
A Faster Algorithm for Recognizing
Edge-Weighted Interval Graphs

by

Shikha Mahajan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2017

c© Shikha Mahajan 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Interval graphs—the intersection graphs of one dimensional intervals—are considered one
of the most useful mathematical structures to model real life applications [18]. Interval
graphs have been widely studied since they first appeared in the literature in 1957. In 1976,
Booth and Lueker [7] introduced a data structure called PQ-trees that could recognize
interval graphs in linear time; since then, several simpler linear-time algorithms have been
proposed for the problem.

We investigate a lesser-studied variation of interval graphs called edge-weighted interval
graphs. A graph with weights on its edges is an edge-weighted interval graph if we can
assign intervals to its vertices so that the weight of an edge (u, v) is equal to the length
of the intersection of the intervals assigned to u and v. In 2012, Köbler, Kuhnert, and
Watanabe [28] gave an algorithm to recognize such graphs in time O(m · n), where m
and n are the number of edges and vertices, respectively, of the given graph. In this
thesis, we give an algorithm to recognize complete edge-weighted interval graphs in time
O(m · log n). We then observe some additional properties of PQ-trees for interval graphs,
and use these properties to improve the runtime of the algorithm given by Köbler et al. [28]
for recognizing general edge-weighted interval graphs to O(m · log n). As the literature
for finding representations of weighted intersection graphs is scarce, we hope that the
techniques presented in this thesis can be used to obtain algorithms or approximation
algorithms for recognition of other kinds of weighted intersection graphs.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Anna Lubiw, for her excellent
guidance, encouragement and patience. Not only was I inspired by her expertise in research,
but also by her multifaceted personality and optimistic disposition. I would also like to
thank my readers Naomi Nishimura and Jonathan Buss for carefully inspecting my thesis
and providing feedback.

I thank my family—Maneesh Mahajan, Nisha Mahajan, and Priyam Mahajan—for
believing in me and for their abundant support. I also thank Nicole Keshav for helping
me gain confidence in my writing. Last, but not the least, I thank my friends for making
the journey of attaining my Master’s a fun and interesting experience.

iv

Dedication

This thesis is dedicated to my parents, for their limitless love, support, and encourage-
ment.

v

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Interval graphs . 1

1.2 Edge-Weighted Interval Graphs . 3

1.3 Related Work . 5

1.3.1 Interval Graph Representation with Constraints 5

1.3.2 Intersection Graphs . 6

2 Preliminaries 9

2.1 Notation Used . 9

2.2 Maximal Cliques and Consecutive-Ones Property 9

2.3 PQ-Trees . 11

2.4 Weighted Helly Theorem For Intervals . 13

3 Overview of the Algorithm 15

3.1 Bottleneck of Köbler’s algorithm . 15

3.2 Our Approach to Computing Rs . 18

4 Obtaining the Edge-Weighted Interval Representation of a Complete
Graph 19

4.1 Definitions . 19

vi

4.2 The Algorithm . 20

4.2.1 Pseudocode . 24

4.2.2 Correctness Proof . 26

4.2.3 Runtime Analysis . 28

5 Obtaining the Edge-Weighted Interval Representation of General Graphs 30

5.1 Computing Rs when PQ-tree has a root P -node 31

5.1.1 Summary of the Algorithm and Pseudocode 34

5.1.2 Runtime Analysis and Proof of Correctness 36

5.2 Computing Rs when PQ-tree has a root Q-node 37

5.2.1 Finding Start-Cliques and End-Cliques, and Start-Nodes and End-
Nodes of Vertices . 41

5.2.2 Algorithm for Computing Set W 42

5.2.3 Summary of the Algorithm and Pseudocode 43

6 Conclusion and Future Work 47

References 48

vii

List of Figures

1.1 Figure 1.1a: An interval graph G; Figure 1.1b: G overlaid on its interval
representation; Figure 1.1c: Interval Representation of G 1

1.2 Some graphs that cannot be represented as intervals. Note: Adapted from
‘Representation of a finite graph by a set of intervals on the real line’ by
Lekkerkerker and Boland [33] . 2

1.3 Interval Representation of unweighted graph G 4

1.4 Gw is not an edge weighted interval graph 4

1.5 Intersection of two-dimensional intervals 6

1.6 Intersection of arcs on a circle . 7

1.7 Contact of Segments . 7

1.8 Intersection of Curves . 8

1.9 Intersection of Segments . 8

2.1 A minimal interval representation M of G. Notice that it is impossible to
reduce the size of any interval in M and still satisfy all edge-weights of G 10

2.2 Two types of non-leaf nodes of PQ-trees. 11

3.1 Interval Iu protrudes from interval Iv . 16

3.2 If u protrudes from v on the left, Figure 3.2a shows that if r(Iu) < r(Iw),
then s(u,w) is as large as s(u, v) plus one additional point p outside Iv;
Figure 3.2b shows that if r(Iu) ≥ r(Iw) then s(u,w) is as large as s(w, v)
plus one additional point p outside Iv; in both cases w satisfies the condition
for (u, v) ∈ Rs . 17

viii

4.1 Several ways in which three intervals can be arranged; our algorithm com-
putes the representation shown in 4.1d . 21

4.2 Observe in Figure 4.2a that pulling free intervals towards left or right has no
impact on the intersection of fixed intervals; however, to obtain a rightmost
representation, we pull the right endpoints to increase the length as shown
by Figure 4.2b . 22

4.3 If i is a uniform vertex in (i, j), we fix its end points as shown in 4.3a. If
both i, j are not uniform, then we arbitrarily pick one of Ii, Ij and fix its
right point, and fix the left point of the other interval as shown in 4.3b. . . 22

4.4 Graph G to be represented . 23

4.5 Figure 4.5a shows an initial tentative representation of G containing an
interval If with a free left point and a fixed right. In Case 2, we select If ,
and then we satisfy the intersection of If with other intervals by pulling
their left points, hence reaching the representation in Figure 4.5b. Observe
that in Figure 4.5b, If satisfies its intersection with all other intervals as
specified on G. 23

4.6 If some leftpoint l(Im) is to the left of l(Ii) then we fix l(Ii) as altering its
position changes the intersection between Ii and Im 23

5.1 Either w witnesses (u, v) ∈ Rs (Figure 5.1a), or P
′
w contains a vertex x that

witnesses (u, v) ∈ Rs (Figure 5.1b) . 33

5.2 Intervals protruding from interval Iw lie in at most two maximal cliques . . 34

ix

Chapter 1

Introduction

Ever since Hajós [20] introduced them in 1957, interval graphs have been widely studied
due to their diverse applications. In this thesis, we study a variation of interval graphs
called edge-weighted interval graphs. We first provide some background on the topic, and
then describe the problem addressed in the thesis.

1.1 Interval graphs

A graph G is an interval graph if each vertex in the graph can be assigned to an interval
such that two vertices are connected in the graph if and only if their corresponding intervals
overlap. Figure 1.1 gives an example of an interval graph.

A

B

C

D

E

F

(a)

‘
(b)

A

B

C

D

E

F

(c)

Figure 1.1: Figure 1.1a: An interval graph G; Figure 1.1b: G overlaid on its interval
representation; Figure 1.1c: Interval Representation of G

Note that not all graphs can be represented as intervals as described above. Figure 1.2
gives examples of graphs that are not interval graphs.

1

Figure 1.2: Some graphs that cannot be represented as intervals. Note: Adapted from
‘Representation of a finite graph by a set of intervals on the real line’ by Lekkerkerker and
Boland [33]

The interval graph recognition problem determines if a given graph G is an interval
graph, and if so, gives an interval representation of G.

In 1962, Lekkerkerker and Boland [33] gave two characterizations of interval graphs,
one of which states that a graph is an interval graph if and only if it is chordal and free
of asteroidal triples. Based on this characterization, they gave an O(n4) time algorithm
for recognizing interval graphs. Gilmore and Hoffman [16] proved that the complement
of an interval graph is a comparability graph, and used this to give an algorithm for the
problem. Fulkerson and Gross [14] proved that a graph is an interval graph if and only if
its maximal clique versus vertex incidence matrix observes the consecutive-ones property;
they also gave an algorithm for the problem based on this characterization.

All above algorithms have worst case running time of at least O(n3). The first linear
time algorithm for recognizing interval graphs was given by Booth and Lueker [7] in 1976.
They used the characterization of interval graphs given by Fulkerson and Gross [14] and
designed a data structure called PQ-trees to check if the maximal clique versus vertex in-
cidence matrix of a graph satisfied the consecutive-ones property. As PQ-trees are difficult
to implement in practice, several simpler algorithms have since been proposed for the prob-
lem. Korte et al. [29] solve the problem using an incremental algorithm based on modified
PQ-trees which can be used for online recognition of graphs, i.e., when the entire graph is
not known in advance and vertices are added one at a time. Simon [42] gave an algorithm
that orders maximal cliques without using PQ-trees by running lexBFS four times. Habib

2

et al. [19] solve the problem using modified lexBFS and clique trees. Hsu [22] provides a
solution that does not require ordering maximal cliques. Corneil, Olariu, and Stewart [9]
provide another algorithm to recognize interval graphs without ordering maximal cliques
by utilizing the properties of asteroidal triples.

Interval graphs have diverse applications such as seriation of artifacts in archaeol-
ogy [27], sequencing clones in DNA [17], job scheduling and resource allocation [8], mod-
elling food webs [38] and so on. Moreover, the recognition of interval graphs is useful
for solving optimization problems such as finding minimum vertex cover, maximum in-
dependent set, largest clique, minimum colouring etc. as these problems are solvable in
polynomial time [15] on interval graphs.

We now look at a natural variation of interval graphs, namely, the edge-weighted interval
graphs, that are the focus of this thesis.

1.2 Edge-Weighted Interval Graphs

A given graph with weights on its edges is an edge-weighted interval graph if we can assign
intervals to the vertices such that the weight of an edge (u, v) is equal to the length of the
intersection of the intervals assigned to u and v. We investigate the problem of recognizing
edge-weighted interval graphs, hence our problem is formally defined as: Determine if a
given edge-weighted graph G is an edge-weighted interval graph and if so, give an interval
representation for G.

Note that a given graph can be an interval graph but not an edge-weighted interval
graph; one such example is described below. Graph G in Figure 1.3 is an interval graph
as it can be represented as intervals, but the weighted version of G given in Figure 1.4a is
not an edge-weighted interval graph as we will see next.

Consider the edge-weighted version Gw of G in Figure 1.4a. Let us try to obtain
an edge-weighted interval representation of Gw. First, we obtain the smallest possible
(minimal) interval representation of the subgraph ABC, and then we try to place interval
D in this representation. Since the interval representation of ABC is the smallest possible,
this representation must be present in all edge-weighted interval representations of G. To
satisfy the intersection of D with C, we can either place D completely inside interval C
(see Figure 1.4b), or place it such that it protrudes from C, either from the left or from
the right (see Figure 1.4c). Observe that in all cases it is impossible for D to satisfy its
intersection with both A and B without violating its intersection with C. Hence, Gw is
not an interval graph.

