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Abstract 

Using nanomaterials to achieve functional enzyme mimics (nanozymes) is attractive for both 

applied and fundamental research. Laccases are multi-copper oxidases highly important for 

biotechnology and environmental remediation. In this work, we report an exceptionally 

simple yet functional laccase mimic based on guanosine monophosphate (GMP) coordinated 

copper. It forms an amorphous metal-organic framework (MOF) material. The ratio of copper 

and GMP is 3:4 as determined by isothermal titration calorimetry. It has excellent laccase-like 

activity and converts a diverse range of phenol containing substrates such as hydroquinone, 

naphthol, catechol and epinephrine. Comparative work shows that the activity is originated 

from guanosine coordination instead of phosphate binding in GMP. Cu2+ is required and 

cannot be substituted by other metal ions. At the same mass concentration, the Cu/GMP 

nanozyme has a higher Vmax and similar Km compared to the protein laccase. To achieve the 

same catalytic efficiency, the cost of the Gu/GMP is ~2400-fold lower than that of laccase. 

The Cu/GMP is much more stable at extreme pH, high salt, high temperature and for 

long-term storage. This is one of the first laccase-mimicking nanozymes, which will find 

important applications in analytical chemistry, environmental protection, and biotechnology. 
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Introduction 

Laccases are a family of copper-containing oxidases that oxidize a broad range of 

biologically and environmentally important substrates such as polyphenols, polyamines, and 

aryl diamines.1-3 In these reactions, dioxygen is converted to water without the production or 

need of hydrogen peroxide, making laccases a green catalyst. Current production of laccases 

relies on fermentation with a low yield and a high cost. Laccase also suffer from poor 

stability. 

 To solve these problems, efforts have been made to mimic laccases using various copper 

ligands, such as porphyrins,4-5 phthalocyanine,6-7 and imidazole.8-10 However, most of these 

complexes contain only one or two copper ions, while natural laccases have four.3, 11 

Nanoparticle-based enzyme mimics known as nanozymes are attractive due to their low cost 

and high stability.12-14A few interesting examples are known, such as gold nanoparticle 

mimicking glucose oxidase,15-18 nanoceria mimicking oxidase, catalase, and superoxide 

dismutase,19-20 and iron oxide nanoparticles mimicking peroxidase.21-25 Recently, a laccase 

mimic was reported using copper containing carbon dots.26 However, the coordination 

environment is difficult to study in such a complex system. 

 Metal-organic frameworks (MOFs) refer to metal coordinated infinite porous organic 

structures.27-30 While most MOFs are crystalline, amorphous MOFs are also known.31 A few 

MOF-based nanozymes (MOFzymes) have been reported,32-38 but none of them showed the 

laccase activity. Nucleotides are highly versatile metal ligands,39-43 and they can also produce 

MOFs.44-45 When dispersed in water, these MOFs either exist as nanoparticles,45-48 or swell to 

form hydrogels.49-51 We recently observed peroxidase-like activity with adenosine 
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monophosphate (AMP) coordinated Fe3+ nanoparticles. Although nucleotide-coordinated 

Cu2+ was also prepared,42, 52-54 their laccase activity has yet to be studied. We reason that such 

multi-copper coordination environment might be an ideal laccase mimic, and its excellent 

performance is indeed demonstrated in this work. 

 

Materials and Methods 

Chemicals. Guanosine, guanosine 5′-monophosphate (GMP) disodium salt hydrate, 

adenosine 5′-monophosphate (AMP) disodium salt, and cytidine 5′-monophosphate (CMP) 

disodium salt, 2,4-dichlorophenol (2,4-DP), 4-aminoantipyrine (4-AP), 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and all the metal chloride salts 

were from Aladdin Inc.(Shanghai,China). Laccase and guanosine-5'-triphosphoric acid (GTP) 

disodium salt were from Yuanye Biotechnology Co., Ltd (Shanghai,China). 2-(N-morpholino) 

ethanesulfonic acid (MES)monohydrate was from Sinopharm Chemical Reagent Co.,Ltd 

(Shanghai,China). Milli-Q water was used to prepare all the buffers and solutions. 

