pairwise comparisons showed that HC-Y participants performed best overall 

(Mean correct response rate (95% CI) – HC-Y = .70 (.69-71)), outperforming older 

controls (HC-O = .61 (.60-.63); χ2(1) = 8.641, p < .004), LBD patients (LBD = .51 (.49-

.54); χ2(1) = 16.222, p < .001), and RBD patients (RBD = .58 (.56-.61); χ2(1) = 8.710, p < 

.004). However, correct response rate did not differ significantly between healthy elderly 

controls and LBD patients (χ2(1) = 2.780, p = .095) or RBD patients (χ2(1) = .360, p = 

.549). Additionally, there were no significant differences in correct response rate between 

RBD patients and LBD patients (χ2(1) = .72, p = .396). Overall, this first analysis 

suggests that there were no differences between RBD and LBD patients and healthy aged 

matched controls in the proportion of correct responses. 

 

Updating Performance in Recurrent vs Open Sessions 

Updating performance was next compared between the recurrent and open 

sessions within each participant group. The long term memory and counterfactual rule 

monitoring components of the PROBE model predict that participants should be quicker 

to update to rules they have learned in the past. This difference is not predicted by RL 

models. Supporting this prediction, previous studies found small but significant updating 

advantages in the recurrent session compared to the open session (Collins & Koechlin, 

2012; Donoso et al., 2014). 

Updating performance between the two sessions was compared for each 

individual participant group using linear mixed effects models with Proportion Correct as 

a dependent variable, Session (recurrent or open) as a fixed effect, random intercepts for 
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Subject and Trial Number, and a random slope for Session. These models were compared 

to null models that assumed no Session effects. 

Given prior results (Collins & Koechlin, 2012; Donoso et al., 2014), it was 

predicted that participants in the HC-Y group would differ between the recurrent and 

open sessions, with better performance in the former. When all trials were considered 

together, contrary to results from previous studies, there were no performance differences 

between the two sessions in the HC-Y group (Mean correct response rate (95% CI): 

Recurrent = .71 (.70-.72), Open = .70 (.69-.72); χ2(1) = .341, p = .559). When 

performance was examined more closely, there was an effect of session, but only when 

comparing the later portion of each session. When comparing the first half of each 

session (i.e., learning the first 12 rules), there were no overall updating advantages 

(Recurrent = .70 (.69-.71), Open = .72 (.71-.73); χ2(1) = 1.320, p = .251). However, there 

was a small but significant advantage for the recurrent condition when examining the 

second half of each session (Recurrent = .72 (.71-.73), Open = .69 (.67-.70); χ2(1) = 

6.883, p < .009; Figure 4.5). These results demonstrate that performance of the recurrent 

session improved to a slightly higher level by the end of the task when compared with 

performance in the open session. 
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Figure 4.5. Participant performance between the recurrent and open sessions. When 
split between rules learned in the first half of each session (i.e., first 12 rules) and second 
half (i.e., last 12 rules), healthy younger adults (HC-Y - cyan) had the same correct 
response rates between the recurrent (dashed lines) and open sessions (solid lines), but 
performed better in the recurrent session in the second half. Left brain damaged (LBD - 
pink) patients performed better in the recurrent session in both the first and second half of 
the experiment. Right brain damaged (RBD - green) patients and healthy older adults 
(HC-O - purple) did not show any session differences throughout the task. Solid and 
dashed lines represent group means and shading represents ± one standard error of the 
mean. 
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Performance between sessions was next examined in the HC-O and patient 

groups. Similar to HC-Y, HC-O participants did not show any overall differences 

between sessions (Mean correct response rate (95% CI): Recurrent = .62 (.60-.63), Open 

= .62 (.60-.64); χ2(1) = .101, p = .751). Unlike HC-Y participants, when performance was 

split into the first and second half of each session, HC-O participants did not show any 

benefits of the recurrent session in either the first (Recurrent = .62 (.60-.63), Open = .62 

(.60-.63); χ2(1) = .003, p = .959), or second half of each session (Recurrent = .62 (.60-

.63), Open = .63 (.62-.65); χ2(1) = .286, p = .593). These results show that participants in 

the HC-O group did not demonstrate any performance benefits from repeating strategies 

in the recurrent session. 

Performance between sessions was next compared between LBD and RBD 

patients. Over all trials, all eight LBD patients performed better in the recurrent session 

than in the open session (Mean correct response rate (95% CI): Recurrent = .55 (.53-.57), 

Open = .48 (.46-.51); χ2(1) = 4.985, p > .03). This difference was present when 

comparing both the first (Recurrent = .54 (.52-.57), Open = .47 (.44-.50); χ2(1) = 3.950, p 

< .05), and second half of each session (Recurrent = .56 (.53-.59), Open = .49 (.46-.52); 

χ2(1) = 6.316, p < .02). 

RBD patients did not show any overall benefits in the recurrent session (Recurrent 

= .59 (.57-.62), Open = .58 (.55-.61); χ2(1) = 0.216, p = .643). There was a nominal but 

non-significant advantage for the recurrent session when the comparing the first half of 

each session (Recurrent = .60 (.58-.62), Open = .56 (.53-.58); χ2(1) = 1.902, p = .168), 

and no advantage when comparing the second half of each session (Recurrent = .59 (.57-

.61), Open = .61 (.58-.64); χ2(1) = .284, p = .594). These results demonstrate that while 
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there may not have been any gross updating performance differences between patient 

groups when contrasting performance over all sessions, LBD patients benefitted more 

from the repeating rules in the recurrent session than did RBD patients. 

To see how well participants from each group managed to explicitly remember 

the repeating strategies, scores from the post-experimental questionnaire in the recurrent 

condition were compared. A one way ANOVA with memory scores as a dependent 

variable and participant group (RBD, LBD, HC-O, and HC-Y) as a predictor revealed 

that memory scores differed between participant groups (F(3,65)=4.492, MSE = .251, p < 

.007). A subsequent Tukey HSD post-hoc comparisons of group means revealed that the 

HC-Y memory scores (Mean memory scores (95% CI): HC-Y = .60 (.40-.80)) were 

higher than HC-O scores (HC-O = .17 (-.05-.38); p = .02) and LBD scores (LBD = .08 (-

.00-.17); p <.05), but not significantly different from RBD patients (RBD = .24 (.02-.46); 

p = .23). Memory scores did not differ among any other participant groups (all remaining 

ps > .91). 

 

Good and Poor Updaters 

Although aggregate performance was not found to differ between RBD and LBD 

patients, individual patient performance was heterogeneous. Figure 4.6 shows patient 

performance (collapsed across hemispheres). Two patient groups were apparent: one 

group of patients (6 RBD and 3 LBD) had accuracy scores similar to (or better than) 

healthy controls; the other group (5 LBD and 3 RBD) performed well below this range. 

