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Abstract 

Recent progress in the field of recommender systems has led to increases in the accuracy and 

significant improvements in the personalization of recommendations [18]. These results are being 

achieved in general by gathering more user data and generating relevant insights from it. However, 

user privacy concerns are often underestimated and recommendation risks are not usually addressed. 

In fact, many users are not sufficiently aware of what data is collected about them and how the data is 

collected (e.g., whether third parties are collecting and selling their personal information).  

Research in the area of recommender systems should strive towards not only achieving high 

accuracy of the generated recommendations but also protecting the user’s privacy and making 

recommender systems aware of the user’s context, which involves the user’s intentions and the user’s 

current situation [2, 4, 5, 6, 11, 12, 14, 128]. Through research it has been established that a tradeoff 

is required between the accuracy, the privacy and the risks in a recommender system and that it is 

highly unlikely to have recommender systems completely satisfying all the context-aware and 

privacy-preserving requirements [30, 7]. Nonetheless, a significant attempt can be made to describe a 

novel modeling approach that supports designing a recommender system encompassing some of these 

previously mentioned requirements. 

This thesis focuses on a multi-agent based system model of recommender systems by introducing 

both privacy and risk-related abstractions into traditional recommender systems and breaking down 

the system into three different subsystems. Such a description of the system will be able to represent a 

subset of recommender systems which can be classified as both risk-aware and privacy-preserving. 

The applicability of the approach is illustrated by a case study involving a job recommender system in 

which the general design model is instantiated to represent the required domain-specific abstractions.  
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Chapter 1 

Introduction 

Recommender systems (RSs) refer to a class of information systems that essentially aim at filtering 

vital information depending on a user’s preferences, interest, or observed behavior related to an item 

[22]. These systems can predict whether a specific user would prefer an item or not based on the 

profile of a specific user. Having become increasingly popular in recent years, recommender systems 

have been adopted in a wide variety of application domains, including movies, music, products and 

financial services. 

Recommender systems (RSs) can take advantage of the semantic reasoning capabilities to overcome 

common limitations and improve the recommendation quality [128]. These systems uses domain 

properties, types and relationships to enhance user personalization. Current research in the area of 

RSs has focussed on context-aware RSs [18]. A context-independent representation may lose 

predictive power because potentially useful information from multiple contexts is not taken into 

account [128]. The ideal context-aware RS would, therefore, be able to reliably associate each user 

action with an appropriate context and effectively modify the system output for the user in that given 

context.  

The majority of existing approaches to RSs focus on recommending the most relevant content to users 

using contextual information and do not take into account the risk of upsetting the user by not 

providing accurate recommendations. However, in many applications, such as recommending 

personalized content, it is also important to consider the risk of upsetting the user by not being aware 

of the user’s situation and intentions [7]. Typically, after getting the contextual data from a user, the 

data is passed to a semantic analyzer in order to generate meaning from that data. Based on the results 

from the semantic analyzer, a list of items are prepared to be recommended to the user. A risk factor 
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is calculated for each of the items and only those items with lower values of risk are recommended to 

the user. According to Bouneffouf more than 30 algorithmic variations exist to calculate the risk 

factor (e.g., variance of the cost analysis, Bayesian optimization) [7]. Therefore, the performance of a 

RS depends in part on the degree to which it has incorporated the risk into the recommendation 

process. Risks in RSs can involve, for example, the possibility of disturbing or to upsetting the user, 

which can lead to a negative feedback from the user.  

With the advent of enormous amounts of personal data collection for the sake of personalization and 

improving recommendation quality, the focus of the current research on RSs has been shifting to 

privacy protection [129]. Personalization provides convenience in the user experience, and it can have 

a direct impact on marketing, sales, and profit. On the other hand, privacy, which is a serious concern 

for many users, is the price users have to pay for the convenience RSs can provide in a world with 

booming information. Users normally have no choice but to trust the service provider to keep their 

sensitive personal profile and information safe.  

1.1 Research Issue 

Since a major focus in the area of RSs has been the improvement of the accuracy of the 

recommendations generated by the Recommender System, there is a lack of a modelling approach for 

the RSs that takes into account both sufficient knowledge of the user’s context and the privacy of the 

users. A novel model of RSs involving both contextual risk and privacy would make things much 

easier for domain experts to study and advance research in the area of risk- aware and privacy-

preserving RSs, thereby contributing with methods that can produce more detailed designs of such 

systems. 

In the past few decades, collaboration of multiple teams in a large software project has become a 

usual path for developing large-scale software [15]. In spite of increasing adoption of collaborative 
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software development, there is scope for a lot of improvements to fill the gap between what is needed 

and what has been provided today as the software development landscape changes rapidly.  Multi-

agent software development has emerged as a way to develop software by considering the different 

aspects of a software system as separate agents that working in coherence to achieve the overall goal 

of the system. However, although the area of multi-agent systems has experienced much growth in 

the last decade, there is still a need for multi-agent approaches that supports both context-aware and 

privacy-preserving mechanisms [18]. 

1.2 Thesis Statement 

The aim of this research is to provide a multi-agent based system model of RSs by introducing both 

privacy and risk-related abstractions into traditional recommender systems. The model can support 

designing these systems when privacy and contextual risk related to user data and information needs 

to be taken into account. The applicability of the approach is illustrated by a case study involving a 

job recommender system in which the general design model is instantiated to represent the required 

domain-specific abstractions.  

1.3 Major Contributions 

This research focuses on the importance of the privacy and risk aspects of the Recommender 

Systems, that is, on how much a RS safeguards user privacy and also on how a RS addresses 

contextual risks.  

The proposed approach utilizes a multi-agent system model that divides the system into individual 

units. This breakdown of the Recommender System into small individual units enables the designers 

of the RS to focus on each of the small objectives that must be accomplished by the individual units 

in order to fulfil the overall objective of the entire system. 
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This approach combines two existing research areas within RSs, i.e. risk and privacy, into a unified 

system model. As part of this thesis, a sample case study that illustrates the applicability of the 

proposed approach in the field of job recommender systems is also provided. 

