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Abstract 

Pavement Maintenance and Rehabilitation (M&R) are the most critical and expensive 

components of infrastructure asset management. Increasing traffic load, climate change and 

resource limitations for road maintenance accelerate pavement deterioration and eventually 

increase the need for future maintenance treatments. Consequently, pavement management 

programs are increasingly complex. The complexities are attributed to the precise assessment 

process of the overall pavement condition, realistic distress prediction and identification of cost-

effective M&R schedules. Cost-effective road M&R practices are only possible when the 

evaluation of pavement condition is precise, pavement deterioration models are accurate, and 

resources must also be available at the right time.  

In a Pavement Management System (PMS), feasible M&R treatments are identified at the end 

of each branch of the decision trees. The decision trees are based on empirical relationships of 

the pavement performance index. Moreover, the predicted improvements in pavement 

performance for any treatment are set based on engineering experiences. Furthermore, the 

remaining service life of the pavement is estimated from the predicted deterioration of the 

overall condition. The future deterioration of the overall condition is estimated based on the 

initial condition and by considering only the effect of age notwithstanding the effect of traffic 

or materials. In assessing the overall condition of the pavement, this research overcomes the 

limitations of engineering judgment by incorporating a Mechanistic-Empirical (M-E) approach 

and estimating the improvement in performance for specific treatment types. It also considers 

the effect of traffic and materials on pavement performance to precisely predict its future 

deterioration and subsequent remaining service life. 

The objective of this research is to develop cost-effective pavement M&R schedules by 

incorporating (a) the M-E approach into the overall condition index and (b) the estimate of 

performance indices by considering the factors affecting pavement performance. The research 

objective will be accomplished by (i) incorporating variability analysis of existing performance 

evaluation practices and maintenance decisions of pavement, (ii) investigating estimates of 

existing performance indices, (iii) incorporating the M-E approach: sensitivity analysis, 

prediction, comparison and verification, (iv) estimating the deterioration model based on traffic 

characteristics and material types, and (v) identifying cost-effective M&R treatment options 

through Life Cycle Cost Analysis (LCCA). This study uses the pavement performance data of 

Ontario highways recorded in the Ministry of Transportation (MTO) pavement database. 

Precise assessment of pavement condition is a significant part in achieving the research goal. In 

a PMS, an accurate location reference system is necessary for managing pavement evaluations 

and maintenance. The length of the pavement section selected for evaluation may have a 

significant impact on the assessment irrespective of the type of performance indices. In Ontario, 

the highway section lengths range from 50m to 50,000m. For this reason, a variability in 

performance evaluation is investigated due to changes in section length. This study considers 

rut depth, Pavement Condition Index (PCI), and International Roughness Index (IRI) as 

performance indices. The distributions of these indices are compared by the following groupings 

of section lengths: 50m, 500m, 1,000m and 10,000m. The variations of performance 
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assessments due to changing section lengths are investigated based on their impact on 

maintenance decisions. A Monte Carlo simulation is carried out by varying section lengths to 

estimate probabilities of maintenance work requirements. Results of such empirical 

investigations reveal that most of the longer sections are evaluated with low rut depth and the 

shorter sections are evaluated with high rut depth. This Monte Carlo simulation also reveals that 

50m sections have a higher probability of maintenance requirements than 500m sections.  

The method of estimating performance indices is also investigated to identify the requirement 

of improvement in estimation of the prediction models. Generally, in a PMS, the prediction 

models of Key Performance Indicators (KPIs) are estimated by using the Ordinary Least Square 

(OLS) approach. However, the OLS approach can be inefficient if unobserved factors 

influencing individual KPIs are correlated with each other. For this reason, regression models 

for KPI predictions are estimated by using an approach called the ‘Seemingly Unrelated 

Regression (SUR)' method.  

The M-E approach is used in this study to predict the future distresses by employing 

mechanistic-empirical models to analyze the impact of traffic, climate, materials and pavement 

structure. The Mechanistic-Empirical Pavement Design Guide (MEPDG) software uses a three-

level hierarchical input to predict performance in terms of IRI, permanent deformation (rut 

depth), total cracking (reflective and alligator), asphalt concrete (AC) thermal fracture, AC 

bottom-up fatigue cracking and AC top-down fatigue cracking. However, these inputs have 

different levels of accuracy, which may have a significant impact on performance prediction. It 

would be ineffective to put effort for obtaining accuracy at Level 1 for all inputs.  For this reason, 

a sensitivity analysis is carried out based on an experimental design to identify the effect of the 

accuracy level of inputs on the distresses. Following this, a local sensitivity analysis is carried 

out to identify the main effect of input variables. Interaction effects are also analyzed based on 

a random combination of the inputs.  

Since the deterioration of pavement is affected by site-specific traffic, local climate and 

properties of materials, these variables are carefully considered during the development of the 

pavement deterioration model to assess overall pavement conditions. The prediction model is 

developed by using a regression approach considering distresses of the M-E approach. In this 

study, the deterioration model is estimated for three groups of Annual Average Daily Traffic 

(AADT) to recognize their individual impact along with properties of materials. The time 

required for maintenance is also estimated for these categories. The investigations reveal that 

the expected time to maintenance for overlay with Dense Friction Course (DFC) and Superpave 

mixes is higher than other Hot Laid (HL) asphalt layers. This will help pavement designers and 

managers to make informed decisions. The probability of failure is also investigated by a 

probabilistic approach.   

With the increasing trend towards M&R of existing pavements, it is essential to make cost-

effective use of the M&R budget. As such, identification of associated cost-effective M&R 

treatments is not always simple in most PMS. For this reason, a LCCA is carried out for alternate 

pavement treatments using the deterioration model based on traffic levels and material types. 

Comparing the Net Present Worth (NPW) value of alternative treatment options reveals that the 
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overlay of pavement with DFC is the most cost-effective choice in the case of higher AADT. 

On the other hand, overlay with Hot Laid-1 (HL-1) is a cost-effective treatment option for 

highway sections with lower AADT.  

Although the results are related to the Ontario highway system, this can also be applied 

elsewhere with similar conditions. The outcome of the empirical investigations will result in the 

adoption of efficient road M&R programs for highways based on realistic performance 

predictions, which have significant impact on infrastructure asset management. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The majority of highway agencies in the United States used their resources for the construction 

of new pavement networks from 1950 until the late 1980s (Dornan 2002). In the 1990s, many 

departments of transportation recognized the importance of maintenance. With the majority of 

the U.S. interstate system built in the 1980s, the emphasis gradually shifted toward rehabilitation 

activities during this time (NCHRP 2004). In recent years, increased emphasis has been placed 

on pavement preservation and preventive maintenance concepts and programs. The American 

Society of Civil Engineers (ASCE) graded the U.S. pavement infrastructure as the top 

infrastructure concern and estimated a cost of $91 billion to maintain the pavements, with a 

shortfall of $89 billion annually (ASCE 2013). In Canada, as noted in the Transportation 

Association of Canada (TAC) Pavement Asset Design and Management Guide (PADMG), the 

situation is similar (TAC 2013).  

Canada has a vast network of 900,000km two-lane public roads and the national highway system 

is composed of over 38,000km of important national and provincial highways. This road system 

alone has an asset value of approximately $160 billion (TAC 2013). Canada's economy is 

dependent on good pavement infrastructure as 90% of all goods and services are transported via 

trucks (TAC 2013). Since truck transportation of goods is prominent in Canada, this has a large 

impact on the performance of the nation's pavement. In Ontario, the Ministry of Transportation 

Ontario (MTO) invests approximately $200 million annually to ensure that the Ontario highway 

network is maintained above the levels of serviceability required for each classified highway 

(Ningyuan 2004). Thus, a cost-effective pavement M&R approach is required to allocate the 

limited budget. Selection of appropriate M&R strategies is a key aspect of the pavement 

management process. For these reasons, an M&R framework based on accurate and realistic 

predictions of pavement distress and associated M&R treatment costs is required.  

As per TAC (2013), “The basic purpose of Pavement Management Systems (PMS) is to achieve 

the best value possible for the available public funds and to provide safe, comfortable and 

economic transportation.” An effective PMS is only possible when accurate pavement 

performance prediction models are available. In PMS, Key Performance Indicators (KPIs) are 

used for predicting the overall condition of the pavement. Overall condition of pavement 

predicted by these KPIs is used for estimating future needs and cost effectiveness of M&R 

activities.   

In Ontario, the KPI models are developed from road condition surveys for selected distresses. 

These models were initially developed based on the weighting distresses that are evaluated or 

rated in a subjective manner. These weights are assigned by the MTO to 15 distress categories, 

which are dependent on the highway type (MTO 2007). MTO has also recently adapted semi-

automated measurement to provide improved measurement and consistency (Ningyuan 2013). 

For highway systems in Ontario, the Pavement Condition Index (PCI) is used generally as an 

overall condition index in the maintenance decision-making process (MTO 1990). Similarly, in 

any PMS, the M&R strategies are selected based on the condition of the pavement performance 
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index. Through precise estimates, appropriate performance indices can help ensure reasonable 

predictions of the overall pavement condition. Precise evaluations or predictions can help to 

ensure maximized pavement performance through the application of the correct treatment applied 

at the right time during the pavement life cycle. Thus, precise evaluation or prediction of 

performance using appropriate KPIs can improve the current PMS practices. 

1.2 Problem Statement 

Every year different transportation agencies spend billions of dollars on infrastructure asset 

management. Highway agencies are currently grappling with the identification and 

implementation of cost-effective practices to preserve the huge investment made in the highway 

infrastructure. Rapidly increasing traffic, climate change and resource limitations for road 

maintenance accelerate pavement deterioration. Thus, predicting realistic distress and identifying 

subsequent cost-effective M&R schedules are becoming progressively more complex.  

 

Transportation agencies are facing difficulties regarding the accuracy and efficiency of prediction 

and evaluation processes for overall pavement conditions. Development of a comprehensive and 

accurate model of KPIs to predict overall pavement conditions from specific distresses and 

cracking is a constant challenge in pavement engineering (Haas 1994). 

 

The PCI is typically used as the primary index in the pavement M&R decision trees. These 

decision trees use a series of tests to capture the decision-making process in selecting appropriate 

M&R treatments based on the status of KPIs, including pavement roughness, rutting and 

individual distresses. The feasible M&R treatments are identified at the end of each branch. These 

decision trees are based on the empirical relationships of KPIs. Moreover, the predicted 

improvement in performance, in terms of the indices after treatment, are set based on engineering 

experiences. Furthermore, the remaining service life of pavement is estimated from the predicted 

deterioration of the overall condition. The future deterioration of the overall pavement condition 

is estimated based on the initial condition by considering only the effect of age notwithstanding 

the effect of traffic or materials (Kazmierowski 2001). However, the improvement in 

performance will not be similar for different material types. Moreover, the deterioration of the 

pavement condition over time will not be similar for different traffic levels and material types.  

 

The performance predictions that consider engineering judgement or historical records can be 

misleading to the pavement engineers and managers identifying the appropriate treatment and 

time for pavement maintenance. Therefore, there is a gap in the precise prediction of pavement 

service life by assessing the overall condition and how prediction models are used in M&R 

strategy in the PMS. 

1.3 Research Hypothesis 

It is observed that the result of a PMS analysis and subsequent maintenance recommendations 

depend on the selected KPIs and the agency’s policy. Although the performance evaluation is an 

important part of PMS, they must be translated precisely into KPIs that align with the agency’s 

overall goals and objectives (TAC 2013). Therefore, the research framework is to be developed 
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with a KPI model that incorporates improvements in assessing the pavement performance and 

precisely defines the actual pavement condition.  

 

Recently, the Mechanistic-Empirical (M-E) approach introduced the Mechanistic-Empirical 

Pavement Design Guide (MEPDG), which includes several improvements to traditional 

empirical pavement design. It also improves the accuracy of the existing design guide of the 

American Association of State Highway and Transportation Officials (AASHTO). The MEPDG 

was developed in the USA under the National Cooperative Highway Research Program 

(NCHRP) in 2004 to address the shortcomings of empirical pavement design methods (NCHRP 

2004, Hall 2010). This MEPDG approach is being adapted by majority of highway agencies in 

North America, including many in Canada, to precisely predict distresses by incorporating the 

effect of all possible local factors, such as traffic, pavement materials and environmental 

conditions.  

 

Although the pavement design and analysis are based on the M-E approach, which is now 

considered as the state-of-the-art pavement design practice, empirical KPIs are still used in PMS 

decision trees. Moreover, the incorporation of the M-E approach in assessing the overall 

pavement condition, rather than only applying engineering judgement, will result in precise 

prediction of pavement conditions and associated pavement service life. If the prediction of 

distresses and remaining service life of pavement is accurate and precise, a cost-effective and 

efficient M&R schedule can be identified for the PMS. 

1.4 Research Objectives 

The objective of this research is to develop cost-effective pavement M&R schedules by 

incorporating:  

 an M-E approach into the overall condition index and  

 estimates of performance indices by considering the factors affecting pavement 

performance.  

To accomplish this, the following objectives will involve:  

a. Incorporating variability analysis of existing performance evaluation practices and 

pavement maintenance decisions  

b. Investigating estimates of existing performance indices 

c. Incorporating the M-E approach: sensitivity analysis, distress prediction, comparison and 

verification 

d. Estimating overall performance index based on MEPDG distresses and estimating the 

deterioration model based on traffic characteristics and material types  

e. Identifying cost-effective M&R treatment options through an LCCA. 

f. Developing a framework for using the M-E approach with PMS data to improve the 

decision-making process for pavement engineers 

http://www.transportation.org/
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1.5 Thesis Organisation 

The contents of the thesis are organized into ten chapters. Chapter 1 introduces the study, 

identifies problem areas and outlines the research hypothesis, objectives and scope. Chapter 2 

reviews the literature related to current practices of pavement maintenance decisions, 

performance prediction methods by performance indices and application of the M-E approach. 

Chapter 3 discusses the proposed research methodology and the steps including data collection 

and analysis outlined for this study. Chapter 4 investigates variability of existing performance 

evaluation practices and associated maintenance decisions in PMS. Chapter 5 investigates the 

estimates of existing performance indices. Chapter 6 includes sensitivity evaluation of MEPDG 

distresses. Chapter 7 includes prediction methods of distresses based on the M-E approach and a 

comparison of predicted distresses to field-observed distresses. Chapter 8 includes estimation of 

KPI models based on the M-E approach and estimation of deterioration of overall conditions, 

which consider traffic characteristics and material types by both deterministic and probabilistic 

approaches. Chapter 9 focuses on LCCA to identify cost-effective M&R activity. Finally, 

Chapter 10 summarizes significant contributions, and recommendations. 
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CHAPTER 2 

LITERATURE REVIEW  

2.1 Pavement M&R Strategy  

Various treatment options and methods are employed by highway agencies to restore pavement 

conditions and delay future deterioration. For specific climate conditions and traffic levels, the 

performance of the restored pavement will depend on the type of treatment and the existing 

pavement condition when treatments are applied. However, these relationships are not well-

documented and a rational methodology for determining the optimal timing to apply specific 

preventive maintenance treatments are not readily available (NCHRP 2004). In Canada, there is 

no common convention to classify pavement routine maintenance, preservation and rehabilitation 

activities. Agencies across Canada describe these activities as emergency, routine, reactive, 

minor and major maintenance, preventive maintenance, corrective maintenance, preservation, 

restoration and rehabilitation. The specific activities within these categories also vary from 

agency-to-agency (TAC 2013).  

 

In Ontario, a PMS analysis tool is used to facilitate the implementation of annual pavement M&R 

programming and investment planning at the network level. For Ontario highways, the Highway 

Pavement Management Application (HPMA) software package is used to select effective 

treatments. The HPMA M&R optimization analysis is based on the use of “cost-effectiveness”. 

A set of decision trees are developed for each pavement section to ensure the most cost-effective 

pavement treatments are selected. The decision tree simulates the decision process to determine 

the most efficient type of M&R. A number of factors and engineering standards are considered 

in selecting individual treatment strategies, including road functional class, traffic volume, 

pavement type, age, road condition and constructability. This program is developed through a 

budget optimization process that determines the most cost-effective strategy for each pavement 

section (Ningyuan 2010). 

 

2.1.1 Maintenance, Preservation and Rehabilitation Treatments 

As per the definition of TAC Pavement Asset Design and Management Guide (PAMDG) (TAC 

2013), “routine maintenance treatments are reactive and will often comprise relatively 

inexpensive, corrective types of strategies to immediately address specific problems such as 

localized potholes that may compromise the safety of road users”.  

 

“Pavement preservation normally occurs earlier in the service life of the pavement before it has 

reached a limit of serviceability”. As per the definition of the Federal Highway Administration 

(FHWA) in the U.S., pavement preservation is considered as “a program employing a network 

level, long-term strategy that enhances pavement performance by using an integrated, cost-

effective set of practices that extend pavement life, improve safety and meet motorist 

expectations” (TAC 2013). 
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Table 2.1:  Commonly Used Routine Maintenance, Preservation and Rehabilitation 

Treatments for Flexible Pavements (TAC 2013) 

Action Type Treatments for Flexible Pavement 

Routine 

maintenance 

Pothole Repair 

Shallow Patching 

Drainage Improvement 

Preservation Crack Sealing 

Spray Patching 

Full Depth Patching 

Hot-in Place Recycling Thin Asphalt Overlay 

Resurfacing Functional  

Milling and Resurfacing-Functional 

Bonded Concrete Overlay 

Slurry Sealing 

Seal Coat 

Micro-surfacing  

Rehabilitation Resurfacing–Structural 

Milling and Resurfacing-Structural 

Cold In-Place Recycling 

Bonded Concrete Overlay 

Un-Bonded Concrete Overlay 

Full Depth Reclamation 

 

“Rehabilitation consists of structural enhancements that renew the service life of an existing 

pavement and improve its load-carrying capacity. Rehabilitation techniques include structural 

restoration treatments and structural overlays. Rehabilitation may also be used to strengthen 

pavement that will be subjected to higher than originally estimated traffic loads” (TAC 2013).   

 

The life cycle of typical pavement starts with initial construction and is followed by various 

forms of maintenance, including preventive, routine and corrective maintenance as needed. 

Routine maintenance treatments are generally reactive and relatively inexpensive. Corrective 

maintenance treatments are applied immediately to address specific problems. Pavement 

preservation treatments are normally applied early in the pavement’s service life before reaching 

its limit of serviceability. Pavement rehabilitation consists of structural enhancements that 

improve the service life of existing pavement as well as its load-carrying capacity (TAC 2013). 

Table 2.1 shows commonly used routine maintenance, preservation and rehabilitation treatments 

in Canada.  

 

However, selecting the appropriate M&R strategy is a key step to achieve a sustainable pavement 

management process. It requires detailed analysis for priority selection among road sections and 

consideration of the cost-benefit analysis within the available budget. It is observed from recent 

studies that LCCAs mainly focus on cost-effectiveness. 
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2.1.2 Cost – Effective M&R Schedule 

Cost and effectiveness are often demarcated for each alternative treatment before selection. Cost 

components generally include construction or various M&R costs and user costs, such as traffic 

diversion and operation costs caused by roughness. Effectiveness is measured in different ways 

by different agencies. Effectiveness is defined in terms of the overall index performance 

improvement. It is estimated based on the life extension resulting from the treatment or the area 

between the treated and non-treated pavement. Generally, agencies consider improved remaining 

service life, increased PCI or increased area under the performance curve. This effectiveness is 

divided by cost (similar to a benefit/cost ratio). Generally, the effectiveness of a strategy is 

measured in terms of the area between the treated and non-treated overall index performance 

curves. This area is calculated as the area between the curves, as illustrated in Figure 2.1. When 

a treatment is delayed beyond the overall index-need year, a dis-effectiveness amount is 

subtracted from the effectiveness area as illustrated in Figure 2.2. 

 

 

 
Figure 2.1:  Area under Predicted Pavement Performance Curve (HPMA 2012) 
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Figure 2.2: Area under Predicted Pavement Performance Curve for Delayed M&R 

Treatment (HPMA 2012) 

 

In HPMA, the M&R strategy analysis process is based on the decision trees that were developed 

based on experts’ experience and historical pavement performance records. Trees are defined by 

functional class and pavement type. Decision trees define the feasible strategies under various 

conditions. Each treatment alternative selected based on the decision tree is analyzed in terms of 

life cycle costs and performance (index or individual distresses predicted). The optimization 

analysis also includes a user-defined budget and performance constraints for a programming 

period of up to 30 years. The optimization uses either a marginal cost-effectiveness approach or 

linear programming. This analysis involves performing M&R analysis for the entire period, 

followed by running optimization analyses incorporating various optimization scenarios using 

M&R analysis results (HPMA 2012). Figure 2.3 shows the framework of HPMA M&R analysis.  
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Figure 2.3: Framework of HPMA M&R Analysis (HPMA 2012) 
  

To improve the cost-effectiveness method for pavement M&R schedules, a number of research 

alternatives are carried out.  

 

Environmental damage cost (EDC) is also considered as an indicator of cost-effectiveness. Yu 

(2013) integrated EDC with LCCA to improve the pavement maintenance optimization 

methodology. This study used a combined Life Cycle Cost Assessment (LCCA)––LCCA model 

to optimize the pavement maintenance plans by incorporating EDC.  

 

Mandapaka (2012) evaluated and selected an optimal M&R strategy for a flexible pavement road 

section by integrating LCCA and California Mechanistic-Empirical (CalM-E) design procedures. 

LCCA was carried out by using the M-E approach predicted distresses in an integrated way. 

However, this study investigated only one road section for selected distresses of MEPDG. The 

overall performance of KPIs are not considered for LCCA, which is generally used for M&R 

schedules. Therefore, this method for PMS may not be helpful if the M&R strategy is based on 

overall performance of road sections and setting a priority at the network level.   

 

De la Graza (2010) developed a decision-making tool for network-level optimization for 

pavement maintenance programming issues through linear programming. This decision-making 

tool presents alternative highway maintenance strategies through an automated process in 

Microsoft Excel. A total of nine treatment types with unit prices are analyzed over a 15-year 

period. However, this study only focused on budget allocation processes dependent on lane-mile 

conditions. 

 

Ningyuan (2001) presented an integrated dynamic performance prediction for pavement M&R 

optimization methodology. This optimization model considered cost-effectiveness based on 

multi-year priority programming. This study selected an M&R strategy based on predicted 
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improved PCI value. Improvement of PCI value is predicted based on the historical record of that 

treatment type. However, the traffic, materials, weather and other local factors may have 

significant influence on predicted pavement serviceability. The M-E analysis improves this 

prediction of pavement conditions.  

 

Labi (2005) investigated the cost-effectiveness of various levels of life cycle preventive 

maintenance for three asphaltic concrete pavement functional class families. This study estimated 

cost-effectiveness using existing performance models, performance jump models and cost 

models for each treatment type. However, performance jump models were not based on the M-

E analysis.  

 

Whiteley (2005) considered the variability associated with the discount rate and incorporated all 

associated variability into the LCCA of the asphalt overlay sections taken from the Canadian 

Long Term Pavement Performance (C-LTPP) project. With the LCCA values for typical design 

life, a sensitivity analysis was performed to evaluate the impact of 10%, 20%, and 30% 

differences in the in-service performance compared to the design life. These LCCA differences 

were then used as a basis for establishing pay factors. However, variability factors such as overlay 

thickness variation, total prior cracking variation and accumulated Equivalent Single Axle Loads 

(ESALs) after an eight-year variation are considered in the LCCA of this study.  

 

From the studies outlined above, it is observed that each mainly focused on the comparison of 

treatment options. The overall condition of pavement is neither investigated nor estimated in the 

LCCAs. Some studies (Mandapaka 2012) did compare single-cracking predicted by the M-E 

approach. However, road condition assessments using a failure trigger value of single-cracking 

might not capture the actual overall conditions of the road.  

 

This study will compare the overall condition and deterioration of pavement with consideration 

of predicted distresses from the M-E approach.  

2.2 Key Performance Index, and Method of Estimates used for Assessing Overall 

Condition of Pavement   

Ontario highway systems use evaluation indices, such as PCI, the Distress Manifestation Index 

(DMI), IRI and the Riding Comfort Index (RCI) to evaluate pavement conditions. The KPIs used 

in the MTO PMS 2 are shown in Table 2.2 (Ningyuan 2004).  
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Table 2.2: Performance Indices Used in Ontario Highways 

 

The PCI is an index that incorporates the type of distress, density of distress, severity of distress 

and roughness. It is a subjective method that shows a numerical rating of the pavement surface 

condition and varies from 0 (failure) to 100 (excellent) (AASHTO 1993). PCI is measured for 

pavement distresses and severity and the smoothness and ride comfort of the road. PCI records 

all distresses and each distress has its own weighting based on its overall impact on pavement 

performance (TAC 2013). Most studies on pavement performance indices available are mainly 

based on the existing practice of performance indices used in PMS by different agencies.  

 

In the USA and Europe, different performance indices are used. A recent study presented a 

comparison of performance management practices in the USA and Europe (Van Der Lei 2014). 

KPIs were developed and chosen once the goals of the corresponding agency were determined. 

In a similar study, Lea (2014) studied the initial configuration of California's PMS, focusing on 

Key Performance Index Performance Measure Use Level 

Technical Measures 

PCI Assessment of overall pavement conditions, 

structural strength and functional 

serviceability of both network and individual 

pavement sections 

PCI is currently used by regions 

to generate an annual pavement 

maintenance program and 

investment planning strategies 

DMI Overall pavement surface conditions for 

individual pavement sections and network 

DMI is used to support PCI and 

is favored by regions that have 

lower-class roads 

IRI Evaluation of pavement riding quality in terms 

of roughness or smoothness 

Pavement roughness data is 

collected by use of high-speed 

inertial profilers 

Riding Comfort Rating 

(RCR) 

Evaluation of pavement riding quality in terms 

of user comfortableness 

RCR was collected prior to IRI 

data 

Skid Number Pavement surface skid resistance Measured at project level on a 

request basis 

Rut depth in mm 

measured in both left and 

right wheel paths 

Transverse profiles and rutting measurement Rutting is measured at network 

level using high-speed 

equipment 

Structural Adequacy 

Index (SAI) or deflection 

value measured by FWD 

equipment 

Assessment of pavement structural strength or 

service life 

Currently used at project level 

Economic Measures 

Highway Agency cost, 

social and economic 

impacts and road user 

costs 

Maintenance, service life, traffic accidents and 

travel costs,  travel time and travel time 

reliability  

To be included in the PMS-2 

analysis function 
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the aggregation of pavement data from their automated surveys. For small communities, PMS 

are different than highways, which consider different modules (Avakoli 1992).  
 

In PMS, the estimation method for performance index models are found in different ways in 

alternate research studies. These are discussed below: 

 

A probabilistic approach is used to assess the reliability of pavement sections. The analysis is 

based on the use of probabilistic duration modeling techniques by hazard function (Prozzi  2000). 

Application of joint estimates were observed in developing the performance index model. 

Pavement performance index models were developed from a combination of experimental and 

field data. A riding quality model based on serviceability consideration was also developed. The 

original model parameters were re-estimated by applying joint estimation to the field data set. It 

is observed that duration models investigated the stochastic nature of pavement failure time 

(Prozzi 2004). The ‘linear mixed effects model’ was developed to predict future pavement 

conditions. This model was developed by a weighted combination of the average deterioration 

trend and past conditions of the pavement (Yu 2003). Non-linear models were also developed 

for KPIs for realistic prediction of pavement conditions (Prozzi 2003). In this study, the KPI 

model is developed by considering traffic characteristics, pavement structural properties and 

environmental conditions. Moreover, the effect of KPI model accuracy is also investigated on 

optimal design and life cycle costs by using regression and probabilistic models (Madanat 2002). 

In a similar study, the effectiveness of the estimation of rutting models is also investigated 

(Archilla 2001). In this study, estimation to identify parameters is found by integrating 

information from two data sources, the AASHO and the WesTrack road tests. Furthermore, the 

effect of different statistical assumptions and estimation techniques of KPI models on predictive 

capabilities are also explored by using AASHO road test data (Chu 2008). An approach of 

applying mathematical techniques to fuzzy sets are found to categorize the subjective ratings of 

the severity and extent of pavement distress (Bandara 2011).  

 

For evaluating the pavement performance of the roads, different sectioning methods are found.  

Although different KPIs and methods are used to evaluate pavement, accurate location 

referencing is often overlooked. However, this is a very important aspect for pavement evaluation 

and management. Accurate location referencing enables division of the network into 

homogeneous pavement sections. The procedure of forming homogenous sections is known as 

sectioning or segmentation (TAC, 2013). Different agencies use different road sectioning 

methods. Generally, three sectioning methods are used commonly in PMS: fixed length 

sectioning method, dynamic sectioning method and static sectioning method (Bennett 2007).   

 

Generally, fixed length sectioning methods divide each road into fixed lengths, typically between 

100m to 500m. Although, this method is considered suitable because it overcomes most of the 

statistical limitations compared to other methods, it continues to be complex in determining the 

appropriate lengths of treatments. Also it becomes problematic over time when future 

development render portions of the section ‘non-typical’.  
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The dynamic sectioning method uses road condition data stored at relatively short intervals, 

amalgamating sections into variable lengths and ensuring that the conditions and inventory data 

fall within certain homogeneity rules. In this method, sections are analysed in the homogeneous 

lengths and it can result in many, very short sections. This method has limitations in that 

sectioning changes every year pending the outcomes of condition surveys.  

 

The static sectioning method uses a level of dynamic sections and is popular among road 

agencies. This method is different because once homogenous sections are amalgamated, they 

remain constant for a while. Its limitation is that the sectioning is only valid for a short period of 

time and if agencies do not review the sections regularly, it may result in uninformed maintenance 

decisions and outcomes.  

 

In Ontario, KPI models are developed from road condition surveys for selected distresses. These 

models are developed based on the weightage of such distresses that are evaluated or rated in a 

subjective manner. These weights are assigned by the MTO to 15 distress categories, which are 

dependent on the highway type (MTO, 2007).    

 

A number of researchers investigated the evaluation of pavement performance models or 

performance management practices. The DMI model was evaluated by using automated distress 

evaluation data in Southern Ontario (Tighe 2008). The randomized block design (RBD) approach 

was used for the hypothesis test in this study. A hypothesis test was performed to determine the 

differences in the DMI model on the basis of automated evaluation data.   

 

The joint estimation approach for the development of pavement performance models was found 

in the Minnesota Road Research Project (MnRoad) (Prozzi 2004). In this study, the riding quality 

model was developed by joint estimation in terms of IRI from MnRoad data. A nonlinear 

serviceability model was developed by using the same data set and variables as the equivalent 

existing linear model. The error of the new model was found to be half of the existing model. 

Investigations on the effectiveness of practicing performance indicators were done by the New 

Zealand Transport Agency (NZTA) (Henning 2013). In this study, a new measure ‘rutting index 

(RI)' was developed with the goal that RI could effectively quantify the structural performance 

and behaviour of the pavement. This RI was calculated for both network data and long-term 

pavement performance (LTPP) data. However, such RI was developed based on the OLS 

approach. Probabilistic duration modeling techniques were also used in the investigation of 

performance measures during road design and construction (Molenaar 2011). Weibull regression 

was also used in a study on California Pavement Management Systems (Lea 2014).  

 

As opposed to the OLS approach, Zellner formulated the SUR estimator that accounts for 

contemporaneous correlations among multiple dependent variables in a suit of regression models 

(Zellner 2006, and Cadavez 2012). This method uses a set of equations that are 

contemporaneously correlated and share a common random error structure with non-zero 

covariance. The SUR method estimates the parameters of all equations simultaneously. In this 

process, the parameters of each equation take the information provided by the other equations 
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into account. On the other hand, calculating separate OLS-based solutions ignores any correlation 

among the random errors across equations. Since the dependent variables are correlated, design 

matrices may contain some of the same variables. Consequently, there may be contemporaneous 

correlation among the errors across the equations. For this reason, SUR models are often applied 

when there may be several equations, which appear to be apparently unrelated to the naked eye. 

In SUR models, the results contribute in better estimates of the parameters compared to those in 

OLS (Prozzi 2004 and Zellner 1962). The efficiency of estimation increases with higher 

correlation among the random error terms of the different equations. It also considers the effects 

of larger sample sizes and multi-collinearity between the regressors (Cadavez 2012, Moon 2006, 

Kubáček 2013, Takada 1995 and Powell 2000). 

Recently, the SUR approach was applied to capture the deterioration process of pavement 

performance (Prozzi 2008). This study applied the SUR approach to the simultaneous estimation 

of pavement performance deterioration models. The deterioration of two major indicators, IRI, 

and rut depth were investigated in this model system. The results showed improved performance 

characterization and more accurate forecasting for IRI and rut depth.    

 

The SUR approach is also used to predict the pavement performance over time for Indiana roads 

(Anastasopoulos 2014). In this study, the service life of the pavement was determined using 

forecasts and historical thresholds, and random parameters of duration models were estimated to 

identify influential factors affecting pavement service life.  

 

Most of the agencies estimated KPI models separately. In developing KPI models for PMS, 

empirical regression is proven to be an effective way to characterize the relationship between the 

independent variables and the dependent variable. However, if the unobserved factors affecting 

pavement performance are correlated, joint estimation of KPI models will be a more accurate 

methodology than estimation by OLS.  

 

Although recent research has contributed significantly to developing the KPI models based on 

the factors affecting the performance, these are not estimated jointly. Recently, the application 

of SUR show accurate estimates when unobserved factors are correlated in joint estimation 

(Prozzi 2008, and Anastasopoulos 2014). This study focuses on the joint estimation of the major 

KPI models, considering all available performance variables as independent variables for Ontario 

highways.   

2.3 Adapting Mechanistic-Empirical Approach in Pavement Design  

The first empirical methods for flexible pavement design were developed during the mid-1920s 

when the first soil classifications were developed. In 1992, the Public Roads (PR) soil 

classification system was published and the California Highway Department developed a method 

using the California Bearing Ratio (CBR) strength test. In 1945, the Highway Research Board 

(HRB) modified the PR classification and soils were grouped into seven categories (A-1 to A-7) 

with indices to differentiate soils within each group. This classification was applied to estimate 

the sub-base quality and total pavement thicknesses (Schwartz 2007). In the 1950s, pavement 
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design methods were revised based on a limited amount of performance data acquired through 

road tests sponsored by the AASHO. The empirical design equations were developed based on 

the road test results and the AASHTO Interim Guide for the Design of Pavement Structures was 

later published in 1972 (Dzotepe 2011). This Interim Guide was developed mainly based on the 

AASHO road tests with limited range of design parameters. It includes only one climate, one 

sub-grade, two years duration, limited cross sections, 1950s materials, traffic volumes, 

specifications and construction methods. Covering some improvements with regard to material 

input parameters and design reliability, this guide was updated in 1986 and 1993 (AASHTO 

2008).  

 

However, the previous pavement design guide did not consider the variation of the materials, 

climate and traffic of highways for different locations. For this reason, the empirical design 

method result is considered to be less accurate and precise. To address this limitation and utilize 

mechanistic-based models, AASHTO initiated further investigation and research in the mid-

1990s, aiming to develop a new pavement design guide. Finally, AASHTO and the NCHRP 

developed the MEPDG under NCHRP Project 1-37A in 2004 (Timm 2010, and Hall 2010). In 

the M-E approach, a mathematical model is used to define the relationship between different 

physical and structural responses (stresses and strains). According to Flintsch and McGhee, M-

E procedures use pavement models based on the mechanics of materials to predict pavement 

responses (deflections, strains and stresses) and empirically-based transfer functions to estimate 

distress initiation and development based on these responses” (Flintsch 2009). Figure 2.4 

presents the basis of the M-E design process. The flow chart of design procedures of the MEPDG 

is shown in Figure 2.5.  

 

 

 
Figure 2.4: Basis of M-E Design Process (Yu 2013) 

 

The recent MEPDG software, AASHTOWare Pavement M-E Design (version 2.0) is the next 

generation of pavement design software, building upon the NCHRP MEPDG.  
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2.3.1 MEPDG Distresses for Flexible Pavements 

The MEPDG performance predictions consist of pavement distresses and ride quality. For 

flexible pavement, the following distresses are predicted in the MEPDG: 

 AC Bottom-Up Fatigue Cracking (%),   

 Top-Down Fatigue Cracking (m/km),  

 Total Cracking including Reflective and Alligator (%), 

 AC Thermal Fracture (m/km),  

 Permanent Deformation Total for AC only (mm)  

 Terminal IRI (m/km) 
 

 
Figure 2.5: Flow chart of MEPDG Procedure (NCHRP 2004) 

 

 

AC Bottom-Up/Alligator Fatigue Cracking  

This cracking is a form of fatigue or wheel load-related cracking and is defined as a series of 

interconnected cracks initiated at the bottom of the AC layers.  

 

Tensile and shear stresses developed at the bottom of the AC layer due to repeated traffic loads 

is critical for structural stability of the pavement layer. The horizontal tensile strain is developed 

at the bottom of the asphalt bound layer and due to excessive repetitive loads on the pavement 

surface, cracking of the layer will result. After the damage is initiated at the critical location, 

these cracks propagate along with accumulative traffic loading. Figure 2.6 shows the formation 
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pattern of bottom-up cracking in the AC layer. Alligator cracking is calculated as a percentage 

of the total lane area in the MEPDG (AASHTO 2008). 

 
 

 

 
Figure 2.6: Formation of AC Bottom-UP Fatigue Cracks in Pavement 

(NCHRP 2004) 

 

AC Top-Down / Longitudinal Fatigue Cracking   

This cracking occurs within the wheel path and are defined as cracks predominately parallel to 

the pavement centerline. Longitudinal cracks at the surface of the pavement initially show up as 

short longitudinal cracks that become connected with continued truck loadings. Raveling or crack 

deterioration may occur along the edges of these cracks, but they do not form an alligator 

cracking pattern. Figure 2.7 shows the formation pattern of top-down cracking in AC layer. 

 

 

 

 
Figure 2.7: Formation of AC Top-Down Fatigue Cracks in Pavement (NCHRP 2004) 

 

The unit of longitudinal cracking calculated by the MEPDG is total meters per kilometer (m/km), 

including both wheel paths (AASHTO 2008). In thick pavements, cracks are more likely to 
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initiate from the top in localized areas of high tensile stresses due to tire-pavement interaction 

and asphalt binder aging (Myers 2001).  

 

 

Thermal Fracture or Thermal Cracking  

Transverse cracking or non-wheel load-related cracking is predominately perpendicular to the 

pavement centerline and caused by low temperatures or thermal cycling. They tend to appear on 

the surface. The shrinkage of the AC surface due to low temperatures or daily and seasonal 

temperature differences and asphalt binder hardening are considered to be major reasons for this 

type of cracking. The unit of transverse cracking is calculated by the MEPDG in meters per 

kilometer (feet per mile) (AASHTO 2008). 

 

Permanent Deformation or Rutting 

Permanent deformation is a longitudinal surface depression in the wheel path, resulting from 

plastic or permanent deformation in each pavement layer. This depression may form in any of a 

pavement's layers or subgrade due to consolidation or lateral movement of materials under traffic 

and environmental loadings. Rutting damage due to different axle configurations is 

approximately proportionate to the number of axles within an axle group (Chatti 2009). This 

depression could be the result of traffic loading, poor compaction of layers during the 

construction stage or the shearing of the pavement caused by traffic-wheel loading (AASHTO 

2008). The unit of rutting calculated by the MEPDG is in millimeters and represents the 

maximum mean rut depth between both wheel paths. The MEPDG also computes the rut depths 

within the AC and the total pavement structure.  

 

International Roughness Index (IRI) 

Pavement roughness is generally defined as an expression of irregularities in the pavement 

surface that adversely affect the ride quality of a vehicle. IRI is used to determine the functional 

serviceability or adequacy of the pavement. IRI was developed by the World Bank in the 1980s 

(WSDOT 2005) to define a characteristic of the longitudinal profile of a traveled wheel-track and 

constitutes as a standardized roughness measurement. The commonly recommended units are 

meters per kilometer (m/km) or millimeters per meter (mm/m). In MEPDG, IRI is predicted 

empirically as a function of pavement distresses and site factors that represent a foundation’s 

swell or shrink and frost-heave capabilities (ASSHTO 2008). 

 

2.3.2 MEPDG Prediction Models for Flexible Pavements 

MEPDG predicts the critical responses following the M-E analyses and using equations known 

as prediction models. These models are used for different distress types and are discussed below: 

 

Bottom-Up and Top-Down Fatigue Cracking  

The MEPDG assumes that alligator or area cracks initiate at the bottom of the AC layers and 

propagate to the surface due to continued truck traffic, while longitudinal cracks are assumed to 

initiate at the surface. The most commonly used model to predict the number of load repetitions 

to fatigue cracking is a function of the tensile strain and mix stiffness (modulus). Generally, the 
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allowable number of axle-load applications required for the incremental damage index approach 

to predict both types of load-related cracks (alligator and longitudinal) is shown by the general 

equation below with different transfer functions based on different research (Yang 1993, NCHRP 

2004, Walid 2001, Salem 2008 and Hsiang et al. 2007) . 

