
Shape Modeling of Plant Leaves
with Unstructured Meshes

by

Sung Min Hong

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2005

c©Sung Min Hong 2005



AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

The plant leaf is one of the most challenging natural objects to be realistically
depicted by computer graphics due to its complex morphological and optical char-
acteristics. Although many studies have been done on plant modeling, previous
research on leaf modeling required for close-up realistic plant images is very rare.
In this thesis, a novel method for modeling of the leaf shape based on the leaf
venation is presented. As the first step of the method, the leaf domain is defined
by the enclosure of the leaf boundary. Second, the leaf venation is interactively
modeled as a hierarchical skeleton based on the actual leaf image. Third, the leaf
domain is triangulated with the skeleton as constraints. The skeleton is articulated
with nodes on the skeleton. Fourth, the skeleton is interactively transformed to a
specific shape. A user can manipulate the skeleton using two methods which are
complementary to each other: one controls individual joints on the skeleton while
the other controls the skeleton through an intermediate spline curve. Finally, the
leaf blade shape is deformed to conform to the skeleton by interpolation. An in-
teractive modeler was developed to help a user to model a leaf shape interactively
and several leaves were modeled by the interactive modeler. The ray-traced ren-
dering images demonstrate that the proposed method is effective in the leaf shape
modeling.
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Chapter 1

Introduction

Much of the research involved in computer graphics has focused on creating re-
alistic images that mimic the world we see around us. Especially, techniques for
modeling and rendering plants have been extensively explored. However, most of
plant models based on L-system1 [27] are focused on overall appearances instead of
detail modeling. It is partly because computing hardware has not been adequate to
provide realistic close-up images of plant organs like foliage and also partly because
the biological processes affecting leaf shape and growth are poorly understood. It
is only recently that powerful computer hardware has become available to achieve
realistic foliage modeling, which has been relatively undeveloped [21].

In this thesis, a new shape2 modeling method for plant leaves, which is based
on the control of leaf venation, is proposed. For many dicot3 leaves, leaf venation
architecture is closely related to leaf structural stability [28]. That is, the deforma-
tion of leaf venation is believed to cause deformation of leaf blade4. On the other
hand, the leaf blade deformation may be responsible for the deformation of the leaf
venation. In either case, since the leaf shape conforms to the leaf venation, if the
leaf venation is used as a skeleton for shaping the leaf, the deformed leaf shape can
be more biologically faithful. This is the basic idea of the venation based leaf shape
modeling.

Leaf shape modeling starts from extracting the leaf outline from the leaf image,

1An L-system or Lindenmayer system is a formal grammar (a set of rules and symbols) most
famously used to model the growth processes of plant development, though able to model the
morphology of a variety of organisms.

2In this context, ‘shape’ means 3D surface.
3See Appendix A.
4See Figure 3.1.
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which is obtained in terms of a closed continuous line. Then, a leaf venation is
modeled interactively because any automatic extraction method of the leaf venation
from the leaf image is not known up to now to author’s knowledge. The veins are
approximated with piecewise continuous lines and the leaf venation model becomes
a hierarchical tree structure of which each node corresponds to a vein. This venation
model is basically a geometric skeleton [6], so an articulated skeleton is constructed
from the geometric skeleton for manipulating the leaf shape. After the leaf venation
is constructed, the leaf domain is triangulated using the venation as constraints for
the triangulation. As the meshes used for triangulating the leaf domain become
finer, the number of joints in the skeleton increases. Too many joints in a vein
make the interactive shape modeling of the vein more complicates. A new method
of deforming the articulated skeleton, which uses only small number of joints, is
presented in this thesis.

The leaf venation is deformed interactively by way of the articulated skeleton,
and then the leaf blade deformation is calculated using a finite volume method
(FVM) [33], where the deformed leaf venation and the leaf boundary are used as
Dirichlet5 and Neumann6 boundary conditions, respectively. As the venation shape
varies, the resulting leaf shape also varies conforming to the venation. Consequently,
the deformation of the leaf shape is faithful to the biological characteristics and
rendering the leaf with the deformed mesh model can give a very realistic image.
The leaf blade, which is modeled as unstructured meshes, is rendered triangle by
triangle and the leaf venation, which is modeled as a skeleton, is rendered using
generalized cylinders. Since this leaf model starts from a real leaf image, the image
can be used as a texture image for the leaf blade, which makes the rendered image
even more realistic.