Preparation of Cu/nucleotide MOFs. The MOFs were prepared by first mixing a nucleotide 

(25 mM, 200μL), HEPES buffer (10 mM, pH 8.0, 700 μL), and CuCl2 or other metals (50 

mM, 100 μL). The solution was then centrifuged at 10,000 rpm for 5 min, and the precipitant 

was washed with Milli-Q water three times. Other conditions were also tested such as in 

water without buffer as control experiments. 

Characterization of Cu/nucleotide MOFs. The above prepared precipitant was lyophilized 

to obtain solid powders for X-ray diffraction (XRD) and Fourier transform infrared 

spectroscopy (FTIR) analysis. XRD was performed on an X-ray diffractometer (Bruker, 

file:///D:/Youdao/Dict/6.3.69.4001/resultui/frame/javascript:void(0);
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Germany) using Cu-Ka radiation (λ= 1.5178Å, 40 kV × 40 mA). The 2θ was scanned from 

10° to 70°at 0.1° s-1. FTIR was performed on a Nicolet Model 205 spectrometer. 

Transmission electron microscopy (TEM) was performed on a Hitachi H-800 transmission 

electron microscope after drying an aqueous disperse of the MOF on a 230 mesh holy carbon 

copper grid. Scanning electron microscopy (SEM) was performed on a Hitachi S-4700 

microscope. Dynamic light scattering (DLS) measurement (Zetasizer Nano 90, Malvern) was 

used to measure the particle size and ζ-potential at 25C with a MOF concentration of 0.1 

mg/mL in MES buffer (30 mM, pH 6.8). X-ray photoelectron spectroscopy (XPS) was carried 

out on an XPS spectrometer (Kratos Axis Supra) with a monochromatic Al Kα (hν = 1486.6 

eV) source. The lyophilized samples were spread evenly on a conductive adhesive, covered 

with an aluminum foil, and pressed before measurement. Nitrogen adsorption/desorption 

isotherms were obtained using a QUantachrome Autosorb-1 system at 77 K. 

ITC. ITC was performed using a VP-ITC Microcalorimeter (MicroCal). Prior to each 

measurement, all the solutions were degassed to remove air bubbles. GMP (1 mM) in water 

was loaded in the 1.45 mL ITC cell at 25 C. In a syringe of 280 µL, CuCl2 (10 mM) in the 

Milli-Q was titrated into the cell (10 µL each time, except for the first injection with 2 µL). 

Catalytic activity assays. The catalytic performance was measured by the chromogenic 

reaction of phenolic compounds with 4-AP. First, 4-AP (1mg/mL, 100 μL) and 2,4-DP 

(1mg/mL, 100 μL) solutions were mixed with MES buffer (30mM, pH 6.8, 700 μL). Then a 

catalyst (1mg/mL, 100 μL) was added. After 1 h, the mixture was centrifuged at 10,000 rpm 

for 2 min. The absorbance of the supernatant at 510 nm was measured. The other substrates 

(phenol, hydroquinone, naphthol and catechol) were dissolved at 100 μg/mL in MES buffer 



6 
 

(30mM, pH 6.8) containing 100 μg/mL 4-AP and assayed in the same way. 

Determination of enzyme kinetic parameters. Various concentrations of 2,4-DP (10, 20, 40, 

60, 80, 100 μg/mL) were respectively reacted with 0.1mg/mL Cu/GMP or laccase to measure 

the initial reaction rate. In all these reactions, the concentration of 4-AP was in excess at 

1mg/mL. The kinetic parameters (Km and Vmax) were calculated by the Michaelis-Menten 

equation 1/V0 = Km/Vmax·1/[S0]+1/Vmax. 

Stability comparison. To study the effect of pH, laccase and Cu/GMP were separately 

incubated in a variety of pH’s (3.0-9.0) for 8 h before the activity assay. The relative activity 

is compared with that at pH 6.8. The effect of temperature was measured by storing laccase 

and Cu/GMP at 30-90 C for 30 min, and the activity at 30C was taken as a reference. The 

effect of ionic strength was measured by incubating laccase or Cu/GMP in different 

concentrations of NaCl (0, 150, 300 and 500mM). For all these studies, 1 h of the enzyme 

reaction was allowed before the absorbance of the supernatant at 510 nm was measured. The 

long-term storage stability was measured daily for the residual activity of laccase or Cu/GMP 

CPs dispersed in ultrapure water stored at room temperature. 

