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Abstract: In this work, the effect of Ag™ on DNA sensitized Tb*>* luminescence was studied initially
using the Ag*-specific RNA-cleaving DNAzyme, Agl0c. While we expected to observe luminescence
quenching by Ag®, a significant enhancement was produced. Based on this observation, simple
DNA oligonucleotide homopolymers were used with systematically varied sequence and length.
We discovered that both poly-G and poly-T DNA have a significant emission enhancement by Ag*,
while the absolute intensity is stronger with the poly-G DNA, indicating that a G-quadruplex DNA is
not required for this enhancement. Using the optimized length of the G7 DNA (an oligo constituted
with seven guanines), Ag™ was measured with a detection limit of 57.6 nM. The signaling kinetics,
G7 DNA conformation, and the binding affinity of Tb®>* to the DNA in the presence or absence of
Ag* are also studied to reveal the mechanism of emission enhancement. This observation is useful
not only for label-free detection of Ag™*, but also interesting for the rational design of new biosensors
using Tb3* luminescence.
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1. Introduction

Silver is a very common coinage metal and it has been used for a diverse range of applications
in electronics, catalysis, spectroscopy and biomedical research [1]. Exposure to a high level of Ag*
causes a number of adverse health effects to the skin, eyes and many internal organs [2]. Measurement
of silver is needed for environmental monitoring and for recovery of this metal from mining and
industrial waste. In addition to relying on analytical instruments such as ICP-MS, portable sensors
are attractive for on-site and real-time detection. A few small molecule based Ag* sensors have been
reported [3,4]. We are interested in developing DNA-based biosensors because of their high stability,
low cost and programmability [5-10].

The interaction between DNA and Ag™ is an interesting and important topic from a few different
perspectives. Some early work in this regard involved DNA-templated Ag* reduction and silver
nanowire formation [11-13], where the interaction is believed to be mainly electrostatically driven and
non-specific. Since 2004 [14], cytosine-rich DNA and at some instances guanine-rich DNA have been
used for preparing fluorescent silver nanoclusters [14-18]. Ag* has a strong and quite specific affinity
for DNA pyrimidine bases, in particular, cytosines [19-21], and Ag* can stabilize C-Ag*-C base pairs.
This knowledge has been used to design biosensors based on DNA folding for Ag* detection [22,23].
DNAzymes are DNA-based catalysts that often recruit metal ions. We recently reported an Ag*-specific
RNA-cleaving DNAzyme named Ag10c [24]. Agl0c cleaves its substrate only in the presence of Ag*,
thus allowing highly selective detection of silver down to 25 nM Ag™*.
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Sensitized Tb3" luminescence is a powerful method for probing the structure and folding of
nucleic acids [25-27]. Free Tb3* ions are very weakly luminescent due to their low extinction coefficient.
When bound with DNA, especially guanine, its emission intensity is drastically increased due to energy
transfer from DNA. With a specific ligand competitively binding to the Tb3* bound DNA, the Tb3*
luminescence might decrease due to competition and subsequent replacement by this ligand. Using
this method, we recently studied the binding strength of lanthanides to DNA [28], and binding of
Na* by another DNAzyme [27,29]. In this work, we initially aimed to use Tb* luminescence to study
Ag* binding to the Agl0c DNAzyme. Instead of the expected fluorescence decrease, we found a very
large fluorescence enhancement in the presence of higher concentrations of Ag*. This has led us to
systematically explore this system, leading to a highly sensitive and label-free detection of Ag* using
poly-G DNA.

2. Materials and Methods

Chemicals. All the DNA samples were from Eurofins (Huntsville, AL, USA). Silver nitrate,
terbium chloride and other metal salts were purchased from Sigma-Aldrich (St. Louis, MO, USA) at the
highest available purity. Tris(hydroxymethyl)aminomethane (Tris), 2-(N-morpholino)ethanesulfonic
acid (MES), and 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES) were from Mandel
Scientific Inc. (Guelph, ON, Canada).

Fluorescence spectroscopy. All the Tb®* luminescence spectra were collected using a Fluoromax
4 fluorometer by exciting at 290 nm. Unless otherwise indicated, the DNA concentration was 1 uM for
all the experiments, and the Tb3* concentration was 5 uM. The buffer has been optimized and most
experiments were performed in HEPES buffer (pH 7.5).

CD spectroscopy. CD spectra were obtained using a J-715 spectropolarimeter (JASCO, Easton,
MD, USA) at 25 °C. The final G7 concentrations was 1 uM. Each measurement was recorded between
320 to 220 nm at a scanning rate of 100 nm-min~! using a sealed 1-mm path length quartz cuvette.
The spectra were collected with a response time of 1 s. The final spectra were the averages of ten
measurements. The cell holding chamber was flushed with a constant stream of dry nitrogen gas to
avoid water condensation on the cell exterior.

