Approximating Minimum-Size
2-Edge-Connected and
2-Vertex-Connected Spanning
Subgraphs

by

Vishnu V. Narayan

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Combinatorics and Optimization

Waterloo, Ontario, Canada, 2017

(© Vishnu V. Narayan 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

We study the unweighted 2-edge-connected and 2-vertex-connected spanning subgraph
problems. A graph is 2-edge-connected if it is connected on removal of an edge, and it
is 2-vertex-connected if it is connected on removal of a vertex. The problem of finding
a minimum-size 2-edge-connected (or 2-vertex-connected) spanning subgraph of a given
graph is NP-hard.

We present a %-approximation algorithm for unweighted 2ECSS on 3-vertex-connected
input graphs, which matches the best known approximation ratio due to Sebé and Vygen
for the general unweighted 2ECSS problem, but our analysis is with respect to the D2 lower
bound. We also give a %—approximation algorithm for unweighted 2VCSS on graphs of
minimum degree at least 3, which is lower than the best known ratios of % by Garg, Santosh
and Singla and % by Heeger and Vygen for the general unweighted 2VCSS problem. These

algorithms are accompanied by new theorems about the known lower bounds.

111

Acknowledgements

Most of all, I would like to thank my friends and family for all of their support and
encouragement.

I am very lucky to have a great supervisor in Joseph Cheriyan, and am thankful for
everything that he has done for me and for everyone else over the past few years.

I'm thankful for the amazing C&O department and all of its faculty and staff. I'm
especially thankful for all of my course instructors and office colleagues. I've learned more
things than I ever expected to learn in these last two years at Waterloo.

Finally, I'm very grateful to have William Cook and Jochen Koenemann read my thesis
and provide invaluable comments and suggestions.

v

Table of Contents

[List of Figures|

(I __Introduction|

[2.2 Lower bounds on the cost of an optimal solution|

[2.2.1 A Linear Programming Relaxation|
[2.2.2 The L,-Lower Bound|.
(2.2.3 The L,-Lower Bound|

13 A Z-Approximation for Restricted 2ECSS]

[3.1 Algorithm Overview|
3.2 Gluing
[3.3 Bridge-covering|

4 A ii-Approximation for Restricted 2VCSS|

[4.1 Algorithm Overview|

vii

W

© © oo ot O«

11
16

19
21
25
36

48

[4.2 Making Short Ears Pendant|
[4.3 Making Short Ears Non-Adjacent|
[4.4 Finishing Up|

[Concluding Remarks|

vi

66

67

70

List of Figures

[2.1 2-edge-connected and 2-vertex-connected graphs| 6
[2.2 An ear-decomposition|. 7
[2.3 T'wo ear-decompositions| oL 8
2.4 Agraph G with p(G) =2/ 12
[2.5 Short ear configurations that are not “nice”| 12
[2.6 A graph with no open evenmin ear-decomposition satistying the short-ears

[propertles|o e e 13
[2.7 A nice ear-decomposition. The eardrum M is circled. The white nodes

represent vertices in V7 and the black nodes outside M represent vertices in

[2.8 A short ear which can be replaced| 14
[2.9 A graph G and associated eardrum M with L,(G,M)=|V|+1| 16
2.10 The structureof a D2o 17
[3.1 T'he graph Gj, where the ratio between the size of an optimal 2ECSS and |
| the size of a min-D2 approaches %| 20
[3.2 A D2 and a bridgeless-D2[. oL 21
[3.3 Bridge-covering| 23
[3.4 T'he second phase of the gluing step| 26
[3.5 Processing 3-cycles: Case 1. 27
[3.6 Processing 3-cycles: Case 1|. 28
[3.7 Processing 3-cycles: Case 2|. 28

vii

[3.8 Processing 3-cycles: Case 3|. 29
[3.9 Processing 3-cycles: Case 3|. 30
[3.10 Processing 3-cycles: Case 3|. 30
[3.11 Processing 4-cycles: Case 1|. 32
[3.12 Processing 4-cycles: Case 1|., 32
[3.13 Processing 4-cycles: Case 2|. 33
[3.14 Fair paths| 37
BIS Phase I o o oot 40
[3.16 Phase 2, Case 1| 41
[3.17 Phase 2, Case 1| 42
[3.18 Phase 2, Case 2| 43
[3.19 Phase 2, Case 2| 43
[3.20 Phase 2, Case 3| 44
[3.21 Phase 2, Case 3| 45
[3.22 fp(C) and ep(C) for some component C' containing a vertex of P (white |
nodes are compound nodes)| 46

[3.23 Neighbours B(s) and B(t) of nodes s and ¢ in the component C| 47
[4.1 A local change that reduces the number of non-pendant ears| 50
[4.2 The cycle-ear P, is a shortear| 51
M3 Pisa2Z-earl 52
44 Pisad-eall e 52
[4.5 There exists a nontrivial ear () with endpointsvand y| 53
4.6 There exist ears (J); from x to y and ()5 from v to z, not both triviall. . . . 53
AT Case 3l 54
48 Case dl e 54
49 Plisa2-earl 58
! " —CATS| . . . e e e e 59

[4.13 x is adjacent to an internal vertex of P'|.

[4.14 x is adjacent to a vertex outside P'|

X

Chapter 1

Introduction

Real world networks are prone to failures. At a high level, the goal of survivable network
design is to design networks that survive the failure of some of their constituents, which
are often nodes or connections between nodes. More formally, survivable network design
problems are a collection of problems where the goal is to design networks of minimum
cost, subject to some survivability constraints. Usually, we require that some connectivity
property be satisfied by these networks.

Most networks can very naturally be modelled as graphs. A graph G is an ordered pair
(V, E), where V is a set of vertices or nodes and E is a set of edges, which are unordered
pairs of these vertices. A natural question to ask is whether we can design networks of
minimum cost that can survive the failure of one vertex or one edge. Graphs that survive
these failures are called 2-vertex-connected and 2-edge-connected graphs respectively. The
main focus of this thesis is the problem of constructing minimum-size 2-edge-connected and
2-vertex connected graphs on some vertex set, when we are given the set of possible edges
that we are allowed to use. Since these problems are NP-hard, we focus on the problem of
finding approximate solutions to them.

Formally, a graph is connected if there is a path between every pair of vertices in the
graph. It is 2-edge-connected if the graph obtained by removing any edge is connected, and
it is 2-vertex-connected (or 2-connected) if the graph obtained by removing any vertex, and
all edges incident on that vertex, is connected. Equivalently, a graph is 2-edge-connected
(2-vertex-connected) if and only if for every pair of vertices u,v in the graph there are 2
edge-disjoint (vertex-disjoint, respectively) paths in the graph with endpoints at « and v.
Clearly, every 2-vertex-connected graph is 2-edge-connected.

This notion extends to integers larger than 2. More generally, a graph is k-edge-

connected (respectively, k-vertex-connected) if there does not exist a subset of £ — 1 edges
(respectively, vertices) whose removal disconnects the remainder of the graph.

The k-edge-connectivity problem is the following problem: given a graph G, find a
spanning subgraph of G of minimum size (number of edges) that is k-edge-connected.
k-vertex-connectivity problem asks to find a spanning subgraph of minimum size that is
k-vertex-connected. For k = 1, these problems reduce to the problem of finding a smallest
connected subgraph that is a spanning tree. It is well known that this case can be solved
in polynomial time.

The case k = 2 is of special interest, since this is the smallest value of k for which the
problem is NP-hard (see e.g. [13]). NP-hardness for this case can be seen by a reduction
from the Hamiltonian cycle problem: a graph has a Hamiltonian cycle if and only if the size
of a minimum-size 2-edge-connected (or 2-vertex-connected) spanning subgraph is equal
to the number of vertices in the graph.

The 2-edge-connectivity problem (also called the 2-edge-connected spanning subgraph
problem, or 2ECSS) and 2-vertex-connectivity problem (2VCSS) have been well studied
for this reason. Several constant-factor approximation algorithms have been found for both
problems, and we have seen many improvements as recently as in the past five years.

In this thesis, we study the 2ECSS and 2VCSS problems. We describe some of the
known lower bounds on the size of an optimal solution to these problems, and present two
new approximation algorithms for special cases of these problems.

The first of these algorithms is for the 2ECSS problem: we present a %—approximation
algorithm for the special case of 2ECSS where the instance is 3-vertex-connected. This
ratio is equal to the lowest ratio known at present for the general 2ECSS problem (due to
Sebd and Vygen [28]), but uses a different lower bound (the D2 lower bound, described in
Section . Our result proves that the size of an optimal 2ECSS is within a factor of %
of the size of a minimum-D2 of G when G is 3-vertex-connected.

The second algorithm achieves a ratio of % for the restricted version of the 2VCSS

problem where the instance has no vertices of degree 2 (and hence has minimum degree
at least 3). This improves on the lowest ratios known at present for the general problem
(which is %, due to Garg, Santosh and Singla [14]; a recent result of Heeger and Vygen
[16], to appear in SIAM J. Discrete Math., improves this to %) Our second result is
accompanied by an interesting structural theorem on the existence of ear-decompositions
with certain properties: we show that every 2-vertex-connected graph with no vertices of

degree 2 has a nice ear-decomposition (see [28]) that is also open.

The specializations of 2ECSS and 2VCSS for which we present these algorithms are

also NP-hard. Garey, Johnson and Tarjan [12] show that 2ECSS is NP-hard in 3-vertex-
connected graphs. Lemma A.1 in the appendix shows that the specialized version of 2VCSS
(with minimum degree at least 3) is NP-hard.

1.1 Related Work

There are many natural generalizations of these problems. For instance, the weighted ver-
sions of the 2-edge-connectivity and 2-vertex-connectivity problems introduce nonnegative
edge-weights (c. € R>g : e € E), and ask to find a subgraph that satisfies the correspond-
ing connectivity property and minimizes the sum of these edge-weights over all the edges
in the subgraph. The unweighted case can be obtained by setting ¢, = 1 for every edge
ecb.

Another generalization of the 2-edge-connectivity problem is the Generalized Steiner
Network Problem (GSNP). The input to this problem is an undirected multigraph where
each edge e has weight ¢, € R, and for each pair of vertices u,v € V, there is a connec-
tivity requirement r,, € Z>o. A feasible solution to this problem is a subgraph that has
at least r,, edge-disjoint paths between u and v, and the problem asks to find a feasible
solution of minimum cost. It is easy to see that if we set r, , = 2 for every pair of vertices
u,v € V, then this problem reduces to the 2-edge-connectivity problem. Similar problems
have been defined and studied for the case where the connectivity requirement asks for
vertex-disjoint paths.

Both the 2ECSS and 2VCSS problems have been well studied. For the 2ECSS problem,
Khuller and Vishkin [22] gave a %—approximation algorithm. Cheriyan, Seb6 and Szigeti
[4] improved the approximation ratio to }—; Recently, Sebé and Vygen [28] gave a %—
approximation algorithm for this problem. Better approximation ratios have been claimed,
but to the best of our knowledge, no complete proof has been published. For the weighted
version of this problem, several 2-approximation algorithms exist. Khuller and Vishkin
[22] gave a 2-approximation algorithm for the weighted problem. The 2-approximation
due to Jain [I7] for the more general GSNP also gives a 2-approximation for the weighted
2-edge-connected spanning subgraph problem. No algorithm with an approximation ratio

better than 2 is known for the weighted 2-edge-connectivity problem.

For the 2VCSS problem, Khuller and Vishkin [22] gave a g—approximation algorithm.
Garg, Santosh and Singla [14] improved this ratio to % Very recently, Heeger and Vygen
[16] obtained an approximation ratio of % for the general unweighted 2VCSS problem. Our
work was carried out independently at the same time, and achieves a slightly better ratio

for a specialization of this problem. For the weighted version of this problem, a ratio of 2
has been achieved by several authors (see e.g. [23]). This ratio has not yet been improved.

Vempala and Vetta [29] reported a ratio of % for both problems, but to the best of our
knowledge, their analysis for both problems remains incomplete. This paper introduced the
D2-lower bound on the size of a 2ECSS solution that we use in our algorithm in Chapter 3]
Jothi, Raghavachari and Varadarajan [19] reported a ratio of 2 for 2VCSS, and Gubbala
and Raghavachari [I5] announced a result of %, but subsequently both results have been
withheld from publication (see [I5] and [16]).

Both problems have been shown to be APX-hard (see [5] and [9]) in the general case.

1.2 Organization of the Thesis

In Chapter [2| we discuss some preliminaries, define the notation and terms used in this
thesis, and describe some of the known lower bounds on the cost of an optimal 2ECSS or
2VCSS solution.

In Chapter , we present a %—approximation algorithm for 2ECSS, restricted to instances
where the graph is 3-vertex-connected. We prove that the approximation guarantee is
satisfied with respect to the D2 lower bound for this class of graphs.

In Chapter , we present a %—approximation algorithm for 2VCSS, restricted to in-
stances where the graph has no vertices of degree 2. This algorithm is based on the results
of Seb6 and Vygen [28] for approximating 2ECSS. We show that an approach similar to
the one in [28], but applied to the 2-vertex-connectivity problem, fails for general graphs,

but an adaptation of this approach succeeds for graphs without vertices of degree 2.

Chapter 2

Preliminaries and Lower Bounds

In this chapter we give an introduction to the 2ECSS and 2VCSS problems, and describe
the notation and terminology used in this thesis. We also present some high-level ideas
that will be useful for the rest of the thesis. Finally, we describe in detail the known lower
bounds on the cost of an optimal solution to these problems.

2.1 Preliminaries

We begin with some basic definitions and terminology.

Unless stated otherwise, we assume that graphs are simple and have no loops or multi-
edges (otherwise we call them multigraphs). Let G = (V, E) be a graph. For some vertex
v € V, we denote by G \ v the graph obtained from G by removing the vertex v and all
of the edges incident on v. For some edge e € FE with endpoints u and v, we use e and
wv interchangeably to refer to the edge e, and we denote by G \ e or by G\ uv the graph
obtained from G by removing the edge e.

A bridge of a graph is an edge whose removal disconnects the graph. A cut-vertex is a
vertex whose removal disconnects the remainder of the graph. If a graph contains a bridge,
it is not 2-edge-connected, and if it contains a cut-vertex, it is not 2-vertex-connected.
Figure shows some examples related to these definitions.

A path P in G is a nonempty graph of the form V' = {xg,z1,..., 2}, E = {xory,
T1To, ..., Tk 1%}, where the z; are all distinct. We call zq and x;, the endpoints of P and
x1,...,Tp_1 the internal vertices of P. The length of a path is the number of edges in the
path. Let u,v be two vertices in V. A u,v-path in G is a path with endpoints at u and v.

5

M M @

) A 2-edge-connected) A 2-vertex-connected

) A h h
graph with a bridge graph with a cut-vertex graph

Figure 2.1: 2-edge-connected and 2-vertex-connected graphs

Formally, a graph G = (V, E) is 2-edge-connected if |V| > 3 and for every edge e € F,
G\ e is connected. G is 2-vertex-connected if |V'| > 3 and for every vertex v € V., G \ v is
connected.

Let G = (V, E) be an unweighted 2-edge-connected graph. The 2-edge-connected span-
ning subgraph problem (2ECSS) on the instance G is the problem of finding a 2-edge-
connected spanning subgraph of G with the minimum number of edges. The 2-vertex-
connected spanning subgraph problem (2VCSS) on the instance G is the problem of finding
a 2-vertex-connected spanning subgraph of G with the minimum number of edges.