3

A

B

D

C

(a) Unweighted Graph G

A

B

C

D

(b) Interval Representation of G

Figure 1.3: Interval Representation of unweighted graph G

4
4

5

2

4 2

A

B

D

C

(a) Weighted Graph Gw

0 1 2 3 4 5 6

A

C

B

7 8 109

D

(b) Placing D such that it is contained in C

0 1 2 3 4 5 6

A

C

B

7 8 109

DD

−1

B

(c) Placing D such that it protrdues from C, either on the left or on the right

Figure 1.4: Gw is not an edge weighted interval graph

The literature on recognition of edge-weighted interval graphs is not as abundant as
for the recognition of interval graphs. The problem was investigated by Yamamoto [45]
in 2007. In 2012, Köbler, Kuhnert, and Watanabe [28] gave an algorithm for recognizing
edge-weighted interval graphs in O(m · n) time.

We first give a simple algorithm that solves the edge-weighted interval representation
problem for complete graphs in O(m · log n) time. Then we use this algorithm along with

4

properties of PQ-trees to improve the running time of Köbler’s algorithm for general graphs
to O(m · log n).

Outline of the Thesis

The remainder of this chapter discusses related work. Chapter 2 introduces the notation
and describes the concepts used in the thesis. In Chapter 3, we give an intuition of how
different components of our algorithm work together. Chapter 4 presents an algorithm
for finding an edge-weighted interval representation of a complete graph. In Chapter 5
we describe how properties of PQ-trees with the algorithm from Chapter 4 improves the
running time of the algorithm for general graphs proposed by Köbler et al. [28]. Chapter 6
concludes the thesis and suggests directions for future work.

1.3 Related Work

In this section we mention other problems in the literature that place constraints on interval
representation of graphs and we describe some generalizations of interval graphs.

1.3.1 Interval Graph Representation with Constraints

Several variations of the interval graph representation problem with constraints can be
found in the literature. In 1965, Fulkerson and Gross [14] gave an algorithm for finding
the interval representation of graphs with given interval lengths and pairwise intersection
lengths in O(n2) time. Pe’er and Shamir [37] have proven the NP -completeness of finding
the interval representation of a graph when interval lengths are specified. Skrien [43] gives a
O(n3) algorithm for finding the interval representation when the endpoints of the intervals
must be placed according to a given partial order. The seriation with side constraints
problem, where the relative position of two disconnected intervals is specified, is solvable
in linear time [37]. The interval graph with distance constraints problem, to find an interval
representation respecting the specified distance between the end points of the intervals, is
solved in quadratic time by Shamir et al. [37]. Jampani and Lubiw in [24] give a O(m·log n)
algorithm to find the simultaneous interval representations of two graphs, where each vertex
present in both graphs must be represented by the same interval.

5

1.3.2 Intersection Graphs

An intersection graph representing a set of objects has a vertex corresponding to an object
with the rule that two vertices are adjacent if their corresponding objects intersect. Interval
graphs are therefore intersection graphs of intervals. In this section we discuss known
results on some other types of intersection graphs that are related to interval graphs.

Boxicity Graphs

Boxicity graphs are the intersection graphs of d-dimensional intervals, i.e. axis aligned d-
dimensional boxes. Interval graphs are therefore boxicity-1 graphs. The recognition of
boxicity-d graphs with d ≥ 2 is NP -complete [31]. Figure 1.5 shows the intersection of
two-dimensional intervals.

a

b

c

d

e

Figure 1.5: Intersection of two-dimensional intervals

Circular-Arc Graphs

Circular-arc graphs are the intersection graphs of arcs on a circle as shown in Figure 1.6.
The recognition problem was conjectured to be NP -complete by Booth [6], but was later
proven polynomial by Tucker [44] with an O(n3) algorithm. The algorithm was then
improved to O(m · n) by Hsu [23], where m,n represent the number of edges and vertices
respectively. This was later improved to O(n2) by Eschen and Spinrad [13]. The first linear
time algorithm was given by McConnell [34]. In [26], Kaplan gives a simpler algorithm for
recognizing circular-arc graphs in linear time.

6

a

b

c

d

e

Figure 1.6: Intersection of arcs on a circle

Contact Graphs

Each vertex of a contact graph G corresponds to an object such as a line segment or polygon
in space, and an edge between two vertices in G signifies that the objects corresponding
to the two vertices touch, but do not cross, in a predefined manner. Alam et al. in [2, 1]
study proportional contact graphs of polygons where the area of the object is specified as
weights on the vertices. In [3], Alam et al. study proportional contact representation of
3D objects composed of boxes. De Fraysseix and de Mendez [10] study the contact graphs
of segments and pseudo-segments and give partial results on representing all planar graphs
by the intersection of pseudo-segments. Recognition of contact graphs of line segments
with contact degrees of three or more was proven to be NP -complete by Hliněnỳ [21].

Figure 1.7: Contact of Segments

7

String Graphs

A string graph is the intersection graph of a set of curves in the plane. Each vertex of a
string graph corresponds to a curve in the plane, and two vertices are connected if their
corresponding curves intersect. In 1991, Kratochv́ıl [30] proved that the recognition of
string graphs is NP -hard. Schaefer and Štefankovič [41] show that string graphs can be
recognized in non-deterministic exponential time. Later, in 2003, Schaefer [40] et al. showed
the recognition of string graphs is NP -complete by showing that the problem is in NP.

A

D

B

C

Figure 1.8: Intersection of Curves

Segment Graphs

A segment graph is the intersection graph of straight line segments in a plane. Segment
graphs are a proper subset of string graphs [12]. Kratochv́ıl and Matoušek [32] have shown
that the recognition of segment graphs is in PSPACE. They also show that the problem is
NP -complete when the segments are forced to lie in k directions for every k ≥ 2.

A

B

C

D

Figure 1.9: Intersection of Segments

8

Chapter 2

Preliminaries

This chapter introduces the notation used in the thesis and provides the reader with back-
ground on PQ-trees.

2.1 Notation Used

For a given graph G, we denote the set of vertices of G by V (G), and the set of edges of
G by E(G). The size of V (G) and E(G) is denoted by n and m, respectively. We use Iv
to represent the interval corresponding to a vertex v. The left and right points of Iv are
denoted by l(Iv) and r(Iv), respectively.

Definition 2.1. A minimal interval representation of an edge-weighted graph is one in
which no interval can decrease in size and still represent the given graph (see Figure 2.1).

In the following sections we describe some concepts that are fundamental for recognizing
interval graphs.

2.2 Maximal Cliques and Consecutive-Ones Property

A maximal clique of a graph is a clique that is not a subset of any larger clique of the
graph. For a graph to be an interval graph, there must exist a linear ordering of its maximal
cliques such that all cliques containing a vertex are consecutive [7]. A binary matrix is

9

u

v

w
2

3

1

(a) Graph G

0 1 2 3 4 5 6

Iu

Iw

Iv

(b) Minimal Interval Representation M of G

Figure 2.1: A minimal interval representation M of G. Notice that it is impossible to
reduce the size of any interval in M and still satisfy all edge-weights of G

said to have the consecutive-ones property when we can permute its columns such that
the ones in every row are consecutive. The clique matrix M of a graph is a matrix where
the columns correspond to the maximal cliques of the graph, the rows correspond to its
vertices, and Mij is defined as:

Mij =

{
1, if clique Cj contains the vertex vi

0, if clique Cj does not contain vertex vi
(2.1)

A graph is an interval graph if and only if its clique matrix M has the consecutive-ones
property [14].

A chordal graph is a graph that does not contain induced cycles of length four or more;
such a graph can be recognized in linear time by using a technique called lexBFS [39].
Since we cannot represent cycles of length more than three as intersection of intervals,
every interval graph must be a chordal graph. Therefore, we first check if G is a chordal
graph, and if it is not, then we know that G is not an interval graph. Otherwise, we proceed
to find its maximal cliques.

An arbitrary graph may have an exponential number of maximal cliques; however, since
G is a chordal graph, it has a linear number of maximal cliques, that can be listed in O(m)
time [15]. Therefore, we obtain the clique matrix M of G, and test if M satisfies the
consecutive-ones property.

Booth and Lueker [7] in 1976 introduced a data structure called PQ-trees to check if a
m×n matrix satisfies the consecutive-ones property. Their algorithm runs in O(m+n+f)
time, where f is the number of non zero entries in the matrix. Hence we can determine if
a graph is an interval graph in linear time using PQ-trees. The following section describes
some more properties of PQ-trees.

10

2.3 PQ-Trees

The columns of the matrix correspond to the leaves of the PQ-tree.

The immediate descendants of an internal node of a PQ-tree can be reordered by some
rules (detailed below). For any such reorderings, the ordering of the leaves of the PQ-
tree is called its frontier. Booth and Lueker [7] prove that the possible frontiers are in
one-to-one correspondence with the orderings of the columns of a matrix that satisfy the
consecutive-ones property.

PQ-trees are built of three types of nodes: P -nodes, Q-nodes and leaves. P -nodes are
denoted by a circle and Q-nodes are denoted by a rectangle. The order of the children of a
Q-node must be preserved up to reflection, i.e., we are only allowed to reverse the order of
the children of a Q-node to maintain the consecutive-ones property of the frontier of the
tree. On the other hand, the children of a P -node can be arranged in any order without
violating the consecutive-ones property of the frontier.

(a) P Node, represented by a circle (b) Q-node, represented by a rectangle

Figure 2.2: Two types of non-leaf nodes of PQ-trees.

Two PQ-trees T1 and T2 are equivalent if we can obtain the frontier of T2 from T1 by:

• Arbitrarily permuting the children of its P -nodes

• Reversing the order of the children of its Q-nodes

As mentioned earlier, Booth and Lueker give a linear-time algorithm to construct a
PQ-tree corresponding to 0-1 matrix M , if such a PQ-tree exists. Their algorithm works
by starting with one P -node with all columns as leaves, and then considering the rows one
by one, modifying the PQ-tree to ensure that the columns with the 1s in that row appear
consecutively in any frontier.

11

In this thesis, we will need some properties of PQ-trees of interval graphs. Let G be an
interval graph and consider a PQ-tree of G’s clique matrix M . The leaves of the PQ-tree
correspond to the maximal cliques of G. In particular, for any row r of the matrix, the
columns with a 1 in row r must appear consecutively in any frontier of the PQ-tree.

We say that a vertex v appears in a node of a PQ-tree if it is in at least one maximal
clique corresponding to a leaf in the subtree rooted at the node. A vertex w covers a node
N if it is in all maximal cliques corresponding to the leaves descended from N . We claim
that any P -node in the PQ-tree of a connected graph is covered by at least one vertex.

Claim 2.1. For each P -node Np in a PQ-tree of a connected graph G, there exists a vertex
v ∈ V (G) that covers Np.

Proof. We know that the children of a P -node Np can be arranged in any order. This
implies that any vertex either appears in only one child of Np, or it covers Np. Since we
are dealing with connected components, there must be at least one vertex v that covers
Np.

The corollary below follows from the above claim:

Corollary 2.1. Any vertex v that appears in a clique corresponding to a leaf of a P -node
Np either covers Np or appears in only one child of Np.

For a Q-node Nq, we prove that if a vertex v appears in more than one child of Nq,
then v covers each child of Nq that it appears in. To prove this claim, consider a node
Nq. Let the ordering of the children of Nq be denoted by ONq . Recall that the ordering
ONq = N1, · · · , Nt is unique up to reflection.

Definition 2.2. A vertex v is long for a Q-node Nq if it appears in multiple children of
Nq.

Claim 2.2. If a vertex w is long for a Q-node Nq, then w covers each Ni ∈ ONq that it
appears in.

