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Abstract 

Chromium is a very important analyte for environmental monitoring, and developing biosensors 

for chromium is a long-standing analytical challenge. In this work, in vitro selection of RNA-

cleaving DNAzymes was carried out in the presence of Cr3+. The most active DNAzyme turned 

out to be the previously reported lanthanide-dependent Ce13d DNAzyme. While the Ce13d 

activity was ~150-fold lower with Cr3+ compared to that with lanthanides, the activity of 

lanthanides and other competing metals was masked by using a phosphate buffer, leaving Cr3+ 

the only metal that can activate Ce13d. With 100 µM Cr3+, the cleavage rate is 1.6 h-1 at pH 6. 

Using a molecular beacon design, Cr3+ was measured with a detection limit of 70 nM, 

significantly lower than the U.S. Environmental Protection Agency (EPA) limit (11 μM). Cr(VI) 

was measured after its reduction by NaBH4 to Cr3+, and it can be sensed with a similar detection 

limit of 140 nM Cr(VI), lower than the EPA limit of 300 nM. This sensor was tested for 

chromium speciation analysis in a real sample, supporting its application for environmental 

monitoring. At the same time, it has enhanced our understanding on the interaction between 

chromium and DNA. 
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Introduction 

Chromium (Cr) is an extremely useful metal for hardening steel, coating materials, pigments, and 

catalysis, yet it is mutagenic and carcinogenic.[1] Its toxicity and applications have raised serious 

environmental concerns. Cr has nine different oxidation states, with the trivalent Cr3+ and 

hexavalent Cr(VI) (present as Cr2O7
2- in acid and CrO4

2- in alkaline solutions) being the most 

common in the environment. The toxicity of chromium is strongly related to its oxidation state.[2] 

For example, a trace amount of Cr3+ is needed for glucose and fat metabolism, and thus Cr3+ is 

considered to be essential for life.[3] However, Cr3+ is still toxic at high concentrations, and Cr3+ 

is currently classified as a group 3 carcinogen.[2] Cr(VI) is much more toxic as a potent human 

carcinogen, which is attributed to its ability to cross the cell membrane and high oxidation 

potential.[4] To manage chromium contamination, it is important to measure its concentration and 

speciation information. 

While many instrumentation methods were developed for chromium analysis, such as 

inductively coupled plasma atomic emission spectrometry,[5] few can offer on-site and real-time 

detection. In this regard, developing sensors is a very valuable. Many biopolymers have been 

tested for chromium detection, such as peptides,[6] antibodies,[7,8] protein enzymes,[9] and even 

whole bacterial cells.[10] Sensors based on nanomaterials were also reported.[11-15] Most of these 

sensors however suffer from low selectivity and poor stability.  

Over the past two decades, DNA has emerged as a unique platform for metal sensing.[16-

18] DNA is very stable, easy to modify, programmable and very versatile in metal binding.[19] 

DNAzymes are catalytic DNA isolated using in vitro selection.[20-23] By using specific metal ions 

during selection, it is possible to obtain metal-sensing DNAzymes.[24] Many divalent metals have 

been detected by DNAzymes, such as Pb2+,[25] Zn2+,[26] Cu2+,[27,28] UO2
2+,[29] Cd2+,[30] and Hg2+.[31] 
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Recently, progresses were made also for monovalent Na+,[32,33] and Ag+,[34] and trivalent 

lanthanide ions.[35-38] 

The interaction between chromium and DNA was studied mainly in biological systems. 

For example, Cr(VI) crosslinks DNA in rats and in cultured cells, although it has little interaction 

with isolated DNA. Cr3+ binds to the N7 position of guanine and also be chelated by the nearby 

phosphate backbone.[39] The binding constant of DNA to Cr3+ (3150 M-1) is ~6-fold higher than 

that to Cr(VI). Since DNA interacts more strongly with Cr3+, we chose it as the target metal, and 

the detection of Cr(VI) relied on its reduction to Cr3+. In this work, we started with in vitro 

DNAzyme selection, followed by studying DNAzyme cleavage by Cr3+, and ended with a 

biosensor for Cr3+ and Cr(VI) detection and speciation. 