Patients with task performance better than the lower bound of the 95% confidence 
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interval from the HC-O group were classified as ‘Good Updaters’. Patients with accuracy 

performance below this mark were classified as ‘Poor Updaters’. 
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Figure 4.6. Individual patient performance. Correct response rates are displayed for 
each patient. Subject numbers are indicated at the top of each graph. Patients that 
performed at or above the level of healthy older adults were classified as Good Updaters 
(orange) and those that performed below this mark were classified as Poor Updaters 
(blue). Solid lines represent each participant’s mean correct response rate across all 
session, and shading representing ± one standard error of the mean. 
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Demographic information of Good and Poor Updaters was compared using 

independent t-tests. These comparisons revealed a trending but non-significant difference 

in age (Mean age (95% CI): Good Updaters = 61.6 years (57.8-65.2), Poor Updaters = 

70.9 years (61.6-80.2); t(9.18)=1.838, p = .10), and no differences in years of education 

(Mean years of education (95% CI): Good Updaters = 13.0 years (11.1-14.9), Poor 

Updaters = 11.5 years (10.0-13.0); t(14.46)=1.207, p = .245), MoCA scores (Mean 

MoCA scores (95% CI): Good Updaters = 24.8 (22.8-26.8), Poor Updaters = 22.5 (18.9-

26.1); t(11.11)=1.085, p = .301), lesion volume (Mean lesion volume (95% CI): Good 

Updaters = 6,765 voxels (324-13,208), Poor Updaters = 11,894 voxels (4,281-19,506); 

t(14.23)=1.008, p = .330), or time post-stroke (Mean months post stroke: Good Updaters 

= 32.4 months (14.1-50.8), Poor Updaters = 30.1 months (11.5-48.6); t(14.90)=.179, p = 

.860). 

Consistent with this partition, Good Updaters performed significantly better than 

Poor Updaters (Mean correct response rate (95% CI): Good Updaters = .70 (.68-.72), 

Poor Updaters = .38 (.37-.39); χ2(1) = 32.986, p < .001). The performance of the Good 

Updater group was nominally but not significantly higher than the HC-O group (χ2(1) = 

3.643, p = .06), and very similar to the HC-Y participant groups (χ2(1) = .001, p = .976). 

Poor Updaters performed worse than the healthy control groups (all ps < .001).  It is 

worth noting however, that the Poor Updater patient group did perform above chance 

(t(7) = 5.365, p < .002), indicating that they were, to some extent, learning and updating 

to task contingencies (Figure 4.7). 
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Figure 4.7. PROBE task performance between Good and Poor Updaters. Participant 
correct response rates were averaged over all task trials since the last rule change and 
compared between healthy controls and Good and Poor Updaters. Good Updaters 
(orange) performed as well as healthy younger adults (HC-Y – cyan) and healthy older 
adults (HC-O - purple). Poor Updaters (blue) performed above chance, but had lower 
correct response rates than any of the other groups. Solid lines represent group means and 
shading represents ± one standard error of the mean. 
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To determine the factors differentiating Poor and Good Updaters, participant 

susceptibility to ‘trap-trials’ was analyzed (i.e., responses on the trials in which incorrect 

responses were marked “correct”, and correct responses were marked as “incorrect”). 

‘Susceptibility’ to trap-trials was assessed by measuring the probability of making a 

correct response after having seen a trap-trial – the higher the probability of making a 

correct response after a trap-trial, the lower the trap-trial susceptibility. After a rule has 

changed, susceptibility to trap trials should decrease as participants have more experience 

with the new rule. To measure this, trials since the last rule shift were binned into 

quartiles of 12 trials, and the proportion of correct responses following trap-trial trials 

were calculated for each quartile. Susceptibility should be highest in the first quartile, 

nearest when a switch has occurred, and lowest in the last bin, when participants have 

learned the new rule.  

Performance was examined using a mixed factorial ANOVA, with mean 

proportion of correct responses after a trap trial as the dependent variable, Participant 

Group (HC-Y, HC-O, Good Updater, Poor Updater) as a between subjects factor, and 

Trial Bin (First, Second, Third, and Fourth quartile) as a within subjects factor. The 

omnibus analysis revealed an overall significant main effect for both Trial Bin (F(3, 195) 

= 221.70, MSE = .01, p < .001), and Participant Group (F(3, 65) = 24.44, MSE = .05, p < 

.001), along with a Trial Bin x Patient Group interaction (F(9, 195) = 9.33, MSE = .01, p 

< .001). Separate repeated measures ANOVAs conducted for each participant group 

revealed a main effect of Trial Bin for HC-Y participants (F(3, 99) = 189.80, MSE = .01, 

p < .001), HC-O participants (F(3, 51) = 29.11, MSE = .01, p < .001), and Good Updaters 
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(F(3, 24) = 35.04, MSE = .01, p < .001), but no main effect for Poor Updaters (F(3, 21) = 

1.674, MSE = .008, p = .203). 

One way ANOVAs were next run to compare correct response rates between 

participant groups at each quartile. Mean correct response rates did not differ between 

participant groups for the first quartile (Mean Proportion Correct Responses (95% CI): 

HC-Y = .28 (.27-.30), HC-O = .26 (.25-.27), Good Updaters = .26 (.25-.28), Poor 

Updaters = .23 (.21-.25); F(3,65) = 1.309, MSE = .01, p = .279). However, correct 

response rates differed in the second quartile (HC-Y = .66 (.64-.69), HC-O = .52 (.48-

.57), Good Updaters = .61 (.56-.66), Poor Updaters = .29 (.26-.32); F(3,65) = 12.67, MSE 

= .03, p <.001), third quartile (HC-Y = .77 (.75-.79), HC-O = .56 (.50-.60), Good 

Updaters = .74 (.70-.78), Poor Updaters = .30 (.28-.33); F(3,65) = 26.31, MSE = .02, p 

<.001), and fourth quartile (HC-Y = .80 (.78-.83), HC-O = .58 (.53-.63), Good Updaters 

= .70 (.64-.75), Poor Updaters = .32 (.28-.37); F(3,65) = 20.72, MSE = .03, p <.001).  