Reaction with epinephrine. A 50 μL of epinephrine sample (100 μg/mL) dissolved in 12 

mM HCl was mixed with a catalyst (1 mg/mL, 100 μL) and MES buffer (50mM, pH 6.8, 850 

μL). The oxidation of epinephrine was monitored at 485 nm. To measure the detection limit, 

different concentrations of epinephrine were respectively mixed with 0.1 mg/mL catalyst in 

the same buffer for 1 h at room temperature before absorption measurement. The limit of 

detection was calculated by 3/b, where  is the standard deviation of the blank signals, and 

b is the slope of the regression line. 



7 
 

 

Results and Discussion 

Cu/GMP nanozyme with laccase-like activity. Nucleotides are excellent metal ligands. A 

scheme of GMP reacting with Cu2+ is show in Figure 1A, where both the nucleobase and the 

phosphate might contribute to coordination. To test the feasibility of using such 

nucleotide-coordinated copper as a laccase mimic, we used 2,4-dichlorophenol (2,4-DP) as 

the substrate together with 4-aminoantipyrine (4-AP) (Figure 1B).55 Each compound alone 

has no absorption in the visible region (Figure 1C). 2,4-DP is the real substrate and its laccase 

oxidation product reacts with 4-AP to produce a red adduct with an absorption peak at 510 

nm (Figure 1C and inset). 

 

Figure 1. (A) A scheme of Cu2+ reacting with GMP to form the MOFzyme. (B) The reaction 

of 2,4-DP and 4-AP catalyzed by Cu/GMP or laccase. (C) UV-vis spectra of the two 

substrates and their reaction product in the presence of laccase (Inset: 0.1 mg/mL of 2,4-DP 

and 4-AP in pH 6.8 MES buffer before and after oxidation with 0.1 mg/mL of laccase). 
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 Before starting systematic work, a control experiment was performed to react free Cu2+ 

with the substrates in water, and a light pink color was produced (Figure 2A). This indicates 

that Cu2+ alone has a moderate activity. The Cu2+/GMP mixture, however, produced a much 

stronger color. Since the Cu2+/GMP mixture forms nanoparticles (vide infra), the amount of 

exposed copper centers is much less compared to the total Cu2+ in the sample. Therefore, the 

activity of copper is drastically increased by complexing with GMP. We next measured the 

activity of the Cu2+/GMP mixture at different pH and the activity was quite constant until 

reaching the basic pH, where activity started to drop (Figure 2B). We decided to use pH 6.8 

in this work since protein laccase also has good activity at this pH (vide infra), facilitating 

comparison. 

 To further confirm the laccase-like activity is from the MOF, another control experiment 

was designed (Figure 2D). The Cu/GMP mixture was filtered, and the filtered clear solution 

had almost no activity, while the precipitants on the filter membrane were active. This also 

indicates that the activity is indeed from the MOF instead of the free soluble Cu2+ containing 

species. 
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Figure 2. (A) A control experiment comparing free Cu2+ and its mixture with GMP for 

laccase-like activity in water. (B) pH-dependent activity of the Cu/GMP MOF by monitoring 

the product absorbance at 510 nm. (C) A control experiment testing the activity of the 

precipitated MOF and the supernatant. (D) Photographs of (a) Cu/GMP reacted with 2,4-DP 

in pH 6.8 MES buffer after centrifugation, (b) the supernatant with ABTS and HRP added 

after centrifugation, and (c) after adding H2O2 to (b).The UV-vis absorbance at 414 nm of the 

samples is also shown. 

 

 By definition, laccase directly converts O2 to water without producing H2O2. In contrast, 

some other oxidases, such as glucose oxidase, produce H2O2. To test whether H2O2 is 

generated by the Cu/GMP catalyzed reaction, we centrifuged the reaction mixture of 2,4-DP 

and Cu/GMP (4-AP was omitted to avoid the red color). To this supernatant, ABTS and 

horseradish peroxidase (HRP) was added, and we failed to observe a color change (inset of 

Figure 2C), suggesting the lack of H2O2 in the system. As a positive control, adding H2O2 

resulted in the expected green color from ABTS oxidation. Therefore, Cu/GMP is indeed a 
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laccase mimic instead of other oxidases that produce H2O2. 