Proof. The proof is trivial when Ni is a leaf of the PQ-tree.

Suppose w appears in Ni—assume w is in clique C1 corresponding to a leaf of Ni. Since
w is long, it is in a clique C2 corresponding to a leaf of some Nj, j 6= i.

Let C3 be a clique corresponding to a leaf of Ni, C3 6= C1. We must show that w is
in C3. Take one ordering of the PQ-tree, and suppose that C1 appears before C2 in the

12

frontier. Then all the descendants of Ni appear before C2 in the frontier. Irrespective of
whether Ni is a P -node or a Q-node, we may reverse the order of its descendants using
valid PQ-node reorderings, resulting in a new frontier. In one of these two frontiers, our
three cliques appear in the order C1, C3, C2. By the consecutive-ones property, since w is
in C1 and C2, it is also in C3.

Corollary 2.2 below follows from the above proof:

Corollary 2.2. The long vertices of a Q-node form an interval system on its immediate
children N1, · · · , Nt.

2.4 Weighted Helly Theorem For Intervals

Helly’s theorem [4] states that if we have a collection of n convex subsets of Rd with
n > d such that the intersection of every d + 1 of these subsets is non-empty, then the
entire collection has a nonempty intersection. As we are dealing with weighted graphs, our
solution uses a quantitative version of Helly’s theorem which gives us information about
the size of the common intersection between all intersecting subsets. Bárány, Katchalsky,
and Pach [4] give a lower bound on the size of the common intersection in any dimension
d. For interval graphs we are concerned with the simple case of d = 1, for which an exact
result holds. Since we have not found this result in the literature, we give a proof for it in
Theorem 2.1.

Theorem 2.1. For a set S = {I1, I2, .., In} of n intervals with the property that |Ii ∩ Ij| ≥
t,∀i, j ∈ [1, n], there exists a common intersection of length at least t between all the
intervals in S.

Proof. We prove the theorem by induction on n intervals.

Base case: When n = 2, the proof is trivial.

Let us assume that the theorem holds for n − 1 intervals. Let C be the common
intersection of n−1 intervals, I1, · · · , In−1 in S. Then |C| ≥ t by the induction hypothesis.
We must prove that |In ∩ C| ≥ t.

Two intervals A and B have |A ∩B| ≥ t if the following conditions are satisfied:

1. r(A)− l(B) ≥ t

13

2. r(B)− l(A) ≥ t

3. r(A)− l(A) ≥ t

4. r(B)− l(B) ≥ t

The conditions follow from the observation that two intervals overlap by at least t if and
only if each of the left end points of the two intervals are at least distance t before each of
the right endpoints.

We will prove the above conditions for In and C.

As C represents the common intersection of n− 1 intervals, there exists an interval Ij
that starts at l(C) and an interval Ik that ends at r(C), i.e. l(C) = l(Ij) and r(C) = r(Ik).
Since |Ik ∩ In| ≥ t, therefore r(Ik)− l(In) ≥ t, and hence r(C)− l(In) ≥ t. Similarly, since
|Ij ∩ In| ≥ t, therefore r(In)− l(Ij) ≥ t, and hence r(In)− l(C) ≥ t.

Note that |C| ≥ t by induction hypothesis, and hence r(C)− l(C) ≥ t. Also note that
|In| ≥ t, otherwise the intersection of In with any interval cannot be t, and so r(In)−l(In) ≥
t. We have shown that all four conditions are satisfied by In and C, hence |In∩C| ≥ t.

14

Chapter 3

Overview of the Algorithm

As mentioned in Chapter 1, Chapter 4 presents Algorithm 4.2 for obtaining the edge-
weighted interval representation of complete graphs, which is used as a subroutine to
improve the running time of Köbler’s algorithm. In this chapter we explain the bottleneck
of Köbler’s algorithm, and then give an intuition of how Algorithm 4.2 together with
PQ-trees can help in removing this bottleneck.

3.1 Bottleneck of Köbler’s algorithm

In their paper, Köbler et al. [28] solve two variations of the interval graph representation
problem: one where the edges of the given graph are weighted, and one where both the
edges and the vertices of the given graph are weighted. The weight on a vertex, the l-
weight, indicates the length of its corresponding interval, and the weight on an edge, the
s-weight, represents the length of intersection of intervals of its adjacent vertices. They
refer to a set of intervals respecting the weights on the edges as the s-respecting interval
representation and a set of intervals respecting both the weights on the vertex and the edges
as the (l, s)-respecting interval representation. Their algorithm finds an (l, s)-respecting
interval representation, or determines if none exists, in O(n+m) time. They use the same
algorithm for finding the s-respecting intervals by reducing it to the (l, s)-respecting interval
representation problem by assigning lengths to the intervals (and therefore l weights to the
vertices of the graph) based on their s-weights. The method for computing the lengths of
the intervals uses a relation called Rs, which we refer to as the protrusion relation. Their
paper employs a O(m ·n) time brute force algorithm to find the protrusion relation, which
is the bottleneck of their algorithm.

15

To explain how the protrusion relation Rs is computed, we first define Rs and some
related terms.

Definition 3.1. An edge (u, v) ∈ Rs if (u, v) ∈ E(G) and ∃w ∈ V (G) such that s(u,w) >
min{s(u, v), s(v, w)}.

If a vertex w satisfies the definition for (u, v) ∈ Rs, we say the w witnesses (u, v) ∈ Rs.

Next, we define the term protrudes for any two intervals Iu and Iv.

Definition 3.2. An interval Iu protrudes from an interval Iv if Iu∩ Iv 6= φ and Iu \ Iv 6= φ.
In other words, Iu protrudes from Iv if Iu and Iv intersect, and Iu contains a point p not
in Iv (see Figure 3.1).

Iu
Iv

Figure 3.1: Interval Iu protrudes from interval Iv

For vertices u, v, we say that u protrudes from v if Iu protrudes from Iv in every minimal
s-respecting interval representation of G.

In any minimal s-respecting representation, we say that vertex u protrudes from vertex
v on the left if l(Iu) < l(Iv). Likewise, u protrudes from v on the right if r(Iu) > r(Iv).

In Lemma 3.1 of [28], Köbler et al. state and prove that an interval Iu protrudes from an
interval Iv in all minimal s-respecting interval representations of G if and only if (u, v) ∈ Rs.
For the convenience of the reader we prove the same in Lemma 3.1 below:

Lemma 3.1. Let R be a minimal s-respecting interval representation of a graph G. Then
edge (u, v) ∈ Rs if and only if Iu protrudes from Iv.

Proof. Suppose edge (u, v) ∈ Rs. Then, there exists a vertex w ∈ V (G) such that s(u,w) >
s(u, v) or s(u,w) > s(v, w); either way, in any s-respecting interval representation, there
must exist at least one point outside Iv common to Iu and Iw, and hence Iu protrudes from
Iv.

For the backward implication, suppose without loss of generality that Iu protrudes from
Iv on the left, implying l(Iu) < l(Iv). Since R is a minimal representation, there must be
at least one interval Iw that shares a point with Iu to the left of l(Iv). If r(Iu) < r(Iw),

16

Iu

Iv

Iw

p

(a)

Iu

Iv

Iw

p

(b)

Figure 3.2: If u protrudes from v on the left, Figure 3.2a shows that if r(Iu) < r(Iw), then
s(u,w) is as large as s(u, v) plus one additional point p outside Iv; Figure 3.2b shows that
if r(Iu) ≥ r(Iw) then s(u,w) is as large as s(w, v) plus one additional point p outside Iv;
in both cases w satisfies the condition for (u, v) ∈ Rs

then s(u,w) is as large as s(u, v) plus one additional point outside Iv (see Figure 3.2a).
Otherwise, if r(Iu) ≥ r(Iw) then s(u,w) is as large as s(w, v) plus one additional point (see
Figure 3.2b). Either way it satisfies the condition for (u, v) ∈ Rs.

Note that the above proof implies the following corollaries:

Corollary 3.1. If Iu protrudes from Iv in some minimal edge-weighted interval representa-
tion of G, then (u, v) ∈ Rs. If (u, v) ∈ Rs, then Iu protrudes from Iv in any edge-weighted
interval representation of G.

Corollary 3.2. If vertex w witnesses the protrusion of u from v by satisfying the condition
for (u, v) ∈ Rs, then Iu protrudes from Iv in all s-respecting interval representations of any
subgraph of G containing vertices u, v and w.

Corollary 3.3. Intervals Iu and Iw protrude from interval Iv on the same side in any
minimal s-respecting interval representation if w witnesses the protrusion of u from v.

Proof. Note that if w witnesses the protrusion of u from v, then s(u,w) > s(u, v) or
s(u,w) > s(v, w), and hence there must exist one point p common to Iu and Iw outside
Iv in any minimal s-respecting representation of a subgraph of G containing u, v, w. If p
is to the left of l(Iv) then both u and w protrude from v on the left, and if p is to the
right of r(Iv) then both u and w protrude from v on the right; hence in either case both u
and w must protrude from v on the same side in any s-respecting interval representation
of G.

Köbler et al. employ a brute force approach to compute Rs by searching for a witness for
every edge by testing all vertices of G. The running time of their algorithm for determining
Rs is therefore O(m · n).

17

3.2 Our Approach to Computing Rs

Algorithm 4.2 from Chapter 4 gives a minimal s-respecting representation of a given com-
plete graph (or determines that none exists) in time O(m · log n). Note that once we obtain
a minimal s-respecting representation M of a graph G, we can obtain the protrusions of
G by simply comparing the left and right end points of the intervals in M as justified by
Corollary 3.1. Therefore, Rs can be found in O(m·log n) for complete graphs. In Chapter 5,
we find Rs for general graphs by using PQ-trees to find a subset of intervals that witness
most of the protrusions, and find the remaining protrusions by running Algorithm 4.2 a
constant number of times.

18

Chapter 4

Obtaining the Edge-Weighted
Interval Representation of a
Complete Graph

In this chapter we give an algorithm for finding a minimal edge-weighted interval repre-
sentation for a given complete graph. In a later chapter we will rely on this algorithm to
find the protrusion relation Rs for a complete graph. We begin by defining some terms
in Section 4.1, and then describe the algorithm in Section 4.2. Subsection 4.2.1 gives the
pseudocode, the proof of correctness can be found in Subsection 4.2.2, and finally the
runtime analysis is provided in Subsection 4.2.3.

4.1 Definitions

In this section we define some terms that will be used by our algorithm.

Definition 4.1. Tentative Interval Representation: Intuitively, a tentative interval rep-
resentation of a graph G is one that can be ‘expanded’ to a valid edge-weighted interval
representation of G, if such exists. More precisely, a set of intervals T = {ITv : v ∈ V (G)}
is a tentative interval representation if the following condition holds: if G has an interval
representation, then it has an interval representation M = {IMv : v ∈ V (G)} such that
∀v ∈ V (G), ITv ⊆ IMv .

Definition 4.2. Free and fixed endpoints: At any time we have a tentative interval repre-
sentation T of G which we modify by pulling the left points of some intervals further left

19

and right points of some intervals further right. We may also fix some endpoints which
means that they have reached their final position and cannot be changed. The endpoints
that are not yet fixed are called free. All figures in this thesis use solid ends to show fixed
endpoints and hollow ends to show free endpoints.

Definition 4.3. Free and fixed intervals: An interval is fixed when both its endpoints are
fixed. An interval that is not fixed is free.