  

Materials and Methods 

Chemicals. The DNA samples were obtained from Integrated DNA Technologies (IDT, 

Coralville, IA). See Table S1 for DNA sequences and modifications. Reagents for PCR were 

from New England Biolabs (Ipswich, MA). Chromium (III) chloride hexahydrate, other metal 

salts, and NaBH4 were from Sigma-Aldrich. Note that chromium (III) chloride anhydrous salt 

should not be used, since it is very difficult to dissolve in water and gave inconsistent assay 

results. The contaminated water was supplied by GeoSyntec Consultants (Guelph, ON, Canada).  

In vitro selection. The in vitro selection method including PCR was reported previously.[36] For 

each round of selection, 200 μM Cr3+ was added to initiate cleavage (see Figure 1C for 

incubation time). The round 10 cleavage products were cloned and sequenced. In the second 

selection effort, to block the Ce13d sequence, the library was annealed with 150 pmol of the 
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blocker DNA in buffer A (50 mM MES, pH 6.0, 25 mM NaCl). The library was then incubated 

with Cr3+ for 1 h to induce cleavage. The round 6 cleaved product was sequenced. 

Gel-based activity assays. To test the DNAzyme activity, the DNAzyme complex was formed 

by annealing the FAM-labeled substrate (1 μM) and enzyme (2 μM) in buffer A. The reaction 

was initiated by adding metal ions and quenched by transferring an aliquot of the sample into 8 

M urea. The samples were then separated on a 15% dPAGE gel and analyzed using a ChemiDoc 

MP imaging system (Bio-Rad). To reduce Cr2O7
2-, a final of 5 mM NaBH4 was added for 5 min 

prior to mixing it with the DNAzyme solution. 

Cr(III) and Cr(VI) sensing. The DNAzyme-based sensor was prepared by annealing the FAM-

labeled substrate (2.5 μM) and the quencher-labeled enzyme (5 μM) in buffer B (50 mM MES, 

pH 6.0, 25 mM NaCl, 0.8 mM phosphate). Then, 2 μL of the sensor solution was diluted with 7 

μL buffer B, and 1 μL metal ion was added to initiate the reaction. After 1 h, 1 μL EDTA (25 

mM) was added to quench the reaction, followed by adding 10 μL ethanol to facilitate releasing 

the cleavage product. Afterwards, the reaction solution was transferred to 80 μL HEPES buffer 

(50 mM, pH 7.5) and the fluorescence were monitored with a SpectraMax M3 microplate reader 

for 30 min. To detect Cr(VI), Cr2O7
2- (7 μL) was first treated with 50 mM NaBH4 (1 μL) in 

buffer B for 5 min. Then, 2 μL sensor was then added to initiate the reaction. 

 

Results and Discussion 

In vitro selection. To isolate Cr3+-dependent DNAzymes, in vitro selection was carried out 

using the library shown in Figure 1A. It has a 5-FAM label to track the selection progress. The 

rAG junction indicated by the arrowhead is the embedded cleavage site, where rA denotes for 
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ribo-adenine. This single RNA linkage has much lower stability compared to the rest DNA 

linkages.[40] The library diversity is from the 35 random nucleotides (N35) that are positioned 

near the cleavage site by the two base paired regions. The initial library contained ~1013 random 

DNA sequences. In each round of selection, 0.2 mM Cr3+ was added to induce cleavage (Figure 

1B). The cleaved product was shorter, allowing its separation by denaturing polyacrylamide gel 

electrophoresis (dPAGE). After two rounds of PCR, the full-length library was re-generated to 

seed the next round of selection. The selection progress was tracked for each round (Figure 2A). 

The activity appeared to plateau at round 10 and this library was sequenced. 

Sequence analysis. Out of the 38 sequences obtained (Table S2), 37 of them are very similar to 

the previously reported Ce13d DNAzyme that is active with trivalent lanthanides.[37] The 

structure of Ce13d is shown in Figure 1C, which differs from Clone 5 (a representative sequence 

from the current selection) mainly by the number of thymine bases in the box. Our previous 

studies on Ce13d already showed that these thymine bases are unimportant for activity.[37,41,42] 

To further confirm this, Clone 5 and Ce13d were tested in presence of 10 μM Ce3+ or 100 μM 

Cr3+ (Figure 1D), and the two DNAzymes indeed showed the same activity. Out of the two 

metals, Ce3+ is much more efficient. For example, Ce13d has a rate of 1.6 h-1 with 100 µM Cr3+, 

which is 15-fold slower than that with 10 µM Ce3+. Therefore, the Cr3+-dependent activity is 