Effect of nucleobase, phosphate, and metal ions on the MOFzyme activity. After 

confirming the laccase-like activity, we want to understand the chemical reason for catalysis. 

Three MOFs were prepared by respectively mixing Cu2+with GMP, AMP, and CMP, yielding 

a light blue precipitant (Figure 3A, upper tubes). Interestingly, these three samples were all 

active as indicated by the red color of the reaction product (Figure 3A, lower tubes). Cu/GMP 

has the highest activity, followed by Cu/AMP and Cu/CMP (see Figure S1 for quantification). 

Therefore, we focused the rest of our study on Cu/GMP. 

 Since GMP contains a guanosine and a phosphate, we next respectively mixed Cu2+ with 

these two components (Figure 3A, the last two tubes). In each case, blue precipitants were 

formed, but the supernatant of the guanosine sample was slightly blue, suggesting that a 

fraction of Cu2+ remained free. Free inorganic phosphate fully precipitated Cu2+, but its 

laccase activity was very low. Therefore, the interaction between Cu2+ and guanosine is 

required for the activity, while the phosphate in GMP only provides additional coordination 

sites without contributing much to catalysis.  

 After understanding the ligand requirement, we next tested a few other metal ions, 

including lanthanides and transition metals. While most of them precipitated with GMP 

(Figure 3C, upper tubes), little activity was observed (Figure 3C, D). Therefore, copper is 

critical for the activity, which is the same as natural laccases. 

 The above complexes were prepared at a molar ratio of Cu2+:GMP = 1:1. We next varied 

the ratio by fixing the GMP concentration. The more Cu2+ added, the more precipitated 

products were obtained (Figure S2). We also measured the activity at four different ratios 
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(Cu:GMP=0.25, 0.5, 0.75 and 1, Figure S3). The highest activity was obtained at a ratio of 

1:1. It is likely that with more Cu2+ added, the final product has more Cu2+ on the surface, 

explaining the higher activity. 

 

 

 

Figure 3. MOF formed by various nucleotides and metal ions and their laccase-mimetic 

activity. Photographs of MOFs prepared (A) by mixing Cu2+ and various nucleotides, 

guanosine and inorganic phosphate, and (C) by mixing GMP with various metal ions without 

and with the substrates. The red color indicates laccase-like activity. (B) The activity of Cu2+ 

coordinated with GTP/GMP mixture at different ratios and the size of the MOFs. The 

laccase-like activity was performed by measuring 0.1 mg/mL of 2,4-DP and 4-AP with 

metal/nucleotide MOFs (0.1 mg/mL) in pH 6.8 MES buffer. (D) Characterization of the 

oxidation products using UV-vis spectroscopy in (C). 
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Since GMP contains only one phosphate, we also tried GTP with three phosphate groups 

and thus a higher negative charge density (Figure 3B). This might promote charge repulsion 

and produce smaller MOFs. While this strategy was successfully applied when for gold 

coordination with adenine derivatives,56 the effect on size was not very obvious here. All 

these samples were above 500 nm, regardless of the GTP content. We measured the 

zeta-potential of these MOFs, and they all have a value close to zero (Table S1), which may 

explain that they can all grow to a relatively large size. The GTP sample has lower catalytic 

activity than the GMP sample. This might be explained by the more favored Cu2+/phosphate 

interaction in the GTP sample. From Figure 3A we know that copper phosphate has little 

activity. Overall, the Cu2+/GMP MOF has the highest activity and was used for subsequent 

studies. 

Characterization of the MOFzyme. Our above DLS measurement already indicated that 

this Cu/GMP MOFzyme has micrometer sizes (Table S1). To characterize its nanostructure, 

it was examined by SEM (Figure 4A) and TEM (Figure 4B). Large network structures 

extending over 1 µm were observed, consistent with its tendency to precipitate in water. 

Although the overall materials size has exceeded 1 µm, the features responsible for catalysis 

are still in the nanometer scale. Its -potential is close to zero, which may explain its 

aggregation instead of forming dispersed stable nanoparticles.56 This sample can be readily 

dispersed in water by vortex mixing.  