 

1.4 Thesis Organization 

The thesis is divided into three parts. The first part introduces the problem addressed in the thesis, 

along with a survey of the RSs field that covers both risk and privacy issues, two fundamental 

concepts upon which this thesis is framed. The second part describes related work in the RSs 

literature and provides an analysis of the related design alternatives and statistical biases. It also 

provides a detailed discussion of the proposed approach to solve the identified issues related to 

existing multi-agent models. Towards the end of this part, a brief case study is provided, in which the 

proposed multi-agent model is used to model a job recommender system. The final part of the thesis 

describes conclusions and future work that can be done to extend the proposed system model. In the 

Appendix, a preliminary evaluation method for RSs based both the privacy and risk dimensions is 

discussed.  

In more detail, the content of this thesis is organized as follows: 

Part I. Introduction 

Chapter 1 In this chapter, a brief description of the current focus in the area of RS is provided, 

followed by the description of the issues currently faced by researchers and domain experts in the 

area of RSs. A thesis statement is then provided to give an idea of what this thesis is trying to achieve. 

This is followed by the description of the major contributions of the thesis. 
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Chapter 2 provides an overview of the state of the art in the area of RSs, which includes a 

classification of the main types of recommendation approaches. In this chapter, we also describe the 

weaknesses of the different recommendation techniques and present a broader class of hybrid 

recommenders that aim to overcome these limitations. We also discuss risk and privacy issues in the 

RSs, and how these issues arise in these systems in the first place. The discussion is carried forward 

with the description of the some of the mitigating techniques that can be used to address some of the 

identified issues. 

Part II. The System Model 

Chapter 3 describes some of the related research work in the field of RSs that has contributed toward 

the conceptualization of the proposed approach discussed in this thesis. 

Chapter 4 presents the proposed approach. In this chapter, a detailed description of the multi-agent 

system model is provided along with an explanation of different aspects of this model.  

Chapter 5 presents a case study to illustrate the applicability of the proposed approach, in which the 

multi-agent model is applied to a job RS. In this chapter, a discussion about two previous job RSs is 

provided, and enhancements to these systems is provided in the form of a new multi-agent model for 

risk-aware and privacy-preserving job RSs.  

Part III. Future work 

Chapter 6 discusses future work that can be carried out to improve or extend the proposed approach, 

including the instantiation of the multi-agent model for the RSs across different application areas. 

This is followed by a discussion of the limitations of this approach. 

Appendix This section discusses a preliminary method for the evaluation of RSs using privacy-

preserving and risk-aware concepts.  
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Chapter 2 

Recommender Systems 

Recommender systems are software systems that produce a list of recommendations for its users by 

deploying in general two algorithms (i.e. collaborative filtering or content-based filtering) or a mix of 

these algorithms as a hybrid approach. The approach used in collaborative filtering utilizes the user’s 

historic data (i.e. items purchased by the user, browsing/navigation history on the website or the 

feedback provided for the purchased item). The result of this approach is a list produced by the 

system of recommendations of interest to the user [22]. On the other hand, content-based filtering 

approaches employ a set of attributes of an item in order to come up with a list of recommendations 

having items with similar attributes [23]. A hybrid approach can be used as a combination of the 

previously discussed approaches in order to find a solution with the best recommendation accuracy. 

2.1 Context-Aware Recommender Systems 

Bouneffouf has briefly discussed the concept of context-aware RSs [7]. In order to make 

recommendations more accurate, the context at the time of generating recommendations is also an 

important factor. The contextual data can be added as a source of information for generating better 

recommendations or can help in filtering out non-relevant recommendations from the list of resultant 

recommendations generated by the system. Therefore, the introduction of context information into 

RSs leads to context-aware RSs [21].  
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2.2 Privacy in Recommender Systems 

A wide variety of information needs to be processed by RSs. Some authors discuss these diverse 

information types in detail [19]. Some of this information can be confidential and should not be 

revealed to any other person or organization, except the information owner. On the user’s end, there is 

always a trade-off between the amount of information to be provided to a RS and the accuracy of the 

resulting recommendations. This aspect is represented by Jeckmans et al. with the help of a three-

dimensional representation that has the duration of information storage, the size of the audience and 

the extent of usage as its three axes [19]. 

2.3 Privacy Protection 

In order to alleviate the privacy concerns of the user to make the user provide more information to the 

system for better recommendations, some privacy-protection techniques can be employed. One of the 

methods is anonymization, which involves removing any link in the data to a specific user while 

preserving the structure in the data. Some authors use this approach by introducing trust agents [34]. 

Other methods to deal with privacy concerns are based on randomization techniques or differential 

privacy servers. 

2.3.1  User control 

Some authors discuss two techniques to mitigate concerns over privacy risk breaches in the RSs that 

give users the option to manage the release of information to the RSs [14, 41] or provide appropriate 

reasons for the requirements of information release to users [42]. These two methods help in reducing 

breaches of user privacy. 
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2.4 Risk Aware Recommender Systems 

Bouneffouf discusses risk-aware RSs [7]. In this variation of RSs an approach is used to calculate the 

trade-off between discovering contextual information and upsetting users by providing them non-

relevant recommendations. This trade-off factor is termed as risk and is calculated by using the multi-

arm bandit optimization method. The techniques that are discussed in this paper are derived from the 

“variance cost” approach, “expected environment cost” approach and the hybrid approach [44, 43, 45, 

46, 47, 48]. 
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Chapter 3 

Related Work 

3.1 Modelling Recommender Systems 

Girardi and Marinho provide a description of an ontology-driven model for usage mining in the 

context of agent-based Recommender Systems is provided [1]. It first starts with a description of 

MADEM (Multi-Agent Domain Engineering Methodology) as a software development methodology 

for multi-agent domain engineering, followed by the description of the modeling concepts, tasks and 

products for the development of a family of multi-agent systems in a problem domain. 

3.2 Risk-Aware Recommender Systems 

After introducing the concept of multi-agent system in context of RSs, we now introduce the dynamic 

risk-aware RS, as described in [7]. A dynamic risk-aware recommender system (DRARS) is 

essentially a context-aware RS which takes into account the exploration-exploitation trade-off using a 

multi-arm bandit optimization solution. 