As a preliminary remark, we note that for the 2ECSS problem, we may assume that
the input graph is 2-vertex connected: an optimal solution to 2ECSS on G is a union of
optimal solutions to 2ECSS on its blocks (see Proposition 1.4 in [2§]).

An ear of G is a subgraph P of G with at least one edge, such that P is either a path
(with two end vertices) or a cycle with one vertex chosen as its end vertex. An ear is open
if it is a path and closed otherwise. It is trivial if it has a single edge, short if it has 2 or 3
edges, and long otherwise. A k-ear is an ear with exactly k edges. A k-ear is even if k is
even, and is odd otherwise. At times, we abuse the notation for trivial ears, and write uv
for the ear corresponding to the path containing the vertices u, v and the edge uv.

Let P be an ear of GG. The vertices of P that are not endpoints of P are called internal
vertices of P, and their set is denoted by in(P).

An ear-decomposition of G is a sequence Py, P;,. .. ,P,, where Py is a vertex and P;,. .., P
are ears such that P; shares exactly its one endpoint (or two endpoints in case P; is open)
with the vertices of PyU...U P;_;. We refer the reader to Figure for an example. The
black node represents the starting vertex Py, the solid edges represent the closed starting
ear Py, the dashed edges represent the open ear P,, and the dotted edge represents the
trivial ear Ps.

An ear-decomposition D of G is open if every ear in D except the ear P is open. The
following lemma due to Whitney [30] characterizes the graphs that have ear-decompositions
(respectively, open ear-decompositions). We state the lemma in 2 parts.

6

A h G
(a) A grap (b) An ear-decomposition of G

Figure 2.2: An ear-decomposition

Lemma 2.1.

1. A graph is 2-edge-connected if and only if it has an ear-decomposition.

2. A graph is 2-vertez-connected if and only if it has an open ear-decomposition.

Proof. We will prove part 2, the proof of part 1 is similar and we omit it. It is easy to see
that a graph with an open ear-decomposition D is 2-vertex-connected.

For the other direction, we start with a 2-vertex-connected graph and construct an
ear-decomposition D = (Fy, P, ..., P;). We choose an arbitrary start vertex, and let P,
be this vertex. Since G is 2-vertex-connected, it contains a cycle containing this vertex.
We use such a cycle to construct the starting ear ;. We then repeatedly add an ear to
our partial ear-decomposition D in the following manner. Let V' C V be the union of the
internal vertices of the ears in D. Aslong as V' # V', there exists an edge e = uv in G with
exactly one endpoint (say u) in V’. Let P be a path that contains e, with one endpoint at
u and the other endpoint at some vertex x € V' \ {u}, such that the internal vertices of P
are in V' \ V’. Clearly, such a path exists: if not, u is a cut-vertex of G. We construct an
open ear out of this path and add it to D. When V' = V', we add each of the remaining
edges of G as a trivial ear. Then D is an open ear-decomposition of G. m

Observe that a given graph GG can have multiple ear-decompositions. Figure [2.3| shows
two different ear-decompositions of the same graph, using the example from Figure 2.2
This fact, along with the above lemma, hints at a possible technique for finding 2-edge-
connected and 2-vertex-connected spanning subgraphs of low cost. Let G = (V| E) be
the input graph. Suppose that we find an ear-decomposition D of G. We discard the
trivial ears of D, and add the remaining edges of D (those in nontrivial ears) to our

solution. The resulting graph is 2-edge-connected (2-vertex-connected if D is an open ear-
decomposition). We can exploit this fact by attempting to compute an ear-decomposition
that has a relatively large number of trivial ears. The nontrivial ears of this decomposition
correspond to a solution of low cost.

In section [2.2] we will further exploit the fact that increasing the number of trivial ears
decreases the cost of our solution to give a lower bound on the cost of an optimal solution.
Both the %-approximation for 2ECSS due to Cheriyan, Seb6 and Szigeti [4], and the %—
approximation for 2ECSS due to Sebd and Vygen [28], make use of ear-decompositions to
construct a solution. The techniques used in Chapter [4| are inspired by those in [4] and
[28]. In this chapter, we present a %—approximation algorithm for 2VCSS for instances

without degree-2 vertices, that uses ear-decompositions to compute a feasible solution.

(a) An ear-decomposition Dy with no even (b) An ear-decomposition Dy with 2 even
ears ears

Figure 2.3: Two ear-decompositions

2.2 Lower bounds on the cost of an optimal solution

We denote by OPT(G) the size of an optimal 2ECSS solution for an instance G. Since
there is no easy way to compute OPT(G), it is important to find a good lower bound on
its value. In this section, we will describe several lower bounds on OPT(G).

We denote by OPTyyc(G) the size of an optimal 2VCSS solution for an instance G.
Since every 2-vertex-connected spanning subgraph of a graph G is also 2-edge-connected,
every lower bound on the cost of an optimal 2ECSS solution also bounds the cost of

an optimal 2VCSS solution. The lower bounds that we discuss are all lower bounds on
OPT(G), and are therefore also valid for OPTyy¢(G).

2.2.1 A Linear Programming Relaxation

There is a natural LP relaxation of the 2ECSS problem, and the optimal value of this LP
gives a lower bound on OPT(G). For any subset S of V', let §(5) be the set of edges in E
with exactly one endpoint in S, and x(d(S)) be the sum of the z-values over these edges.

min Y ecr Te
subject to z(0(S)) >2forall @ C SCV
T, >0 forallee FE

In the above LP, V' and E are the vertex and edge sets of the input graph respectively.
We have a nonnegative variable z. € Rs(for each edge e. The cut-constraints impose
the restriction that the edges in every cut have a total x-value of at least 2. Since any
2-edge-connected spanning subgraph of G has at least 2 edges in every cut, it defines a
feasible solution for this LP.

If we let LP(G) denote the optimal value of this LP for graph G, then LP(G) <
OPT(G), since an optimal solution is feasible for the LP.

We can obtain a simple combinatorial lower bound from the constraints of this LP.
Consider the cut-constraints corresponding to the singletons. For a vertex v, the constraint
corresponding to the set {v} is of the form x(§({v})) > 2. If we sum these inequalities over
all the vertices, we find that the objective value of every feasible LP solution is at least

V1

The next two subsections describe two (usually) stronger lower bounds on the value of

LP(G).

2.2.2 The L,-Lower Bound

Recall that a given graph GG can have multiple ear-decompositions. It is possible that these
ear-decompositions differ in the number of even ears (see Figure [2.3). We denote by ¢(G)
the minimum (possible) number of even ears of an ear-decomposition, over all of the ear
decompositions of G.

We begin with the following definitions. An ear-decomposition D of G is evenmin if
the number of even ears in D is equal to ¢(G). An ear-decomposition is odd if it has
no even ears. We define an indicator function ¢ from the ears of D to the set {0,1} as
follows. For any ear P, we let ¢(P) = 1if P is even and ¢(P) = 0 otherwise. A nontrivial

ear P is a pendant ear if no other nontrivial ear has an endpoint in in(P), otherwise it is
non-pendant.

A graph G = (V, E) is called factor-critical if for every node v € V', G'\ v has a perfect
matching. Lovdsz [24] showed an interesting characterization of the factor-critical graphs
by their ear-decompositions.

Theorem 2.2. (Lovdsz) A graph is factor-critical if and only if it has an odd ear- decom-
position.

Lovész and Plummer [25] also showed that it is possible to naturally combine this
theorem with Lemma 2.1

Theorem 2.3. (Lovdsz, Plummer) A 2-vertez-connected factor critical graph has an open
odd ear-decomposition.

Their proof of this theorem is constructive, and gives a method to compute an open
odd ear-decomposition in polynomial time.

Let G = (V, E) be a graph and 7" C V with |T'| even. A set F' C E is called a T-join
if T is exactly the set of odd-degree vertices of the graph (V) F'). The next result is due to
Frank [10].

Theorem 2.4. (Frank) Let G = (V, E) be a 2-edge-connected graph. Then there exists T C
V., |T| even, such that the minimum cardinality of a T-join is 1(|V(G) + ¢(G) — 1). Such
a T and an ear-decomposition with ¢(G) even ears can be computed in time O(|V|- |E|).

Cheriyan, Sebd and Szigeti [4], in their result which gave a 1Z-approximation algorithm
for 2ECSS, used the above theorems to prove the following results. The first of these
results is used in the approximation algorithms in [4] and [2§], as well as in the algorithm
presented in Chapter [of this thesis. It states that for any 2-vertex-connected graph G,
there exists an ear-decomposition of G that is both open and evenmin. Further, such an
ear-decomposition can be computed in polynomial time.

Theorem 2.5. (Cheriyan, Sebd, Szigeti) Let G be a 2-vertez-connected graph. An open
ear-decomposition D of G having ¢(G) even ears can be computed in time O(|V]-|E|).

Proof. By Frank’s Theorem (Theorem, we can compute an evenmin ear-decomposition
D in time O(|V| - |E]). Starting with D, we subdivide an edge on each even ear to obtain
an odd ear-decomposition D’ of the resulting graph G’. Since D’ is odd, by Theorem [2.2]

10

G’ is factor critical. Since this subdivision does not introduce cut-vertices, G is 2-vertex-
connected. Hence we can compute an open odd ear-decomposition D of G’ by Theorem
2.3] Finally, if we undo the subdivisions, this ear-decomposition remains open (since both
edges resulting from a subdivision remain in the same ear of D, and contracting an edge
in a nontrivial open ear does not introduce cut vertices). Undoing the subdivisions also
reintroduces ¢(G) even ears. The resulting ear-decomposition of G is both open and
evenmin. O

The second result gives a new lower bound on the cost of an optimal solution to 2ECSS
for a graph G, in terms of the value of ¢(G). For any 2-edge-connected graph G, let
L,(G):=|V|+¢(G)—-1.

Theorem 2.6. (Cheriyan, Sebd, Szigeti) Let G = (V, E) be a 2-edge-connected graph.
Then OPT(G) > L,(G).

Proof. Let H be a 2ECSS of G. We claim that every ear-decomposition of H has at least
©(@) even ears. Suppose not, and let D be an ear-decomposition of H with fewer than
©(G) even ears. If we add all edges of E(G) \ E(H) as trivial ears to the end of D,
then the resulting sequence is an ear-decomposition of G' with less than ¢(G) even ears,
a contradiction. Consequently, every ear-decomposition of an optimal 2ECSS has at least
(@) even ears, and hence at least ¢(G) nontrivial ears.

Let H be an optimal 2ECSS of G and D be an ear-decomposition of H. Let P be
a nontrivial ear of D. If P is the starting cycle P, then |E(P)| = |in(P)[. Otherwise,
|E(P)| = |in(P)| + 1. Summing over all nontrivial ears of D, of which there are at least

p(G), we get |[E(H)| > [V]+¢(G) — 1. 0

In their recent paper, Sebé and Vygen [28] use the same lower bound as part of their
analysis, but prove a stronger result: that this lower bound is, in fact, a lower bound on
LP(G). Their proof involves more work, and we direct the reader to Section 4, Theorem 5
of [2§] for this proof. Observe that the above lower bound is stronger than the naive lower
bound of |V| for graphs G with ¢(G) > 1. Figure [2.4] shows an example of such a graph
G (with p(G) = 2).

2.2.3 The L,-Lower Bound

To achieve the approximation guarantee of ‘31 for 2ECSS, Sebé and Vygen [28] used two
lower bounds in conjunction - the L,-bound, and a second lower bound on LP(G) that

11

Figure 2.4: A graph G with ¢(G) =2

we call the L,-bound. In [2§], the authors present multiple approximation algorithms that
use the same lower bounds. In order to do this, each lower bound is defined as generally
as possible. In this subsection, we will show a specialization of the lower bound in [2§],
that applies to the optimal 2ECSS and 2VCSS solutions.

To describe this second bound, we need ear-decompositions with particular properties.
Let G be a 2-edge-connected graph. An ear-decomposition D of G is called nice if it has
the following properties:

1. D is evenmin;
2. all short ears of D are pendant ears;

3. the internal vertices of different short ears of D are non-adjacent in G.

In this paper, we refer to properties (2) and (3) of the above definition collectively as
the short-ears properties. Figures shows an example of a non-pendant short ear P
with a nontrivial ear @ having an endpoint in in(P). Figure shows two pendant short
ears P; and P, which are adjacent in G (by the edge €). A nice ear-decomposition is an
evenmin ear-decomposition that does not have any short-ear configurations of these types.

(2] e

II Q \\ Lot ’—'Q
P ¢ [

(b) Two pendant short ears P; and P,
(a) A non-pendant short ear P whose internal vertices are adjacent

Figure 2.5: Short ear configurations that are not “nice”

12

Seb6 and Vygen (Lemma 2.5 of [28]) show that for any 2-vertex-connected graph G,
there exists a nice ear decomposition of (G, and that this nice ear-decomposition can be
computed in O(|V(G)| - |[E(G)]) time. The ear-decomposition constructed by their algo-
rithm may not be open. At a high level, their algorithm starts with an open and evenmin
ear decomposition (see Theorem [2.5)). It makes a sequence of local changes to this ear-
decomposition in order to obtain the short-ears properties, while maintaining the property
that the ear-decomposition is evenmin (but possibly creating closed ears). Finally, their
algorithm makes a few more local changes to the short ears of this ear-decomposition.

During the course of our investigation, we attempted to use similar ideas to obtain an
approximation algorithm for 2-vertex-connectivity. Unfortunately, the algorithm in [2§]
loses the property of openness while gaining the short-ears properties. Consequently, the
solution so obtained (after discarding trivial ears) is not necessarily 2-vertex-connected,
and the above theorem does not work for open ear-decompositions. In fact, there are
graphs for which there are no ear-decompositions that are open, evenmin, and satisfy the
short-ears properties. The example in Figure [2.6]shows a graph G for which every open and
evenmin ear-decomposition contains either a non-pendant 3-ear consisting of the dashed
edges, or a non-pendant 3-ear consisting of the dotted edges.

Figure 2.6: A graph with no open evenmin ear-decomposition satisfying the short-ears
properties

In Chapter , we present a %-approximation algorithm for 2VCSS on instances with
minimium degree at least 3. This algorithm constructs an open and nice ear-decomposition
for these instances, showing that such ear-decompositions always exist for 2-vertex-connected
graphs of minimum degree at least 3. This was the most general class of graphs for which
we could achieve the result. It remains to characterize precisely the graphs for which such
ear-decompositions exist.

In [28], the authors construct a nice ear-decomposition of the given 2-vertex-connected
graph G. Using this ear-decomposition, they find another lower bound on the cost of an

13

optimal 2ECSS solution, which we call the L,-lower bound. In fact, they prove that this
lower bound also applies to LP(G). We will now describe a simplified version of their lower
bound, applicable to an optimal solution to the 2ECSS problem.