3. Results and Discussion

3.1. Enhanced Emission with the Ag10c DNAzyme

The secondary structure of the Agl0c DNAzyme is shown in Figure 1A [24]. This DNAzyme was
originally obtained by in vitro selection performed in the presence of Ag* and it is highly specific for
Ag*. It is composed of a substrate strand and an enzyme strand. The original substrate contains a
single RNA linkage serving as the cleavage site (the red adenine position). The enzyme strand (in blue)
has a hairpin and two loops. In the presence of Ag™, the substrate is cleaved into two pieces by the
enzyme strand. In this work, we are interested in studying silver binding instead of cleavage. To avoid
cleavage, we used a full-DNA analog of the substrate so that we probe only Ag* binding.

We observed a weak luminescence peak at 542 nm when the DNAzyme was mixed with Tb3*
(Figure 1B, green curve), while the same concentration of Tb** without the DNAzyme was essentially
non-luminescent (data not shown). With 0.1 or 1 uM Ag™, a very small amount of fluorescence
quenching was observed. We expect that Ag* can specifically bind to the DNAzyme (since this
DNAzyme is specifically activated by Ag*), thus we speculated that this would cause weakening
of Tb3* binding and thus a decrease in its emission [29]. While the decreased emission did occur
at low Ag* concentrations, the amount of signal change was extremely small (<10%). When 10 uM
Ag* was added, surprisingly, instead of luminescence quenching, nearly 8-fold enhancement was
observed (Figure 1B, blue curve). Therefore, the net emission change might be due to both Ag*-induced
Tb3* displacement (e.g., quenching), and Ag*-induced Tb>* emission enhancement. With a higher
Ag* concentration, the enhancement effect dominated. Therefore, Tb3* luminescence cannot be
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used to study the specific binding of Ag* to the Agl0c DNAzyme due to the complication of data
interpretation. On the other hand, it appears to be an interesting system for developing a label-free
method for Ag* detection.
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Figure 1. (A) The secondary structure of the Ag10c DNAzyme. For the Tb3* luminescence experiment,
the substrate is the all-DNA analog and cannot be cleaved; (B) Tb3* luminescence spectroscopy with
the Agl0c DNAzyme in the presence of 0, 0.1, 1 and 10 uM concentrations of Ag*; (C) A scheme
showing the effect of Ag* in promoting the luminescence of poly G, T DNA.

3.2. Effect of Ag* with DNA Homopolymers

Such a strong Ag* induced emission enhancement indicates the possibility of developing an
Ag* sensor. The Agl0c DNAzyme itself, however, is not sensitive enough since it requires 10 uM
Ag* to achieve a strong emission enhancement. By searching the literature, we found that silver and
DNA (or nucleotides) can produce or influence fluorescence in many different ways. For example,
Ag* coordinates with 9-allyladenine and produces a fluorescent product with an emission peak
at 410 nm [30]. DNA can also template the formation of fluorescent silver nanoclusters [14].
Since the emission peak we observed is from Tb**, and we did not add any reducing agent, it is
unlikely that our observations were related to silver nanoclusters. In regard to the sensitized lanthanide
luminescence, silver nanoparticles were reported to enhance the emission of a Eu3* complex [31].
Adenosine monophosphate (AMP) and Tb3* also can form weakly luminescent complexes and the
emission is known to get enhanced by 8-fold by adding Ag*. This scheme allows a detection limit of
60 nM Ag™* [32].

To have a full understanding, we next tested different 15-mer DNA sequences (Figure 2A).
Overall, A15 and C15 gave very weak luminescence regardless of Ag* concentration. Both G15 and
T15 showed Ag*-enhanced emission. The overall intensity was much higher with the G15. Therefore,
we focused on poly-G DNA for the subsequent studies. Based on these results, we also conclude that
the observed emission enhancement in the Agl0c DNAzyme (Figure 1B) is likely due to its nucleotides
instead of the specific Ag* binding.