3.3 Privacy Preserving Recommender Systems 

Elmiseri, Rho and Botvich present a collaborative privacy framework for preserving user profile 

privacy in social recommender services [5]. It is a description of a novel two stage concealment 

process that offers to the user’s privacy control over their ratings profiles. The concealment process 

utilizes a hierarchical topology, where users are organized in peer-groups. This paper also provides a 

performance test of the proposed framework on a real dataset and the evaluation of how the overall 

accuracy of the recommendations depends on the number of users and requests. The experimental and 

analysis results showed that privacy increases under the proposed middleware without hampering the 

accuracy of recommendations. Moreover, the approach used in the paper has been shown to reduce 
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privacy breaches on the concealed data without severely affecting the accuracy of recommendations 

based on collaborative filtering techniques by realizing that there are many challenges in building a 

collaborative privacy framework for preserving privacy in social recommender services. Ma et al. 

provide an evidence that the disclosure of user preferences in a RS seriously threatens the users’ 

personal privacy, especially when service providers move the user data to an untrusted cloud [6]. In 

this paper, a novel solution, called APPLET is presented, to address the significant challenges in 

privacy-preserving location-aware RSs. In APPLET, multiple cryptographic methodologies were 

introduced in order to highlight the aspect of protecting the privacy of the RS users without affecting 

the quality of the recommendations. Moreover, an evaluation has been provided which shows that the 

effectiveness and performance of APPLET turns out to be well-suited. Shokri et al. proposed a novel 

method for privacy preservation in collaborative filtering RSs [12]. The authors addressed the 

problem of protecting user privacy in the presence of an untrusted central server, where the server has 

access to the user profiles. To avoid privacy violation, a mechanism is proposed where users store 

locally an offline profile on their client side, hidden from the server, and an online profile on the 

server from which the server generates the recommendations. The online profiles of different users 

are frequently synchronized with their offline versions in an independent and distributed way. Using a 

graph theoretic approach, the authors developed a model where each user arbitrarily contacts other 

users over time, and modifies his own offline profile through a process known as aggregation. 

Through experiments discussed in the paper, it is concluded that such a mechanism can lead to a high 

level of privacy through a proper choice of aggregation functions, while having a very little effect on 

the accuracy of the recommendation system. The results illustrated that similarity-based aggregation 

functions, where users receive items from other users proportional to the similarity between them, 

yield a considerable privacy level at a very low accuracy loss. Other findings suggest that the users’ 
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online information is multi-dimensional regarding privacy concerns, especially in a recommender 

context [14].  

3.4 Privacy-Preserving Methodologies for Recommender Systems 

Traditional location-aware RSs are facing a significant challenge, namely, how to protect the location 

privacy of users while preserving the quality of the recommendations. There are several studies that 

have achieved location privacy, which are based on anonymity, differential privacy, and encryption 

schemes. Some authors proposed location-oriented privacy-preserving mechanisms based on 

anonymity to protect user location privacy [49-51]. To solve the shortcomings of these solutions, 

some authors introduced differential privacy mechanisms to protect the user’s exact location 

independently from any side information [52-54]. 
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Chapter 4 

Proposed Approach 

In this chapter we will discuss the proposed approach to tackle the challenges described in the 

previous sections. Let us start with a conceptual model depicted in Figure 1, describing a RS as a 

system where the resultant recommendations are affected by the privacy factors (e.g. user controls, 

privacy settings etc.) and the contextual risk factors (e.g. location, social connections etc.). The 

privacy risk factors can be understood as the parameters which are formulated by taking privacy 

instructions from the user and then filtering out the data to be considered for generating 

recommendations based on those privacy parameters set by the users. On the other hand, the 

contextual risk factors are the parameters that are obtained from the continuous or periodical streams 

of user data followed by filtering by the privacy parameters, which are used as one of the data sources 

for generating the recommendations. Thus, in order to propose a model for the Risk-Aware Privacy-

Preserving Recommender System (RPRS), we need to have model that takes into account these two 

factors affecting the system, namely privacy and contextual risk. 

The proposed approach to model the RPRS follows a sequence of steps in order to produce a model 

of the system (Figure 2). In the first step the system is conceptually broken down into three 

subsystems (i.e. the Data Subsystem, the Contextual Risk Subsystem and the Privacy Subsystem) to 

consider the impact of the privacy and the risk factor on the overall objective of the system, which is 

to produce recommendations. This step also involves the introduction of an agent-based approach 

where each subsystem is assumed to be modeled by one or more agents in order to accomplish the 

objective of that subsystem.  



 

 13 

 

Figure 1 Conceptual Diagram of the Risk-Aware Privacy-Preserving Recommender System 

 

  

Figure 2 Proposed Steps of the Modeling Approach 

In the next step, we provide a goal model for each subsystem within the entire system in order to 

specify the goal of these subsystems. The agents within these subsystems are described in terms of the 

roles they perform, the responsibilities they fulfill and the activities performed by these agents in 
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order to achieve the objective of the subsystem. This is achieved partially by the introduction of the 

relationship model which provides a set of attributes displayed by each agent and their associated 

relationships in order to accomplish its responsibilities within the subsystem. 

We introduce two design behaviors for the next two subsequent steps. These design behaviors help in 

understanding the system by describing the internal behavior of each subsystem. The first behavior 

design we discuss is the activity model of the subsystems. It describes the behavior of the subsystem 

in context of the relationship model discussed previously. The activity models for each subsystem are 

then combined to form an activity model of the entire RPRS. 

The second behavior design which is discussed is the sequence diagrams of the subsystems. The 

sequence diagrams describe the sequence of events that occur within the subsystems. These sequence 

diagrams are then combined to form the sequence diagram of the whole RPRS. The behaviors defined 

by the sequence diagrams are based on the contextual information from a relationship model. 

Before going further in the description of the system model, it is indispensable to describe the 

notations used in this approach, which involve UML modeling techniques. Various types of UML 

diagrams are used (e.g. activity diagram and sequence models) to provide the system models and to 

gain understanding of the behavior of the subsystems and the recommender systems as a whole. 