Tukey HSD post-hoc tests were performed between participant groups at the 

second, third, and fourth quartiles to determine which groups differed in correct response 

rates. As is evident from Figure 4.8, Poor Updaters had significantly lower correct 

response rates than any other group by the second quartile (all ps < .006), and this 

difference continued into the third and fourth quartiles (all ps < .003). Conversely, correct 

response rates for Good Updaters did not differ significantly from HC-Y participants in 

any quartile (all ps > .347), did not differ significantly from HC-O participants in the 

second or fourth quartiles (all ps > .304), and had higher correct responses rates than HC-

O participants in the third quartile. These results indicate that part of the difficulty for 

Poor Updaters is correctly identifying trap trials, and ignoring the incongruent feedback. 
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Figure 4.8. Participant correct responses following trap-trials. Participant responses 
were binned into four quartiles of trials and mean correct response rates were calculated 
for trials that followed trap-trials. Overall, Poor Updaters (blue) had lower correct 
response rates following trap-trials in the last three quartiles of trials than healthy 
younger adults (HC-Y – cyan), healthy older adults (HC-O – purple), and Good Updaters 
(orange). HC-O participants also had lower correct response rates in the last three 
quartiles of trials than HC-Y participants. Dots represent group means at each quartile 
and error bars represent ± one standard error of the mean. 
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There were also differences in correct response rates between the healthy control 

groups. HC-Y participants had higher correct response rates than HC-O participants 

throughout the second, third, and fourth quartiles (all ps < .03). This result suggests that 

some of the updating differences found between HC-O and HC-Y participants could be 

due to HC-O participants having more difficulty identifying trap-trials than HC-Y 

participants (Figure 4.8). 

 

Model fits of patient behaviour 

Patient performance was next compared by fitting correct response rates using 

both the PROBE and RL models (see Table 4.3 for mean group fit parameters). Goodness 

of fit was assessed by computing Akaikes Information Criterion (AIC; Akaike, 1974) and 

Bayes Information Criterion (BIC; Schwarz, 1978) values using the maximum likelihood 

estimates obtained from the best fitting sets of parameters for each model (mean values 

displayed in Table 4.3). Both of these values provide information about the comparative 

goodness of fit between different candidate models, while correcting for the number of 

free parameters contained within each model (penalizing models with higher numbers of 

free parameters). Both of these values are commonly used, with BIC values providing 

slightly higher penalties for added free parameters (Wagenmakers & Farrell, 2004). 
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Table 4.3 PROBE and RL Model Parameter Fits. 
 HC-Y HC-O Good Updaters Poor Updaters 
PROBE parameters     
AIC values 2776 (117) 3378 (224) 2712 (181) 4908 (99) 
BIC Values 2815 (117) 3418 (224) 2752 (181) 4947 (99) 
Buffer capacity (N) 2.41 (.14) 3.44 (.33) 3.44 (.47) 4.5 (.46) 
Volatility (τ) .12 (.01) .08 (.01) .09 (.02) .07 (.01) 
Recollection entropy (η) .24 (.03) .45 (.07) .36 (.11) .82 (.07) 
Prior reliability bias (θ) .47 (.25) 1.40 (.16) .35 (.56) 1.81 (.25) 
Learning rate (α) .28 (.02) .45 (.05) .36 (.05) .22 (.07) 
Inverse temperature (β) 16 (3) 32 (17) 12 (4) 63 (54) 
Noise (ε) .08 (.01) .07 (.01) .04 (.01) .17 (.03) 

 
RL parameters     
AIC values 3347 (75) 3755 (157) 3342 (104) 4709 (193) 
BIC Values 3364 (75) 3773 (157) 3359 (104) 4726 (193) 
Learning rate (α) .81 (.02) .80 (.05) .84 (.03) .39 (.15) 
Inverse temperature (β) 4 (.15) 4 (.61) 5312 (5309) 6 (2) 
Noise (ε) .07 (.01) .08 (.02) .06 (.02) .16 (.05) 

Note. Numbers represent mean parameter values with the standard error of the mean noted 
in parentheses. HC-Y = Healthy Control – Young Adults; HC-O = Healthy Control – Older 
Adults. 
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To compute model evidence, Akaike weights (AICw) and BIC weights (BICw) 

were computed for each model fit. These values indicate the relative goodness of fit of a 

particular model compared to other candidate models (with values tending towards 1 

indicating stronger model evidence; Wagenmakers & Farrell, 2004) 

When the model evidence was compared between RL fits and PROBE fits in the 

Good Updaters group, all nine patients were better fit by the PROBE model than the RL 

model (PROBE AICw and BICw values all > .999; Figure 4.9). Of the eight patients 

classified as Poor Updaters, five were better fit by the RL model than the PROBE model 

(patients 73, 228, 384, 414, 898; RL AICw and BICw values all > .999), and one was 

better fit by the PROBE model (patient 649, PROBE AICw and BICw value > .999). The 

remaining two patients (269 and 799) had AICw values that favoured the PROBE model 

(both AICw values = .99), but BICw values that favoured the RL model (RL BICw 

values: 269 = .632, 799 = .887). For these last two patients, given that BIC values are 

more conservative than AIC values, this difference in AIC and BIC model evidence 

suggests that the PROBE model likely provides a better fit, but not much beyond the fits 

provided by the RL model (Wagenmakers & Farrell, 2004).  
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Figure 4.9. PROBE and reinforcement learning (RL) model fits for all participant 
groups. Participants correct response rates were fit with the PROBE and RL models. 
Individual participant PROBE and RL parameters were used to run simulations for each 
participant and the mean simulation results are displayed above. Good Updaters (orange), 
healthy younger adults (HC-Y – cyan), and healthy older adults (HC-O – purple) were 
overall better fit by the PROBE model (green). The majority of Poor Updaters (blue) 
were best fit by the RL model (red). Solid lines and dots represent group means, and 
shading and error bars represent ± one standard error of the mean. 
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The same model evidence comparisons were computed for the two healthy 

control groups. Overall, the PROBE model provided a better fit than the RL model for 30 

of the 34 participants in the HC-Y group and 17 of the 18 participants in the HC-O group 

(all PROBE AICw and BICw values > .999). The remaining four HC-Y and one HC-O 

participants were better fit by the RL than the PROBE model (all RL AICw and BICw 

values > .999). 

 

Model parameter differences between participant groups 

Participant model parameters were then compared between participant groups 

using one way ANOVAs and subsequent Tukey HSD post-hoc test. It is important to note 

that comparing parameters in this way is primarily meaningful between groups that are 

best fit by the same model. With this in mind, the noise (ε) parameter in both models 

seemed to distinguish the Poor Updaters from the other participant groups. This 

parameter represents the proportion of the data that cannot be explained by either model 

(i.e., responses that are as likely to have been generated by a random process than from 

the model components). There was a significant difference between groups when 

comparing PROBE ε values (F(3,65) = 11.15, MSE = .002, p < .001), with Poor Updaters 

having higher ε values than all other participant groups (all Tukey HSD p values <.001). 

The RL noise values also differed between groups (F(3,65) = 3.105, MSE = .006, p < 

.04), with Poor Updater having higher noise values than HC-Y participants (p < .03) and 

Good Updaters  (p < .05), and nominally but not significantly higher values than HC-O 

participants (p = .11). These results suggest that the learning and updating processes in 

Poor Updaters were noisier than those in participants from other groups. It is worth 
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noting, however, that when the AIC values were compared between Poor Updater RL 

fits, and AIC and BIC values obtained from a model assuming random responses, all 

patient AICw and BICw values favored the RL model over this random model (all AICw 

and BICw values > .999). This demonstrates that although noisy, the updating processes 

used by Poor Updaters still contained some structure. 