Before further optimization of DNA sequence, we next studied the effect of buffer composition
and pH using the G15 DNA (Figure 2B). In the Tris buffer, regardless of the tested pH, no fluorescence
change was observed. This can be attributed to the fact that Tris is a coordination buffer with a free
primary amine and it may sequester the Ag* and Tb>* ions. MES buffer has a pK, value of 6.2 and we
tested the response at pH 6.0 and 7.1. A better response was observed at higher pH. Next we tested
the HEPES buffer whose pKj is 7.6, allowing us to study higher pH. In this case, we observed the best
response at pH 7.5. Finally, we wanted to see how this system behaves in just water without buffer.
We observed negligible luminescence change upon addition of Ag*, which is consistent with its
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relatively acidic pH of ~6. Overall, a non-coordinating buffer with a higher pH appears to give a larger
emission change. We did not try even higher pH to avoid precipitation of Ag* and Tb>* and decided
to do all the further experiments in 50 mM HEPES pH 7.5.
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Figure 2. Effect of the (A) different 15-mer DNA; (B) buffer type and pH; and (C) different poly-G
DNA length on the sensitivity of Ag* in promoting Tb3* luminescence. These experiments used 1 uM
DNA and 5 uM Tb3*. The buffer contained 50 mM HEPES buffer, pH 7.5 except for that in (B).
The luminescence intensities were collected by exciting at 290 nm and monitoring emission at 543 nm.

We next tested the poly-G DNA of different lengths (G15, G10, G7, G5, 1 uM each) and
GMP (10 uM) respectively (Figure 3C). For each DNA, various concentrations of Ag* were titrated.
Interestingly, the G7 DNA showed the overall highest sensitivity and signal. With 10 uM Ag®,
the Tb®* emission enhanced by 17-fold. DNA longer than that had a much lower signal increase by
Ag* due to a high background. The G5 DNA had only about half of the signal. Free GMP, although
used at 10 pM, produced a signal similar to that from 1 pM of the G5 DNA. In a previous paper, it was
reported that AMP is able to produce Ag* induced fluorescence enhancement, with the best increase
being only 8-fold [32]. We found that the G7 DNA works the best in this study with a much larger
signal enhancement.

3.3. Mechanism Studies

We noticed that for a long DNA such as G15, the sample became cloudy as Ag* was titrated
in the presence of Tb3*. This suggests formation of a ternary complex with DNA, Tb%* and Ag*.
In other words, Ag* might exert its function by binding to the DNA/Tb3* complex. Shorter DNA such
as G7 did not precipitate and this might be the reason that G7 worked better than G15. If this is the
case, we predict that Ag™ signaling might be a kinetically slow process. To test this, we monitored the
background fluorescence of the G7/Tb3* complex for 5 min and then added 10 uM Ag* (Figure 3A).
Indeed, the emission gradually increased and it took more than 5 min for the signal to reach a relatively
stable value. Therefore, in this study, we waited 5 min before measuring the emission intensity to
obtain consistent results.

We also measured the fluorescence excitation spectra of the G7/Tb3* complex in the absence
and presence of 10 uM Ag* (Figure 3B). With Ag*, the peak is much stronger, but overall, it has the
feature of guanine absorption spectrum. Therefore, Ag™ has enhanced the energy transfer efficiency
from DNA to Tb**. One possibility is that Ag* might have changed the binding stability of DNA.
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To measure the binding affinity, we fixed the Tb®* concentration and titrated DNA in the absence or
presence of Ag* (Figure 3C). While in the presence of Ag*, the overall emission intensity is much
higher (black curve), its dissociation constant (K4) was determined to be 3.9 + 1.2 uM G7 DNA and
is very similar to that in the absence of Ag* (3.1 £ 0.8 uM). Therefore, Ag* did not really affect the
stability of binding between Tb>* and DNA.
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Figure 3. Mechanistic studies. (A) Kinetics of emission change upon addition of 10 uM Ag* at 5 min;
(B) Fluorescence excitation spectra of Tb3* (5 uM) and G7 (1 uM) in the absence and presence of 10 uM
Ag* in 50 mM HEPES pH 7.5 buffer by monitoring emission at 543 nm; (C) Titration of G7 to Tb3* in
the absence and presence of Ag*; (D) The red trace in (C) at a smaller y-axis scale to determine the Ky
values based on F = Fy + aC/ (K4 + C), where F and F are the current and initial fluorescence intensity,
respectively, C is added DNA concentration, and 4 is the final fluorescence enhancement at infinitely
high DNA concentration; (E) The CD spectra of 1 uM G7 DNA in 50 mM HEPES pH 7.5 and upon the
sequential addition of 5 uM Tb%* and then 10 uM Ag?*; (F) A general schematic of the four-stranded
parallel G-quadruplex structure.

Based on the above studies, we propose that to promote Tb** emission, Tb3* needs to be associated
with DNA via optimal binding site(s). Without Ag*, the binding is random, while Ag* can selectively
occupy certain binding sites in DNA and thus forcing Tb®* to be associated with other sites that are
more efficient for energy transfer. For example, the binding between GMP and Ag™ has been carefully
studied by Petty and co-workers [33]. They proposed that Ag* can induce stacking of GMP via N7
and O6 coordination.