Let G be a 2-vertex-connected graph, and let D be a nice ear-decomposition of G. The
eardrum associated with G and D is the set M of connected components of the subgraph
induced by the internal vertices of the short ears of D (see Figure ; dashed edges form
short pendant ears and dotted edges form a long pendant ear). Let Vj; be the vertex set
of this subgraph. Every component in M is either an isolated vertex or a pair of vertices
with an edge. Let V}, be the set of internal vertices of the pendant ears that are not short,
and let V; be the internal vertices of the non-pendant ears. Observe that V,,, V, and V;
are disjoint, and V = V3, UV, UV},

Figure 2.7: A nice ear-decomposition. The eardrum M is circled. The white nodes
represent vertices in V; and the black nodes outside M represent vertices in Vp,

In general, there may be trivial ears that have one endpoint in V), and the other
endpoint in V7. It is possible to replace a pendant short ear by another pendant short ear
with the same internal vertices by using these trivial ears. As an example, consider the
3-ear with vertex set {uy, ug, us, u4}, as shown in Figure . Due to the presence of the two
vertices x,y € V; and the trivial ears usz and usy, we may choose to replace the pendant
3-ear {u; —us — uz —uy } by any of the pendant 3-ears {x —uy —us —uy}, {ug —us —us —y}
or {x —uy — uz — y}, all of which result in valid nice ear-decompositions of G.

Figure 2.8: A short ear which can be replaced

In fact, making such a replacement in a clever manner allows us to find a new lower
bound on OPT(G). We will first restate the above result formally. Let D be the nice

14

ear-decomposition that we start with. For any f € M, let Py be the ear with f as its
internal vertices. Let)y be any path in G’ with f as its internal vertices. If we replace
the ear Py of D with the ear ()f, and change the trivial ears accordingly, the resulting
ear-decomposition is valid for G and is a nice ear-decomposition of G.

Let P be the set of all possible paths @) for each f € M. Suppose that we temporarily
remove all edges that have neither endpoint in Vj; from G and D. We want to pick exactly
one element Ry from each set Py, such that we need to add as few further edges to the
graph (V(G),Usenm E(Ry)) as possible in order to make this graph connected. In other
words, our goal is to choose paths Ry such that the graph (V(G), Urem E(Ry)) has as few
components as possible.

This motivates the definition of an earmuff (Definition 3.1 in [2§]). Given G and an
associated ear-decomposition D and eardrum M, an earmuff for M in G is a set of paths
{Rf : f € F}, where FF C M such that (V(G),Usem E(Ry)) is a forest. A mazimum
earmuff is one in which |F| is maximum, and this maximum is denoted by u(G, M).

Seb6 and Vygen [28] showed that earmuffs are the common independent sets of two
matroids, whose ground set is UscpPr. On the one hand, the sets Py partition this
ground set. Since an earmuff contains at most one element per partition class, the subsets
of UsearPy that contain at most one element per class define a partition matroid on the
ground set (see e.g. [I1]). The subsets of Usecp Py whose union is a forest form the cycle
matroid of a graph if we represent each path R € Py by the set of its two endpoints
(see Section 3.1 in [2§]). The earmuffs are those sets that are independent in both of these
matroids. Thus earmuff maximization reduces to matroid intersection, and it can be solved
in polynomial time [7].

We remark that the algorithm by Seb6 and Vygen actually solves this subproblem
and computes a maximum earmuff. Our algorithm (Chapter |4)) does not need to solve
this problem, but we use the following lower bound that arises from its structure in our
analysis.

Given a graph G and associated nice ear-decomposition D with eardrum M, we let
L,(G,M):=|V|+|M|—pn(G,M)—1. The authors in [28] show that this expression gives
a lower bound on the value of LP(G). We direct the reader to Section 4, Theorem 6 in
[28] for a proof of this result.

Theorem 2.7. (Sebd, Vygen) Let G be a 2-vertex-connected graph. Let D be an open nice-
ear decomposition of G and let M be the associated eardrum. Then L,(G,M) < LP(G).

If [M| — (G, M) > 1 for some ear-decomposition of G, this lower bound is stronger
than the naive lower bound of |V|]. See Figure for an example. If we let M be the

15

eardrum corresponding to the circled vertices, then (G, M) = 1: if we add any pair of
short ears, then the edges of these ears form a cycle, thus any earmuff can have at most
one such ear. But |M| = 3, thus L,(G,M) =|V|+ 1.

Figure 2.9: A graph G and associated eardrum M with L, (G, M) = |[V]|+1

2.2.4 The D2-Lower Bound

Let G be a 2-edge-connected graph. The D2 problem (also called the minimum-size 2-
edge-cover problem) is the problem of finding a subgraph of minimum size such that the
minimum degree of a vertex of this subgraph is at least 2. A solution to this problem can
be found in polynomial time (see e.g. [27]).

Vempala and Vetta [29] were the first authors to use the D2 problem as a tool for
computing an approximation to the 2ECSS problem.

Let H be a 2-edge-connected spanning subgraph of GG. Clearly, every vertex of H has
degree at least 2. Thus H is feasible for the D2 problem. We call such a graph (of minimum
degree at least 2) a D2 of GG, and we call an optimal solution a min-D2 of G.

In Chapter[3], we consider the 2ECSS problems on instances that are 3-vertex-connected.
Our algorithm first computes a min-D2 of G, and uses the size of this min-D2 as a lower
bound on OPT(G). Starting with the min-D2, we construct a 2-edge-connected spanning
subgraph of size at most % the size of the min-D2.

The algorithm in [29] constructs a spanning tree out of the connected components of
a min-D2, and then iterates over these components. In each iteration, it connects one
component to its parent by two edges. Our algorithm works differently, and instead bears
some similarity to the algorithm for a weighted version of 2ECSS in [3]: we start with a
min-D2 and first construct a bridgeless D2, which is a D2 whose connected components
are each 2-edge-connected. After this, we merge these 2-edge-connected components into
a single large component using the edges of the input graph. As mentioned earlier, our

16

results show that if G is 3-vertex-connected, then OPT(G) is at most 3 of the size of a
min-D2 of G.

In the rest of this subsection, we will describe the structure of a D2, and introduce
some terminology and notation that will be used in the rest of this thesis.

Let J be a graph. A 2ec-block of J is a maximal (with respect to edge and vertex
inclusions) 2-edge-connected subgraph of J. We define the underlying forest of J as follows.
Starting with the graph J, we contract all of the edges in each 2ec-block. The resulting
graph contains a node v’ for every node u € V(J) that was not in a 2ec-block, and a node
v’ for every 2ec-block of J. We call the latter nodes the compound nodes corresponding to
the 2ec-blocks of J. By the maximality of 2ec-blocks, the graph obtained in this manner
is acyclic.

Let G be a 2-edge-connected graph, and H be a D2 of G (a subgraph of G with minimum
degree at least 2). For any subgraph H' of H, we denote the underlying forest of H' by
T(H'). Clearly, for every connected component C of H, T(C') is a tree, which we call the
underlying tree of C'. For any underlying forest T" obtained through these contractions, we
denote by 7 1(T) the subgraph of H obtained by reversing the contractions. The figures
below show a graph G, a D2 H of G, a component C' of H, and the underlying tree T (C')

LI o

) A 2-edge-connected graph G)A D2 H of G

a x
L -
O——e—O
(¢) A component C of H, with 2ec-blocks B (d) The graph 7(C)

and By

Figure 2.10: The structure of a D2

Let v be a vertex of T'= T (H) (compound or otherwise). A neighbour or neighbouring
2ec-block of v in T is a compound node u in T" in the same component as v, such that none
of the internal vertices of the unique wu, v-path in T is a compound node.

17

Observe that since H is a D2, every leaf node of 7" = T(H) is a compound node.
Finally, we remark that every edge of T directly corresponds to a bridge of its corresponding
component in 7 ~1(T); for example, the edge b;x in Figure corresponds to the bridge
ax in Figure

18

Chapter 3

A %—Approximation for Restricted
2ECSS

In this chapter, we present a Z%—approximation algorithm for the unweighted version of the
2-edge-connected spanning subgraph problem (2ECSS), restricted to input graphs that are
3-vertex-connected.

The unweighted 2-edge-connectivity problem is well studied. Khuller and Vishkin [22]
gave a simple but clever %—approximation algorithm for this problem. Using more complex
techniques, Cheriyan, Sebé and Szigeti [4] improved this ratio to }—g Recently, Seb6 and
Vygen [28] improved this ratio even further, to 3. This last ratio was achieved with respect
to the 2ECSS-LP (see Chapter , by an analysis that used the two lower bounds, the L-

lower bound and the L,-lower bound, in conjunction.

We present a new algorithm for approximating 2ECSS, restricted to 3-connected graphs,
which achieves the approximation guarantee of % with respect to another lower bound: the
D2-lower bound, which is the size of a minimum-size subgraph with minimum vertex degree
at least 2 (a min-D2 — see Chapter 2). In [29], Vempala and Vetta gave a 3 approximation
algorithm for 2ECSS with respect to the D2-lower bound, but to the best of our knowledge,
their analysis remains incomplete. They use a DFS-based approach, computing a depth
first search tree of components of a min-D2 and then modifying this tree with local changes
to each component to achieve the result.

Our methods are different from those in [29]. We start with a min-D2 of the input
graph and modify its components to obtain a bridgeless-D2 of G, which is a D2 whose
connected components are 2-edge connected. We then proceed to merge these components

19

into a single 2-edge-connected component, which is our solution. The following theorem is
a consequence of our algorithm.

Theorem 3.1. Let G be a 3-vertex-connected graph. The size of a smallest 2-edge-
connected spanning subgraph of G is at most % the size of a min-D2 of G.

We remark that the restriction to 3-vertex-connected graphs is necessary for our algo-
rithm (without major modifications) to work: the example in Figure shows that the
cost of an optimal 2ECSS can be as high as g of the cost of a min-D2 on graphs which are
not 3-vertex-connected. This example consists of a repeated “gadget”: a 4-cycle, connected
to the previous 4-cycle by two edges. The example shows that for each k € Z-(, there
exists a graph Gy on 4k vertices, with 6k —2 edges, such that the size of a min-D2 is 4k (the
solid edges in the figure form a D2), but the size of an optimal 2-edge-connected subgraph
is 6k — 2 (every solution includes all the edges, since every edge is in a 2-edge-cut).

Figure 3.1: The graph Gy, where the ratio between the size of an optimal 2ECSS and the
size of a min-D2 approaches %

20

3.1 Algorithm Overview

Before we begin to explain the details of our algorithm, we require the following definitions.

A bridgeless-D2 of G is a subgraph of minimum-degree 2 (a D2), with the added
property that every connected component of this subgraph is 2-edge-connected (bridgeless).
In other words, a bridgeless-D2 of GG is a subgraph of G that is a disjoint union of 2-edge-
connected graphs. The solid edges in Figure [3.2] show an example of a D2 containing a
component with a bridge, and a bridgeless-D?2.

(a) A graph G (b) A D2 of G (c) A bridgeless-D2 of G

Figure 3.2: A D2 and a bridgeless-D2

Let G = (V, E) be the input graph. By assumption, G is 3-connected. In the analysis
of our algorithm, we use the following token argument. We start with a min-D2 D of G,
and assign % tokens to each edge of D. We then make a sequence of changes to this D2, by
adding and deleting some edges, such that the resulting graph is 2-edge-connected. The
tokens allow us to count the number of edges in our final solution, and show that this
number is at most % times the size of D.

Let H = (V, E) be a subgraph of G. We denote by t(H) = t(Ey) = _ . t(e) the

number of tokens on the edges of H, where t(e) is the number of tokens on the edge e.

Let H and H' be two subgraphs of G. When we buy an edge e € E(G) \ E(H), we
pay one token for it and add it to E(H). When we sell an edge e € E(H), we recover

one token for it and remove it from E(H). We convert H to H' when we buy all edges in
E(H')\ E(H) and sell all edges in E(H) \ E(H').

Our algorithm consists of a few steps that can be summarized as follows. We let H be
the partial solution constructed by our algorithm at any point during its execution.

1. [Preprocessing| We construct a min-D2 D of G. This can be done in polynomial
time (see e.g. [27]). We set H := D, and assign 3 tokens to each edge of H.

21

2. [Bridge-covering| Starting with the D2 H, we buy and sell suitable edges using
the tokens assigned to the edges of H, to convert H to a bridgeless-D2 with some
additional spare tokens on each component.

3. [Gluing] Starting with the bridgeless-D2 H and the tokens on its components, we
buy and sell suitable edges using these tokens, to convert H to a 2ECSS of G.

Since we begin with a min-D2 of G with % tokens on each edge, and buy and sell edges
at the cost of one token per edge, our final solution has at most % as many edges as the
min-D2. This gives us the approximation guarantee.

The goal of the bridge-covering step is to convert H to a bridgeless-D2 of GG that satisfies
the following invariant.

Gluing Invariant

e Let C be a component of H. Then ¢(C) > min(2, @)

In each iteration of the gluing step, we will merge components of this bridgeless-D2
together, while maintaining the Gluing Invariant and the property that H is a bridgeless-
D2 of G.

The concept of bridge-covering was first introduced in [3], and the methods used in
the bridge-covering step of the algorithm are inspired by the methods in [3]. At a high
level, the bridge-covering process starts with the min-D2 H with % tokens on each edge,
and iterates over the components of H that have a bridge. In each iteration, we highlight
one component as the growing component C for that iteration. We process the growing
component for as long as it contains a bridge, so that at the end of this iteration, the
growing component is bridgeless.

We do this one bridge at a time. As long as Cj contains a bridge e, we find a path in
G which covers that bridge, and buy its edges. More formally, we find a path P in G such
that if we buy the edges of P that are not yet in our solution, then e is no longer a bridge
in the resulting graph (we say that the path P covers the bridge e in our solution). During
this process, we sometimes sell some redundant edges (which are not required for 2-edge-
connectivity) in order to obtain a few extra tokens. We refer the reader to Figure for
a pictorial example, where thick edges are in the growing component, solid edges are in
the current solution, and dashed edges are edges of GG that are not in the current solution.
The path P is shown in Figure by the thick dotted edges. As the name growing
component suggests, this process could result in the addition of some new vertices to C,

22

since the components that contain vertices of P are merged with the growing component.
The details pertaining to our choice of P, and the supporting token argument bounding
the number of tokens we use for this process, are deferred to Section of this chapter.

/ ! ; .':
| / 1 K
/ | S
C(0 < > e < > CO < > e < >

(a) The graphs G and H (b) The path P

Figure 3.3: Bridge-covering

We will show that on termination of the bridge covering step, the solution maintains the
Gluing Invariant. The gluing step of our algorithm starts with this graph, and constructs
a 2-edge-connected spanning subgraph of G' using the tokens on its components to buy
some edges of G. In each iteration of the gluing step, we choose one component of our
partial solution, and find an ear in G with endpoints in this component, whose vertices are
in multiple components. We use the tokens on these components to buy the edges that are
not yet in our solution.

In both of the above steps, we find a path through multiple components. Our algorithm
often needs to find such a path, starting and ending at particular components or vertices,
with the added property that the path must “enter” and “exit” each component at most
once (in other words, for each component, at most two edges of the path have exactly
one endpoint in that component). In all of these cases, as long as we find a path we can
assume that we have attained this property, because we can “shortcut” this path in order
to achieve the required property.

More formally, let G' be the input graph and H (a subgraph of G) be the partial solution
constructed so far. Let P be a path in H, and let Cp be the set of components of H that
contain at least one vertex of P. Then, when we shortcut P, we replace it with a path
P’ that “enters” and “exits” each component at most once, in the following manner. Let
C € Cp be a component such that more than 2 edges of P have exactly one endpoint in C'.
Let e; = ab and ey = cd respectively be the first and last edges of P with this property, such
that b and c are in C'. We delete the b, c-subpath of P, and replace it with a b, c-path in the
connected component of H. After repeating the above procedure for any component that

23

P enters multiple times, we attain the above property. We call this process shortcutting,
and say that we have shortcut P.