Some of the PROBE parameter values also differed between the HC-Y and HC-O 

participants. Learning rate (α) values differed between participant groups (F(3,65) = 

5.821, MSE = .03, p < .002), with HC-O participants having higher α values than HC-Y 

participants (p < .007), as did prior reliability bias (η) values (F(3,65) = 13.99, MSE = 

.06, p < .001), volatility (τ) values (F(3,65) = 5.132, MSE = .002, p <.004), and buffer (N) 

values (F(3,65) = 9.112, MSE = 1.275, p < .001). When comparing parameter differences 

between the three participant groups best fit by the PROBE model, the HC-O group had 

higher mean α, η, and N values than participants in the HC-Y group (all ps < .02), while 

the HC-Y group had higher mean τ values than participants in the HC-O group (p < .01). 

None of these parameters differed between Good Updaters and either healthy control 

group (all ps > .08). 

 
Lesion analyses 

Damaged brain regions were compared across patients to determine whether any 

candidate regions were related to the observed performance differences. Since there were 

no overall updating differences between RBD and LBD patients, lesions were flipped 

such that the hemisphere with the most significant area of brain damage was compared 

across subjects (i.e., the right hemisphere regions damaged in RBD patients were 
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compared to the left hemisphere brain damaged regions in LBD patients). All lesion 

analyses below were performed on these flipped scans. 

Lesion overlay analyses were performed on the lesions traces for Good and Poor 

Updaters. Among the 8 patients identified as Good Updaters, four had overlapping 

lesions in parts of the precentral sulcus, inferior frontal gyrus pars opercularis and 

triangularis, rolandic operculum, and the insula. Among the nine patients identified as 

Poor Updaters, five had overlapping damage to the inferior frontal gyrus pars opercularis 

and pars triangularis, rolandic operculum, and insula.  

Although the insula was commonly affected in both Good and Poor Updaters, 

different subregions of the insula were affected between groups. Of the 13 patients with 

insular damage, nine patients had damage to the anterior portion of the insula, while the 

remaining four had damage in middle or posterior insular regions. Of the eight patients 

classified as Poor Updaters, seven were identified as having anterior insular damage, 

while the remaining two patients with anterior insular damage, and all four patients with 

middle/posterior insular damage, were classified as Good Updaters. It is worth noting that 

the one Poor Updater that did not present with anterior insular damage (patient 649) was 

also the only patient from the Poor Updater group with both AICw and BICw favouring 

the PROBE model over the RL model.  

As an additional analysis the flipped lesions were analyzed using voxel-based 

lesion-symptom mapping (VLSM; Bates et al., 2003). Continuous statistics were 

computed using non-parametric Brunner-Munzel rank order statistics, implemented in the 

NPM software package (Rorden et al., 2007). Non-parametric permutation thresholding 

was applied to correct for multiple comparisons and ensure a family-wise error rate of 5% 
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(Nichols & Holmes, 2002; Kimberg, Coslett, & Schwartz, 2007).  Mean patient correct 

response rates across all sessions were used as a continuous variable to identify the 

regions of brain damage that best predict updating deficits on the PROBE task. Given the 

relatively small sample size, to reduce the number of voxel-wise comparisons and 

increase statistical power, only voxels damaged in at least 30% of patients (i.e., 5 

patients) were used for the analysis. Overall, this analysis revealed a cluster of three 

adjacent brain regions that were significantly related to mean correct responses (required 

BM statistic = 3.34, observed BM statistic = 3.54). This cluster included the anterior 

insula (region size = 59 voxels), and two regions of the inferior frontal gyrus (pars 

orbitalis, region size = 34 voxels, and pars triangularis, region size = 112 voxels; Figure 

4.10). 
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Figure 4.10. Voxel cluster related to PROBE task updating performance. Voxel-
based Lesion Symptom Mapping (VLSM) was performed comparing patient flipped 
lesions to their mean correct response rates on the PROBE task. This analysis revealed a 
cluster of voxels (red) comprising adjacent regions of the anterior insula and inferior 
frontal gyrus that significantly predicted deficits in updating performance (with a 
permuted family-wise error rate < 5%).  
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Next, additional VLSM analyses were performed using model fit and noise values 

since these values differed between the Good and Poor Updater groups. Model fit values 

were computed for each subject as a difference scores between each patient’s PROBE 

AIC and BIC values, and their respective RL AIC and BIC values. It is worth noting that 

AICs and BICs are both transformations of likelihood values; therefore, although their 

absolute values may differ, the proportional difference between PROBE and RL AIC 

values will be the same as the proportional differences between PROBE and RL BIC 

values. A VLSM analysis of AIC and BIC difference scores did not reveal any brain 

regions with large enough BM statistics to meet the required permutation threshold 

(required BM statistic = 3.41). However, the same exact cluster identified for mean 

correct responses was identified as the region with the highest BM statistic (observed BM 

statistic = 3.26; uncorrected p value = .0006). 

A VLSM analysis using patient RL noise parameters as a predictor also failed to 

find any significant clusters (required BM statistic = 3.30). However, the highest 

identified BM statistic was found in a small cluster of the anterior insula (region size = 9 

voxels; observed BM statistic = 2.92; uncorrected p value = .002). 

 

4.4. Experiment 4.1: Discussion 

 
The current study had two goals: 1) to characterize behaviour during updating to 

identify the exploratory strategies used by RBD and LBD patients, and 2) identify the 

contributions of damage to specific brain regions to updating performance deficits. Based 

on previous results, RBD patients were expected to show poorer updating than LBD 
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patients. As evident in Figure 4.4, overall updating performance did not differ between 

LBD and RBD patients.  

Although no overall updating differences were found, LBD patients did perform 

better in the recurrent session than in the open session, whereas RBD patients did not. 

These differences do not seem related to explicit recall abilities: LBD patients could not 

recall the recurring rules in the post-experimental questionnaire any better than RBD 

patients. This difference could be attributed to implicit learning properties that some 

researchers have linked to right hemisphere functioning. Wolford and colleagues (2000) 

found that split-brain patients showed an advantage in statistical learning tasks when 

information was presented in their left hemifield (i.e., to their right hemisphere), 

compared to when presented in the right hemifield (i.e., to their left hemisphere; Wolford, 

Miller, & Gazzaniga, 2000). Damage to the right hemisphere has also been linked to 

statistical and implicit learning deficits (Shaqiri & Anderson, 2013). Conversely, LBD 

has in some cases provided improved performance on statistical learning tasks. LBD 

patients in Danckert and colleagues’ study (2012) outperformed healthy controls on the 

RPS scissors task, using a more optimal strategy to exploit the statistics afforded by the 

play environment. Although speculative, the consistent advantage LBD patients 

demonstrated in the recurrent condition may indicate that implicit learning advantages 

supported by intact right hemisphere structures may have been at play in their 

performance.  