~150-fold lower compared to that with Ce3+.  
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Figure 1. (A) The DNA library used for the Cr3+ selection containing a single scissile RNA 

linkage (rA), and 35 random nucleotides (N35). (B) The scheme of in vitro selection with five 

main steps. Two rounds of polymerase chain reactions (PCR) are used to amplify the selected 

sequences and re-construct the full-length library. (C) The secondary structures of the Ce13d 

DNAzyme. It differs from Clone 5, a representative sequence from the currently selection, 

mainly in the number of the T bases in the box. (D) Cleavage kinetics of Clone 5 and Ce13d in 

presence of 10 µM Ce3+ or 100 µM Cr3+ tested in buffer A (50 mM MES, pH 6.0, 25 mM NaCl).  
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New selection blocking Ce13d. Since Ce13d is only moderately active with Cr3+, we decided to 

perform a new selection blocking the Ce13d related sequences in the library and thus fostering 

potential new sequences with higher Cr3+-dependent activity. Ce13d is a unique DNAzyme with 

a stretch of 16 conserved nucleotides in its catalytic loop (Figure 1C in the big box). This allows 

us to inactivate the Ce13d-type sequences in the library by adding a blocking DNA 

complementary to these conserved nucleotides (top of Figure 2B). Using this method, we 

succeeded in Cd2+ and Cu2+-dependent selections.[30,43] Using this strategy, the selection progress 

is shown in Figure 2B. While we indeed eliminated the Ce13d sequences, the obtained 

DNAzymes were however 90% the EtNa DNAzyme,[33] accompanied with less than 10% of the 

17E (Figure S1). EtNa is Na+-dependent DNAzyme we reported recently, and its cleavage 

activity is accelerated in organic solvents. EtNa is however inactive with Cr3+.[33] The emergence 

of EtNa suggests that buffer-dependent activity dominated the selection and the intended Cr3+ 

failed to produce competitive cleavage activity after blocking Ce13d. 17E was previously 

isolated in many in vitro selections in the past two decades.[23,44] 17E is the most active with Pb2+ 

and is also active with many transition metals such as Zn2+, Cd2+, Mn2+, Co2+, Mg2+ and Ca2+. 

The activity of 17E with Cr3+ is also negligible (Figure S2), and therefore, it is unlikely to be 

useful for detecting Cr3+ either. After these selection efforts, only three previously reported 

DNAzymes were produced: 17E, EtNa, and Ce13d. Among them, Ce13d has the best activity 

with Cr3+.  

In the above selections, we did not include a negative selection step (e.g. removing 

DNAzyme sequences active with non-Cr3+ metals). Although the best DNAzyme Ce13d is much 

more active with many other metal ions than with Cr3+, this cannot be solved by negatively 

selection. We completely eliminated Ce13d using the blocker DNA, and the resulting 
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DNAzymes were inactive with Cr3+. Therefore, had a negative selection step been incorporated, 

it would be unlikely to produce better DNAzymes. 

This selection outcome has important chemical implications. The role of polyvalent metal 

ions in Ce13d cleavage is known to be interacting with the scissile phosphate linking the rAG 

junction.[41] It is likely that Cr3+ is playing a similar role here. For interacting with the phosphate, 

the size and charge of the metal and its affinity with phosphate are important. Trivalent 

lanthanide ions are the most efficient in performing this task for Ce13d. The size of Cr3+ is only 

~0.5 Å while the lanthanides are between 0.8 and 1.1 Å. This might explain the lower rate by 

Cr3+. Using lanthanide ions for in vitro selection has resulted in a number of highly efficient 

DNAzymes in addition to the Ce13d,[35-37] while using Cr3+ only yielded Ce13d. This implies 

limited interaction modes between Cr3+ and DNA to allow favorable RNA cleavage. Cr3+ has a 

very slow ligand exchange rate.[45] After binding (e.g. to DNA bases), the complex may not 

dissociate easily, making the system very difficult to adjust dynamically to a favorable 

configuration for catalysis.  

Recurrence of previously reported DNAzymes was reported a few times previously,[46,47] 

with the 8-17 DNAzyme being a prevalent example.[20] Such so called tyranny of the small motif 

exist due to its statistic advantages. For example, the 8-17 DNAzyme has only 13 nucleotides 

with a few quite tolerating mutations. However, Ce13d is not an obvious tyranny sequence since 

it is longer and highly conserved.[41] We believe its appearance is due to it is the optimal and 

probably the only solution for Cr3+.  
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Figure 2. (A) Progress of the first selection experiment (with 0.2 mM Cr3+ in buffer A). (B) 

Progress of the blocked selection (25 µM Cr3+ in buffer A for 1 h incubation). The blocker DNA 

sequence complementary to the conserved nucleotides in Ce13d is also shown.  