Before we begin, we require the following lemma, which we will use repeatedly in the
analysis of our algorithm.

Lemma 3.2. Let G = (V, E) be a 2-edge-connected graph and e = uv be an edge of G
such that there exists a collection of 8 edge-disjoint u,v-paths in G. Then G\ e is 2-edge-
connected.

Proof. Since the wu,v-paths are edge disjoint, at most one of them contains the edge e.
Thus the other two paths (call these P, and P,) are u,v-paths in G \ e. Since G is 2-
edge-connected, G \ e is connected. Suppose, for the sake of finding a contradiction, that
G \ e is not 2-edge-connected. Then it has a bridge ¢’. Let S be the set of vertices of one
connected component of (G \ e) \ ¢/. Then 6(5) is the cut corresponding to the bridge ¢’
in G\ e.

If uw and v are both in S (or both in V' \ .S) then e ¢ 6(5), and every edge in G that is
in 6(5) is also in G'\ e. Hence G is not 2-edge-connected, contradicting out assumption. In
the only other case, exactly one of w and v is in S (suppose without loss of generality that
w is in S). Since P, and P, are edge-disjoint u, v-paths in G \ e, there exist distinct edges
e1 € E(Py) and ey € E(P;) such that ej, ey € 6(5) in G\ e, contradicting our assumption
that €’ is a bridge. m

We will first describe the gluing step, then the bridge-covering step. The input to the
gluing step is a bridgeless-D2 with some tokens on its components. This graph maintains
the Gluing Invariant, which says that components with at least 6 edges have at least 2
tokens, and components with 3, 4 or 5 edges have exactly % tokens per edge. Recall that
each component of a bridgeless-D2 is 2-edge-connected.

Section [3.2) discusses the Gluing process in detail, and Section [3.3] discusses the bridge-
covering process in detail.

24

3.2 Gluing

We begin by describing the gluing procedure at a high level. Let H be a bridgeless-D2
that maintains the Gluing Invariant.

We repeat the following procedure until H is connected (and therefore 2-edge-connected).
Denote by G’ the multigraph obtained from G by contracting all of the edges in H. Since
G is 2-edge-connected, G’ is 2-edge-connected. We find a closed ear in G’, and use tokens
from the components corresponding to the vertices of this ear to buy the edges in GG that
correspond to edges of this ear of G’. As a result, these components are merged into a sin-
gle large 2-edge-connected component. During this process, we sometimes sell redundant
edges (edges that are not required to maintain 2-edge-connectivity of a component) to ob-
tain extra tokens. At any point during this step, the partial solution H is a bridgeless-D2
of G.

If we assume that every component has at least 2 tokens, then this process is straightfor-
ward. The components that have less than 2 tokens require a more complicated algorithm
to handle them. In this step, our algorithm first handles these hard cases, and then pro-
ceeds to the simple phase where every component has at least 2 tokens. In the first phase,
we process all of the “small” components of H (components with at most 5 edges), by
starting with each such component and choosing a closed ear containing this component.
When we buy the edges of the closed ear, we ensure that the resulting component is 2-
edge-connected and has at least 6 edges and 2 tokens. At the end of this phase, every
component of H has at least 2 tokens. In the second phase, we merge all of the remaining
components of H into a single 2-edge-connected spanning subgraph of G.

We will now describe the details of both phases of the gluing process. We will start by
describing the second phase, which is much simpler. For this phase, we may assume that
every component has at least 2 tokens.

Second Phase

At the start of this phase, H = (V, Fy) is a bridgeless-D2 with at least 2 tokens on
each component. We contract each component C; into a vertex v;. If the resulting
multigraph has at least 2 vertices, then it is 2-edge-connected. We find a cycle
vy, ...,v; with & > 2, and buy the edges of G corresponding to edges of this cycle
(see Figure . We add these edges to the set ;. This costs k tokens, and we have
2k > k+ 2 tokens available on the components of this cycle, each of which becomes a
part of the new 2-edge-connected component. Hence we are left with at least 2 spare
tokens, which we assign to the new component in H, and the Gluing Invariant holds.

25

We iterate this process until we are left with a single 2-edge-connected component,
which is our final solution. Figure shows an example of one iteration of this
phase of the gluing step. The solid edges of Figure represent edges of H, and
the dashed edges represent edges of GG that are not in H. The dotted edges of Figures
and represent edges of the closed ear.

<:> y : / <:> !]
’ I -== o : : N :
\ K ; -___ -2 - N

0.. .“ :

. .

\

' e N X
(b) The closed ear in G’

) The graphs G and H (c) The closed ear in G

Figure 3.4: The second phase of the gluing step

We next describe the first phase. In this phase, we individually handle all of the small
cycles (with 3, 4 or 5 edges) separately. We first process the 3-cycles, then the 4-cycles, and
finally the 5-cycles of H. We iterate this process until every 2-edge-connected component
of H has at least 6 edges and at least 2 tokens (after which we may proceed to the second
phase described earlier).

Before we begin to describe this phase of our algorithm, we require the following defi-
nitions and lemmas (which we will prove at the end of this section).

Let P be a path in G. We denote by C(P) the set of components of H that contain an
internal vertex of P.

Lemma 3.3. Let G = (V, E) be a 3-connected graph and R,S C V with |R|,|S| > 3
and RN S = &. Then there exists a set of 3 vertex-disjoint R, S-paths in G that can be
computed in polynomial time.

Lemma 3.4. Let H be a bridgeless-D2 of G and By and By be two components of H. Let
P be a simple By, Ba-path in G that shares only its endpoints with V (By)UV (Bs). Suppose
that for each C' € C(P), P has exactly two edges with ezxactly one endpoint in C.

Then |[E(P)\ E(H)| <1+ geep) tHC)

26

The above lemma states that if we are given one extra token, we can buy the edges of
E(P)\ E(H) using the tokens on the components in C(P) and this extra token.

This lemma is proved at the end of the section. The proof is simple, and implicitly
provides an algorithm to obtain the tokens required and to buy the edges of the path, while
maintaining the Gluing Invariant.

Processing 3-cycles

We repeat this step as long as H contains a component that is a 3-cycle. We choose
a 3-cycle R. Let V(R) = {a,b,c}. We choose an edge e with exactly one endpoint
in V(R). Without loss of generality, assume e = ax. Let B be the component of H
that contains x.

Since G is 3-connected, by Lemma [3.3| we find a set P = {P;, P», Ps} of vertex-
disjoint paths in G between the sets V(R) and V(B). We have the following cases
for B:

Case 1. B is a 3-cycle. Let V(B) = {z,y, z}.

b

Figure 3.5: Processing 3-cycles: Case 1

At least one of the three paths in P has one endpoint in {b,c} and the other
endpoint in {y, z}. Denote this path by P, and suppose without loss of gen-
erality that P ends at b and y. We shortcut P as explained earlier (note that
shortcutting might change the set C(P)).

By Lemma (3.4, we require one token to buy P. We require an additional token
to buy the edge e, and another 2 tokens to assign to the resulting component
to maintain the Gluing Invariant, for a total of 4 tokens.

We obtain one token from each of R and B. Since a and b have at least 3
edge-disjoint paths between them, we can sell the edge ab by Lemma to
recover one token. Since x and y have at least 3 edge-disjoint paths, we sell xy
to recover another token. Hence we have the required 4 tokens for this case.

Note that the vertices @ and z are in the same 2ec-block of H after this iteration.

27

Figure 3.6: Processing 3-cycles: Case 1

Case 2. B s a 4-cycle. Let V(B) = {z,y, z,w}, such that x is adjacent to y and

zin H.
b Y
: a T ‘e
--- w
e
¢ z

Figure 3.7: Processing 3-cycles: Case 2

If there exists a path in P with one endpoint in {b, ¢} (without loss of generality,
say b) and the other endpoint in {y, z} (without loss of generality, say y), we
shortcut this path as before. To buy this path, by Lemma [3.4] we require one
token. We require an additional token to buy the edge ax, and two tokens to
assign to the resulting component, for a total of 4 tokens. We obtain one token
from each of B and R, and sell the edges ab and xy to obtain two more tokens.
As explained earlier, the resulting component is 2-edge-connected and maintains
the gluing invariant.

Otherwise, the two paths in P with an endpoint in {b, ¢} have their other end-
points in {z, w}. Suppose without loss of generality that P; is a b, z-path, P, is
a ¢, w-path, and P; is an a, y-path in G.

If C(P)NC(Ps) # @, let C be a component of H that is in both of these sets.
We construct a b, y-path P by taking the subpath of P; from b to C' and the
subpath of P; from C to y, and an appropriate subpath in C' connecting these
two paths. We shortcut P as before. By Lemma [3.4] we require one token to
buy the edges of P not already in H. We require an additional token to buy e
and two more tokens to maintain the Gluing Invariant. We buy the edges of P
and the edge e. We obtain one token from each of R and B, and sell ab and xy

28

for two additional tokens.

Otherwise, C(P;) NC(P3;) = &. We shortcut the paths P, and P, and buy their
edges using the tokens from R and B and Lemma As before, we sell the
edges ab and zy by Lemma [3.2] and recover two tokens to maintain the Gluing
Invariant.

Case 3. B s a b5-cycle. Let V(B) = {z,y,w,w’, z}, labelled in order around B.

Y
b w
a T
-
c 5 w'

Figure 3.8: Processing 3-cycles: Case 3

Since B has 5 vertices, some pair of paths in P have endpoints that are adjacent
in B. Let P, and P, be these paths. Clearly, the endpoints of P, and P, are
adjacent in R, since R is a 3-cycle. We shortcut P, and P, as described earlier.

If C(P) NC(P,) = @, then we use one token from each of R and B to buy
these paths (by Lemma . We sell the edge between the endpoints of P
and P, in R, and the edge between the endpoints of P, and P, in B, since
they have at least 3 edge-disjoint paths between them (by Lemma . We
recover two tokens to assign to the resulting component. This component is
2-edge-connected and maintains the Gluing Invariant.

Otherwise, C(P) NC(Pz) # @. Let C € C(P,) NC(Pz) be a common component
with the maximum number of tokens in this set.

If t(C') > 3, we take 1 tokens from C to use later on in our analysis. C'is now
left with 1 token. We buy the path P; and the edge e, for which (by Lemma
3.4)) we require 2 tokens. To maintain the Gluing Invariant, we require 2 more
tokens, for a total requirement of 4 tokens. We refer the reader to Figure for
this sub-case. We obtain g tokens from B, % from C' and 1 from R, for a total of
3 tokens. We then sell the edge ab, maintaining 2-edge-connectivity by Lemma
to obtain an extra token. The resulting component is 2-edge-connected and
has at least 2 tokens, and hence maintains the Gluing Invariant.

If t(C') = 1, then every component of C(P;) N C(P,) is a 3-cycle. Since P
and P, are vertex-disjoint, they are edge-disjoint. To buy all of the edges in
(E(P) U E(PR)) \ E(H), by Lemma we require one extra token for each

29

Figure 3.9: Processing 3-cycles: Case 3

component C' € C(P,)NC(P,), since each of these components has only one token
to begin with (and we require 2 tokens to apply Lemma twice). Suppose
that we have exactly one extra token per component in this set (we will describe
how to obtain these later). We use these tokens and one token from each of R
and B, and we buy all of the edges in P, and P, (by Lemma .

We will now describe how we obtain one extra token per component in the
set. Let C' be a component of C(P;) N C(P,). We denote by fp, (C) the edge
of P, “entering” C', which is the first edge of P, with exactly one endpoint in
V(C). We denote by ep, (C) the edge of P, “leaving” C, which is the second
(and last) edge of P, with exactly one endpoint in V(C'). We define fp,(C) and
ep,(C) in a similar fashion for P,. Upto relabelling Py, P, and the vertices of
C, there are exactly two possible configurations of these edges that can occur
(see Figure , since (' has exactly 3 vertices and the two paths are vertex
disjoint. Either each path contains exactly one vertex of C, or exactly one path
contains two vertices of C'.

P, dipff(?_) 6_’11 Eg) °
ng(C)_ ; _epz (O)
Pe--"" " T7-- ®

Figure 3.10: Processing 3-cycles: Case 3

Let V(C) = {uy,us,us}, such that u; is an endpoint of fp (C) and us is an

30

endpoint of fp,(C). Observe that the edge ujus does not belong to the edge
sets of either P, or P,. In the new 2-edge-connected component created by
buying these paths, the vertices u; and uy have at least 3 edge-disjoint paths
between them (the edge ujus, a path through R that uses subpaths of P; and
P,, and a path through B that uses subpaths of P; and P,), so we sell the edge
uyuy to recover one token by Lemma After repeating this process for all
components of C(P;) N C(P), we obtain the required number of tokens to buy
both paths.

Finally, we sell the edges between the endpoints of P, and P, in R, and the
endpoints of P; and P, in B, which maintains 2-edge-connectivity by Lemma/|3.2]
and we recover 2 tokens to assign to the resulting component. This component
is 2-edge-connected and maintains the Gluing Invariant.

Case 4. (B) > 2. Let P, € P be the path with an endpoint at b. We simplify
the path P, as explained before and buy its edges, and we buy the edge e. We
require a total of 4 tokens to maintain the Gluing Invariant. We obtain one
token from R, two from B, and one by selling the edge ab, which is possible by
Lemma

Processing 4-cycles

At this stage, H does not have any component that is a 3-cycle. We repeat this step
as long as H contains a component that is a 4-cycle. We choose a 4-cycle R. Let
V(R) = {a,b, c,d}, such that a is adjacent to b and ¢ in H. We choose an edge e with
exactly one endpoint in V(R). Without loss of generality, we may assume e = ax.
Let B be the component of H that contains x.

Since G is 3-connected, by Lemma [3.3] we find a set P = {Py, P, P3} of vertex-
disjoint paths in G between the sets V(R) and V(B). We have the following cases
for B:

Case 1. B s a4-cycle. Let V(B) = {z,y, z,w}, such that z is adjacent to y and
z.
Since each of the sets V(R) and V(B) contains 4 vertices, there are 2 pairs
of paths in P whose endpoints in V(R) are adjacent in H, and 2 pairs whose
endpoints in V(B) are adjacent in H. Thus there is at least one pair of paths
whose endpoints in both sets are adjacent in H. Let P, and P, be these paths.
If C(P)NC(P,) = @, then we shortcut each of these paths as described earlier,
and use one token from each of R and B to buy their edges, by Lemma [3.4]
We sell the edge of R connecting their endpoints in V(R) and the edge of

31

b Y
a x
d & : }’e w
e
c z
Figure 3.11: Processing 4-cycles: Case 1

B connecting their endpoints in V(B), which maintains 2-edge-connectivity by
Lemma[3.2] to recover 2 tokens (see Figure[3.12)). Then the resulting component
is 2-edge-connected and has at least 2 tokens, hence the Gluing Invariant holds.