It is possible that the main hemispheric differences found in previous studies may 

be due to more posterior brain regions, rather than the frontal regions targeted in the 

current study. Frontal regions were chosen for the current study because of their presence 
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in a number of previous updating studies, particularly those interested in the exploratory 

components of updating (e.g., Donoso et al., 2014). Patients in the studies performed by 

Danckert and colleagues (2012) and by Stöttinger and colleagues (2014) had a less 

restricted range of damage, many of them being recruited based on the presence or 

absence of spatial neglect (a clinical syndrome most commonly found with superior 

temporal/inferior parietal damage; Corbetta, Kincade, Lewis, Snyder, & Sapir, 2005). 

Additionally, the right temporoparietal junction (TPJ) and the right inferior parietal 

lobule (IPL) have been linked to the capacities of theory of mind and empathy (Decety & 

Lamm, 2007), and even understanding jokes (Brownell, Michael, Powelson, & Gardner, 

1983) and riddles (Vocat et al., 2012). Some researchers have proposed that these deficits 

reflect problems of updating (Geng & Vossel, 2013; Filipowicz et al., 2016): theory of 

mind and empathy require an agent to update their perspective to infer the cognitive or 

emotional state of others, while jokes and riddles work by setting up an expectation that 

is then violated with the punch line. Future research examining patient populations with 

more posterior lesions, in addition to converging methodologies such as fMRI and lesion 

simulation techniques (e.g., transcranial magnetic stimulation), could help identify 

whether more posterior regions such as the IPL or TPJ contribute to the hemispheric 

effects observed in previous studies. 

Although there were no clear hemispheric differences in the current study, frontal 

brain damage clearly has an influence on updating performance. Patient performance 

collapsed across hemispheres separated into two distinct groups: approximately half of 

the patients updated at or above the level of healthy older adults (Good Updaters), 

whereas the other half of patients performed well below this level (Poor Updaters; Figure 
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4.6). A closer examination of patient performance demonstrated that Poor Updaters were 

more susceptible to ‘trap trials’ than Good Updaters, making it more difficult for Poor 

Updaters to settle on a new mental model after a rule switch. This tendency reflects an 

updating strategy that makes incremental changes to an existing mental model, where 

feedback is used to update specific stimulus-action mappings. Consistent with this 

interpretation, the majority of Poor Updaters were better fit by the RL model than the 

PROBE model.  

In contrast to the RL model, the PROBE model assumes that, rather than making 

incremental changes to an existing model, memory and executive processes arbitrate 

between different candidate mental models. All of the Good Updaters were best fit by the 

PROBE model, demonstrating that performance differences between Good and Poor 

Updaters can be attributed to the efficiency of the exploratory strategies they used to 

update. Additionally, when examining model fit parameters, Poor Updaters had 

significantly higher �  noise parameters than did the Good Updaters. This noise 

parameter measures the proportion of responses that are better explained by random 

responses than by those predicted by the model. This suggests that, in addition to using 

differing exploratory strategies, the Good Updaters used their strategies more 

consistently, whereas Poor Updaters where more prone to make random responses. It is 

important to note that Poor Updaters were not only making random responses – these 

patients updated at a rate above chance, and were better fit by the RL model than by a 

random response model.  

The final analysis was to examine the differences in damaged brain regions that 

could contribute to some of the observed updating difficulties. Lesion overlay and VLSM 
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analyses revealed two regions that were significant predictors of updating behaviour: the 

anterior insula and the inferior frontal gyrus (IFG). Previous research has implicated both 

of these regions in updating behaviour, particularly during the exploratory phase.  

The anterior insula is often implicated in updating research (McGuire et al., 2014; 

Stöttinger et al., 2015; Palminteri et al., 2012; Preuschoff, Quartz, & Bossaerts, 2008). Its 

role has primarily been suggested to represent the uncertainty of a given environment 

(Preuschoff et al., 2008; McGuire et al., 2014). Menon and Uddin (2010) also provide 

evidence that the anterior insula and anterior cingulate cortex (ACC) form a ‘salience’ 

network that coordinates activity of a fronto-parietal ‘central executive’ network 

responsible for processing salient, bottom-up sensory information (Menon & Uddin, 

2010). These interpretations match results from an fMRI study of perceptual updating 

discussed earlier (Stöttinger et al., 2015). Participants in this experiment saw images that 

gradually morphed from one object (e.g., a cat) to a second object (e.g., a swan), 

indicating via button press the point at which they started seeing the second object. The 

anterior insula and central executive network were found to be strongly active when 

participants reported a switch. However, the anterior insula and medial prefrontal cortex 

(mPFC; including the dorsal ACC) were also found to be active on the image preceding  

the switch (images with high perceptual uncertainty;  Stöttinger et al., 2015).  

A difficulty in understanding the specific functions of the insula during updating 

is that it is often co-activated with the ACC/mPFC (Stöttinger et al., 2015; McGuire et 

al., 2014; Menon & Uddin, 2010). Functional imaging evidence provides insight into the 

distinct functions these regions subsume during the updating process. In an fMRI study of 

the frontal regions involved in updating using the PROBE task, the ACC/mPFC was 
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primarily active when participants detected that their current rule was no longer valid, 

and entered the exploration period (Donoso et al., 2014). That is, the ACC/mPFC was 

most active at the points during the task where the rule a participant was using became 

unreliable, and the participant entered an exploration phase. These results propose that 

the primary role for the ACC/mPFC is to initiate the exploration process once a mental 

model is deemed unreliable. In contrast, this same study also found that the anterior 

insula was active during the exploration period, after a switch had been detected. This 

proposes that, in the context of updating, the role of the ACC/mPFC could be to initiate 

the exploratory process, while the anterior insula sustains exploration.  

This interpretation is consistent with the results of the current study. Eight of the 

nine Poor Updaters had damage to the anterior insula. These patients did not have 

difficulty detecting that changes were occurring – if anything, their responses to ‘trap-

trials’ suggest the opposite: they may have been susceptible to thinking that changes were 

occurring too frequently (an observation that was sometimes informally reported by 

patients in this group). Instead, as suggested by the differences in noise parameter 

estimates, patients in this group seemed to have difficulty sustaining a reliable updating 

strategy, sometimes lapsing into periods of random responses. Indeed, although tentative, 

the VLSM analysis found that the anterior insula was the brain region most strongly 

linked to higher noise values.  