 

Masking interfering ions by phosphate. To fully understand the selectivity of Ce13d, we 

measured its cleavage with various divalent and trivalent metal ions (Figure 3A). Since Ce13d is 

similarly active with all the lanthanides,[37] we only tested Ce3+. With 10 µM metals, only Ce3+, 

Y3+ and Pb2+ produced significant cleavage, while Cr3+ induced just a moderate amount of 

cleavage after 1 h. The cleavage yield significantly increased with 100 µM Cr3+, while 100 µM  

Zn2+ and Mn2+ also induced a trace amount of cleavage. To use Ce13d for Cr3+ detection, we 

need to mask the competing metal ions (namely lanthanides, Y3+ and Pb2+). Lanthanides, Y3+ are 

hard Lewis acids and they should have very high affinity with inorganic phosphate. Pb2+, Zn2+ 

and Mn2+ are borderline metal and may also be sequestered by phosphate. 
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Figure 3. (A) Gel images showing cleavage of Ce13d with 10 or 100 µM of various metal ions. 

100 µM Au3+ strongly bound to DNA and retarded DNA migration. (B) Masking competing 

metals 2 mM phosphate. (C) Phosphate concentration dependent Ce13d activity with 100 µM 

Ce3+, Y3+, Pb2+ or Cr3+. (D) The activity of Ce13d with different Cr3+ concentrations. Inset: 

linearly increase of cleavage at low Cr3+ concentrations. All the reactions were with 1 µM 

DNAzyme in buffer A for 1 h. 
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To test this idea, we carried out the reaction in the presence of 2 mM phosphate. Indeed, 

only Cr3+ yielded a high cleavage and nearly all the rest metals were silent (Figure 3B). To have 

a quantitative understanding, we measured cleavage of these four metals as a function of 

phosphate concentration (Figure 3C). As low as 0.2 mM phosphate fully inhibited 0.1 mM 

competing metals. Cr3+ retained a similar cleavage even with 2 mM phosphate and ~50% 

inhibition was achieved with 20 mM phosphate. With 1 mM phosphate, the Ce3+-dependent 

activity decreased from 0.4 min-1 to 1.8×10-4 min-1 (Figure S3). We estimated the inhibition 

effect was more than 2200-fold stronger for Ce3+. Phosphate only exists in trace amount in most 

natural waters (e.g. US EPA criterion of maximally 0.03 mg/L or ~300 nM for uncontaminated 

lakes), and such background phosphate should not affect our DNAzyme performance.  

After finding a simple masking agent, we next studied Cr3+-dependent activity of Ce13d. 

The cleavage yield gradually increased with increasing Cr3+ concentration (Figure 3D), from 

which we obtained an apparent Kd of 32 µM Cr3+, ~9-fold larger than that with Ce3+.[37,41] 

Therefore, Cr3+ has a lower affinity to Ce13d compared to the lanthanides. The low Cr3+ 

concentration region has a linear response (inset), which is useful for analytical applications. 

Detection of Cr3+. After confirming the selectivity and activity of Ce13d for Cr3+ in 

phosphate buffer, we next tested Cr3+ detection. Our biosensor design is shown in the inset of 

Figure 4A. A FAM fluorophore was labeled at the 3-end of the substrate strand, and a dark 

quencher was labeled at 5-end of the enzyme.[37,48,49] After hybridization, the fluorescence was 

quenched because of close proximity between the FAM and quencher. After incubating with Cr3+, 

the substrate is cleaved and the fluorescence is increased. Since Ce13d is quite slow with Cr3+, 

we did not monitor the signalling kinetics but only measured the final fluorescence after 1 h. A 

Cr3+-concentration dependent fluorescence enhancement was observed (Figure 4B). The change 
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in fluorescence at the 526 nm peak is plotted against Cr3+ concentration (Figure 4C). We 

obtained a detection limit of 70 nM Cr3+ (inset of Figure 4C, based on 3σ/slope calculation), 

which is significantly lower than maximal limit of Cr3+ in drinking water defined by the U.S. 