Figure 3.12: Processing 4-cycles: Case 1

Otherwise C(P;) N C(P,) # &. Since the endpoints in V(R) of P, and P, are
adjacent in H, at least one of them (without loss of generality, say P;) has an
endpoint in {b, c¢}. Let b be the endpoint of P;. We shortcut P; as we did earlier.
Since we had C(P;)NC(P,) # @ before shortcutting Py, we have C(P;) # @ after
shortcutting P;. Let C' € C(P;) be a component of this path. Since |E(C)| > 4,
t(C) > 5. We take £ tokens from C to use later on, leaving one token remaining
on C'. We buy the edges of P and the edge e, for which we require 2 tokens (by
Lemma. We require an additional 2 tokens to maintain the gluing invariant.
We obtain % tokens from C', and % tokens from each of R and B. We then sell
the edge ab to recover one token for a total of 4 tokens.

Case 2. Bisa b-cycle. Let V(B) = {z,y,w,w’, z}, labelled in order around B.

At least one path in P has an endpoint in {b,c}. Let P; be this path, and
suppose without loss of generality that P; ends at b. We shortcut and buy P,
and e. By Lemma [3.4] we require 4 tokens in total to maintain the Gluing

32

w
C z

Figure 3.13: Processing 4-cycles: Case 2

Invariant. We obtain % tokens from R and g from B, and we sell ab to recover
one token for a total of 4 tokens.

Case 3. {(B) > 2. There exists at least one path in P with an endpoint at either
b or c. Let P, € P be such a path, and without loss of generality, let b be an
endpoint of P;. We simplify the path P; as explained before, and buy this path
and the edge e. We sell the edge ab to recover one token, and obtain 2 tokens
from B and 1 token from R to get the required 4 tokens to maintain the Gluing
Invariant.

Processing 5-cycles

At this stage, H does not have any component that is a 3-cycle or 4-cycle. We repeat
this step as long as H contains a component that is a 5-cycle.

We choose a 5-cycle R, and an edge e = az with exactly one endpoint a in V(R).
Let B be the component of H that contains x.

Since G is 3-connected, by Lemma , we find a set P = {P, P, P} of vertex-
disjoint paths in G between the sets V(R) and V(B). Since R is a 5-cycle, there
exists a pair of paths in P whose endpoints in V' (R) are adjacent in H. Let { Py, P»}
be this pair.

If C(P) NC(P,) = @, then we shortcut each of these paths as described earlier, and
use two tokens to buy their edges, by Lemma 3.4, We sell the edge of R connecting
their endpoints in V(R). We require an additional 2 tokens to maintain the Gluing
Invariant, for a total requirement of 4 tokens. We obtain 1 token from selling an edge
of R, and at least g tokens from each of R and B, for a total of at least 4 tokens.

Otherwise, C(P;) N C(P,) # @. We shortcut Py, as explained earlier. Let C' € C(P)
be a component containing a vertex of Py. Since ¢(C) > 2, we take 2 tokens from
C, leaving one token on this component. We buy the edges of P and the edge e, for
which we require 2 tokens. We obtain at least g tokens from each of R and B and

33

% tokens from C, and we assign the two extra tokens to the resulting component to
maintain the Gluing Invariant.

On termination of the above process, the graph H is 2-edge-connected.

Observe that every step of the above algorithm can be carried out in polynomial time.
In each step, we merge at least two components, thus the number of steps is polynomial
in the size of the input, and the overall running time is polynomial.

We now prove Lemmas|[3.3]and 3.4l To prove Lemma 3.3 we require Menger’s Theorem
(see e.g. [6]).

Theorem 3.5. (Menger’s Theorem) Let G = (V, E) be a graph and R,S C V. Then the
minimum number of vertices separating A from B in G is equal to the mazimum number
of vertex-disjoint R, S-paths in G.

Lemma [3.3| Let G = (V,E) be a 3-connected graph and R,S C V with |R|,|S] > 3
and RN S = @. Then there exists a set of 3 vertex-disjoint R, S-paths in G that can be
computed 1n polynomial time.

Proof. Construct the auxiliary digraph G’ = (V' A’) of G as follows. For each v € V,
add two vertices v;, and v, to V', and add an arc from v;, to v, to A’. For every edge
uv € E, add the two arcs tg,v;, and v, to A’. Add two vertices r and s to V’. For
each v € R, add an arc from s to v;,. Finally, for each v € S, add an arc from v, to s.

Assign a capacity of 1 to each arc, and find an r, ssmaximum flow F' in the resulting
graph. This flow consists of a set of internally vertex-disjoint paths from r to s. This
follows from the fact that all of the inflow at a vertex u;, leaves that vertex on the u;,Uoy:
arc, and that all of the inflow at a vertex u,,; enters that vertex on the w;,uy,; arc.

By Menger’s Theorem, GG contains at least 3 disjoint R, S paths, which correspond to
3 internally disjoint r, s paths in G'. Thus the maximum flow value is at least 3. By
traversing flow paths in F', we can construct a set of at least 3 vertex disjoint r, s paths in
G', corresponding to a similar set in G. m

Lemma [3.4, Let H be a bridgeless-D2 of G and By and By be two components of H. Let
P be a simple By, By-path in G that shares only its endpoints with V (B1)UV (Bg). Suppose
that for each C' € C(P), P has exactly two edges with exactly one endpoint in C'.

Then | E(P)\ E(H)| < 1+ Yeeim HO).

34

Proof. Every edge of E(P)\ E(H) connects two different components of C(P) U {B;, B},
and there are |C(P)|+ 1 such edges. If we map each component of C(P) to the edge of this
set entering that component, and use the token on that component to pay for that edge,
then we are left with having to pay for only the last edge of P in this set, for which we

require one extra token. Thus|E(P)\ E(H)| <143 cceip HO). O

35

3.3 Bridge-covering

The notion of bridge-covering was introduced in [3], in which the authors consider a
weighted version of the 2-edge-connectivity problem, and provide an approximation al-
gorithm that starts with a min-D2 and constructs a bridgeless-D2 in a similar manner.
The techniques used in this section are inspired by those in [3]. The bridge-covering step
starts with a min-D2 H of the given 3-connected graph G, with % tokens on each edge,
and converts it to a bridgeless-D2 that maintains the Gluing Invariant.

A high level explanation of this step is presented in Section of this chapter. Briefly,
we repeat the following procedure until H is a bridgeless-D2 of G that satisfies the Gluing
Invariant. We choose a component of H that contains a bridge (call this component Cy or
the growing component), and process this component until it is 2-edge-connected, through
a sequence of steps. In each step, we choose a bridge e of C)y and find a path that covers e,
such that if we buy the edges of this path and add them to H, then e is no longer a bridge
in the resulting graph. At any point of the bridge-covering step, the partial solution H is
a D2 of G.

For this section, we call a 2ec-block small if it has at most 5 edges, and large otherwise.
Observe that since D is a min-D2, the small 2ec-blocks with k edges are k-cycles.

During the bridge-covering step, we use two invariants to track the number of tokens
on each 2ec-block. The first of these is the General Invariant.

General Invariant
e Let B be a 2ec-block of C. Then #(B) > min(2, “E(TB)')

For any component C' of H other than the growing component Cy, it is easy to see that
this invariant holds for C' at the start of the algorithm. In fact, the invariant holds for C'
until the first iteration in which C either gets chosen as the growing component, or merges
into the growing component, since our algorithm does not affect the tokens on components
that do not merge with the growing component in any iteration.

Once we choose a growing component Cjy, the bridge-covering process for this compo-
nent occurs in 2 phases, which we call Phase 0 and Phase 1. The goal of Phase 0 is to buy
and sell suitable edges so that Cjy and some 2ec-block R of Cj satisfy the second invariant,
which we call the Bridgeless Invariant.

Bridgeless Invariant

1. The root 2ec-block R has at least 2 tokens (that is, t(R) > 2).

36

2. Let N be a neighbour of R. Then ¢(N) > 1.

3. Let N be a 2ec-block that is not a neighbour of R. Then ¢(/N) > min(2, W)

Suppose that we have chosen a growing component Cy. Let B be the set of 2ec-blocks
of Cy. If B contains a large 2ec-block B, then the pair (Cp, B) maintains the Bridgeless
Invariant, and we skip Phase 0 for Cy and proceed directly to Phase 1. Otherwise, we
use one iteration of Phase 0 to buy and sell some edges so that Cy and some 2ec-block R
maintain the Bridgeless Invariant, and then proceed to Phase 1.

When we enter Phase 1 of the bridge-covering step, we remain in this phase until the
growing component Cj is 2-edge-connected.

In addition to the above invariants, we have the following property on the bridges of
the components of H. Throughout the operation of the bridge-covering step, every bridge
has at least % tokens, because we do not use the tokens on a bridge of H unless we cover
that bridge in that iteration.

Before we begin to describe the two phases, we will explain how we choose paths that
cover each bridge, and how we pay for these paths.

Let Cy be the growing component, and let e = ab be a bridge of Cy. Let T' = T (Cj)
be the underlying tree of Cy (we refer the reader to Chapter [2| for a description of the
structure of a D2 and its underlying forest). Let 7} and T3 be the two trees obtained from
T by removing the edge e, such that a is in T} (see Figures[3.14al and |3.14D)).

e i

) An underlying tree example (white nodes

are compotnd 1o des)) A fair path P in G covering e in H

Figure 3.14: Fair paths
We call a path P in G a fair path covering e in H, if the following hold:
(i) P has one endpoint in 7 (7}) and the other endpoint in 7 (T3).

37

(ii) The internal vertices of P are disjoint from V(Cy).

(iii) For any component C' # Cy of H, if P contains a vertex of C, then P has exactly
two edges with exactly one endpoint in C' (in other words, P “enters” and “exits”
the component C' at most once).

We will first show the existence of a fair path in G' covering e. Since G is 2-edge
connected, G \ e is connected and has an a, b-path P, .

Suppose P, intersects a component C’ of H multiple times. We may shortcut P,; as
described earlier to attain property (iii).

Let y be the last vertex of P, that intersects 77, and y’ be the first vertex that intersects
T,. If we discard the subpaths from a to y and from ¢’ to b in P, , the resulting path has
properties (i) and (ii). Further, since 77 and T5 are disjoint, this path has at least one
edge, and is hence a fair path covering e.

Let P be a set of fair paths covering e in H. A path P € P with endpoints x € T 1(T})
and y € T Y(T3) is called Ty-mazimum for the set P if the number of bridges of Cj in a
path from y to b in C is maximum among all fair paths in P (in other words, if the path
covers the maximum number of bridges of 7).

The following fact and lemmas will be used in the analysis of our algorithm to show
that we can find fair paths covering a bridge, and to explain how we pay for these paths.
We defer the proofs of the lemmas to the end of this section.

Fact 3.6. Let G be a 2-edge-connected graph and H be a min-D2 of G. Let B be a 2ec-block
of H with vertex a € V(B), and suppose there is a bridge e = ab incident on B. Then b
has degree 2 in H.

Since a is adjacent to at least two vertices of B and the vertex b, it has degree at least
3. If b has degree at least 3, then H \ ab is a D2 of GG, contradicting the minimality of H.

Lemma 3.7. Let G be a 2-edge-connected graph and H be a D2 of G. Let e = ab be a
bridge of some component Cy of H. Let T = T (Cy) and let Ty and Ty be the components
of T\ e (such that a is in Ty or in a compound node of Ty). Let Vi C T (Ty) and
Vo C T YT3) be disjoint subsets of V(Cy). A fair path that is To-mazimum for the set of
all fair paths covering e with endpoints in Vi and Vy can be computed in polynomial time.

During the bridge-covering procedure, all of the bridges that we choose to cover have
one endpoint in a 2ec-block of H. Let R be a 2ec-block containing the endpoint a of e,
and suppose Cy and R satisfy (2) and (3) of the Bridgeless Invariant. Then we have the
following lemma.

38

Lemma 3.8. Let P be a Ty-mazimum fair path (for some set) covering e in H. Let C be
the set of components containing a vertex of P. Then

1 |B(P)\ E(H)| < 1+ Y0 ().

2. We can use the tokens on components in C to buy the edges of P such that the
resulting growing component and 2ec-block containing e satisfy (2) and (3) of the Bridgeless
Invariant.

The above lemma states that if we are given one extra token, then we can buy the
edges in F(P) \ E(H) using this extra token and some tokens on the 2ec-blocks of the
components containing internal vertices of P, such that the resulting growing component
and resulting 2ec-block containing e satisfy (2) and (3) of the Bridgeless Invariant.

We will now describe the two phases of the algorithm - Phase 0 and Phase 1. Recall
that Phase 0 is performed on a main component C; that does not contain a large 2ec-
block. Otherwise, Cj and the large 2ec-block R maintain the Bridgeless Invariant, so we
skip Phase 0.

To buy a fair path covering an edge e of the growing component, we sometimes use
tokens from the 2ec-blocks that neighbour a vertex of this fair path in some component
(as described in the proof of Lemma . Since these 2ec-blocks become neighbours of
the new 2ec-block covering e in the new growing component, the loss of tokens on them is
accommodated by the Bridgeless Invariant. After the following analysis, it will be easy to
observe that in this process, we do not take any fractional tokens from a 2ec-block more
than one time.

Since Phase 1 is much easier to describe, we will start with this phase.

Phase 1

At the start of this phase, the growing component Cy and some block R of Cj that
we have already selected maintain the Bridgeless Invariant. At the end of this phase,
the growing component will be 2-edge connected (bridgeless), and have at least 2
spare tokens. In this phase, we repeat the following procedure as long as the growing
component contains a bridge. In each iteration, we select a bridge e = ab such that
a is a vertex of the root block R, and we buy a path to cover this edge.

By Fact [3.6] b has degree 2 in Cy. Let ¢ be the other vertex adjacent to b.

Let T be the tree T(Cy), and T} and T3 be the components of T\ e as before. We
find a fair path P covering e that is To-maximum for the set of all such paths. We
then buy the path P, for which we require one extra token (by Lemma, which we

39

Figure 3.15: Phase 1

will obtain later. Let p € T'(T3) be an endpoint of P. Since G \ {b} is connected,
p# 0.

If ¢ is in a 2ec-block, then the resulting root 2ec-block has at least 3 tokens: 2 from
R, % from each of the edges ab and bc, and at least % from the 2ec-block containing
c. We use one token to buy P and assign the other two tokens to the new 2ec-block
to maintain the Bridgeless Invariant.

Otherwise, the p, b-path in Cj has at least 2 bridges: otherwise, p = ¢, but G'\ {b, ¢}
is connected, contradicting the assumption that P is To-maximum for the set of all
fair paths covering e. Hence the resulting 2ec-block has at least 3 bridges, and has at
least 3 tokens: 2 from R, and % from each of the 3 bridges. We use one token to pay
for P and assign the others to the new 2ec-block to satisfy the Bridgeless Invariant.

Phase 0

We carry out this phase of the algorithm if the growing component has no large
2ec-block. At the end of this phase, the growing component Cy (and some block R of
Cy) satisfy the Bridgeless Invariant. We start by choosing a leaf node of 7(Cy). Let
R be the corresponding 2ec-block of this component. Since R is a leaf, it is incident
with exasctly one bridge e of Cy. Let e = ab with a € V(R). The following lemma
will be useful in our analysis of Phase 0.

Lemma 3.9. Let P be a fair path covering e. Suppose that we buy the edges of
P to create a new 2ec-block R'. Let k be the number of bridges covered by P, and
tc be the number of tokens on all of the 2ec-blocks of Cy that are now in R'. If
t(R) + %k‘ +to > 3, we can terminate Phase 0.