Definition 4.4. Free Subgraph: The free subgraph F is the subgraph of G induced by
vertices with free intervals in T .

Definition 4.5. Uniform vertex: A vertex u in a graph G is a uniform vertex if the weight
of all edges incident to u is the same. We will also apply this definition to the free subgraph
F and will speak of u being uniform in F .

As G is a clique with positive edge-weights, all intervals in any edge-weighted interval
representation of G must have a point p in common. In our algorithm, we give a minimal
edge-weighted interval representation of G where p = 1. We define below the rightmost
representation of G with p = 1.

Definition 4.6. Rightmost representation: In a rightmost representation, each interval
is placed as far right as possible while still containing the point 1. Moving any interval
towards the right in a rightmost representation will either violate its intersection with
other intervals, or it will no longer contain the point 1. The algorithm described in this
section will always give us the minimal rightmost representation of the graph. To further
illustrate, Figure 4.1 shows several ways that three intervals can be arranged to satisfy the
same intersections; our algorithm gives the minimal rightmost representation as shown in
Figure 4.1d.

4.2 The Algorithm

The algorithm works by modifying and fixing the endpoints of the intervals of a tentative
interval representation T to satisfy as many constraints as possible, until there are no
free intervals remaining. At all times during the algorithm, the following invariants are
maintained:

1. T is a tentative interval representation of the rightmost representation M of G.

20

1

(a)

1

(b)

1

(c)

1

(d)

Figure 4.1: Several ways in which three intervals can be arranged; our algorithm computes
the representation shown in 4.1d

2. (a) All free left points ≤ fixed left points

(b) All free right points ≥ fixed right points

3. All free left points are equal. All free right points are equal.

As mentioned earlier, since G is a clique with positive edge-weights, any interval repre-
sentation M of G will contain one point which is common to all intervals. We arbitrarily
choose 1 as the common point, thus initially T consists of n zero length intervals whose
endpoints are free and set to 1.

The algorithm proceeds by applying the following cases:

Case 1: Both ends of all free intervals are free:
Pick an edge (i, j) having the smallest weight from the free subgraph F of
G. By Theorem 2.1 (the weighted Helly theorem for intervals), any interval
representation M of G must have a common subinterval of length s(i, j) in the
free intervals of T . Therefore, if the length of the free intervals is less than s(i, j),
we increase their lengths to s(i, j) by pulling their right points. Notice that due
to Invariant 1, the free endpoints are always outside the fixed endpoints, hence
the choice of pulling either the left or the right points of free intervals will not
impact the intersection of fixed intervals as shown in Figure 4.2a. However, in
order to obtain the rightmost representation, we must pull the right points of
the intervals (we will justify this in the proof of correctness).

In the selected edge (i, j), either at least one of i, j is a uniform vertex, or both
i, j are non-uniform vertices. If the selected intersection is due to a uniform
vertex u, fix the endpoints of Iu (see Figure 4.3b). We have now ensured that

21

(a) (b)

Figure 4.2: Observe in Figure 4.2a that pulling free intervals towards left or right has no
impact on the intersection of fixed intervals; however, to obtain a rightmost representation,
we pull the right endpoints to increase the length as shown by Figure 4.2b

Iu satisfies the intersections specified in G with its neighbours, and hence its
length never needs to exceed s(i, j). Otherwise, if the smallest weight is not
due to a uniform vertex, we arbitrarily fix the left point of one of the intervals
and the right point of the other interval. This ensures that the intersection
of Ii and Ij is equal to s(i, j), and cannot change later in the algorithm (see
Figure 4.3).

Ii
Ij

(a)

Ii
Ij

(b)

Figure 4.3: If i is a uniform vertex in (i, j), we fix its end points as shown in 4.3a. If both
i, j are not uniform, then we arbitrarily pick one of Ii, Ij and fix its right point, and fix the
left point of the other interval as shown in 4.3b.

Case 2: There exists an interval If in T with a fixed right point and a free left
point:
Pull the left point of all intervals with free left points and l(If) towards the left
until all intervals satisfy the specified intersection with If . We will later show
that if the left point of an interval needs to move right instead of left to satisfy
the intersection, then G is not an edge-weighted interval graph. This process
is demonstrated by Figure 4.5 for graph in Figure 4.4. After pulling all the
intervals as required, we fix the left point of If as all the intersections with If
have been satisfied, and hence l(If) does not need to change.

We then run a routine called fix endpoints to fix the left points of all intervals
that start after any other interval (the pseudocode for fix endpoints also fixes
the right endpoints of all intervals that stop before any other interval, which will
apply only for Case 3). The necessity of fixing the endpoints can be understood
from Figure 4.6. Notice that moving l(Ii) changes the intersection between Ii

22

f

hg

i

22

2 7

5

1

Figure 4.4: Graph G to be represented

0 1 2 3 4 5 6

If

Ii

Ih

Ig
Pull

(a)

0 1 2 3 4 5 6

If

Ii

Ih

Ig

−1−2

(b)

Figure 4.5: Figure 4.5a shows an initial tentative representation of G containing an interval
If with a free left point and a fixed right. In Case 2, we select If , and then we satisfy
the intersection of If with other intervals by pulling their left points, hence reaching the
representation in Figure 4.5b. Observe that in Figure 4.5b, If satisfies its intersection with
all other intervals as specified on G.

and Im. Hence we must fix l(Ii) if we wish to preserve the intersection between
Im and Ii.

l(Im)
l(Ii)

Figure 4.6: If some leftpoint l(Im) is to the left of l(Ii) then we fix l(Ii) as altering its
position changes the intersection between Ii and Im

Case 3: There exists an interval If in T with a fixed left point and a free right
point
This case is symmetric to Case 2. Here we pull the right points of free intervals
in T towards the right to satisfy their intersection with If , and then run the
fix endpoints subroutine.

When no free intervals remain in T , we check if the intervals obtained satisfy the edge
weights in G. If all the weights are satisfied then we have an interval representation of G,

23

otherwise we conclude that G is not an edge-weighted interval graph (correctness will be
proved in section 4.2.2).

4.2.1 Pseudocode

In this section we give the pseudocode of the subroutine fix endpoints followed by the
psuedocode of the main algorithm.

For the fix endpoints subroutine, we find the leftmost left point and the rightmost right
point of T in O(n) time, and then we fix an interval’s left point if is it not equal to the
leftmost point, and its right point if it is not equal to the rightmost point.

Algorithm 4.1 Subroutine for fixing right and left endpoints in the tentative interval
representation T .

1: procedure fix endpoints(T , V (G)) . T is the tentative representation of G
2: rightmost← 1
3: leftmost← 1
4: for each v ∈ V (G) do . Find the rightmost right point and the leftmost left point
5: if l(Iv) < leftmost then
6: leftmost← l(Iv)
7: end if
8: if r(Iv) > rightmost then
9: leftmost← r(Iv)
10: end if
11: end for
12: for each v ∈ V (G) do . Fix the endpoints
13: if leftmost < l(Iv) then
14: Fix l(Iv)
15: end if
16: if rightmost > r(Iv) then
17: Fix r(Iv)
18: end if
19: end for
20: end procedure

24

Algorithm 4.2 Checking if a given complete graph is an edge-weighted interval graph

1: Sort the edges of G in increasing order of weight
2: Initialize T to contain n intervals that have free endpoints set to 1
3: while T has free intervals do
4: if T contains only one free interval then
5: Fix the endpoints of the free interval
6: end if
7: if all free intervals have both endpoints free then . Case 1
8: Pick the smallest weight edge (i, j) where both i, j are free
9: for each free interval Ik ∈ T do
10: r(Ik)← l(Ik) + s(i, j) . Pull right points of free intervals
11: end for
12: if at least one of i, j is a uniform vertex for free intervals then
13: Fix the left and right points of the interval of the uniform vertex.
14: else
15: Fix the left point of Ij and the right point of Ii.
16: end if
17: else if ∃If ∈ T with a fixed right point and a free left point then . Case 2
18: for each k ∈ V (G), k 6= f and l(Ik) is free do
19: l(Ik)← min{min{r(If), r(Ik)} − s(f, k), l(Ik)}
20: l(If)← min{l(If), l(Ik)} . Pull l(If) and l(Ik) as far left as required
21: end for
22: Fix the left point of If .
23: fix endpoints(T ,V (G))
24: else if ∃If ∈ T with a fixed left point and a free right point then . Case 3
25: for each k ∈ V (G), k 6= f and r(Ik) is free do
26: r(Ik)← max{max{l(If), l(Ik)}+ s(f, k), r(Ik)}
27: r(If)← max{r(If), r(Ik)} . Pull r(If) and r(Ik) as far right as required
28: end for
29: Fix the right point of If .
30: fix endpoints(T ,V (G))
31: end if
32: end while
33: if T is the interval representation of G then
34: G is an edge-weighted interval graph with T as a representation
35: else
36: G is not an edge-weighted interval graph
37: end if

25

4.2.2 Correctness Proof

In this section we prove the correctness of Algorithm 4.2.

Theorem 4.1. Algorithm 4.2 correctly decides if an edge-weighted complete graph has an
edge-weighted interval representation, and if it does, produces one such representation.

Proof. Preconditions:

1. Graph G is a weighted complete graph.

2. The edges in G have positive weights.

3. The endpoints of all n intervals of T are free and set to 1.

Postcondition: Obtain a minimal edge-weighted interval representation M of G if
there exists one.

Loop Invariants:

1. T is a tentative representation of the rightmost representation M .

2. (a) All free left points ≤ fixed left points

(b) All free right points ≥ fixed right points

3. All free left points are equal. All free right points are equal.

We begin by proving that the invariants are true before entering the while loop. Invari-
ant 1 is true from the definition of rightmost representation which says that all intervals
in M must contain the point 1. Since all endpoints in T are free and equal, Invariants 2
and 3 are true before entering the loop.

The correctness of the algorithm during the cases that may arise during each iteration
of the while loop is as follows:

Case 1: Both endpoints of each free interval in T are free
The algorithm increases the length of all free intervals in T to s(i, j) which is the smallest
edge weight in the free subgraph F . As F is a clique, we know from Theorem 2.1 that
M needs to contain a common subinterval of length s(i, j) in the intervals of F . Due to
Invariant 1, we know that the left points of the intervals in T are as far right as they

26

can possibly be. Since in Case 1 we do not change the left points of the free intervals,
T continues to be the rightmost tentative representation. As T is the rightmost interval
representation which has the common intersection of length s(i, j) between its free intervals,
therefore T has to be contained in M .

Before entering Case 1, we know from the loop invariants that the left points of all free
intervals are equal and the right points of all free intervals are equal. Therefore, to increase
the length of free intervals to s(i, j), the algorithm pulls forward the right points of all free
intervals by an equal amount, hence ensuring that all right points in their new place are
equal. The pulling of the free right points leaves behind the fixed right points, hence all
fixed right points are before (less than) the free right points. After increasing the length
of free intervals, the algorithm fixes one left and one right point (which may belong to the
same or different intervals). The newly fixed right point is therefore equal to the free right
points, and since no left point was moved in Case 1, the newly fixed left point is equal
to the free left points, which are equal to each other. Therefore Case 1 does not violate
invariants 2 and 3.