An interactive modeler was developed to facilitate the leaf shape modeling,
which carries out the tasks of extracting the leaf boundary, modeling the venation,
triangulating the leaf domain, deforming the venation and deforming the leaf blade.
Among the modeling processes, modeling and deforming the venation are time
consuming processes and can be done only interactively. The modeler provides
three orthogonal viewing windows and one perspective viewing window, which is a
popular layout many 3D modelers adopt. With real-time OpenGL[35] rendering,
the modeler can show the user how the change looks whenever the leaf model is
changed, so the user can respond instantly. Figure 1.1 shows a close-up image
of three leaves, which are modeled using the interactive modeler and rendered by

5A Dirichlet boundary condition specifies the values a solution is to take on the boundary of
the domain [26].

6A Neumann boundary condition specifies the values the derivative of a solution is to take on
the boundary of the domain [26].
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an off-line ray tracer. The realistic looking details in the image demonstrates the
capabilities of the interactive modeler and the effectiveness of the proposed method.

In Chapter 2, previous work related to the leaf modeling are briefly introduced.
In Chapter 3, some basic venation characteristics of plant leaves are given because
that knowledge is required to modeling the leaf venation, some botanical termi-
nologies are briefly explained. Chapter 4 provides a summary overview of modeling
processes briefly. Chapter 5, 6 and 7 explain the modeling processes in detail. In
Chapter 5, the scanning image and extracting boundary processes are explained in
detail. In Chapter 6, how the leaf venation is modeled and then how the leaf domain
is triangulated, are described. In Chapter 7, two methods for deforming the leaf
venation are given and then how to deform the leaf shape is described. Chapter 8
gives a brief description of the interactive modeler and then several renderings of
plant leaves obtained using the method proposed in this thesis and the interactive
modeler are shown. Finally, Chapter 9 gives brief concluding remarks and makes
comments on possible future works.
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Figure 1.1: Three dried leaves, which are an oak, a chestnut and a maple leaves
from the left, hanging on the board
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Chapter 2

Related Work

The realistic modeling of vegetation is an important area in computer graphics.
In particular, tree modeling and rendering have been an active part of computer
graphics research for last two decades because trees add a significant power of real-
ism to a scene. Most difficulties related to tree modeling originate from biological
diversity and complexity. For example, there exist many branching patterns [27] in
trees. Leaf shapes are most diverse, so especially 2D leaf profiles are used to classify
trees. Moreover, even in a tree, the leaves may have different shapes depending on
their ages and functions. Consequently, leaf shape modeling faithful to its biological
characteristics has been difficult and is still a challenging research area.

In 1985, Bloomenthal [5] made a complete computer model for a mature maple
tree, where a leaf texture map is obtained by scanning a leaf photograph. The
leaf veins are retouched by a painting program to give a dramatic effect. The
resultant color texture is mapped onto a three-polygon structure, where polygons
are neighboring along two folding lines in the leaf. The folding degree depends on
the strength of a hypothetical wind as well as the extent to which the leaf faces
the wind. The crease at hinge is not visible if the structure is Phong shaded1. The
shadow side of the leaf is shaded with light colors to simulate the lighter underside
of the maple leaf. Although the overall appearance of the maple tree looks good,
that is, similar to a real maple tree, a close-up image of the leaves is far from being
realistic.

Hammel et al. [14] used a branching skeleton, which is generated by an L-
system [27], for modeling lobes in compound leaves. Then, the leaf margin is con-
structed using an implicit function along the skeleton. The leaf object composed

1A method of shading surfaces in which the incident light color and intensity are calculated for
a series of points along each edge of a polygon and then interpolated across the entire polygon [11].
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of the skeleton and the surface can be deformed to give a realistic leaf appearance.
The procedure for creating compound leaves can be fully automated, however, the
quality of the creation mechanism depends on how faithfully a branching skele-
ton and a leaf margin2 are generated. If the skeleton and the margin are purely
geometric, then the resultant leaf shape cannot be realistic. Therefore the paper
also mentions that among the physical characteristics of leaves for shape model-
ing, venation patterns and dentations need further consideration for realistic shape
modeling.

Streit and Heidrich [31] parameterized the structure of individual feathers based
on biological structure and substructures of actual feathers. With the parameteri-
zation, they generated a large variety of feathers at multiple levels of detail. Several
similarities between a feather and a leaf exist, for example, a rachis3 and barbs4 in
a feather resemble a midrib5 and secondary veins in a leaf, respectively. However,
feather barbs are more dense than secondary veins in leaves and vein shapes in plant
leaves are generally much more complicate than feather barbs. Therefore, some key
barbs can be modeled as a low order polynomial and other barbs are interpolated
using the key barbs but such interpolation may not be applied to secondary veins
because the vein shapes are a lot more independent unlike the feather barbs. Be-
sides, feather barbs have no branches. However, secondary veins have child veins,
so the interpolation scheme cannot be used for the leaf veins because the higher
order veins cannot be interpolated with the proposed method.