Proof. By Lemma [3.8| we require one extra token to buy the edges of E(P) \ E(H)
and satisfy (2) and (3) of the Bridgeless Invariant. To satisfy (1), we require that
the number of tokens that we can assign to R’ is at least 2, hence we need a total of
3 tokens on R'. If we obtain these tokens from R, the k bridges, and the 2ec-blocks
of Cy that merge with R, then we can terminate Phase 0. [

40

Case 1. R is a 3-cycle.

We choose R to be the root block for this iteration of Phase 0. Let V(R) =
{a,z,y}. Since R is a 2ec-block in a component that has a bridge, and since the
corresponding compound node is a leaf of the underlying tree, there is exactly
one bridge e = ab incident on a vertex of R (without loss of generality, incident
on a).

Y
Figure 3.16: Phase 2, Case 1

Let T'= T(Cy), and let T} and T, be the two components of T\ e, such that
the compound node of R is in 77.

By linear-time graph search from the vertices x and y, we find a fair path P in
G covering e, in polynomial time, that is Th-maximum for the set of fair paths
that end at either z or y (see Lemma . Without loss of generality, let x be
the endpoint of P. We buy the edges of P, for which we require one extra token,
which we will obtain later. Since the pair of vertices (x,a) has 3 edge disjoint
paths: the edge xa, the path xy — ya, and the path through P, we sell the edge
xa to obtain an extra token and assign this token to R. Since C)y maintains the
General Invariant before the start of Phase 0, R had at least 1 token, so now R
has 2 tokens. The resulting component has a 2ec-block R’ containing e.

Let p be the other endpoint of P. If the p, b-path in T5 either contains a com-
pound node, or has at least 2 bridge edges, then by Lemma Co and R
maintain the Bridgeless Invariant and we can terminate Phase 0.

Otherwise, the p,b-path in T, has exactly 1 bridge (since G is 3-connected,
G\ {a, b} is connected, hence there exists a fair path covering at least 2 bridges
in this case). Let ¢ = p. Since ¢ is not in a 2ec-block, it is adjacent to at least
two bridges of the main component.

Let € = be, and let T] and T3 be the components of T\ é. By Fact b
has degree 2 in H. Hence the subtree T] N 75 contains just the isolated vertex
b. Consider the graph G’ = G \ {a,c}. Since G is 3-connected, this graph is
connected, thus every pair of vertices have a path in G’ between them. Hence
there is a path @ in G’ with one endpoint at b and the other endpoint in 73\ {c},

41

Figure 3.17: Phase 2, Case 1

whose internal vertices are not in the growing component. This path is a fair
path covering some bridge cd incident on ¢ in H, with the additional property
that the set of components of the internal vertices of () is disjoint from the set
of components of the internal vertices of P (otherwise, P is not T5-maximum,
since there exists a fair path covering e through this common component, that
covers more bridges than P), hence each of these components maintains the
General Invariant before this operation (and we have the required tokens to buy
@ by Lemma [3.8).

Using Lemma 3.8 we buy the fair path @, for which we require one extra token.
We can sell the edge bc and recover one token, since the resulting block is still 2-
edge-connected, because b and ¢ had 3 edge-disjoint paths between them before
this operation. Let R” be the new 2ec-block containing a, b and ¢. Now, paths
P and @ together cover at least 3 bridges (e, €, and cd), which contribute a
total of at least 1 token to R”. We get an additional 2 tokens from R and one
token from selling bc, for a total of 4 tokens. We use 2 tokens to buy paths P
and) and assign 2 tokens to the resulting 2ec-block R”, which maintains the
Bridgeless Invariant.

Case 2. R is a 4-cycle.

We choose R to be the root block for this iteration of Phase 0. Let V(R) =
{a,z,z,y}, such that a is adjacent to and y as shown in Figure . Since
R is a 2ec-block in a component that has a bridge, and since the corresponding
compound node is a leaf of the underlying tree, there is exactly one bridge e = ab
incident on a vertex of R (without loss of generality, incident on a).

Let T'= T(Cy). Let Ty and Ty be the two components of 7"\ e, such that the
compound node of R is in Tj.

Consider the connected graph G\ {z,a}. As explained earlier, we find a T)-
maximum fair path P covering e, for the set of fair paths with an endpoint at

42

Figure 3.18: Phase 2, Case 2

either x or y (assume without loss of generality that P has an endpoint at = in
G). Let p € T~Y(T3) be the other endpoint of P. We buy the edges of P, for
which (by Lemma [3.8)) we require an extra token, which we obtain later. We sell
the edge za and assign its token to R. Since Cj maintains the General Invariant
at the start of Phase 0, R had at least ‘51 tokens, so R now has at least g tokens.
As described earlier, this operation creates a new 2ec-block R’ containing e and
the vertices of R and P along with some vertices of the growing component.

If the p, b-path in T has at least 1 bridge edge, then by Lemma Cp and R
maintain the Bridgeless Invariant and we can terminate Phase 0.

Otherwise, p = b. Since b has degree 2, it has 2 bridges ab and bc of the main
component incident on it. Consider the graph G\ {z,b}. Since G is 3-connected,
G\ {z,b} is connected, hence there exists a path @) in G with one endpoint at a
and the other endpoint at ¥ € T1(Ty) \ {b}. @Q ends at a and not z or y, since
otherwise it would contradict the assumption that P is To-maximum. Hence Q)
is a fair path covering cd in the main component. Since P is Th-maximum, the
set of components containing internal vertices of P is disjoint from the set of
components containing internal vertices of Q).

Figure 3.19: Phase 2, Case 2

Using Lemma (3.8 we buy the fair path @), for which we require an extra token.
Let R” be the resulting 2ec-block.

We sell the edge e to recover one token, for a total of 4 tokens (% from R, % from
each of ab and be, and 1 from selling e). We use 2 tokens to pay for P and @,

43

and assign the remaining 2 tokens to R” to maintain the Bridgeless Invariant
with Cy and R”.

Case 3. R is a 5-cycle.

We choose R to be the root block for this iteration of Phase 0. Let V(R) =
{a,w,z,y, z}, labelled in order around the cycle as shown in Figure . Let
e = ab be the bridge of the main component incident on a vertex of R (without
loss of generality, incident on a).

Figure 3.20: Phase 2, Case 3

Let T = T(Cp). Let Ty and T, be the two components of 7"\ e, such that the
compound node R is in 77.

We find a fair path P covering e, starting at any vertex of R that is To-maximum
for the set of all such paths. Let p € V(T (7)) be the other endpoint of P.
We buy the path P, which requires one extra token by Lemma [3.8] which we
will obtain later. Let F’ be the new wec-block containing e. Since Cj maintains
the General Invariant at the start of this phase, R has at least % tokens.

If the p, b-path in T, either contains a compound node or has at least 3 bridge
edges, then by Lemma Cy and R’ maintain the Bridgeless Invariant and we
can terminate Phase 0.

Otherwise, the p, b-path in T has exactly 2 bridge edges. To see this, let ¢ be
the neighbour of b on this path. Since G is 3-connected, G \ {b, ¢} is connected
and hence contains a path from a vertex of R to a vertex of 7 1(Ty) \ {b,c}
which is a fair path covering e. Hence p cannot be b or ¢, and p is a neighbour
d of ¢ (see Figure . Since d is not in a 2ec-block, it has at least 2 bridges
of the main component incident on it.

Let 77 and T} be the underlying trees of T\ ed, where T} contains the compound
node corresponding to R. Consider the graph G\ {b, d}. This graph is connected,
and thus has a path @) from c to a vertex of T3. Since () covers cd, some subpath
Q' of Q) is a fair path covering cd in the main component. Since P was chosen
to be Ty-maximum, the set of components containing internal vertices of Q' is
disjoint from the set of components containing internal vertices of P.

44

- =~

Figure 3.21: Phase 2, Case 3

Using Lemma [3.8] we buy the fair path Q' for one extra token. The paths P

and Q' together cover at least 4 bridges of Cj.

We sell the edge cd to obtain an extra token. We now have at least 4 tokens (%
from R, 1 from selling cd, and % from the 4 bridges of Cj that we covered with
P and Q). We use two tokens to buy P and () and assign the remaining two

tokens to the resulting 2ec-block so that it maintains the Bridgeless Invariant.

On termination of the above algorithm, the graph H is a bridgeless-D2 of GG. Further,
every component of H that was a main component at some stage of the algorithm has at
least 2 tokens. Every component of H that was never a main component at some stage
was bridgeless in D, and hence maintains the General Invariant. Let C' be a component of
H that was never a main component of the above algorithm. If |E(C)| > 6, then ¢(C) > 2
by the General Invariant. Otherwise, if [E(C)| € {3,4,5}, then t(C) = 3|E(C)| by the
General Invariant. Hence the solution H output by the above algorithm satisfies the Gluing

Invariant, and can be used in the Gluing step.

Observe that every step of the above algorithm can be carried out in polynomial time.
In each step, we cover at least one bridge, thus the number of steps is polynomial in the
size of the input, and the overall running time is polynomial.

We will now prove Lemmas and [3.8

Lemma Let G be a 2-edge-connected graph and H be a D2 of G. Let e = ab be a
bridge of some component Cy of H. Let T'= T (Cy) and let Ty and Ty be the components
of T\ e (such that a is in Ty or in a compound node of Ty). Let Vi C T YT}) and
Vo C T YT3) be disjoint subsets of V(Cy). A fair path that is To-mazimum for the set of
all fair paths covering e with endpoints in Vi and Vo can be computed in polynomial time.

Proof. We first compute 77 and T5. Then, we delete all edges of C' in G, then perform a
linear-time graph search in the resulting graph from each vertex in V;. Each time that we

45

reach a vertex in V5, we find the length of the T5-path from that vertex or its compound
node to b. We find a path with the longest such length, and shortcut this path as before.
We return the resulting path.

Let P be a Ty-maximum fair path (for the given set of fair paths covering e) with
endpoint zp € V;. This algorithm finds P or a path of equal length by linear-time graph
search from xp, and hence computes a To-maximum fair path for the set of all fair paths
covering e, in polynomial time. O

Lemma Let P be a Ty-mazimum fair path (for some set) covering e in H. Let C be
the set of components containing a vertex of P. Then

L|E(P)\E(H)| <1+ 0 t(C).

2. We can use the tokens on components in C to buy the edges of P such that the
resulting growing component and 2ec-block containing e satisfy (2) and (3) of the Bridgeless
Invariant.

Proof. Let P be a fair path covering e. Consider any component C' € C. Since P is a fair
path, there is a unique edge fp(C) of P that “enters” C' (with one end in C' and the other
in the subpath of P between T} and C) and a unique edge ep(C') that “exits” C' (with one
end in C' and the other in the subpath of P between C' and T5).

A>da b

Figure 3.22: fp(C) and ep(C) for some component C' containing a vertex of P (white
nodes are compound nodes)

Let s and t be the vertices in C' that are incident with fp(C') and ep(C') respectively.
If s or tis in a 2ec-block B of C, we take one token from B and use it to buy the edge
fp(C). Otherwise, consider the underlying tree 7 (C') of C. This tree has a unique path @
from s (or a compound node containing s) to ¢ (or a compound node containing t), all of
whose edges are in P. If this path contains a compound node internally or at an endpoint,
then we use one token from the corresponding 2ec-block and use it to buy the edge fp(C).

46

Otherwise, this path does not contain any compound nodes. We find a neighbouring
2ec-block B(s) of s and a neighbouring 2ec-block B(t) of ¢ such that B(s) and B(t) are
distinct (see Figure . Observe that such blocks exist: we may delete the edges of @)
from the underlying tree of C, and traverse the resulting trees containing s and ¢ from the
nodes s and t respectively (with a linear-time graph search), until the distinct compound
nodes B(s) and B(t) are found. Since every leaf of the underlying tree is a compound node,
this procedure will always terminate and find suitable 2ec-blocks. We take 0.5 tokens from
cach of B(s) and B(t) and buy the edge fp(C).

Figure 3.23: Neighbours B(s) and B(t) of nodes s and ¢ in the component C'

By repeating the above process for every component that contains an internal node of
P, we can buy all edges of E(P)\ E(H) except one, hence |[E(P)\E(H)| < 14 t(O).

Any 2ec-block from which we take 1 token during this procedure becomes part of
the block containing the edge e. Any 2ec-block from which we take % tokens becomes a
neighbour of this block. Hence the growing component and this block satisfy (2) and (3)
of the Bridgeless Invariant. O

47

Chapter 4

A %—Approximation for Restricted
2VCSS

In this chapter, we present a polynomial-time %—approximation algorithm for the minimum-
cost 2-vertex-connected spanning subgraph problem (2VCSS), restricted to input graphs
of minimum degree at least 3. Our algorithm uses the framework of ear-decompositions for
approximating connectivity problems, which was previously used in algorithms for finding
the smallest 2-edge-connected spanning subgraph by Cheriyan, Seb6 and Szigeti [4], who
gave a %—approximation algorithm for the general 2ECSS problem, and by Seb6 and Vygen
[28], who improved the approximation ratio to %.

The unweighted 2VCSS problem has been well studied. Khuller and Vishkin [22] gave a
2-approximation algorithm. Garg, Santosh and Singla [I4] improved this ratio to 2. Very
recently, Heeger and Vygen [16] reported an approximation ratio of 1—70. Our research was
carried out independently in the same time period.

We present a new %—approximation algorithm for 2VCSS, restricted to instances with
no degree-2 vertices. Our algorithm is inspired by the Z5‘—.aupproximation algorithm for
2ECSS in [28], and our methods are similar. However, as explained in section our goal
is to compute an open nice ear-decomposition. Our algorithm manages to do so for graphs
without degree-2 vertices. Consequently, we have the following theorem.

Theorem 4.1. Let G be a 2-connected graph with no degree-2 vertices. Then G has an
open nice ear-decomposition. Such an ear-decomposition can be computed in polynomial
time.

48

4.1 Algorithm Overview

Our algorithm consists of a few steps, summarized as follows.

1. We construct an open evenmin ear-decomposition D of G.

2. We modify D to get an open evenmin ear-decomposition with the property that all
of its short ears are pendant ears.

3. We modify D to get an open evenmin ear-decomposition that is nice.

4. We delete all edges in trivial ears. The resulting graph is a 2-vertex-connected span-
ning subgraph of G with at most LOPThy(G) edges.

Our analysis is detailed in the rest of this chapter.

The following lemma (Lemma allows us to replace a given ear-decomposition on
a graph with another ear-decomposition on the same graph, by locally changing a pair of
ears in order to reduce the number of non-pendant ears in the ear-decomposition. It is
used multiple times in our algorithm. The lemma is very simple to prove, and its proof

is omitted. The reader may find Figure [4.1| useful for understanding the statement of the
lemma.

Lemma 4.2. Let D be an ear-decomposition of a graph G. Suppose P and Q) are nontrivial
ears of D such that Q) is the first nontrivial ear of D with an endpoint in an internal vertex
of P. Further, suppose that only one of the endpoints of Q) is an internal vertex of P, and
that this endpoint is adjacent, by an edge of P, to an endpoint of P. Let x and y be the
end vertices of P and w and z be the end vertices of), such that w is the internal vertex
of P adjacent to y.