 

 

𝑁𝑓 = 𝑓1(𝜀𝑡)
−𝑓2(𝐸1)

−𝑓3         (2.1) 

 

 Where,  

𝑁𝑓 = Number of repetitions to fatigue cracking 

𝐸1 = Modulus of HMA (MPa or psi) 

𝜀𝑡    = tensile strain at critical locations (mm/mm or in/in) 

𝑓1, 𝑓2, 𝑓3 =  Laboratory regression coefficient 

 

The critical locations of the tensile strains may either be at the surface (result in top-down 

cracking) or at the bottom of the asphaltic layer (result in bottom-up cracking). AC fatigue 

equations used in AASHTOWare Pavement M-E are:  

 

𝑁𝑓 = 𝐶 𝐵𝑓1 𝑘1(1/𝜀𝑡)
𝑘2𝐵𝑓2(𝐸1)

𝑘3𝐵𝑓3                      (2.2) 

 

Where, 

𝑁𝑓 = Number of load repetitions to failure  

𝜀𝑡 = Tensile strain at the critical position (mm/mm) 

C= Transfer function regression constants  

𝐸 = Material stiffness (Mpa or psi)  
𝑘1, 𝑘2, 𝑘3 = Global field calibration parameters 
Bf1, Bf2, Bf3, = Local or mixture specific field calibration constants 

 

The area of bottom-up fatigue or alligator cracking and length of longitudinal cracking are 

calculated from the total damage over time using different transfer functions. The relationship 

used to predict the amount of bottom-up fatigue cracking on an area basis is as follows:  

 

 𝐹𝐶 𝑏𝑜𝑡𝑡𝑜𝑚 = (
  𝐶3 

1+𝑒 ^  ( 𝐶1∗ 𝐶′
1  − 𝐶2 ∗ 𝐶′

2 ∗𝑙𝑜𝑔10 (𝐷∗100 )
) ∗ (

1

60
)                                                            (2.3) 

 

Where, 

C1,2,4 = Transfer function regression constants 

FCbottom = Area of alligator cracking that initiates at the bottom of the HMA layers (% of 

total lane area) 

D = Cumulative damage index at the bottom of the HMA layers 

 

𝐹𝐶𝑡𝑜𝑝 = (
   𝐶4

1+ 𝑒( 𝐶1 − 𝐶2 ∗𝑙𝑜𝑔10 (𝐷𝑎𝑚𝑎𝑔𝑒) 
) ∗ 10.56                (2.4) 
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Where, 

FCtop= Length of Longitudinal Cracks at the Top of the HMA Layer (m/km) 

C1,2,4 = Transfer Function Regression Constants 

D = Cumulative Damage Index at the Top of the HMA Surface 

 

Cumulative Damage Index is expressed as: 

 

    𝐷 = ∑(∆𝐷)𝑗,𝑚,𝑖,𝑝,𝑇 = ∑(
𝑛

𝑁
)
𝑗,𝑚,𝑖,𝑝,𝑇

                                                                                 (2.5) 

 

Where, 

n = Actual number of axle-load applications within a specific time period, 

j = Axle-load interval, 

m = Axle-load type (single, tandem, tridem, quad, or special axle configuration, 

I = Truck type using the truck classification groups included in the MEPDG, 

p = Month, and 

T = Median temperature for the five temperature intervals or quintiles used to subdivide 

each month 

 

 

Thermal Fracture or Thermal Cracking  

The amount of crack propagation induced by a given thermal cooling cycle is predicted using the 

Paris law of crack (AASHTO 2008):  

 

∆𝐶 = 𝐴 (∆𝐾)𝑛                                                                                                                                         (2.6) 
 

Where, 

∆C = Change in the Crack Depth due to a Cooling Cycle 

∆K = Change in the Stress Intensity Factor due to a Cooling Cycle 

A, n = Fracture Parameters for the HMA Mixture 
 

‘A’ and ‘n’ can be obtained from the indirect tensile creep-compliance and strength of the HMA:  

𝐴 = 10𝑘, 𝛽, (4.389−2.52𝐿𝑜𝑔(𝐸  𝜎𝑚𝑛))
                                                                                                             (2.7) 

𝑛 = 0.8[1 +
1

𝑚
]                                                                                                                     (2.8) 

 

Where,  

k = Coefficient determined through global calibration for each input level (Level 1 = 5.0; 

Level 2 = 1.5; and Level 3 = 3.0) 

E = HMA indirect tensile modulus 

𝜎𝑚 = Mixture tensile strength 
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m = The m-value derived from the indirect tensile creep compliance curve measured in 

the laboratory and 

𝛽 = Local or mixture calibration factor 

 

The degree of cracking is predicted by the MEPDG using an assumed relationship between the 

probability distribution of the log of crack depth to AC layer thickness ratio and the percentage 

of cracking. The thermal cracking model used in the AASHTOWare Pavement M-E is expressed 

as (AASHTO 2008) is:  

 

𝑇𝐶 = 𝛽𝑡1 𝑁 [
1

𝜎𝑑
 𝐿𝑜𝑔 (

𝐶𝑑 

 𝐻𝑎𝑐
)]                                                                                                                  (2.9) 

 

TC = Observed amount of thermal cracking (m/km) 

𝛽𝑡1 = Calibration Parameter 

N[z] = Standard normal distribution evaluated at [z] 

𝜎𝑑= Standard deviation of the log of the depth of cracks in the pavement (mm) 

Cd = Crack depth (mm) 

Hac = Thickness of AC layers (mm) 
 

Permanent Deformation or Rutting Models  

Several rutting models are developed to relate the asphalt modulus and/or the measured strains 

to the number of load repetitions to pavement failure in different researches. Most of the number 

of load repetitions to pavement failure take the following form (Yang 1993, Salem 2008, Wardle 

1998, Jackson 2007 and Mathew 2007): 

 

𝑁d = =  𝑓4 ( 𝜀c)-f5                                                                                                           (2.10) 

Where,  

Nd = number of load repetitions; 

c = Vertical compressive strains on the top of subgrade 

 

The rate or accumulation of plastic deformation is measured in the laboratory using repeated load 

permanent deformation triaxial tests for both HMA mixtures and unbound materials. The 

laboratory derived relationship is then adjusted to match the rut depth measured on the roadway. 

For all HMA mixtures, the MEPDG field calibrated form of the laboratory derived relationship 

from repeated load permanent deformation tests is as follows: 

 

∆𝑝 (𝐻𝑀𝐴)= 𝜀𝑝 (𝐻𝑀𝐴) ℎ 𝐻𝑀𝐴 = 𝛽1 𝑘𝑧 𝜀𝑟  (𝐻𝑀𝐴) (10)𝑘1𝑟  (𝑛)𝑘2𝑟 𝛽2𝑟 (𝑇)𝑘3𝑟𝛽3𝑟                              (2.11) 

 

 

Where,  

 ∆𝑝 (𝐻𝑀𝐴)=Accumulated permanent or plastic vertical deformation in the 
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       HMA layer/sublayer (mm)  

𝜀𝑝 (𝐻𝑀𝐴) =Accumulated permanent or plastic axial strain in the HMA 

           layer/sublayer (mm/mm)  

𝜀𝑟  (𝐻𝑀𝐴) =Resilient or elastic strain calculated by the structural response model 

            at the mid-depth of each HMA sublayer (mm/mm) 

ℎ 𝐻𝑀𝐴 =Thickness of the HMA layer/sublayer (mm)  

n= Number of axle-load repetitions 

T= Mix or pavement temperature (0C)  

kz  =Depth confinement factor 

k1r, k2r, k3r = Global field calibration parameters 
β1r , β2r, β3r = Local or mixture field calibration constants 

 

 
 

To calculate plastic vertical deformation within all unbound pavement sublayers and the 

foundation or embankment soil, the following mathematical equation is used.  

 ∆𝑝 (𝑠𝑜𝑖𝑙)= 𝐵𝑠1  𝑘𝑠1 𝜀𝑣  ℎ𝑠𝑜𝑖𝑙   (𝜀𝑜/𝜀𝑟) 𝑒
−(

𝑝

𝑛
)𝛽                             (2.12) 

 

Where, 

∆𝑝 (𝑠𝑜𝑖𝑙)=Permanent or plastic deformation for the layer/sublayer (mm) 

n= Number of axle-load applications 

εo = Intercept determined from laboratory repeated load permanent deformation 

εv= Average vertical resilient or elastic strain in the layer/sublayer and calculated 

by the structural response model sublayer (mm/mm) 

εr= Resilient strain imposed in laboratory test to obtain material properties εo , β and p, 
(mm/mm)  

hsoil= Thickness of the unbound layer/sublayer (mm) 

ks1 = Global calibration coefficients (for fine and granular)  

𝛽𝑠1  = Local calibration constant for the rutting in the unbound layer 

 

 

Total rut depth is calculated as sum of layers and the relationship is as follows:  

𝑅𝐷 = ∑ εp𝑖  
𝑛

𝑖=1
 h𝑖  

                 (2.13) 

 

Where,   

RD = pavement permanent deformation (mm) 

n = number of sublayers  

εpi = total plastic strain in sublayer i (mm/mm) 

hi = thickness of sublayer i (mm) 
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IRI Models 

All the aforementioned distresses predicted by the M-E models are correlated to roughness. In 

addition, the smoothness model alternatively considers other distresses, such as potholes, 

longitudinal cracking outside wheel paths and block cracking if there is a potential of occurrence. 

The design premise included in the MEPDG for predicting smoothness degradation is that the 

occurrence of surface distress will result in increased roughness (increasing IRI value) or in other 

words, a reduction in smoothness. (AASHTO 2008) and shown in the equation below: 

 

IRI= 𝐼𝑅𝐼0 + 𝑓1 (𝑆𝐹) +  𝑓2 (𝐹𝐶 𝑇𝑜𝑡𝑎𝑙) + 𝑓3 (𝑇𝐶) + 𝑓4(𝑅𝐷)             (2.14) 

 

Where, 

IRIo = Initial IRI after construction (mm/km) 

SF = Site factor 

FC Total = Area of fatigue cracking (combined alligator, longitudinal, and reflection 

cracking in the wheel path) (percent of total lane area) 

TC = Length of transverse cracking (including the reflection of transverse cracks in existing 

HMA pavements) (mm/km)  

RD = Average rut depth (mm)  

 

The site factor (SF) is calculated in accordance with the following equation: 

SF=AgePI+1)+0.007947{Precip/25.4)+1}+0.000636(FI+1)             (2.15) 

 

Where, 

Age = Pavement age (year) 

PI = Percent plasticity index of the soil, 

FI = Average annual freezing index, of days, and 

Precip = Average annual precipitation or rainfall (mm) 
 

 

2.3.3 MEPDG Distress Models: Application into PMS 

The performance prediction is dependent on local factors illustrated in Figure 2.8. As a result, it 

is important to evaluate the performance prediction models and to re-calibrate these performance 

prediction models for local characteristics. To calibrate these models, a number of researchers 

conducted studies (Hall 2010; Hoegh 2008, Velasquez 2009, Darter 2005 and Ali 1998) for 

different locations and different transportation agencies.  

 

Hoegh (2010) conducted local calibration of the rutting model using time history rutting 

performance data for pavement sections at the Minnesota Department of Transportation. In this 

study, a detailed comparison of the predicted total rutting, asphalt layer rutting and measured 

rutting is carried out. Predicted rutting was recalibrated by adjusting the parameters and reducing 

an error between predicted and measured performance. However, the results show that the local 

calibrated models are less biased than the predictions used by global calibrated rutting models.  
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Hall (2010) summarized the initial local calibration of flexible pavement models in the MEPDG 

for Arkansas. It is found that for the current MEPDG, predicted distresses did not accurately 

reflect measured distresses, particularly for longitudinal and transverse cracking. However, due 

to the lack of measured transverse cracking, the transverse cracking model is not calibrated. 

Finally, the procedure for local calibration of the MEPDG using LTPP and PMS data in Arkansas 

is established. 

 
 

 
Figure 2.8: Factors affecting Pavement Performance (Tighe 2007) 

 

Siraj (2009) verified the accuracy of the predicted performance from the MEPDG software for 

the state of New Jersey for Level 2 and Level 3 inputs. In this verification, nine LTPP and 16 

non-LTPP sections in the state of New Jersey were evaluated. The measured longitudinal 

cracking, thermal cracking and roughness (IRI) are found statistically similar to the predicted 

values. However, the prediction of MEPDG software 1.0 was not accurate for IRI.  

 

Velasquez (2009) analysed the performance prediction and evaluated different types of flexible 

and rigid pavements for local conditions. The results show that the local adaptation for Minnesota 

conditions require modification in both the MEPDG rutting model for base and subgrade and 

coefficients in the MEPDG fatigue cracking and thermal cracking models for flexible pavements. 

However, the use of the longitudinal cracking model is not recommended for adaptation since 

the IRI model could not be locally calibrated. 

 

Kang (2007) standardized two important calibration factors, longitudinal and alligator fatigue 

cracking models. The calibrated models in the MEPDG validate the reliable prediction of 

pavement distresses. Moulthrop (2007) calibrated MEPDG distress transfer functions for flexible 

and semi-rigid pavements of Montana. The results show that fatigue cracking (bottom-up) model 

is reasonable, developing a local calibration factor for predicting thermal cracking. However, for 
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the top-down fatigue cracking model, no consistent trend in the predictions is identified to reduce 

bias and standard error.  

 

Schram (2006) analyzed PMS data of Nebraska to calibrate two smoothness models at the project 

level. Based on the study results, it is revealed that project-level calibrations reduced default 

model prediction error by nearly twice than the network-level calibration. This study offers a 

space into the accuracy that can be achieved with local calibrations.  

 

Ali (1998) evaluated and calibrated MEPDG performance models using the LTPP data for 

specific loading and environmental conditions. The predicted performance of various sections 

are compared with observed in-service fatigue cracking and rutting for various pavements. 

However, it is evident that more data is required for a more conclusive evaluation, since rutting 

models showed poor agreement with the observed rutting.  

 

Several sensitivity analyses were conducted to address and understand the influential inputs of 

the MEPDG process. NCHRP (NCHRP 2013) analyzed five pavement types: new Hot-Mix 

Asphalt (HMA), HMA over a stiff foundation, new Jointed Plain Concrete Pavement (JPCP), 

JPCP over a stiff foundation and new Continuously Reinforced Concrete Pavement (CRCP). In 

this study, a normalized sensitivity index was adopted as the quantitative metric. NCHRP 

(NCHRP 2011) also carried out global sensitivity analyses for five pavement types under five 

climate conditions and three traffic levels.  

 

Retherford (2011) developed Gaussian Process (GP) surrogate models for each relevant distress 

model. The GP models were used for sensitivity analysis and design optimization.  

 

Graves (2011) carried out a sampling-based global sensitivity analysis to identify influential 

variables of the parameters. Orobio (2011) conducted space-filling computer experiments with 

latin hypercube sampling, standardized regression coefficients and Gaussian stochastic processes 

to categorize the relative importance of the material inputs in MEPDG for flexible pavement.  

Moya (2011) conducted a case study of a pavement structure by considering several pavement 

design variables as random. Sensitivity of rutting and other distresses to input parameters (rutting 

sensitive to thin layer) are presented for different countries (TRC 2011).  The impact of accurate 

traffic inputs in forecasting traffic loads for pavement design are also analyzed (Hajek 2011). 

MEPDG key inputs such as hot-mix asphalt, base nominal aggregate size, climate location, HMA 

thickness, AADTT, subgrade strength, truck traffic category, construction season and binder 

grade are analyzed and discussed using local sensitivity (Amador -Jime´nez 2011). Siraj (2009) 

verified the accuracy of the predicted performance from the MEPDG software for the state of 

New Jersey for Level 2 and Level 3 inputs. Guclu (2009) carried out sensitivity for JPCP and the 

design input variables were categorized as being most sensitive, moderately sensitive or least 

sensitive in terms of their relative effect on distresses. Hall (2005) assessed the relative sensitivity 

of the models used in the M-E design guide for inputs relating to Portland cement concrete 

materials of JPCP. 
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2.4 Summary of Relevant Literature Review  

The recent research work related to pavement performance evaluation, MEPDG distress models, 

LCCA and cost-benefit analysis is summarized in Table 2.3.  

 

Table 2.3: Summary of Recent Relevant Research Findings 

Relevant 

Research Area 

Author/ 

Authors 

Research Summary Remarks 

Effectiveness of 

Using Various 

KPIs 

Henning (2013) Investigated the effectiveness of 

using various KPIs. Rutting Index 

(RI) was developed with the 

objective to effectively quantify the 

structural performance of pavement 

in New Zealand.  

This study is useful if rut depth 

is used as an index for 

maintenance decisions.   

Probabilistic 

Approach in 

Estimating 

Performance 

Index   

(Prozzi  2000) The analysis was based on the use of 

probabilistic duration modeling 

techniques. The hazard function was 

used to assess reliability of pavement 

sections.   

This study is useful in applying 

the probabilistic approach into 

PMS.  

Joint Estimation 

Approach in 

Estimating 

Performance 

Indices 

(Prozzi  2004) Pavement performance index models 

were developed from the 

combination of both experimental 

and field data. Use of the joint 

estimation approach for the 

development of pavement 

performance models was found in 

this study. A riding quality model 

based on serviceability consideration 

was also developed. The original 

model parameters were re-estimated 

by applying joint estimation with the 

incorporation of field data set. The 

error of the new model was found as 

half of the existing model.  

 

This study is useful to 

overcome the limitations of the 

OLS approach.  

Estimation of 

Performance 

Index  

(Yu 2003) A ‘linear mixed effects model’ was 

developed to predict future pavement 

conditions. This model was 

developed by a weighted 

combination of the average 

deterioration trend and the past 

pavement conditions. 

This model was developed 

based on a weighted 

combination of the average 

deterioration. However, the 

precise prediction model 

requires incorporation of the 

effects of traffic and materials.  

Estimation of 

Performance 

Index  

(Prozzi 2003) Non-linear models were developed 

for KPIs for realistic prediction of 

pavement conditions. The KPI 

model was developed considering 

traffic characteristics, pavement 

structural properties, and 

environmental conditions. 

This study is useful for 

estimating performance index 

models to incorporate the effect 

of traffic characteristics, 

pavement structural properties 

and environmental conditions.  
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Relevant 

Research Area 

Author/ 

Authors 

Research Summary Remarks 

Effect of KPI 

Model in LCCA   

(Madanat 

2002) 

Effect of KPI model accuracy was 

investigated on optimal design and 

life cycle costs by using a regression 

model and probabilistic model.   

This study is useful to 

investigate the impact of KPI 

model accuracy on LCCA.  

Effectiveness of 

KPI Model 

Estimation  

(Archilla 2001) Effectiveness of the estimation of 

rutting models was investigated by 

combined estimation.  

This study will also help in 

applying combined estimation.  

Effectiveness of 

KPI Model 

Estimation 

(Chu 2008) Effect of different statistical 

assumptions and estimation 

techniques of KPI models on 

predictive capabilities were explored 

by using AASHO road test data. 

This study will help in 

investigating statistical 

assumptions.  

Estimation of 

Performance 

Index 

(Tighe  2008) The DMI model was evaluated by 

using automated distress evaluation 

data in Southern Ontario, Canada. 

The randomized block design (RBD) 

approach was used for the 

hypothesis test in this study. A 

hypothesis test was performed to 

determine the differences in the DMI 

model on the basis of automated 

evaluation data.   

This study is useful for 

estimating performance index in 

PMS.  

Probabilistic 

Approach in 

Estimating 

Performance 

Index   

(Molenaar 

2011). 

Probabilistic duration modeling 

techniques were used in the 

investigation of performance 

measures during road design and 

construction  

This study is useful in applying 

probabilistic approach in 

estimating the performance 

index,  

Joint Estimation 

Approach  

(Zellner 1962) 

(Zellner 2006)  

Instead of the OLS approach, Zellner 

formulated the SUR estimator to 

account for contemporaneous 

correlations among multiple 

dependent variables in a suit of 

regression models. This method uses 

a set of equations, which are 

contemporaneously correlated and 

share a common random error 

structure with non-zero covariance. 

The SUR method estimates the 

parameters of all equations 

simultaneously. 

This study is very useful in 

applying joint estimation 

approach in estimation.  

Application of 

SUR approach 

in Estimating 

KPI model 

(Prozzi 2008)  Recently, the SUR approach was 

applied to capture the deterioration 

process of pavement performance. 

This study applied the SUR 

approach to the simultaneous 

estimation of pavement performance 

Application of SUR proved 

accurate estimates when 

unobserved factors are 

correlated in joint estimation.  
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Relevant 

Research Area 

Author/ 

Authors 

Research Summary Remarks 

deterioration models. The 

deterioration of two major 

indicators, IRI and rut depth, were 

investigated. The results showed 

improved performance 

characterization and more accurate 

forecasting for IRI and rut depth.   

 

Application of 

M-E Approach: 

Local 

Calibration of 

Rutting 

(Hoegh 2010) Conducted local calibration of 

rutting model using time history 

rutting performance data for 

pavement sections at the Minnesota 

Department of Transportation. In 

this study, detailed comparison of 

the predicted total rutting, asphalt 

layer rutting, and measured rutting is 

carried out.  

The results show that the locally 

calibrated models are less 

biased than the predictions 

using the globally calibrated 

rutting models.   

 

Application of 

M-E Approach: 

Local 

Calibration of 

Cracking  

(Hall 2010) Conducted the initial local 

calibration of flexible pavement 

models in the MEPDG for Arkansas. 

It is found that for the current 

MEPDG, predicted distresses did not 

accurately reflect measured 

distresses, particularly for 

longitudinal and transverse cracking. 

Calibration coefficients are 

optimized for the alligator cracking 

and longitudinal cracking models 

minimizing the sum of standard 

error.  

Due to the lack of measured 

transverse cracking, the 

transverse cracking model was 

not calibrated.  

 

Application of 

M-E Approach: 

Local 

Calibration of 

Longitudinal 

Cracking, 

Thermal 

Cracking and 

IRI 

(Siraj 2009) Verified the accuracy of the 

predicted performance from the 

MEPDG software for the state of 

New Jersey for Level 2 and Level 3 

inputs. In this verification, nine 

LTPP and sixteen non-LTPP 

sections in the state of New Jersey 

are evaluated. The measured 

longitudinal cracking, thermal 

cracking and roughness (IRI) are 

found statistically similar to the 

predicted values.  

The prediction of MEPDG 

software 1.0 was not accurate 

for IRI.  

 

Application of 

M-E Approach: 

Local 

Calibration of 

MEPDG 

Distresses  

(Velasquez 

2009) 

Analyzed the performance prediction 

and evaluated of different types of 

flexible and rigid pavements for 

local conditions. Performance 

prediction models are evaluated and 

recalibrated to reduce bias and error 

for Minnesota conditions.  

The use of the longitudinal 

cracking model is not 

recommended for adaptation 

since the IRI model could not 

be locally calibrated. 
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Relevant 

Research Area 

Author/ 

Authors 

Research Summary Remarks 

Application of 

M-E Approach: 

Local 

Calibration of 

MEPDG 

Crackings  

(Moulthrop 

2007) 

Calibrated MEPDG distress transfer 

functions for flexible and semi-rigid 

pavements of Montana. The results 

show that fatigue cracking (bottom 

up) model is reasonable, a local 

calibration factor for predicting 

thermal cracking is developed.  

For the top-down fatigue 

cracking model, no consistent 

trend in the predictions is 

identified to reduce bias and 

standard error. 

LCCA for Cost-

Effective M&R 

Schedules based 

on MEPDG 

(Mandapaka 

2012)  

 

Evaluated and selected an optimal 

M&R strategy for a flexible 

pavement road section by integrating 

LCCA and California Mechanistic-

Empirical (CalM-E) design 

procedures.  

It is found that this study is 

carried out based on one road 

section for selected distresses of 

MEPDG. Overall performance 

of KPI is not considered for 

LCCA, which is generally used 

for M&R schedules.  

Benefit Costs 

Analysis for  

Network Level 

Optimization 

(De la Graza 

2010) 

Developed decision making tool for 

network-level optimization for 

pavement maintenance programming 

problems through linear 

programming. This decision making 

tool presents alternative highway 

maintenance strategies through an 

automated process in Microsoft 

Excel.  

This study focuses on the 

budget allocation process, 

depending on the condition of 

lane-mile. 

 

LCCA for 

Preventive 

Maintenance 

(Labi 2005) Investigated the cost-effectiveness of 

various levels of life cycle 

preventive maintenance for three 

asphaltic concrete pavement 

functional class families. This study 

estimated cost-effectiveness using 

existing performance models, 

performance jump models and cost 

models for each maintenance 

treatment type. 

The performance jump models 

were not based on M-E 

analysis. 

Integrated 

Dynamic 

Performance 

Prediction for 

M&R 

Optimization 

(Ningyuan 

2005) 

This optimization model considered 

cost-effectiveness based on multi-

year priority programming. This 

study selected M& R strategy based 

on predicted improved PCI value. 

Improvement of PCI value is 

predicted based on historical records 

of that treatment type.  

The local traffic, materials, 

weather and other existing 

factors might have significant 

influence on predicted 

pavement serviceability. 

MEPDG analysis will improve 

this prediction of pavement 

condition.  

Variability into 

Pavement 

Performance 

Models and 

LCCA 

 

(Whiteley 

2005) 

Considered the variability associated 

with the discount rate and 

incorporated all associated 

variability into the LCCA of 

Canadian long-term pavement 

performance. Distributions for 

service life and life cycle costs were 

developed by using both normal and 

In this study the variability 

factors, such as overlay 

thickness variation, total prior 

cracking variation and 

accumulated ESALs after eight 

years variation, are considered 

into LCCA. 
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Relevant 

Research Area 

Author/ 

Authors 

Research Summary Remarks 

log-normal distributions for overlay 

thickness. These LCCA differences 

are then used as a basis for 

establishing pay factors.  

 

2.5 Research Gaps and Opportunities for Innovation 

The literature review indicates that almost all the cost-effective M&R schedules are developed 

by different agencies generally based on a subjective performance index.  

 

In any PMS, in predicting deterioration of pavement conditions, a generalized sigmoidal 

equation, irrespective of traffic and materials, is followed. Furthermore, predicted performance 

jump for any treatment is estimated generally based on historical record or engineering 

judgement. However, this jump depends on material types of the treatments applied. Similarly, 

the deterioration of pavement over time depends on many local and existing factors, such as 

traffic, materials, pavement structure and existing conditions of the respective road section. 

Therefore, there is a gap in assessing the pavement conditions by the KPI models. However, M-

E analysis will predict the distress by considering local road conditions, which will in turn 

improve the prediction of pavement conditions. 

 

Although agencies employ different sectioning to evaluate the field performance of pavement, 

there is a gap in understanding the impact of section lengths on the performance evaluation.  

 

Although recent research has contributed significantly to developing the KPI models based on 

the factors affecting the performance, these are not estimated jointly. Moreover, recently, 

application of SUR proved accurate estimates when unobserved factors are correlated.  

 

Many recent research works have contributed significantly to investigating LCCA to identify a 

cost-effective pavement M&R strategy. However, the maintenance decision is made by 

considering the trigger value of the selected performance index. Therefore, improvement in the 

performance index and its application into the LCCA will ensure more precise identification of 

a cost-effective M&R strategy.  
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CHAPTER 3 
RESEARCH METHODOLOGY 

 

3.1 Introduction  

The goal of this research is to develop an efficient road M&R schedule by using the M-E 

approach and incorporating performance prediction models of KPIs that consider the impact of 

traffic and materials. 

Based on the literature review, it is evident that the predicted improvement in performance in 

terms of the indices after any treatment is set based on engineering experiences. Moreover, the 

remaining service life of pavement is estimated from the predicted deterioration of the overall 

condition by considering only the effect of age notwithstanding the effect of traffic or materials. 

This deterioration of the performance index (in terms of PCI, RCI and DMI) is calculated as a 

deduced value from the initial condition. This deduced value may reflect traffic levels, even 

though traffic is not directly considered. It is observed that the M-E approach is followed by 

many highway agencies to predict distresses in a precise way by incorporating the effect of local 

traffic, materials and environmental conditions. Consequently, the incorporation of the M-E 

approach in assessing the overall condition of pavement, rather than only applying engineering 

judgement, is reasonable. The research framework is developed in this chapter with a goal to 

incorporate these improvements in assessing pavement performance.  

3.2 Limitations in Assessing the Overall Pavement Condition  

The relevant literature review and the existing practice of the performance index in a PMS 

confirm that there are limitations in assessing the overall pavement condition. As discussed that 

the predicted improvement in performance is estimated generally based on engineering 

experiences The estimated performance improvement and the expected life span used for typical 

pavement rehabilitation activities on Ontario highways are listed in Table 3.1 (Ningyuan 2001). 

 

The remaining service life of pavement is estimated from the predicted deterioration of the 

overall condition by considering only the effect of age notwithstanding the effect of traffic or 

materials. The future deteriorated condition is calculated (in terms of PCI, RCI and of DMI) 

following a general equation of sigmoidal form, with different model coefficients (Ningyuan 

2001). The future performance of highways is estimated by the following equation:  

       

𝑃 = 𝑃0 − 2𝑒(𝑎−𝑏𝑐𝑡)           (3.1) 

Where, 

P = Performance Index, RCI or DMI 

Po = P at Age o 

t = Log e(1/Age) 

a,b,c = Model Parameters  
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Similarly, in municipal roads, a deduced value is estimated and the future condition is estimated 

by deducting the deduced value from the initial condition. This deduced value is estimated by 

the following equation (ARA 2006):  

 
%)(10 LogbaDV            (3.2) 

Where, 

a and b = User-Determined Constants   

% = Percentage Area of the Road Affected by Distress 

 

The parameters of these equations are generally estimated from the historical performance record 

of the specific pavement types.  

 

Table 3.1: Performance Improvements on KPIs for Typical Pavement Rehabilitation 

Activities on Ontario Highways 

Rehabilitation Alternative for 

Flexible Pavements 

Expected 

Life 

Performance Index 

Increase after Treatment 

PCI RCI DMI 

Hot In-Place Recycling 10.5 90 8.5 9 

Cold In-Place Recycling 12.5 90 8.5 9 

1 Lift Hot Mix Overlay 7 85 8 9 

2 Lifts Hot Mix Overlay 10 90 9 9 

Mill 1 Lift and 1 Lift Hot Mix 

Overlay 

8.5 90 8.5 9 

Full Depth 

Removal/Reclamation and 1+ 

Lifts Hot Mix Overlay 

13.5 95 9.5 10 

White Topping 11 90 9 9 

Reconstruction to Flexible 

Pavement 

16 95 9.5 10 

Reclamation, 2 Lifts Hot Mix 

Overlay 

12.5 90 9 9 

Full Depth Removal/Mill 

Reclamation 

12.5 90 9 9 

Pulverize, Grading, Double 

Surface Treatment 

11 85 9.5 9.5 

 

 

The improvement in performance may vary depending on the respective materials. Moreover, 

the deterioration of the pavement conditions over time will also be different, depending on the 

traffic and associated responses of the pavement materials or structure. Figure 3.1 presents how 

the pavement performance deterioration is estimated over time.   
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Figure 3.1: Pavement Performance for different Treatments (modified from TAC 2013) 

However, the performance prediction by only engineering judgement or historical records may 

sometimes mislead the pavement engineers and managers to identify the correct treatment and 

correct time to apply it. Therefore, there is a gap for improvement in assessing the overall 

pavement conditions.  

3.3 Research Methodology Framework 

The literature review, recent research and current adaptation of MEPDG-based pavement design 

validates the precise prediction of distresses by incorporating the effect of local traffic, 

environmental conditions and materials. Subsequently, this justifies the need to incorporate the 

M-E approach to overcome the aforementioned limitations of engineering judgement in assessing 

the overall pavement conditions. The research framework is finally developed with a goal to 

incorporate these improvements in assessing the overall performance of pavement.  

Although the final objective of the research is to develop cost-effective pavement maintenance 

and rehabilitation strategies, the precise assessment of pavement is a significant part to achieve 

it. Overcoming the limitations in estimating the improvement for specific treatments and the 

respective deterioration patterns are key parts of precise performance assessment of pavement. 

The method of pavement performance evaluation in managing PMS also has a significant effect. 

An accurate location reference system is necessary for managing pavement evaluations and 

maintenance. For that reason, the impact of section lengths on performance evaluations and 

maintenance decisions will be investigated. Moreover, the method of estimating performance 

indices will be further investigated to identify the improvement requirements. From the literature 

review, it is observed that the performance indices to assess the overall condition are estimated 

by using the OLS approach. However, OLS may be inefficient if unobserved factors influencing 

individual KPIs are correlated with each other. For this reason, this research proposes the use of 

the ‘Seemingly Unrelated Regression (SUR) method instead.  
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As discussed in the previous section, the M-E approach will be used to overcome the 

aforementioned limitations of engineering judgement in assessing the overall pavement 

condition. However, before applying the M-E approach, it is important to identify the 

requirements of the accuracy level of inputs for precise prediction. For this reason, a sensitivity 

analysis will be carried out for the inputs of MEPDG distresses based on an experimental design 

to identify the requirements of the accuracy level of inputs. The distresses predicted by the M-E 

approach will be compared to field-evaluated performance to identify the requirement of local 

calibration of the MEPDG-based prediction models. A preliminary local calibration will be 

carried out to improve the accuracy and precision of the models. Since the research is focused on 

identifying cost-effective pavement M&R activities, a clustering analysis will be conducted 

based on the material types. This study did not calculate the optimal local calibration coefficients 

in the transfer models, however, the preliminary local calibration of the predicted value will help 

ensure precise prediction.  

 

It is discussed that the prediction models of the performance indices are developed based on 

historical performance record of pavements. However, the deterioration of pavement is affected 

by the site-specific traffic, local environment and properties of materials. As a result, the M-E 

approach will be incorporated in assessing the overall condition of pavement to overcome the 

limitations of engineering judgement. The prediction models will be developed to assess the 

overall condition by considering all local variables affecting the pavement, which include site-

specific traffic, local environment, properties of materials and existing pavement structure. 

Moreover, the deterioration of the overall condition varies significantly depending on the 

characteristics of traffic and material types. For this reason, the deterioration model will be 

estimated for different levels of AADT to recognize the influence of the difference in traffic and 

properties of materials. The time required for maintenance will also be estimated based on a 

trigger value of an index. However, the pavement may fail due to any specific reason before 

reaching the trigger value of maintenance. For this reason, the probability of failure will be 

investigated by a probabilistic approach. Finally, a LCCA will be carried out for a period of 40 

years for alternate overlay options based on the deterioration models of the overall pavement 

condition. The steps of this study’s research method are shown in Figure 3.2. 
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Figure 3.2: Research Methodology 
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3.3.1 Data Collection 

This study will use pavement performance data of Ontario highways recorded in the MTO PMS 

database. The PMS for Ontario highways was first established in the 1980s. At that time, the 

computers were not cost-effective and the pavement M&R was based on qualitative engineering 

experience (Olivier 2010). Since then, the MTO’s PMS has undergone a number of enhancements 

and releases. Presently, it uses a second generation PMS, also known as PMS-2 (Ningyuan 2001, 

and Ningyuan 2004). PMS-2 maintains pavement performance, maintenance and operational 

records related to 16,500 center-line kilometers of freeways, collectors and arterial and local roads 

(Ningyuan 2008). PMS-2 also collects detailed annual records of cracking and distresses. 

 

Since this research focuses on the development of performance prediction models and maintenance 

and rehabilitation strategies, all records of annual performance (crackings and distresses), KPI 

performance (PCI, DMI, RCI, rut depth and IRI) and M&R performance are collected.     

For predicting the distresses, the MEPDG software AASHTOWare Pavement M-E will be used.  

The three major categories of input variables for the prediction of pavement distresses are required. 

They are: traffic data, climate data, and properties of layers and materials. Hierarchical input data 

of these three major categories will be collected for all selected road sections.  

Therefore, data collection processes mainly involve collecting the information of the following 

four components:  

(i) Pavement performance records of all KPIs (PCI, DMI, RCI, rut depth and IRI)  

(ii) Pavement M&R records, including type and costs of treatments  

(iii) Field-evaluated pavement distress records (cracking and distresses)  

(iv) Input data for AASHTOWare Pavement M-E software (traffic, weather and 

materials) 

 

The uninterrupted service life, which began after new construction or overlay design and ended 

before applying any other treatment (if improvement in performance index is observed due to that 

treatment, which may not reflect the improvement due to minor treatment), is considered as one 

‘performance cycle’ in this research. The word ‘performance cycle’ will be used throughout the 

study to define this uninterrupted pavement service life between two consecutive treatments. This 

performance cycle will be used as the respective service life during distress predictions based on 

the M-E approach. 

Various pieces of information are required to conduct these studies in different steps. The road 

sections are selected based on the available information required for analysis. Table 3.2 lists the 

number of highway sections selected in each step of this research. 
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Table 3.2: Selected Highway Sections 

Investigation Step No. of Highways Sections 
Type of 

Highway 

Performance 

Cycles 
Other 

Investigation of 

Variability in 

Performance 

Evaluation Due to 

Change in Section 

Lengths 

27 highway segments from 

Ontario’s Central Zone, which 

consist of 3,451 50m sections,  

346 500m sections, 152 

1,000m sections and 15 

10,000m sections. 

 

Freeways Only for the 

year of 2013 

 

Estimation Analysis 

of Existing 

Performance Index 

61 road segments from  major 

highway networks 

Freeways and 

Arterials 

158 

Performance 

Cycles 

 

Application of M-E 

Approach: Sensitivity 

Analysis 

N/A1 Freeways and 

Arterials 

N/A For main effect:  

171 experimental 

sets  

For interaction 

effect: 58 

experimental sets 

Application of M-E 

Approach: 

Prediction, 

Comparison and 

Verification 

 

128 highway sections from 19 

highways 

Freeways and 

Arterials 

176 

Performance 

Cycles  

(1530 

Performance 

Years) 

 

Estimation of Model 

and Deterioration of 

Performance Index 

128 highway sections from 19 

highways 

Freeways and 

Arterials 

176 

Performance 

Cycles 

 

LCCA A typical highway section 

 

3.3.1.1 Pavement Performance Record of KPIs  

Over the past 30 years, several evaluation indices were recorded in the MTO PMS-2 to obtain 

rational maintenance and rehabilitation decisions, such as IRI, PCI, DMI, PCR and RCI (Ningyuan 

2001). These KPIs are calculated from the field-evaluated distresses based on the weighting given 

by the agencies. The annual records of these KPIs are collected.  

The performance records of PCI, IRI and rut depth are collected for 2013 to investigate the 

variability in performance evaluations due to changes in section lengths. For this investigation, a 

total of four types of section lengths are observed. These are 50 m, 500 m, 1,000m and 10,000m 

sections.   

In analysing the estimate of the existing performance index, annual records of KPIs, including rut 

depth, are collected for 61 highway sections. For estimating the model and deterioration rate of 

KPIs, annual records of IRI, PCI and DMI are collected for 128 highway sections.  

                                                           

1 N/A= Not applicable  
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3.3.1.2 Pavement M&R Records 

Pavement M&R records are required to conduct LCCA and also to define uninterrupted 

performance cycles for road sections. For the selected 128 highway sections, historical M&R 

activities, treatment types, construction periods, routine maintenance activities and layer structure 

information, including unit costs of each treatment option, are collected.  

   

3.3.1.3 Field Pavement Distress Data 

For analyzing the estimate of the existing performance index, annual cracking and distress 

evaluations are collected for 61 highway sections. In comparing the field-evaluated distress to 

predicted distress by the M-E approach, annual field evaluations for IRI, rut depth, thermal 

cracking, bottom-up fatigue cracking and top-down fatigue cracking are collected for 128 highway 

sections. 

  

3.3.1.4 Hierarchical Input for AASHTOWare Pavement M-E  

For predicting the MEPDG distresses, the recent version of MEPDG software AASHTOWare 

Pavement M-E (version-2) will be used. The input data required for the AASHTOWare Pavement 

M-E analysis refer to traffic, climate, pavement structure and material properties. For each 

pavement section, the inputs will be collected following the recommendations of the MEPDG 

Manual of Practice (AASHTO 2008). The AASHTOWare Pavement M-E software allows input 

data at three level of accuracy (AASHTO 2014), as described below. 

Level 1: Input parameters are the most accurate. Generally, site-specific or site-measured and 

laboratory data and results of field testing are considered as Level 1 input. For example, laboratory 

test values of dynamic modulus and nonlinear resilient modulus are considered as Level 1 for 

material properties. For traffic, site-specific traffic data, such as AADTT, lane numbers, traffic 

growth factors, are considered as Level 1 input. 

Level 2: Generally, the input parameters estimated from mathematical correlations or regression 

equations, or calculations from other site specific data, are considered as Level 2 input. For 

example, resilient modulus estimated from CBR values are considered as Level 2 input.   

Level 3: Input parameters are the least accurate. They are normally default values or based on best 

estimates. Generally, national level or regional level values are used.  

Based on the results of the proposed sensitivity analysis, the required accuracy level of input will 

be identified and input will be collected accordingly.  

General Information  

General information for the selected road sections, including design life (in terms of performance 

cycles), existing pavement constructions year, pavement overlay construction year, traffic open 

date and new construction and rehabilitation history will be collected for all 128 highway sections. 

The design life will be considered as the performance cycle length of the pavement section for that 

specific treatment.  
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Traffic Data  

For the selected 128 highway sections, traffic information, including traffic volume adjustment 

factors and axle-load distribution factors are collected. The M-E analysis uses the concept of load 

spectra for characterizing traffic where each axle type (e.g., single, tandem and tridem) is divided 

into a series of load ranges. The vehicle class distributions, daily traffic volumes and axle-load 

distributions are collected for each road section.  

A web-based mapping program called ‘iCorridor’ developed by the MTO, is used for the required 

traffic information. The ‘iCorridor’ provides site-specific traffic information, which are mainly 

Level 1 input, for each highway section. Although the traffic stream information is measured 

directly for specific highways, the section (selected for this study) specific traffic information is 

not always available. For this reason the traffic stream information available over the entire 

highway is used for some of the sections which do not have site specific information.   Figure 3.3 

shows the web-based map program of ‘iCorridor’. If traffic data is insufficient within the selected 

section, default values for Southern or Northern Ontario will be used as Level 2 input.  

 

 

Figure 3.3: Web based Map of ‘iCorridor’ 

Climate Data 

For the M-E analysis, the historical records of daily and seasonal fluctuations in the moisture and 

temperature profiles, ground water tables, precipitation, infiltration, freeze-thaw cycles and other 

external factors are required.  

The climate information available from Environment Canada is already processed for use in 

AASHTOWare Pavement M-E Design. Currently, there are a total of 34 weather stations in 

Ontario, which are available in the AASHTOware software. Figure 3.4 shows the location of 

Ontario climate stations. The geographical location information of 128 road sections in terms of 

longitude, latitude and elevation are collected.  
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For a specific location, where no weather data is available, the Integrated Climatic Model (ICM) 

is used to create a virtual weather station by incorporating the climatic data from neighboring 

weather stations. 

  

 

Figure 3.4: Location of Ontario Climate Stations 

Material Properties 

The material properties are collected for 176 performance cycles of 128 highway sections. The 

AASHTOWare Pavement M-E requires the use of material properties of the pavement layers to 

create a mechanistic analysis of the pavement responses. If any properties are not found or 

specified, Ontario Provincial Standard Specification (OPSS) and Ontario’s Default Parameters for 

AASHTOWare Pavement M-E Design are followed for default values (MTO 2012).  

3.3.2 Quality Control of Data 

The investigations will be conducted based on the collected data, which is mainly recorded in the 

MTO PMS-2 and specific project documents. This research uses the historical data recorded in the 

database from the construction year to 2013. Many of the highway sections were constructed in 

1980s. Previously, the pavement conditions were evaluated by the multiple raters' by following 

the manual survey. Moreover, in the database, the value of performance indices are not consistent 

with M&R activities. Therefore, the quality control of the inconsistent data is important for 

accurate analysis. The quality of the data is controlled by following statistical methods and 

graphical comparison.  

3.3.2.1 Performance Record of KPIs  

It is observed that the performance improvement of KPIs (DMI, RCI, PCI and IRI) recorded in the 

database are not always consistent with the M&R year. Since the field evaluation might not always 

be carried out subsequent to maintenance or rehabilitation, this inconsistency is adjusted following 

the year of the M&R record. In PMS-2, the IRI values are not recorded before 1997. The IRI values 
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for the road sections can be estimated starting in 1997 or prior to 1997 using the following equation 

(MTO 2007):  

RCI = Max (0, Min (10, 8.5 – 3.02 x ln (IRI)))      (3.3) 

The performance conditions of pavement for DMI, RCI, PCI and IRI are plotted against the service 

life for all pavement sections to observe its consistency with M&R records. The deterioration in 

DMI, RCI and PCI with an increasing value in IRI are observed. If there is any improvement in 

DMI, RCI and PCI, it is considered that a minor and major M&R occurred. The pavement 

performance is observed in this way from the construction year to 2013.  From this comparison, 

the performance cycle is also identified, in years, from one treatment to another. For example, the 

performance of Highway 7 (west bound, location Km 553.172 to 556.072) is observed from the 

construction year 1986 to 2010. The performance curves of PCI DMI, RCI and IRI are plotted in 

Figure 3.5.  