Zhang et al. also reported an Ag*-based enhancement, but in that case, a duplex made of [G3T];
and its cDNA was formed initially [22,34]. Its cDNA was rich in cytosine and could form C-Ag*-C
structures. Since the duplex DNA cannot promote Tb** emission, the enhancement effect was proposed
to be due to the Ag*-induced removal of the cDNA. However, in our case, Ag* directly participates
in the luminescence enhancement due to formation of a ternary complex. In their system, the [G3T]s
DNA was used since it has the highest effect in promoting Tb** luminescence. Here we used only the
G7 DNA without its cDNA, and the emission enhancement is from the effect of Ag* binding to the
same DNA to which Tb3* binds.

Usage of transition metals such as Zn?* to enhance the lanthanide luminescence intensity was also
reported in other systems unrelated to DNA [35]. The choice of metal ion appears to be related to the
coordination chemistry of the ligand, and in case of DNA, Ag* appears to be quite an efficient metal
ion for this purpose. In a previous study, upon using another tetra(amino acid) ligand, Ag* produced
enhancement of lanthanide emission which was attributable to a more rigid structure formation by
Ag* coordination [36].
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Recently, Tan et al. used a 21-mer G-quadruplex forming DNA with the following sequence:
GGGTTAGGGTTAGGGTTAGGG. They proposed that Tb** can stabilize the G-quadruplex structure,
but the whole complex is poorly luminescent. Ag* can disrupt the quadruplex structure enhancing the
emission intensity [37]. This is very similar to our observation. However, our Agl0c DNAzyme cannot
form the G4 structure, and even poly-T DNA can achieve quite a strong enhancement. Therefore, a
special G-quadruplex forming DNA is not necessary in our scheme. Since we focused on the G7 DNA
in this study, to test if the luminescence enhancement is related to the disruption of its tertiary structure
upon addition of Ag*, we used circular dichroism (CD) spectroscopy to follow the reactions. We first
measured the CD spectrum of 1 pM G7 DNA in 50 mM HEPES pH 7.5 and observed a positive peak
at ~260 nm suggesting a four-stranded parallel G-quadruplex structure (Figure 3E,F). No change was
observed upon the addition of 5 uM Tb?* and only a slight decrease in the intensity occurred upon
further addition of 10 uM Ag*. Therefore, these metal ions did not perturb the structure of the G7
DNA significantly.

3.4. Sensor Performance

With the excellent fluorescence enhancement from the G7 DNA, we next measured its performance
as a biosensor for Ag* detection using the scheme shown in Figure 1C. First, Ag* was carefully titrated
in the mixture of G7 and Tb3*, the Tb*" emission intensity initially increased drastically reaching
saturation when 8 uM Ag* was added (Figure 4A). It is likely that Ag* has also a quenching effect as a
heavy metal. Between 0 and 0.5 pM Ag*, a roughly linear relationship between Ag* concentration
and the emission intensity can be found (R? = 0.97, Figure 4B). Based on this slope, we calculate
the detection limit to be 57.6 nM Ag* by applying the formula 3 o/slope, where ¢ is the standard
deviation of the background variation in the absence of Ag*. This value is much lower than the
maximum allowable contamination level of silver in water 0.1 mg/L (or 930 nM) defined by the
World Health Organization. The selectivity was next tested at two different metal concentrations
(1 and 10 uM) and Ag* is the only metal that produced the signal enhancement (Figure 4C), indicating
a very high selectivity. This sensing mechanism is attractive since it is label-free and has a large
signal enhancement.
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Figure 4. The performance of the G7 DNA (1 uM) and Tb3* (5 uM) based sensor for Ag* detection
in 50 mM HEPES pH 7.5 buffer. (A) Sensor response to various Ag* concentrations; (B) The sensor
response at low Ag* concentrations; (C) Sensor selectivity test at two metal concentrations. Only Ag*
produced the signal. Each experiment in this paper was repeated at least twice and the error bars

represent the standard deviation of these measurements.
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4. Conclusions

In this study, we initially intended to measure Ag* binding by the Agl0c DNAzyme based on
sensitized Tb®" luminescence, where we expected to observe emission quenching. The unexpected but
strong fluorescence enhancement observed however, led to the current study of using this system for
Ag* detection. We have systematically optimized the sequence and length of DNA. We found that
poly-G DNA produces both a high relative enhancement over background and also a high absolute
emission intensity. Using the optimized G7 DNA, we obtained a detection limit of 57.6 nM Ag™*
with excellent selectivity. Since DNA is programmable, a short fragment of poly-G DNA might be
incorporated into other DNA sequences for sensing other analytes beyond Ag™.
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