Let P’ be the ear with endpoints x and z and consisting of all edges of P and @) except
wy. Let D' be the ear-decomposition constructed from D by deleting the ears P and @,
adding the ear P' in the position of @), and adding the trivial ear wy at the end of the
ear-decomposition. Then D’ is a valid ear-decomposition of G.

49

‘,"‘
W WI -~
f{Q.\.Z "_.“ P/ ‘Z

« P . ¢ ®

(a) (b)

Figure 4.1: A local change that reduces the number of non-pendant ears

20

4.2 Making Short Ears Pendant

Theorem 4.3. Fvery 2-vertex-connected graph G with minimum degree at least 3 has an
open ear-decomposition with ¢(G) even ears in which all short ears are pendant. Such an
ear-decomposition can be computed in polynomial time.

Using Proposition 3.2 of Cheriyan, Seb6 and Szigeti [4], we construct an open ear-
decomposition D = (P, P, ..., P;) of G with ¢(G) even ears.

Suppose the closed ear P is short (that is, Py is a 3-ear). Since every vertex of G has
degree at least 3, G has at least 4 vertices, hence D has at least one open ear. Suppose u
and v are the end vertices of P, then there is a u, v-path of length 2 in P;. Let P’ be the
union of the u, v-path in P; and the u, v-path in P,. We delete the ears P, and P, from D,
and add the ear P’ in the position of P; in D, and the trivial ear uv at the end of D. Now
the closed ear in D is a long ear, and D is still evenmin. We set k := k — 1 and relabel the
new ears of D such that D = (P, Py,..., P).

Figure 4.2: The cycle-ear P; is a short ear

We proceed to make all other short ears pendant, starting with 2-ears. Aslong as D has
a non-pendant 2-ear, we repeat the following procedure. We choose the first non-pendant
2-ear P in D. Since P is non-pendant, there exists a nontrivial ear in D with one end
incident on the internal vertex z of P. Let () be the first such ear in D.

Let u and v be the end vertices of P and x and z be the end vertices of () such that
u # x. We delete ears P and @ from D, and construct the ear P’ with ends at u and =,
containing internally the internal vertices of both P and @), as shown by the thick line in
Figure [4.3b] We add the ear P’ to D in the position of). We add the trivial ear vz at
the end of D. By Lemma [£.2] D is still a valid ear-decomposition of G. Since @ was a
nontrivial ear, P’ has length at least 3, hence this procedure reduces the number of 2-ears
in D by one. Further, P’ is an open ear, thus D is still an open ear-decomposition. If @

ol

LM

Figure 4.3: P is a 2-ear

was an even ear, then this procedure reduced the number of even ears by 2, contradicting
our assumption that D is evenmin. Hence () was an odd ear, and the number of even ears
remains unchanged in D.

After repeating the above procedure for all non-pendant 2-ears, all 2-ears in D are
pendant. Next, we make all 3-ears pendant. As long as D has a non-pendant 3-ear, we
repeat the following procedure. Prior to each iteration, we relabel the ears in D such that
the " ear is labelled P,.

Let P be the first non-pendant 3-ear in D. Let x and 2z be the endpoints of P, and let
v and y be the internal vertices of P adjacent to = and z respectively (as shown in Figure

1),
JP&

X Z

Figure 4.4: P is a 3-ear

Case 1. There exists a nontrivial ear () with endpoints v and y.

Let P’ be the ear with endpoints x and z consisting of all of the edges of Q and the
edges vz and yz (as shown by the thick dashed line in Figure . We delete the
ears P and @) from D, and add the ear P’ to D in the position of P, and the trivial
ear zy at the end of D. The resulting ear-decomposition D is valid for G. Since)
is nontrivial, P’ has length at least 4 and is a long ear. Further, D is still an open
ear-decomposition, and since the length of P’ has the same parity as the length of
@, D is still evenmin.

o2

Figure 4.5: There exists a nontrivial ear () with endpoints v and y

Case 2. There exist ears (J; and ()2 such that)1 has endpoints x and y, ()2 has
endpoints v and z, and at least one ear in {Q)1, @2} is nontrivial.

Let P’ be the ear with endpoints x and z consisting of all the edges of (); and (); and
the edge vy (as shown by the thick dashed line in Figure [£.6b). We delete the ears
P, @1 and Q3 from D, and add the ear P’ to D in the position of P, and the trivial
ears axr and by at the end of D. The resulting open ear-decomposition D is valid for
G. If both ()1 and @5 are even ears, then this procedure reduces the number of even
ears in D by 2, contradicting our assumption that D was evenmin. If either zero or
exactly one of these ears is even, then D remains evenmin.

Figure 4.6: There exist ears ()1 from z to y and) from v to z, not both trivial

Case 3. Otherwise, let () be the first nontrivial ear with an endpoint at an internal
vertex of P (say y). Let w be the other endpoint of @ (as shown in Figure [£.7).

Case 3a. w # x. Let P’ be the ear with endpoints x and w, consisting of the
edges of P and () except yz. We delete the ears P and @) from D, add the ear

23

Figure 4.7: Case 3

P’ to D in the position of), and the trivial ear yz at the end of D. P’ is both
open and long, and the resulting ear-decomposition D is valid for G by Lemma
Since the length of P’ has the same parity as the length of (), the number
of even ears remains the same.

...... R ’,"'-""'.' ~~‘L1
” t s
y _..-l’._] ¢'-.'
\% r ‘
Q) o" L2 °
R V! y

Figure 4.8: Case 3

Case 3b. w = z, and v is the endpoint of a trivial ear uv such that u € X. We
refer the reader to Figure for this case.
Let R be the ear containing u internally. If R is a short ear, then it is pendant
(since P is the first non-pendant short ear). We have the following cases:

(i) R is a 2-ear. We choose an endpoint a of R that does not coincide with z,
and let P’ be the ear au U uv U vy Uyz. We delete P and R from D and
add the 4-ear P’ in the position of P, and the new trivial ears at the end
of D.

(ii) R is a 3-ear. We choose the endpoint a of R that is not adjacent to u in
R. Let R’ be the ear of length 2 in R with endpoints a and u. If a does

54

not coincide with z, let P’ be the ear R’ Uuv Uwvy U @, which has the same
parity as . We delete R, P and @) from D and add P’ in the position of
P in D and the trivial ears at the end of D. If a coincides with z, let P’ be
the ear R' Uwuv Uwvy Uyz of length 5. We delete R and P from D and add
P’ in the position of P in D and the trivial ears at the end of D.

In both of the above cases, we do not create extra even ears, and the resulting
ear-decomposition is open, evenmin, and valid for G.

If R is a long ear, let P’ be the ear Q UyvUwvu. We delete P and @ from D and
add P’ in the position of P in D, and the trivial ears at the end of D. This ear
has the same parity as the ear (), so the resulting ear-decomposition is open,
evenmin, and valid for G.

Case 3c. Otherwise, since the graph has minimum degree at least 3, v is adjacent
to a vertex u ¢ X U {y}. Observe that this is the only remaining case.

Let R be the ear containing the edge uv, and let ¢ be the other endpoint of R.
In particular, if wv is a trivial ear, then t is the vertex u. We refer the reader to
Figure [4.8b, which will be useful throughout the following analysis.

The following sub-procedure constructs three sets of ears (F4 Frew and Fev),
that are later used to modify the ear-decomposition in order to add the internal
vertices of P to a new long ear. The procedure adds some of the existing ears
of D to the set F°? and constructs sets of new ears F7* and F7”. When
suitable sets are found, the ears in F°? are deleted from D and replaced with
the ears in FJ*’, along with a suitably constructed long ear.

We repeat the following sub-procedure until ¢ is in X U{v, y}. We initialize F9,
Fev and Fi e with the empty set. Let S be the ear that internally contains
t, with endpoints ¢ and d. We add S to F°¢. We partition the edges of S into
the ears ST (with endpoints ¢ and t) and S§* (with endpoints t and d). If S
is an even ear, either ST and Sy°* are both odd or they are both even. If .S
is an odd ear, suppose without loss of generality that S7¢" is even and S is
odd. We add ST** to F7* and Sg* to Fy<*. We set t = c.

The following observations will be useful in our analysis.

o If Sy is even, then S is even (thus replacing S with S§” in any ear-
decomposition will not, by itself, increase the number of even ears in that
ear-decomposition).

o If ST is odd, then S7 is odd and S is even.

When this sub-procedure terminates, we have the following cases:

95

(i)

(i)

(i)

t ¢ {v,y,z}. Let P’ be the ear zy Uyv U RU Ly U ... U Ly, where F'*" =
{Ly,...,L}. We delete P and all ears in F° from D, and for each ear in
Fold replace it with the corresponding ear in FJ°* at the same position in D
(this does not add any extra even ears, but might create new non-pendant
short ears; observe that these ears occur later in the ear-decomposition
than the newly created long ear in this iteration). In the position of P,
add the ear P’. We add the trivial ear xv at the end of D. The resulting
ear decomposition is valid because the sub-procedure is terminated when a
vertex in X is encountered, thus every ear in F°¢ appeared after P in D,
hence every ear in FJ°” appears after P’

If F** contains only even ears, then P’ has the same parity as R and
we do not introduce any extra even ears. If not, then F*" contains at
least one odd ear, in which case the corresponding ear in F¢ is even, and
the corresponding ear in F§* is odd. Since we have already reduced the
number of even ears by at least one, P’ is even and we do not introduce
extra even ears.

t = v. Discard the previous sets F4 Frew and Fprew. We choose u to be
the neighbour of v on the last ear that was labelled S. Let R be this ear
and let ¢ be its other endpoint. Since every choice of R that we make in
this manner appears strictly earlier in the ear decomposition than all the
previous choices, the sub-procedure can only be repeated O(n) times before
we no longer have this case.

t =y. Let F7*** = {L4,..., L}, and let P’ be the ear co URUL; U ... U
L, Uyz. We delete P and all ears in F°¢ from D, and for each ear in F¢,
replace it with the corresponding ear in F3*" at the same position in D. In
the position of P, add the ear P’. We add the trivial ear vy at the end of
D. This ear-decomposition is valid, as explained earlier.

If all of the ears in L are even, then P’ has the same parity as R, and this
step does not introduce any extra even ears. If not, then L contains at least
one odd ear, in which case P’ is even and we do not introduce extra even
ears (as explained earlier).

t = z. Let P’ be the ear QUuyURUL,U. . ULy, where F*** = {Ly, ..., L;}.
We delete P, and in the position of P, add the ear P’. We delete all ears
in F°' from D, and for each ear in F°¢, replace it with the corresponding
ear in Fi°" at the same position in D. We add the trivial ears zv and yz
at the end of D. As explained earlier, this ear-decomposition is valid. If all
the ears in F7'° are even, we have the following cases:

o6

(a) @ and R are odd. In this case, P’ is odd and we do not introduce extra
even ears.

(b) Exactly one of @ and R is even. In this case, P’ is even and we do not
introduce extra even ears.

If Q and R are both even, P’ is odd, contradicting the assumption that D
was evenmin; this case cannot occur.

If F7'“ contains an odd ear, then the corresponding ear in FJ“ is odd and
the corresponding ear in F°¢ is even. Since we have already reduced the
number of even ears by at least one, we do not introduce extra even ears.

In all of the above cases, the internal vertices of P are added to a long ear in D. If P
was a 3-ear, then it is possible that we created new non-pendant short ears that appear
after P’ in the new ear-decomposition. These short ears are handled in future iterations of
the above procedure, in the same manner as above (that is, first we handle all non-pendant
2-ears, then we handle the first non-pendant 3-ear).

In each iteration, the above procedure takes time polynomial in |V(G)| for the non-
pendant short ear under consideration. Further, if this short ear is a 3-ear, the internal
vertices of this short ear are added to long ears, and are never again added to a non-
pendant short ear until termination. As a consequence, the set X in each iteration is a
strict superset of the corresponding set in any previous iteration. Hence the running time
for the whole procedure is polynomial.

On termination of this procedure, the ear-decomposition D is open and has ¢(G) even
ears, and all of its short ears are pendant.

57

4.3 Making Short Ears Non-Adjacent

Theorem 4.4. Given a 2-vertex-connected graph G with minimum degree at least 3, and
an associated evenmin ear-decomposition D in which all short ears are pendant, an open
nice ear-decomposition of G can be computed in polynomial time.

Since D is open and evenmin, and all short ears of D are pendant, it remains to obtain
the property that there are no edges connecting an internal vertex of one short ear to an
internal vertex of another short ear of D.

Since D has ¢(G) even ears, there are no edges connecting the internal vertices of
2-ears. If not, we could replace the 2-ears and the trivial ear connecting their internal
vertices by a pendant 3-ear and two trivial ears, reducing the number of even ears by two,
contradicting the assumption that D is evenmin. Since we have two choices for each end
vertex of such a 3-ear, we can always choose its end vertices such that it is open.

As long as D has two short pendant ears P’ and P” with an edge e connecting an
internal vertex of P’ with an internal vertex of P”, we repeat the following procedure.

Case 1. One of the ears P’ and P” is a 2-ear.
Without loss of generality, assume P’ is a 2-ear and P” is a 3-ear.

Let a and b be the endpoints of P’ and z be the internal vertex of P’. Let ¢ and
d be the endpoints of P” and = and y be the internal vertices of P” such that z is
adjacent to both ¢ and z (Figure[4.9a]). We construct the ear S as shown by the thick
paths in Figures and that is, S consists of the edges az, zz, xy and yd if

the vertices a and d are distinct, and the edges bz, zx, xy and yd if they coincide.

(§]
Z _.----._X Yy
/
A l Py ¢
a b c d a_ b c d

(a) (b) a and d are distinct (¢) a and d coincide

Figure 4.9: P’ is a 2-ear

We remove the ears P’ and P” from D, and add the ear S in place of the ear P,
followed by trivial ears consisting of the remaining edges from P’ and P” that are

o8

not in S. Since P’ and P” are both pendant ears, the new ear-decomposition is a
valid ear-decomposition of G. Since the end vertices of S are distinct, it is open, and
since we deleted a 2-ear from D before adding a 4-ear to it, the number of even ears
in D remains equal to ¢(G).

Case 2. Both P’ and P” are 3-ears.

Let a and b be the endpoints of P’ and let v and w be its internal vertices adjacent
to a and b respectively. Let ¢ and d be the endpoints of P” and let z and y be its
internal vertices adjacent to ¢ and d respectively (Figure . Suppose v and y are
adjacent. We have the following cases.

e
v ///V‘V—"\\\\ y
! P/ ! P//

a b ¢ d

Figure 4.10: Both P’ and P" are 3-ears

Case 2a. The vertices b and ¢ are distinct.

We construct the ear S with endpoints b and ¢ and edges bw, wv, vy, yxr and
zc (as shown by the thick path in Figure [£.11]). We remove the ears P’ and P”
from D, add the ear S in place of the ear P’, and add the trivial ears consisting
of the remaining edges from P’ and P” that are not in S at the end of D.
Since P’ and P” are both pendant ears, the new ear-decomposition is a valid
ear-decomposition of GG. Since the end vertices of S are distinct, it is open, and
since S is an odd ear, the number of even ears in D remains equal to ¢(G).

Figure 4.11: b and c are distinct

29

Case 2b. The vertices b and ¢ coincide, as shown in Figure 4.12

Since every vertex of the graph has degree at least 3, z is adjacent to some
vertex not in the set {b,y}.