The surface area and pore size distribution were measured by nitrogen adsorption and the 

results were calculated using the Barrett-Joyner-Halenda (BJH) model (Figure 4C). The 

specific surface area is 7.23 m2/g, suggesting that the MOF structure has collapsed during 
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drying and this might be related to the non-crystalline nature of our materials rendering a low 

mechanical strength. Indeed, during drying, the volume of the sample decreased significantly 

and the color of the material turned from blue to black, consistent with collapsing. The dried 

material still has certain porosity larger than 5 nm (Figure 4D). Given the small surface area, 

these pores are likely on the surface of the material.  

 To understand the thermodynamics and binding stoichiometry, this reaction was also 

studied using isothermal titration calorimetry (ITC), where Cu2+ was gradually titrated into 

GMP and the released heat was followed (Figure 4E). The background heat from GMP 

dilution and from Cu2+ into water was both close to zero (Figure 4F). We integrated the heat 

and fitted the data to a binding model (Figure 4G). The binding of Cu2+ by GMP is quite 

complex and can be divided into two stages. Initially an endothermic reaction was observed 

(as indicated by the upward spikes of the thermogram) with a Cu2+/GMP ratio of 0.25, 

suggesting each Cu2+ is chelated by four GMP molecules. The heat absorption is likely 

related to the release of water from Cu2+, which increase the entropy of the system. Following 

that, an exothermic reaction was observed with further increase of Cu2+. In this step, the ratio 

between Cu2+ and GMP is 0.5. Therefore, the overall Cu2+-to-GMP ratio is 3:4 in the final 

product. 
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Figure 4. (A) SEM and (B) TEM micrographs of Cu/GMP. (C) Nitrogen adsorption isotherm 

of the Cu/GMP after drying to measure the specific surface area. (D) Pore size distribution of 

the dried Cu/GMP from nitrogen adsorption. The ITC trace of titrating (E) Cu2+ into GMP 

and (F) blanks of buffer to GMP or Cu2+ into water. (G) The integrated heat of the reaction. 

The ITC experiment was at 298 K with 10 mM CuCl2 in water in titrated into 1 mM GMP in 

water. 

 

 To understand the oxidation state of copper in our Cu/GMP MOF, X-ray photoelectron 

spectroscopy (XPS) was used. The full scan spectrum shows Cu, O, N, C and P (Figure S4). 

The peaks at 931.9 eV and 951.8 eV in the high-resolution XPS spectrum (Figure 5A) are 

assigned to the Cu2p3/2 and Cu2p1/2 electrons of Cu2+, respectively. The lower binding 

energy peaks at 930.2 eV and 950.1 eV suggest the presence of Cu+ or Cu0. Furthermore, the 

Auger Cu LMM spectra confirmed the presence of Cu+ at 572.9 eV (Figure S5).57-58 

Therefore, a fraction of Cu2+ is reduced to Cu+ during the reaction of forming the Cu/GMP 

MOF. For comparison, we also measured the XPS spectrum of the Cu/CMP MOF (Figure 
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S6), and the high resolution spectra in the copper region is shown in Figure 5B. Only the 

Cu2p3/2 and Cu2p1/2 electrons of Cu2+at 933.2 eV and 952.8 eV were observed, suggesting 

that no Cu+ or Cu0 formed in the Cu/CMP complex. The presence of reduced copper species 

might explain the higher activity of the Cu/GMP MOFzyme. 

 To further understand the binding mechanism of Cu and GMP, infrared (IR) spectra were 

collected for the free GMP and Cu/GMP (Figure S7). The peaks of phosphate (976 cm-1 and 

1081cm-1) and C-N stretching (1484 cm-1) of GMP shifted after adding Cu2+, indicating that 

both phosphate and guanosine in GMP are involved in Cu2+ binding. This is consistent with 

the studies above using free guanosine and phosphate as well as ITC. Finally, X-ray 

diffraction showed that Cu/GMP is non-crystalline, and thus it is an amorphous MOF (Figure 

S8).31 This may be related to the asymmetric chemical structure of nucleotides and high 

coordination flexibility of copper ions.45 

 

 

Figure 5. The Cu 2p XPS spectrum of (A) the Cu/GMP (B) the Cu/CMP MOF. 

 

Cu/GMP can rival laccase for activity. Overall, our laccase mimicking Cu/GMP is simple 

to prepare. After characterizing its structure, we next measured its catalytic activity. A 
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side-by-side comparison was made with the protein laccase. Higher activity was observed 

with higher concentration of both protein laccase and the Cu/GMP MOFzyme (Figure 6A). 