Case 2: ∃f such that If has a fixed right point and a free left point
Let Iv, v 6= f be an interval with a free left point in T . The right point of v can be either
free or fixed. If v has a fixed right point, then we have no choice but to pull the left points of
If and Iv to satisfy s(f, v), since we can’t change the right points of either If or Iv. If v has
a free right point, then we know that r(If) ≤ r(Iv), and hence again we have to pull the left
points to satisfy s(f, v). Therefore we observe that the only way to satisfy the intersection
between v and f is by pulling their left points. Any interval representation M where If
stops at r(If) must have the left points of intervals Iv and If at min{r(If), r(Iv)}− s(f, v)
to satisfy the given intersection. Hence, the left points are as far right as they can be while
still satisfying their intersection with If , and T is the rightmost tentative representation.
Therefore, the intervals obtained in T after Case 2 must be contained in the corresponding
intervals of M .

Observe that l(If) is pulled as far left as required to satisfy its specified intersections
with free intervals, hence l(If) is equal to the left point of any free interval in T . Fixing
l(If) after Case 2, therefore, does not violate Invariant 2. Additionally, since the sub-
routine fix endpoints fixes all left points that lie after any other left point and fixes right
points that lie before any other right point, the call to fix endpoints subroutine ensures
that Invariants 2 and 3 are satisfied.

Case 3: ∃v ∈ V such that Iv has a fixed left point and a free right point

27

Symmetric to Case 2 above except for Invariant 1. We know from Invariant 1 that T is a
rightmost representation, so the left end points of the intervals are as far right as possible.
Since in this case we pull all free intervals towards the right, the left endpoints of the
intervals stay the same, and Invariant 1 is satisfied.

In each case we fix at least one end point, therefore eventually we fix all the endpoints
in T , and the loop terminates.

Note that in all cases, we only pull an endpoint to satisfy a specified intersection, hence
T is a minimal representation.

After all the intervals are fixed and T cannot be changed anymore, we check if the
intervals in T satisfy the edge-weights of G. If all intersections are satisfied then we have
found an edge-weighted interval representation of G, otherwise there does not exist any
edge-weighted interval representation of G because all through the algorithm we have main-
tained a tentative interval representation where we tried to satisfy as many intersections
as possible.

4.2.3 Runtime Analysis

Theorem 4.2. Algorithm 4.2 runs in O(m · log n) time.

Proof. As we are dealing with complete graphs, n2 = O(m). Sorting the edges takes
O(m · logm) = O(m · log n) time. We will show that the rest of the algorithm runs in
O(n2) = O(m) time.

Each case fixes at least one endpoint of the n intervals. We can keep track of the
number of free intervals and the number of intervals with both endpoints free by updating
these counts at a cost of O(1) each time we fix an endpoint. Thus, we can distinguish
Case 1 from Cases 2 and 3 in O(1) time.

To find the smallest weight edge in the free subgraph F in Case 1, we traverse the
sorted list of edges and select the first edge (i, j) where both i and j are free, and then
save the pointer to that edge. The pointer can help us in quickly finding the smallest free
edge next time. Since we traverse the list only once in the algorithm, total time taken by
Case 1 for finding the smallest weight-edges in F is O(m). Additionally, the time taken to
increase the lengths of all free intervals to s(i, j) is O(n). Lastly, to check if either i (and
j) is uniform in the free graph F , we check if the edges adjacent to i (or j) in F have equal
edge-weights—taking O(n) time. Therefore, Case 1 takes O(n) time.

28

If Case 1 does not apply, we select any free interval If by iterating over the list of
intervals in O(n) time, and apply Case 2 or Case 3 as relevant. Next we analyze the
work done inside the Cases 2 and 3; the work done by the two cases is same as they are
symmetric.

Recall that in each of cases 2 and 3 we first satisfy the the intersection of all free
intervals with If , and then we run the fix intervals subroutine. Satisfying the intersection
weights s(f, v),∀v ∈ V (G) takes O(n) time as we modify the endpoint of every free interval
Iv. Also, from the pseudocode we can see that the running time of fix endpoints is O(n).
Therefore, the total time taken by Case 2 (and Case 3) is also O(n).

Since each case fixes at least one endpoint, every interval needs to enter the cases at
most twice in order to get both of its endpoints fixed. Therefore, time taken for all intervals
is O(n2) = O(m).

29

Chapter 5

Obtaining the Edge-Weighted
Interval Representation of General
Graphs

In Chapter 3, we defined the protrusion relation Rs and related terms. In this chapter, we
explain how the properties of PQ-trees (see Section 2.3 in Chapter 2) can be leveraged to
improve the running time of computing the protrusion relation Rs for a given graph. The
main idea of our algorithm is to identify a set of vertices that can be used to find most
of the protrusion relationships, and find the remaining protrusions using Algorithm 4.2
(algorithm for complete graphs).

Note that since Rs is not symmetric, throughout this chapter we will test for both (u, v)
and (v, u) ∈ Rs for any edge (u, v) ∈ V (G).

We start by examining the protrusion relationships that can be found using one vertex
w.

Claim 5.1. If vertices u, v, w form a triangle in the graph and u does not protrude from
w, then (u, v) ∈ Rs if and only if s(u,w) > s(u, v).

Proof. Consider any minimal s-respecting representation M of G. If Iu protrudes from Iv,
then s(u, v) must be less than the length of Iu. Since u does not protrude from w, s(u,w)
must be equal to the length of Iu. Therefore, if (u, v) ∈ Rs and u does not protrude from
w, then s(u,w) > s(u, v).

For the other direction, notice that if s(u,w) > s(u, v), then (u, v) ∈ Rs by the definition
of Rs.

30

Furthermore, we can use w to detect some more protrusion relations as follows:

Claim 5.2. If vertices u, v, w form a triangle in the graph, and u protrudes from w, and
v does not protrude from w, then (u, v) ∈ Rs.

Proof. Consider an s-respecting minimal representation M of G. Since v does not protrude
from w, Iv shares all its points with Iw. On the other hand, since u protrudes from w, Iu
contains a point p outside Iw. As u, v are connected in the graph, Iu ∩ Iv 6= φ, and by
definition, u protrudes from v and (u, v) ∈ Rs.

Additionally, for any vertex w, we can find all protrusions of the form (u,w) and (w, u)
in O(m) time.

Claim 5.3. For any vertex w, we can find all u such that (u,w) ∈ Rs and all u such that
(w, u) ∈ Rs in O(m) time by testing all edges (u, v).

Proof. Assume that u protrudes from w. Since (u,w) ∈ Rs, by definition there must exist a
vertex v that also protrudes from w and satisfies either s(u, v) > s(u,w) or s(u, v) > s(v, w).
Therefore, by testing if s(u, v) > s(u,w) for every edge (u, v), we can find all vertices u, v
that protrude from w.

All protrusions of the form (w, u) can also be found from the definition ofRs as described
next. Observe that w protrudes from u if there exists an edge (u, v) such that s(v, w) >
s(u, v) or s(v, w) > s(u,w). Therefore, by testing the above condition for every edge (u, v),
we can detect all (w, u) ∈ Rs in O(m) time.

To compute Rs, we first find the connected components of the given graph, and then
we find the PQ-tree of each component. The following sections present algorithms for
computing Rs when the root of the PQ-tree of a component Gs is a P -node or a Q-node.
Note that if the root is a leaf, then the graph is a clique, so we use Algorithm 4.2 to find
the edge-weighted interval representation of Gs.

5.1 Computing Rs when PQ-tree has a root P -node

From Claim 2.1 in Chapter 2, we know that there must be at least one vertex w in Gs that
covers the root of the tree, and therefore, is adjacent to every other vertex in Gs. Using
Claim 5.3, Claim 5.2, and Claim 5.1, we will find a set Dw ⊆ Rs of protrusion relations
determined by w in time O(m).

31

We first describe how to compute Dw, and then characterize which protrusions of Gs

are missing in Dw.

The set Dw is computed using the following tests :

Test 1 Use Claim 5.3 to find all v such that w protrudes from v, i.e. (w, v) ∈ Rs. Add all
such pairs to Dw.

Test 2 Use Claim 5.3 to find the set Pw of vertices v that protrude from w, i.e. Pw = {v :
(v, w) ∈ Rs}. Add all pairs (v, w) : v ∈ Pw to Dw. Let Pw = {v : v 6∈ Pw}. Therefore,
Pw is the set of vertices that do not protrude from w.

Test 3 For every edge (u, v) with u ∈ Pw, v ∈ Pw, add (u, v) to Dw, as justified by
Claim 5.2 (recall that since w is adjacent to all vertices, u, v, w form a triangle).

Test 4 For every edge (u, v) with u ∈ Pw , test if s(u,w) > s(u, v) and if so, add (u, v) to
Dw, as justified by Claim 5.1.

The pseudocode of computing the set Dw using the above tests is given in Algorithm 5.2.

We now characterize the protrusions (u, v) ∈ Rs of Gs that are missing from Dw.

Lemma 5.1. If (u, v) ∈ Rs but not in Dw, then u and v protrude from w.

Proof. Test 1 and 2 above add in Dw all protrusions of the form (u,w) and (w, u) as justified
by Claim 5.3. Moreover, as justified by Claim 5.1, Test 4 adds to Dw all protrusions (u, v)
where u does not protrude from w. Also, as justified by Claim 5.2, Test 3 adds to Dw all
protrusions (u, v) ∈ Rs where v does not protrude from w. Therefore, the only protrusions
(u, v) not in Dw are where both u and v protrude from w.

From Lemma 5.1, we see that the only protrusions missed by Dw are between vertices
in Pw. We will now restrict our attention to P

′
w = Pw ∪ {w}. To justify this, we will prove

that any protrusion between u, v ∈ Pw is witnessed by some element of P
′
w.

Claim 5.4. Any protrusion relation (u, v) ∈ Rs between u, v ∈ Pw is witnessed by some
x ∈ P ′w.

Proof. Consider any minimal s-respecting interval representation M of G. Suppose vertices
u, v ∈ Pw with (u, v) ∈ Rs. Then Iu protrudes from Iv in M , and hence there must exist
at least one point p ∈ Iu \ Iv.

32

If there exists a point p ∈ Iu \ Iv such that p ∈ Iw, then w witnesses the protrusion (see
Figure 5.1a), and we know that w ∈ P ′w.

Otherwise suppose that x witnesses the protrusion. Then Ix contains a point p ∈ Iu\Iv,
and since p 6∈ Iw, therefore Ix protrudes from Iw, so x ∈ P ′w (see Figure 5.1b).

p
Iu

Iw

Iv

(a)

p
Iu

Iw

Iv

Ix

(b)

Figure 5.1: Either w witnesses (u, v) ∈ Rs (Figure 5.1a), or P
′
w contains a vertex x that

witnesses (u, v) ∈ Rs (Figure 5.1b)

Observation 5.1. To find all protrusions of the subgraph G′ induced by a set U of vertices
of G, it suffices to find the protrusion relation of each maximal clique of G′.

Proof. If u, v ∈ U and u protrudes from v as witnessed by x ∈ U , then u, v, x form a
triangle, and thus are contained in some maximal clique of U .

Thus it suffices to find the protrusions in each maximal clique of G′—the subgraph
induced on vertex set P

′
w. We can do this using Algorithm 4.2. Finally, we will show that

G′ has at most two maximal cliques, thus making our approach efficient.

Claim 5.5. Subgraph G′ has at most two maximal cliques.