In Figure 3.5, the deterioration patterns of all KPIs are found as consistent. It is observed that in 

1998, there was slight improvement in pavement conditions. Considering that a treatment was 

applied that year and the first performance cycle ended in 1997 (a cycle of 12 years), no M&R was 

recorded in PMS-2 for 1998. In the 2003 and 2004, there was improvement. For this reason, a 

performance cycle consisting of minimum 4 years is considered so that a smooth curve of 

performance curve can be drawn. For this reason, if a performance cycle is found consisting of 

less than 4 years, that cycle is dropped from the experimental design. For this reason, 2003 is 

removed from the analysis and another performance cycle from 2004 to 2010 (a performance cycle 

of 7 years) is considered instead. All pavement sections are assigned to their corresponding cycles 

in this way.  

3.3.2.2 Pavement M&R Records 

The M&R records are made consistent with historical KPI records for 176 performance cycles by 

following the previous section 3.3.2.1.  

3.3.2.3 Field-Evaluated Distress Data 

The field-evaluated distress of 128 highway sections is observed for 1,530 performance years. The 

evaluated yearly distresses confirm that the highways are deteriorating consistently over time. This 

study will finally estimate the performance deterioration curve of pavement condition based on 

different traffic levels and materials types. The road sections are finalized after screening the data 

and selecting the perfornace cycles.  

3.3.2.5 Input Data for AASHTOWare Pavement M-E Software  

It would be the best option if all inputs were of the highest accuracy (Level 1).  However, it may 

be inefficient to put effort in obtaining Level 1 for all inputs. For this reason, a sensitivity analysis 

will be carried out to identify important input, which has significant effect on MEPDG distresses.  
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Figure 3.5: Comparison of Pavement Performance in Terms of DMI, RCI, IRI and PCI of 

Highway-7W  

3.3.3 Investigation of Variability in Performance Evaluation  

As discussed, the precise assessment of the overall pavement conditions is a key part in achieving 

the research goal of incorporating improvement in existing use of KPIs. For this reason, precise 

performance evaluations are necessary and require an accurate location reference systems. 

Moreover, in Ontario highways, pavement sections are predefined for assessment. The section 

lengths range from 50m to 50,000m. For this reason, the effect of section lengths on performance 

evaluations and corresponding maintenance decisions is to be investigated.  

Although PCI for Ontario highways is generally used as an overall index, rut depth and IRI are 

used as KPIs to identify the trigger value of maintenance decisions. The performance of PCI, IRI 

and rut depth will be investigated for different section lengths (50m, 500m, 1,000m and 10,000m). 

A statistical analysis will be conducted in three steps. Rut depth will be used to investigate the 

impact of section lengths. The effect on overall conditions of road segments will be investigated 

by comparing the PCI and IRI for the selected section lengths.   

After considering the variation due to changes in section lengths in the evaluated performance of 

the KPIs, the impact on maintenance decisions will also be investigated. A Monte Carlo simulation 

will be carried out by varying the section lengths. With this simulation, corresponding variations 

in the estimated probability of work will be investigated.  

3.3.4 Analysis of Estimate of Existing Performance Index  

The method of estimating performance indices will be further investigated to identify the 

improvement requirements in estimation. It is observed that in many PMS, KPIs are generally 

estimated by using the OLS approach. However, the OLS may be inefficient if unobserved factors 

influencing individual KPIs are correlated with each other. For this reason, an approach called the 

‘Seemingly Unrelated Regression (SUR)' method will be used instead. 
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The severity and extent of all distresses (listed in Chapter 5) that have significant effect on the 

overall condition of pavement will be considered as independent variables for estimating KPI 

models.  

 

3.3.5 Application of ME-Approach:  Sensitivity Analysis 

Since the MEPDG analysis considers three-level hierarchical inputs to predict performance, these 

inputs with different levels of accuracy may have a significant impact on performance predictions. 

For this reason, a sensitivity analysis will be carried out to identify the accuracy-level requirements 

for precise prediction. For the statistical validity of investigations, an experimental design-based 

approach will be used.  

For the main effect, local sensitivity will be carried out and for interaction effect, experimental 

design will be formed based on a random combination of variables.   
 

3.3.6 Application of M-E Approach:  Prediction, Comparison and Verification 

The requirement to incorporate the M-E approach to overcome the limitation of engineering 

judgement in the PMS is discussed in the research methodology framework.  The distresses will 

be predicted by the M-E approach for 176 performance cycles. These predicted distresses will be 

compared to field-evaluated performance to identify the local calibration requirements of the 

MEPDG-based prediction models. A preliminary local calibration will be carried out to improve 

the accuracy and precision of the models by a cluster analysis based on the type of materials.  
 

3.3.7 Developing Prediction Models for Assessing Overall Condition of Pavement  

The prediction model will be developed by using a regression approach that considers the 

distresses predicted by the M-E approach. Since the deterioration of pavement is actually affected 

by site-specific traffic, local environment and material properties, the effect of these variables is 

to be incorporated in predicting the pavement’s overall deterioration in a precise way. For this 

reason, the overall condition index model will be estimated from the M-E based predicted 

distresses. It is evident that the pavement performance curve will be different for different traffic 

levels and material types. To recognise these variations, the pavement performance deterioration 

model (parameters of equation 3.1) will also be estimated for different categories of traffic level 

and material type. The time required for maintenance will also be estimated for these categories to 

ensure the appropriate time for treatment. The probability of failure will also be investigated by a 

probabilistic approach, considering both pavement overall condition and individual distress.   
 

3.3.8 Investigation of LCCA to Recommend a Cost-Effective M&R Strategy 

In a PMS, the identification of cost-effective M&R treatments is challenging. A cost-effective 

pavement M&R approach is needed to allocate the PMS budget in an efficient way. For this 

purpose, a LCCA will be conducted by following the estimated deterioration model discussed in 

the previous section. Since the deterioration rate of the overall condition is considered to vary 

depending on the type of materials and AADT levels, this variation will be taken into account for 
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predicting the remaining service life. This will confirm that the LCCA is precise and that the 

identification of the corresponding cost-effective M&R will be precise too. 

 

In this study, the cost-effective M&R strategy refers to the M&R option identified from the LCCA 

that has the maximum service life and minimum treatment costs in terms of NPW. This study 

considers only resurfacing or overlay activities with different types of materials instead of other 

maintenance activities. Since M-E approach can analyse only overlay M&R activities, and can 

predict distresses based on the applied overlay layer materials, this study compares only different 

types of overlay materials instead of all M&R activities.  

3.4 Summary of Research Methodology 

The research methodology was developed with a goal to incorporate the improvements in 

assessing the overall performance of pavement. 

The KPIs used in the PMS do not incorporate local factors, such as pavement type, traffic, weather 

and road-specific materials. The predicted improvement of KPIs after any treatment are set based 

on the experiences and the deterioration patterns of KPIs calculated based on empirical 

relationships. The proposed KPIs based on the M-E analysis will overcome these limitations. 

Although the final objective of the research is to develop a cost-effective pavement M&R strategy, 

the precise assessment of pavement will achieve the goal. An investigation of variability due to 

changes in section length in the evaluation of pavement performance is proposed by incorporating 

an accurate location reference system. The SUR method is proposed to identify the improvement 

requirements in the estimate of the existing KPI model. To recognize the influence, prediction 

models will be estimated by considering the characteristics of traffic and material types. A 

probabilistic approach is also proposed to predict the probability of failure of pavement based on 

overall condition and individual distress as well. Finally, a LCCA will be carried out for a period 

of 40 years for alternate overlay options by incorporating the variation for different levels of traffic 

and material types. The research will be conducted in subsequent chapters following the proposed 

methodology outlined in this chapter. 
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CHAPTER 4 

ANALYSIS OF VARIABILITY IN PAVEMENT 

PERFORMANCE EVALUATION  
 

In PMS, the performance evaluation indices and prediction methods are important aspects in 

assessing the overall pavement condition. Therefore, an accurate location reference system is 

necessary to manage pavement evaluations and maintenance. The length of the pavement section 

selected for evaluation may also have a significant impact on the assessment of condition 

irrespective of the type of performance indices. This chapter investigates the variability in 

pavement performance evaluation and maintenance decisions due to change in pavement section 

lengths. It considers rut depth, PCI and IRI as performance indices.  

The results presented in this chapter are published in the Transportation Research Record (TRR): 

Journal of the Transportation Research Board (TRB) 2016 (Jannat 2016). Part of this chapter was 

also presented at the Eighth International Conference on Maintenance and Rehabilitation of 

Pavement in 2016 (Jannat 2016). 

4.1  Introduction 

Evaluation of pavement performance is sophisticated due to the complexity of factors and 

associated interactions that influence pavement performance. An effective PMS is possible only 

when pavement performance is evaluated accurately and efficiently. The PMS analysis results vary 

significantly with the length of each pavement section and the selected performance indicators 

used for the condition assessment.   

 

Pavement sections for assessment are predefined for all individual provincial highways managed 

by the MTO and the summaries of the pavement condition data and evaluation results are reported 

based on these predefined pavement sections. Typical lengths of such sections range from 50m to 

50,000m. Although the long sections are homogenous or classified by pavement structure and 

geographic locations, they do not represent homogeneous performance conditions, including rut 

depth, IRI and PCI. For this reason, this study focuses on investigating the influences of section 

length on performance evaluation generated by PMS-2. The study also investigates the impact of 

section lengths on subsequent maintenance management and decisions. 

 

The implications of section lengths are investigated in two steps: first, on performance monitoring 

and second, on maintenance decisions. This investigation uses data from the MTO PMS-2 to 

evaluate the impact of varying sections lengths on overall outcomes of the analysis. For empirical 

investigations, pavement performance data of Ontario’s Central Zone highway network is used.  

4.2  Existing KPIs Used on Ontario Highways 

As discussed in the previous chapter, different KPIs are used in pavement evaluations for Ontario 

highway systems. PCI is generally used as an overall condition index in pavement M&R decision 
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trees. The decision trees use a series of logical tests to capture the decision-making process in 

selecting appropriate M&R treatments based on the status of KPIs (Kazmierowski 2011).  

 

The DMI, which is a component of the PCI, is also an important index. MTO has classified the 

distresses into 15 categories and assigned weights to them in order to calculate DMI. The PCI is 

composed of two sub-indices representing DMI and IRI. In Ontario, the formula used to calculate 

PCI from DMI is defined as follows (MTO 2007): 
 

For Asphalt Concrete (AC) Pavement, 

 

𝑃𝐶𝐼 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓( 0, 𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑓 (100, 13.75 + 9 ×  𝐷𝑀𝐼 −
   7.5  𝐼𝑅𝐼))                                                                                                                                       (4.1)    

 

Where,  

PCI= Pavement Condition index in score  

DMI= Distress Manifestation Index in score  

IRI= International Roughness Index in mm/ m  

 

Recently, Ontario highway systems are moving from a manual rating system to an automated 

survey regime. The formula to calculate new PCI is being changed for automated survey data and 

is outlined below:  

 

𝑁𝑒𝑤 𝑃𝐶𝐼 = (0.7 ×  𝐼𝑅𝐼 𝑆𝑐𝑎𝑙𝑒𝑑) + (0.2 × 𝐷𝑀𝐼) + (0.1 × 𝑅𝑢𝑡 𝑆𝑐𝑎𝑙𝑒𝑑)                          (4.2)  

 

Where,  

IRI Scaled = [100 × {1 − IRI in mm per m /5}] 
Rut Scaled = [100 × {1 − (Average Rut Depth in mm  /30 )}]     

 

4.3 Road Performance Data 

As discussed in the previous section, the pavement sections for assessment are predefined for 

Ontario highways. The pavement condition data and evaluation results are reported based on such 

predefined pavement sections. For 2013, detailed rut depth and performance data is collected from 

Ontario’s Central region for different section lengths. These section lengths are categorized in the 

following four groups: 50m, 500m, 1,000m and 10,000m. To evaluate the performance of a 

particular pavement segment, the road sections are individually surveyed. Although these sections 

are overlapping in one segment, they are surveyed independently so that performance can be 

compared.  

 

From the available performance records of the highways, only 27 road segments from two 

highways, Highway 401 Eastbound and Westbound, are selected as these contain these four types 

of section lengths. These are listed alongside the total number of sections in Table 4.1.  
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Road segments with maximum available length are selected where all four types of section lengths 

are available for that particular segment. Finally, an experimental design is selected that contains 

27 road segments (covering 172.5 km length from the Ontario Central Zone) and consists of 3451 

50m sections, 346 500m sections, 152 1,000m sections and 15 10,000m sections.   

4.4 Variability Analysis 

The objective of this chapter is to investigate the variability in pavement performance evaluation 

due to changes in section length for different KPIs used in PMS. Although PCI for Ontario 

highways is generally used as an overall index in the pavement M&R decision tree, rut depth 

continues to be a major concern for Ontario’s major freeways. Moreover, the PCI is calculated 

from the deterioration condition measured by the three components: IRI, rut depth and DMI. In 

this study, rut depth and IRI distresses are considered. Although, it is important to note that some 

agencies presently view rut depth and IRI as both distresses and overall condition indices. DMI is 

not considered in this study as it contains only 20% of weight in the PCI, whereas DMI consists 

of 15 distresses along with cracking. Analyses of all 15 types of cracking and distresses may 

complicate the detailed data analysis at this stage.  

This study involves a statistical analysis with three steps. Rut depth is used in the first step to 

illustrate the impact of section lengths in understanding the condition distribution. In the second 

step, the impact on the overall road segment conditions is investigated by comparing the PCI and 

IRI for these section lengths. In the third step, the impact on maintenance decisions from variations 

in performance evaluations due to changes in section lengths is analysed.  Figure 4.1 presents steps 

in assessing the variability of various performance indices.  

 

4.4.1 Investigation of Influence of Section Lengths on Rut Depth Evaluation  

Rut depth is used in the first step to illustrate the impact of section lengths in understanding the 

condition distribution across the network. It is evident that rutting is not a key maintenance driver 

in the Ontario network, but its measurements are “un-processed” compared to roughness and 

would therefore be more meaningful for the comparisons in this first step. However, it also is 

recognized that rutting significantly impacts overall road safety.  

 

At first, probability plots are compared to identify the distribution types of rut depth values. For 

example, a road segment from Highway 401 Eastbound (Chainage 507,000m to 518,500m) is 

selected to identify the best fit distribution. Figure 4.2 presents the probability plot of rut depth for 

this road section. After comparing the goodness of fit, log-normal and normal distribution are 

found to be the best fit for rut depth distribution. Normal distribution is found as the best fit for 

most of the road sections and thus considered for all road sections to calculate mean, standard 

deviation and percentile value.  
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Figure 4.1: Steps in Assessing the Variability in Performance Evaluation 
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Table 4.1: Selected Road Segments with Four Types of Sections 

High

way  

  

Direction 

Chainage of Road 

Segment  (m) Total 

Distance 

 (m) 

Section 

ID 

  

Linear  

Highway 

Referenc

ing 

System 

  

No. of Total Sections based on 

Section Length 

Begin End 50m 
500

m 

1,000

m  

10,000

m 

401 East 507000 518500 11500 111390 47700 230 23 11 1 

401 East 497500 506000 8500 111370 47689 170 17 8 1 

401 East 378000 384000 6000 110950 47558 121 12 6 0 

401 East 385000 392000 7000 110970 47560 140 14 7 0 

401 East 392000 403500 11500 110990 47570 229 23 10 1 

401 West 376500 383000 6500 110960 47558 130 13 6 0 

401 West 383500 391000 7500 110980 47560 151 16 8 1 

401 West 392000 402500 10500 111000 47570 210 21 10 1 

401 West 403000 412500 9500 111020 47580 190 19 9 1 

401 West 413000 421500 8500 111040 47594 170 17 8 1 

401 West 422000 424500 2500 111060 47600 50 5 2 1 

401 West 425000 429000 4000 111080 47603 80 8 4 1 

401 West 428500 434000 5500 111100 47607 110 11 5 1 

401 West 434500 441500 7000 111120 47612 140 14 7 1 

401 West 442000 443500 1500 111140 47625 30 3 1 0 

401 West 449500 458000 8500 111180 47631 170 17 3 0 

401 West 458500 462500 4000 111200 47643 80 8 3 0 

401 West 463000 468000 5000 111220 47652 100 10 5 1 

401 West 468500 472000 3500 111240 47660 70 7 1 0 

401 West 472500 474000 1500 111260 47665 30 3 2 0 

401 West 474500 476500 2000 111280 47667 40 4 2 0 

401 West 476500 482500 6000 111300 47672 120 12 5 0 

401 West 483000 486500 3500 111320 47675 70 7 3 0 

401 West 487000 495000 8000 111340 47680 160 16 4 1 

401 West 495500 497500 2000 111360 47688 40 4 2 0 

401 West 498000 507000 9000 111380 47689 180 18 9 1 

401 West 507500 519500 12000 111400 47700 240 24 11 1 

Total       172,500     3,451 346 152 15 
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The distribution of rut depth is used to compare the section lengths of the respective road segments. 

The frequency, distribution plot and distribution parameters are listed and compared for all 27 road 

segments.  Figure 4.3 illustrates the rut depth distributions for two road segments by using different 

section lengths. The histogram of the rut distribution is on the left-hand plots and the same 

distribution, in cumulative format, is depicted on the right. Table 4.2 shows the comparison of 

distribution parameters of rut depth of a road segment (Highway 401 Eastbound ID 111370) with 

different section lengths. Table 4.3 summarizes the distribution parameters of rut depth of all 27 

road segments for four types of road section lengths. This table illustrates the variability of field-

evaluated rut depth due to changes in section length. This can be misleading when road sections 

are presented through long treatment lengths and if the maintenance decision is made based on 

this. The effect of this variability is further discussed in section 4.5.  
 

Table 4. 2:  Comparison of Distribution Parameters of Rut Depth of a Road Segment 

(Highway 401 Eastbound ID 111370) with different Section Lengths 

Distribution Parameters Section Length 

50m 500m 1,000m 10,000m 

Sample Size 170 17 8 1 

Mean Rut Depth (mm) 3.08 3.09 2.92 1.05 

Standard Deviation (mm) 1.44 1.15 0.84 N/A2 

Variance 2.07 1.32 0.71 N/A 

C.O.V 0.48 0.37 0.29 N/A 

95th  Percentile 5.45 4.98 4.30 N/A 

75th  Percentile 4.05 3.86 3.49 N/A 

50th  Percentile 3.08 3.09 2.90 N/A 

 

4.4.2 Investigation of Overall Condition of Pavement   

In this study, the IRI, mean value of the old PCI (refer to equation 4.1 from the manual survey) 

and the new PCI value (refer to equation 4.2 from automated detection and calculation) are 

compared to better understand the difference in the overall condition. In this comparison, the given 

section lengths are extracted from the data of the selected road segments. Figure 4.4 illustrates the 

difference in mean IRI and the mean PCI value of all road segments for the four types of section 

lengths. In Figure 4.4, it is observed that the manual surveys estimate higher defects over the 

shorter sections (50m and 500m), thus giving a lower PCI compared to the longest section 

(10,000m). The effect of this is further discussed in section 4.5. 
 

 

                                                           

2 N/A= Not Applicable; distribution parameters are not available as only one sample is available for 10,000m section in this road 

segment.   
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(a)                                                                   (b)                                                                                                                      

 

                            (c)       (d)  

Figure 4.2:  Probability plot of rut depth of selected road section: (a) normal probability 

plot; (b) log-normal probability plot; (c) exponential probability plot; (d) weibull 

probability plot. 
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Table 4.3:  Summary of Distribution Parameters of Rut Depth of all Road Segments 

Highway 
Direc

tion 

Distribution Parameters of Rut Depth 

50m Section 500m Section 1,000m  Section 10,000m  Section 

Sample 

Size 

Mean 

Rut 

Depth 

(mm)  

St.  

Dev.3 

(mm) 

Sample 

Size 

Mean 

Rut 

Depth 

(mm)  

St.  

Dev.  

(mm) 

Sample 

Size 

Mean 

Rut 

Depth, 

(mm)  

St.  

Dev.  

(mm) 

Samp

le 

Size 

Mean 

Rut 

Depth 

(mm)  

St.  

Dev.  

(mm) 

401 East 230 1.714 0.429 23 1.717 0.353 11 1.717 0.319 1 1.901 N/A4 

401 East 170 3.083 1.439 17 3.089 1.148 8 2.92 0.841 1 1.046 N/A 

401 East 121 2.804 0.484 12 2.805 0.381 6 2.805 0.328 0 N/A N/A 

401 East 140 2.963 0.735 14 2.968 0.601 7 2.967 0.328 0 N/A N/A 

401 East 229 3.111 0.712 23 3.108 0.552 10 3.005 0.432 1 3.024 N/A 

401 West 130 3.92 1.302 13 3.915 1.101 6 3.895 1.062 0 N/A N/A 

401 West 151 2.906 0.828 16 2.968 0.519 8 2.871 0.197 1 2.794 N/A 

401 West 210 3.769 0.547 21 3.772 0.358 10 3.773 0.356 1 3.805 N/A 

401 West 190 4.057 0.992 19 4.046 0.762 9 4.08 0.756 1 4.009 N/A 

401 West 170 3.233 1.324 17 3.241 1.06 8 3.286 0.915 1 3.347 N/A 

401 West 50 4.285 2.315 5 4.285 2.127 2 3.811 2.609 1 3.872 N/A 

401 West 80 3.244 1.039 8 2.968 0.519 4 3.252 0.885 1 3.3 N/A 

401 West 110 2.677 0.535 11 2.679 0.473 5 2.792 0.279 1 2.722 N/A 

401 West 140 2.452 0.957 14 2.439 0.86 7 2.438 0.757 1 2.546 N/A 

401 West 30 1.783 0.341 3 1.782 0.273 1 1.934 N/A 0 N/A N/A 

401 West 170 0.481 0.989 17 0.582 1.093 3 2.456 0.393 0 N/A N/A 

401 West 80 1.155 1.304 8 1.215 1.336 3 2.553 0.552 0 N/A N/A 

401 West 100 4.585 1.379 10 4.597 1.323 5 4.596 1.285 1 4.403 N/A 

401 West 70 0.172 0.596 7 0.291 0.771 1 2.396 N/A 0 N/A N/A 

401 West 30 4.956 1.135 3 4.957 0.498 2 4.234 1.4 0 N/A N/A 

401 West 40 3.628 0.889 4 3.646 0.684 2 4.067 1.013 0 N/A N/A 

401 West 120 4.973 2.111 12 4.987 1.639 5 5.297 1.303 0 N/A N/A 

401 West 70 1.96 1.035 7 2.142 0.392 3 2.194 0.381 0 N/A N/A 

401 West 160 1.304 1.396 16 1.378 1.43 4 2.741 0.137 1 2.916 N/A 

401 West 40 4.262 0.883 4 4.267 0.561 2 4.089 0.291 0 N/A N/A 

401 West 180 3.6 1.004 18 3.594 0.637 9 3.597 0.575 1 3.403 N/A 

401 West 240 1.579 0.311 24 1.577 0.17 11 1.578 0.133 1 1.574 N/A 

Total  3,451   346   152   15   

 

 

                                                           

3 St. Dev.=Standard Deviation;  
4N/A= not available; as 10,000m section is not available in this road segment.  
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Figure 4.3: Comparison of rut distribution between road segments using different section 

lengths. 

The difference in the overall road segment conditions for each section length is further investigated 

by comparing the rut depth, IRI and PCI over a continuous road segment. Figure 4.5 illustrates the 

variability comparison of rut depth, IRI and PCI over the continuous 11,500m road segment (from 

507,000m to 518,500m) of Highway 401 Eastbound (Section ID 111390). This figure validates 

that short sections (50m section) show higher rut depth over a continuous road segment than all 

other sections. A similar pattern is found for IRI values within short sections.  

 

As discussed in the previous section, the Ontario highway system is moving to an automated 

survey regime from a manual rating system. In this study, the mean value of the previous PCI 

value (refer to equation 4.1 from the manual survey) and the new PCI value (refer to equation 4.2 

from automated detection and calculated) are compared. In this comparison, the given section 

lengths are extracted from the data of the selected road segments. Figure 4.6 illustrates the 
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difference in the old PCI value to the new automated system. Table 4.4 shows the variability in 

PCI value for both the manual and automated surveys due to the change in section length.  

 

 

Table 4.4:  Variability in PCI Value in both Manual and Automated Survey due to Change 

in Section Length 

 Old PCI Vs New PCI 

Change in PCI Value 50m Section 500m Section 1000m Section 10000m 

Section 

Average(New-Old)/Old 9.6% 10.7% -1.3% -1.1% 

Section with New PCI <Old 

PCI 

7% 0% 70% 67% 

Section with New PCI >Old 

PCI 

93% 100% 30% 33% 

 

4.4.3 Investigating the Influence of Section Length on Maintenance Decisions 

Since the rut distribution shows variation on the same road segment with changing section lengths, 

this will impact maintenance decisions. For this reason, a Monte Carlo simulation is carried out 

with different section lengths to estimate the probability of work being triggered. Three section 

lengths are investigated in this simulation: 50m, 500m, and 1000m. This simulation is carried out 

for 10,000 samples and considers rut depth as a random variable. The maintenance requirement is 

triggered when PCI deteriorates to a level below 80. Most of the road segments in this simulation 

are selected from Ontario’s major freeways, namely Highway 401 Eastbound and Westbound. The 

maintenance trigger value is selected as 80 because they are maintained regularly and their average 

PCI value is above 80. Based on the analyses of the road section distributions, the conditions can 

be modelled by using either a normal or a log-normal distribution. For simplicity, a normal 

distribution is used for this exercise. The distribution properties and results of the Monte Carlo 

simulation are depicted in Table 4.5.  
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(a) (b)      

     

 

         (c) 

Figure 4.4: Comparison of (a) mean IRI, (b) mean PCI (manual surveys), and (c) mean PCI 

(automated surveys) of all road segments for all section lengths. 
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(a)                                                                         (b) 

 

  
                                    

                                            (c )                                                                 (d) 

Figure 4.5: Comparison of (a) rut depth (b) IRI, (c) PCI (automated), and (d) PCI (manual) 

over a road segment of highway 401 E (from 507,000m to 518,500m). 
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(a)                                                                        (b) 

  

(c)                                                                               (d) 

Figure 4.6: Comparison of mean PCI for (a) 50 m Section, (b) 500 m Section, (c) 1,000 m 

Section, and (d) 10,000 m Section 
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Table 4.5: Summary of Distribution Properties and Results of the Monte Carlo Simulation 

Distribution Properties Used in the Monte Carlo Simulation 

Condition Item 

50m Section 500m Section 1000m Section 

Mean 
Standard  

Deviation 
Mean 

Standard  

Deviation 
Mean 

Standard  

Deviation 

Rut Scaled   94.29 1.43 94.28 0.68 94.27 0.319 

IRI Scaled  81.18 5.5 82.6 2.62 81.08 1.619 

DMI 98.35 2.25 92 3.65 98.34 1.260 

New PCI 85.92 1.09 85.64 1.98 85.844 0.339 

 

Results of the Monte Carlo Simulation 

Maintenance Decision 
50m 

Section 

500m 

Section 
1000m Section 

Probability of Maintenance Being Triggered 0.064 0.0021 0.00012 

No. of Sections Most Likely to be Triggered 640 21 1.2 

Equivalent Length Needing Maintenance 32km 10.5km 1.2km 

 

4.5 Discussion on Results  

In comparing the rut depth distributions among different section lengths, it is observed that the 

evaluations of road conditions vary depending on the section length. Rut distribution of the first 

road segment (Section ID 111380) in Figure 4.3 illustrates that 10,000m section lengths evaluate 

roads with low rut depth of approximately 4mm, whereas 1,000m section lengths evaluate roads 

with rut depth between 3mm and 5mm. In this road segment, the shorter section (50m section) 

length is able to identify higher rut depth levels as high as 7mm.  In the second segment (Section 

ID 111390), longer section lengths (10,000m) suggest an overall rut depth of approximately 

1.5mm and over. Similarly, the 1,000m section length shows rut depth between 1.5mm to 2.5mm. 

The short section (50m) suggests a higher rut depth of approximately 3.5mm.  

 

However, the distribution does not determine whether higher rut sections are equally distributed 

over the entire section length or if they are occurring in only part of the section. For this reason, a 

strip map plot per running meter or kilometer is required for pavement evaluation. By comparing 

the rut depth of these two road segments shows an entirely different picture of these section 

lengths. The first road segment would not be of concern if data from the longer section (10,000m) 

was considered with a rut depth of 4mm. However, the distribution of shorter sections focuses on 

some isolated sections that would be above or near 7mm deep. Likewise, the second segment 

would not be of concern if the average rut depth of the longer section (10,000m) is considered. 

The point observed here can be further emphasized by considering the reported statistics as 
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presented in Table 4.2. This table shows how misleading the statistical information can be when 

road sections are presented through long treatment lengths. It is found that the midpoint (both the 

average and 50th percentile) varies significantly among different section lengths. The 75th 

percentile seems to be a more stable statistical parameter when compared to the midpoint. The 

standard deviation also differs significantly for this given section length. Similar scenarios are 

observed for the other 26 segments.   

 

To investigate the impact of section lengths on the overall pavement condition, PCI and IRI are 

compared. Since PCI is a deduced value, higher values indicate better conditions. For IRI, lower 

values indicate better conditions. From Figure 4.4, it is observed that longer sections (10,000m) 

present lower IRI values for most of the road segments. It is found that IRI of the 50m section is 

not very different from the 500m and 1,000m sections. This might occur due to the precise reading 

from the automated device or profile used for roughness measurement over the entire section 

length. It is also observed that the manual surveys estimate a higher extent of defects over the 

shorter sections (50m and 500m). Thus, this could result in lower PCI as compared to those 

obtained for longer sections (10,000m). The PCI value from the automated survey suggests that 

with shorter section lengths, total distresses measured by the automated survey are less compared 

to longer sections. The PCI from the automated survey is noticeably lower on the longer sections 

with more defects compared to the shorter section lengths. This might occur since the new PCI is 

calculated from the distresses identified by automated detection, which show slightly more faults.    

 

As one would expect from the variation of rut distribution for different section lengths, the length 

of a section might also impact how much work would be triggered.  Assuming a common 

intervention level for 50m, 500m, and 1000m sections, maintenance requirements are compared. 

From the Monte Carlo simulation, it is found that 50m sections show a higher probability of 

maintenance requirements (probability 0.064) than (probability 0.0021) in 500m sections. An 

equivalent of 640 sections require maintenance, whereas only 21 sections require maintenance if 

the section length is 500m. 1000m sections show the lowest probability of maintenance 

requirements (probability 0.00012). It reveals that longer sections overlook some parts of the roads 

that require maintenance and can potentially result in accelerated deterioration. The Monte Carlo 

simulation effectively demonstrates the impact of different treatment lengths in the decision-

making process. Although the selection of an appropriate section length is mainly related to 

practical aspects, this analysis shows that effective maintenance management requires that these 

sections not be too long.   

4.6 Chapter Summary   

This chapter investigates the impact of road section lengths on overall pavement performance 

evaluation. The impact on maintenance decisions due to section lengths selected for performance 

evaluation is also investigated.  

 

Experimental investigations include analyses of rut depth distribution and comparison of 

performance evaluated by PCI and IRI for different section lengths. Since rut distribution and PCI 
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are varied due to changes in length of road sections, maintenance decisions are also analysed by 

using the Monte Carlo simulation.  

 

Based on the comparison of rut depth distribution among different section lengths, it is found that 

the evaluation of road conditions varies depending on the section length. It is noted that most of 

the longer sections (10,000m) evaluate the road with low rut depth and the shorter sections detect 

higher rut depth. The short sections also indicate that the rut depth is relatively evenly distributed 

comparing to the longer sections. It is also found that the midpoint (both the average and 50th 

percentile) varies significantly among different section lengths. The standard deviation also differs 

significantly depending on the section length. Longer sections might overlook some parts of 

severely damaged roads in need of maintenance due to the average value of rut depth over a long 

section.   

 

To avoid acceleration of further deterioration of these parts, it is efficient to compare the shorter 

sections to the longer sections. There are a number of long sections in Ontario highway systems 

that skew the outcome of the performance measures and may cause difficulties in both treatment 

selection and pavement condition reporting. Thus, performance reported from sections lengths that 

are too long are misleading when compared to the true performance of the network. 

 

Comparison of PCI shows that the old PCI estimate has a higher extent of defects over the shorter 

sections (50m and 500m) and results in a lower PCI value. On the other hand, over the longer 

sections, lower PCI values are obtained with automated surveys values when compared to the 

shorter section lengths.  

 

Based on the Monte Carlo simulation, it is found that 50m sections show a higher probability for 

maintenance requirements than 500m sections. As a result, maintenance decisions for shorter 

treatment lengths trigger more work. When short lengths are used it may also become difficult to 

effectively manage the network level. 

 

This chapter emphasizes the value of understanding the full distribution of defects for road lengths, 

rather than considering a single statistical parameter. However, communicating full distribution 

outputs can be complex and difficult to understand. For this reason, it is important to use consistent 

road section lengths when reporting pavement conditions and condition trends over time. 

 

In addition, section lengths also significantly influence the processes to analyse the required works 

programme. One of two recommended analytical processes outlined below may be used:  

1. Undertake dynamic segmentation prior to the PMS analyses and verify the applicability of 

these section lengths in the field. These section lengths need to be reviewed on an annual 

basis as road condition may change significantly from one year to another; or, 

2. Analyse fixed section length in the PMS system. For this, a section length of 500m is 

recommended for Ontario highways. Following the analysis, the recommended works 

programme is determined by rationalising the recommended treatment in order to yield 
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practical treatment lengths and/or to combine sections into one length of similar timing and 

types or treatments are recommended for adjacent sections.  

 

 

Based on this analysis, the section length for specific KPIs can be selected. The next chapter 

focuses on analysis of KPI models through regression. The individual KPI values are compared 

against independent variables that impact pavement performance.  
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CHAPTER 5 

ANALYSIS OF EXISTING ESTIMATES OF THE 

PERFORMANCE INDEX 

 
Generally, the prediction models of KPIs are estimated by using the OLS approach. However, 

OLS may be inefficient if unobserved factors influencing individual KPIs are correlated with 

each other. This chapter proposes the use of an approach called the SUR method instead.  

 

The work of this chapter was presented at the Transportation Research Board (TRB) meeting in 

January 2017 (Jannat 2017). Part of this chapter was also presented at the Transportation 

Association of Canada (TAC) Conference (Jannat 2015). 

 

5.1 Introduction  

The results of any PMS analysis and maintenance recommendations are dependent on selected 

KPIs. That being said, KPI models are to be developed by analyzing the significance of specific 

variables that affect pavement performance. Developing a comprehensive and accurate KPI 

model to predict overall pavement conditions from specific distresses and cracking continues to 

be a challenge in pavement engineering (Haas 1994). Generally, KPI models are regression 

models of various pavement performance -related variables. The OLS-based regression is the 

common practice in this case.  

 

For Ontario highway systems, several KPIs have been used over the past 30 years. In Ontario, 

PCI and DMI models are developed by using the OLS approach based on the rating of a selected 

15 categories of distresses classified by the MTO (MTO 2007).  

 

In Ontario, PCI, DMI, RCI and IRI are used as dependent variables in KPI models to predict 

pavement performance. These models are estimated by using the OLS approach from the 

selected distress categories classified by the MTO. However, pavement deterioration may be 

affected by many factors. These unobserved factors influencing pavement performance may be 

correlated or not. OLS may result in biased estimates if the unobserved factors influencing 

different KPIs are correlated. If they are highly correlated, there is a chance that the OLS may 

not be able to retrieve efficient parameter estimates for the KPI regression models.  As a result, 

an alternative regression estimation approach is required because it can consider any correlation 

among unobserved factors within the KPI models, while estimating the KPI regression 

coefficients (Zellner 2006, and Greene 2003). In this regard, the SUR has the potential and may 

prove to be a better modeling approach for KPI regressions.  

5.2 Pavement Performance Data  

The 15 distress categories classified by the MTO for flexible pavement are listed in Table 5.1. 

These distresses are rated in a subjective manner. For each distress, severity and extent are rated 

by five categories shown in Table 5.2 (Chong 1989). The average subjective rating is the only 

data available in the MTO PMS-2 database. The multiple raters' ratings are not available to 



 

 63 

analyze the subjective variability. The road sections also contain all information of the 

respective M&R undertaken during the service life (Kazmierowski 2001). 

 

Table 5.1:  Specific Distress Categories of Ontario’s Flexible Pavement (for Manual 

Survey)  

Distress of Flexible Pavement 

1.  Ravelling and Coarse Aggregate Loss 

2.  Flushing 

3.  Rippling and Shoving 

4.  Wheel Track Rutting 

5.  Distortion 

6.  Longitudinal Wheel Track: Single and Multiple 

7.  Longitudinal Wheel Track: Alligator 

8.  Centreline: Single and Multiple Cracking 

9.  Centreline: Alligator Cracking 

10. Pavement Edge: Single and Multiple Cracking 

11. Pavement Edge: Alligator Cracking 

12. Transverse: Half, Full and Multiple Cracking 

13. Transverse: Alligator Cracking 

14. Longitudinal Meandering and Mid-lane Cracking 

15.  Random Cracking 

 

From the MTO-PMS-2 database, a total of 61 road segments from Ontario's major highway 

networks are selected. The database includes all historical performance information, including 

condition survey information. From these road segments, 158 pavement treatment cycles are 

selected. These performance cycle lengths vary from two to 15 years. 
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Table 5.2:  Condition Rating of Extent and Severity of Distress 

Density/Extent Condition Rating 

Few: less than 10% of pavement surface affected 1 

Intermittent: 10-20% of  pavement surface affected 2 

Frequent: 20-50% of  pavement surface affected 3 

Extensive: 50-80% of  pavement surface affected 4 

Throughout: 80-100% of  pavement surface affected 5 

Severity 

Very Slight 1 

Slight 2 

Moderate 3 

Severe 4 

Very Severe 5 

 

5.3 Joint Estimate Method of KPI Models  

5.3.1 OLS Approach  

As discussed in the previous section, PCI is used for M&R decision trees as an overall pavement 

condition index in many PMS. The PCI is composed of two sub-indices, respectively 

representing IRI and DMI. In Ontario, the formula used to calculate PCI is defined as follows 

(MTO 2007):   

 

For Asphalt concrete (AC) Pavement, 

 

PCI = Max(0,Min(100,13.75 + 9 x DMI – 7.5 x IRI))     (5.1) 

 

For Composite Pavement, 

 

PCI = Max(0,Min(100,13.75 + 8.5 x DMI – 11 x IRI))     (5.2)                                                  

 

The formula used to calculate DMI is as shown in the following: 

 

For AC Pavement,    

208/))(208(*10  
N

k

kkk WDSDMI                (5.3)

     

For Composite Pavement,   

196/))(196(*10  
N

k

kkk WDSDMI            (5.4) 

 



 

 65 

Where,  

N is the Number of Distresses Related to a Given Pavement Type 

Sk is the Severity Rate of Distress k 

Dk is the Density Rate of Distress k 

Wk is the Weighting Factor of Distress k  

 

Since RCI is also a function of IRI, the PCI formula is also being expressed as: 

 

For AC Pavement,  

  

))5.7975.13,100(,0( 02.3/)5.8( RCIeDMIMinMaxPCI                           (5.5)       

For Composite Pavement,  

 

))115.85.20,100(,0( 44.2/)49.8( RCIeDMIMinMaxPCI                                      (5.6)          

 

The formula used to calculate RCI is shown below:    

 

For AC Pavement,  

 

𝑅𝐶𝐼 = 𝑀𝑎𝑥(0,𝑀𝑖𝑛(10, 8.5 − 3.02 × 𝑙𝑛(𝐼𝑅𝐼)))                                                                 (5.7) 

 

For Composite Pavement,  

 

RCI = Max (0, Min (10,8.49 – 2.44x1n(IRI)))                (5.8) 

 

 

The OLS approach is used for estimating parameters of these KPI models. For OLS, standard 

multivariate regression requires that each of the ‘p’ dependent variables has exactly the same 

design matrix as per below: (Beasley 2008; Montgomery 2009): 

𝑦𝑁×𝑝 = 𝛽𝑘×𝑝 𝑥𝑁×𝑘 + 𝜀𝑁×𝑝                                                 (5.9)              

Where,  

y is a matrix of p dependent variables, 

𝛽 is a matrix of coefficients,    

x is a k-dimensional design matrix, and   

ε is an error matrix, which is assumed to be distributed as N (Nxp) (0,Σ⊗IN)  

 

Multivariate regression theory using OLS assumes that all of the coefficients in the model are 

unknown and to be estimated from the data as (Beasley 2008; Montgomery 2009):  

 

𝛽̂ = (𝑥′𝑥)−1  (𝑥′𝑦)                                               (5.10)                                                         
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Where,  

 𝑥′ is transpose matrix of x 

(𝑥′𝑥)−1  is inverse matrix of (𝑥′𝑥) 

 

 5.3.2 Application of Generalized Least Squares (GLS) Approach through ‘SUR’ Model 

This ‘SUR’ approach is used with the application of the GLS approach. This method is a 

generalization of multivariate regression which applies a vectorized parameter model. The ‘y’ 

matrix is vectorized by vertical concatenation, yv. The design matrix, D, is formed as a block 

diagonal with the jth design matrix, xj, on the jth diagonal block of the matrix. The model is 

expressed as (Beasley 2008): 

𝐸[𝑦 (𝑁𝑋𝑝)] =

{𝑥1 (𝑁𝑋𝑚1) 𝛽1 (𝑚1𝑋1) , 𝑥2 (𝑁𝑋𝑚2) 𝛽1 (𝑚2𝑋1) , 𝑥𝑗 (𝑁𝑋𝑚𝑗) 𝛽1 (𝑚𝑗𝑋1)  , 𝑥𝑝 (𝑁𝑋𝑚𝑝) 𝛽1 (𝑚𝑝𝑋1) }         (5.11) 

Where,   

mj is the number of parameters estimated (columns) by the jth design matrix, xj..  