Figure 4.12: b and ¢ coincide

Case 2b.I. =z is adjacent to an internal vertex of P’.

If z is adjacent to v, we construct the ear S with endpoints b and d and
edges bw, wv, vz, ry and yd (as shown by the thick path in Figure [4.13a]).
Otherwise, if x is adjacent to w, we construct the ear S with endpoints a
and b and edges av, vy, yz, rw and wb (as shown by the thick path in Figure
[4.13D)). In either case, We delete P" and P” from D, add S to D in place of
P’ and add all of the remaining edges (dashed edges in the corresponding
figure) in trivial ears at the end of D.

In both cases, the ear S is an odd long ear with distinct end points, hence
the new ear-decomposition is open and is valid for GG, and the number of
even ears remains equal to ¢(G).

(a) x is adjacent to v (b) z is adjacent to w

Figure 4.13: x is adjacent to an internal vertex of P’

Case 2b.II. z is adjacent to an internal vertex z of an ear R not equal to P’.
Since the input graph is simple and does not have parallel edges, z does
not coincide with b or y. If R is a long ear, we construct the ear S with
endpoints b and z and edges bw, wv, vy, yxr and zz (as shown by the thick

60

path in Figure [4.14a)). We delete P’ and P” from D, add S to D in place
of P’, and add all of the dashed edges in the corresponding figure in trivial
ears at the end of D.

Otherwise, if R is a short ear, then it is pendant. If it is a 2-ear (Figure
4.14bf), we construct the ear S as shown by the thick path in the figure.
Observe that we have two choices for one end of this ear: we choose to end
the ear at either g or h, so as to ensure that it is an open ear. The example
in the figure shows S ending at g, with edges gz, zz, xy, yv, vw and wb.
We remove P’, P” and R from D, add S to D in place of P’, and add all of
the dashed edges in trivial ears at the end of D.

Otherwise, R is a 3-ear. Let g and h be the endpoints of R, and 7 and z
be its internal vertices adjacent to g and h respectively (Figures and
. We have two cases: either g and b are distinct, or they coincide.
If they are distinct, we construct the ear S as shown by the thick path in
Figure [4.14d, with edges bw, wv, vy, yz, vz, zi and ig. We delete P’, P”
and R from D, and add S to D in place of P’, and all of the dashed edges
in trivial ears at the end of D.

Otherwise, the vertices g and b coincide. We construct the ear S as shown
by the thick path in Figure [4.14d], with edges gi, iz, zz, xy and yd. We
delete the ears P” and R from D and add S to D in place of P”, and all of
the dashed edges in trivial ears at the end of D.

In all cases, the number of even ears remains equal to ¢(G), since the only
case where S is an even ear is when R is a 2-ear. Additionally, S is an open
pendant ear, hence the new ear-decomposition is valid for G.

Since the above procedure takes constant time for every pair of pendant ears with
adjacent internal vertices, the running time for the whole procedure is polynomial.

On termination of this procedure, the ear-decomposition D has ¢(G) even ears, and is
both open and nice.

61

(c¢) R is a 3-ear, and b and g are distinct (d) R is a 3-ear, and b and g coincide

Figure 4.14: x is adjacent to a vertex outside P’

62

4.4 Finishing Up

In this subsection, we show that the graph obtained by taking the non-trivial ears of the
open nice ear-decomposition that we constructed has size within a factor of % of the cost
of an optimal solution.

Lemma 4.5. Let D be an open nice ear-decomposition of a 2-vertex-connected graph G,
and M be the associated eardrum of D. Denote by Vi the set of internal vertices of non-
pendant ears, and let u(G, M) be the size of the mazimum earmuff for the eardrum M.
Then (G, M) < |V;| — 1.

Proof. Suppose not. Then p(G, M) > |Vi|. Consider the graph H on the vertex set V;
with edge (u,v) present in F(H) if and only if there is a path with its endpoints at u and
v in the maximum earmuff for M. Since u(G, M) > |V;|, this graph has at least |V;| edges,
and is hence not a forest. Since any cycle in this graph is a cycle in the maximum earmuff,
we have a contradiction. Hence u(G, M) < |V;| — 1. O

Theorem 4.6. The above algorithm is a %—appmxz’mation algorithm for 2VCSS on graphs
with minimum degree at least 3.

We construct an open nice ear-decomposition D for G. Let 7 denote the number of
pendant ears and 73 the number of (pendant) 3-ears in this ear-decomposition. We have
m3 < m. Let H be the graph obtained by deleting from G all edges that are in trivial ears
in this ear-decomposition. Since the nontrivial ears of D form an open ear-decomposition
for H, H is 2-vertex-connected (see Lemma [2.1)), and has at most LZLP(G) edges, which
we show using the following claims.

Claim 4.7. The number of edges in nontrivial ears is at most %LP(G) + %W.

Proof. For any ear P with |E(P)| > 5, we have |E(P)| < 2|in(P)|. For any 4-ear or 2-ear
P we have |E(P)| < 2|in(P)| + 2. For any 3-ear P we have |E(P)| < 2|in(P)| + 3.

Let E’ be the set of edges in nontrivial ears. Since the total number of 4- and 2-ears
in D is at most p(G), and 73 < 7, the total number of edges in nontrivial ears is at most

SIV(G)| = 1) + 3¢(G) + i7 < 2L,(G) + 17, which is at most 2LP(G) + 3. O

Claim 4.8. The number of edges in nontrivial ears is at most %LP(G) — iw.

63

Proof. Since D is an open nice ear-decomposition, the graph induced in G by the internal
vertices V), of the pendant short ears of D has degree at most 1. Let M be the set of its
components, then M is an eardrum in G. Let V, be the set of internal vertices of pendant
long ears and let V; = V'\ (Vi UVL). Denote by ¢ur, ¢r and ¢; the number of even ears
in the sets of pendant short ears, pendant long ears and non-pendant ears respectively.

Let E; be the set of edges in pendant short ears. For every pendant short ear P,
we have |E(P)| = 3|in(P)| + ¢(P). Summing over all pendant short ears, we have
|Er| = 3|Vl + 5om-

Let E5 be the set of edges in pendant long ears. For every pendant long ear P, we
have |E(P)| < 3|in(P)| + 1¢(P) — 1. Summing over all pendant long ears, we have
|Es| < 3|Vi|+ 3¢p — (7 — | M]).

Let E5 be the set of edges in non-pendant ears. For every non-pendant ear P, since P is
a long car, we have |E(P)| < 2|in(P)|+5¢(P). For the starting vertex Py, |E(Fy)| = 0 and
lin(Py)| = 1. Summing over all non-pendant ears and Py, we have |Es| < 2|V, — 1| + 3¢

Let E' = FE; U E> U E3 be the set of edges in nontrivial ears. Summing the above
inequalities, we get

3 1 1)
’ < 2 L . L 2
Bl < AW+ e w2 -
= V(@) + M| = (G, M) =1
1
£ VO +6(6) -1
-
+ ! + u(G, M) — 1\V\
4 pAG, 4 1
1 1 1
— LMY+ 3L(G) — ot (G0 - 11V
< 2LP@) —nt (24 G an -ty
> 9 ™ 1 HAG, 4 I
< gLP(G) -7+ ZM(G, M) using Lemma [1.5
< gLP(G) — 7T+ %7? since u(G, M) < |M| <=
3 1
< —-LP — —T.
s MO

64

If 7 < $LP(G), then from Claim 1, |E'| < 2LP(G) + 37 < 1£LP(G) < 2O0PThy¢(G).
If 7 > 1LP(G), then from Claim 2, |E'| < 3LP(G) — i7 < 1£LP(G) < 2OPThy¢(G).

Applying Theorems [4.3] and [4.4] to G, and deleting all edges in trivial ears, we obtain a
2-vertex-connected spanning subgraph of cardinality at most 1O PTsy¢(G) in polynomial

time.

65

Concluding Remarks

We presented two approximation algorithms, one for a specialization of the 2ECSS problem
and another for a specialization of the 2VCSS problem. We also gave some new structural
results about the optimal solutions and known lower bounds for these problems.

Both problems have been studied for nearly three decades, and while progress on them
has been slow over this time period, new approximation algorithms, albeit highly compli-
cated ones, continue to appear.

The weighted versions of these problems continue to be difficult to approximate. Al-
though several people have worked on them, there is no known ratio better than 2 even
for very specialised choices of edge weights. Since we do not know of any examples that
prevent a (2-¢)-approximation algorithm for the weighted 2-edge-connectivity problem for
some € > 0, this seems to be the best related problem to attempt to solve at the moment.
Another problem arising from this thesis is to characterize the graphs that have open and
nice ear-decompositions. Any such characterization would immediately provide an approx-
imation algorithm for this class of graphs. I hope (and expect) to see a lot of progress on
these and other connectivity problems in the next few years.

66

References

1]

2]

[9]

[10]

39th Annual Symposium on Foundations of Computer Science, FOCS 98, November
8-11, 1998, Palo Alto, California, USA. IEEE Computer Society, 1998.

Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
January 12-14, 2008, Baltimore, Maryland, USA. ACM/STAM, 2003.

J. Cheriyan, J. Dippel, F. Grandoni, A. Khan, and V.V. Narayan. On the matching
augmentation problem. (Unpublished Manuscript).

Joseph Cheriyan, Andras Sebo, and Zoltdan Szigeti. Improving on the 1.5-
approximation of a smallest 2-edge connected spanning subgraph. SIAM J. Discrete
Math., 14(2):170-180, 2001.

Béla Csaba, Marek Karpinski, and Piotr Krysta. Approximability of dense and sparse
instances of minimum 2-connectivity, TSP and path problems. In Eppstein [§], pages
74-83.

R. Diestel. Graph Theory. Springer-Verlag Berlin Heidelberg, 2010.

Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Jiinger
et al. [21], pages 11-26.

David Eppstein, editor. Proceedings of the Thirteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA. ACM/SIAM,
2002.

Cristina G. Fernandes. A better approximation ratio for the minimum size k-edge-
connected spanning subgraph problem. J. Algorithms, 28(1):105-124, 1998.

Andras Frank. Conservative weightings and ear-decompositions of graphs. Combina-
torica, 13(1):65-81, 1993.

67

[11] Andras Frank. Connections in Combinatorial Optimization. Oxford University Press,
2011.

[12] M. R. Garey, David S. Johnson, and Robert Endre Tarjan. The planar hamiltonian
circuit problem is np-complete. SIAM J. Comput., 5(4):704-714, 1976.

[13] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[14] Naveen Garg, Santosh Vempala, and Aman Singla. Improved approximation algo-
rithms for biconnected subgraphs via better lower bounding techniques. In Ramachan-
dran [26], pages 103-111.

[15] Prabhakar Gubbala and Balaji Raghavachari. Approximation algorithms for the min-
imum cardinality two-connected spanning subgraph problem. In Jiinger and Kaibel
[20], pages 422-436.

[16] K. Heeger and J. Vygen. Two-connected spanning subgraphs with at most 1—700pt
edges. eprint arXiw:1609.00147, 2016.

[17] Kamal Jain. Factor 2 approximation algorithm for the generalized steiner network
problem. In 39th Annual Symposium on Foundations of Computer Science, FOCS
98, November 8-11, 1998, Palo Alto, California, USA [1], pages 448-457.

[18] Klaus Jansen and Samir Khuller, editors. Approzimation Algorithms for Combinato-
rial Optimization, Third International Workshop, APPROX 2000, Saarbriicken, Ger-
many, September 5-8, 2000, Proceedings, volume 1913 of Lecture Notes in Computer
Science. Springer, 2000.

[19] Raja Jothi, Balaji Raghavachari, and Subramanian Varadarajan. A 5/4-
approximation algorithm for minimum 2-edge-connectivity. In Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, January 12-14, 2003,
Baltimore, Maryland, USA. [2], pages 725-734.

[20] Michael Jiinger and Volker Kaibel, editors. Integer Programming and Combinato-
rial Optimization, 11th International IPCO Conference, Berlin, Germany, June 8-10,
2005, Proceedings, volume 3509 of Lecture Notes in Computer Science. Springer, 2005.

[21] Michael Jiinger, Gerhard Reinelt, and Giovanni Rinaldi, editors. Combinatorial Opti-
mization - Fureka, You Shrink!, Papers Dedicated to Jack Edmonds, 5th International
Workshop, Aussois, France, March 5-9, 2001, Revised Papers, volume 2570 of Lecture
Notes in Computer Science. Springer, 2003.

68

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings.
J. ACM, 41(2):214-235, 1994.

Guy Kortsarz and Zeev Nutov. Approximating node connectivity problems via set
covers. Algorithmica, 37(2):75-92, 2003.

Laszlé Lovasz. A note on factor-critical graphs. Studia Sci. Math. Hungar., 7:279-280,
1972.

Laszl6 Lovasz and Michael D. Plummer. Matching Theory. North Holland, 1986.

Vijaya Ramachandran, editor. Proceedings of the Fourth Annual ACM/SIGACT-
SIAM Symposium on Discrete Algorithms, 25-27 January 1993, Austin, Texas.
ACM/SIAM, 1993.

A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24.
Springer-Verlag Berlin Heidelberg, 2003.

Andras Sebd and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for
the graph-tsp, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs.
Combinatorica, 34(5):597-629, 2014.

Santosh Vempala and Adrian Vetta. Factor 4/3 approximations for minimum 2-
connected subgraphs. In Jansen and Khuller [I8], pages 262-273.

H. Whitney. Non-separable and planar graphs. Transactions of the American Math-
ematical Society, 34:339-362, 1932.

69

Appendix

Lemma A.1. The 2-vertex-connectivity problem is NP-hard when restricted to instances
with minimum degree at least 3.

Proof. Let G be the input graph of an instance of the general unweighted 2-vertex- con-
nectivity problem. Denote by n(G) the number of vertices with degree 2 in G.

Consider the graph G’ constructed in the following manner. We replace every vertex
with degree 2 in G by an instance of K, (the complete graph on 4 vertices), such that the
two edges incident on the degree-2 vertex in G are incident on two distinct vertices of the
K, instance in G'. Then G’ has minimum degree at least 3, and every 2-vertex-connected
spanning subgraph H of G, with |E(H)| edges, corresponds to a 2-vertex-connected span-
ning subgraph H' of G’ (constructed by adding a path of length 3 between the degree-4
nodes of every K} instance created by replacement), with |E(H")| = |E(H)|+3n(G) edges,
and vice-versa. Further, any optimal solution to this problem in G’ uses at least 3 edges
of each K instance.

Consequently, any algorithm that solves the 2-vertex-connectivity problem in polyno-
mial time on graphs with minimum degree at least 3 can be used to solve the unrestricted
problem in polynomial time; hence this restricted problem is NP-hard. O]

70

	List of Figures
	Introduction
	Related Work
	Organization of the Thesis

	Preliminaries and Lower Bounds
	Preliminaries
	Lower bounds on the cost of an optimal solution
	A Linear Programming Relaxation
	The L-Lower Bound
	The L-Lower Bound
	The D2-Lower Bound

	A 43-Approximation for Restricted 2ECSS
	Algorithm Overview
	Gluing
	Bridge-covering

	A 1712-Approximation for Restricted 2VCSS
	Algorithm Overview
	Making Short Ears Pendant
	Making Short Ears Non-Adjacent
	Finishing Up

	Concluding Remarks
	References
	Appendix