Proof. Consider a minimal s-respecting representation of Gs. It gives a linear ordering of
the maximal cliques of Gs, corresponding to a frontier of the PQ-tree for Gs. Let A and
B be the first and last maximal cliques in this ordering. Note that w is in all the cliques
of Gs, so it corresponds to an interval spanning all the cliques.

Consider any element u of Pw. Then Iu must protrude from Iw, so u is contained in A
or B (or both).

We claim that Aw = A∩ P ′w and Bw = B ∩ P ′w are the only maximal cliques in G′. We
prove this by contradiction. Let C be another maximal clique in G′. We must have some
y ∈ C \ A since C is not contained in A, and similarly, some x ∈ C \B, x, y ∈ Pw.

33

Then x ∈ A, and y ∈ B since every vertex of Pw is in A or B. We now consider the
structure of the PQ-tree of G. Let N1, · · · , Nt be the children of the root of the PQ-tree,
ordered as in our representation.

Since x 6∈ B, x does not cover the root, and hence from Corollary 2.1, it must be in
only one child of the root, namely N1. Since x ∈ C, therefore C is in N1.

Similarly, since y 6∈ A, y must be in only one child of the root, namely Nt. Since y ∈ C,
therefore C is in Nt.

Any clique cannot be in two children of the root, and hence we arrive at a contradiction.
Therefore, Aw and Bw are the only two cliques in G′.

Iw

Figure 5.2: Intervals protruding from interval Iw lie in at most two maximal cliques

5.1.1 Summary of the Algorithm and Pseudocode

When the root of the PQ-tree of a component Gs is a P -node, we first find a vertex w
that covers the root of the PQ-tree. Then, we find the set Pw of vertices that protrude
from w (pseudocode given in Algorithm 5.1), followed by computing set Dw of protrusions
relations by conducting Tests 1-4 (pseudocode given in Algorithm 5.2). After that, we find
the maximal cliques of the subgraph induced by the vertices in Pw ∪ {w}, and check if we
have at most two maximal cliques, if not, then G is not an edge-weighted interval graph.
If there are at most two maximal cliques, we use Algorithm 4.2 on each of those cliques
to obtain their edge-weighted interval representation and then we obtain their protrusion
relations. As a result, we obtain all protrusions of the component Gs.

We give below the psuedocode of the subroutine to find set Pw.

34

Algorithm 5.1 Determining the set Px of vertices protruding from a given vertex x

procedure compute P (x)
for each edge (u, v) ∈ E(Gs) do

if s(u, v) > s(u, x) then
Add u and v to Px

end if
end for

return Px

end procedure

Next, we give the pseudocode of the algorithm for finding all protrusions Dx found by
using Tests 1-4 on a vertex x.

Algorithm 5.2 Computing set Dx of protrusions using a single vertex x

procedure compute D(x, Px)
for each edge (u, v) ∈ E(Gs) do . Test 1: Add to Dx protrusions of the form (x, u)

if s(v, x) > s(u, v) or s(v, x) > s(u, x) then
Add (x, u) to Dx

end if
end for
for each vertex v ∈ V (Gs) do . Test 2: Add all protrusions (v, x) : v ∈ Px, to Dx

if v ∈ Px then
Add (v, x) to Dx

end if
end for
for each edge (u, v) ∈ E(Gs) do . Test 3: Find protrusions using Claim 5.2

if u ∈ Px and v ∈ Px then
Add (u, v) to Dx

end if
end for
for each edge (u, v) ∈ E(Gs) do . Test 4: Find protrusions using Claim 5.1

if u ∈ Px and s(u, x) > s(u, v) then
Add (u, v) to Dx

end if
end for

return Dx

end procedure

35

Finally, we give the pseudocode of finding all protrusions of Gs.

Algorithm 5.3 Determining Rs when the root of a PQ-tree is a P -node

1: for each edge (u, v) in E(Gs) do . As Rs is not symmetric, we must also test
if (v, u) ∈ Rs. Hence we convert the subgraph Gs to a directed graph by adding edge
(v, u)

2: Add edge (v, u) to E(Gs)
3: end for
4: Select a vertex w that covers the root node of the PQ-tree
5: Pw ← compute P(w)
6: Dw ← compute D(w, Pw)
7: P

′
w ← Pw ∪ {w}

8: if Subgraph induced by the vertices in P
′
w has at most two maximal cliques A, B then

9: Obtain the s-respecting representation of A and B using Algorithm 4.2 to determine
the protrusion relations of the edges in Pw

10: else
11: G is not an edge weighted interval graph
12: end if

5.1.2 Runtime Analysis and Proof of Correctness

We now provide a proof of correctness and the run time analysis for Algorithm 5.3.

Lemma 5.2. If the root of the PQ-tree of a graph Gs is a P -node, then Algorithm 5.3
finds all protrusions of Gs.

Proof. Lemma 5.1 states that Tests 1-4 add all protrusions (u, v) to Dw except those
for which u, v ∈ Pw. The protrusions (u, v) : u, v ∈ Pw are detected by examining the
interval representations obtained by Algorithm 4.2 on the maximal cliques of the subgraph
G′ induced by vertices in P

′
w as implied by Claim 5.4. Hence, all protrusions of Gs are

detected using Algorithm 5.3.

Lemma 5.3. Algorithm 5.3 runs in time O(m · log n).

Proof. Observe that Tests 1, 3, 4 and Algorithm 5.1 each spend constant time on every edge
of Gs, and Test 2 takes O(n) time, hence the runtime of Algorithm 5.2 is O(m). We spend
O(m) time to find the maximal cliques A and B of the subgraph induced by vertices in P

′
w.

36

The running time of Algorithm 4.2 to compute the s-respecting interval representation of
A and B is O(m · log n), and we spend O(m) time on the interval representations of A and
B to obtain their protrusion relations. Therefore, the total running time of our algorithm
is O(m · log n).

5.2 Computing Rs when PQ-tree has a root Q-node

When the root of the PQ-tree of Gs is a Q-node, we cannot use Algorithm 5.3 as not always
is there a vertex w that covers the root Q-node, and even if such a vertex exists, Claim 5.5
does not hold for it. Therefore, in this section, we employ other properties of PQ-trees and
Q-nodes to obtain the protrusion relation of Gs. Recall that the ordering of the children
of a Q-node is unique up to reflection. We will use the ordering Oq = N1, · · · , Nt of the
children of the root Q-node of the PQ-tree while computing the protrusions of Gs.

Notice that for any (u, v) ∈ E(Gs), if u is contained in a maximal clique that v is not
contained in, then u must protrude from v in all minimal s-respecting representations of
Gs—this simple observation can be used to find most of the protrusions in Gs. The sets of
maximal cliques of Gs that any two vertices u and v are contained in can be compared in
constant time if we precompute the start-clique and end-clique of each v ∈ V (Gs) relative
to some frontier F of the PQ-tree, defined next. The start-clique S(v) of a vertex v is
the first clique in F that v appears in. Likewise, the end-clique of v is the last clique in
F that v appears in. If S(u) appears before S(v) or E(u) comes after E(v) in F , then u
must protrude from v in all edge weighted interval representations of G. In other parts of
the algorithm we use related terms start-node and end-node of a vertex v. The start-node
SN(v) is the node Ni of Oq where v appears for the first time in F . Likewise, the end-node
EN(v) of a vertex v is the node Nj of Oq where v appears for the last time in F . We
describe how to compute S(v) and E(v), and SN(v) and EN(v) for all vertices v ∈ V (Gs)
in O(m) time in Subsection 5.2.2.

If u and v start in the same clique or end in the same clique, then we may not be able
to find all the protrusions between u and v by comparing their start and end-cliques. We
find these protrusions using a subset W of long vertices of Oq satisfying the properties
below. Recall that long vertices of a Q-node appear in multiple children of the node.

Property 1 For any i = 1, . . . , t−1 there exists a vertex w ∈ W that covers Ni and Ni+1.
We denote the vertex w ∈ W that covers node Ni and Ni+1 as wi.

Property 2 For any w,w′ ∈ W, if (w,w′) ∈ E(Gs), then (w,w′) ∈ Rs.

37

Such a set W can be found in O(m) time as shown in Subsection 5.2.2.

We leverage the above-mentioned properties of PQ-trees and set W in the following
tests to compute a relation D ⊆ Rs:

Test 1 For each edge (u, v), if u is in a clique that v is not in, then add (u, v) to D. We
can do this by checking if S(u) is ordered before S(v) or if E(u) is ordered after E(v)
in F .

Test 2 As justified by Property 2 of set W , add (w,w′) to D if w,w′ ∈ W and (w,w′) ∈
E(Gs).

Test 3 For each edge (u, v), if u and v both start in a clique Ci of Ni, i 6= 1, then test if
wi−1 witnesses u protruding from v. If so, add (u, v) to D.

Test 4 Similarly for each edge (u, v), if both u and v end in a clique Ci of Ni, i 6= t, then
test if wi witnesses u protruding from v. If so, add (u, v) to D.

We then add more protrusions of Gs to set D by using Algorithm 5.1 to compute
the sets Pw1 and Pwt−1 of vertices that protrude from w1 and wt−1 respectively, and then
computing relations Dw1 and Dwt−1 by using Tests 1-4 on page 32 to obtain all protrusions
of the following form:

1.1 (w1, v)

1.2 (v, w1)

1.3 (u, v), u ∈ Pw1 , v ∈ Pw1

1.4 (u, v), u ∈ Pw1

2.1 (wt−1, v)

2.2 (v, wt−1)

2.3 (u, v), u ∈ Pwt−1 , v ∈ Pwt−1

2.4 (u, v), u ∈ Pwt−1

We then add the protrusions from Dw1 and Dwt−1 to D. Let us define the set P
′
w1

=

{v : SN(v) = N1; and v ∈ Pw1} ∪ {w1} and set P
′
wt−1

= {v : EN(v) = Nt; and v ∈
Pwt−1} ∪ {wt−1}. We claim that the only protrusions (u, v) of Gs that are not in D are
where u, v ∈ P ′w1

or u, v ∈ P ′wt−1
.

38

Claim 5.6. If (u, v) ∈ Rs and (u, v) 6∈ D, then u, v must satisfy one of the following
conditions:

• u and v protrude from w1 and start in N1

• u and v protrude from wt−1 and end in Nt

Proof. Consider a minimal s-respecting representation M of Gs. Flip the representation if
necessary so that the Ni’s appear in the order N1, · · · , Nt from left to right.

Consider (u, v) ∈ Rs. Then Iu protrudes from Iv in the representation, say on the left
(the other case is symmetric).

In the case when Iu starts in a clique before the clique where Iv starts in M , we have
put (u, v) in D by Test 2 above.

In the case when both u and v start in the same clique Ci of node Ni, i 6= 1, we claim
that the protrusion is witnessed by wi−1, and hence is added to D by Test 3. We know from
the definition of W that wi−1 starts in a node that is ordered before Ni in M , and since
both u and v start in Ni, wi protrudes from v on the left, and by Corollary 3.3, witnesses
the protrusion of u from v. Therefore (u, v) is added to D by Test 3.

If u and v start in N1, and at least one of u or v ∈ Pw1 , then the protrusion is added
to set D as justified by Claim 5.2 and Claim 5.1.

Therefore, the only case where Iu protrudes from Iv on the left in M and (u, v) is not
added to D is where both u and v start in N1 and protrude from w1.