Below 0.1 mg/mL, Cu/GMP was even more active than laccase. Subsequent works were then 

performed at this concentration. 

 To extract enzyme kinetic parameters, the reaction kinetics of each catalyst was 

measured at different substrate concentrations. The Km and Vmax values were calculated by the 

Michaelis-Menten model, and the results are shown in Figure 6B. The Km of Cu/GMP was 

nearly the same as that of laccase, indicating that they bind the substrate with a comparable 

affinity. The Vmax of Cu/GMP was 5.4 times higher than that of laccase. 

 The molecular weight laccase is around 80,000 Da. Since each laccase has four copper 

ions, copper in laccase only accounts for ~0.32% of its molecular weight. On the other hand, 

copper is ~20% of the mass in our Cu/GMP. Therefore, when normalized to the number of 

copper centers, the protein laccase is much more active. Based on the SEM, the Cu/GMP 

MOF exists as aggregated nanoparticles, and only a small fraction of the copper is exposed 

on the surface. Therefore, further work is needed to quantify the activity of each surface 

active in this laccase mimic to have a fair comparison with the active center activity. Overall, 

the activity of this simple laccase mimic is excellent when compared at the same mass 

concentration with laccase. The excellent activity of Cu/GMP is attributable to its 

multinuclear arrangement of Cu2+, which is similar to laccase and can serve as a good 

functional mimic. 

Cu/GMP is a highly robust laccase mimic. High activity and stability of enzymes are 

desired for practical applications.59 One method to improve enzyme stability is to embed 
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them in a matrix. For example, Zare and co-workers encapsulated a few enzymes including 

laccase in copper phosphate nanoflowers.55 We reason that using a protein-free material such 

as Cu/GMP is even more attractive and cost-effective. 

 To test the stability aspect of this MOFzyme, Cu/GMP and the protein laccase were 

systematically compared in various harsh conditions. First, they were exposed to a range of 

buffers from pH 3.0 to 9.0 at room temperature for 8 h. Then, both catalysts were assayed in 

the typical pH 6.8 reaction buffer (Figure 6C). While laccase lost ~70% of the activity after 

incubation at pH 3, Cu/GMP retained >90% of activity. The effect of high temperature was 

studied next. After 30 min exposure of the catalysts from 30 to 90 C for 30 min (Figure 6D), 

the activity of laccase progressively decreased with fully lost activity at 90 C. However, the 

activity of Cu/GMP was not influenced by the thermal treatment. 

 

 

Figure 6. (A) A comparison of the catalytic performance of Cu/GMP MOF and laccase as a 

function of enzyme concentration. (B) The kinetic parameters for the Cu/GMP MOF and 
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laccase. Stability of the Cu/GMP MOF compared with the same mass concentration of 

laccase at different (C) pH, (D) temperature and (E) NaCl concentration. Inset of (E): 

photographs of 0.1mg/mL of laccase or Cu/GMP as the catalysts to convert 0.1 mg/mL of 

2,4-DP at different NaCl concentrations. (F) A comparison of long-term stability of laccase 

and Cu/GMP. 

 

 The effect of ionic strength was further tested. The activity of laccase was completely 

inhibited in high concentration of NaCl (Figure 6E). High ionic strength might influence the 

charge distribution and solubility of proteins, which may in turn affect its activity. For 

Cu/GMP, it is very interesting that its activity even increased by ~300% with 500 mM NaCl. 

High concentration of NaCl may compete with the substrates for water molecules, thus 

decreasing the solubility of 2,4-DP and 4-APP (e.g. the salt-out effect). As a result, they 

might prefer to be adsorbed by the MOFzyme and be converted. We used TEM to observe 

the Cu/GMP MOF after exposing in pH, salt and heating (Figure S9). The nanoscale 

structures were retained after these treatments. It is interesting to note that the Cu/GMP in 

500 mM NaCl was better dispersed, which may also explain its high catalytic performance in 

high ionic strength. 

 The long-term storage stability is also important for applications.60 As shown in Figure 

6F, Cu/GMP retained nearly 100% of the initial activity after incubated in aqueous solution 

for 9 days. However, laccase lost more than 70% of the original activity after the same 

storage period. 