To illustrate in matrix notation, the SUR model is expressed as (22): 

 
                  𝑬(𝒚𝒗)    D    B 

𝑬(𝒚𝒗) =  

[
 
 
 
 
 
𝒚̂𝟏

𝒚̂𝟐…
𝒚̂𝒋
…
𝒚̂𝒑]

 
 
 
 
 (𝑁𝑋1)
(𝑁𝑋1)
……

  

 
(𝑁𝑋1)
(𝑁𝑋1)

  = 

[
 
 
 
 
 𝒙𝟏 𝟎 𝟎
(𝑁𝑋 𝑚1) 𝒙𝟐 𝟎

(𝑁𝑋 𝑚2)
(𝑠𝑦𝑚)

𝟎
𝒙𝒋

(𝑁𝑋 𝑚𝑗)

𝟎
𝟎
𝟎
𝟎
𝒙𝒑

(𝑁𝑋 𝑚𝑗)]
 
 
 
 
 

    

[
 
 
 
 
 
𝜷𝟏  (𝑚1𝑋1)

𝜷 𝟐  (𝑚2𝑋1)
 

…
𝜷 𝒋  (𝑚𝑗𝑋1)

…
𝜷 𝒑  (𝑚𝑝𝑋1) ]

 
 
 
 
 

         

                  (𝑁𝑝 𝑋1)                                         (𝑁𝑝 𝑋𝑀)                                           (𝑀 𝑋1)            (5.12)   

 

Where,  

M is the total number of parameters estimated over the p models, 𝑀 = ∑ 𝑚𝑗
𝑝
𝑗=1  

 

 

To solve for the parameter estimates: 

  

𝐵̂ = [𝐷′         𝑄−1           𝐷 ]−1                 [𝐷′          𝑄−1        𝑦𝑣 ] 
    [M X Np]   [Np X Np]   [Np X M ]   [M X Np]    [Np X Np]     [Np x1]                                  (5.13)                                     

Where,        

Q is a weight matrix based on the residual covariance matrix of the y variables and is 

formed as: 

 𝑄 = ∑⊗ 𝐼𝑁̂                                                                                                             
[Np x Np]    [p x p] 

 

With this approach, parameters of performance variables are estimated for the selected KPI 

model. In this study, the severity and extent of all distresses (listed in Table 5.1) are considered 

as independent variables in estimating KPI models. For some road sections, the rating of 

distresses is found as ‘0’, these values are scaled up to ‘1’ and all the ratings are scaled up 
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accordingly. In addition to these specific 15 distresses, the length of pavement performance 

cycles (life span between two subsequent treatment), AADT, percentage of trucks, resilient 

modulus of subgrade soil and rut depth in mm (measured by an automated device) are also 

considered as independent variables.  

 

Pavement performance cycle lengths significantly affects performance and deterioration distress 

patterns. Pavement performance deteriorates over time and the rate of deterioration increases 

over time. Therefore, pavement under the same traffic loads and other conditions with higher 

cycle lengths will not perform like shorter cycle lengths. Moreover, the propagation of cracking 

will have a different pattern and acceleration rate. For this reason, performance cycle length is 

considered to be a variable in the performance models. Likewise, traffic loads such as AADT 

and the percentage of trucks are important variables that contribute to pavement damage, having 

a substantial effect on major distresses on Ontario highways (Jannat 2015). Similarly, strength 

(resilient modulus) of subgrade soil has a significant effect on pavement distresses, especially 

for causing rut depth (Jannat 2015). Moreover, absolute rut depth in mm, which is recently 

measured by an automated device, is more precise than the manual rating of wheel track rutting 

(distress 4 in Table 5.1). For this reason, absolute rut depth in mm is considered as a variable 

for PCI and IRI models. Severity and extent of shoulder cracking are also considered as variables 

in these models.   

 

Finally, the pavement performance cycle, AADT, percentage of trucks, strength of subgrade soil 

and the severity and extent of shoulder cracking, in addition to the 15 distresses categorized by 

the MTO, are considered as independent variables for estimating the models of DMI, RCI, PCI 

and IRI. Rut depth is taken as an additional independent variable for PCI and IRI models only.  

 

After selecting the independent variables of the models, a logarithmic transformation is applied 

in both dependent and independent variables. Logarithmic transformation is considered so that 

‘elasticity' or ‘marginal effect or sensitivity’ can be estimated directly from the models. 

Elasticity is defined as the unit change in the y variable for a unit change in the x variable. It can 

also be defined as how the dependent variable changes when the independent variable changes 

by an additional unit, holding all other variables in the equation constant (i.e. partial derivative). 

The following KPI models (taking log-log in both sides) are considered for analysis: 

 

𝐷𝑀𝐼 =  𝑒𝛽0  𝑒𝛽1 ln (𝑥1)  𝑒𝛽2𝑙𝑛 (𝑥2) ……………………𝑒𝛽36 𝑙𝑛(𝑥36)                                      (5.14) 

Or, 𝐷𝑀𝐼 =  𝑒𝛽0  𝑥1
𝛽1   𝑥2

𝛽2   ……………………𝑥36
𝛽36  

RCI=    𝑒𝛽0 𝑥1
𝛽1   𝑥2

𝛽2   ……………………𝑥36
𝛽36                                                                  (5.15) 

𝑃𝐶𝐼 =       𝑒𝛽0  𝑥1
𝛽1   𝑥2

𝛽2   ……………………𝑥37
𝛽37                                                               (5.16) 

𝐼𝑅𝐼 = 𝑒𝛽0  𝑥1
𝛽1   𝑥2

𝛽2   ……………………𝑥37
𝛽37                                                                      (5.17)  

 

Where,  

           β0, β1, …….. β37  are Regression Coefficients 

           x        is the Independent Variable   
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x1  is Severity of Ravelling and Coarse Aggregate Loss 

x2 is Extent of Ravelling and Coarse Aggregate Loss 

x3 is Severity of Flushing 

x4 is Extent of Flushing 

x5 is Severity of Rippling and Shoving 

x6 is Extent of Rippling and Shoving 

x7 is Severity of Wheel Track Rutting 

x8 is Extent of Wheel Track Rutting 

x9 is Severity of Distortion 

x10 is Extent of Distortion 

x11 is Severity of Longitudinal Wheel Track Cracking (Single and Multiple) 

x12 is Extent of Longitudinal Wheel Track Cracking (Single and Multiple)  

x13 is Severity of Longitudinal Wheel Track Alligator Cracking  

x14 is Extent of Longitudinal Wheel Track Alligator Cracking  

x15 is Severity of Centreline Cracking (Single and Multiple) 

x16 is Extent of Centreline Cracking (Single and Multiple)  

x17 is Severity of Centreline Alligator Cracking  

x18 is Extent of Centreline Alligator Cracking 

x19 is Severity of Pavement Edge Cracking (Single and Multiple) 

x20 is Extent of Pavement Edge Cracking (Single and Multiple) 

x21 is Severity of Pavement Edge Alligator Cracking 

x22 is Extent of Pavement Edge Alligator Cracking 

x23 is Severity of Transverse Cracking (Half, Full and Multiple)  

x24 is Extent of Transverse Cracking (Half, Full and Multiple)  

x25 is Severity of Transverse Alligator Cracking 

x26 is Extent of Transverse Alligator Cracking 

x27 is Severity of Longitudinal Meandering and Mid-lane Cracking 

x28 is Extent of Longitudinal Meandering and Mid-lane Cracking 

x29 is Severity of Random Cracking 

x30 is Extent of Random Cracking 

x31 is Severity of Shoulder Cracking 

x32 is Extent of  Shoulder Cracking 

x33 is Pavement Cycle Length Between Treatments 

x34 is AADT 

x35 is Percentage of Trucks 

x36 is Strength of Subgrade Soil in Mpa 

x37 is Rut Depth in mm 
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5.5 Results of Joint Estimate of KPI Models  

In this study, the SUR approach is used to estimate all parameters of KPI models simultaneously, 

whilst the correlations among all variables are considered. Four equations (equation 5.14, 5.15, 

5.16 and 5.17) are developed to simultaneously predict the pavement condition based on the 

extent and severity of distresses and other variables. Statistical analyses are carried out by using 

the software “SAS” for the SUR method.  

 

The fitting quality of the single equation is evaluated by the coefficients of determination of 

estimation (R2), standard errors of the estimate (SEE) and by the standard errors (SE) of the 

estimated parameters. The significance of each multiple equation are verified by the F value. 

Fobs of the model is compared to F critical. The model is considered as significant if Fobs is greater 

than F critical.  F critical for α =0.025 (for 97.5% confidence interval), p-1=35 (for DMI and RCI) or 36 (for 

PCI and IRI); n-p=122 (for DMI and RCI) ,123 (for PCI AND IRI) =1.48 .  

 

Analysis of Variance (ANOVA) calculations of jointly estimated KPI models are shown in 

Table 5.3.  From Table 5.3, Fobs value of DMI, RCI, PCI and IRI models are found as 20.87, 

3.32, 18.15 and 2.56, respectively. Therefore, all these models are found to be significant since 

Fobs  > F critical=1.48.  

Table 5.3: ANOVA of Joint Estimate of KPI Models 

Source  DF5 
Sum 

Square 

Mean 

Square 
Fobs 

DMI Model 

Regression 34 1.480 0.045 20.87 

Residual 123 0.257 0.002  

Total 157 1.737   

RCI Model 

Regression 34 1.085 0.032 3.32 

Residual 123 1.183 0.010  

Total 157 2.269   

PCI Model 

Regression 35 2.273 0.065 18.15 

Residual 122 0.436 0.004  

Total 157 2.709   

IRI Model  

Regression 35 70.513 2.015 2.56 

Residual 122 95.977 0.787  

Total 157 166.490     

                                                           

5 Degrees of Freedom. 
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Table 5.4: Joint Estimate Parameters of Four Models by the SUR Method 

  DMI Model RCI Model PCI Model IRI Model 

Parameter 
Parameter 

Estimate 

t 

statistics 

Parameter 

Estimate 
t statistics 

Parameter 

Estimate 
t statistics 

Parameter 

Estimate 
t statistics 

β0 2.470 21.650 1.646 6.720 4.536 29.840 1.471 0.660 

β1 -0.012 -0.860 0.031 1.020 -0.004 -0.240 -0.281 -1.010 

β2 -0.018 -1.750 -0.026 -1.160 -0.026 -1.890 -0.019 -0.100 

β3 -0.013 -0.380 -0.023 -0.320 -0.009 -0.190 -2.260 -3.470 

β4 -0.018 -0.440 0.046 0.510 -0.011 -0.220 2.421 2.940 

β5 -0.016 -0.420 0.018 0.230 -0.020 -0.400 1.788 2.490 

β6 0.025 0.830 0.016 0.250 0.041 0.990 -2.399 -4.050 

β7 -0.004 -0.310 0.025 0.920 0.004 0.250 -0.104 -0.430 

β8 -0.044 -4.670 0.001 0.050 -0.042 -3.420 0.317 1.730 

β9 0.008 0.580 -0.007 -0.220 0.005 0.370 -0.100 -0.370 

β10 -0.052 -4.380 -0.055 -2.140 -0.070 -4.540 0.288 1.240 

β11 0.015 0.850 -0.042 -1.130 -0.006 -0.250 0.150 0.440 

β12 -0.034 -2.100 0.002 0.070 -0.027 -1.250 -0.093 -0.290 

β13 -0.041 -1.950 -0.031 -0.680 -0.051 -1.780 -0.467 -1.130 

β14 0.003 0.100 0.055 0.810 0.024 0.500 0.792 1.280 

β15 0.011 0.660 0.051 1.410 0.034 1.500 0.102 0.310 

β16 -0.012 -0.970 -0.006 -0.200 -0.018 -0.990 0.098 0.390 

β17 0.059 1.200 -0.017 -0.160 0.063 0.990 -0.646 -0.680 

β18 -0.105 -1.810 -0.017 -0.140 -0.137 -1.800 0.728 0.650 

β19 -0.022 -1.160 -0.067 -1.680 -0.049 -1.950 0.609 1.670 

β20 0.013 0.700 0.056 1.380 0.036 1.420 -0.101 -0.270 

β21 0.015 0.270 0.064 0.540 0.053 0.690 0.109 0.100 

β22 -0.062 -0.670 -0.113 -0.580 -0.117 -0.920 -1.097 -0.620 

β23 -0.005 -0.280 -0.042 -1.130 -0.019 -0.870 -0.180 -0.530 

β24 -0.013 -1.150 -0.033 -1.340 -0.023 -1.470 0.256 1.130 

β25 0.027 0.830 -0.056 -0.820 -0.007 -0.200 0.610 0.970 

β26 -0.074 -1.710 -0.001 -0.010 -0.065 -1.130 -0.748 -0.900 

β27 -0.014 -0.720 -0.032 -0.780 -0.018 -0.720 -0.790 -2.120 

β28 -0.009 -0.480 0.039 0.970 0.003 0.140 0.649 1.790 

β29 -0.010 -0.480 0.038 0.860 -0.012 -0.450 -0.003 -0.010 

β30 -0.014 -0.760 -0.052 -1.280 -0.022 -0.870 -0.209 -0.570 

β33 -0.003 -0.420 -0.012 -0.740 -0.007 -0.730 -0.115 -0.770 

β34 -0.005 -0.590 0.029 1.700 0.005 0.580 -0.117 -0.750 

β35 -0.004 -0.610 0.033 2.090 0.009 1.010 0.048 0.330 

β36 -0.027 -1.290 0.033 0.720 -0.006 -0.280 -0.106 -0.250 

β37         0.000 -0.440 0.060 2.52  
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Table 5.5: ANOVA of KPI Models Estimated by the OLS Approach 

Source  DF 
Sum 

Square 

Mean 

Square 
Fobs 

DMI Model    

Regression 34 1.513 0.045 20.72 

Residual 123 0.264 0.002  
Total 157 1.767 0.011  

RCI Model    

Regression 34 1.078 0.032 3.24 

Residual 123 1.205 0.010  

Total 157 2.273 0.015  

PCI Model    

Regression 35 2.250 0.064 17.78 

Residual 122 0.441 0.004  

Total 157 2.720 0.017  

IRI Model     

Regression 35 7.657 0.219 3.94 

Residual 122 6.778 0.056  

Total 157 12.070 0.077   

 

The parameters of severity of shoulder cracking (x31) and extent of shoulder cracking (x32) could 

not be estimated as most of the ratings of severity and extent are found as “0”. Therefore, these 

two variables are dropped from the estimation of all models. Jointly-estimated parameters by 

the SUR method of all models are listed in Table 5.4.  

 

After estimating the models by OLS and SUR approaches, all independent variables that have a 

parameter with a marginal level of significance are considered as significant if: 

 

│t obs │> t critical for significance level, α=0.025 (for 97.5% confidence interval), n-p=122 (for DMI and RCI) or 123 (for PCI and 

IRI)=1.97   

 

It is noted that in the DMI model, the extent of wheel track rutting, distortion and longitudinal 

wheel track cracking (single and multiple) are significant variables. For RCI, percentage of 

trucks and the extent of distortion are significant variables. For PCI, the extent of wheel track 

rutting and distortion are significant variables. For IRI, severity and extent of flushing, rut depth 

in mm, severity and extent of rippling and shoving, the severity of longitudinal meandering and 

mid-lane cracking are significant variables. 

 

It is found that the severity of centreline alligator cracking and transverse alligator cracking have 

high elasticity on DMI. The extent of pavement edge alligator cracking, the extent of pavement 

edge (single and multiple) cracking, the extent of longitudinal wheel track alligator cracking, 
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and the severity of centreline (single and multiple) cracking have high elasticity on RCI. The 

severity of centreline alligator cracking, the severity of pavement edge alligator cracking, the 

extent of rippling and shoving and the extent of pavement edge (single and multiple) cracking 

have high elasticity on PCI. The extent of flushing, the severity of rippling and shoving and the 

extent of longitudinal wheel track alligator cracking have high elasticity on IRI. 

 

Considering the same variables, the models are estimated separately by the OLS approach. 

ANOVA of KPI Models estimated by the OLS approach is shown in Table 5.5. From Table 5.5, 

it is found that all the models are statistically significant. From Table 5.3 and Table 5.4, it is 

found that the jointly-estimated DMI model shows lower sum of squares unexplained by 

regression or sum of squares of error (SSE) along with lower sum of squares explained by 

regression (SSR) than that in the DMI model by the OLS approach. The jointly-estimated IRI 

model shows higher SSR and also higher SSE than that in the OLS approach. The jointly-

estimated RCI and PCI models show higher SSR and lower SSE than that in the RCI and PCI 

models by the OLS approach. Higher SSR and lower SSE show improvement in the model’s 

goodness of fit by joint estimation. However, unobserved random factors explaining the 

dependent variables may be correlated. If they are correlated, OLS regression will give biased 

results. If they are not, OLS and SUR would give same parameter estimates.   

 

The parameters of all models estimated by the OLS approach are listed in Table 5.6. In the DMI 

model, extent of wheel track rutting, the extent of distortion, and extent of longitudinal wheel 

track cracking (single and multiple) are found as significant variables by the OLS approach, 

which are also found as significant variables by the SUR approach. 

 

Similarly, the percentage of trucks and the extent of distortion are found as significant variables 

in the RCI model by both approaches. In using the OLS approach in the PCI model, the severity 

of pavement edge (single and multiple) cracking is found to be significant, whereas the extent 

of wheel track rutting and the extent of distortion is significant in the SUR approach. For the 

IRI model, the severity of centreline (single and multiple) cracking is the significant variable. 

However, in the jointly-estimated IRI model, the severity and extent of flushing, rut depth, the 

severity and extent of rippling and shoving and the severity of longitudinal meandering and mid-

lane cracking are the significant variables. Joint estimation in the SUR approach takes care of 

the influences of correlated unobserved explanatory variables. Such effects are not separated in 

the OLS method and may be compounded with other estimates. For this reason, the significance 

of explanatory variables can be different in the two approaches. 
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Table 5.6: Parameter Estimate of Four Models Separately by OLS Approach 

Parameters 

DMI Model RCI Model PCI Model IRI Model 

Parameter 

Estimate 
t obs 

Parameter 

Estimate 
t obs 

Parameter 

Estimate 
t obs 

Parameter 

Estimate 
t obs 

β0 2.480 21.420 1.644 6.648 4.523 29.780 0.914 1.536 

β1 -0.013 -0.894 0.032 1.031 -0.004 -0.228 -0.143 -1.949 

β2 -0.019 -1.806 -0.025 -1.133 -0.026 -1.899 0.054 1.013 

β3 -0.012 -0.355 -0.023 -0.316 -0.008 -0.189 -0.021 -0.119 

β4 -0.020 -0.463 0.047 0.517 -0.013 -0.235 -0.012 -0.055 

β5 -0.018 -0.474 0.017 0.212 -0.014 -0.293 0.217 1.138 

β6 0.027 0.877 0.017 0.257 0.036 0.906 -0.299 -1.902 

β7 -0.004 -0.298 0.025 0.906 0.004 0.239 -0.045 -0.696 

β8 -0.045 -4.703 0.001 0.064 -0.042 -3.413 0.020 0.414 

β9 0.008 0.540 -0.006 -0.185 0.008 0.403 0.078 1.054 

β10 -0.052 -4.338 -0.055 -2.151 -0.072 -4.572 0.088 1.410 

β11 0.014 0.808 -0.041 -1.085 -0.005 -0.229 0.111 1.232 

β12 -0.034 -2.051 0.001 0.038 -0.027 -1.255 0.011 0.128 

β13 -0.041 -1.904 -0.033 -0.721 -0.050 -1.786 0.059 0.531 

β14 0.002 0.066 0.058 0.853 0.021 0.496 -0.161 -0.977 

β15 0.013 0.782 0.050 1.366 0.034 1.522 -0.189 -2.140 

β16 -0.014 -1.111 -0.005 -0.190 -0.017 -0.998 0.023 0.343 

β17 0.058 1.173 -0.016 -0.152 0.061 0.952 -0.055 -0.219 

β18 -0.106 -1.801 -0.018 -0.143 -0.133 -1.749 0.097 0.326 

β19 -0.023 -1.212 -0.066 -1.643 -0.048 -1.923 0.163 1.685 

β20 0.014 0.758 0.054 1.328 0.036 1.444 -0.137 -1.405 

β21 0.016 0.277 0.063 0.524 0.050 0.683 -0.184 -0.641 

β22 -0.062 -0.673 -0.113 -0.568 -0.113 -0.932 0.367 0.774 

β23 -0.005 -0.298 -0.042 -1.111 -0.021 -0.908 0.109 1.205 

β24 -0.012 -0.987 -0.033 -1.330 -0.022 -1.421 0.098 1.637 

β25 0.025 0.779 -0.054 -0.772 -0.009 -0.210 0.062 0.370 

β26 -0.072 -1.660 -0.004 -0.038 -0.064 -1.129 0.088 0.398 

β27 -0.014 -0.703 -0.034 -0.821 -0.019 -0.749 0.006 0.062 

β28 -0.009 -0.472 0.041 1.015 0.003 0.140 -0.013 -0.136 

β29 -0.011 -0.528 0.036 0.803 -0.012 -0.433 -0.037 -0.345 

β30 -0.013 -0.700 -0.050 -1.233 -0.021 -0.846 0.048 0.498 

β33 -0.003 -0.444 -0.012 -0.742 -0.007 -0.694 0.010 0.252 

β34 -0.005 -0.616 0.029 1.696 0.007 0.616 -0.034 -0.814 

β35 -0.005 -0.655 0.033 2.118 0.010 1.027 -0.050 -1.296 

β36 -0.028 -1.325 0.032 0.700 -0.009 -0.312 -0.107 -0.971 

β37 
    

-0.001 -0.511 -0.002 -0.288 
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Table 5.7: Revised KPI Models with Significant Variables 

  SUR Method  OLS Approach 

Variable 
Parameter 

Estimate 
t statistics 

Parameter 

Estimate 
t statistics 

 
DMI Model 

β0 2.234 169.540 2.258 163.640 

β8 -0.066 -8.720 -0.057 -6.970 

β10 -0.075 -7.120 -0.066 -6.220 

β12 -0.019 -2.730 -0.064 -5.840 

 RCI Model 

β0 1.999 71.290 1.955 54.840 

β35 0.026 2.810 0.045 3.380 

β10 -0.072 -4.230 -0.077 -4.460 

β38 -0.017 -2.090 -0.018 -2.070 

     

 PCI Model 

β0 4.490 240.720 4.568 180.160 

β8 -0.070 -8.750 -0.075 -6.550 

β10 -0.098 -6.940 -0.090 -6.050 

 IRI Model 

β0 0.243 1.500 0.236 1.460 

β37 0.062 3.030 0.062 3.000 

β3 -1.680 -3.060 -1.690 -3.080 

β4 1.886 2.730 1.897 2.740 

β5 1.361 2.320 1.379 2.350 

β6 -2.096 -4.110 -2.112 -4.140 
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(a)                (b) 

    

(c)                   (d)  

Figure 5.1:  Diagnostics of ‘Goodness Fit’ of Revised Models (a) Ln DMI model, (b) Ln 

RCI Model, (c) Ln PCI Model, and (d) Ln IRI Model 

Considering these significant variables only, all four models are further revised and the SUR 

method is applied again. Since IRI is also a distress and used to estimate other KPIs (RCI and 

PCI), it is considered as an additional variable in the revised model as x38. To ensure the results 

are compared in a straightforward manner, the models are also estimated by the OLS approach 

and consider the significant variables found from the SUR method. The estimated parameters 

of the revised models are listed in Table 5.7. Improved goodness of fit of the revised models 

estimated by the SUR approach are presented in Figure 5.1. In Table 5.7, it is evident that these 

variables are significant in both approaches. However, the estimated value of parameters differs 

slightly. This is expected because the SUR method skims out the compounded effects of the 

correlated unobserved explanatory variables.  
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Table 5.8: Covariance and Correlation Matrix of Residuals in Jointly-Estimated Models 

Covariance Matrix 
 Ln DMI Ln RCI Ln PCI Ln IRI 

Ln DMI 0.0021 0.0001 0.0020 -0.0034 

Ln RCI 0.0001 0.0096 0.0039 -0.0150 

Ln PCI 0.0020 0.0039 0.0036 -0.0097 

Ln IRI -0.0034 -0.0150 -0.0097 0.7867 

Correlation Matrix 
 Ln DMI Ln RCI Ln PCI Ln IRI 

Ln DMI 1.0000 0.0324 0.7415 -0.0834 

Ln RCI 0.0324 1.0000 0.6683 -0.1724 

Ln PCI 0.7415 0.6683 1.0000 -0.1836 

Ln IRI -0.0834 -0.1724 -0.1836 1.0000 

 

 

Covariance and correlation matrix models are shown in Table 5.8. From the correlation matrix, 

it is found that unobserved factors in the PCI model are highly correlated to the DMI (correlation 

coefficient is 0.74) and RCI models (correlation coefficient is 0.67). However, unobserved 

factors in the IRI model are not highly correlated (correlation coefficients are 0.083, 0.17 and 

0.18 between DMI, RCI and PCI) to any other models. Since the IRI value measured by the 

automated device is used in the model, unobserved factors in the IRI may not be correlated to 

other estimated models based on individual distresses.   

 

5.4 Chapter Summary 

In this chapter, regression models for KPI predictions are estimated by using the SUR approach. 

The prediction models are generally estimated by using the OLS approach. However, the OLS 

approach may result in biased estimates if unobserved factors influencing different KPIs are 

correlated. For this reason, a statistically rigorous methodology within the SUR approach was 

used to estimate coefficients jointly as opposed to an equation-by-equation approach.  

 

As discussed, in Ontario, KPI models are developed from road condition surveys for specifically 

selected distresses. These models are developed based on the weightage of such distresses that 

are evaluated or rated in a subjective manner.  However, the average subjective rating is only 

recorded in the MTO PMS-2 database. The multiple raters' ratings are not available to analyze 

the subjective variability. To accommodate that subjective ratings may have variability, but 

unobserved in the recorded data set, the SUR approach is considered. The model can only 

accommodate the effects of such variability on parameter estimates, but quantifying the extent 

of variability is impossible.  

 

Although the SUR approach is used to estimate the models, the OLS approach is also used to 

compare the results by both approaches in a straightforward way. All models are significant in 

both approaches. All independent variables that have a parameter with a marginal level of 
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significance are considered as significant. Similar significant variables are found in the DMI 

and RCI models in both approaches. However, different significant variables are found in the 

IRI and PCI models. Revised models that consider only significant variables show the difference 

in parameter estimates of both approaches. This is expected because the SUR approach skims 

out compounded effects of correlated unobserved factors affecting pavement performance. 

Since OLS and SUR are not providing the same parameter estimates, the unobserved random 

variables are considered to be correlated. Therefore, the SUR approach is preferable.  

 

It is found that unobserved factors in the PCI model are highly correlated to those in the DMI 

and RCI models. In the SUR approach, the efficiency of estimation increases with higher 

correlation among the random error terms of the different equations. It also considers the effects 

of larger sample sizes and multi-collinearity between the regressors. For this reason, efficient 

estimations of models, with highly correlated unobserved factors and large road networks, such 

as Ontario highways, require joint estimation rather than OLS.  

 

The joint estimation of KPI models is an effective methodology to estimate performance indices.  

That being said, the results of the analyses can facilitate decision-making in a PMS with 

appropriate performance pavement predictions. As such, the benefit is related to the effective 

M&R implementation and resource allocation in a PMS. 

 

In this chapter, the analysis establishes the requirement of using joint estimation to estimate 

performance model indices. This approach will be carried out in Chapter 8, while estimating 

KPI models based on predicted distresses by the M-E approach.  

 

Chapters 4 and 5 mainly focused on the existing performance indices in practice, influencing 

variables affecting performance and the impact of section lengths on overall management. 

However, the next chapters will focus on the prediction of distresses based on the M-E approach 

and the estimation of the performance index based on those predicted distresses.
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CHAPTER 6 

APPLICATION OF THE MECHANISTIC-

EMPIRICAL APPROACH: SENSITIVITY 

ANALYSIS 
 

The M-E analysis considers three-level hierarchical inputs to predict performance in terms of IRI, 

permanent deformation or rut depth, total cracking (reflective and alligator), AC thermal fracture, 

AC bottom-up fatigue cracking and AC top-down fatigue cracking. However, these inputs with 

different levels of accuracy may have a significant impact on performance predictions. Before 

predicting the distresses, identifying the important inputs of MEPDG software (AASHTOWare 

Pavement M-E) will ensure efficient analysis. This chapter focuses on the sensitivity of inputs of 

the MEPDG distresses based on an experimental design to identify the requirements of the 

accuracy level of inputs.  

The work presented in this chapter is published in the International Journal of Pavement 

Engineering (IJPE) (Jannat 2015). Part of this chapter was also presented at the Transportation 

Association of Canada (TAC) Conference (Jannat 2014). 
 

6.1 Introduction  

As discussed in Chapter 1, the MEPDG was developed in 2004 to address the shortcomings of 

empirical pavement design methods (NCHRP 2004, and AASHTO 2008). The MEPDG distress 

prediction models are developed by using the Long-Term Pavement Performance (LTPP) data, 

which includes pavement sections of many U.S. states and Canadian provinces. The 

recommendations related to the level of accuracy and required quality of the input variables are 

outlined in the AASHTO guide (AASHTO 2010). However, it is necessary to analyze the 

requirements to efficiently obtain accuracy at Level 1 for all inputs. It would otherwise not be 

efficient to put effort for a higher level of accuracy. For this reason, a sensitivity analysis is 

essential to identify important inputs that have significant impacts on the predicted distresses.  

 

This chapter investigates the effect of inputs on the predicted distresses based on the M-E approach 

to identify the accuracy-level requirements for precise prediction. From different levels of the 

selected inputs and for the statistical validity of investigations, an experimental design-based 

approach is used. For the main effect, local sensitivity is carried out, and for interaction effects, 

experimental design is formed based on a random combination of variables. The normalized values 

(divided by the mean value of the corresponding variable) of the variables within the regression 

model provide the relative influences of different input variables on MEPDG distresses.   

 

 6.2 Accuracy Levels of Inputs  

The input data required for the AASHTOWare Pavement M-E analysis are mainly related to 

traffic, climate, pavement structure and material properties. The accuracy levels of inputs available 

for the M-E analysis are described in the Chapter 3.  
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The input data are mainly collected from the MTO-PMS-2 database, project specific information 

and default values from the AASHTOWare Pavement M-E Design Interim Report (MTO 2012). 

 

6.3 Experimental Design  

A sensitivity analysis is conducted to investigate relative influences of input variables. Generally, 

sensitivity analysis designs are categorized into three classes: screening methods, local sensitivity 

analysis and global sensitivity analysis (Graves 2011). 

 

A screening method focuses on the hierarchical ranking according to the importance of input 

variables, rather than providing change in quantity or impact on output. Local sensitivity focuses 

on the local impact of inputs on the performance of outputs. This method is conducted by varying 

certain inputs, while keeping other inputs constant. Global sensitivity analysis is carried out by 

varying the inputs over the entire input variables. 

 

The inputs may have the independent (main) and/or combined (interaction) effects on distress 

outputs. 

6.3.1 Experimental Design for Main Effects 

Since the independent influence of an input variables defines its required accuracy level, local 

sensitivity is considered as a suitable method. Local sensitivity will identify the requirements for 

a higher level of accuracy, which is a significant step in predicting distresses, especially for 

selecting the properties relevant to local materials and traffic. Moreover, this method will 

investigate independent influence, since the experimental sets are independent. Thus, local 

sensitivity analysis based on experimental design-based methods will be suitable to identify the 

individual effect of inputs.  

 

The base section (overlay design of highway sections with a performance cycle of eight years, 

three overlay layers, sub-base: granular A, base: granular B1 and subgrade: sandy silt) is selected 

after analyzing the performances if predicted distresses are close to the observed performances. 

Figure 6.1 shows the performance curve for PCI, IRI and permanent deformation of the base case 

road section.  

 

For each input variable, specific ranges from the base case are selected based on the nature of the 

input. The ranges are selected based on the historical performance record (existing condition, 

traffic information, subgrade type, layer thickness etc.) of pavement sections from MTO-PMS-2, 

Ontario’s default values (axle per truck, axle-load spectra and default materials properties for 

specific AC, base and subgrade etc.) from ‘Ontario’s Default Parameters for AASHTOWare 

Pavement M-E Design- Interim Report’ (MTO 2012) and soil properties and specifications from  

the Pavement Asset Design and Management Guide (PADMG) (TAC 2013). Table 6.1 

summarizes the range of change in input values considered in this analysis. 
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(a)                                               (b) 

 
(c) 

Figure 6.1: (a) Performance Curve of Base Case as per PCI; (b) Comparison of Observed 

IRI to Predicted IRI; (c) Comparison of Observed to Predicted Permanent Deformation 

After observing the effects on specific distresses of all input variables, a total of 46 independent 

variables are considered for the analysis. The levels are found to be different for each independent 

input variable, since the ranges of the levels are different.  Finally, an experimental design is used 

to identify a total of 171 experimental sets, considering 46 independent variables. 
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Table 6.1: Summary of Ranges of Input Variables 

Input 

Category 
Input 

% Change in 

Input 

Comparing to 

Base Value 

Remarks 

Existing 

Condition 

Initial IRI -40% to + 40% 

Considering the target value (1.9 m/km for freeways and 2.3 

m/km for Arterials) of IRI for Ontario, the range of change 

in initial IRI of base case is selected. A total of 9 levels are 

considered from -40% to +40% with 10% increment. 

Initial 

Permanent 

Deformation 

-50% to + 50% 

Considering the target value of Permanent deformation of 19 

mm for Ontario, the range of change in existing permanent 

deformation of base case is selected. A total of 11 levels are 

considered from -50% to +50% with 10% increment. 

Milled 

Thickness 

40 mm to 

maximum 100 

mm 

From the historical record, 40 mm to 100 mm milled 

thickness are found. The ranges are selected from 40 mm to 

100 mm with increment of 20 mm.  A total of 4 levels are 

considered.  

Traffic 

Annual 

Average 

Daily Truck 

Traffic 

(AADTT) 

-50% to + 50% 

From the historical record of AADTT of all road sections, 

the ranges are selected from 700 to 2109 with increment of 

10%.  A total of 11 levels are considered.  

Percent Truck 

in Design 

Lane 

-25% to + 11% 

From the default value of percent of truck in design lane 

based on the number of lanes in one direction and AADT in 

both direction, the ranges are selected from 60% to 100% 

with increment of 10%.  A total of 9 levels are considered.  

Traffic 

Growth 

Factor 

-50% to + 50% 

From the annual historical record of AADT, the compound 

growth factors are calculated for all road sections. The 

ranges are selected from 1.65% to 4.94% with increment of 

10% which are -50% to +50% of base case value.  A total of 

11 levels are considered.  

Operational 

Speed  
-40% to + 40% 

Considering the speed limit of highways, the ranges are 

selected from min 60 km to max 140 km with increment of 

10% which are -40% to +40% of base case value.  A total of 

9 levels are considered.  

Axle per 

Truck 

Default Value of 

Southern Ontario, 

Northern Ontario 

and Ontario 2006 

Default value of Southern Ontario, Northern Ontario and 

Ontario 2006 value are considered as 3 independent 

variables with level 1.  

Truck Traffic 

Class (TTC) 
TTC type 1 to 17 

Types of TTC are defined based on 17 combination of 

%bus, % single trailer truck, and % multi trailer truck. Each 

type is considered as an independent variable with level of 1. 
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Input 

Category 
Input 

% Change in 

Input 

Comparing to 

Base Value 

Remarks 

Axle Load 

Spectra 

 

Default Value of 

Southern Ontario, 

Northern Ontario, 

Ontario 2006 and 

Software Default 

Value 

Based on default value of Southern Ontario, Northern 

Ontario and Ontario 2006 value. In addition, software 

default value is considered and a total of 4 independent 

variables each with single level are considered. 

Climate 
Water Table 

Depth 
-60% to + 60% 

Based on Ontario default value of 6.1 m, ranges are selected 

from 2.44 to 9.76 m.  A total of 7 levels are considered from 

-60% to +60% with a 20% increment.  

AC Layer 

and 

Properties 

Top Layer 

Thickness 
-49% to + 50% 

Considering the minimum thickness requirement of the 

software of 25.4 mm and historical record of average 

overlay top layer thickness, the range is selected from 25.4 

mm to 75 mm. A total of 11 levels ranging -49% to +50% of 

base case with an increment of 10%, are considered.  

Unit Weight -23% to +3% 

Based on Ontario default value of volumetric properties of 

AC, the ranges are selected from 1940 to 2596 KG/M3.  A 

total of 6 levels are considered from -23% to +3%.  

Effective 

Binder 

Content 

-59.7% to +20% 

Based on Ontario default value of volumetric properties of 

AC, effective binder content ranges unto 14.88 %.  A total 

of 5 levels are considered from -59.7% to +20% of base 

value 12.70%.  

Air Voids -40% to +60% 

Based on Ontario default value of volumetric properties of 

AC for selected sections, air voids range from 2.4% to 5%.  

A total of 6 levels are considered from -40% to +60% of 

base value 4%.  

Reference 

Temperature 
-30% to +23% 

Ontario default value of reference temperature is 21.1 degree 

Celsius However; reference temperature is varied from -30% 

to 23% of 21.1 degree Celsius.  A total of 5 levels are 

considered.  

Thermal 

Conductivity 
-30% to +120% 

Ontario default value of thermal conductivity 1.16 

watt/meter-kelvin. However, a total of 6 levels are 

considered ranging from -30 to +120% of 1.16 watt/meter-

Kelvin. 

Heat Capacity -40% to +40% 

 Ontario default value of heat capacity is 963 joules/kg-

Kelvin. However, a total of 5 levels are considered ranging 

from -40% to +40% of 963 joule/kg-Kelvin. 

Asphalt 

Binder 

Penetration 

Grade 

Software default 

value: 40-50, and 

60-70;  Southern 

Ontario: 85-100;  

NE Ontario: 120-

150; and NW 

Ontario: 200-300  

Default value for Southern Ontario is 85-100; for NE 

Ontario is 120-150; for NW Ontario is 200-300. In addition, 

40-50 and 60-70 are also considered. A total of 5 

subcategories are considered as independent variables with 

level of 1.  
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Input 

Category 
Input 

% Change in 

Input 

Comparing to 

Base Value 

Remarks 

Base 

Layer and 

Materials 

Base Layer 

Thickness 
-40% to +40% 

Minimum thickness of base layer for Ontario is 150 mm. 

Maximum range is considered based on the existing layer 

thickness of road sections. AASHTO has also guidelines for 

minimum base layer based on Equivalent Single Axle Load 

(ESAL). These AASHTO recommended value is also 

considered here. A total of 9 levels are considered ranging 

from -40% to +40% of base value 150 mm.  

 

  

Resilient 

Modulus of 

Base Layer 

-60% to +60% 

Based on the MR values for types of base materials, the 

range from 100 MPa to 400 MPa is selected and a total of 7 

levels are considered.  

Subgrade 

Materials 

Resilient 

Modulus of 

Subgrade Soil  

-40% to +40% 

Based on the corresponding resilient modulus of available 

subgrade soil types, the range from 25 MPa to 40 MPa is 

selected. A total of 7 levels are considered for the selected 

range of -40% to +40% of 35 MPa base value with an 

increment of 10%.   

 

 

Table 6.2:  MEPDG Outputs Distresses and Target Value of Failure in Ontario 

Distress Type 
Target Value for 

Freeway 

Target Value for 

Arterial 

Terminal IRI (m/km) 1.9 2.3 

Permanent Deformation - Total Pavement (mm) 19 19 

Total Cracking (Reflective + Alligator) (%) 100 
100 

AC Thermal Fracture (m/km) 190 190 

AC Bottom-Up Fatigue Cracking (%) 10 20 

AC Top-Down Fatigue Cracking (m/km) 380 
380 

Permanent Deformation - AC Only (mm) 6 6 

 

6.3.2 Experimental Design for Interaction Effects 

The input variables may also have interaction effects on distress outputs. For this reason, a 

combination of input variables is also considered to identify the sensitive combination of input 

variables. The full factorial experimental design with the selected 46 independent variables and 
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the ranges of selected levels form a large number of experimental sets which may not be efficient. 

For this reason, only the sensitive input variables found from the main effect analyses are 

considered to identify the interaction effects. The experimental sets are formed by taking random 

combinations of input variables. Finally, an experimental design is used with a total of 58 

experimental sets. These variables are also normalized. 

 

 

Table 6.3:  Changes in Distress for Respective Change in AADTT 
 

Change in  

Input AADTT 
Change in Output Distresses 

AADT

T 

chang

ed by 

% 

Chan

ged 

AAD

TT 

Ter

mina

l IRI 

(m/k

m) 

Change 

in 

Termin

al IRI 

(%)  

Perma

nent 

Defor

mation 

- Total 

pavem

ent 

(mm) 

Change 

in 

Perma

nent 

Deform

ation 

Total 

(%)  

Total 

Cracki

ng 

(Reflec

tive + 

Alligat

or) (%) 

AC 

Thermal 

Fractur

e 

(m/km) 

Chang

e in 

AC 

Ther

mal 

Fractu

re (%)  

AC 

Bott

om-

Up 

Fatig

ue 

Crac

king 

(%) 

AC 

Top-

Down 

Fatigue 

Cracki

ng 

(m/km) 

Chang

e in AC 

Top-

Down 

Fatigue 

Cracki

ng (%)  

Per

man

ent 

Defo

rmat

ion - 

AC 

only 

(mm

) 

Change 

in 

Perman

ent 

Deform

ation - 

AC 

only 

(%)  

-50% 703 1.52 -2.56% 5.12 
-

21.59% 
28.32 14.64 0.00% 0 0.01 

-

66.67

% 

1.75 
-

31.37% 

-40.% 844 1.53 -1.92% 5.46 
-

16.39% 
28.32 14.64 0.00% 0 0.02 

-

33.33

% 

1.93 
-

24.31% 

-30% 984 1.54 -1.28% 5.76 
-

11.79% 
28.32 14.64 0.00% 0 0.02 

-
33.33

% 

2.10 
-

17.65% 

-20% 1125 1.54 -1.28% 6.04 -7.50% 28.32 14.64 0.00% 0 0.02 

-

33.33

% 

2.26 
-

11.37% 

-10% 1265 1.55 -0.64% 6.29 -3.68% 28.32 14.64 0.00% 0 0.03 0.00% 2.41 -5.49% 

Base  1406 1.56 0.00% 6.53 0.00% 28.32 14.64 0.00% 0 0.03 0.00% 2.55 0.00% 

10% 1547 1.56 0.00% 6.76 3.52% 28.32 14.64 0.00% 0 0.04 
33.33

% 
2.68 5.10% 

20% 1687 1.57 0.64% 6.97 6.74% 28.32 14.64 0.00% 0 0.04 
33.33

% 
2.81 10.20% 

30% 1828 1.57 0.64% 7.17 9.80% 28.32 14.64 0.00% 0 0.05 
66.67

% 
2.93 14.90% 

40% 1968 1.58 1.28% 7.35 12.56% 28.32 14.64 0.00% 0 0.06 
100.00

% 
3.05 19.61% 

50% 2109 1.58 1.28% 7.53 15.31% 28.32 14.64 0.00% 0 0.06 
100.00

% 
3.16 23.92% 

 

 

6.4 Sensitivity Analysis  

For these experiments, the distresses are predicted for 171 experimental sets for main effects and 

58 experimental sets for interaction effects using the AASHTOWare Pavement M-E software. The 

predicted values of each distress are compared to the corresponding target values of failure shown 

in Table 6.2. The rate of change in output distresses are compared for both experimental sets. 
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(a)              (b) 

  
(c)              (d) 

  

(e)            (f) 

Figure 6.2: Sensitivity of (a) Terminal IRI; (b) Total Permanent Deformation (c) AC Top 

down Fatigue Cracking; (d) AC Permanent Deformation, (e) Total (Reflective +Alligator) 

Cracking, (f) AC Thermal Fracture, with Respect to Top Layer Thickness 
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Table 6.4: Summary of Changes in Distresses for Change in Major Inputs (Main Effect) 

Input 

Variables  

Change in 

Input 

Parameters 

Compared to 

Base Value 

Change in Output Distresses 

Terminal 

IRI 

Total 

Permanent 

Deformation 

AC 

Permanent 

Deformation 

Total 

Cracking 

(Reflective + 

Alligator) 

AC 

Thermal 

Fracture  

AC 

Bottom-

Up 

Fatigue 

Cracking  

AC Top-

Down 

Fatigue 

Cracking 

Initial IRI -40% to 

+40% 

-32% to 

+32% 

0% to +15% 0% to +15% 06% 07% 08% 09% 

Initial 
Permanent 

Deformation 

-50% to 
+50% 

+4.5% to   
-2.56% 

+48% to        -
22% 

+7% to -5.5% 0% 0% 0% 0% 

Milled 

Thickness 

40mm to 

100mm max. 