These diagrams are explained in the following section. 
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4.1 UML Diagrams 

UML stands for Unified Modeling Language and is used in object-oriented software engineering. 

Although typically used in software engineering, it is a rich language that can be used to model 

application structures, behavior and even business processes. There are 14 UML diagram types but 

for the purpose of this thesis, we will be focusing only on the activity diagrams and the sequence 

diagrams. 

4.1.1 Activity Diagrams 

The basic purposes of activity diagrams is to capture the dynamic behavior of the system by showing 

the message flow from one activity to another. Activity is a particular operation of the system. 

Activity diagrams are not only used for visualizing dynamic nature of a system but they are also used 

to construct the executable system using forward and reverse engineering techniques. A missing 

element in activity diagrams is the message part: it does not show any message flow from one activity 

to another. Although activity diagrams bear some similarities to flow charts, they are different in that 

they depict flow such as parallel, concurrent, single and branched flows.  

4.1.2 Sequence Diagrams 

UML sequence diagrams are used to represent or model the flow of messages, events and actions 

between the objects or components of a system. Time is represented in the vertical direction showing 

the sequence of interactions of the header elements, which are displayed horizontally at the top of the 

diagram. Sequence Diagrams are used primarily to design, document and validate the architecture, 

interfaces and logic of the system by describing the sequence of actions that need to be performed to 

complete a task or scenario. UML sequence diagrams are useful design tools because they provide a 

dynamic view of the system behavior which can be difficult to extract from static diagrams or 

specifications. Although UML sequence diagrams are typically used to describe object-oriented 
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software systems, they are also extremely useful as system engineering tools to design system 

architectures, in business process engineering as process flow diagrams and as message sequence 

charts for protocol stack design and analysis. 

4.2 Goal Model 

Goal models for the RSs were introduced in [1]. In this thesis, goal models are used to model 

subsystems of the RPRS in order to describe the objectives of the subsystems. This is an agent-based 

model in which the goals of each subsystem is represented diagrammatically and that relies on 

information provided by a relationship model in Figure 4.  
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4.3 Multi-agent System Model and System Description 

 In the proposed approach, we will start by breaking-down the system into subsystems. Each 

subsystem will be responsible for accomplishing a pre-defined task and will be modeled using agents. 

We will focus on modeling the goals of the subsystems, the roles of the agents, the activities 

performed by the agents, and finally the interactions of the agents. Agents possess knowledge that is 

used to help reach their goals. A subsystem is composed of agents having specific goals that establish 

what the subsystem intends to accomplish. The achievement of specific goals by the agents within a 

subsystem allows the entire system to reach its goal when the subsystems are put together (Figure 3).  

  

Figure 3 Combining Subsystem Goals to Achieve the System Goal 

Specific goals of an agent within a subsystem are reached through the performance of responsibilities 

that agents have, in which the agent plays roles with a certain degree of autonomy. Responsibilities 

are exercised through the execution of activities by each individual agent within the subsystem. The 

set of activities associated with a responsibility are a functional decomposition of it. Roles have skills 

on one or a set of techniques that support the execution of responsibilities and activities in an 

effective way within the subsystem. Pre-conditions and post-conditions may need to be satisfied 

before or after the execution of an activity by each agent within the subsystem. Knowledge can be 

consumed and produced through the execution of an activity. Skills can be, for instance, the rules of 
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the subsystem that agents know in order to access and structure its information sources. Sometimes, 

agents have to communicate with other agents to cooperate in the execution of an activity. This 

approach allows for such communication to take place between the agents within the subsystems. 

 

Figure 4 Relationship Model for Subsystems 

4.4 Goal Models for the Subsystems 

We will now discuss the goal models of the subsystems which make up a RPRS and also explain the 

contribution of each subsystem and the agents involved in these subsystems. 
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4.4.1 Goal Model: Data Subsystem 

 

Figure 5 Goal Model for the Data Manager Agent and the Aggregator Agent 

Let us start with the data management subsystem (Figure 5). This subsystem is responsible for 

managing the data inflow and outflow from the RPRS. The subsystem consists of two agents, the 

Data Manager Agent and the Aggregator Agent. The goal of the Data Manager Agent is to maintain 

the authenticity of the data by preventing it from getting corrupted and also to manage the piping of 

data from data sources to the desired destinations. This goal of the data agent is achieved by fulfilling 

two responsibilities: the responsibility of properly encrypting and decrypting the data from the source 

and the destination, respectively, and of updating the proper locations of source and destination of the 

data to be used by the system. The main task of the Aggregator Agent is to channel between the user 

interface and the various servers to support computation, storage and generating recommendations. 

This specific goal is achieved by the proper distribution and redistribution of data within the system. 
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4.4.2 Goal Model: Privacy Subsystem 

 

Figure 6 Goal model for the User Privacy Agent 

The privacy subsystem manages the privacy aspect of the RPRS (Figure 6). This subsystem relies on 

the User Privacy Agent to carry out its operations. The main role of this subsystem is to provide user 

contextual data and the historic data to the computation server in order to generate recommendations 

for the users. The contextual information about the users can involve user location and social user 

information, combined with the timing of the information. The user history data refers to the user 

behavior that is recorded at runtime for analysis purposes. 

To understand the role of the privacy subsystem within the RPRS, we need to look at the goals of the 

User Privacy Agent. The User Privacy Agent performs the task of maintaining user privacy settings 

for the contextual data and is responsible for filtering out the noise from the contextual data that is 
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obtained from the users. These two responsibilities form the specific goal of filtering and maintaining 

the users’ contextual privacy information. On the other hand, the User Privacy Agent also fulfills the 

responsibility of maintaining the access to the users’ historic data based on the settings provided by 

the users and of selecting the most appropriate data for generating the recommendations after filtering 

out the noise from of historic data. 

4.4.3 Goal Model: Risk Subsystem 

 

Figure 7 Goal Model for the User Risk Agent and the Context Analyzer Agent 

This subsystem (Figure 7) handles the contextual risk by getting the contextual information (i.e. time, 

location and social information) from the user and then feeding this information to the RPRS. It 

consists of two agents: the Context Analyzer Agent and the User Risk Agent. 