The lateral prefrontal cortex has also been implicated in the exploratory 

components of updating. Theories on the executive organization of the prefrontal cortex 

implicate the lateral prefrontal cortex, including regions of the IFG observed in the 

current study, in the processes required to arbitrate between and settle on a new candidate 
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mental model (Domenech & Koechlin, 2015; Koechlin & Summerfield, 2007). The 

VLSM analysis on model fit differences found that damage to the IFG and anterior insula 

increased the likelihood that patients would be best fit by the RL model over the PROBE 

model. This finding supports the notion that the IFG is involved in the exploratory 

processes required to consider alternative models when updating. Functional imaging 

studies also support this explanation. In an fMRI study of the PROBE task, regions of the 

IFG were associated with updating events in which a counterfactual rule being considered 

becomes reliable (Donoso et al., 2014). In an fMRI study of the picture morphing task, 

the IFG was one of the regions that was strongly active when participants reported 

switching from an initial perceptual representation to a novel second representation of the 

ambiguous image (Stöttinger et al., 2015). Both of these activation patterns could be 

related to participants considering alternate, candidate interpretations to fit the perceptual 

evidence they observe. 

In addition to the patient updating behaviour, some differences were observed 

between younger and older healthy controls. Older adults did not perform as well as 

younger adults on the PROBE task, being more susceptible to trap-trials, and showing no 

benefit for the recurrent session. Although both control groups were best fit by the 

PROBE model, differences in the model parameters provide some hints as to why these 

groups differed.  

Older adults had higher η prior reliability values, indicating less influence from 

previously learned strategies. This result likely explains why older adults did not show 

any benefits of the recurrent session over the open session. Additionally, older adults had 

higher α learning rates and lower τ volatility values than younger adults. The learning rate 
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parameter captures the changes made to the mental model driving behaviour (i.e., the 

actor), while the volatility parameter captures the perceived rate of change between 

different task rules. This suggests that, relative to younger adults, older adults focused 

more on making changes to their existing mental models, leading to more susceptibility 

to trap-trials, whereas younger adults were relatively more focused on detecting rule 

changes. Indeed, recent research has found that the ability to learn the volatility, or 

‘hazard rate’, of an environment declines with age, particularly in highly uncertain 

environments (Nassar, Bruckner, Gold, Li, Heekeren, & Eppinger, 2016). 

 Although not the primary goal of this experiment, the results suggest that 

updating exploration strategies change with age. Future studies specifically designed to 

measure these differences could provide a better understanding of how learning and 

adaptive behaviour evolve over time. 

In summary, this study examined some of the potential consequences of frontal 

brain damage on mental model updating. Although none of the predicted hemispheric 

differences were present in the current sample, behavioural results clearly indicated a 

bimodal distribution of performances among the patients (Figure 4.6). Some patients 

managed to update efficiently by choosing an exploratory strategy and using it 

consistently. Others updated more poorly – their difficulties attributed to problems 

sustaining exploratory strategies, while also being prone to noisy feedback. Lesion 

comparisons between these two patient groups suggested that damage to the inferior 

frontal gyrus and to the anterior insula may have contributed to the observed differences. 

Although speculative at this point, the inferior frontal gyrus may be involved in 

arbitrating between distinct strategies when the need for updating arises, while the 
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anterior insula may be involved in efficient exploration. While more research will be 

required to confirm these hypotheses, these results provide insights into the specific 

regions involved in updating. 
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Chapter 5: General Discussion 

Effective behaviour relies on our ability to build and update mental models of our 

world (Tenebaum et al., 2011; Bach & Dolan, 2012; Johnson-Laird, 2004). The current 

thesis examined some of the component processes involved in updating, with the aim of 

refining our understanding of the behavioural and neural mechanisms involved. This final 

chapter provides a summary of the major findings from this thesis, while highlighting 

limitations and suggestions for future research. 

Chapter 2 examined the challenge of representing participant mental models in a 

probabilistic learning task. This chapter was focused on testing assumptions about how 

prior mental models are measured, and how these priors influence learning. Contrary to 

methods that assume homogeneous priors, participants started the task with a number of 

idiosyncratic priors (Experiment 2.1). These priors also influenced how effectively 

participants managed to learn from new events in the environment, highlighting the 

importance of accurately capturing participant priors. 

A limitation to the generalizability of Experiment 2.1 is that participants were 

only exposed to environments with a known solution (i.e., ball drops in a standard Plinko 

game should approximate a normal distribution; Galton, 1889). In a different 

environment, where contingencies are more uncertain (e.g., a Plinko task with a variable 

start point for the ball, or where the pegs are occluded) it may be possible that priors 

would be more homogeneous. Although priors may be homogeneous in some task 

environments, this fact is often assumed rather than tested explicitly (Nassar et al., 2010, 

2012; Strange et al., 2005; Mars et al., 2008; McGuire et al., 2014). Indeed, priors can 

still be found to differ between subjects, regardless about how much or how little 
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information is provided about task contingencies (Green et al., 2010). Future research 

interested in measuring probabilistic learning should characterize the types of possible 

priors participants bring to a task, whether to confirm that they are homogeneous, or 

capture the different types of priors that are possible in a given environment.  

   An additional factor that was not considered in Experiment 2.1 was the 

contribution of a person’s confidence in their prior. Confidence has been shown to 

influence decision making, with research generally finding that high mental model 

confidence makes it less likely for new information to be integrated (Einhorn & Hogarth, 

1978; Fischoff, Slovic, & Lichtenstein, 1977; Hollard & Massoni, 2015; Miller, Spengler 

& Spengler, 2015; Nickerson, 1998). It is possible that although priors could differ 

between participants, low confidence in these idiosyncratic priors could mitigate the 

influence of these priors on learning. For example, participants in the Jagged condition 

started the task with a few interspersed bars – in strictly probabilistic terms, this indicates 

a prior with high certainty about where a ball would fall on future trials given that a few 

slots are represented with high relative mass. However, in some cases these participants 

also reported drawing a few bars to get more information from the task, suggesting that 

they had low confidence in their initial estimates. This suggests that to fully capture the 

influence of priors, it may be important to measure both the type of prior (e.g., in the 

Plinko task, the probability distribution drawn by a participant), and the degree of 

confidence in that prior (e.g., a rating of confidence in how likely the prior is to occur). 

Future studies could, in addition to capturing participant priors, ask participants to report 

how confident they are in their priors. These results could provide important information 
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as to the relationship between the priors participants bring to a task, and how their 

influence is affected by confidence.  

Chapter 3 examined how unexpected, surprising events influence our ability to 

detect and update to environmental changes. A number of previous studies propose that 

surprise and updating should be positively correlated (Nassar et al., 2010; O’Reilly et al., 

2013; McGuire et al., 2014). Other research opposes this view, suggesting that highly 

surprising information is devalued (Nickerson, 1998; DeGardelle & Sumemrfield, 2010). 

The results from Experiment 3.1 and 3.2 found that in some circumstances, surprise and 

updating are positively related, while in others, they are negatively correlated.  

An extension to this research is to understand the specific situations in which 

participants devalue surprising information. The nature of the high surprise changes in 

Experiment 3.2 was that surprising information was intermixed with low surprise events. 