+0.64% 

to 
+1.28% 

+7% to +15% +11% to 

+26% 

0% 0% 0% 0% 

AADTT -50% to 

+50% 

-2.56% to 

+1.28% 

-22% to 

+15% 

-31% to 

+24% 

0% 0% 0% -66% to 

+100% 

Percentage of  

Trucks in the 

Design Lane 

-25% to 

+11% 

-1.28% to 

+0% 

-9% to +4% -14% to +5% 0% 0% 0% -33% to 

+33% 

Traffic 

Growth 

Factor 

-50% to 

+50% 

-0.64% to 

+0% 

-2% to +2% -3% to +3% 0% 0% 0% 0% to 

+33% 

Operational 
Speed  

-40% to 
+40% 

+0.64% 
to -0.64% 

+0.64% to -
3.83% 

+8.6% to -
5.5% 

0% 0% 0% 33% to 
+0% 

Axle Per 
Truck 

3 Types 0% +0.15% to 
0.31% 

+0% to -
1.81% 

0% 0% 0% 0% 

Truck Traffic 
Class (TTC) 

TTC Type 1-
17 

-0.64% to  
-3.21% 

-1.23% to  -
27.57% 

 Varies from      
-1.26% to           

-26.27%; for 

Type 3 
+0.98%;  for 

Type 5  

1.96% 

0% 0% 0% -33% to -
66% 

Axle-Load 
Spectra 

4 Types -0.64% to  
+0.64% 

-0.92% to  
+5.51% 

1.18% to            
-7.06% 

0% 0% 0% +33% to 
0% 

Water Table 
Depth 

-60% to 
+60% 

0% 0% 0% 0% 0% 0% 0% 

Top-Layer 

Thickness 

-49% to 

+50% 

0.0% to     

- 2.56% 

10.57% to  -

18.07% 

-23% to  -

94% 

-48% to  

+17% 

2.75% to      

-19.6% 

0% +66% to  - 

66% 

                                                           

6 0% = No change in respective output distress due to change in input  

7 0% = No change in respective output distress due to change in input  

8 0% = No change in respective output distress due to change in input  

9 0% = No change in respective output distress due to change in input  
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Input 

Variables  

Change in 

Input 

Parameters 

Compared to 

Base Value 

Change in Output Distresses 

Terminal 

IRI 

Total 

Permanent 

Deformation 

AC 

Permanent 

Deformation 

Total 

Cracking 

(Reflective + 

Alligator) 

AC 

Thermal 

Fracture  

AC 

Bottom-

Up 

Fatigue 

Cracking  

AC Top-

Down 

Fatigue 

Cracking 

Unit Weight -23% to +3% 0% 0.92% to  -

0.15% 

+2.35% to         

-0.39% 

0% +44% to      

-6.32%  

0% 0% 

Effective 

Binder 

Content 

-59.7% to 

+20% 

14.74% 

to            

-0.64% 

-9.04% to  

+1.53% 

-12.16% to  

+1.96% 

0% +25.12% to  

-74%, 

failure 
found for    

-40% to      

-59.7% 
change in 

input 

0% +1633.33% 

to          -

33.33%; 
values are 

lower than 

the failure 
criteria 380 

m/km 

Air Voids -40% to 

+60% 

-0.64% to  

+5.13% 

-1.53% to  

+3.68% 

-2.35% to  

+4.71% 

0% 140% for -

40% 
change in 

input; 

varies -
19.19% to 

836.75%for 

-20% to 
+60% of 

input 

change 

0% -66.67% to  

+666.67%; 
the values 

are lower 

than the 
failure 

criteria of 

380m/km 

Reference 

Temperature 

-30% to 

+23% 

0% 0% 0% 0% 0% 0% 0% 

Thermal 

Conductivity 

-30% to 

+120% 

-0.64% to 

0% 

-2.30% to 

+3.83% 

-3.92% to 

+7.06% 

0% -18.24% to 

+18.78% 

0% 0% to 

+33.33% 

Heat Capacity -40% to 
+40% 

+0.64% 
to -0.64% 

+1.53% to -
1.53% 

+3.53% to -
3.53% 

0% +89.48% to 
-48.77% 

0% 0% 

Asphalt 
Binder 

Penetration 

Grade 

5 types 
 

+8.33% 
to 0% 

-7.50% to 
+10.41% 

-12.16% to 
+18.04% 

0% to 
+0.35% 

+14.95% to 
-100%; 

failure 

found for 
40-50 and 

60-70 

0% 0% 

Base-Layer 

Thickness 

-40% to 

+40% 

0% to      

-0.64% 

4.29% to       -

1.07% 

-4.71% to 

+1.57% 

0% +17.96% to 

+3.42% 

0% 0% 

 Resilient 

Modulus of 

Base Layer 

-60% to 

+60% 

+0.64% 

to -0.64% 

+6.28% to     -

3.52% 

-3.14% to 

+1.57% 

0% 0% 0% +33.33% to 

0% 

Resilient 
Modulus of 

Subgrade Soil  

-40% to 
+40% 

+2.56% 
to -1.28% 

+29.86% to   -
12.40% 

-2.35% to      
-1.18% 

0% 0% 0% 0% to 
+33.33%  
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Table 6.5: Summary of Sensitive Inputs (Main Effect) as per Range of Change in Output 

Distresses 

Output Distress Sensitive Inputs as per Change in Output Distresses 

 

Terminal IRI Initial IRI, AC Effective Binder Content, Air Voids, Initial Permanent 

Deformation, AADTT, Subgrade Resilient Modulus, AC Top-Layer 

Thickness, Milled Thickness, Percentage of Trucks in the Design Lane, 

Operational Speed, Asphalt Binder Penetration Grade, Traffic Growth 

Factor, TTC Types and Axle-Load Spectra 

 

Total Permanent Deformation  Initial Permanent Deformation, Subgrade Resilient Modulus, TTC Types, 

AADTT,  AC Top-Layer Thickness, Asphalt Binder Penetration Grade,  

Milled Thickness, Initial IRI, Percentage of Trucks in the Design Lane,  

Percentage of Effective Binder Content,  Resilient Modulus of Base Layer,  

Base-Layer Thickness, 13. Operational Speed  

 

AC Permanent Deformation    AC Top-Layer Thickness, AADTT,  TTC Class, Percentage of Trucks in 

the Design Lane,  Milled Thickness, Initial IRI, Effective Binder Content, 

Binder Penetration Grade, Operational Speed, Axle-Load Spectra,  AC 

Thermal Conductivity,  Initial Permanent Deformation, Air Voids, Base-

Layer Thickness  and AC Heat Capacity 

Total Cracking (Reflective + 

Alligator) 

AC Top-Layer Thickness and Asphalt Binder Penetration Grade 

AC Thermal Fracture Effective Binder Content, AC Binder Penetration Grade, AC Air Voids, 

AC Heat Capacity, AC Unit Weight, AC Top-Layer Thickness, AC 

Thermal Conductivity and Base-Layer Thickness 

AC Top-Down Fatigue 

Cracking 

Effective Binder Content, AC Air Voids, AADTT, TTC Types, AC Top-

Layer Thickness, Percentage of Trucks in the Design Lane, Subgrade 

Resilient Modulus,  AC Thermal Conductivity, Traffic Growth Factor, 

Axle-Load Spectra and Resilient Modulus of Base Layer 

 

6.4.1 Sensitivity Analysis for Main Effects 

The rate of changes in output distresses are plotted for 46 input variables to be compared. For 

example, Table 6.3 shows the changes in distresses due to changes in AADTT and Figure 6.2 

shows the changes in major sensitive distresses due to changes in AC top-layer thickness. Finally, 

changes in all output distresses and input variables are summarized in Table 6.4. 

 

After comparing the range of change in output distresses to a range of change in inputs, the inputs 

with substantial effects on distresses are screened and listed in Table 6.5. A multiple linear 

regression analysis is carried out by considering the sensitive inputs, listed in Table 6.5, for six 

major distresses separately. For example, for IRI, regression analysis is conducted for the 

following sensitive variables. 

 

At first, the following regression model of Terminal IRI is shown by considering the 2nd order term: 

 



 

89 

 

𝑦 = 𝛽0 + 𝛽1 𝑋1 + 𝛽2 𝑋2 + 𝛽3 𝑋3 + 𝛽4 𝑋4 + 𝛽5 𝑋5 + 𝛽6 𝑋6 + 𝛽7 𝑋7 + 𝛽8 𝑋8 + 𝛽9 𝑋9 + 𝛽10 𝑋10 +
𝛽11 𝑋1

2 + 𝛽12 𝑋2
2 + 𝛽13 𝑋3

2 + 𝛽14 𝑋4
2 + 𝛽15 𝑋5

2 + 𝛽16 𝑋6
2 + 𝛽17 𝑋7

2 + 𝛽18 𝑋8
2+𝛽19 𝑋9

2 + 𝛽20 𝑋10
2 + 

𝛽21 𝑋1𝑋2 + 𝛽22 𝑋1𝑋3 + 𝛽23 𝑋1𝑋4 + 𝛽24 𝑋1𝑋5 + 𝛽25 𝑋1𝑋6 + 𝛽26 𝑋1𝑋7 + 𝛽27 𝑋1𝑋8 + 𝛽28 𝑋1𝑋9 +
𝛽29 𝑋1𝑋10+𝛽30 𝑋2𝑋3 + 𝛽31 𝑋2𝑋4 + 𝛽32 𝑋2𝑋5+𝛽33 𝑋2𝑋6 + 𝛽34 𝑋2𝑋7 + 𝛽35 𝑋2𝑋8 + 𝛽36 𝑋2𝑋9 +
𝛽37 𝑋2𝑋10 + 𝛽38 𝑋3𝑋4 + 𝛽39 𝑋3𝑋5 + 𝛽40 𝑋3𝑋6 + 𝛽41 𝑋3𝑋7 + 𝛽42 𝑋3𝑋8 + 𝛽43 𝑋3𝑋9 + 𝛽44 𝑋3𝑋10 +
𝛽45 𝑋4𝑋5 + 𝛽46 𝑋4𝑋6 + 𝛽47 𝑋4𝑋7 + 𝛽48 𝑋4𝑋8 + 𝛽49 𝑋4𝑋9 + 𝛽50 𝑋4𝑋10 + 𝛽51 𝑋5𝑋6 + 𝛽52 𝑋5𝑋7 +
𝛽53 𝑋5𝑋8 + 𝛽54 𝑋5𝑋9 + 𝛽55 𝑋5𝑋10 + 𝛽56 𝑋6𝑋7 + 𝛽57 𝑋6𝑋8 + 𝛽58 𝑋6𝑋9 + 𝛽59 𝑋6𝑋10 + 𝛽60 𝑋7𝑋8 +
𝛽61 𝑋7𝑋9 + 𝛽62 𝑋7𝑋10 + 𝛽63 𝑋8𝑋9 + 𝛽64 𝑋8𝑋10 + 𝛽65𝑋9𝑋10                                                                  (6.1) 

 

Where,  
𝑦 = Terminal IRI 

X1= Existing Initial IRI 

X2= Existing Initial Permanent Deformation,  

X3= Top-Layer Thickness of AC 

X4= Effective Binder Content in AC 

X5= Air Voids in AC (%) 

X6= Existing Milled Thickness 

X7= Resilient Modulus of Subgrade Soil 

X8= Annual Average Daily Truck Traffic (AADTT) 

X9= Percentage of Trucks in the Design Lane    

X10= Operational Speed of Vehicles  

𝛽𝑜 …………𝛽10 = Coefficients   

 

This model is not found as significant as Fobserved (0.215) <Fcritical (2.2147). For this reason, in the 

next step, the IRI model is revised by considering only 1st order variables.   

 

𝑦 = β0 + β1 𝑋1 + β2 𝑋2 + β3 𝑋3 + β4 𝑋4 + β5 𝑋5 + β6 𝑋6 + β7 𝑋7 + β8 𝑋8 + β9 𝑋9 + β10 𝑋10  (6.2) 

 

After regression analysis, the 1st revised model is found as: 

 

y = 0.56069 + 0.940841X1 – 0.019386X2 – 0.000333X3 – 0.014764X4 + 0.018594X5 – 

0.000335X6 – 0.002949X7 + 0.000042X8 + 0.001863X9 – 0.000649X10     (6.3) 
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Table 6.6: ANOVA of the 1st Revised Model of Terminal IRI 

  df SS MS F 

Regression 10 2.773 0.277 26.285 

Residual 69 0.728 0.011  

Total 79 3.499     

 

The ANOVA calculation of the 1st revised model (equation 6.3) is shown in Table 6.6. A 

significance test of the model is carried out by considering:  

a. To Check for Overall Regression, 

α = 0.05  

 

b. To Test for Overall Significance,  

HO: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 𝛽5 = 𝛽6 = 𝛽7 = 𝛽8 = 𝛽9 = 𝛽10 = 𝛽11 = 0 

H1: 𝛽𝑗 ≠ 0 for at least one j 

 

Fobs  (26.285) > F critical= F α ,p-1=10,  n-p=69, =1.968. The null hypothesis is rejected. Therefore, the 

model is significant. The significance of the parameters is determined by considering:  
 

 Ho: 𝛽𝑗̂=0    

 H1:  𝛽𝑗̂ ≠ 0 

 

tcritical (0.025,n-p=69) = 1.9955 

 

From the model, S2= 0.7276/69 =0.010544 

t obs = 
𝛽𝑖^–𝟎.𝟎

√(𝒙′𝒙)𝒊𝒊
−𝟏

𝑺𝟐

  

After comparing the tobs to tcritical, it is found that for X3, X6, X7, X8, X9 and X10, Ι t obs < Ιt critical . 

Therefore, the null hypothesis cannot be rejected. Therefore, X3, X6, X7, X8, X9 and X10 are 

removed from the model.  

 

After removing these variables, the 2nd revised model is found as: 

 

𝑦 = 0.99031 + 0.92765𝑋1 − 0.020314𝑋2 − 0.013369𝑋4 + 0.019786𝑋5                                      (6.4) 

 

The ANOVA calculation of the 2nd revised model (equation 6.4) is shown in Table 6.7. The 2nd 

revised model is found as significant since Fobs (64.022) > Fcritical= Fα, p-1=10, n-p=69, = 2.4936. 

After comparing the tobs to tcritical, it is found that for all parameters tobs > tcritical = 1.9925. 

Therefore, they are significant.  
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Table 6.7: ANOVA of 2nd Revised Model of Terminal IRI 

 

  df SS MS F 

Regression p-1=4 2.707 0.677 64.022 

Residual n-p=75 0.793 0.011 
 

 Total n-1=79 3.499     

 

The error is estimated by using the following equation (Montgomery 2009):  

 

√(∑(𝑦 − 𝑦̂)2  /(𝑛 − 𝑝)= √( 𝑆𝑆/(𝑛 − 𝑝))       (6.5) 

 

The covariance and correlation matrix are calculated by using the following equations respectively 

(Montgomery 2009): 

 

Cov( β̂ )= (X′X)-1σ2           (6.6) 

Or, 2
1

ii

sXX)β̂Cov(




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
 

  

Correlation, 
1

2,2

1

1,1

1

1,2

2,1

XXXX

XX










 






 






 

         (6.7) 

 

 

The covariance matrix of Terminal IRI model is found as:  

 

 β0 β1 β2 β4 β5 

β0 0.007365 -0.004627 0.000047 -0.000127 0.000002 

β1 -0.004627 0.004348 -0.000105 -0.000016 -0.000042 

β2 0.000047 -0.000105 0.000016 0.000000 0.000002 

β4 -0.000127 -0.000016 0.000000 0.000013 -0.000002 

β5 0.000002 -0.000042 0.000002 -0.000002 0.000015 
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The correlation matrix of the Terminal IRI model is found as:  

 

  β0 β1 β2 β4 β 5 

β0 1 -0.8176 0.1357 -0.4110 0.0074 

β1 -0.8176 1 -0.3972 -0.0678 -0.1624 

β2 0.1357 -0.39724 1 -0.0273 0.1234 

β4 -0.4110 -0.06785 -0.0273 1 -0.1626 

β5 0.0074 -0.16236 0.1234 -0.1626 1 

 

 

The parameter β1 is found as highly correlated to β0 (0.8176) with high variance, which means 

the parameters might be less precisely estimated. Also, β4 is also correlated to β0.  β1 and β2 are 

also correlated to each other. However, the parameters β0, β1, β2 and β4 might be less precisely 

estimated.  

 

The confidence level of the parameters is also estimated by using the following equation: 

 

𝛽𝑖 = ±𝑡𝛼

2
,𝑛−𝑝 𝑠√(𝑋′𝑋)𝑖𝑖−1         (6.8) 

 

The tobs values with the confidence level are listed in Table 6.8. The normality of the residuals of 

the 2nd revised IRI model is also checked. The normal distribution probability plot of the residuals 

is shown in Figure 6.3.  

 

 

Table 6.8: Estimated Parameters of 2nd Revised IRI Model 

  Coefficient Value tobs Lower 95% Upper 95% 

β0: 0.599031 6.979954601 0.428065592 0.769996472 

β1: 0.927650 14.06778797 0.796287586 1.059011582 

β2: -0.020314 -5.055516201 -0.028318366 -0.012309248 

β3: -0.013369 -3.716755965 -0.020534405 -0.006203472 

β4: 0.019786 5.101358357 0.01205924 0.027511963 
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Figure 6.3: Normal Probability Plot of Residuals of Terminal IRI 

From Figure 6.3, it is observed that the points are scattered around the straight line (trend line) 

with some points deviating from the line. Thus, the normality assumption might be satisfied for 

this data. 

 

The 2nd revised IRI model is further investigated irrespective of additional terms that need to be 

included in the model. For this purpose, the residuals of the terminal IRI are plotted against the 

significant variables. Figure 6.4 presents these plots. 

 

From Figure 6.4, it is observed that, although residuals are randomly distributed with predicted 

IRI from the model, residuals are almost systematically distributed equally on both sides for each 

variable. This pattern indicates that the model might be missing other interaction terms. Although 

a significance test with a hypothesis test (tobs) and adjusted R2 shows the significance and 

improvement of the 2nd revised model, the IRI model still requires additional interaction terms.  

 

The correlation matrix reveals that the parameter β0 is highly correlated with β1 and β4. β1 and β2 

are also correlated. From Figure 6.4, it is observed that the interaction term is missing. For that 

reason, another additional term X1X2 is added into the model to investigate the requirement of the 

interaction effect. The 3rd revised model of IRI is shown as:  
 

𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽4 𝑋4 + 𝛽5𝑋5 + 𝛽6𝑋1𝑋2                                                             (6.9) 

 

 

R² = 0.94
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(a)                                                               (b)  

 

  
                (c)                                                        (d) 

 

      (e)  

Figure 6.4: Residual of Terminal IRI versus (a) Existing IRI, (b) Existing Initial Permanent 

Deformation, (c ) Effective AC Binder Content, (d) % AC Air Voids, (e) IRI from the 

Model 
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Table 6.9: ANOVA of Final IRI model 

 
 df SS MS F 

Regression 5 2.771 0.554 56.290 

Residual 74 0.728 0.010  
Total 79 3.499   

 

 

It is found that the final model of IRI is significant with the parameters as its tobs > tcritical =1.99.    

   

Table 6.10: Estimated Parameters of the Final IRI Model 

 

 Parameters Value tobs 
Lower 

95% 

Upper 

95% 

β0 0.32 2.35 0.05 0.59 

β1 1.14 11.00 0.93 1.34 

β2 0.04 1.64 -0.01 0.08 

β4 -0.01 -3.32 -0.02 0.00 

β5  0.02 4.71 0.01 0.03 

β6  -0.04 -2.55 -0.08 -0.01 

 

Therefore, based on the multiple stages of regression analysis, it is found that for IRI, the main 

effect of the existing initial IRI, existing permanent deformation, AC effective binder content, 

percentage of air voids and the interaction effect between existing IRI and permanent deformation 

are significant sensitive inputs.  

 

The main effect is investigated by changing one variable, while keeping the other variables 

constant. In the IRI model, the investigation of main effect justifies the incorporation of the 

interaction effect (additional term as an interaction effect of existing IRI and permanent 

deformation) into the model along with main effects. However, the interaction effects among all 

other variables are also further investigated from a randomly selected experimental design. In this 

experimental design, the inputs are changed in combined way to investigate the effect on the 

predicted distresses accordingly.  

 

With similar steps followed in IRI, the other distresses are investigated too. The experimental 

design is rearranged with only the inputs that have significant effects, while multiple regression is 

carried out again for the rearranged sample. In this way, significant sensitive input variables, which 

have the main effect on distresses, are found. The input variables are ranked based on the higher 
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value of coefficients. Finally, statistically sensitive input variables, which have main effects on the 

respective distresses, are summarized in Table 6.11. 

 

It is found that permanent deformation in the AC layer is sensitive to the percentage of trucks in 

the design lane, AC top-layer thickness, TTC type, milled thickness, initial permanent deformation 

and AC binder penetration grades. For total cracking (reflective and alligator), the sensitivity of 

the AC top-layer thickness is proven to be statistically significant. The sensitivity of the main 

effect of effective binder content, AC binder penetration grades and AC air voids are proven to be 

statistically significant for the AC thermal fracture. Similarly, AC top-down fatigue cracking is 

found to be significantly sensitive to AC effective binder content, AC air voids, AADTT and AC 

top-layer thickness. However, no sensitive input variables are found for AC bottom-up fatigue 

cracking for the experimental sample. Therefore, further investigation is required for AC bottom-

up fatigue cracking.  

 

6.4.2 Sensitivity Analysis for Interaction Effects 

As discussed, only the sensitive input variables found from the main effect analyses are considered 

for interaction effects. This experimental design is formed with a total of 58 experimental sets. Of 

these 58 experimental sets, each output distress is predicted and the effect is observed. A multiple 

linear regression analysis is carried out for each distress separately, following the similar steps 

used for indenting the main effects of IRI. In the regression model, only statistically significant 

variables (which have tobserved > tcritical) are considered. The experimental design is rearranged with 

only the variables that have significant effects, while multiple regression is carried out again for 

the rearranged experimental sets. The sensitive combination of input variables is found in this way. 

The combination of input variables is also ranked based on the higher value of coefficients. Finally, 

the sensitive interaction of input variables for each distress is summarized in Table 6.12. 

 

 

Table 6.11: Inputs (Main Effect) as per Sensitivity Ranking of the MEPDG Distresses 

 
Distress Inputs as per Sensitivity Ranking  

 

Terminal IRI (1) Existing Initial IRI (2) Existing Initial Permanent Deformation (3) AC 

Air Voids (4) AC Effective Binder Content 

Total Permanent Deformation  (1) Initial Permanent Deformation (2) Subgrade Resilient Modulus  

(3) AADTT (4) AC Top-Layer Thickness (5) Percentage of Trucks in the 

Design Lane (6) TTC Type (7) Milled Thickness  

AC Permanent Deformation 1. (1) Percentage of Trucks in the Design Lane (2) AC Top-Layer Thickness 

(3) TTC Type (4) Milled Thickness (5) Initial Permanent Deformation (6) 

AC Binder Penetration Grade   

Total Cracking (Reflective + 

Alligator) 

1. AC Top-Layer Thickness 
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Distress Inputs as per Sensitivity Ranking  

 

AC Thermal Fracture 1. (1) Effective Binder Content (2) AC Binder Penetration Grade  (3) AC Air 

Voids 

AC Top-Down Fatigue Cracking (1) AC Effective Binder Content (2) AC Air Voids (3) AADTT (4) AC 

Top-Layer Thickness 

 

 

Table 6.12: Sensitivity Ranking of Interaction Effect of Inputs from MEPDG Distresses 

Distress Combined Effect of Inputs as per Sensitivity Ranking  

 

Terminal IRI (1) Existing Initial IRI + Operational Speed (2) Existing Initial IRI + 

Existing Initial Permanent Deformation 

Total Permanent Deformation  (1) Initial Permanent Deformation + Subgrade Resilient Modulus + 

AADTT (2) Initial Permanent Deformation + AADTT (3) AADTT + 

Percentage of Trucks in the Design Lane (4) Subgrade Resilient Modulus 

+ AADTT (5) Top-Layer Thickness + Subgrade Resilient Modulus (6) 

Top-Layer Thickness + AADTT + AC Air Voids 

 

AC Permanent Deformation (1) AADTT + Percentage of Trucks in the Design Lane (2) Initial IRI + 

AADTT (3) Initial IRI + Initial Permanent Deformation + Top-Layer 

Thickness (4) Top-Layer Thickness + Subgrade Resilient Modulus (5) 

Initial IRI + Initial Permanent Deformation (6) Top-Layer Thickness + AC 

Air Voids + AADTT (7) Initial Permanent Deformation + Milled 

Thickness (8) Initial IRI +AC Air Voids (9) Initial IRI + Initial Permanent 

Deformation + AC Top-Layer Thickness + Milled Thickness (10) Milled 

Thickness + Subgrade Resilient Modulus 

 

Total Cracking  

(Reflective + Alligator) 

2. No interaction effect found  

AC Thermal Fracture 2. (1) Effective Binder Content + AADTT (2) Effective Binder Content + 

AADTT + Percentage of Trucks in the Design Lane (3) Effective Binder 

Content + Initial Permanent Deformation (4) Effective Binder Content + 

Initial Permanent Deformation + AC Air Voids + AADTT 

3.   

AC Top-Down Fatigue 

Cracking 

(1) AC Air Voids + Initial IRI (2) AC Air Voids + Percentage of Trucks in 

the Design Lane (3) AC Air Voids + Percentage of Trucks in the Design 

Lane + AADTT (4) Initial IRI + AADTT (5) Initial Permanent 

Deformation + AC Effective Binder Content + AC Air Voids + AADTT 

(6) AC Top-Layer Thickness + Subgrade Resilient Modulus (7) Initial 

Permanent Deformation + AC Top-Layer Thickness + AC Effective 

Binder Content + AC Air Voids + AADTT 

1.  
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For interaction effects, a number of combinations are found to be sensitive for each distress, except 

total cracking (reflective and alligator) and AC bottom-up fatigue cracking. Terminal IRI is found 

to be sensitive to the combination of initial IRI and operational speed. Total permanent 

deformation is sensitive to the combination of initial permanent deformation-subgrade resilient 

modulus-AADTT, initial permanent deformation-AADTT, AADTT-percentage of trucks in the 

design lane, subgrade resilient modulus-AADTT, top-layer thickness–subgrade resilient modulus, 

top-layer thickness and AADTT-AC air voids. AC permanent deformation is found sensitive to 

the combination of the AADTT-percentage of trucks in the design lane, initial IRI–AADTT, and 

initial IRI-initial permanent deformation-top-layer thickness.  

 

The combination of effective binder content-AADTT, effective binder content-AADTT-

percentage of trucks in the design lane, effective binder content-initial permanent deformation, 

and effective binder content-initial permanent deformation-AC air voids-AADTT are proven to be 

sensitive for AC thermal fracture.  

 

The combination of AC air voids-initial IRI, AC air voids-percentage of trucks in the design lane, 

AC air voids-percentage of trucks in the design lane-AADTT, initial IRI-AADTT, initial 

permanent deformation-AC effective binder content-AC air voids-AADTT, AC top-layer 

thickness-subgrade resilient modulus and initial permanent deformation-AC top-layer thickness-

AC effective binder content-AC air voids-AADTT are found to be sensitive for AC top-down 

fatigue cracking.  

 

6.5 Sensitivity Analysis Summary 

This study is mainly focused on identifying the main effects of the independent input variables as 

well as the interaction effects of the variables on MEPDG distresses. The relative influence of the 

input variables is needed to identify the high-level accuracy of inputs for precise prediction of the 

MEPDG distresses.  

 

Since local sensitivity focuses on the local impact of the input variables on the performance of 

output, this process is carried out to identify the main effect by varying certain inputs, while 

keeping other inputs constant. Based on a wide range of changes in output distresses with respect 

to the range of changes in input variables, the input variables with substantial effects on distresses 

are listed. The relative influences of different input variables are found from the normalized values 

of the variables in the regression models of each MEPDG distress. To identify the interaction 

effects, experimental design is formed by taking the random combinations of input variables by 

changing the multiple variables at a time.  

 

To identify statistically significant sensitive variables and the sensitive combination of variables, 

multiple linear regression analysis is carried out. Sensitive input variables and their combinations 

are screened from the statistical significance test and ranked with the higher value of coefficients 

respectively.  
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Based on these identified sensitive input variables, the accuracy level of major inputs of specific 

distresses are to be improved to precisely predict MEPDG-based distresses. The flexibility of 

ranges of the input variables can also be selected based on this sensitivity analysis for economic 

pavement design and future research.  

 

The effort to obtain high accuracy levels of only sensitive input variables and their combinations, 

rather than all input variables, will be more efficient and economical.  Laboratory tests of pavement 

sections can be carried out for the specific properties only. For example, only existing IRI, 

permanent deformation, AC air voids and AC effective binder content are to be investigated to get 

Level 1 accuracy for precise predictions of Terminal IRI. Similarly, subgrade resilient modulus is 

to be investigated for prediction of the permanent deformation. Vehicles’ surveys for specific 

AADTT, percentage of trucks in the design lane and TTC types are to be conducted for precise 

prediction of the permanent deformation. Since specific sensitive properties are found for 

respective distresses, it will be more efficient to get higher accuracy levels of these properties 

through laboratory tests or investigations. Future pavement design will also be efficient and 

economical based on higher accuracy levels of these specific inputs. Therefore, future prediction 

of distresses will be improved, which will ensure efficient PMS. 

 

Based on the results found in this chapter, Level 1 accuracy is obtained for sensitive inputs. The 

MEPDG-based distresses are predicted and analyzed in the next chapter.  
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CHAPTER 7 

APPLICATION OF THE MECHANISTIC-

EMPIRICAL APPROACH: PREDICTION, 

COMPARISON AND VERIFICATION 
 

In a PMS, the performance of pavement structure significantly influences management 

decisions. That said, accurate prediction and evaluation of performance is an important aspect 

of M&R strategies. Although the performance of pavement depends on the specific types of 

materials, traffic load, performance prediction models need to be investigated to ensure precise 

prediction. This chapter investigates the predicted performance through the M-E approach and 

compares to field-evaluated performance.  

 

The work of this chapter was presented at the 2017 Transportation Association of Canada (TAC) 

Conference (Jannat 2017). 

 

7.1 Introduction  

As discussed in Chapter 1, the M-E approach is now a state-of-the-art practice for pavement 

design and enables distress predictions by incorporating the effect of all local factors, including 

traffic, pavement materials and environmental conditions. Moreover, many recent research 

works (Schram 2006, Kang 2007, Velasquez 2009, Hall 2010, Hoegh 2010, Walaa 2011, and 

El-Badawy 2012) validate the efficiency of MEPDG-based pavement design and the precise 

prediction of distresses. This approach has been adopted by the majority of highway agencies 

in North America, including many in Canada.   

 

This chapter predicts the distresses by the M-E approach and compares the predicted distresses 

to the field-evaluated performances. A cluster-based calibration is also conducted based on 

material types.   

7.2 Selected Road Sections  

The historical database of the MTO PMS-2 is reviewed to ensure a clear understanding of the 

available performance data. It is discussed in Chapter 4 that highway sections are 

homogeneously defined by pavement structure and geographic locations and do not represent 

homogeneous performance conditions. For this reason, the overall condition is observed over 

the service life for all road sections. The yearly performance of the selected highway sections is 

investigated for each performance cycle.   

 

The overall condition is observed in terms of PCI for all road sections. For example, the 

observed overall condition and service life histogram sections with Superpave mixes are 

presented in Figure 7.1. This observation confirms how many treatment activities were taken 

and whether they need to be considered for rehabilitation design during the analysis. The 

experimental design is formed by considering only the uninterrupted performance cycles. 
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Finally, a total of 176 performance cycles, which include 1,530 performance years, are 

investigated for predicting distresses. The experimental design consists of 128 highway sections 

from 19 highways. These highway sections are screened from a total of 1,800 highway sections 

with uninterrupted performance cycles for a period exceeding four years. Properties of existing 

pavement structure and site-specific traffic characteristics available for the investigation are also 

reviewed.  

 

The highway sections are selected both from the Marshall mixes and Superpave mixes. For the 

sections with Marshall mixes, a total of 113 road sections are selected from the 15 highways. 

These sections are selected from Southern Ontario (84%) and Northern Ontario (16%) freeways 

(90%) and arterials (10%). For Superpave, a total of 15 road sections are selected from Southern 

Ontario, with 11 road sections from the Central region and four road sections from the Western 

region. These sections are only selected for further investigation if the properties of existing 

pavement structure, site-specific traffic characteristics were available.  

 

Table 7.1 and 7.2 list the summaries of experimental design within the Marshall mixes and 

Superpave mixes respectively. Figure 7.2 shows the distribution of the selected road sections.  

 

7.3 Evaluation of Performance Predictions Using M-E Approach  

This chapter investigates the performance predictions through the M-E approach and compares 

those predications to the field-evaluated performance.   

This study is carried out in three steps. The M-E approach is followed in the first step to predict 

the major distresses. These distresses are predicted by using the AASHTOWare Pavement-ME 

software. For precise and efficient prediction, Level 1 accuracy is obtained for all possible inputs 

identified as sensitive in the previous chapter. In the second step, the predicted distresses are 

compared to the field-evaluated performance. In the third step, the prediction models are 

calibrated and validated. The literature review justifies the requirement of local calibration for 

the prediction models (NCHRP 2004, AASHTO 2008, AASHTO 2010, Schram 2006, 

Velasquez 2009, 2009 Hall 2010 and Hoegh 2010). The purpose of local calibration is to reduce 

potential biases and the variation of performance predictions by the globally calibrated 

prediction models. This research calibrated the prediction models based on the cluster-based 

regression for surface layer material types. The surface layer material-based cluster is used in 

this study because one of the research objectives is to incorporate the effect of surface materials 

into the prediction models of the overall condition index. For this reason, this study considers 

the cluster analysis based on surface materials and does not calculate the local calibration 

coefficients in the transfer models.Figure 7.3 presents the steps of the methodology that are 

followed in this study. 
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(a) 

 

(b) 

Figure 7.1: (a) Field Observed Overall Condition of Pavement,   and (b) Service Life 

Distribution of the Road Sections with Superpave Mixes 
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Figure 7.2: Pavement Section Selected for Experimental Design 

 

Table 7.1: Selected Pavement Sections with Marshall Mix for Experimental Design  

Source of Highway Sections No. of Pavement Sections  

Southern Ontario Total  95 

Central Region 53 

Western Region 25 

Eastern Region 17 

Northern Ontario Total  19 

Northwestern Region 2 

Northeastern Region 17 

Freeways 102 

Arterials 11 

4OO-Series Highways 68 

Marshall Mix Total  113 
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Table 7.2: Selected Superpave Sections for Experimental Design 

Region Highway  Section Name Length  

(km) 

No. of Lanes 

Central 6 106 5.90 4 

6 107 8.17 4 

6 108 4.48 2 

6 109 2.94 2 

6 110 1.37 2 

401 1052 4.12 5 

401 1139 4.12 3 

401 1067 9.23 3 

401 1068 12.66 3 

401 1154 9.23 3 

401 1155 12.66 3 

Sub-Total 2 11 74.89 
 

Western 3 77 12.20 2 

3 78 1.20 2 

7 197 7.32 2 

7 206 7.32 2 

Sub-Total 2 4 28.04 
 

Total 4 15 102.94 
 

 

7.3.1 Prediction of MEPDG-based Distresses  

At first, the three major inputs of the AASHTOWare Pavement-ME software are collected for 

the selected highway sections. It is discussed in Chapter 3 that the input data required for the 

AASHTOWare Pavement-ME analysis are mainly traffic, climate, pavement structure and 

material properties.  

 

Traffic Data  

As discussed in Chapter 3, in AASHTOWare Pavement-ME traffic inputs, include traffic 

volume adjustment factors, axle-load distribution factors and general traffic inputs.  

 

It is observed that on road sections with Marshall mixes, the AADT in year one varies from 

5,000 to 138,000, whereas with Superpave mixes, it varies from 8,000 to 171,000. It is observed 

that for the sections with Marshall mixes, AADTT varies from 400 to 36,000. It is observed that 

the AADT in year one for the sections with the Superpave mixes vary from 5,000 to 25,000 with 

a compound growth factor that varies from 2.07 to 2.71. The percentage of truck traffic varies 

from 5.53% to 20% among the highway sections. Figure 7.4 presents distribution patterns of the 

AADT, AADTT and traffic growth factors of road sections. 
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Figure 7.3: Steps in Evaluation of Performance Prediction Using M-E Approach 

 

 

Material Properties  

As discussed in the previous section, the highway sections with Marshall mixes and Superpave 

mixes are considered for empirical investigation. The highway sections consisting of similar 

material properties of the existing pavement structure are taken into consideration so that 

performance can be compared in a consistent way. Moreover, for accurate prediction of the 

distresses, a higher level of accuracy is obtained for inputs that are identified as sensitive in the 

previous chapter. For this reason, materials properties with Level 1 accuracy are collected in the 

study.  

 

From the PMS-2 database, the layers of the existing pavement structure are investigated. Since 

AASHTOWare Pavement-ME software is able to only analyse the overlay design of the M&R 

activities, this study will only consider the overlay design to be consistent. The pavement 

structure of the selected highway sections with Marshall mixes is mainly found as an overlay 
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with dense friction course (DFC) and different types of hot laid (HL) asphalt surface layers such 

as HL-1, HL-3, HL-3M, HL-4 and HL-8. The properties and use of different HL layers available 

on Ontario highways are summarized in Table 7.3. The gradation of mix design criteria of these 

layers recommended by the MTO (MTO 2010) are listed in Table 7.4.  

 

In this study, Superpave SP12.5 FC2 with the performance grade (PG) 70-28, PG 58-28 and 

SP19.0 with PG 64-28 are considered for this investigation. The latest edition of the material 

specifications (OPSS 1150 and 1151) is followed in this study to predict the MEPDG-based 

distresses (MTO 2007, MTO 2010). The Superpave mix designs developed based on the 

requirements of OPSS specifications are shown in Table 7.5.  

 

However, considering all traffic data, climate conditions and material properties, the distresses 

are predicted based on the M-E approach for 176 performance cycles.  

 

 

7.3.2 Comparison to Field-Evaluated Performance   

After predicting the distresses, the predicted distresses are compared to the field-observed 

distresses. The predicted failure is also investigated and compared to Ontario’s standard 

threshold value of failure for the specific distresses. It is found that some road sections exceed 

the threshold value of failure within the service life. These failure road sections are further 

investigated and compared to the field-evaluated scenario. Table 7.6 lists the failure sections in 

both the predicted and field-evaluated cases.  

 

Although the performance of pavement depends on the types of materials, traffic load and other 

factors may have a significant impact as well. For this reason, traffic patterns, service life and 

types of failure are investigated to identify the influential factors affecting failure. For example, 

a summary of AADT, traffic growth factors, service life and corresponding failure types of road 

sections with Superpave mixes are presented in Table 7.7. It is observed from Table 7.7 that for 

most of road sections predicted distresses have failure whereas failure was not found in case of 

field evaluation. This indicates requirement of local calibration of prediction models.  
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(a)                                                                      (b) 

   
               (c)                                                                    (d) 

 

 
                                                                              (e) 

Figure 7.4: Distribution Pattern of (a) AADT (Marshall Mixes), (b) AADTT (Marshall 

Mixes) and (c) AADT (Superpave Mixes),   (d) AADTT  (Superpave Mixes) (e) Traffic 

Growth Factor (Superpave Mixes) 
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Table 7.3: Hot Mix Surface Layers and Properties 

Hot Mix Type 
 

Abbreviation Summary of Hot Mix Use and Properties 

Dense Friction Course DFC A dense-graded surface course mix with high frictional resistance 

for high volume roads. Aggregates have an identical gradation to 

HL 1 aggregates with a maximum aggregate size of 16mm. 

Premium 100% crushed aggregates are used for fine and coarse 

aggregates from the same source.  

Hot Laid 1 HL-1 A dense-graded surface course mix with a premium quality coarse 

aggregate. It is used on high volume roads and has a maximum 

aggregate size of 16mm. Coarse aggregates are 100% crushed 

material.  

Hot Laid 2 HL-2 A sand mix used primarily as a levelling course on existing 

pavements or a surface course on low-speed traffic areas requiring 

a thin overlay. It is also used to fill wide cracks and has 100% of 

the aggregate passing the 9.5mm sieve size.  

Hot Laid 3 HL-3 A dense-graded surface course mix for intermediate volume roads 

with a maximum aggregate size of 16mm.  

Hot Laid 3 

High Stability 

HL-3HS A dense-graded padding and levelling mix of high stability. The 

coarse aggregate conforms to the physical requirements of HL 3 

with a maximum aggregate size of 16mm. The fine aggregate 

conforms to the same physical requirements as HDBC. Coarse and 

fine aggregates are 100% crushed material.  

Hot Laid 3 

Fine 

HL-3F A fine-graded mix used as a surface course where hand work is 

necessary for placement. It is also used on low volume roads, 

driveways, boulevards, etc. The maximum aggregate size is 16mm.  

Hot Laid 4 HL-4 A dense-graded mix used as a surface or binder course on low 

volume roads. The maximum aggregate size is 19mm.  

Hot Laid 4 

Fine 

HL-4F A fine graded mix used as a surface course where hand work is 

necessary for placement. It is also used on low volume roads, 

driveways, boulevards, etc. The maximum aggregate size is 19mm.  