The information processed in this step is utilized by the RPRS to produce a more context-aware 

system not only by providing more relevant information to its users but also by keeping itself aware 

of the risks associated with disturbing or negatively affecting the user with inconvenient 
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recommendations. This tradeoff between providing relevant recommendations and the associated 

risks of doing so is the part of the risk calculation through the exploration and exploitation approach 

[7]. 

The two agents involved in this subsystem have some specific goals and responsibilities. The 

responsibility of the User Risk Agent is to ensure that no noise remains in the data and to calculate the 

risk tradeoff for generating the recommendations and the relevance of these recommendations to the 

user from the user feedback related to the previously generated recommendations. These two 

responsibilities help in achieving the goal of carrying out the risk calculation and the analysis of the 

user data. The Context Analyzer Agent is responsible for cleaning the data obtained from the risk 

calculation stage, selecting the best possible algorithm for the analysis and securing the generated 

data to be forwarded as recommendations to the users. This helps in achieving the task of semantic 

analysis of the user data and, finally, in providing the analysis results as recommendations to the users 

of the system. 

4.4.4 Combined Goal Model of the System 

The combined goal model of the RPRS (Figure 8) consists of the aggregation of the individual 

subsystems and the combination of the goals of the agents within each subsystem in order to achieve 

the goal of the entire system. 
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Figure 8 System Goal Model 
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4.5 Activity Models for the Subsystems 

We will now discuss the activity models of the subsystems which make up a RPRS and also in terms 

of these models the contribution of each subsystem and the agents involved in the respective 

subsystems. 

4.5.1 Activity Model: Data Subsystem 

 

Figure 9 Activity Diagram of Data Subsystem 

This subsystem (Figure 9) receives data in form of User Preferences and User Feedback. Its multiple 

elements perform the tasks that brings out the functioning of the data subsystem. The Data Manager 

Agent uses hashing, SHA, and MD5 checking to ensure data authenticity. An example of an 

Aggregator Agent is the typical messaging broker used in modern applications. Apache Kafa and 

RabbitMQ are two types of such message brokers. A message broker is a software component used 
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for message transformation and routing. Together, these two agents fulfill the objective of the Data 

Subsystem, i.e. the management and maintenance of the data pipelines within the system. 

4.5.2 Activity Model: Privacy Subsystem 

 

Figure 10 Activity diagram for the User Privacy Subsystem 

Within this subsystem (Figure 10) the contextual and personal information is extracted from the user 

and fed into the RPRS. An addition differential privacy server is used to handle the differential 

privacy aspect of the subsystem. The contextual data from the user along with the historic data of the 

user provides valuable insights that help to provide quality recommendations to the user. 

4.5.3 Activity Model: Risk Subsystem 

The information processed in this subsystem  (Figure 11) is utilized by the RPRS to generate a more 

context-aware system by not only providing more relevant information to its users but also keeping 

itself aware of the risks associated with disturbing or negatively affecting the user with inconvenient 

recommendations. This tradeoff between providing relevant recommendations and the associated 

risks is captured in the risk calculation [7]. 
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Figure 11 Activity Diagram for the Risk Subsystem 

4.5.4 Combined Activity Model for the System 

The combined Activity model (Figure 12) of the RPRS consists of the aggregation of the individual 

subsystems and the combination of the activity diagrams of the individual agents within each 

subsystem to achieve the goals of the entire system.  
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Figure 12 Complete Activity Model of the System 
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4.6 Sequence Diagrams for the Subsystems 

We will now discuss the sequence diagrams of the subsystems involved in the RPRS and also explain 

the sequence of actions that takes place within each subsystem. 

4.6.1 Sequence Diagrams: Data Subsystem 

 

Figure 13 Data Subsystem Sequence Diagram 

The sequence diagram of the data subsystem is provided in Figure 13. In this diagram, a 

recommendation generation process starts when a connection is established between the user-data 

database and the computation server where the data to be used is decrypted. This data is then piped to 

the computation server. After the processing at the communication server, the recommendations are 

generated and are then forwarded to the user through an interface. Based on the quality of 

recommendation, the user provides a feedback which is stored in the user-data database. The transfer 

of data between the servers, including the encryption and the decryption process, is carried out within 

the data subsystem. These tasks are carried out by the Data Agent and the Aggregator Agent within 
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the data subsystem, and a summarized description of their behavior has been provided in the previous 

section. 

4.6.2 Sequence Diagram: Privacy Subsystem 

 

Figure 14 Privacy Subsystem Sequence Diagram 

In order to understand the privacy subsystem it is necessary to know the flow of control within this 

subsystem (Figure 14). The first step involves establishing a connection with the user data server and 

with the privacy server. This is followed by extracting the user data and the user privacy settings from 

the server. Once this data has been extracted from the server, it is filtered against the user settings. 

The user data includes the contextual data (i.e. location, time and social) data as well as the user’s 

previous behavior patterns obtained while the user interacted with the system. The user is made aware 

of the data through user controls and is asked for permission to utilize his or her data for generating 

recommendations. 
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Once the data has been filtered of noise and against the user settings, it is piped through the 

computation server to generate the recommendations to the user. After the recommendations have 

been generated, they are forwarded to the user via a specific interface. 

Based on the quality of the recommendations, the user provides feedback or exhibits certain behavior 

patterns (e.g. clicks, navigation, dismiss) which indicate the user’s opinion about the quality of the 

generated recommendations. This feedback data is then encrypted and stored in the user-data database 

to serve as an input for future computations for recommendation generation. 