Under this scenario, it is possible that the weight given to the surprise of an observation is 

influenced by its proximity in time to low surprising events. Under an efficient coding 

framework, in order for highly surprising information to be integrated, these events 

would need to be presented in near succession, with relatively few low surprise events in 

between (Wei & Stocker, 2015; Summerfield & Tsetsos, 2015). The applications of 

efficient coding are only starting to be explored in the realms outside of perception 

(Summerfield & Testsos, 2015), but could provide an explanation for some of the 

seeming discrepancies between optimal and suboptimal accounts of mental model 

building and updating. Future computational modeling attempts, particularly those 

adopting a Bayesian framework, could model these differences by constraining some of 

the components of their models through the principles of efficient coding. 
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Chapter 4 examines the strategies used to explore alternative mental models once 

a change has been detected. This was specifically examined in populations with right and 

left hemisphere brain damage, as previous updating deficits in patients with RBD have 

been suggested to stem from issues with exploration (Sepavhand et al., 2014; Filipowicz 

et al., 2016). Although Experiment 4.1 did not reveal any clear updating differences 

between right and left hemisphere brain damaged patients, patient performance clearly 

separated into a group of ‘Good Updaters’ and a group of ‘Poor Updaters’. 

Computational modeling of patient performance determined that the exploratory 

strategies used differed between these groups, with Good Updaters using more effective 

exploration strategies that Poor Updaters. Additionally, Good Updaters made more 

consistent use of their strategy, while Poor Updaters were more prone to committing 

noisy and inconsistent responses. Patient lesion analysis revealed that the damage to the 

anterior insula and inferior frontal gyrus (IFG) predicted updating difficulties, suggesting 

that these regions are involved in selecting and maintaining a participant exploration 

strategy when updating.  

A limitation with Experiment 4.1 is that the results were obtained from a 

relatively small sample size of patients for a VLSM study. Additionally, although efforts 

were made to recruit patients with primarily frontal damage, the locations of individual 

lesions still differed considerably.  

A major strength of patient research is that, while imaging methods such as fMRI 

provide information about the regions and networks involved in certain cognitive 

processes, patient work can provide information about those that are necessary (Rorden 

et al., 2007). To fully understand the role and extent of brain networks involved in any 
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given process, converging methodologies that include neuroimaging and patient work 

provide a more complete understanding of the processes being studied. With this in mind, 

despite the small sample size, the anterior insula and IFG found in Experiment 4.1 are 

often implicated in neuroimaging studies of updating (McGuire et al., 2014; Stöttinger et 

al., 2015; Donoso et al., 2014; Domenech & Koechlin, 2015; Summerfield & Koechlin, 

2007). This suggests that although the sample of patients was small, the regions found in 

the study are plausible contributors to some of the observed deficits. Future patient 

studies could test the proposed roles of these regions more specifically by either testing 

larger patient samples, or by specifically targeting these regions more directly. A 

potential future study could be to compare updating performance between a patient group 

with selective damage to the anterior insula and another with selective damage to the 

IFG, and model the exploratory strategies used by these groups. The results from 

Experiment 4.1 predict that patients with IFG damage should be more likely to use 

simpler reinforcement learning type strategies to explore new mental models, but do so 

more consistently; conversely, patients with anterior insular damage may use more 

effective PROBE-like strategies to update, but be more prone to lapses of random 

responses. A more directed study such as this, along with converging neuroimaging 

results, could help identify the specific roles these brain regions play in the networks 

involved in updating. 

In summary, the work from this thesis provides important insights into the 

mechanisms that underlie mental model building and updating. It provides information 

about the ways in which mental models can be studied and represented, while testing 

assumptions found in previous research. It also explores how these components are 
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impacted by brain damage, highlighting the importance of specific regions in the 

updating process. There is still much work to be done to fully uncover the mechanisms 

that guide our decisions. However, more refined techniques to describe and quantify 

decision processes will help bring us closer to understanding the fundamental processes 

that guide our behaviour. 
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Appendix 1 

 
Model descriptions 

PROBE model description 

The PROBE model was created as a biologically plausible, online algorithm 

approximating a Dirichlet process mixture. It assumes that on any given trial t, mappings 

between a given stimulus !!, action !!, and outcome !! depend on some hidden state, or 

‘rule’ denoted !!∗. An environment is assumed to be uncertain, changing, and open ended 

– the occurrence of hidden rules, therefore, are independent of stimuli and actions, and 

are presumed by the model to be independent of other hidden rules (i.e., only one hidden 

rules can apply at any given moment). The goal of the model is to estimate the correct 

hidden rule by estimating a rule’s reliability, and remembering any rule that has been 

deemed reliable in the past. 

At any given point, the PROBE model attempts to identify a rule R that 

corresponds to the current hidden rule. A rule corresponds to a policy of stimulus action 

outcome expectations that attempt to predict the best action a for any stimulus s. A rule 

being used to drive actions is called an actor. Rules contains two internal mappings: a 

selective mapping !(!,!) and a predictive mapping !(!, !,!).  

Selective mappings for a current rule !! , !! !,! = ! ! ! |!,!,!∗ = !! , 

encode the expected reward value r[o] of an outcome o given that an action a has been 

made to a stimulus s. This mapping determines the policy that guides actions in response 

to a particular stimulus. This policy orients behaviour towards the most rewarding actions 

and are learned using reinforcement learning rules outlined below.  
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An actor’s selective mapping !!"#$%(!,!)  computes the behavioural policy 

!(!|!!) – i.e., the probability to select an action a in response to a stimulus s on trial t – 

according to an ε-softmax with an inverse temperature β: 

 

	 	 (A.1) 

 

where n is the total number of possible actions. After each outcome !!, the actor’s 

selective mapping !!"#$%(!,!) is updated based on the outcome’s reward ![!!] through a 

Rescorla & Wagner reinforcement learning rule (Rescorla & Wagner, 1972): 

 

	 	 (A.2) 

 

with α representing the learning rate. 

Predictive mappings, !! !, !,! =  !(!|!,!,!∗ = !!) , encode the likelihood that 

an outcome o will be obtained given an action a to a stimulus s given the rule that is 

currently being used !!. Predictive mappings estimate the probability of specific action 

outcomes independently of outcome valences or reward values. These mappings prove 

crucial in order to evaluate the uncertainty of external contingencies, and to estimate the 

volatility associated with external states and action outcomes. 

P(a | st ) = (1−ε)
exp βQactor (st,at )( )
exp βQactor (st,at )( )

a=1...na

∑
+
ε
na

Qt+1
actor (st,at ) =αr[ot ]+ (1−α)Q

t
actor (st,at )
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The original model (Collins & Koechlin, 2012) also includes a contextual 

mapping, which tracks contextual information that could provide information about rule 

switches. As with Donoso and colleagues (2014), the task used in Experiment 4.1 did not 

include contextual information; therefore contextual mappings were not considered in the 

current version of the PROBE model. 