Hot Laid 8 HL-8 A coarse-graded binder course mix. The maximum aggregate size 

is 26.5mm.  

Medium Duty 

Binder Course 

MDBC A binder course mix intended for use in locations where rutting 

and deformation is likely to occur due to frequent heavy traffic 

loading. A minimum of 80% of the coarse aggregates must have 

two crushed faces and the maximum aggregate size is 26.5mm.  

Heavy Duty 

Binder Course 

HDBC  

HL-8HS 

A high stability binder mix designed to provide superior resistance 

to rutting. Both fine and coarse aggregates are 100% crushed 

material. The maximum aggregate size is 26.5 mm.  
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Table 7.4: Mix Design Criteria of Hot Mix Surface Layers 

Mix 

Types 

Percentage Passing by Dry Mass of Aggregates 

Sieves 

mm μm 

26.5 19.0 16.0 13.2 9.5 4.75 2.36 1.18 600 300 150 75 

DFC  

HL-1  

  100  98-

100 

75-90  (Note1) 36-64 25-58 16-45  7-26  3-10  0.5  

HL-2      100  85-100  70-90 50-75 30-55  15-55  5-16  3-8  

HL-3   

HL -

3HS  

  100  98-

100 

75-90  50-60  36-60 25-58 16-45  7-26  3-10  0-5  

HL-3F    100  98-

100 

85-94  65-75  52-75 36-72 23-56  10-32  3-12  0-6  

HL-4   100  98-

100  

83-95  62-82  45-60  27-60 16-60 8-47  4-27  1-10  0-6  

HL-4F   100  98-

100  

90-98  80-92  65-80  52-80 36-72 21-56  10-32  3-12  0-6  

HL-8   

MDBC  

100  94-

100  

77-

95  

65-90  48-78  30-50  21-50 12-49 6-38  3-22  1-9  0-6  

HDBC  100  94-

100  

77-

95  

65-90  48-78  (Note 2) 21-54 12-49 6-38  3-22  1-9  0-6  

Notes:  

1. HL 1 mix for use on facilities with a posted speed of less than 80 km/h shall contain a maximum of 60% by 

volume of the total aggregates passing the 4.75 mm sieve.  

HL 1 mix for use on facilities with a posted speed of 80 km/h or greater shall contain a maximum of 50% by 

volume of the total aggregates passing the 4.75 mm sieve.  

              DFC mix shall contain from 50-55% by volume of the total aggregates passing the 4.75 mm sieve. 

2. HDBC shall contain from 35-52% by volume of the total aggregates passing the 4.75 mm sieve. 
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Table 7.5: Superpave Mix Design Properties for Ontario Highways 

Property  

OPSS10 

Requirement 

Superpave 

12.5 FC2 

PG 58-28 

Superpave 

12.5 FC2 

PG 70-28 

Superpave 

19.0 

PG 64-28 

Gradation 

(% Passing) 

Sieve Size (mm) 

19.0 90 – 100 - - 95.9 

16.0 - 99.9 100 88.4 

12.5 90 – 100 94.8 98.2 79.5 

9.5 45 – 90 79.6 83.4 70.8 

6.7 - 64.6 65.2 60.3 

4.75 45 – 55 55.0 56.2 53.2 

2.36 28 – 58 42.8 48.0 41.1 

1.18 - 32.6 36.9 29.3 

0.600 - 23.8 27.9 22.1 

0.300 - 13.2 17.5 15.6 

0.150 - 5.9 10.2 8.20 

0.075 2 – 10 3.0 5.8 4.20 

Ndes (% Gmm) 96.0 96 96 96 

Nini (% Gmm) ≤ 89.0 89 89 88.5 

Nmax (% Gmm) ≤ 98.0 97 97.8 97.3 

Air Voids (%) at Ndes 4.0 4.0 3.9 4.0 

Voids in Mineral Aggregate, VMA  

(% minimum) 

14.0 14.3 14.1 13.0 

Voids Filled with Asphalt, VFA (%) 65 – 75 72.2 72.1 72.0 

Dust Proportion (DP) 0.6 – 1.2 0.7 1.2 1.0 

Asphalt Film Thickness (μm) - 9.0 6.8 7.9 

Asphalt Cement Content (%) - 5.0 4.9 4.65 

Unit Weight (kg/m3) - 2520 2460 

 

 

 

 

 

 

 

                                                           

10 OPSS is Ontario Provincial Standard Specification. Nodes, Nini, Nmax are number of gyrations at different compaction levels 
(design, initial, and maximum), and Gmm is theoretical maximum specific gravity. 



 

111 

 

 

Table 7.6: Summary of Failure Sections with Average Value of Distresses 

No. of Section 

Failures 

Total 

Cracking 

(Reflective 

+ Alligator) 

(%) 

Terminal 

IRI 

(m/km) 

Permane

nt 

Deformat

ion 

Total 

(mm) 

AC Thermal 

Cracking:  

Prediction 

(m/km) 

Field 

Evaluation 

(%)  

 

 AC 

Bottom-

Up 

Fatigue 

Crackin

g (%) 

AC Top-

Down 

Fatigue 

Cracking:  

Prediction   

(m/km)  

Field 

Evaluation 

(%) 

Perman

ent 

Deform

ation 

AC 

Only 

(mm) 

Sections with Marshall Mixes 

No. of Section 

Failures in 

Predicted 

Distresses 

0 22 23 13 1 9 15 

% of Predicted 

Failure Sections 

0.00% 15.38% 16.08% 9.09% 0.70% 6.29% 10.49% 

Average 

Predicted Value 

13.24 1.63 16.42 42.84 0.81 95.05 10.00 

No. of Failures in 

Observed 

Distresses 

N/A 21 0 0 0 0 N/A 

% of Observed 

Failure Sections 

N/A 14.69% 0.00% 0.00% 0.00% 0.00% N/A 

Average Field 

Evaluation Value 

N/A 1.51 5.43 12.00 0.48 14.00 N/A 

Sections with Superpave Mixes 

No. of Failure 

Sections in 

Predicted 

Distresses 

14 8 6 0 0 0 8 

% of Predicted 

Failure Sections 

of Total 

93.33% 53.33% 40.00% 0.00% 0.00% 0.00% 53.33% 

Average 

Predicted Value 

23.67 2.02 18.68 5.15 1.45 139.63 8.29 

No. of Failure 

Sections in Field 

Evaluation 

N/A 1 1 0 3 0 N/A 

% Field-

Evaluated Failure 

Sections of Total 

N/A 6.67% 6.67% 0.00% 20.00% 0.00% N/A 

Average Field 

Evaluation Value 

N/A 1.36 6.18 0 12.92 2 N/A 
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Table 7.7: Summary of Failure Types, Traffic and Service Life for Superpave Sections 

Section 

Name 

AADT 

Year  

One 

AADTT  

in Year 

One 

% of 

Trucks 

Traffic 

Growth 

Factor 

Service 

Life 

(Years) 

Failure Type in Prediction 

at End of Service Life  

Failure Type in 

Field 

Evaluation at 

End of Service 

Life  

106 31,400 2,800 8.92 2.14 5 No Failure Except Reflective 

Cracking 

Failure in 

Bottom-Up  

Fatigue 

Cracking 

107 26,800 2,988 11.15 2.07 10 Failure in IRI Failure in 

Bottom-Up  

Fatigue 

Cracking 

108 24,900 3,100 12.45 2.11 14 Failure in IRI, Permanent 

Deformation Total and 

Permanent Deformation AC 

No Failure  

109 24,900 3,536 14.2 2.11 6 No Failure Except Reflective 

Cracking 

 

110 23,400 4,156 17.76 2.11 9 Failure in IRI and Permanent 

Deformation Total 

Failure in 

Bottom-Up  

Fatigue 

Cracking and 

IRI  

1052 157,700 17,656 11.2 2.71 4 Failure in Permanent 

Deformation AC 

No Failure 

1139 157,700 17,656 11.2 2.71 10 Failure in IRI, Permanent 

Deformation Total and 

Permanent Deformation AC 

No Failure 

1067 110,100 22,020 20 2.42 15 Failure in IRI, Permanent 

Deformation Total and 

Permanent Deformation AC 

No Failure 

1068 97,400 19,342 19.86 2.28 7 Failure in IRI, Permanent 

Deformation Total and 

Permanent Deformation AC 

No Failure 

1154 110,100 22,020 20 2.42 10 Failure in IRI, Permanent 

Deformation Total and 

Permanent Deformation AC 

No Failure 

1155 97,400 19,342 19.86 2.28 11 Failure in IRI, Permanent 

Deformation Total and 

Permanent Deformation AC 

Failure in Total 

Permanent  

Deformation  

77 9,400 520 5.53 2.46 8 No Failure Except in 

Reflective Cracking 

No Failure 

78 10,100 600 5.94 2.66 6 No Failure Except in 

Reflective Cracking 

No Failure 

197 21,300 2,400 11.27 2.11 5 No Failure Except in 

Reflective Cracking 

No Failure 

206 21,300 2,400 11.27 2.11 5 No Failure Except in 

Reflective Cracking 

No Failure  
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(a)                                                                     (b)  

 

(c) 

Figure 7.5: Comparison of Predicted with Observed Distresses: (a) IRI, (b) Permanent 

Deformation, and (c) Bottom-up (alligator) Fatigue Cracking 

 

Field-evaluated distress is investigated for 176 performance cycles. It is noted that for Terminal 

IRI, permanent deformation total and AC bottom-up fatigue cracking can be compared directly 

to the respective predicted values as they are measured with the similar unit in both cases. 

However, AC thermal fracture (unit = m/km in MEPDG approach and % = field evaluation) and 

top-down fatigue cracking (unit = m/km in MEPDG approach and % = field evaluation) could 

not be compared as they have a different unit.  
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Figure 7.6:  Box plot for IRI values 

  

   

(a)                                                           (b)  

Figure 7.7: Comparison of Predicted with Observed Distresses: (a) IRI, and (b) 

Permanent Deformation after Removing Outliers 

 

The predicted and field-observed values for each type of cracking and IRI are compared to 

capture the trends in both approaches. The predicted distresses are compared against observed 
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distresses to reduce bias and standard error between the predicted and measured values. Initially, 

the predicted values versus the observed values for IRI, permanent deformation and AC bottom-

up fatigue cracking are plotted in the ‘scatter plot’, since measured units are similar to those of 

the predicted distresses. Figure 7.5 presented the comparison of the predicted values versus the 

observed values for IRI, permanent deformation and AC bottom-up fatigue cracking 

respectively.  

 

 

  

Figure 7.8: Comparison of Predicted with Observed Distresses: (a) IRI, and (b) 

Permanent Deformation for Sections with SuperPave Mixes 

From Figure 7.5, it is observed that for some sections, IRI predicted values are higher than the 

field-observed values. However, the predicted permanent deformation is over-predicted 

compared to the field-observed permanent deformation. Bottom-up fatigue cracking cannot be 

compared due to the lower value in prediction. After comparing the distresses, outliers are 

identified using a statistical tool, referred to as a ‘box plot’. Figure 7.6 shows the ‘box plot’ for 

IRI values. Based on the ‘box plot’, it is observed that 2.35m/km to 3.01 m/km are upper outliers. 

However, no range for lower outliers was found for these data sets. The outliers are removed 

from permanent deformation and bottom-up fatigue cracking as well by using the ‘box plot’. 

After removing the outliers, the comparison of predicted values versus observed values are 

presented in Figure 7.7. 
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(a)    (b)  

  

  (c)                                                                                  (d)  

  

(e)                                                                                         (f)  

Figure 7.9: Comparison of Predicted Versus Field-Observed (a) Terminal IRI, (b) 

Permanent Deformation Total, (c) Bottom-up Fatigue Cracking, (d) Top-down Fatigue 

Cracking, (e) Thermal Cracking, and (f) Permanent Deformation AC for Sections with 

Superpave Mixes 
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Table 7.8: Cluster Analysis Summary for IRI 

Cluster Group Before Clustering 

 Predicted Value No of 

Observations 

Standard 

Error 

R2 

value 

Before Clustering with 

Outliers 

Calibrated Predicted IRI= 0.763 Predicted 

IRI+ 0.3985 

1,084 0.357 0.267 

Before Clustering  

after Removing 

Outliers 

Calibrated Predicted IRI = 0.795x Predicted 

IRI + 0.257 

1,028 0.323 0.324 

Cluster Name Cluster Analysis 

 Predicted Value No of 

Observations 

Standard 

Error 

R2 

value 

DFC Calibrated Predicted IRI = 0.762x Predicted 

IRI + 0.258 

382 0.28 0.38 

HL1 Calibrated Predicted IRI = 0.489x Predicted 

IRI + 0.757 

329 0.21 0.39 

HL3  Calibrated Predicted IRI = 0.92x Predicted 

IRI + 0.109 

110 0.23 0.47 

HL3M Calibrated Predicted IRI = 0.263x Predicted 

IRI + 0.938 

74 0.23 0.21 

HL4 Calibrated Predicted IRI = 0.126x Predicted 

IRI +1.044 

60 0.19 0.34 

HL8 Calibrated Predicted IRI = 0.744x Predicted 

IRI + 0.326  

12 0.05 0.38 

Superpave Calibrated Predicted IRI = 1.42 x Predicted 

IRI -0.987 

59 0.28 0.51 

Total   1,026     

 

To improve the goodness of fit further, a clustering regression analysis is conducted. Since the 

material properties have a substantial effect on the prediction of distresses, which were 

discussed in the previous chapter, they are further compared to field-observed distresses based 

on the material properties. All types of AC layers in Marshall mixes are taken into consideration 

for further investigation. For example, Figure 7.8 presents the comparison of IRI after 

permanent deformation for sections with Superpave mixes after cluster analysis. Figure 7.8 

reveals that the observation points are now distributed close to a 45o line with improved R2 for 

both cases of IRI and permanent deformation. For all other surface layers, this comparison is 

carried out accordingly. Following this comparison and clustering analysis, the results of the 
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initial cluster analysis are summarized for IRI and permanent deformation in Table 7.8 and 7.9 

respectively. 

For further understanding, all the distresses are compared to the field-observed distresses along 

with the threshold value of failure for each type of surface layer. For example, Figure 7.9 

illustrates this comparison of predicted and field-observed values for each type of cracking and 

IRI. For comparison, the given distress is also allied to a threshold value of failure.  

 

Table 7.9: Summary of Cluster Analysis for Permanent Deformation 

Cluster Group Before Clustering 

 Predicted Value No of 

Observations 

Standard 

Error 

R2 

value 

Before Clustering 

with Outliers 

Calibrated Predicted Permanent Deformation = 0.763 

Predicted Permanent Deformation + 0.399 

1,084 5.68 0.0018 

Before Clustering  

After Removing 

Outliers 

Calibrated Predicted Permanent Deformation = 0.777x 

Predicted Permanent Deformation + 0.276 

1,052 4.2 0.0315 

Cluster Name Cluster Analysis 

 Predicted Value No. of 

Observations 

Standard 

Error 

R2 

value 

DFC Calibrated Predicted Permanent Deformation = 0.243x 

Predicted Permanent Deformation + 3.033 

330 1.21 0.20 

HL1 Calibrated Predicted Permanent Deformation = 0.227x 

Predicted Permanent Deformation + 3.64 

329 1.98 0.12 

HL3  Calibrated Predicted Permanent Deformation = 0.223x 

Predicted Permanent Deformation + 3.48 

101 1.54 0.1  

HL3M Calibrated Predicted Permanent Deformation = 0.362x 

Predicted Permanent Deformation + 2.55 

60 1.51 0.3  

HL4 Calibrated Predicted Permanent Deformation = 0.366x 

Predicted Permanent Deformation + 1.8 

44 2.21 0.1  

HL8 Calibrated Predicted Permanent Deformation = 0.677x 

Predicted Permanent Deformation + 0.939 

12 0.85 0.61 

Superpave Calibrated Predicted Permanent Deformation = 0.358x 

Predicted Permanent Deformation + 0.575 

46 0.79 0.44 

Total   845     

 

After the cluster analysis, improved goodness of fit (improved standard of error and R2) is 

observed for each model of IRI. However, lower R2 is found for the IRI model of road sections 
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with HL-3M. However, the improved goodness of fit (lower standard of error and higher R2) is 

found for all calibrated models of permanent deformation compared to previous models after 

removing the outliers. 

Although the existing pavement structure is similar, the field performance varies differently 

over the service life among the road sections. From Figure 7.1, it is evident that at the end of the 

service life, the condition of pavement varies with a PCI value from 90 to 65. The service life 

also varies from four to 15 years among these road sections.  

In Table 7.6, MEPDG-based distresses show over-prediction of failure than in field-observed 

values for road sections with Marshall mixes and Superpave mixes. For example, in road 

sections with Superpave mixes, MEPDG-based predictions show failure in IRI for eight 

highway sections (53.33% of 15 highway sections), while the field-observed case only shows 

one failure. Similarly, failure in predicted permanent deformation (total) is found in six highway 

sections (40% of the 15 highway sections), while the field-observed case only shows one failure 

(6.67% of the 15 highway sections). For Marshall mixes, in the observed scenario, no failure is 

found in permanent deformation and thermal cracking. However, in the case of the MEPDG 

prediction, 23 failures are found in permanent deformation and 13 failures in thermal cracking. 

In the case of Superpave mixes, no failures were found for thermal cracking and top-down 

fatigue cracking.  

The comparison of bottom-up fatigue cracking portrays an entirely different picture. For bottom-

up fatigue cracking, field-observed values show three failures in road sections with Superpave 

mixes (20% of the 15 highway sections) and one failure in the road sections with Marshall 

mixes. In the M-E approach, no failures are found. In the case of Superpave mixes, predicted 

values of total cracking (reflective and alligator) and AC permanent deformation confirm failure 

in 14 road sections (93.33% of total highway sections) and eight road sections (53.33% of total 

highway sections). For road sections with Marshall mixes, predicted AC permanent deformation 

confirms failure in 15 road sections.  

In the end of service life, the predicted failures are compared for all road sections. Failure cases 

for road sections with Superpave mixes are investigated and presented in Table 7.7. From Table 

7.7, it is observed that road sections (section 108 and 1067) with a higher service life, exceeding 

14 years, forecast predicted failure in IRI, total permanent deformation and AC permanent 

deformation. Despite low AADT (AADT 24,900), failure is found in section 108. Failure in 

predicted permanent deformation is found due to high levels of traffic, where AADT is more 

than 97,000 and AADTT is more than 17,000 in section 1052, 1139, 1067, 1068, 1154 and 1155, 

regardless of the length of service life. The service life of these sections outlined above vary 

from four to 15 years.  
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From Figure 7.5, it is observed that for some sections, IRI predicted values are higher than field-

observed values. However, the predicted permanent deformation is found to be over-predicted 

compared to field-observed permanent deformation. Bottom-up fatigue cracking cannot be 

compared due to the lower values in the predictions. 

After removing outliers, improved R2 is found in both cases of IRI and permanent deformation, 

which is presented in Figure 7.7. After the cluster analysis, ‘goodness of fit’ is further improved. 

Figure 7.8 shows improved R2 for both IRI and permanent deformation of road sections with 

Superpave mixes.  

All other distresses are also compared for each type of material. Figure 7.9 portrays the 

comparison of predicted values versus observed distress values for road sections with Superpave 

mixes. From Figure 7.9, it is observed that predicted IRI shows slightly higher values than in 

field-evaluated values. Similarly, total permanent deformation shows higher values than field-

evaluated values. The reverse scenario is found in bottom-up fatigue cracking. Bottom-up 

fatigue cracking is found as under-predicted, with failure sections found in the field evaluation. 

However, total cracking (reflective and alligator) and AC permanent deformation cannot be 

compared to field-observed values, since they are not evaluated in the field separately. 

Nevertheless, total permanent deformation is evaluated over the whole pavement structure, 

which includes AC permanent deformation.   

To improve the goodness of fit further, a clustering regression analysis is carried out that 

considers the properties of the surface layer. Table 7.8 and 7.9 present the cluster analysis of 

IRI and permanent deformation respectively.  

From Table 7.8, it is found that after removing outliers, R2 is improved and a lower standard of 

error is found. However, after clustering, improved R2 is found for all of AC layer types, except 

HL3M.   

A similar scenario is found in Table 7.9. It is found that after clustering analysis, R2 is improved 

and lower standard error is found for all calibrated models in case of permanent deformation. 

The statistical significance of the calibrated models are also tested by comparing Fobserved value 

to Fcritical value (considering α = 0.05) from the ANOVA of each model. All the models are 

found as statistically significant as Fobserved > F critical. Table 7.10 and Table 7.11 listed the Fobserved 

and Fcritical Values of IRI models and rut depth models respectively.  
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7.3.3 Validation Analysis of Calibrated Models  

A validation analysis is conducted so that the calibrated models developed, dependent on the 

AC layer types, can produce accurate predictions of pavement distress. The validation process 

requires an independent data set not used in the calibration analysis. In this study, a ‘split sample 

approach’ is used for the validation analysis. The split sample approach splits the data set, with 

80% used in calibration and 20% used for validation. The data set is split randomly in this 

research. However, since a full performance cycle is used in the analysis for each road section, 

validation data sets are not always exact and may exceed 20% in some cluster groups.  For 

example, for IRI models of pavement sections with DFC, the validation data set is supposed to 

be 76 observations (20% of 382 observations). However, since the analysis for this road section 

considers all performance years of a full performance cycle, the validation data set counts a total 

of 83 observations for this category. In this way, the validation data set is formed for all cluster 

groups.  

 

The predicted IRI and permanent deformation for each cluster group are corrected by using the 

respective calibration model. After calibration, these values are further compared to field 

observed values to investigate whether the ‘goodness of fit’ has improved accordingly.  After 

comparison, the improved ‘goodness of fit” is observed in both models of IRI and permanent 

deformation for all materials types. The improved R2 value is observed for IRI and permanent 

deformation, which are presented in Figure 7.10 and Figure 7.11. In the ideal case, the 

observation points are supposed to be distributed over a 45-degree line. However, the data points 

of IRI and permanent deformation are distributed close to the 45-degree line and almost equally 

distributed between both sides of the line, thus confirming the validity of the calibration models 

for each cluster group. 
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 (c)                                                           (d)  

   

                                (e)                                                                    (f) 

 

(g) 

Figure 7.10: Comparison of Calibrated IRI to Field Observed Value for Pavement 

Sections with (a) DFC, (b) HL-1, (c ) HL-3, (d) HL-3M, (e ) HL-4, (f) HL-8, (g) 

Superpave Mixes 
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Table 7.10: Statistical Significance Test of IRI Models 

Cluster 

Name  

IRI Model Fobserved  Fcritical Significance 

DFC Calibrated Predicted IRI = 0.762x 

Predicted IRI + 0.258 

231.91 3.87 Significant 

HL1 Calibrated Predicted IRI = 0.489x 

Predicted IRI + 0.757 

32.79 3.89 Significant 

HL3  Calibrated Predicted IRI = 0.9199x 

Predicted IRI + 0.1088  

95.88 3.94 Significant 

HL3M Calibrated Predicted IRI = 0.263x 

Predicted IRI + 0.9378 

18.81 3.99 Significant 

HL4 Calibrated Predicted IRI = 0.1256x 

Predicted IRI +1.044 

9.12 4.00 Significant 

HL8 Calibrated Predicted IRI = 0.7439x 

Predicted IRI + 0.3262  

6.03 4.96 Significant 

Superpave Calibrated Predicted IRI = 1.42x 

Predicted IRI - 0.987 

60.83 4.02 Significant 
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                                           (c )                                                                    (d)  

  

                                         (e )                                                                        (f)  

 

(g)  

Figure 7.11: Comparison of Calibrated Rut Depth to Field Observed Value for Pavement 

Sections with (a) DFC, (b) HL-1, (c ) HL-3, (d) HL-3M, (e) HL-4, (f) HL-8, (g) Superpave 

Mixes 
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Table 7.11: Statistical Significance Test of Permanent Deformation Models 

Cluster 

Name  

Permanent Deformation Model Fobserved  Fcritical Significance 

DFC Calibrated Predicted Permanent 

Deformation = 0.243x Predicted 

Permanent Deformation + 3.033 

 

84.15 3.87 Significant 

HL1 Calibrated Predicted Permanent 

Deformation = 0.227x Predicted 

Permanent Deformation + 3.64 

32.79 3.88 Significant 

HL3  Calibrated Predicted Permanent 

Deformation = 0.223x Predicted 

Permanent Deformation + 3.48 

14.27 3.94 Significant 

HL3M Calibrated Predicted Permanent 

Deformation = 0.362x Predicted 

Permanent Deformation + 2.55 

28.29 4.00 Significant 

HL4 Calibrated Predicted Permanent 

Deformation = 0.365x Predicted 

Permanent Deformation + 1.8 

7.75 4.06 Significant 

HL8 Calibrated Predicted Permanent 

Deformation = 0.677x Predicted 

Permanent Deformation + 0.939 

8.67 4.96 Significant 

Superpave Calibrated Predicted Permanent 

Deformation = 0.3576x Predicted 

Permanent Deformation + 0.575 

34.76 4.06 Significant 

7.4 Summary of Evaluation of Performance Predictions Using M-E Approach 

This study investigates the performance of pavement sections through the M-E approach and 

compares it to the field-evaluated performance. The study is conducted by using historical 

pavement performance data from the MTO PMS-2.   

 

Based on this analysis, it is found that most IRI and permanent deformation are over-predicted 

than those in field observations. However, bottom-up fatigue cracking portrays an entirely 

different picture with under-prediction compared to field evaluation.  

 

Comparison of traffic levels and length of service life reveals that pavement sections with higher 

service life, exceeding 14 years, forecast predicted failure in IRI, total permanent deformation 

and AC permanent deformation. Failure in predicted permanent deformation is found for higher 

levels of traffic, regardless of the length of service life.  

 

Although the M-E approach showed under-prediction of the bottom-up fatigue cracking, the 

lower level of fatigue resistance suggested by the master curve (compared to CPATT laboratory 

results) justifies the bottom-up fatigue failure in the field-observed scenario. These results show 

the need for local calibration of the prediction models of fatigue cracking and permanent 
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deformation in the M-E approach. More importantly, the future maintenance strategy in the PMS 

requires consideration by addressing the fatigue responses of the highway sections.     

 

The clustering regression analysis based on the surface layer confirms the improved goodness 

of fit for both IRI and permanent deformation. The validation process, with an independent data 

set, also confirms the validity of the calibrated models. Therefore, the predicted distresses based 

on the M-E approach are to be corrected further to ensure precise prediction.  

 

The distresses predicted in this chapter are corrected accordingly and further investigated in the 

next chapter to develop the overall condition index model.  
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CHAPTER 8 

DEVELOPING PREDICTION MODELS FOR 

ASSESSING OVERALL PAVEMENT 

CONDITIONS  
 

In this chapter, prediction models are developed for assessing the overall condition by using a 

regression approach that considers the distresses predicted by the M-E approach. The 

deterioration of the overall pavement varies significantly depending on the traffic characteristics 

and material types. The deterioration model is estimated for three groups of AADT to recognize 

the influence of the difference in traffic and surface layer material properties. The time required 

for maintenance is also estimated for these categories.  

 

The work of this chapter was presented at the Transportation Research Board (TRB) meeting 

2017 (Jannat 2017). Part of this chapter was presented at the Transportation Association of 

Canada (TAC) Conference 2017 (Jannat 2017). Part of this chapter was also presented at the 

Transportation Association of Canada (TAC) Conference 2016 (Jannat 2016). 

 

8.1 Introduction 

The literature review in Chapter 2 and Chapter 3 confirms that in predicting the deterioration of 

pavement conditions, a generalized sigmoidal equation, irrespective of traffic and materials, is 

followed. It is also discussed in Chapter 3 that the predicted performance jump for any treatment 

is estimated generally based on engineering judgement. However, this jump depends on material 

types of the treatment applied. Moreover, the deterioration rate of the pavement varies 

significantly depending on the characteristics of traffic and the properties of materials (Prozzi 

2001). In the same way, pavement service life and performance are found to be highly sensitive 

to traffic characteristics and pavement structure, which were investigated in Chapter 6. For this 

reason, the deterioration models should incorporate the effect of material properties and traffic 

characteristics. The M-E analysis will predict distress by considering local traffic and materials 

for specific road sections. Therefore, the performance index developed from the MEPDG-based 

distresses will overcome these limitations and in turn, improve the prediction of the pavement 

overall condition. 

 

This chapter will develop the overall performance index model (for PCI and DMI) by 

incorporating distresses of the M-E approach.  The performance deterioration curve (equation 

3.1) will also be estimated based on traffic characteristics and material types. 

 

8.2 Road Performance Data and Selected Road Sections 

The experimental design consists of 128 highway sections. These highway sections consist of 

113 sections with Marshall mixes and 15 sections with Superpave mixes. In this study, a total 
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of 161 performance cycles are investigated for predicting pavement performance deterioration 

patterns. 

8.3 Developing Prediction Models to Assess the Overall Pavement Condition 

This chapter focuses on developing an overall performance index based on the distresses 

predicted in the M-E approach, and estimating the deterioration models for different ranges of 

AADT and material types. 

 

The highway sections are investigated for performance over the performance cycle. After 

predicting the distresses, the overall performance index model is estimated by the regression 

analysis that considers the MEPDG distresses. A statistical significance test is carried out for 

the estimated model. The traffic is categorized based on the range of the AADT, which is 

observed on the selected highways. The material types used in the cluster analysis in the 

previous chapter are under investigation in this chapter. The deterioration models are estimated 

based on the AADT ranges and material types of the existing pavement structure. Figure 8.1 

shows the steps in the methodology. 

 

 

Figure 8.1: Steps for Developing Prediction Model for Assessing the Overall Condition of 

Pavement 

8.3.1 Estimation of Overall Performance Index Model 

As discussed in Chapter 4, composite indices, including DMI and PCI are used to quantify the 

condition of roads on Ontario highways over time. The PCI is a function of roughness, rut depth 

and DMI (refer to equation 4.2), while the factors making up the DMI are thermal cracking, AC 
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bottom-up fatigue cracking and AC top-down fatigue cracking. Similar independent variables 

used in Ontario’s DMI and PCI models are considered in the study. However, this study 

considers the predicted distresses from the M-E approach as independent variables, while field-

evaluated distresses are used in case of field evaluated PCI models.   

 

The prediction models in this study are estimated by using the OLS approach. However, 

pavement deterioration may be affected by many factors. These unobserved factors influencing 

pavement performance may be correlated or not. Since the investigation in Chapter 5 confirms 

that the unobserved factors in PCI and DMI are highly correlated, there is a chance that the OLS 

may not be able to retrieve unbiased parameter estimates for the regression models. For this 

reason, this study also estimated the models by using the SUR approach to capture the 

deterioration process of pavement performance.  

 

After the regression analysis, the estimated model is found as:  

𝐷𝑀𝐼 𝑏𝑦 𝑂𝐿𝑆 = 7.741 + 2.344 𝑆𝑐𝑎𝑙𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝑜𝑡𝑡𝑜𝑚 𝑢𝑝 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 +
                               0.671 𝑆𝑐𝑎𝑙𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇𝑜𝑝 𝐷𝑜𝑤𝑛 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔 +
                               0.046𝑆𝑐𝑎𝑙𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔          (8.1) 

Where, 

Scaled Predicted Bottom up Fatigue Carking= Predicted Bottom-up Fatigue Carking /25 

(%)  

Scaled Predicted Top Down Fatigue Cracking=

Predicted Top Down Fatigue Cracking/378.80 (m/km)  

Scaled Predicted Thermal Cracking =  Predicted Thermal Cracking /189.40 (m/km)               

 

𝐷𝑀𝐼 𝑏𝑦 𝑆𝑈𝑅 = 7.739 + 2.448 𝑆𝑐𝑎𝑙𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝑜𝑡𝑡𝑜𝑚 𝑢𝑝 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔   
+      0.679 𝑆𝑐𝑎𝑙𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇𝑜𝑝 𝐷𝑜𝑤𝑛 𝐹𝑎𝑡𝑖𝑔𝑢𝑒 𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔
+       0.051𝑆𝑐𝑎𝑙𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐶𝑟𝑎𝑐𝑘𝑖𝑛𝑔                                                (8.2) 

 𝑃𝐶𝐼 𝑏𝑦 𝑂𝐿𝑆 = 29.733 − 16.384 𝑆𝑐𝑎𝑙𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐼𝑅𝐼  −
                             1.46  𝑆𝑐𝑎𝑙𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  𝑃𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 + 4.644 𝐷𝑀𝐼              (8.3)                                                                              

𝑃𝐶𝐼 𝑏𝑦 𝑆𝑈𝑅 = 28.256 − 16.32 𝑆𝑐𝑎𝑙𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐼𝑅𝐼  −
                             1.446  𝑆𝑐𝑎𝑙𝑒𝑑 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑢𝑡 𝐷𝑒𝑝𝑡ℎ + 7.54 𝐷𝑀𝐼                                             (8.4)                                                                                              

Where, 

Scaled Predicted IRI= Predicted IRI/2.30 (m/km) (for arterials) 

   = Predicted IRI/1.90 (m/km) (for freeways) 

Sacled Predicted Permanent Deformation Total =Predicted Permanent Deformation 

Total/ 19.0 (mm) 
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(a)  

 

(b)  

Figure 8.2: Comparison of Predicted PCI to Field Evaluated PCI (a) for all Road 

Sections, (b) for one Section of Highway 6 over the Performance Cycle 

The significance of the PCI model is tested by comparing Fobs value (307 from the model) to 

Fcritical value. Considering α = 0.05:  Fcritical= F α , p-1=3,  n-p=247, =2.65. It is found that Fobs> F critical. 

Therefore, the model is significant. The tobs for each parameter is compared to tcritical for 0.025,n-

p=247 =1.97. Therefore, the estimated parameters are significant too.      

The predicted PCI is further compared to the field-evaluated PCI for all sections to examine the 

‘goodness of fit’. This performance comparison for one highway section (one section of 

highway 6 from the year 1998 to 2012) is presented in Figure 8.2. Figure 8.2 shows that the 

performance predicted by the model is close to actual field-evaluated PCI and following a 

similar pattern of the actual conditions.  
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8.3.2 Overall Condition based on the Traffic and Materials 

It is observed that the AADT in the first year of the performance varies from 5,000 to 138,000 

for the highway sections with Marshall mixes, and from 8,000 to 171,000 for the highway 

sections with Superpave mixes. The performance cycle of the road sections varies from four to 

18 years for the highway sections with Marshall mixes, and four to 15 years for the highway 

sections with Superpave. Figure 8.3 shows the distribution of the AADT and performance cycle 

of the highway sections with Marshall mixes and Superpave mixes. The distribution pattern of 

AADT, AADTT and traffic growth factors are also discussed in Chapter 7.    

The traffic in Ontario is categorized as A, B, C, D and E (low to high volume) depending on the 

Equivalent Single Axle Load (ESAL) for the projected traffic level expected in the design lane 

over a 20-year period, regardless of the actual design life of the pavement.  The projected ESALs 

of the selected highway sections over the 20-year period are found to be more than 30 million, 

which are considered as high-traffic volume or category ‘E’ (OHMPA 2007).  

From Figure 8.3, it is observed that approximately 50% of the highway sections are with AADT 

of 25,000 or less, 20% of the highways are with AADT between 25,000 to 50,000 and 30% of 

the highways are with AADT over 50,000 for road sections with Marshall mixes. A comparable 

scenario is observed in the highway sections with Superpave mixes too. In the case of road 

sections with Superpave mixes, approximately 43% of the highway sections are with AADT of 

25,000 or less, 12% of the highway sections are with AADT from 25,000 to 50,000 and 45% of 

the highways are with AADT over 50,000. Since all the highways sections are found with high-

traffic volume, the sections are further categorized based on the level of AADT in the first year 

of performance.  Table 8.1 shows the category of AADT that is followed in this research.  

 

Table 8.1: Traffic Category 

Category AADT in First Year of Performance 

Low High ≤25,000 

Medium High >25,000 to ≤ 50,000 

Very  High >50,000 
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Table 8.2: Average Improvement in PCI for Treatment Types 

Material Type  Initial PCI 

  Average 
Standard 

Deviation 

DFC 93 4.1 

HL1 92 4.4 

HL3 91 4.5 

HL3M 91 4.9 

HL4 90 5.4 

HL8 90 6.5 

Superpave 

(SP12.5 FC2  )  
94 7.1 

 

From the PMS-2 database, the layers of the existing pavement structure are investigated. As 

discussed in Chapter 7 that the pavement structure of the selected highway sections with 

Marshall mix design is mainly found as resurfaced with DFC and different types of HL asphalt 

surface, these materials types are used in estimation of deterioration models.  

The improvement of PCI after applying a certain treatment, in terms of the type of materials, is 

also estimated by the prediction model. With the responses of the MEPDG-based pavement 

distresses in the first year of the performance cycle, the improved performance is estimated for 

that certain material types. The improved PCI value for material types is summarized in Table 

8.2. Table 8.2 shows that the improvement in the PCI for overlay with Superpave mixes (PCI 

94) and DFC (PCI 93) are higher than in PCI for the other HL layer.  

 

8.3.3 Deterioration of Overall Condition Based on Traffic and Materials 

Generally, the future deterioration pattern of the overall pavement condition over the time is 

calculated based on a general prediction model, which is a sigmoidal form with different model 

coefficients (TAC 2013). The sigmoidal curve is followed to predict the future deterioration of 

Ontario highways (equation 3.1) (Kazmierowski 2001, TAC 2013 and Ningyuan 2001).  

Depending on the model coefficients, the shape of the performance curve may be a straight line, 

convex, concave or S-shaped, with varying degrees of curvature. With this flexibility offered by 

the curve, the coefficients of the models are estimated to fit into different pavement performance 

deterioration trends due to change in AADT and properties of pavement materials. The model 

coefficients are determined automatically using the least squares, nonlinear regression method. 

The coefficients of the equation 3.1 (discussed in Chapter 3) are estimated in this study for field-

evaluated scenarios and predicted scenarios by the M-E approach. 
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(a)                                                      (b) 

  

                                       (c)                                                            (d)  

Figure 8.3: Histogram of (a) AADT for Sections with Marshall Mixes; (b) AADT for 

Sections with Superpave Mixes, (c) Performance Cycles of Sections with Marshall Mixes 

(d) Performance Cycles of Sections with Superpave Mixes 

 

After estimating the coefficients of each model, analysis of variance (ANOVA) shows that all 

the models are significant (as the Fobserved value is found as higher than the Fcritical value) and the 

parameters of the respective models are significant (as the tobserved is found as higher than the      
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tcritical) too. For the three cases (HL3 with AADT 25,000 to 50,000; HL4 with AADT 25,000 to 

50,000 and HL8 with AADT 25,000 to 50,000), the least squares method could not complete 

the iteration due to the limited number of observations. For these three categories, both 

prediction models are plotted and calibrated against the actual field-evaluated condition over 

the performance cycle. For all other categories, both models are plotted and compared to field-

evaluated PCI value over the performance cycle. Figure 8.4 presents the comparison of both 

models to the actual field-evaluated PCI for DFC (with AADT >50,000). The estimated 

coefficients of all the models are listed in Table 8.3.  

 

 

 

 
 

Figure 8.4: Comparison of the Predicted models to Field-Evaluated PCI for DFC with 

AADT >50,000. 

 

Since the estimated coefficients of the model for different traffic levels offer a variation on 

similar materials, this will impact the service life and the respective time to maintenance 

requirements. For this reason, the time to maintenance requirements is estimated by considering 

the maintenance requirement trigger value of PCI. The maintenance requirement is triggered 

when PCI deteriorates to a level below 65. The expected time of maintenance for each category 

is depicted in Table 8.4. Table 8.5 and 8.6 listed the average time to maintenance along with 

standard deviation in the case of field observation and predicted by the M-E approach 

respectively.  
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Table 8.3: Estimated Coefficients of the Pavement Deterioration Model 

Surface 

Material 

Type 

AADT  Coefficients of PCI Model Based on  

Field-Evaluated Value: 

𝑃 = 𝑃0 − 2𝑒(𝑎−𝑏𝑐𝑡) 

Coefficient of PCI Model Based 

on the M-E Approach:  

𝑃 = 𝑃0 − 2𝑒(𝑎−𝑏𝑐𝑡) 

a b  c  a b  c  

DFC ≤25,000 2.369 4.746 2.786 2.888 4.417 2.009 

>25,000 to 

≤ 50,000 

2.750 4.500 3.600 2.800 4.500 3.600 

>50,000 2.980 1.910 2.000 3.110 2.170 2.000 

HL1 ≤25,000 4.396 5.594 1.521 3.170 5.249 1.971 

>25,000 to 

≤ 50,000 

4.418 5.144 1.429 3.559 4.783 1.668 

>50,000 N/A11  N/A 

HL3 ≤25,000 2.990 6.230 2.939 4.394 5.668 1.610 

>25,000 to 

≤ 50,000 

4.570 5.500 1.570 4.580 5.660 1.581 

>50,000 N/A  N/A  

HL3M ≤25,000 2.590 5.630 2.900 2.632 6.416 3.171 

>25,000 to 

≤ 50,000 

N/A  N/A  

>50,000 N/A  N/A 

HL4 ≤25,000 7.229 9.249 1.364 6.956 8.670 1.364 

>25,000 to 

≤ 50,000 

7.345 8.780 1.340 7.420 8.790 1.341 

>50,000 N/A  N/A 

HL8 ≤25,000 1.866 15.361 16.865 1.928 15.538 16.050 

>25,000 to 

≤ 50,000 

2.369 4.746 2.786 2.425 4.800 2.779 

>50,000 N/A N/A  

Superpave (SP 

12.5 FC2) 

≤25,000 2.369 4.746 2.786 2.888 4.417 2.009 

>25,000 to 

≤ 50,000 

2.650 2.400 1.900 2.690 2.300 1.890 

>50,000 2.880 2.386 1.869 2.903 2.400 1.900 

 

 

 

                                                           

11 N/A=Not Available 



 

136 

 

Table 8.4: Summary of Expected Time to Maintenance 

Surface Material 

Type 
AADT  

Expected Time to Maintenance (Year) 

PCI Model Based 

on Field-Evaluated 

Value 

PCI Model 

Based on M-E 

Approach 

DFC 

≤25,000 17 15 

>25,000 to ≤ 50,000 14 12 

>50,000 12 9 

HL1 

≤25,000 14 17 

>25,000 to ≤ 50,000 13 13 

>50,000 N/A12 N/A 

HL3 

≤25,000 12 10 

>25,000 to ≤ 50,000 9 9 

>50,000 N/A N/A 

HL3M 

≤25,000 11 10 

>25,000 to ≤ 50,000 N/A N/A 

>50,000 N/A N/A 

HL4 

≤25,000 8 8 

>25,000 to ≤ 50,000 7 7 

>50,000 N/A N/A 

HL8 

≤25,000 7 7 

>25,000 to ≤ 50,000 6 6 

>50,000 N/A N/A 

Superpave  

(SP 12.5 FC2) 

≤25,000 17 16 

>25,000 to ≤ 50,000 16 15 

>50,000 14 13 

 

8.4 Results of Deterministic Approach  

The prediction models are estimated by using the OLS approach as well as the SUR approach 

in this study. The PCI model is similar in both approaches. The model is found as statistically 

significant too. The significance of the PCI model is tested by comparing the Fobserved value to 

Fcritical value and is found as significant. The estimated parameters are tested for statistical 

significance by comparing the tobserved of each parameter to tcritical and are found as significant. 