By symmetry, the only case where Iu protrudes from Iv on the right in M and (u, v) is
not added to D is where both u and v end in Nt and protrude from wt−1.

This claim implies that all protrusions (u, v) ∈ Rs that are not in D are between
vertices in set P

′
w1

or between vertices in set P
′
wt−1

. Let us define G1 to be the subgraph

of G induced by set P
′
w1

, and G2 to be the subgraph of G induced by set P
′
wt−1

. We claim
that both G1 and G2 are cliques, and hence we can obtain the protrusions of G1 and G2

by using Algorithm 4.2.

Claim 5.7. Subgraph G1 and G2 are cliques.

Proof. Consider a minimal s-respecting interval representation M of graph Gs. Flip the
representation if necessary so that Ni’s appear in the order N1, · · · , Nt from left to right.

39

The representation gives an ordering of the cliques. Let A be the first clique and B be the
last clique in M . Then A is a clique of N1 and B is a clique of Nt.

We will prove that P
′
w1

is a subset of A and P
′
wt−1

is a subset of B.

Observe that all intervals that protrude from Iw1 on the left in M lie in A. Also, as w1

is a long vertex it covers N1, so it is in clique A.

Now let us look at the intervals that protrude from Iw1 on the right in M and start in
N1; consider one such interval Iv. Note that the end-clique of w1 lies outside N1. As Iv
protrudes from Iw1 on the right, Iv must appear in N2, and hence it is a long interval. As
Iv is a long interval, it covers node N1, and hence it must lie in clique A. Thus, G1 is the
subset of clique A and for this reason is a complete graph.

The proof is symmetric for G2.

Therefore, to find the protrusion relations in P
′
w1

and P
′
wt−1

, we simply examine the
minimal s-respecting interval representation of G1 and G2. We now prove that all the
protrusions relations in Pw1 and Pwt−1 that are not in D are detected by examining the
s-respecting interval representation of G1 and G2.

Claim 5.8. The protrusions (u, v) of Gs not in D are witnessed by some element of P
′
w1

or P
′
wt−1

.

Proof. Consider a minimal s-respecting interval representation M of graph Gs. Flip the
representation if necessary so that Ni’s appear in the order N1, · · · , Nt from left to right.
Consider a protrusion (u, v) where u, v ∈ Pw1 , assume that u protrudes from v on the left
in M . We will prove this protrusion of u from v is either already added to D by tests on
page 38, or is witnessed by an element of P

′
w1

.

In the case when u starts in a clique to the left of the clique that v starts in, the
protrusion is already added to D by Test 2.

Since u protrudes from v on the left in M , we know from Lemma 3.1 that there must
exist a vertex x ∈ V (Gs) that witnesses this protrusion and from Corollary 3.3 that Ix also
protrudes from Iv on the left in M . We know from Corollary 3.2 that u protrudes from v
in all s-respecting interval representations of any subgraph of G containing vertices u, v, x.
Hence, by examining the minimal s-respecting interval representations of G1 obtained by
Algorithm 4.2, we can detect the protrusion of u from v as long as x ∈ P ′w1

. Therefore we

will now prove that there exists a vertex in P
′
w1

whose interval protrudes from Iv on the
left in M .

40

The case when Iw1 protrudes from Iv on the left in M is trivial as w1 ∈ P
′
w1

.

Consider the case where Iw1 does not protrude from Iv on the left inM , i.e. l(Iv) ≤ l(Iw).
Since u protrudes from v on the left in M , we know from Lemma 3.1 that there must exist
a vertex x ∈ V (Gs) that witnesses this protrusion. Additionally, from Corollary 3.3 we
know that Ix protrudes from v on the left in M i.e. l(Ix) < l(Iv). Note that Ix must start
in N1 as it intersects Iu, which starts in N1. Also, since l(Ix) < l(Iv) ≤ l(Iw), therefore Ix
protrudes from Iw1 on the left in M , and thus x ∈ P ′w1

.

Now consider when u, v ∈ P ′w1
and u protrudes from v on the right in M . We prove

that this protrusion is either already added to D or is witnessed by some element in Pw
′
t−1

.

Since u protrudes from v on the right, we will look at the end-nodes of u and v. If u
ends in a clique that appears to the right of the end-clique of v in M , then the protrusion
is added to D by Test 2.

If u, v both end in a node Ni, i 6= t, then the protrusion is added to D by Test 4.

If u, v end in Nt, and u does not protrude from wt−1, then the protrusion is added to D
fromDwt−1 . Additionally, if u protrudes from wt−1 but v does not, then again the protrusion
is added to D by Dwt−1 . Lastly, if both u, v protrude from wt−1, then the protrusion will
be witnessed by some element in P

′
wt−1

as the proof is symmetric for u, v ∈ P ′wt−1
.

We now claim that all protrusions of Gs have been detected by our algorithm.

Lemma 5.4. Algorithm 5.5 detects all the protrusions of Gs when the root of the PQ-tree
of Gs is a Q-node.

Proof. The proof follows from Claim 5.6 and Claim 5.8.

In following subsections we give the algorithms for finding the start and end-cliques
and start and end-nodes of all vertices, and for computing set W .

5.2.1 Finding Start-Cliques and End-Cliques, and Start-Nodes
and End-Nodes of Vertices

First, we obtain the frontier of a PQ-tree of Gs. Then, we visit the maximal cliques of
Gs in the order specified by F . For every clique C that we visit, we check if each vertex
v contained in C has been assigned a start-clique, and if not, then we assign C as the
start-clique of v. Therefore, assigning the start-clique of each vertex of Gs takes O(m)

41

time as each vertex v appears in deg(v) nodes from Oq. The end-clique of each vertex can
be found by flipping F and using a similar process. Hence the total time taken for finding
S(v) and E(v) ∀v ∈ V (Gs) is O(m).

Note that the PQ-tree of a graph has linear size. Therefore, we can traverse the PQ-
tree once to find for each clique which child of the root it is descended from, and hence
find the start-node SN(v) and the end-node EN(v) for all vertices of Gs in linear time.

5.2.2 Algorithm for Computing Set W

As mentioned earlier, we wish to find a set W of vertices with the following properties:

Property 1 For any i = 1, . . . , t−1 there exists a vertex w ∈ W that covers Ni and Ni+1.
We denote the vertex w ∈ W that covers node Ni and Ni+1 as wi.

Property 2 For any w,w′ ∈ W , if (w,w′) ∈ E(Gs), then (w,w′) ∈ Rs

There are various ways to find a set W , we give one here (perhaps not the most efficient).
We first find a set W ′ of vertices satisfying Property 1 above, and then modify W ′ such
that it satisfies Property 2 as well. Note that since Gs is a connected component, the set
of all vertices V (Gs) already satisfies Property 1. Therefore, we initialize W ′ to the vertex
set of Gs, i.e. W

′
= V (Gs).

We will now modify set W ′ such that it satisfies Property 2 by leveraging the fact that
a vertex u protrudes from a vertex v if u is contained in a clique C and C does not contain
v. Hence we remove every vertex v from W ′ if there exists a vertex u ∈ N(v) such that
u ∈ W ′ and the set of maximal cliques containing u is a superset of the set of maximal
cliques containing v. By doing so we ensure that for any two vertices u, v ∈ W ′, u is in a
maximal clique that does not contain v, and vice-versa. As a result, if vertices u, v ∈ W ′

and (u, v) ∈ E(G), then u protrudes from v, and since W ′ now satisfies Property 2 from
above, we set W to W ′. The time taken for computing set W is O(m) as for each vertex
v ∈ W , we compare the set of maximal cliques containing each u ∈ N(v) with the set of
maximal cliques containing v in constant time by comparing the start and end-cliques of
v and u.

After obtaining the set W , we associate each node Ni with a vertex wi ∈ W such
that for each Ni ∈ Oq, i 6= t, wi covers Ni and Ni+1. We do so by visiting each node
Ni 6= EN(v) that a vertex v ∈ W appears in, and setting wi to v. Observe that some wi’s
will be reassigned multiple times; however, this does not affect the correctness or running

42

time of the algorithm. Also note as each v ∈ W lies in O(deg(v)) nodes in Oq, hence the
running time of assigning wi to every Ni 6= Nt ∈ Oq is O(m).

Algorithm 5.4 Procedure for computing set W

1: procedure compute W
2: W ′ ← V (Gs)
3: for each v ∈ W ′ do
4: for each u ∈ N(v) do
5: if u ∈ W ′ and S(u) ≤ S(v) and E(u) ≥ E(v) in F then
6: Remove v from W ′

7: end if
8: end for
9: end for
10: W ← W ′

11: for each vertex v ∈ W do . Assign a wi to each Ni ∈ Oq

12: for each Ni 6= EN(v) that v appears in do
13: wi ← v
14: end for
15: end for
16: return W
17: end procedure

5.2.3 Summary of the Algorithm and Pseudocode

When the root of the PQ-tree of a connected component Gs is a Q-node, we first obtain
the ordering Oq of the immediate children of the root. The ordering is then used to
find the start and end-clique, and the start and end-node of each vertex as described in
Subsection 5.2.1. Next, we compute the set W as described in Subsection 5.2.2. After
that we use Tests 1-4 to compute set D. Then we compute sets Dw1 and Dwt−1 and add
the protrusions in these sets to D. Finally, we find the maximal cliques G1 and G2 of the
subgraphs of Gs induced by vertex sets P

′
w1

and P
′
wt−1

, and run Algorithm 4.2 on G1 and
G2 to find all the protrusions of Gs.

The psuedocode of the algorithm is as follows:

43

Algorithm 5.5 Determining Rs when the root of a PQ-tree is a Q-node

1: Obtain the ordering Oq and the frontier F from the PQ-tree of Gs.
2: for each edge (u, v) in E(Gs) do . As Rs is not symmetric, we must also test

if (v, u) ∈ Rs. Hence we convert the subgraph Gs to a directed graph by adding edge
(v, u)

3: Add edge (v, u) to E(Gs)
4: end for
5: for each vertex v ∈ V (Gs) do
6: Determine the start-clique S(v) and the end-clique E(v) and start-node SN(v) and

end-node EN(v)of v
7: end for
8: W ← compute W
9: for each edge (u, v) ∈ E(Gs) do . Test 1
10: if both u, v ∈ W then
11: Add (u, v) to D
12: end if
13: end for
14: for each edge (u, v) ∈ E(Gs) do . Test 2
15: if S(u) before S(v) or S(u) after S(v) in F then
16: Add (u, v) to D
17: end if
18: end for
19: for each edge (u, v) ∈ E(Gs) do . Test 3
20: if S(u) = S(v) and SN(u) 6= N1 then
21: if s(u,wi−1) > s(u, v) or s(u,wi−1) > s(v, wi−1) then
22: Add (u, v) to Rs

23: end if
24: end if
25: end for
26: for each edge (u, v) ∈ E(Gs) do . Test 4
27: if E(u) = E(v) and EN(u) 6= Nt then
28: if s(u,wi) > s(u, v) or s(u,wi) > s(v, wi) then
29: Add (u, v) to Rs

30: end if
31: end if
32: end for

44

33: Pw1 ← compute P(w1) . Compute the set of vertices protruding from w1

34: Dw1 ← compute D(w1, Pw1) . Compute the set of protrusions obtained by using w1

35: Pwt−1 ← compute P(wt−1) . Compute the set of vertices protruding from wt−1
36: Dwt−1 ← compute D(wt−1, Pwt−1) . Compute the set of protrusions obtained by

using wt−1
37: D ← Dw1 ∪Dwt−1

38: for each vertex v ∈ Pw1 do . Add the vertices in Pw1 that start in N1 to set P
′
w1

39: if SN(v) = N1 then
40: Add v to P

′
w1

41: end if
42: end for
43: Add w1 to P

′
w1

44: for each vertex v ∈ Pwt−1 do . Add the vertices in Pwt−1 that end in Nt to set P
′
wt−1

45: if EN(v) = Nt then
46: Add v to P

′
wt−1

47: end if
48: end for
49: Add wt−1 to P

′
wt−1

50: if all vertices of P
′
w1

form a clique A and all vertices of P
′
wt−1

form a clique B then
51: Using Algorithm 4.2, obtain the s-respecting interval representations M1 and M2

of A and B, respectively
52: Examine M1 and M2 and add their protrusions to D
53: else
54: Gs (and hence G) is not an edge-weighted interval graph
55: end if

45

Lemma 5.5. Algorithm 5.5 runs in O(m · log n) time.