Cu/GMP accepts a diverse range of substrates. Laccases can catalyze the oxidation of a 
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wide range of substrates. To test the substrate diversity of Cu/GMP, we next mixed it with 

four different phenols (Figure 7A). The chemical structures of these phenols are shown in 

Figure S10. Cu/GMP is able to oxidize all of them with a catalytic efficiency significantly 

better than that of laccase in each case. Especially for naphthol, the activity of the MOFzyme 

was about 15 times higher than that of laccase. These phenols are important chemicals in 

industry and they may cause environmental problems. Being able to oxidize them efficiently 

is highly desirable. 

 To further demonstrate an environmental application of Cu/GMP, another substrate was 

tested. Epinephrine is the main hormone in the adrenal medulla, and is also used to treat 

anaphylactic shock, bronchial asthma and organic heart disease. Thus, its quantitative 

analysis is required for diagnosis. We respectively reacted epinephrine with laccase and the 

Cu/GMP MOF (Figure 7B). A colored oxidation product was observed, indicating the 

Cu/GMP can also convert epinephrine. The absorption spectrum of the final product was 

measured at 485 nm (Figure 7C). Figure 7D shows the reaction kinetics with the Cu/GMP 

MOFzyme is 11-fold faster than that of laccase in the initial 20 min. The kinetic parameters 

of the MOFzyme and laccase were also calculated (Figure S11), where the Vmax of the 

MOFzyme is ~40 times higher than that of laccase. 
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Figure 7. (A) A comparison of the catalytic efficiency of laccase and the Cu/GMP 

MOFzyme to oxidize four substrates. (B) A scheme of oxidizing epinephrine and 

photographs of the product in MES buffer after 20 min reaction. (C) UV-vis spectra of 

epinephrine and its oxidation product by the MOFzyme. (D) The kinetics of oxidization of 

epinephrine (50 μg/mL) in the presence of 0.1mg/mL of laccase or Cu/GMP MOFzyme. (E) 

Photographs of visible detection of different concentrations (5-50 µg/mL) of epinephrine. (F) 

Linear relationships between the absorbance at 485 nm and the concentration of epinephrine 

in the presence of laccase and the MOFzyme. 

 

 The colored product of this reaction might be used as a way of measuring epinephrine. 

To test this, we monitored the absorbance of the product as a function of epinephrine 

concentration in the presence of the same mass concentration of enzymes (Figure 7E, F). The 

detection limit of epinephrine is 0.41 μg/mL in the presence of Cu/GMP, while 6.67 μg/mL 

in the presence of enzyme. Therefore, Cu/GMP is about 16 times more sensitive. The price of 

commercial laccase is 150-fold higher than that of GMP. Therefore, to achieve the same 
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conversion rate of epinephrine, the Cu/GMP MOF is ~2400-fold more cost-effective (the cost 

of Cu2+ is negligible).  

 To use such nanozymes to replace protein laccases in industrial catalysis still has a long 

way to go. For example, nanozymes in general has not achieved good substrate selectivity, 

which is a hallmark of enzymes. Future developments are also expected for immobilization of 

nanozymes so that they can be recycled and purified away from the product. With a much 

lower cost and good reproducibility, nanozymes are likely to replace protein enzymes for 

certain applications in future. 

Conclusions 

In summary, we demonstrated an extraordinarily simple yet highly active and robust laccase 

mimic based on GMP coordinated Cu2+. Cu/GMP forms an amorphous MOF with 

laccase-like activity. Natural laccases are multi-copper metalloenzymes and the Cu/GMP 

complex is a good functional mimic. With more structural information, it may even be proven 

to be a structural mimic given the multi-copper nature of Cu/GMP. Compared to the protein 

laccase, Cu/GMP is much more robust against extreme pH, temperature, salt and long-term 

storage. It also converts a diverse range of substrates just like laccase. At the same mass 

concentration, Cu/GMP has even a higher catalytic rate with most substrates. The preparation 

of Cu/GMP is very simple with a mixing of two common chemicals at room temperature. 

This material will likely find important applications to replace the role of laccase in analytical 

chemistry, environmental remediation, and biotechnology. At the same time, it provides an 

interesting model system for studying multi-copper laccases.  
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