The IRI is found with a higher value of coefficient compared to the coefficient of rut depth or 

permanent deformation and DMI. The existing model confirms a similar trend too.  

 

                                                           

12 N/A= Not available 
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The predicted PCI is further compared to the field-evaluated PCI for all sections to examine the 

‘goodness of fit’ and is consistent. The plot of field-evaluated versus predicted PCI (SUR 

approach) in Figure 8.2 (a) presents the ‘goodness of fit’ with the R² = 0.84.  

 

To detect the difference in the predicted performance by the model, the predicted PCI is plotted 

against actual field-observed PCI over a continuous road segment (one section of Highway 6) 

for a performance cycle of 15 years (1998 to 2012) in Figure 8.2 (b). This figure clarifies that 

the performance predicted by the model is close to the actual field-evaluated PCI.  

 

The selected highway sections are found with high-traffic volume (category ‘E’) and thus are 

further categorized into three groups based on the distribution of the AADT shown in Figure 

8.3. From Figure 8.3, it is observed that about 50% of the highway sections (50% for the sections 

Marshall mixes and 43% for the sections with Superpave mixes) are with AADT of 25,000 or 

less. They are categorized into three groups, listed in Table 8.1, to recognize the influence due 

to the difference in AADT on the deterioration prediction models.  

 

From Table 8.2, it is observed that the improvement in PCI for the overlay of Superpave (PCI 

94) and DFC (PCI 93) are higher than in PCI for the other HL layer.  

 

All the deterioration models are found as significant (as the Fobserved value is found as higher 

than the Fcritical value) and the parameters of the respective model are significant (as the tobserved 

is found as higher than the tcritical) too. For the cases of HL3 with AADT 25,000 to 50,000, HL4 

with AADT 25,000 to 50,000 and HL8 with AADT 25,000 to 50,000, the least squares method 

could not complete the iteration due to the limited number of observations. However, prediction 

models are plotted and calibrated against the actual field-evaluated condition over the 

performance cycle.  

 

Figure 8.4 reveals that the deterioration of PCI predicted by the models from the field-evaluated 

PCI and MEPDG-based distresses are following the patterns close to the actual field-evaluated 

PCI over the performance cycle (for DFC with AADT >50,000). A similar scenario is observed 

for other prediction models.  

 

The models could not be estimated for cases of AADT more than 50,000 in HL-1, HL-3, HL-

3M, HL-4 and HL-8 due to the limitation of an available number of observations.  

 

The expected time to maintenance presented in Table 8.4 reveals that overlay with DFC and 

Superpave will require maintenance requirements later than other HL layers. However, the level 

of AADT affects the required time to maintenance from 15 to 9 years in DFC for low AADT to 

high AADT. For the road sections with Superpave mixes, the required time to maintenance 

varies from 16 to 13 years for low AADT to high AADT. HL-8 requires early maintenance (6 

to 7 years) than other HL types. It is also found that the estimated time for maintenance of most 

categories, except HL1 with AADT ≤ 25,000, in the M-E approach, is equal or lower than in 
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field-evaluated PCI. This may happen, as the distresses predicted by the M-E approach are over-

predicted in most cases.  

 

Table 8.5: Average Expected Time to Maintenance for PCI Model Based on Field 

Evaluation 

Surface 

Material 

Type 

AADT  

Time to Maintenance/Failure  from Distribution 

(Year) 

Based on Field 

Observation  

Standard 

Deviation 

Coefficient of 

Variation 

DFC 

≤25,000 17.0 7.24 0.43 

>25,000 to ≤ 50,000 14.0 2.87 0.21 

>50,000 13.2 7.63 0.58 

HL1 

≤25,000 13.7 4.64 0.34 

>25,000 to ≤ 50,000 13.0 2.86 0.22 

>50,000 N/A   

HL3 

≤25,000 13.2 5.32 0.40 

>25,000 to ≤ 50,000 9.0 1.54 0.17 

>50,000 N/A   

HL3M 

≤25,000 10.8 3.28 0.30 

>25,000 to ≤ 50,000 N/A   
>50,000 N/A   

HL4 

≤25,000 9.1 1.26 0.14 

>25,000 to ≤ 50,000 6.7 0.81 0.12 

>50,000 N/A   

HL8 

≤25,000 7.0 0.90 0.13 

>25,000 to ≤ 50,000 6.4 0.89 0.14 

>50,000 N/A   

Superpave 

(SP 12.5 FC2) 

≤25,000 16.8 1.60 0.10 

>25,000 to ≤ 50,000 15.9 2.98 0.19 

>50,000 14.2 7.56 0.53 
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Table 8.6: Average Expected Time to Maintenance Based on M-E Approach 

Surface 

Material 

Type 

AADT  

Time to Maintenance /Failure from 

Distribution (Year)  

Based on M-E 

Approach 

Standard 

Deviation 

Coefficient 

of Variation 

DFC 

≤25,000 14.9 6.31 0.42 

>25,000 to ≤ 

50,000 
12.3 2.69 0.22 

>50,000 9.1 4.11 0.45 

HL1 

≤25,000 16.4 7.54 0.46 

>25,000  to ≤ 

50,000 
13.1 3.28 0.25 

>50,000 N/A   

HL3 

≤25,000 10.7 2.43 0.23 

>25,000  to ≤ 

50,000 
9.0 1.46 0.16 

>50,000 N/A   

HL3M 

≤25,000 9.5 2.51 0.26 

>25,000 to ≤ 

50,000 
N/A 

  
>50,000 N/A   

HL4 

≤25,000 8.9 1.31 0.15 

>25,000 to ≤ 

50,000 
6.7 0.82 0.12 

>50,000 N/A   

HL8 

≤25,000 7.1 1.29 0.18 

>25,000 to ≤ 

50,000 
5.7 0.74 0.13 

>50,000 N/A   

Superpave 

(SP 12.5 

FC2) 

≤25,000 16.2 1.23 0.08 

>25,000 to ≤ 

50,000 
14.7 2.36 0.16 

>50,000 12.6 6.041 0.4779 

 

 

8.5 Probabilistic Approach on Deterioration of Overall Condition   

The expected time to maintenance is estimated for all observations in Table 8.5 and Table 8.6. 

The time to maintenance estimated by the deterministic approach can further be investigated 

with a probabilistic analysis to ensure that the estimate is realistic and reasonably probable.  For 

this reason, a probabilistic approach is applied to estimate the probability of failure.  
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The distribution of time to failure or maintenance may vary depending on the material types and 

traffic. For this reason, the distribution of time to maintenance is plotted for each category to 

identify the type of distribution. For both field-observed and M-E approach cases, probability 

paper plots are compared for each category and distribution types are selected. Figure 8.5 shows 

the probability plots for DFC (for AADT >50000) for field-evaluated PCI. It is found that the 

Weibull distribution is the best fit for this category. For all other categories of traffic and 

materials, the ‘best-fit’ distribution of time to maintenance is identified accordingly. The 

distribution parameters are estimated from the probability paper plot and following the method 

of moments for Weibull distribution. Table 8.7 summarizes the distribution parameters for all 

categories for the field-observed cases. Table 8.8 summarizes the distribution parameters for all 

categories for the M-E approach. The highest R2 value of the ‘best fit’ distribution for each sub-

category is shown in bold font in Table 8.7 and Table 8.8. 

In solving t following equations, the distribution parameters for the respective distributions 

are estimated.  

For normal distribution, the Probability Density Function (PDF) is calculated by using the 

following equation (Benjamin 1970; Ang 1975 and Pandey 2014):  

𝑓(𝑥) =
1

√2 𝜋𝜎
 𝑒

−(𝑥−𝜇)2

2𝜎2    − ∞ ≤ 𝑥 ≤  ∞         (8.6) 

Where,  

µ= mean of distribution or location parameter 

𝜎 = standard deviation or scale parameter  

 

For exponential distribution, the PDF is calculated by using the following equation:  

 

𝑓(𝑥) = λ 𝑒−λ𝑥                       (8.7) 

           Where,  

λ= scale parameter and 𝑥 > 0  

 

The Cumulative Distribution Function (CDF) of exponential distribution is calculated by using 

the following equation: 

 𝐹(𝑥) = 1 − 𝑒−λ𝑥           (8.8) 

 

For log-normal distribution, the PDF is calculated by using the following equation:  

 

𝑓(𝑥) =
1

√2 𝜋𝑥𝜻
 𝑒

−(𝑙𝑛𝑥−λ)2

2𝜻2    𝑥 ≥ 0;  𝜻 >  ∞         (8.9) 

Where,  

ζ = shape parameter or slope  

http://en.wikipedia.org/wiki/Lambda#Lower-case_letter_.CE.BB
http://en.wikipedia.org/wiki/Lambda#Lower-case_letter_.CE.BB
http://en.wikipedia.org/wiki/Lambda#Lower-case_letter_.CE.BB
http://en.wikipedia.org/wiki/Lambda#Lower-case_letter_.CE.BB
http://en.wikipedia.org/wiki/Lambda#Lower-case_letter_.CE.BB
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λ= scale parameter or intercept  

 

CDF of the log-normal distribution is calculated by using the following equation: 

𝐹𝑋 (𝑥) =  ∫ 𝑓𝑋 (𝑥)𝑑𝑥 = 𝜙 (
𝑙𝑛𝑥−λ

𝜁

𝑥

−∞
)                                                                                               (8.10) 

λ=ln(𝜇) −
1

2
 𝜁2                                                                                                                                     (8.11) 

ζ =√𝑙𝑛(1 + 𝛿2)                    (8.12)  
 

Where,  

𝛿 = coefficient of variation 

 

The PDF of the Weibull distribution is calculated by using the following equation: 

𝑓(𝑥) =  
𝛼

𝛽𝛼  𝑥𝛼−1𝑒−(
𝑥

𝛽
)𝛼 

                    (8.13) 

 

Where,  

𝛼 =shape parameter or slope,  

β = scale parameter or intercept  

          mean, x ̅ = 𝛽Г (1 +
1

𝛼
) 

          Standard deviation, s = 𝛽√Г (1 +
2

𝛼
) −  Г (1 +

1

𝛼
)

2

 

         Г= gamma function  

 

The CDF of the Weibull distribution is calculated by using the following equation: 

𝐹(𝑡) = 1 − 𝑒−(
𝑡

𝛽
)
𝛼
 
                                                                                                                             (8.14) 

 

The Weibull reliability function is calculated by using the following equation:  

𝑅(𝑡) = 𝑒−(
𝑡

𝛽
)𝛼 

                                                                                                                                      (8.15)  

 

The Weibull hazard rate function is calculated by using the following equation: 

ℎ(𝑡) =
𝛼

𝛽
(

𝑡

𝛽
)
𝛼−1

                     (8.16)   

 

Where,  

T = age  

𝛼 =shape parameter or slope,  

β = scale parameter or intercept  

 

http://en.wikipedia.org/wiki/Lambda#Lower-case_letter_.CE.BB
http://en.wikipedia.org/wiki/Lambda#Lower-case_letter_.CE.BB
http://en.wikipedia.org/wiki/Lambda#Lower-case_letter_.CE.BB
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Figure 8.5: Probability Paper Plot of Time to Maintenance for DFC (AADT >50,000) for 

PCI model based on Field Evaluated Value 

It is observed from Table 8.7 that for most of the categories, the distribution of the time to 

maintenance is ‘best fit’ by the Weibull distribution. However, the normal distribution is found 

as ‘best fit’ for HL1 with AADT ≤25,000, HL3 with AADT ≤25,000, and HL-8 with AADT 

≤25,000. The log-normal distribution is found as ‘best-fit’ for sections with Superpave mixes 

with AADT >50,000. The exponential distribution is also found as ‘best- fit’ for only one 

category of HL-3M with AADT ≤25,000.  
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Table 8.7: Distribution Parameters of Time to Maintenance for PCI based on Field- 

Evaluated Values 

Surface 

Materia

l Type 

AADT  

Normal Distribution 
 Log-Normal 

Distribution 

Exponential 

Distribution 
Weibull Distribution 

R2 
Locati

on 

Scale 

Para

meter 

R2 

Scale 

Para

meter  

Shap

e 

Para

mete

r  

R2 

Scale 

Param

eter  

R2 

Scale 

Param

eter 

from 

Probab

ility 

Paper 

Plot 

Shape 

Para

meter 

from 

Proba

bility 

Paper 

Plot 

Scale  

Param

eter by 

Metho

d of 

Mome

nts 

Shap

e   

Para

meter 

by 

Meth

od of 

Mom

ents 

DFC 

≤25,000 0.863 17.021 7.238 0.802 0.408 2.751 0.065 0.059 0.867 19.853 1.855 19.181 2.518 

>25,000  

to ≤ 

50,000 

0.669 14.024 2.873 0.625 0.203 2.620 
-

6.270 
0.071 0.730 15.256 4.437 15.168 5.649 

>50,000 0.972 13.226 7.627 0.898 0.429 2.120 0.084 0.109 0.975 10.457 2.004 10.305 2.366 

HL1 

≤25,000 0.970 13.707 4.639 0.901 0.329 2.564 0.932 0.073 0.968 15.454 2.822 15.292 3.248 

>25,000  

to ≤ 

50,000 

0.901 12.950 2.861 0.835 0.218 2.537 
-

4.691 
0.077 0.917 14.212 4.196 14.073 5.201 

>50,000 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

HL3 

≤25,000 0.958 13.174 5.320 0.944 0.389 2.503 0.213 0.076 0.955 14.989 2.380 14.820 2.667 

>25,000  

to ≤ 

50,000 

0.765 9.016 1.544 0.727 0.170 2.185 

-

10.24

0 

0.111 0.840 9.690 5.711 9.648 6.859 

>50,000  N/A            

HL3M 

≤25,000 0.983 10.798 3.280 0.968 0.297 2.335 0.989 0.093 0.984 12.099 3.135 11.972 3.663 

>25,000  

≤ 

50,000 

 N/A            

>50,000  N/A            

HL4 

≤25,000 0.850 9.089 1.258 0.795 0.138 2.198 

-

15.32

0 

0.110 0.868 9.667 6.807 9.617 8.619 

>25,000 

to ≤ 

50,000 

0.792 6.655 0.806 0.774 0.121 1.888 

-

21.80

0 

0.150 0.870 7.022 7.962 6.998 9.926 

>50,000  N/A            

HL8 

≤25,000 0.747 7.047 0.901 0.775 0.127 1.944 

-

17.52

0 

0.142 0.740 7.382 8.993 7.428 9.371 

>25,000 

to ≤ 

50,000 

0.856 6.371 0.891 0.834 0.139 1.842 

-

13.90

0 

0.157 0.901 6.798 6.258 6.745 8.517 

>50,000  N/A            

Superpa

ve(SP 

12.5 

FC2) 

≤25,000 0.645 16.823 1.602 0.642 0.095 2.818 

-

38.11

0 

0.059 0.746 17.509 10.799 17.514 
12.79

0 

>25,000 

to ≤ 

50,000 

0.753 15.862 2.981 0.732 0.186 2.747 
-

6.563 
0.063 0.807 17.245 4.511 17.066 6.203 

>50,000 0.850 14.159 7.563 0.935 0.501 2.525 0.815 0.071 0.888 16.260 1.908 15.968 1.952 
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Table 8.8: Distribution Parameters of Time to Maintenance for PCI based on M-E 

Approach 

Surface 

Materi

al  

AADT  

Normal Distribution 
 Log-Normal 

Distribution 

Exponential 

Distribution 
Weibull Distribution 

R2 
Loca

tion 

Scale 

Para

meter 

R2 

Scale 

Para

meter  

Shape 

Para

meter  

R2 

Scale 

Para

meter  

R2 

Scale 

Paramet

er from 

Probabili

ty Paper 

Plot 

Shape 

Para

meter 

from 

Proba

bility 

Paper 

Plot 

Scale  

Para

mete

r by 

Meth

od of 

Mom

ents 

Shape   

Param

eter by 

Metho

d of 

Mome

nts 

DFC 

≤25,000 0.88 14.92 6.31 0.81 0.41 2.62 0.07 0.07 0.88 17.34 1.86 16.81 2.53 

>25,000 

to ≤ 

50,000 

0.86 12.25 2.69 0.81 0.22 2.48 -4.50 0.08 0.89 13.48 3.98 13.31 5.24 

>50,000 0.97 9.13 4.11 0.90 0.43 2.12 0.08 0.11 0.98 10.46 2.00 10.31 2.37 

HL1 

≤25,000 0.96 16.40 7.54 0.95 0.44 2.70 0.37 0.06 0.98 18.64 2.17 18.51 2.31 

>25,000 

to ≤ 

50,000 

0.96 13.05 3.28 0.90 0.25 2.54 -2.78 0.08 0.95 14.44 3.75 14.30 4.51 

>50,000   N/A                       

HL3 

≤25,000 0.93 10.68 2.43 0.86 0.23 2.34 -3.99 0.09 0.92 11.72 4.13 11.63 5.03 

>25,000 

to ≤ 

50,000 

0.76 9.50 2.51 0.72 0.16 2.19 
-

11.66 
0.11 0.83 9.68 6.11 9.65 7.29 

>50,000   N/A                       

HL3M 

≤25,000 0.98 9.50 2.51 0.97 0.26 2.22 -2.00 0.11 0.99 10.54 3.61 10.44 4.27 

>25,000 

to ≤ 

50,000 
  N/A                       

>50,000   N/A                       

HL4 

≤25,000 0.85 8.95 1.31 0.80 0.15 2.18 
-

13.45 
0.11 0.87 9.55 6.42 9.49 8.15 

>25,000 

to ≤ 

50,000 

0.79 6.75 0.82 0.77 0.12 1.90 
-

21.72 
0.15 0.87 7.12 7.95 7.10 9.91 

>50,000   N/A                       

HL8 

≤25,000 0.89 7.14 1.29 0.88 0.18 1.95 -7.06 0.14 0.90 7.69 5.37 7.66 6.48 

>25,000 

to ≤ 

50,000 

0.81 5.69 0.74 0.79 0.13 1.73 
-

17.26 
0.18 0.87 6.04 6.88 6.00 9.28 

>50,000   N/A                       

Superpa

ve (SP 

12.5 

FC2) 

≤25,000 0.64 16.20 1.23 0.64 0.08 2.78 
-

62.54 
0.06 0.75 16.72 13.76 16.73 16.24 

>25,000 

to ≤ 

50,000 

0.74 14.72 2.36 0.73 0.16 2.68 -9.97 0.07 0.80 15.81 5.41 15.69 7.36 

>50,000 0.87 12.64 6.04 0.94 0.45 2.43 0.70 0.08 0.90 14.48 2.10 14.27 2.21 
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A similar scenario is observed for the distribution of time to maintenance, which is estimated 

by the PCI based on the M-E approach. From Table 8.8, Weibull distribution is found as the 

‘best fit’ distribution for most of the categories. However, the normal distribution is also found 

as ‘best -fit’ for DFC with AADT ≤25,000, HL1 with AADT ≤25,000 and HL3 with AADT 

≤25,000. In this case, neither exponential distribution nor log-normal distribution is found as 

‘best-fit’ distribution for any of the categories. Even though there are some exceptions, the 

Weibull distribution is followed in the next step while estimating the probability of failure for 

all categories in a consistent way and also for simplicity of application. Moreover, the Weibull 

distribution is considered as flexible and it is commonly used to model time to failure of any 

component (Benjamin 1970, and Ang 1975). 

Based on the distribution parameters listed in Table 8.7 and Table 8.8, the probability of failure 

is estimated for each category. Table 8.9 and 8.10 present the summary of the probability of 

failure for each for 5-year interval up to the 30th year. In both cases, the survival probability up 

to the fifth year is approximately 80% to 90% for each category. Corresponding probability of 

failure of up to the fifth year is found as 0% to 13% for field-evaluated PCI and 0% to 16.8% 

for MEPDG-based PCI. Therefore, this probability indicates the minimum requirement of 

maintenance up to first 5th  year after the treatment. For field-evaluated PCI up to 10th year after 

treatment, a higher probability of failure is found for the case DFC with >50,000 AADT 

(38.8%), HL3 with AADT 25,000 to ≤50,000 (72.2%), HL3M with AADT ≤25,000 (40.4%), 

HL4 with AADT ≤25,000 (75.3%), HL4 with AADT 25,000 to ≤50,000 (100%), HL8 with 

AADT ≤25,000 (100%) and HL8 with AADT 25,000 to ≤50,000 (100%). Since the estimated 

mean maintenance time is less than 10 years for HL3 with AADT 25,000 to ≤50,000 (9 years), 

HL4 with AADT ≤25,000 (9 years), HL4 with AADT 25,000 to ≤50,000  (6.6 years),  HL8 with 

AADT ≤25,000 (7 years)  and HL8 with AADT 25,000 to ≤50,000 (6.37 years), it may have 

higher probability of failure. A similar scenario is found for the probability of failure up to the 

tenth year in the case of M-E based PCI. For both cases, the probability of failure is found as 

67% to 100%, 85% to 100% and 95% to 100%, up to the 20th , 25th  and 30th  year respectively. 

The probability of failure depending on the pavement age will help pavement engineers set a 

priority of the road sections for next period of maintenance.  

8.6 Probabilistic Approach for Determining Failure of Individual Distress  

The time to maintenance is estimated based on the overall condition in terms of PCI. In the 

deterministic approach, the time to maintenance is estimated by the deterioration equation when 

the trigger value becomes 65 or less (refer to section 8.4). In the probabilistic approach, the 

probability of failure is also estimated from the distribution of the mean time to maintenance. 

The mean time to maintenance is calculated from the overall condition of pavement in terms of 

PCI when the trigger value becomes 65 or less (refer to section 8.5). In previous sections, the 

time to maintenance mainly focuses on the overall condition of the pavement.  However, the 

pavement may expect failure due to any specific distress (if the target value of failure is reached 

for any individual distress) before reaching the PCI trigger value of failure. For this reason, the 
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probability of failure of each specific distress is investigated along with the overall condition of 

the pavement.   

 

Table 8.9: Probability of Failure for PCI based on Field-evaluated Value 

Surfa

ce 

Mate

rial 

Type 

AADT  

 Mean 

Time to 

Maintena

nce from 

Distributi

on of  

Field-

evaluated 

PCI 

model 

(Year) 

Parameter of Weibull 

Distribution 
Probability of Failure 

Shape 

Paramete

r , 𝜶 

Scale 

Parameter, β 

Survival 

Probabi

lity up 

to 5th 

Year 

Probabi

lity of 

Failure 

up to 

5th 

Year 

Probabi

lity of 

Failure 

up to 

10th  

Year 

Probabi

lity of 

Failure 

up to 

15th 

Year 

Probabi

lity of 

Failure 

up to 

20th  

Year 

Probabi

lity of 

Failure 

up to 

25th 

Year 

Probabil

ity of 

Failure 

up to 

30th 

Year 

DFC 

≤25,000 17.02 2.52 19.18 0.97 0.03 0.18 0.42 0.67 0.86 0.95 

>25,000 to 

≤ 50,000 
14.02 5.65 15.17 1.00 0.00 0.09 0.61 0.99 1.00 1.00 

>50,000 13.23 1.79 14.87 0.87 0.13 0.39 0.64 0.82 0.92 0.97 

HL1 

≤25,000 13.71 3.25 15.29 0.97 0.03 0.22 0.61 0.91 0.99 1.00 

>25,000 to 

≤ 50,000 
12.95 5.20 14.07 1.00 0.01 0.16 0.75 1.00 1.00 1.00 

>50,000 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

HL3 

≤25,000 13.17 2.67 14.82 0.95 0.05 0.30 0.64 0.89 0.98 1.00 

>25,000 to 

≤ 50,000 
9.02 6.86 9.65 0.99 0.01 0.72 1.00 1.00 1.00 1.00 

>50,000 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

HL3

M 

≤25,000 10.80 3.66 11.97 0.96 0.04 0.40 0.90 1.00 1.00 1.00 

>25,000 to 

≤ 50,000 
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

>50,000 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

HL4 

≤25,000 9.09 8.62 9.62 1.00 0.00 0.75 1.00 1.00 1.00 1.00 

>25,000 to 

≤ 50,000 
6.66 9.93 7.00 0.97 0.04 1.00 1.00 1.00 1.00 1.00 

>50,000 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

HL8 

≤25,000 7.05 9.37 7.43 0.98 0.02 1.00 1.00 1.00 1.00 1.00 

>25,000 to 

≤ 50,000 
6.37 8.52 6.75 0.93 0.08 1.00 1.00 1.00 1.00 1.00 

>50,000 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Super

pave(

SP 

12.5 

FC2) 

≤25,000 16.82 12.79 17.51 1.00 0.00 0.00 0.13 1.00 1.00 1.00 

>25,000 to 

≤ 50,000 
15.86 6.20 17.07 1.00 0.00 0.04 0.36 0.93 1.00 1.00 

>50,000 14.16 1.95 15.97 0.90 0.10 0.33 0.59 0.79 0.91 0.97 
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Table 8.10: Probability of Failure for PCI based on M-E Approach 

Surface 

Material 

Type 

AADT  

Mean Time 

to 

Maintenan

ce  from 

Distributio

n of  

MEPDG- 

based PCI 

Model 

(Years)  

Parameter of Weibull 

Distribution 
Probability of Failure 

Shape 

Parameterr  

 

Scale 

Parameter, 

Survival 

Prob. 

Up to 

5th 

Year 

Up to 

5th 

Year 

Up to 

10th  

Year 

Up to 

15th 

Year 

Up to 

20th  

Year 

Up to 

25th 

Year 

Up to 

30th 

Year β 

DFC 

≤25,000 14.92 2.53 16.81 0.96 0.05 0.24 0.53 0.79 0.94 0.99 

>25,00

0 to ≤ 

50,000 

12.25 5.24 13.31 0.99 0.01 0.20 0.85 1.00 1.00 1.00 

>50,00
0 

9.13 2.37 10.31 0.84 0.17 0.61 0.91 0.99 1.00 1.00 

HL1 

≤25,000 16.40 2.31 18.51 0.95 0.05 0.22 0.46 0.70 0.87 0.95 

>25,00
0 to ≤ 

50,000 

13.05 4.51 14.30 0.99 0.01 0.18 0.71 0.99 1.00 1.00 

>50,00

0 
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

HL3 

≤25,000 10.68 5.03 11.63 0.99 0.01 0.37 0.97 1.00 1.00 1.00 

>25,00

0 to ≤ 
50,000 

9.05 7.29 9.65 0.99 0.01 0.73 1.00 1.00 1.00 1.00 

>50,00

0 
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

HL3M 

≤25,000 9.50 4.27 10.44 0.96 0.04 0.57 1.00 1.00 1.00 1.00 

>25,00

0 to ≤ 

50,000 

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

>50,00
0 

N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

HL4 

≤25,000 8.95 8.15 9.49 1.00 0.01 0.78 1.00 1.00 1.00 1.00 

>25,00
0 to ≤ 

50,000 

6.75 9.91 7.10 0.97 0.03 1.00 1.00 1.00 1.00 1.00 

>50,00

0 
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

HL8 

≤25,000 7.14 6.48 7.66 0.94 0.06 1.00 1.00 1.00 1.00 1.00 

>25,00

0 to ≤ 
50,000 

5.69 9.28 6.00 0.83 0.17 1.00 1.00 1.00 1.00 1.00 

>50,00

0 
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Superpave ≤25,000 16.20 16.24 16.73 1.00 0.00 0.00 0.16 1.00 1.00 1.00 

(SP 12.5 
FC2) 

>25,00

0 to ≤ 

50,000 

14.72 7.36 15.69 1.00 0.00 0.04 0.51 1.00 1.00 1.00 

  >50,00
0 

12.64 2.21 14.27 0.91 0.09 0.37 0.67 0.88 0.97 0.99 
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Table 8.11: Probability of Failure and Maintenance due to Failure in Individual Distress 

Surface 

Material  

AADT  Probability of Failure Probability of 

Maintenance 

due to Failure 

in Individual 

Distress 

Bottom-up 

Fatigue 

Cracking 

Top-

down 

Fatigue 

Cracking 

Thermal 

Cracking 

Rut 

Depth 

IRI 

DFC ≤25,000 0.000 0.000 0.000 0.000 0.000 0.000 

>25,000 to 

≤ 50,000 

0.000 0.001 0.000 0.000 0.000 0.001 

>50,000 0.000 0.001 0.005 0.000 0.004 0.005 

HL1 ≤25,000 0.000 0.000 0.000 0.002 0.001 0.002 

>25,000 to 

≤ 50,000 

0.000 0.000 0.000 0.002 0.008 0.008 

>50,000 N/A  N/A  N/A  N/A  N/A  N/A  

HL3 ≤25,000 0.000 0.000 0.010 0.000 0.001 0.010 

>25,000 to 

≤ 50,000 

0.000 0.000 0.031 0.000 0.015 0.031 

>50,000 N/A  N/A  N/A  N/A  N/A  N/A  

HL3M ≤25,000 0.000 0.000 0.002 0.000 0.003 0.003 

>25,000 to 

≤ 50,000 

N/A  N/A  N/A  N/A  N/A  N/A  

>50,000 N/A  N/A  N/A  N/A  N/A  N/A  

HL4 ≤25,000 0.000 0.000 0.015 0.001 0.000 0.015 

>25,000 to 

≤ 50,000 

0.000 0.000 0.020 0.006 0.000 0.020 

>50,000 N/A  N/A  N/A  N/A  N/A  N/A  

HL8 ≤25,000 0.000 0.000 0.000 0.000 0.000 0.000 

>25,000 to 

≤ 50,000 

0.000 0.000 0.000 0.004 0.000 0.004 

>50,000 N/A  N/A  N/A  N/A  N/A  N/A  

Superpave

(SP 12.5 

FC2) 

≤25,000 0.000 0.000 0.000 0.007 0.029 0.029 

>25,000 to 

≤ 50,000 

0.000 0.000 0.000 0.008 0.041 0.041 

>50,000 0.000 0.000 0.000 0.041 0.062 0.062 

 

At first, the distribution of each individual distress is investigated. The distribution of IRI, 

permanent deformation, thermal cracking, bottom-up fatigue cracking, top-down fatigue 

cracking, along with the distribution of DMI and PCI, are observed for years for the selected 

road sections. For each road section, the yearly performance in terms of the condition of each 

individual distress is observed. A Monte Carlo simulation is carried out by considering the 

distribution parameters for each category of materials and traffic levels. The probability of 

failure of each individual distress is estimated for the corresponding threshold value of failure. 
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The time to maintenance is triggered if there is any failure of any specific distress over the 

performance cycle regardless of the PCI value. Table 8.11 summarizes the probability of failure 

considering each category of distress separately.  

 

From Table 8.11, it is found that the probability of failure for individual distress is very low 

(less than 10% for each category) over the performance cycle. The resultant probability of 

maintenance is also very low (less than 10%) for each category.   

 

This analysis will help pavement engineers make decisions regarding the selection of treatment 

in terms of the surface layer. The estimation of the probability of failure for surface layer types 

for specific traffic groups and corresponding time to maintenance will help pavement 

management decide on effective maintenance strategies. 

8.7 Chapter Summary  

In this chapter, an overall condition index model is estimated by incorporating the distresses of 

the M-E approach. The experimental design consists of a total of 128 highway sections which 

contain both Marshall mixes and Superpave mixes. The model of the overall condition is 

developed based on both the M-E approach and field-evaluated performance. The maintenance 

time requirement is estimated by the deterministic approach and corresponding probability of 

failure is estimated by the probabilistic approach.   

The selected highway sections are found with high-traffic volume (category ‘E’) and thus are 

further categorized into three groups based on the distribution of the AADT. For this reason, the 

deterioration models are estimated for the three groups to recognize the influence on the models 

due to their differences in AADT. The performance predicted by the model is comparable to the 

actual field-evaluated PCI. The improvement in PCI with the overlay design with Superpave 

and DFC are higher compared to other HL surfaces.  

In the deterministic approach, the expected time to maintenance for the overlay with DFC and 

Superpave is higher than hot-laid layers. On the other hand, HL-8 requires early maintenance 

compared to other types of overlay layers. The traffic level for the same surface layer affects the 

required time to maintenance. 

 

The AADT affects the required time to maintenance from 15 to 9 years in DFC for low AADT 

to high AADT. For the road sections with Superpave  mixes, the required time to maintenance  

varies from 16 to 13 years for low AADT to high AADT. HL-8 requires early maintenance (6 

to 7 years) than other types. It is also found that the estimated time to maintenance for most 

categories, except HL1 with AADT ≤25,000, in the M-E approach is equal or lower than the 

field-evaluated PCI. This may happen as the distresses predicted by the M-E approach are over-

predicted in most cases. 

Since the distribution of time to failure or maintenance may vary depending on the types of 

materials and traffic, these distributions are further investigated. It is found that the Weibull 
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distribution is the best fit for most of the categories of traffic and materials. In the probabilistic 

approach, the probability of failure is estimated for each category. The probability of failure for 

each 5-year interval up to the 30th year is investigated.  In both cases of field-evaluated PCI and 

the M-E approach, the survival probability up to the 5th year is approximately 80% to 90% for 

each category. The corresponding probability of failure up to the 5th year is very low, with 0% 

to 13% for field-evaluated PCI and 0% to 16.8% for MEPDG-based PCI. Therefore, this 

probability indicates the minimum requirement of maintenance up to the first 5th year after the 

treatment. For field-evaluated PCI up to 10th year after treatment, a higher probability of failure 

is found for the case DFC with >50,000 AADT (38.8%), HL3 with AADT 25,000 to ≤50,000 

(72.2%), HL3M with AADT ≤25,000 (40.4%), HL4 with AADT ≤25,000 (75.3%), HL4 with 

AADT 25,000 to ≤50,000 (100%), HL8 with AADT ≤25,000 (100%) and HL8 with AADT 

25,000 to ≤50,000 (100%). A similar scenario is found for the probability of failure up to the 

tenth year in the case of the M-E based PCI. Moreover, for all categories, the probability of 

failure up to the 20th, 25th and 30th year are very high. This probability of failure depending on 

the pavement age will help pavement engineers set a prioritized maintenance schedule for the 

road sections. 

The time to maintenance is estimated using both the deterministic and probability of failure is 

estimated by a probabilistic approach based on the overall condition in terms of PCI. However, 

the pavement may expect failure due to any specific distress (if the target value of failure is 

reached for any individual distress) before reaching the PCI trigger value of maintenance. For 

this reason, the probability of failure of each specific distress is investigated as well. For this 

purpose, a Monte Carlo simulation is carried out by considering the distribution parameters for 

each category of materials and traffic levels. The distresses considered for this investigations 

are IRI, permanent deformation, thermal cracking, bottom-up fatigue cracking and top-down 

fatigue cracking. The probability of failure of each individual distress is estimated for the 

corresponding threshold value of failure. From the Monte Carlo simulation, it is found that the 

probability of failure for individual distress is very low (less than 10% for each category) over 

the performance cycle. The resultant probability of maintenance is also very low (less than 10%) 

for each category.   

This analysis will help pavement engineers to make a decision in selecting treatment in terms 

of the surface layer. The estimation of the probability of failure for surface layer types for 

specific traffic groups and corresponding time to maintenance will help select priority lists of 

road sections for maintenance and enable management to decide on effective maintenance 

strategies. The results from the investigations can be used for predicting the future pavement 

conditions for different levels of traffic and materials and thereby can be used in M&R decisions 

in a realistic way. 
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CHAPTER 9 

INVESTIGATING LIFE CYCLE COST ANALYSIS 
 

In this chapter, an LCCA is carried out for a period of forty years for alternate resurfacing options 

based on the deterioration models of the overall condition that are developed in the previous 

chapter.  

The work of this chapter was presented at the TAC Conference 2016 (Jannat 2016).  

9.1 Introduction  

Transportation agencies spend billions of dollars on infrastructure asset management every year. 

Identification of cost-effective practices to preserve this huge investment made in the highway 

infrastructure is always challenging for highway agencies. A cost-effective pavement M&R 

approach is needed to allocate the transportation infrastructure budget in an efficient way.  

 

Recent research (Mandapaka 2012, De la Graza 2010, and Labi 2005) has contributed significantly 

to investigating LCCA to identify the cost-effective pavement M&R schedules that are developed 

generally based on a subjective index or M&R decision trees. However, the prediction of pavement 

performance is improved by incorporating the effect of traffic and materials which is investigated 

in the previous chapter. Therefore, this improved prediction of pavement performance will ensure 

more precise identification of the cost-effective M&R strategy in a LCCA.  

 

This chapter will analyse the LCCA of pavement considering the overall condition of the pavement 

and the deterioration model of the performance index based on specific materials and traffic level 

which are developed in the previous chapter. 

9.2 Investigation of LCCA  

This chapter will investigate the LCCA of pavement by considering the estimated PCI 

deterioration model developed in the previous chapter both for (i) field-evaluated PCI, and (ii) PCI 

by the M-E approach.   

 

The deterioration rate of the overall condition is found to change depending on the type of materials 

and AADT level. This variation of deterioration is taken into account for predicting future 

performance and remaining service life. The LCCA is carried out by considering the variation of 

deterioration for materials and traffic volume investigated in the previous chapter. In this study, 

the LCCA is carried out for period of 40 years. The LCCA is carried out by predicting future 

performance for the type of treatment applied. It is imperative to predict the deterioration of 

pavement in a precise way by considering material properties and traffic levels. The steps utilized 

in investigating the LCCA are presented in Figure 9.1.  
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Figure 9.1: Steps in Investigation of LCCA 

 

Since the deterioration of the overall condition has a variation on the road segment and is 

dependent on AC layer types and AADT levels, it will impact the maintenance decisions and 

scheduling. For this reason, a LCCA is carried out by considering this variation due to types of 

pavement layers and AADT levels. In this study, the variation of layer thickness is not taken into 

consideration as layer thickness was not found to vary on a large scale. Unit costs of materials used 

in this study are shown in Table 9.1.  

For empirical investigations, a typical pavement structure is considered, which consists of a one 

kilometer length section with three lanes in each direction (average 3.65m width for each lane). A 

sample cost estimation for a typical pavement structure is shown in Table 9.2.  

Net present worth (NPW) is compared for each alternative overlay layer for a period of 40 years. 

NPW is calculated in the following equation (TAC 2013):  

𝑁𝑃𝑊 = 𝐼𝐶 + ∑ 𝑀&𝑅𝑗
𝑘
𝑖=1  (

1

1+𝑖𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡
)𝑛𝑗 − 𝑠𝑣 (

1

1+𝑖𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡
)𝐴𝑃     (9.1) 

Where,  

NPW= Net Present Worth ($) 

IC= Initial Cost ($) 

k= Number of future maintenance, preservation and rehabilitation activities  

M&Rj = Cost of jth future maintenance, preservation and rehabilitation activities ($) 

idiscount = Discount Rate (%) 
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nj= Number of years from the present of the jth future maintenance, preservation or 

rehabilitation treatments 

SV= Salvage Value ($) 

AP= Analysis period (year) 

 

In this study, a discount rate of 5% is used and the salvage value is not taken into consideration.  

The PCI value is considered as a trigger level for maintenance when it becomes 65 or less. The 

improvement in performance and associated service life is observed for all resurfacing options.  

On the selected pavement section, the overall performance in terms of deterioration of PCI is 

observed. If the PCI value becomes 65 or less, a treatment is applied from following six options 

(which are mainly available in the database for the selected road sections): 

•    Overlay with DFC 

•    Overlay with HL-1 

•    Overlay with HL-3 

•    Overlay with HL-4 

•    Overlay with HL-8  

•    Overlay with Superpave  

The maintenance activities (rout and seal) are also applied every three years over the 40 years. The 

predicted service life for each overlay option is different for the selected category of traffic and 

materials. For this reason, the required time to apply the treatment is different and the required 

number of treatments are found to vary in a different way. Figure 9.2 and Figure 9.3 show the 

variation of performance of the pavement section (with existing DFC with AADT <25,000) for 

alternate treatment options.  

The activities that are taken in the LCCA for PCI model based on the field-evaluated value and 

the PCI model based on the M-E approach are listed in Table 9.3 and Table 9.4, respectively. The 

NPW values are compared to identify the cost-effective treatment option. The NPW values for 

field-evaluated PCI model and for PCI based on M-E approach are presented in Table 9.5 and 

Table 9.6 respectively. 

9.3 Discussion of Results  

As one would expect from the variation in pavement deterioration, certain materials are more 

appropriate than others. However, the unit price and thickness might have a significant impact on 

LCCA too.  With the LCCA, the existing pavement surface is considered for overlay when it is 

required and an alternate resurface layers is selected from the Superpave, DFC, HL1, HL3, HL4, 

and HL8.   

 

From Table 9.1 it is observed that the unit costs of pavement materials increased by about 70% 

from the year 1997 to 2010. The base year 2010 is considered in this study to calculate the NPW.  

As the performance records are taken in this study are mostly up to the year 2010. However, the 

NPW value considers the discounted price accordingly.  
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Table 9.2 shows sample cost estimates of each overlay layer that are used in the study.  It is 

observed that unit cost ($/ton) of HL-4 and Superpave is higher than the other AC layers. However, 

the total cost may vary depending on the required number of application of the treatment options 

for each category.  

 

The activities that are taken in the LCCA for the PCI model based on the field-evaluated value and 

the PCI model based on the M-E approach are listed in Table 9.3 and Table 9.4. It is observed that 

required number of treatments are higher if the pavement is resurfaced with HL-4, and HL-8. The 

opposite scenario is observed in the case of DFC, Superpave, HL-1 and HL-3.   

 

Figure 9.2 and Figure 9.3 show the variation of performance of the pavement section (with existing 

DFC with AADT <25,000) for alternate treatment options. It is observed that the rate of 

deterioration varies at a higher rate in case of HL-4, and HL-8 than other layers.  

 

The improvement in PCI is also different for the respect treatment type. The overall comparison 

of all treatments is shown in Figure 9.3 which presents all these variations in one frame.  

 

From Table 9.5, a comparison of NPW values among alternative treatment options reveals that the 

resurfacing of pavement with DFC and HL1 are more cost-effective than other resurfacing options. 

For AADT ≤25,000, resurfacing with HL1 is found as the most cost-effective treatment option. 

However, for AADT >25,000 to ≤ 50,000 resurfacing with DFC and HL1 is found as the cost-

effective treatment option. For AADT>50,000, resurfacing with DFC is found as the cost-effective 

treatment option.  

 

From Table 9.6, similar scenario is found. DFC is found as cost-effective resurface option for 

AADT>50,000. Resurfacing with HL-1 is found as cost –effective treatment option when AADT 

≤25,000 and >25,000 to ≤ 50,000. 