4.6.3 Sequence Diagram: Risk Subsystem 

 

Figure 15 Contextual Risk Subsystem Sequence Diagram 

The sequence diagram in Figure 15 helps in understanding the steps that take place within the 

contextual risk subsystem. First, a connection is established with a sensing device at the user’s end, 

through an interface. After this step, the low-level abstraction of the user’s data is sent to the servers 

running the semantic analysis. As a result the risk is calculated and based on the value of this 

parameter the recommendations are forwarded to the user. 
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4.6.4 Combined Sequence Diagram 

 

Figure 16 Combined Sequence Diagram  
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Chapter 5 

Case Study: A Job Recommender System 

In general, a recommendation system suggests personalized choices from a large set of possible 

options with the objective of reducing complex decision making. The last decade has witnessed the 

emergence of a wide variety of job portals offering recommendation services to help their users find 

employment. Such recommendation systems work based on information filtering techniques and 

provide information of interest to concerned users. Typically, a recommendation engine, which 

employs a set of similarity and ranking algorithms, compares the user’s profile to some reference 

characteristics collected from the job description across multiple jobs posted on the job portal or the 

user’s social environment, and seeks to predict a set of suitable jobs for the user.  

5.1 Problem Description 

The main problem is that these recommendation systems do not support privacy-preserving and risk-

aware mechanisms. Therefore, in this chapter, a multi-agent model based on the RPRS model is 

provide to address this gap. 

In order to provide a specific RPRS model to support job recommendations, information about how 

job recommendations work conceptually and from a processing viewpoint are needed so that goal 

diagrams, activity diagrams and sequence diagrams are produce as part of the specific RPRS design 

model. After reviewing the literature on job recommendation systems, two of them were found that 

provide to some extent the required information. A first paper describes the system conceptually and 

includes information such as the types of data used, and the user’s actions, objectives and interactions 

[9]. A second paper focuses more on the data processing mechanisms and provide more information 

on how the data is processed and on how the filtering process works [10]. In summary, the first paper 
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provides the information needed for the generation of the RPRS goal models, and the second paper, 

provides the information required to produce the RPRS activity and sequence diagrams. 

We will now describe the job recommendation systems proposed in [9] (in 2013) and in [10] (in 

2016). In [9], Guo and Alamudun describe a hybrid RS for job seeking and recruiting websites. This 

hybrid RS exploits the job and user profiles and the actions undertaken by users in order to generate 

personalized recommendations of candidates and jobs. The data collected from the website is 

modeled using a directed, weighted, and multi-relational graph, and the 3A ranking algorithm [16] is 

exploited to rank items according to their relevance to the target user. The authors also provide a 

preliminary evaluation based on simulated data and production data from a job hunting website in 

Switzerland. The approach presented in the paper involves modelling the entity and interaction-based 

relations by building a graph consisting of these entities and computing a ranking from this graph. 

Table 1 Interaction Entities proposed in [9] 

 

The technique proposed by the authors involves interaction-based relations (Table 1). The first of 

these relations is the ‘POST’ relation, described as a bidirectional relation between the employer and 

its jobs which comes into play while comparing two similar jobs posted by different employers. The 

second relation that is described in the paper is ‘APPLY’, which indicates that a candidate is 

interested in the job. This indication leads the candidate to other jobs similar to the ones he or she 

applied for. The third relation that is described in the paper is ‘FAVOURITE’, through which a user 

can add an entity into her or his ‘favorite list’. This is also a strong and explicit indication of interest. 
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The fourth relation, the ‘LIKE’ relation, is similar to the previous one, but differs in this case in that 

users may not revisit the items they liked. In the paper, the ‘LIKE’ relation is considered as an 

explicit feedback, but is weaker than ‘APPLY’ or ‘FAVOURITE’. The final relation that is discussed 

in the paper is ‘VISIT’, which is an implicit feedback of the user’s interest. 

 

Figure 17 Graph Framework described in [9] 

A pipelined hybrid recommendation approach is described and implemented in [9], which provides 

the results of content-based similarity as an input into a relation-based algorithm after normalization. 

Figure 17 shows a conceptual view of the recommendation graph framework described in the paper 

for generating personalized job recommendations. 

In contrast, in [10], Yao, Helou and Gillet describe a resume matching system which intelligently 

extracts the qualifications and experience of a job seeker directly from his or her résume, as well as 

relevant information about the qualifications and experience requirements of the job postings. Using a 

novel statistical similarity index, the resume matching system returns results that are more relevant to 

the job seekers’ experience, and academic and technical qualifications, with minimal active user 

input. 
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Figure 18 Resume Matching System described in [10] 

 

 

Figure 19 Information Processing Pipeline described in [10] 
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5.2 Approach 

In this section, the RPRS modeling approach provided in the previous section is applied to the 

domain of job recommender systems. As a result, job recommender systems that support both 

privacy-preserving and risk-aware mechanisms are modeled using the RPRS approach.  The 

construction of the design models are based on both the conceptual and processing-related 

information described in papers [9] and [10]. 

 The first step towards producing the design models is to determine the conceptual and processing 

features of the described job recommender systems, and then laying out these features in terms of the 

discussed approach. This involves focusing on the multi-agent aspects of the system, breaking the 

system down into the three RPRS subsystems, providing the goal, activity and sequence diagrams 

related to each subsystem, and, finally, combining the individual subsystem models to obtain the 

entire job-oriented RPRS system models.  

5.3 Goal Models of the Subsystems 

This subsystem (Figure 20) has two responsibilities. The first responsibility is to encrypt the data 

obtained from the employers and the candidates and store this data in a database, making it available 

for use by fetching it from the system and decrypting it. The second responsibility is not only to 

maintain the pipelines of candidate’s data and the employer’s data within the system but also to help 

in anonymizing the data by piping it through the differential privacy servers. These responsibilities 

gives rise to two goals of the system, i.e. to maintain the authenticity of the data and to channel the 

data through the system while protecting it as well. These tasks are performed by the Data 

Management Agent and the Aggregator Agent. The end goal of this subsystem is to manage and 

maintain the subsystem data pipelines. There are multiple supporting software systems used within 

this subsystem. Some examples of such systems are messaging brokers such as Apache KAFKA and 
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RabbitMQ, which work within a distributed system framework (e.g. the Hadoop Distributed File 

System). 