The model assumes that a person monitors the reliability of a maximum of N 

potential rules. This number of rules could be considered a kind of “buffer”, and is 

included as a free parameter in model estimation. The notation {1,…,Nt} denotes the 

number of rules being monitored at any given point throughout the task, with the number 

of monitored rules !!(!! ≤ !). The absolute reliability λi (t) of rules Ri ∈ {1,…,Nt} is 

computed as the posterior probability that the hidden rule !!∗ on any trial t matches !! 

given all observations, including those seen on preceding trials: 

 

	 	 (A.3) 

 

where “past” refers to all other observable events occurring in the preceding trials. To 

calculate changes in reliability, !!∗ = !! represents an event in which !!∗ ∉ {1,… ,!!} , 

!(. , . , . ) indicates the likelihood of an action given the current event, and !! !  represents 

the posterior probability that this event occurs given all observations. With this notation, 

the updating rule for absolute reliabilities !! ! , ! ∈ {0,1,… ,!!}  is calculated using 

Bayesian calculus: 

λi (t) = P(Rt
* = Ri | st,ot−1, past)
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λi (t +1) =

(1−τ )µi (t)+τ µ j (t)
j∈{0,1,...,Nt }
∑

Zt
λ 	

with	 	

(A.4) 

 

Both !!!  and !!! are normalization factors, and τ represents the perceived volatility, that 

is, the probability that a hidden state can change between an outcome ot and the next 

stimulus !!!!. 

Based on the equations above, a crucial term required to infer a rule’s absolute 

reliability is !! . , . , .  and is important in order to learn the mappings of monitored 

strategies. It can formally be written as follows: 

 

	 	 (A.5) 

 

It is important to note that regardless of the stimuli and actions, all of the possible 

outcomes that could be produced by a current set of monitored rules are equally likely to 

occur when the current hidden state !!∗  is unknown – i.e., when !!∗ ∉ {1,… ,!!} . 

Therefore, γ!(!, !,!) is represented as a constant !! calculated as the equal probability of 

an action outcome produced by the entire set of monitored rules. It is also worth noting 

that the value !!(!)  does not need to be explicitly computed given that !! ! +

 !!!∈ !,…,!! ! = 1.  

µi (t) =
γ i (ot, st,at )λi (t)

Zt
µ

γ0 (o, s,a) = P(o | s,a,Rt
* ∉ {1,...,Nt}
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A key feature of the PROBE model is to infer the absolute reliability of a limited 

set of rules. Each monitored rule ! ∈ {1,… ,!!} is therefore seen as either being reliable 

(more likely to be matching the current hidden rule, or !! ! > 1− !! ! ), or unreliable 

(a situation in which !! ! < 1− !! ! ). If there is a reliable monitored strategy, all other 

monitored rules are by definition unreliable given that !!!∈ !,…,!! ! < 1. A reliable 

rule is identified as an actor, meaning that this rule becomes the unique action selector 

(and learner of external contingencies) at that particular moment. When the model settles 

on a reliable actor, it is said to be in exploitation mode. Conversely, when all monitored 

rules become unreliable, the model switches to an exploration mode. During exploration, 

a new, provisional actor !! is created by marginalizing over the range of rules stored in 

long term memory. The provisional actor’s mappings !! (which include selective and 

predictive mappings !! and !! respectively) are computed as follows: 

 

	 	 (A.6) 

 

where the index m runs over the entire set of rules stored in long-term memory, and !! 

denotes each rule m’s internal mappings. The U in this equation is the uniform density 

over actions meant to represent recollection entropy, and η a recollection scaling 

parameter that determines how much the model relies on mappings from long-term 

memory. 

Once created, the provisional actor !! is endowed with a prior reliability !!"#$" 

that is computed as minimizing the reliability information from monitored strategies. As 

Mp =ηU + (1−η) Mm
m
∑
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demonstrated by Collins and Koechlin (2012), the reliability !!"#$"  ranges between 

1/ !! + 1  and 1/3. Thus, the provisional actor is initially unreliable and probed to try to 

learn external contingencies. As this provisional actor learns, it may become reliable, 

while other monitored rules become unreliable. In these circumstances, the provisional 

actor is confirmed, its mappings are stored in long-term memory, the model exits the 

exploration state, and enters an exploitation state with the provisional actor as its new 

reliable rule. In cases where the N buffer capacity is reached, the least recent rule is 

discarded from the buffer, and replaced with the previously reliable rule. 

It is also possible for a monitored rule in the buffer, other than the provisional 

actor, to become reliable. In these circumstances, the provisional actor is rejected, the 

exploration period terminates, and the reliable monitored rule becomes the new actor.  

Overall, the PROBE model contains 7 free parameters that can vary between 

subjects: 

Buffer capacity (N). An integer value that corresponds to the number of rules, 

including the actor, that can concurrently be monitored. It is worth noting that the probe 

actors are added to this buffer during periods of exploration.  

Perceived volatility (τ). A parameter ranging between 0 and 1 that represents the 

likelihood that a hidden state will change at any given point throughout the task. 

Recollection entropy (η). A continuous parameter ranging between 0 and 1 that 

determines how much a probe actor’s mappings rely on mappings stored in long-term 

memory (with values closer to 1 indicated less influence from long-term memory). 

Prior reliability bias (�). Participants may be more or less inclined to confirm 

rather than reject newly created provisional actors. As such, the prior reliability !!"#$" 
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could be biased. To account for this possibility, a biased prior reliability is calculated as  

!!"#$%& !"#$" = !× !
! + 1− ! !!"#$"  . The higher the value of !!"#$%& !"#$" , the more 

participants are biased towards confirming rather than rejecting newly created actors. The 

� parameter scales the deviation of a provisional actor’s prior reliability from an 

uninformative prior to the reliability threshold of 0.5 required to confirm an actor.  

Learning rate (α). Standard reinforcement learning rate parameter that can range 

between 0 and 1, and determines the weight given to an outcome. 

Inverse temperature (β). Standard continuous reinforcement learning parameter 

that scales the ‘greediness’ of an action selection. Higher values of β indicate higher 

biases towards actions that maximize reward output. 

Noise (ε). Standard continuous reinforcement learning parameter that can vary 

between 0 and 1, and accounts for lapses in subject responses. The larger this parameter, 

the more lapses unaccounted for by the model. 

 

Reinforcement Learning model description 

The reinforcement learning model (RL) fit to participant responses in Experiment 

4.1 uses past outcomes to build a selective mapping ! !,!  to represent stimulus-

response associations. These mappings are built using the same reinforcement learning 

rules used in equations A.1 and A.2. As such this RL model contains three free 

parameters: α (learning rate), β (temperature), and ε (noise). 

 
 