Environmental Protection Agency (EPA) (570 μg·L-1 or 11 μM). Using the same DNAzyme in a 

phosphate-free buffer, we reported a detection limit of 1.7 nM Ce3+, and this 41-fold difference 

in detection limit is attributable to the slower rate of Ce13d in the presence of Cr3+. We also 

tested the sensor specificity under two metal concentrations (Figure 4A). With the aid of 

phosphate, we indeed suppressed the sensor response to most other metals. We noticed that Zn2+ 

also has a weak response, which is attributable to its cleavage activity (Figure 4B). 
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Figure 4. (A) Sensor specificity test with 4 μM and 20 μM different metal ions. The assays were 

performed in 50 mM MES, pH 6.0, 25 mM NaCl and 0.8 mM phosphate (1 h incubation). Inset: 

a scheme showing the sensor design for Cr3+ detection. (B) Fluorescence spectra of the sensor 

after incubating with different concentrations of Cr3+. (C) Fluorescence enhancement at 526 nm 

with different Cr3+ concentrations. Inset: sensor with a linear response at low Cr3+ concentrations.  

 

Detection of Cr(VI). After demonstrating Cr3+ detection, we next explored the 

possibility of detecting Cr(VI). For this purpose, Cr2O7
2- was used as the metal source. No 

cleavage was observed with up to 20 μM Cr2O7
2- (Figure 5A, open dots). Interestingly, after 

treating Cr2O7
2- with NaBH4, concentration-dependent cleavage occurred likely due to its 

reduction to Cr3+ (Figure 5A, solid dots). The successful reduction of Cr2O7
2- to Cr3+ was also 

supported by its color changed from yellow to green (Figure S4A). We also tested ascorbate as a 

reducing agent, but the product failed to cleave the DNAzyme (Figure S4B). This is likely due to 

the chelation of Cr3+ by ascorbate. This result suggests that Ce13d can also be used to detect 

Cr2O7
2-. Using this method, we measured Cr2O7

2- concentration-dependent response of the sensor. 

Again, Cr2O7
2- alone failed to show any fluorescence change (open squares, Figure 5B), while 

after treatment with NaBH4, the expected sensor response was observed (open circles). The 

detection limit for Cr2O7
2- was determined to be 140 nM (Figure 5B, inset), also lower than the 

EPA maximal contamination level of hexavalent chromium in drinking water (16 μg·L-1 or 300 

nM). 

To test this sensor for real water samples, a Cr(VI) contaminated water was used, which 

has a strong yellow color (Figure S5). After dilution, the sample was first measured directly to 

determine the Cr3+ concentration. Then the sample was reduced by NaBH4 followed by 
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determination of the total Cr3+. The difference was then the Cr(VI) concentration. The 

concentrations of Cr3+ and Cr(VI) were measured to be 18 μM and 970 μM, respectively, which 

is consistent with to the ICP and colorimetric measurement within the error range (Table S3). 

This study supports the use of our sensor in real water samples and for chromium speciation 

analysis.  

 

 

Figure 5. (A) The fraction of Ce13d substrate cleavage as a function of Cr2O7
2- concentration 

with and without pre-treatment with NaBH4. (B) The fluorescence enhancement of the sensor at 

different Cr2O7
2- concentrations with or without pre-treatment with NaBH4. Inset: the linear 

response at low Cr2O7
2- concentrations.  

 

Conclusions 

In summary, we made extensive in vitro selection efforts to isolate RNA-cleaving DNAzymes 

that can work in the presence of Cr3+. It is very likely that Ce13d is the optimal DNAzyme that 

can be activated by Cr3+, although Cr3+ is ~150-fold less active compared to trivalent lanthanide 

ions such as Ce3+. After blocking the Ce13d sequences in the library, no DNAzyme with Cr3+-
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dependent activity was obtained. As such, we used Ce13d as a sensor for Cr3+. The distinct 

chemical property difference between Cr3+ and its competing metal ions allowed us mask the 

competing metals, leaving the Cr3+ activity intact. After achieving selectivity, this Ce13d 

DNAzyme was converted to a catalytic beacon for Cr3+ detection with a detection limit of 70 nM. 

Detection of hexavalent chromium was achieved by reducing the sample using NaBH4 to convert 

it to Cr3+, and a similar detection limit was obtained. Finally, a preliminary example of 

chromium speciation analysis of a real water sample was demonstrated.  
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