5.3.1 Goal Model: Data Subsystem 

 

Figure 20 Goal Model: Data Subsystem 

5.3.2 Goal Model: Privacy Subsystem 

The privacy subsystem (Figure 21) consist of a User Privacy Agent. The goals of the User Privacy 

Agent involve contextual and historic data filtering and selection, which are carried out by fulfilling 

some responsibilities.  The first responsibility is to maintain the privacy settings of the employers and 

the candidate’s data in the system. This is followed by the responsibility of filtering out contextual 

data based on the privacy settings. The third responsibility is to maintain the historic data setting for 

both types of the users and then, as a fourth responsibility, to filter out the historic data based on these 
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settings. These goals and responsibilities help in achieving the goal of the privacy subsystem, i.e. to 

provide user contextual and historic data filtering to the RPRS. 

 

Figure 21 Goal Model: Privacy Subsystem 

5.3.3 Goal Model: Risk Subsystem 

The risk subsystem (Figure 22) has two agents, the User Risk Agent and the Context Analyzer Agent. 

The goal of the User Risk Agent is to calculate the risk factor for contextual data. The goal of the 

Context Analyzer is to carry out the semantic analysis of the user data. These goals help in fulfilling 

the responsibilities associated with these agents. These responsibilities are calculating the risk using a 

candidate’s profile information and an employer’s job description, extracting relevant information 

from the candidate’s profile and the job description, and then using an analysis /matching algorithm 
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to deal with the current scenario. The overall objective of the subsystem is to provide risk evaluation 

to the RPRS. 

 

 

Figure 22 Goal Model: Risk Subsystem 

5.3.4 Combined Goal Model of the System 

The combined goal model of the job-oriented RPRS (Figure 23) consists of the composition of the 

individual subsystems and the combination of the goals of the agents working within each subsystem 

to achieve the goal of the entire system. The combined goals of the risk subsystem, the data 

subsystem and the privacy subsystem in the recommender system accomplishes the goal of the entire 

system by generating recommendations. 
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Figure 23 Combined Goal Model of the Job Recommender System 
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5.4 Activity Models of the Subsystems 

5.4.1 Activity Model: Data Subsystem 

 

 

Figure 24 Data Agents for Job Recommendations 

The data subsystem manages the data flow within the RPRS (Figure 24). It manages the data from the 

candidate and the employer as well as the subsequent distribution of this data between different 

channels. It also filters the noise of the data before encryption/decryption. This is one of the most 

important subsystems and serves as the backbone of the entire system. 
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5.4.2 Activity Model: Risk Subsystem 

 

Figure 25 Risk Agent for Job Recommender 

The contextual risk subsystem (Figure 25), as described previously, provides the risk calculation so 

that the RPRS can generate suitable recommendations. The contextual information in the job 

recommender system is the location of the candidate and the employer and his or her the social 

connections. As described in previous sections, this subsystem consists of two agents: the Context 

Analyzer Agent and the User Risk Agent. The information processed in this step is utilized by the 

RPRS to generate a more context-aware system by not only providing more relevant information to 

its users but also by keeping itself aware of the risks associated with disturbing or negatively affecting 

the user with inconvenient recommendations.  
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5.4.3 Activity Model: Privacy Subsystem 

  

Figure 26 User Privacy Agent for Job Recommendations 

Figure 26 present the activity model diagram of the RPRS privacy subsystem. Within this subsystem 

the contextual and resume information is extracted from the user and fed into the RPRS. A 

differential privacy server manages the data anonymization within this subsystem by implementing 

privacy differential algorithms. The main role of this subsystem is to provide this contextual data, 

personal information and the historic data (i.e. favorites, visits and applications) of the user to the 

computation server in order to generate the user recommendations. The user history data refers to the 

user’s behavior that is recorded for analysis at runtime. The contextual data along with the historic 

data of the user presents valuable insights in order to provide quality recommendations. 

5.4.4 Combined Activity Model of the system 

The combined activity model of the job-oriented RPRS (Figure 27) consists of the combination of the 

activity diagrams related to the agents working within each subsystem to achieve the goal of the 

entire system.  
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Figure 27 Job Recommender System Model  
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5.5 Sequence Diagram for the Subsystems 

5.5.1 Sequence Diagram: Data Subsystem 

 

 

Figure 28 Sequence Diagram: Data Subsystem 

The sequence diagram of the data subsystem is provided in Figure 28. The process within the data 

subsystem is initiated when the candidate interacts with the system interface. This interface can be a 

website or a mobile device. The data from the interface is sent to the computation server from where 

the recommendations are generated. The data is then encrypted and stored in the data server. The 

recommendations are forwarded to the interface and the feedback is obtained in order to enhance the 

recommendations. This data is again stored in the database. 
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5.5.2 Sequence Diagram: Risk Subsystem 

 

 

Figure 29 Sequence Diagram: Risk Subsystem 

The sequence diagram of the risk subsystem is shown in Figure 29. The contextual information is fed 

into the computation server through the interface after being processed by the semantic analyzer. 

Based on the algorithms on the computation server, the recommendations are generated and 

forwarded to the interface to be displayed to the users. 

5.5.3 Sequence Diagram: Privacy Subsystem 

The sequence diagram of the privacy subsystem, which represents the sequence of interactions within 

the system that deal with filtering, is presented in Figure 30. The contextual data is first passed 

through a privacy filter before travelling to the database or the server. The filtered data is recovered 

from the database for the purpose of generating the recommendations. This data passes through a 
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differential privacy server to enforce anonymity. Then, the data is processed by the recommendation 

server to generate recommendations to be provided to the users through a system interface. 

 

Figure 30 Sequence Diagram: Privacy Subsystem 

5.5.4 Combined Sequence Diagram of the System 

The sequence diagram of the job-oriented RPRS consists of the combination of the actions taking 

place within each subsystem to achieve the goals of the entire system is provided in Figure 21. 
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Figure 31 Combined Sequence Diagram of the Job Recommender System 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

In this thesis, a multi-agent based system model of RSs is proposed that introduces both privacy and 

risk-related abstractions into traditional recommender systems. The RPRS modeling approach can 

support designing these systems when privacy and contextual risk related to user data and information 

needs to be taken into account. The applicability of the approach is illustrated by a case study 

involving a job recommender system in which the general design model is instantiated to represent 

the required domain-specific abstractions.  