Proof. Each of the tests conducted in Algorithm 5.5 does constant work on each edge.
Hence the runtime of conducting the tests is O(m). Since we run Algorithm 5.3 twice (to
compute Dw1 and Dwt−1), and Algorithm 4.2 twice (on G1 and G2), the total running time
of the algorithm is O(m · log n).

46

Chapter 6

Conclusion and Future Work

We studied a variation of interval graphs called edge-weighted interval graphs. First, we
presented Algorithm 4.2 in Chapter 4 to recognize complete edge-weighted interval graphs
in O(m · log n) time. In Chapter 5, we improved the run time of Köbler’s algorithm [28] for
general graphs by computing the protrusion relation Rs in O(m · log n) time by using PQ-
trees. Therefore, we arrive at an O(m · log n) time algorithm for recognizing edge-weighted
interval graphs.

Note that the log n factor in our running time is due to sorting the edges by weight
in Algorithm 4.2; hence, our algorithm can be improved if we can avoid sorting of edges.
We are also interested if the techniques from our algorithm can be applied to obtain
approximation algorithms for recognizing other types of weighted intersection graphs such
as weighted boxicity graphs.

The following problems are interesting for future work:

• Can we find a linear time algorithm for recognizing edge-weighted interval graphs?

• Using techniques from our algorithm, can we find algorithms or approximation algo-
rithms for recognizing other weighted intersection graphs (such as weighted boxicity
graphs)?

47

References

[1] Alam, M., Biedl, T., Felsner, S., Kaufmann, M., and Kobourov, S. G.
Proportional contact representations of planar graphs. Journal of Graph Algorithms
and Applications 16, 3 (2012), 701–728.

[2] Alam, M. J., Biedl, T., Felsner, S., Gerasch, A., Kaufmann, M., and
Kobourov, S. G. Linear-time algorithms for hole-free rectilinear proportional con-
tact graph representations. Algorithmica 67, 1 (2013), 3–22.

[3] Alam, M. J., Kobourov, S. G., Liotta, G., Pupyrev, S., and Veeramoni,
S. 3D proportional contact representations of graphs. In Information, Intelligence,
Systems and Applications, IISA 2014, The 5th International Conference on (2014),
IEEE, pp. 27–32.

[4] Bárány, I., Katchalski, M., and Pach, J. Quantitative Helly-type theorems.
American Mathematical Society 86, 1 (1982).

[5] Benzer, S. On the topology of the genetic fine structure. Proceedings of the National
Academy of Sciences 45, 11 (1959), 1607–1620.

[6] Booth, K. S. PQ-tree algorithms. Tech. rep., California Univ., Livermore (USA).
Lawrence Livermore Lab., 1975.

[7] Booth, K. S., and Lueker, G. S. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ–tree algorithms. Journal of Computer
and System Sciences 13, 3 (1976), 335–379.

[8] Carlisle, M. C., and Lloyd, E. L. On the k-coloring of intervals. Discrete
Applied Mathematics 59, 3 (1995), 225–235.

[9] Corneil, D. G. A simple 3-sweep LBFS algorithm for the recognition of unit interval
graphs. Discrete Applied Mathematics 138, 3 (2004), 371 – 379.

48

[10] de Fraysseix, H., and de Mendez, P. O. Representations by contact and inter-
section of segments. Algorithmica 47, 4 (2007), 453–463.

[11] Deng, X., Hell, P., and Huang, J. Linear-time representation algorithms for
proper circular-arc graphs and proper interval graphs. SIAM Journal on Computing
25, 2 (1996), 390–403.

[12] Ehrlich, G., Even, S., and Tarjan, R. E. Intersection graphs of curves in the
plane. Journal of Combinatorial Theory, Series B 21, 1 (1976), 8–20.

[13] Eschen, E. M., and Sinrad, J. P. An O(n2) algorithm for circular-arc graph
recognition. In Proceedings of the Fourth annual ACM-SIAM Symposium on Discrete
Algorithms (1993), Society for Industrial and Applied Mathematics, pp. 128–137.

[14] Fulkerson, D., and Gross, O. Incidence matrices and interval graphs. Pacific
Journal of Mathematics 15, 3 (1965), 835–855.

[15] Gavril, F. Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM Journal on
Computing 1, 2 (1972), 180–187.

[16] Gilmore, P., and Hoffman, A. A characterization of comparability graphs and
of interval graphs. Selected papers of Alan Hoffman with commentary 16 (2003), 65.

[17] Golumbic, M., Kaplan, H., and Shamir, R. On the complexity of DNA physical
mapping. Advances in Applied Mathematics 15, 3 (1994), 251 – 261.

[18] Golumbic, M. C. Algorithmic graph theory and perfect graphs, second ed. Elsevier,
2004.

[19] Habib, M., McConnell, R., Paul, C., and Viennot, L. LexBFS- and partition
refinement, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theoretical Computer Science 234, 1 (2000), 59–84.

[20] Hajós, G. Über eine art von graphen. Internationale mathematische nachrichten 11
(1957), 65.

[21] Hliněnỳ, P. Contact graphs of line segments are NP-complete. Discrete Mathematics
235, 1-3 (2001), 95–106.

[22] Hsu, W.-L. A simple test for interval graphs. In International Workshop on Graph-
Theoretic Concepts in Computer Science (1992), Springer, pp. 11–16.

49

[23] Hsu, W. L. O(mn) algorithms for the recognition and isomorphism problems on
circular-arc graphs. SIAM Journal on Computing 24, 3 (1995), 411–439.

[24] Jampani, K. R., and Lubiw, A. Simultaneous interval graphs. In International
Symposium on Algorithms and Computation (2010), vol. 6506 of Lecture Notes in
Computer Science, Springer, pp. 206–217.

[25] Jungck, J. R., Dick, G., and Dick, A. G. Computer-assisted sequencing, interval
graphs, and molecular evolution. Biosystems 15, 3 (1982), 259–273.

[26] Kaplan, H., and Nussbaum, Y. A simpler linear-time recognition of circular-arc
graphs. Algorithmica 61, 3 (2011), 694–737.

[27] Kendall, D. Incidence matrices, interval graphs and seriation in archeology. Pacific
Journal of Mathematics 28, 3 (1969), 565–570.

[28] Köbler, J., Kuhnert, S., and Watanabe, O. Interval graph representation with
given interval and intersection lengths. Journal of Discrete Algorithms 34 (2015), 108–
117.

[29] Korte, N., and Möhring, R. H. An incremental linear-time algorithm for recog-
nizing interval graphs. SIAM Journal on Computing 18, 1 (1989), 68–81.

[30] Kratochv́ıl, J. String graphs. II. recognizing string graphs is NP-hard. Journal of
Combinatorial Theory, Series B 52, 1 (1991), 67–78.

[31] Kratochv́ıl, J. A special planar satisfiability problem and a consequence of its
NP–completeness. Discrete Applied Mathematics 52, 3 (1994), 233–252.

[32] Kratochv́ıl, J., and Matoušek, J. Intersection graphs of segments. Journal of
Combinatorial Theory, Series B 62, 2 (1994), 289–315.

[33] Lekkerkerker, C., and Boland, J. Representation of a finite graph by a set of
intervals on the real line. Fundamenta Mathematicae 51, 1 (1962), 45–64.

[34] McConnell, R. M. Linear-time recognition of circular-arc graphs. Algorithmica
37, 2 (2003), 93–147.

[35] McDiarmid, C., and Müller, T. Integer realizations of disk and segment graphs.
Journal of Combinatorial Theory, Series B 103, 1 (2013), 114–143.

50

[36] McKee, T. A., and McMorris, F. R. Topics in intersection graph theory. SIAM,
1999.

[37] Pe’er, I., and Shamir, R. Interval graphs with side (and size) constraints, vol. 979
of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1995, pp. 142–154.

[38] Roberts, F. S. Food webs, competition graphs, and the boxicity of ecological phase
space, vol. 642 of Lecture Notes in Mathematics. Springer, Berlin, Heidelberg, 1978,
pp. 477–490.

[39] Rose, D. J., Tarjan, R. E., and Lueker, G. S. Algorithmic aspects of vertex
elimination on graphs. SIAM Journal on Computing 5, 2 (1976), 266–283.

[40] Schaefer, M., Sedgwick, E., and Štefankovič, D. Recognizing string graphs
in NP. Journal of Computer and System Sciences 67, 2 (2003), 365–380.

[41] Schaefer, M., and Štefankovič, D. Decidability of string graphs. Journal of
Computer and System Sciences 68, 2 (2004), 319 – 334.

[42] Simon, K. A new simple linear algorithm to recognize interval graphs, vol. 553 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1991, pp. 289–308.

[43] Skrien, D. Chronological orderings of interval graphs. Discrete Applied Mathematics
8, 1 (1984), 69–83.

[44] Tucker, A. Matrix characterizations of circular-arc graphs. Pacific Journal of
Mathematics 39, 2 (1971), 535–545.

[45] Yamamoto, N. Weighted interval graphs and their representations. Masters Thesis.
Tokyo Inst. of Technology (2007).

[46] Yannakakis, M. The complexity of the partial order dimension problem. SIAM
Journal on Algebraic Discrete Methods 3, 3 (1982), 351–358.

51

	List of Figures
	Introduction
	Interval graphs
	Edge-Weighted Interval Graphs
	Related Work
	Interval Graph Representation with Constraints
	Intersection Graphs

	Preliminaries
	Notation Used
	Maximal Cliques and Consecutive-Ones Property
	PQ-Trees
	Weighted Helly Theorem For Intervals

	Overview of the Algorithm
	Bottleneck of Köbler's algorithm
	Our Approach to Computing Rs

	Obtaining the Edge-Weighted Interval Representation of a Complete Graph
	Definitions
	The Algorithm
	Pseudocode
	Correctness Proof
	Runtime Analysis

	Obtaining the Edge-Weighted Interval Representation of General Graphs
	Computing Rs when PQ-tree has a root P-node
	Summary of the Algorithm and Pseudocode
	Runtime Analysis and Proof of Correctness

	Computing Rs when PQ-tree has a root Q-node
	Finding Start-Cliques and End-Cliques, and Start-Nodes and End-Nodes of Vertices
	Algorithm for Computing Set W
	Summary of the Algorithm and Pseudocode

	Conclusion and Future Work
	References