9.4 Chapter Summary  

This study investigates LCCA by considering the overall condition of pavement in terms of PCI, 

which is estimated from both field-evaluated and MEPDG-based predicted distress cases. The 

deterioration patterns of PCI are found to vary depending on the type of materials and AADT 

levels.  

 

A comparison of NPW values among the alternative treatment options reveals that the resurfacing 

of pavement with DFC and HL1 are more cost-effective than other alternative options.  

 

Resurfacing with HL1 is the cost-effective treatment option for highway sections with AADT 

≤25,000. Resurfacing with DFC is the cost-effective treatment option for highways with AADT 

>50,000. Resurfacing with HL-1 and DFC are found as the cost-effective treatment option for 

highways with AADT >25,000 to ≤ 50,000. Resurfacing with Superpave is also found as the cost-

effective option when the existing pavement is with Superpave for AADT >50,000.  
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Table 9.1: Costs of Materials 

Surface Material Quantity (Tonnes) 
Average Costs 

in 1997 ($) 

Standard Deviation 

in 1997 

Discounted 

Average Costs ($) 

as of 2010 

Granual A 

0 -1000 27.89 14.20 47.70 

1000 - 10000 14.40 3.80 24.63 

10000 -100000 10.79 2.50 18.45 

100000+ 9.22 1.90 15.77 

Granual B 

0 -1000 10.29 2.90 17.60 

1000 - 10000 8.98 2.50 15.36 

10000 -100000 7.16 1.90 12.25 

100000+ 5.58 1.30 9.54 

HL1 

0-1000 97.12 45.20 166.11 

1000-10000 58.96 10.60 100.84 

10000+ 46.49 4.50 79.51 

HL3 

0-1000 140.15 120.30 239.70 

1000-10000 74.89 48.00 128.09 

10000 - 100000 87.70 73.10 150.00 

100000+ 46.83 8.90 80.10 

HL4 

0-1000 118.31 56.27 202.35 

1000-10000 109.35 53.00 187.03 

10000 - 100000 56.50 18.80 96.63 

100000+ 43.62 7.50 74.61 

HL8 

100-1000 62.90 18.00 107.58 

1000-5000 45.17 6.01 77.26 

5000+ 38.18 4.00 65.30 

HDBC 

0-1000 69.08 15.40 118.15 

1000-5000 51.14 11.70 87.47 

5000+ 43.73 6.60 74.79 

DFC 

0-1000 85.94 27.30 146.99 

1000-5000 65.57 9.30 112.15 

5000+ 59.32 9.40 101.46 

Cold In Place 

Recycled Mix 
10000+ 4.00 1.10 6.84 

Rout and Seal 

100-1000 7.24 2.80 12.38 

1000-15000 4.27 4.60 7.30 

100000+ 1.10 0.20 1.88 

Removal Asphalt 

Partial Depth 

0-1000 10.82 5.10 18.51 

1000-10000 4.10 2.30 7.01 

10000-100000 2.00 1.20 3.42 

100000+ 1.19 0.40 2.04 

Rout and Seal m  
 2.25 

SuperPave 12.5 

FC2 
t 

  
142.47 
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Table 9.2: Sample Cost Estimation of Different Pavement Layers  

Activity 

Thickn

ess 

(mm) 

Length 

(m)  

Width   

(m) 

No. of 

Lanes 

Area 

(m2) 

Volume 

(m3) 

Unit 

Weight 

(t/m3) 

Total 

Quantity  

(ton) 

Cost/Unit  

($/t) 

Activity 

Cost ($) 

DFC 40 1000 3.65 3 10,950 438 2.4 1,051 112.15 117,889 

HL1 40 1000 3.65 3 10,950 438 2.4 1,051 100.84 106,005 

HL3 40 1000 3.65 3 10,950 438 2.4 1,051 128.09 134,645 

HL4 40 1000 3.65 3 10,950 438 2.4 1,051 187.03 196,601 

HL8 58 1000 3.65 3 10,950 635 2.4 1,524 77.26 117,757 

Superpave (SP 

12.5 FC2) 
40 1000 3.65 3 10,950 438 2.4 1,051 142.47 149,765 

Rout and Seal  1000       2.25 2,250 

Granular A -

150 mm  
150 1000 3.65 3 10,950 1,643 2.2 3,614 24.63 88,997 

Granular B - 

450 mm 
450 1000 3.65 3 10,950 4,928 2.2 10,841 12.25 132,753 

 

 

With the results of LCCA, pavement engineers will be able to identify cost-effective treatment 

options. Since this study considers the effect of materials and traffic, this approach is considered 

more reliable for specific pavement types. Moreover, the variation of deterioration due to traffic 

and materials are considered into the LCCA, which provides more reliable analysis. This 

investigation will enable management to decide on maintenance strategies by selecting cost-

effective maintenance options for an effective PM
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Figure 9.2:  Performance Cycle of a Pavement Section with DFC (AADT <25,000) for 

alternate Overlay Option 
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Figure 9.3: Performance Cycles for alternate Overlay Options over a Pavement Section 

with DFC (AADT <25,000) 
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Table 9.3: Summary of Activities in LCCA Using PCI Model based on Field-Evaluated Value 

Existing 

Surface 
AADT 

Activity 

Option 1: Overlay 

with DFC 

Option 2: Overlay  

with HL-1 

Option 3: Overlay  

with HL-3 

Option 4: Overlay  

with HL-4  

Option 5: Overlay  

with HL-8 

Option 6: Overlay  with 

Superpave 

DFC ≤25,000 

DFC on 18th year 

and 35th year along 

with Rout& Seal on 

each 3rd year 

HL1 on 18th & 24th 

year along with Rout 

& Seal on each 3rd 

year 

HL3 on 18th and 

31st year along with 

Rout & Seal on 

each 3rd year 

HL4 on 18th, 27th 

& 36th year along 

with Rout & Seal 

on each 3rd  year 

HL8 on 18th, 26th & 

34th  year  along with 

Rout & Seal on each3rd  

year 

Superpave on 18th, & 

36th  year  along with 

Rout & Seal on each3rd  

year 

 
>25,000 

to ≤ 

50,000 

DFC on 16th year 

and 32nd year along 

with Rout& Seal on 

each 3rd year 

HL1 on 16th & 33rd 

year along with Rout 

& Seal on each 3rd 

year 

HL3 on 16th and 

29th  year along 

with Rout & Seal 

on each 3rd year 

HL4 on 16th, ,24th, 

32nd & 40h  year 

along with Rout & 

Seal on each 3rd  

year 

HL8 on 16th, 23rd, 30th 

& 37th  year  along with 

Rout & Seal on each3rd  

year 

Superpave on 16th, & 

34th  year  along with 

Rout & Seal on each3rd  

year 

 >50,000 

DFC on 13th year 

and 29th year along 

with Rout& Seal on 

each 3rd year 

    

Superpave on 13th, & 

28th  year  along with 

Rout & Seal on each3rd  

year 

HL1 ≤25,000 

DFC on 15th year 

and 33rd year along 

with Rout& Seal on 

each 3rd year 

HL1 on 15th & 30th 

year along with Rout 

& Seal on each 3rd 

year 

HL3 on 15th and 

28th year along 

with Rout & Seal 

on each 3rd year 

HL4 on 15th, 24th 

& 33rd year along 

with Rout & Seal 

on each 3rd  year 

HL8 on 15th, 23rd, 31st 

& 39th  year  along with 

Rout & Seal on each3rd  

year 

Superpave on 15th, & 

33rd  year  along with 

Rout & Seal on each3rd  

year 

 
>25,000 

to ≤ 

50,000 

DFC on 14th year 

and 30th year along 

with Rout& Seal on 

each 3rd year 

HL1 on 14th & 28th 

year along with Rout 

& Seal on each 3rd 

year 

HL3 on 14th, 24th 

and 34th year along 

with Rout & Seal 

on each 3rd year 

HL4 on 14th, 22nd, 

30th & 38th year 

along with Rout & 

Seal on each 3rd  

year 

HL8 on 14th, 21st, 28th 

& 35th  year  along with 

Rout & Seal on each3rd  

year 

Superpave on 14th, & 

32nd  year  along with 

Rout & Seal on each3rd  

year 

HL3 ≤25,000 

DFC on 13th year 

and 31st year along 

with Rout& Seal on 

each 3rd year 

HL1 on 13th & 27th 

year along with Rout 

& Seal on each 3rd 

year 

HL3 on 13th,26th 

and 39th year along 

with Rout & Seal 

on each 3rd year 

HL4 on 13th, 22nd, 

31st & 40th year 

along with Rout & 

Seal on each 3rd  

year 

HL8 on 13th, 21st, 29th, 

& 37th  year  along with 

Rout & Seal on each3rd  

year 

Superpave on 13th, & 

30th  year  along with 

Rout & Seal on each3rd  

year 

 
>25,000 

to ≤ 

50,000 

DFC on 10th year 

and 26th year along 

with Rout& Seal on 

each 3rd year 

HL1 on 10th, 24th& 

38th year along with 

Rout & Seal on each 

3rd year 

HL3 on 10th, 20th, 

and 30th year along 

with Rout & Seal 

on each 3rd year 

HL4 on 10th, 18th, 

26th & 34th year 

along with Rout & 

Seal on each 3rd  

year 

HL8 on 10th, 17th, 

24th,31st, & 38th  year  

along with Rout & Seal 

on each3rd  year 

Superpave on 10th, & 

28th  year  along with 

Rout & Seal on each3rd  

year 
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Existing 

Surface 
AADT 

Activity 

Option 1: Overlay 

with DFC 

Option 2: Overlay  

with HL-1 

Option 3: Overlay  

with HL-3 

Option 4: Overlay  

with HL-4  

Option 5: Overlay  

with HL-8 

Option 6: Overlay  with 

Superpave 

HL4 ≤25,000 

DFC on 9th year 

and 27th year along 

with Rout& Seal on 

each 3rd year 

HL1 on 9th, 24th,& 

39th  year along with 

Rout & Seal on each 

3rd year 

HL3 on 9th, 22nd & 

35th  year along 

with Rout & Seal 

on each 3rd year 

HL4 on 9th, 18th, 

27th & 36th  year  

along with Rout & 

Seal on each 3rd  

year 

HL8 on 13th, 21st, 29th, 

& 37th  year  along with 

Rout & Seal on each 3rd  

year 

Superpave on 13th, & 

30th  year  along with 

Rout & Seal on each3rd  

year 

 
>25,000 

to ≤ 

50,000 

DFC on 8th, 24th, 

and 40th year along 

with Rout & Seal 

on each 3rd year 

HL1 on 8th, 22nd, & 

36th year along with 

Rout & Seal on each 

3rd year 

HL3 on 18th and 

31st year along with 

Rout & Seal on 

each 3rd year 

HL4 on 8th, 18th, 

28th, & 38th  year  

along with Rout & 

Seal on each 3rd  

year 

HL8 on 8th, 15th, 22nd, 

29th & 36th  year  along 

with Rout & Seal on 

each3rd  year 

Superpave on 8th, & 26th  

year  along with Rout & 

Seal on each3rd  year 

HL8 ≤25,000 

DFC on 8th year 

and 26th year along 

with Rout& Seal on 

each 3rd year 

HL1 on 8th, 23rd, & 

38th year along with 

Rout & Seal on each 

3rd year 

HL3 on 8th, 21st,  

and 35th year along 

with Rout & Seal 

on each 3rd year 

HL4 on 8th, 17th, 

26th & 35th  year  

along with Rout & 

Seal on each 3rd  

year 

HL8 on  8th, 21st, & 

34th  year  along with 

Rout & Seal on each3rd  

year 

Superpave on 8th, & 26th  

year  along with Rout & 

Seal on each3rd  year 

 
>25,000 

to ≤ 

50,000 

DFC on 7th, 23rd, 

and 40th year along 

with Rout& Seal on 

each 3rd year 

HL1 on 7th, 21st, & 

36th year along with 

Rout & Seal on each 

3rd year 

HL3 on 7th, 17th, 

27th, and 37th year 

along with Rout & 

Seal on each 3rd 

year 

HL4 on 7th, 15th, 

23rd, 31st and 39th 

year along with 

Rout & Seal on 

each 3rd  year 

HL8 on 7th, 14th, 21st, 

& 35th   year  along with 

Rout & Seal on each3rd  

year 

Superpave on 7th & 25th  

year  along with Rout & 

Seal on each3rd  year 

Superpave ≤25,000 

DFC on 18th & 

36th  year along 

with Rout& Seal on 

each 3rd year 

HL1 on 18th, & 33rd 

year along with Rout 

& Seal on each 3rd 

year 

HL3 on 18th and 

31st year along with 

Rout & Seal on 

each 3rd year 

HL4 on 18th, 27th 

& 36th  year   

along with Rout & 

Seal on each 3rd  

year 

HL8 on 18th, 26th, & 

34th   year  along with 

Rout & Seal on each3rd  

year 

Superpave on 18th & 

36th  year  along with 

Rout & Seal on each3rd  

year 

 
>25,000 

to ≤ 

50,000 

DFC on 17th & 

33rd  year along 

with Rout& Seal on 

each 3rd year 

HL1 on 17th, & 31st 

year along with Rout 

& Seal on each 3rd 

year 

HL3 on 17th,27th, 

and 37th year along 

with Rout & Seal 

on each 3rd year 

HL4 on 17th, 25th 

& 33rd  year along 

with Rout & Seal 

on each 3rd  year 

HL8 on 17th, 24th, 31st, 

& 38th   year  along with 

Rout & Seal on each3rd  

year 

Superpave on 17th & 

34th  year  along with 

Rout & Seal on each3rd  

year 

 >50,000 

DFC on 15th & 31st  

year along with 

Rout& Seal on each 

3rd year 

    

Superpave on 15th & 

30th  year  along with 

Rout & Seal on each3rd  

year 
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Table 9.4: Summary of Activities in LCCA Using PCI based on M-E Approach 

Existing 

Material  
AADT  

Activity 

Option 1: Overlay with 

DFC 

Option 2: Overlay  

with HL-1 

Option 3: Overlay  with 

HL-3 

Option 4: Overlay  

with HL-4  

Option 5: 

Overlay  with 

HL-8 

Option 6: Overlay  

with Superpave 

DFC 

  

  

≤25,000 

DFC on 16th year and 

32th year along with 

Rout& Seal on each 3rd 

year 

HL1 on 16th & 34th 

year along with Rout 

& Seal on each 3rd 

year 

HL3 on 16th,27th  and 

38th year along with 

Rout & Seal on each 3rd 

year 

HL4 on 18th, 25th & 

34th  year  along with 

Rout & Seal on each 

3rd  year 

HL8 on 16th, 

24th,32nd , & 40th  

year  along with 

Rout & Seal on 

each3rd  year 

Superpave on 18th, & 

36th  year  along with 

Rout & Seal on 

each3rd  year 

>25,000 to ≤ 

50,000 

DFC on 13th year and 

29th year along with 

Rout& Seal on each 3rd 

year 

HL1 on 13th & 27th  

year along with Rout 

& Seal on each 3rd 

year 

HL3 on 13th,23rd, and 

33rd  year along with 

Rout & Seal on each 3rd 

year 

HL4 on 13th, ,24th,  

and 35th year  along 

with Rout & Seal on 

each 3rd  year 

HL8 on 13th, 23rd,  

& 33rd  year  

along with Rout & 

Seal on each3rd  

year 

Superpave on 13th, & 

30th  year  along with 

Rout & Seal on 

each3rd  year 

>50,000 

DFC on 10th, 20th  & 

30th  year along with 

Rout & Seal on each 3rd 

year 

    

HL3 on 10th, 24th, and 

38th  year along with 

Rout & Seal on each 

3rd year 

HL1 

  

≤25,000 

DFC on 18th year and 

31st year along with 

Rout& Seal on each 3rd 

year 

HL1 on 18th & 32nd 

year along with Rout 

& Seal on each 3rd 

year 

HL3 on 15th and 28th 

year along with Rout & 

Seal on each 3rd year 

HL4 on 15th, 24th & 

33rd year  along with 

Rout & Seal on each 

3rd  year 

HL8 on 15th, 23rd, 

31st & 39th  year  

along with Rout & 

Seal on each3rd  

year 

Superpave on 15th, & 

33rd  year  along with 

Rout & Seal on 

each3rd  year 

>25,000 to ≤ 

50,000 

DFC on 14th, 27th, and 

40th year along with 

Rout& Seal on each 3rd 

year 

HL1 on 14th & 28th 

year along with Rout 

& Seal on each 3rd 

year 

HL3 on 14th, 24th and 

34th  year along with 

Rout & Seal on each 3rd 

year 

HL4 on 14th, 22nd, 

30th & 38th  year   

along with Rout & Seal 

on each 3rd  year 

HL8 on 14th, 21st, 

28th & 35th  year  

along with Rout & 

Seal on each3rd  

year 

Superpave on 14th, & 

31st  year  along with 

Rout & Seal on 

each3rd  year 

HL3 ≤25,000 

DFC on 11th & 27th year 

along with Rout & Seal 

on each 3rd year 

HL1 on 11th & 28th 

year along with Rout 

& Seal on each 3rd 

year 

HL3 on 11th, 22nd,  and 

33rd year along with 

Rout & Seal on each 3rd 

year 

HL4 on 11th, 20th, , 

29th & 38th  year   

along with Rout & Seal 

on each 3rd  year 

HL8 on 11th, 19th, 

27th, & 35th  year  

along with Rout & 

Superpave on 11th, & 

28th  year  along with 

Rout & Seal on 

each3rd  year 



    

162 

 

Existing 

Material  
AADT  

Activity 

Option 1: Overlay with 

DFC 

Option 2: Overlay  

with HL-1 

Option 3: Overlay  with 

HL-3 

Option 4: Overlay  

with HL-4  

Option 5: 

Overlay  with 

HL-8 

Option 6: Overlay  

with Superpave 

Seal on each3rd  

year 

  
>25,000 to ≤ 

50,000 

DFC on 10th, 23rd, and 

36th year along with 

Rout& Seal on each 3rd 

year 

HL1 on 10th, 24th, & 

38th year along with 

Rout & Seal on each 

3rd year 

HL3 on 10th, 20th, and 

30th year along with 

Rout & Seal on each 3rd 

year 

HL4 on 10th, 18th, 26th 

& 34th  year  along with 

Rout & Seal on each 

3rd  year 

HL8 on 10th, 17th, 

24th,31st, & 38th  

year  along with 

Rout & Seal on 

each3rd  year 

Superpave on 10th, & 

27th  year  along with 

Rout & Seal on 

each3rd  year 

HL4 

  

≤25,000 

DFC on 9th year and 25th 

year along with Rout& 

Seal on each 3rd year 

HL1 on 9th, 24th,& 

39th  year along with 

Rout & Seal on each 

3rd year 

HL3 on 9th, 20th,  & 

31st year along with 

Rout & Seal on each 3rd 

year 

HL4 on 9th, 22nd, 31st 

& 40th  year  along with 

Rout & Seal on each 

3rd  year 

HL8 on 13th, 21st, 

29th, & 37th  year  

along with Rout & 

Seal on each 3rd  

year 

Superpave on 13th, & 

30th  year  along with 

Rout & Seal on 

each3rd  year 

>25,000 to ≤ 

50,000 

DFC on 8th, 21st, and 

34th year along with Rout 

& Seal on each 3rd year 

HL1 on 8th, 22nd, & 

36th year along with 

Rout & Seal on each 

3rd year 

HL3 on 8th 18th, 28th,  

and 38th year along with 

Rout & Seal on each 3rd 

year 

HL4 on 8th, 18th, 28th, 

& 38th  year   along 

with Rout & Seal on 

each 3rd  year 

HL8 on 8th, 15th, 

22nd, 29th & 36th  

year  along with 

Rout & Seal on 

each3rd  year 

Superpave on 8th, & 

25th  year  along with 

Rout & Seal on 

each3rd  year 

HL8 

  

≤25,000 

DFC on 8th year and 26th 

year along with Rout& 

Seal on each 3rd year 

HL1 on 8th, 23rd, & 

38th year along with 

Rout & Seal on each 

3rd year 

HL3 on 8th, 21st,  and 

35th year along with 

Rout & Seal on each 3rd 

year 

HL4 on 8th, 17th, 26th 

& 35th  year   along 

with Rout & Seal on 

each 3rd  year 

HL8 on  8th, 21st, 

& 34th  year  along 

with Rout & Seal 

on each3rd  year 

Superpave on 8th, & 

26th  year  along with 

Rout & Seal on 

each3rd  year 

>25,000 to ≤ 

50,000 

DFC on 7th, 20th, and 

33rd  year along with 

Rout& Seal on each 3rd 

year 

HL1 on 7th, 21st, & 

36th year along with 

Rout & Seal on each 

3rd year 

HL3 on 7th, 17th, 27th, 

and 37th year along with 

Rout & Seal on each 3rd 

year 

HL4 on 7th, 15th, 23rd, 

31st and 39th year  

along with Rout & Seal 

on each 3rd  year 

HL8 on 7th, 14th, 

21st, 28th, & 35th   

year  along with 

Rout & Seal on 

each3rd  year 

Superpave on 7th & 

25th  year  along with 

Rout & Seal on 

each3rd  year 

Superpave ≤25,000 

DFC on 17th & 31st  year 

along with Rout& Seal on 

each 3rd year 

HL1 on 17th, & 35th  

year along with Rout 

HL3 on 17th, 28th and 

39th year along with 

HL4 on 17th, 26th & 

35th  year  along with 

HL8 on 17th, 25th, 

& 33rd   year  

along with Rout & 

Superpave on 17th & 

34th  year  along with 
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Existing 

Material  
AADT  

Activity 

Option 1: Overlay with 

DFC 

Option 2: Overlay  

with HL-1 

Option 3: Overlay  with 

HL-3 

Option 4: Overlay  

with HL-4  

Option 5: 

Overlay  with 

HL-8 

Option 6: Overlay  

with Superpave 

& Seal on each 3rd 

year 

Rout & Seal on each 3rd 

year 

Rout & Seal on each 

3rd  year 

Seal on each3rd  

year 

Rout & Seal on 

each3rd  year 

  

  

>25,000 to ≤ 

50,000 

DFC on 17th & 30th  year 

along with Rout& Seal on 

each 3rd year 

HL1 on 17th, & 31st 

year along with Rout 

& Seal on each 3rd 

year 

HL3 on 17th,27th, and 

37th year along with 

Rout & Seal on each 3rd 

year 

HL4 on 17th, 25th & 

33rd  year along with 

Rout & Seal on each 

3rd  year 

HL8 on 17th, 24th, 

31st, & 38th   year  

along with Rout & 

Seal on each3rd  

year 

Superpave on 17th & 

34th  year  along with 

Rout & Seal on 

each3rd  year 

>50,000 

DFC on 14th, 24th, & 

34th  year along with 

Rout& Seal on each 3rd 

year 

    

Superpave on 14th & 

28th  year  along with 

Rout & Seal on 

each3rd  year 
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Table 9.5: Summary of NPW using PCI based on Field-evaluated Value 

Existing 

Material  
AADT  

Total NPW ($) 

Cost 

Effective 

Option  

Option 1: 

Overlay 

with DFC 

Option 2: 

Overlay  

with HL-1 

Option 3: 

Overlay  

with HL-3 

Option 4: 

Overlay  with 

HL-4  

Option 5: 

Overlay  with 

HL-8 

Option 6: 

Overlay  

with 

Superpave 

DFC 

  

  

≤25,000 420,835 415,634 436,411 519,347 465,378 438,549 Option 2 & 1 

>25,000 to 

≤ 50,000 
429,948 420,578 451,072 570,801 502,887 448,377 Option 2 & 1 

>50,000 442,285 N/A13   N/A   N/A   N/A  467,307 Option 1 

HL-1 

  

≤25,000 418,637 413,814 442,754 532,494 476,294 440,341 Option 2 & 1 

>25,000 to 

≤ 50000 
425,814 418,690 474,290 580,769 491,617 445,598 Option 2 & 1 

HL-3 

  

≤25,000 455,945 452,026 502,616 609,398 519,875 481,899 Option 2 & 1 

>25,000 to 

≤ 50,000 
473,324 481,860 532,229 662,010 588,751 497,456 Option 1& 2 

HL-4 

  

≤25,000 535,977 545,023 586,241 722,147 651,581 567,347 Option 1 & 2 

>25,000 to 

≤ 50,000 
562,376 555,042 631,324 724,509 654,163 572,611 Option 2& 1 

HL-8 

  

≤25000 426,324 435,786 477,361 621,766 458,211 456,863 Option 1 & 2 

>25000 to 

≤ 50,000 
453,169 445,373 526,721 683,643 550,382 464,697 

Option  2, & 

1  

Superpave 

  

  

≤25,000 451,676 447,509 468,287 550,029 486,600 470,424 
Option 2, & 

1  

>25,000 to 

≤ 50,000 
457,343 452,409 499,764 565,425 514,704 476,694 Option 2 &1  

>50,000 465,206 N/A N/A N/A N/A 488,748 Option 1  

 

 

 

 

 

                                                           

13N/A = not available; as DFC and Superpave are used for pavement with higher traffic.  
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Table 9.6: Summary of NPW using PCI based on M-E Approach 

Existing 

Material  
AADT  

Total NPW ($) 

Cost 

Effective 

Option  

Option 1: 

Overlay 

with DFC 

Option 2: 

Overlay  

with HL-1 

Option 3: 

Overlay  

with HL-3 

Option 4: 

Overlay  

with HL-4  

Option 5: 

Overlay  

with HL-8 

Option 6: 

Overlay  

with 

Superpave 

DFC 

  

  

≤25,000 429,948 419,870 494,714 536,012 477,507 477,507 Option 2 

>25,000 to 

≤ 50,000 
442,285 434,709 492,465 551,786 474,825 465,216 Option 2 

>50,000 494,993 
N/A  N/A   N/A   N/A  

512,390 Option 1 

HL-1 

  

≤25,000 413,872 383,095 450,919 506,270 442,914 427,974 Option 2 

>25,000 to 

≤ 50,000 
446,833 418,690 474,290 580,769 491,264 447,527 Option 2 

HL-3 

  

≤25,000 467,997 456,433 518,893 633,430 549,673 493,181 Option 2 

>25,000 to 

≤ 50,000 
498,856 481,860 532,229 662,010 588,751 499,431 Option 2  

HL-4 

  

≤25,000 539,742 525,168 596,581 722,258 613,226 567,187 Option 2 

>25,000 to 

≤ 50,000 
573,763 555,042 631,324 724,509 654,163 574,768 Option 2  

HL-8 

  

≤25,000 446,986 414,938 488,770 621,766 458,211 479,296 Option 2 

>25,000 to 

≤ 50,000 
465,963 445,373 526,721 683,643 550,382 467,018 Option 2  

Superpave 

  

  

≤25,000 457,876 447,974 495,604 558,585 491,984 476,694 
Option 2 

& 1 

>25,000 to 

≤ 50,000 
461,567 452,409 499,376 565,425 515,626 476,718 

Option 2 

&1   

>50,000 501,201 
N/A  N/A   N/A   N/A  

496,494 
Option 6 

& 1 
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CHAPTER 10 

CONCLUSIONS AND RECOMMENDATIONS 

 
10.1 Conclusions  

This research investigates the existing practice of using performance indices and incorporates 

improvements in assessing the overall performance of pavement. The objective of the research 

is to develop cost-effective pavement M&R strategies by incorporating the M-E approach, 

which overcomes the limitation of engineering judgement in assessing the overall condition of 

pavement. 

 

For precise assessment of pavement conditions, this research investigates the existing variability 

based on current practices relevant to pavement performance evaluation and maintenance 

decisions. This research investigates the impact of road section lengths on overall pavement 

performance evaluation. The impact on maintenance decision due to changes in section lengths 

selected for performance evaluation is also investigated. It considers rut depth, PCI and IRI as 

performance indices. Since rut distribution and PCI are varied due to changes in length of road 

sections, maintenance decisions are also analysed by using the Monte Carlo simulation by 

varying the section lengths. The method of estimating the performance indices is also 

investigated to identify the requirements of improvement in estimation. It is found that 

unobserved factors influencing individual KPIs are correlated, thus the SUR method is used to 

estimate KPI models.   

 

Before the application of the M-E approach, a sensitivity analysis is conducted to identify the 

requirements of a higher levels of accuracy of MEPDG-based software inputs. The sensitivity 

analysis is carried out to identify both main effects of independent input variables (such as traffic 

inputs: AADT, AADTT and traffic growth factors; material properties: subgrade resilient 

modulus, AC top-layer thickness, and milled thickness, etc.) and interaction effects of the 

variables (such as combination of initial permanent deformation and subgrade resilient modulus 

and AADTT; existing initial IRI and operational speed, etc.) on the MEPDG distresses. 

 

Since the deterioration of pavement is affected by the traffic levels and materials types, in 

considering these variables, pavement deterioration model is estimated. The prediction model 

is developed by using a regression approach considering distresses of the M-E approach. In this 

study, the deterioration model is estimated for the three groups of AADT and properties of 

surface materials.  The time to maintenance is estimated for each group of traffic level and 

surface material types. The time to maintenance estimated by the deterministic approach is 

further investigated with the probabilistic analysis to ensure that the estimate is realistic and 

reasonably probable.   
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With the increasing trend towards M&R of existing pavements, it is essential to make cost-

effective use of the M&R budget. As such, identification of associated cost-effective M&R 

treatments is not always simple in most PMS. For this reason, a LCCA is carried out for alternate 

pavement treatments using the deterioration model based on traffic levels and material types.  

 

10.2 Major Findings  

From the investigations of the variability of road section length, the major findings are as 

follows: 

 From the comparison of distribution of rut depths, it is found that most of the longer 

sections (10000m section) evaluate the road with low rut depth and the shorter sections 

(50m and 500m) detect higher rut depth. The short sections also indicate that the rut 

depth is relatively evenly distributed compared to longer sections. Longer sections 

might overlook some parts of severely damaged roads, which are in need of 

maintenance due to the average rut depth value over a long section.   

 

 To avoid acceleration of pavement deterioration, the shorter sections would be more 

efficient compared to longer sections as they can better identify the areas where 

maintenance is necessary. Long sections (1000m and 10000m) in Ontario highway 

systems skew the outcomes of the performance measures and may cause difficulties in 

both treatment selection and pavement condition reporting. Thus, performance reported 

from long sections lengths (1000m and 10000m) are misleading when compared to the 

true performance of the network. 

 

 Comparison of PCI shows the old PCI (based on the manual surveys) estimates a higher 

extent of defects over the shorter sections (50m and 500m) and thus gives a lower PCI 

value. On the other hand, over the longer sections, lower PCI values are obtained with 

automated surveys.  

 The Monte Carlo simulation shows that 50m sections have a higher probability of 

maintenance requirements than 500m sections. Overall, more work is triggered if the 

decisions are based on shorter treatment lengths (50m and 500m), however, short 

treatment lengths might become difficult to manage at a network level. 

 

From the investigation of existing estimation of performance indices, major findings are listed 

below: 

  

 Unobserved factors in the PCI model are highly correlated to those in the DMI and RCI 

models.  
 In the SUR approach, the efficiency of estimation increases with higher correlation 

among the random error terms of different equations. It also considers the effects of 
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larger sample sizes and multi-collinearity between the regressors. For this reason, 

efficient estimation of models with highly correlated, unobserved factors and large road 

networks, such as Ontario highways, require SUR approach rather than OLS approach. 
 

From the sensitivity analysis of the MEPDG distresses, the major findings are as follows:  

 Terminal IRI is sensitive to existing initial IRI, initial permanent deformation, AC air 

voids and AC effective binder content. 

 Permanent deformation in the AC layer is sensitive to the percentage of trucks in the 

design lane, AC top-layer thickness, TTC types, milled thickness, initial permanent 

deformation and AC binder penetration grade.  

 For total cracking (reflective and alligator), the sensitivity of only the AC top-layer 

thickness is proven to be statistically significant.   

 The main effect of effective binder content, AC binder penetration grade, and AC air 

voids are proven to be statistically significant for AC thermal fracture.  

 AC top-down fatigue cracking is found to be significantly sensitive to AC effective 

binder content, AC air voids, AADTT, and AC top-layer thickness. However, no 

sensitive input variables are found for AC bottom-up fatigue cracking for the 

experimental sample. Therefore, further investigation is required for AC bottom-up 

fatigue cracking.  

 Based on these identified sensitive input variables and interaction effects, the accuracy 

level of major inputs of specific distresses need to be improved for precise prediction of 

the MEPDG-based distresses.  

 Terminal IRI is sensitive to a combination of existing initial IRI- operational speed, and 

initial IRI-permanent deformation.  

 Total permanent deformation is sensitive to the combination of initial permanent 

deformation –subgrade resilient modulus –AADTT.  

 AC thermal cracking is sensitive to the combination of effective binder content-AADTT, 

and, effective binder content-AADTT-percentage of trucks in the design lane.  

 AC top-down fatigue cracking is sensitive to the combination of AC air voids- initial 

IRI, and AC air voids-percentage of trucks in the design lane.  

 

From the prediction of distress by the M-E analysis, the major findings are as follows:  

 IRI and permanent deformation are over-predicted than those in field observations. 

 Bottom-up fatigue cracking portrays an entirely different picture with under-prediction 

compared to field evaluation. These results show the need for local calibration of the 

fatigue cracking prediction models. 

 Comparison of traffic level and length of service life reveals that pavement sections with 

higher service life of more than 14 years, forecast predicted failure in IRI, total 

permanent deformation, and AC permanent deformation.  Failure in predicted permanent 

deformation is observed for the higher level of traffic regardless of the length of service 

life.  
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 A clustering regression analysis based on the surface layer confirms improved goodness 

of fit for both IRI and permanent deformation prediction models.  

 The validation process with an independent data set confirms the validity (in terms of 

goodness of fit) of the calibrated models. Therefore, the predicted distresses based on 

the M-E approach are to be corrected further for precise prediction.  

 

From the estimation of the overall condition index by the M-E approach, the major findings are 

as follows:  

 The improvement in PCI of pavement with the overlay of Superpave mixes and DFC are 

higher than with other HL surfaces.  

 In the deterministic approach, the expected time to maintenance for overlay with DFC 

and Superpave mixes is higher than in HL layers. On the other hand, HL-8 requires early 

maintenance than other types of overlay layers.  

 The traffic level for same surface layer affects the required time to maintenance such as 

maintenance time 15 to nine years in DFC for low high to very high AADT. Similarly, 

it varies from 16 to 13 years in road sections with Superpave mixes for low high to very 

high AADT. On the other hand, HL-8 requires early maintenance (6 to 7 years) 

compared to other AC layer types. 

 It is also found that the estimated time to maintenance for most categories (except HL1 

with AADT ≤ 25,000) in the M-E approach are equal or lower than field-evaluated 

scenario. This may happen as the distresses predicted by the M-E approach are over-

predicted in most of the categories. 

 In analysing the distribution of time to failure, it is found that the ‘Weibull distribution’ 

is the best fit for most of the categories of traffic and materials. 

  In the probabilistic approach, in both cases of field-evaluated PCI and the M-E 

approach, the survival probability up to the 5th year is approximately 80% to 90% for 

each category. Corresponding probability of failure of up to the 5th  year is very low (0% 

to 13% for Field-evaluated PCI and 0% to 16.8% for MEPDG-based PCI). This 

probability indicates the minimum requirement of maintenance up to the 5th year after 

treatment.  

 In case of field-evaluated PCI, a higher probability of failure is found up to 10th year 

after overlay (39% for DFC with AADT >50,000, 72% for HL3 with AADT 25,000 to 

≤50,000, 40% for HL3M with AADT ≤25,000, 75% for HL4 with AADT ≤25,000, 

100% for HL4 with AADT 25,000 to ≤50,000, 100% for HL8 with AADT ≤25,000 and 

100% for HL8 with AADT 25,000 to ≤50,000). For all categories, the probability of 

failure up to 20th, 25th and 30th year are found as very high.  

 Similar scenario is found in case of the PCI based on the M-E approach. A higher 

probability of failure is found up to 10th year after overlay (60% for DFC with AADT 

>50,000, 73% for HL3 with AADT 25,000 to ≤50,000, 57% for HL3M with AADT 

≤25,000), 78% for HL4 with AADT ≤25,000, 100% for HL4 with AADT 25,000 to 

≤50,000, 99.6% for HL8 with AADT ≤25,000 and 100% for HL8 with AADT 25,000 to 
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≤50,000). For all categories, the probability of failure up to 20th, 25th, and 30th year are 

found as very high.  

 It is found that the probability of failure for individual distress is very low (less than 10% 

for each category) over the performance cycle for the estimated time to maintenance. 

The resultant probability of maintenance is also very low (less than 10%) for each 

category.   

 

From the LCCA, major findings are as follows:  

 A comparison of NPW values among the alternative treatment options reveals that the 

overlay of pavement with DFC and HL-1 are the most cost-effective alternative options.  

 Resurfacing with HL1 is the most cost-effective treatment option for highway sections 

with AADT ≤25,000. 

  Resurfacing with DFC is a cost-effective treatment option for highways with AADT 

>50,000. 

 Resurfacing with HL-1 and DFC are found as the cost-effective treatment option for 

highways with higher AADT >25,000 to ≤ 50,000.  

 Resurfacing with Superpave is also found as the cost-effective option when the existing 

pavement is with Superpave for AADT >50,000.  

 

10.3 Recommendations  

From the results of research investigations, major recommendations for pavement decision 

makers are as follows:  

 Since section length in pavement evaluations significantly influence any processes that 

analyse the required works program. One of two recommended processes may be 

followed for these analytics in the PMS including: 

1. Undertake dynamic segmentation prior to the PMS analysis and verify the 

applicability of these section lengths in the field. These section lengths need to 

be reviewed on an annual basis as road conditions may change significantly 

from one year to another; or, 

2. Analyse fixed section length in the PMS system. For this, a section length of 

500m is recommended for Ontario highways. Following the analysis, the 

recommended works programme is determined by rationalising the 

recommended treatment in order to yield practical treatment lengths and/or to 

combine sections into one length of similar timing and types or treatments are 

recommended for adjacent sections.  

 Large road networks, like Ontario highways, require SUR approach rather than the OLS 

approach.  

 Since specific sensitive properties are found for respective distresses, it will be more 

efficient to get higher accuracy levels of these properties through laboratory tests or site 
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investigations. Future pavement design will also be efficient and economical based on 

the higher accuracy levels of these specific inputs.  

 The results of the M-E analysis indicated the need for local calibration of the prediction 

models of fatigue cracking and permanent deformation. Most importantly, the future 

maintenance strategy in the PMS is to be taken into consideration by addressing the 

fatigue responses of the highway sections. 
 

10.4 Major Contributions 

This research provides a number of significant contributions. The main contribution is to 

incorporate improvement in assessing the overall condition of pavement. In a PMS, the 

predicted improvement in performance, in terms of the indices, after any treatment are set based 

on engineering experiences or judgement. Moreover, the remaining service life of pavement is 

estimated from the deterioration of the overall condition by considering only the effect of age 

notwithstanding the effect traffic or materials. However, this research incorporates the M-E 

approach in predicting the improvement in performance for specific treatment types. It also 

considers the effect of traffic and materials on pavement performance to precisely predict the 

future deterioration and subsequent remaining service life. This approach certainly overcomes 

the limitation of engineering judgement in assessing the overall condition of pavement which 

has not been done before. 

 

Since the prediction model provides the realistic and precise prediction, it will essentially 

identify right time to maintenance. Moreover, the prediction model is developed based on the 

predicted distresses, thus, at the design stage it is possible to sketch the performance curve over 

the estimated life for a certain type of pavement. This will surely minimize the field evaluation 

work and will help in priority setting of the road sections for evaluation. Using the predicted 

performance curve, only road sections approaching the trigger value of maintenance will get 

priority for field evaluation. On the other hand, the road sections behind the trigger value of 

maintenance can be excluded from the priority list for annual field evaluation. This will 

minimize annual field evaluation works and ensure efficient utilization of the PMS budget.  

 

Since the deterioration model is developed based on traffic and material types, the use of it will 

categorically ensure efficiency in the PMS, rather than using a generalized equation. The 

predicted required time to maintenance and estimated NPW for low to high volume traffic roads 

for different material types will help pavement designers and managers select treatment types 

efficiently, helping them make better decisions.  

 

Since the improved performance prediction for specific treatment and corresponding 

deterioration due to different traffic levels are incorporated in the process of LCCA, the 

identified M&R strategies will be more precise and cost-effective, which will help ensure 

efficient allocation of maintenance budget.  
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The resulting accurate location reference system for pavement evaluation from the investigation 

of performance variability due to changes in section length, will ensure a precise method of road 

evaluation. This approach has never been done in any PMS before.  

 

The incorporation of the SUR method, instead of OLS, in estimating the performance index will 

ensure improvement in estimating the KPI models, if unobserved factors influencing individual 

KPIs are correlated. 

 

Identification of main effects and interaction effects of sensitive inputs (traffic and materials) 

will enable the pavement designers to put effort to attain a higher levels of accuracy for only 

those sensitive inputs, and thereby will ensure efficient and precise prediction of distresses. 

 

The other significant contribution is to incorporate the M-E approach in an integrated way into 

pavement performance index and pavement M&R schedule.  This research recommends cost-

effective M&R schedules, from the LCCA by overcoming the limitation in assessing the overall 

condition and by incorporating the M-E approach in an integrated way into PMS, which has not 

been conducted in previous research. This investigation will enable pavement decision makers 

to decide on maintenance strategies by selecting the cost-effective maintenance option for an 

effective PMS.   

This research develops a framework for using the M-E approach which is the state of art practice 

of pavement design and analysis with the PMS data to improve decision-making processes for 

pavement engineers.  

Thus, the outcome of the empirical investigations will promote the adoption of efficient road 

maintenance programs for highways based on the M-E approach, having a significant impact 

on sustainable infrastructure asset management. 

 

10.5 Recommendations for Future Work  

The empirical investigations are carried out from the historical performance recorded in the 

database. However, future research can be carried out in following areas: 

 

 In this research, the performance data used for empirical investigations are from the year 

1980 and onwards.  Most of the field evaluation are from the manual survey, which are 

subjective results of multiple raters’ rating. Since the automated survey is being adopted 

in agency’s PMS, automated performance data can be used to compare and validate the 

prediction models developed in this research. 

 In this research, pavement deterioration models are developed based on the traffic levels 

and materials types. Laboratory performance tests can be conducted to validate the 

predicted service life for materials types and different traffic levels. 
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 The analysis results of bottom-up fatigue cracking justify the need for local calibration 

of the prediction models of fatigue cracking. Although a cluster analysis based on 

materials types is used in this study, for these categories a local calibration of the 

coefficients in the transfer models can also be investigated in future research.  

 This research is carried out only for overlay activities by using specific materials. 

However, other M&R activities can also be investigated by using the similar framework 

in future research.  

 This research developed models to predict the deterioration and service life of pavement. 

Since the investigations are done by using historical performance and predicted 

distresses, future field performance of these road sections can be used to compare and 

validate the predicted performance. 
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