Using the proposed approach, RS designers can focus on individual system units since the approach 

focuses on three component subsystems, namely the data subsystem, the privacy subsystem, and the 

contextual risk subsystem. The approach also enables the RS designers to be aware of the each of the 

small objectives that must be accomplished by the each individual system unit in order to fulfil the 

objective of the entire system. Overall, this high level approach to model a RPRS system  is helpful 

for domain experts by supporting them to produce design models at a more abstract level, to focus on 

the concepts and processing aspects of the system, and to instantiate the general RPRS design models 

in order to produce solutions for specific applications domains.  

6.2 Limitations 

This section discusses some of the limitations of the RPRS multi-agent approach. The first limitation 

of this approach is that it is limited to an agent-based methodology. An agent-based approach may not 

be the most optimized solution in some scenarios. This approach also relies on a limited set of design 

diagrams. Finally, the approach can be instantiated to a specific application domain such as job 
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recommender system based on the conceptual and processing-related information about the 

application domain. However, in many cases this information is limited. 

6.3 Future Work 

The RPRS multi-agent approach proposed in this thesis can be extended or improved in the future in 

many ways. First, the approach can be applied in other application domains, e.g., the news or 

restaurant domains. Existing applications in these domains do not involve privacy and risk 

abstractions. Second, the approach can take advantage of other UML models, such as use case 

diagrams or state diagrams. Third, frameworks can be implemented using domain-specific languages 

to generate automatically the code of the system. Finally, model verification methods and 

experimental case studies can also be used to enhance the approach. 
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Appendices 

Privacy Scope of a System 

Traditionally, recommender systems are evaluated based on the accuracy of the results produced by 

the system but, using this approach, recommender systems could, in principle, be evaluated based on 

features related to privacy and risk.  

We introduce a coordinate system to describe the state of a RS in terms of the privacy it offers to the 

user. It is a three-dimensional representation with each of the mutually independent axes representing 

the state of the RS (Figure 32). On one of the axes we have a feature which states the size of the 

audience to which recommendations will be disclosed using data of a participant in the system, which 

is denoted by P(S). The extent of usage axis, which is denoted by P(D), refers to the amount of 

information that is extracted from each participant in the system. The third and the final axis, denoted 

by P(T), represents the duration for which the data remains in the system. 

 

Figure 32 Privacy Scope 
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Contextual Risk Scope  

This section describes the contextual risk scope of a Recommender System. Similarly to the 

description of the privacy scope, the contextual scope is also a three-dimensional representation that 

characterizes RSs (Figure 32). The three axes of the contextual risk scope are mutually independent. 

The first axis is the similarity axis, which is denoted by R(S), and is defined as the extent of the 

similarity between the user and the user group into which the user is placed. The second axis, denoted 

by R(C), is the axis of intention and is described as the extent of the awareness of the user’s intention 

by the system. This axis is conceptual in the sense that the evaluation provided by the RS based on 

this metric, highly relies on experimental results. The third and last axis, denoted by R(T), is the axis 

of duration, which measures how long the contextual data will be stored by the system. 

 

Figure 33 Contextual Risk Scope 
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Explanation of a Multidimensional RS Diagram 

We are now in position to describe a RS using a five dimensional representation (Figure 34). Parallel 

coordinates is a visualization technique used to plot individual data elements across many 

dimensions. Each of the dimensions corresponds to a vertical axis and each data element is displayed 

as a series of connected points along the dimensions. Thus, a RS can be described as a series of 

connected points along the diagram (yellow line), which intersect at each of the axes. Each connected 

point indicates whether the value along the corresponding dimension is low or high. 

 

Figure 34 Dimensional Plot of a Recommender System 

 

Table 2 General Dimensional Analysis of Various Approaches 
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In Table 2, a preliminary analysis has been provided about the possible dimensional values that can 

be used by RSs using different approaches. The analysis is based on a review of current approaches to 

RSs.  

The extent to which the evaluation metrics related to the five dimensions are high or low is denoted in 

the table by using two different notations. The ‘O’ symbol is used where the resulting evaluation 

related to a particular dimension is conceptually high and the ‘o’ notation is used for cases in which 

the evaluation related to a particular dimension is relatively low. 
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Applying the Evaluation Method to the Case Study 

 

 

Figure 35 Multidimensional description of the Job Recommender System 

 

The five-dimensional representation of the job-oriented RPRS described in chapter 5 is now provided 

in Figure 35. The duration dimension is described as the period of time for which the job data and the 

resume were kept in the system and the duration of the chunk of historic data being used for 

generating the recommendations. It is evident from the papers that this factor is on the higher side. 

The next factor to consider is the extent of usage of user data by the RS. Since the user’s personal 

data is highly available to the system in the form of resumes and user’s actions (such as like, favorite, 

and apply) recorded by the system, the extent of data usage is supposed to be at a high level. 

The size of audience in this scenario is also on the higher side. It can be considered to be higher than 

the valuation/utilization of the two previously discussed dimensions because the data is available to 
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many organizations and users that are accessing the system for their job search and getting 

recommendations from the system. 

Since most of the user data that is obtained, stored and utilized by the system is in static form and 

involves personal information of both the job applicant and the employers, the value of user situation 

awareness by the RS is on the lower side. 

Finally, the user intention factor of the system is at a high level in the graph because the main 

objective of the system is to obtain meaningful job recommendation for the user and to be aware of 

the user’s intention in order to display better results. 

Using this preliminary approach, a qualitative analysis can be performed over the Recommender 

Systems across multiple dimensions in order to find the relative optimal values for each of the 

existing dimension that the RS must satisfy. These values can serve as threshold values for these 

dimensions and the RS can be characterized based on these threshold values. This characterization of 

the RSs could lead to a standard for the evaluation of these systems, in contrast with existing metrics 

such as accuracy and predictability. Indeed, more dimensions can be added into the evaluation 

approach by figuring out additional parameters that can be potentially used for evaluating RSs across 

multiple platforms. 
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