Maierhofer and Tobler [19] developed an interactive plant modeling system. In
the model, leaves are modeled from photographs instead of scanned images. It
seems that they tried to avoid difficulties in scanning leaves because sometimes 2D
scanning is not possible for plant leaves. However, it is almost certain that using
only photographs taken with an oblique angle cannot give correct texture maps
which are used for rendering. The parameters used in the model are a leaf outline,
a main axis, axial and lateral cross section data, so these are not closely related
with physical characteristics of plant leaves. Therefore, the output of the modeling
scheme may not be faithful to real leaf shapes.

Bloomenthal and Lim [6] describes a general concept of manipulating a gen-
eral shape using skeleton embedded in the shape. The scheme is composed of 3
steps. First, the geometrical skeleton is derived from a static object using Delau-

2See Figure 3.1.
3A main axis or shaft, such as the main stem of an inflorescence, the stalk of a pinnately

compound leaf, or the spinal column [1].
4Parallel filaments projecting from the main shaft of a feather [1].
5See Figure 3.1.
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nay triangulation6 and so forth. Second, an articulated skeleton is derived from
the geometric skeleton and used to manipulate the geometric skeleton because this
geometric skeleton itself is not adjustable. After the articulated skeleton is modi-
fied, the geometric skeleton is accordingly modified, then the shape is transformed
using appropriate shape deformation methods. In [6], they demonstrated how to
deform a horn-like 3D shape using the above scheme.

Unlike the method used in [14], Mündermann et al. [21] proposed a leaf shape
modeling method which starts from scanning a leaf. That is, in the previous pa-
per [14], the leaf shape is modeled with a branching skeleton generated by an
L-system, however, in [21], the branching skeleton is obtained as a medial axis7

from the scanned leaf image. Instead of using implicit functions for a leaf margin,
a contour extracted from the scanned image is used for the leaf margin. The space
between the medial axes and the margin is filled with rail-like rectangular panels.
The leaf shape can be deformed by modifying the branching skeleton and rotating
the rail-like panels around the skeleton. Although this method can be almost au-
tomated because the leaf skeleton is mathematically constructed as medial axes of
the leaf outline, the skeleton represented by medial axes does not seem to be able to
replace the real venation. Because real leaves are not mathematically constructed,
that is, real leaf blades are generally asymmetric about their venation, the venation
patterns do not match such geometrically constructed skeletons, so the deformation
with the skeleton deviates from the realistic deformation existing in natural leaves.

The method used in this thesis adopts the general idea8 given in [6]. The
geometrical skeleton corresponds to the venation of a leaf which is interactively
modeled and the articulated skeleton can be the venation or the simplified venation
with reduced number of nodes, which is explained in Chapter 6 and 7. After the
venation is modified, the leaf shape is transformed using the FVM for conforming
to the modified venation.

6See § 6.2.
7The medial axis of a 2D region is defined as the locus of the center of all the maximal inscribed

circle of the object.
8Bloomenthal and Lim [6] roughly describe how skeletons are used for transforming 3D shapes

, but there is no detail explanation about how to find the skeletons and how to transform the
shapes using the skeletons.
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Chapter 3

Leaf Shapes and Venation
Patterns

3.1 Leaf Shapes

The enormous diversity of leaf shapes, sizes, forms, and arrangements is the result
of plants adapting to conditions in a vast range of habitats. Leaf shape may not be
consistent within a species: in some, it depends on a leaf’s position on the stem;
in others, on whether plants are juvenile or adult. Certain aquatic plants produce
one type of leaf under water, another type above the surface [8].

The basic component of a leaf shown in Figure 3.1 is the blade, which is also
called lamina. Simple leaves consist of one continuous blade, while compound
leaves are divided into separate leaflets. Most leaves are attached to the stem by
a slender stalk (petiole), but some, as in the case of many monocotyledons1, are
stalkless (sessile). Although some are divided into separate leaflets, the leaves of
most dicotyledons and virtually all monocotyledons consist of a single, flat leaf
blade [8].

Simple leaves consist of one blade with a continuous surface. The leaves are
classified into shallowly lobed, pinnatifid, or palmately lobed leaves according to
varying degrees of lobing [8]. Shallowly lobed and pinnatifid leaves in Figure 3.2
have lobes cut no deeper than halfway to the midrib. Palmately lobed leaves have
deeper, more distinct lobes. Compound leaves, which are (d) and (e) in Figure 3.2,
have blades that are fully divided into leaflets. In palmate leaves, leaflets arise

1See Appendix A.
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Figure 3.1: External structure of a dicotyledon leaf

from a single point at the top of the leaf stalk. In pinnate leaves, the leaflets arise
on both sides of a main axis. The leaflets may be stalkless, and may themselves
be subdivided. Two features can help to show that compound leaves are single
entities, whatever their size or complexity: in many cases, they are shed as a single
unit, and while buds form in the axil of a compound leaf, they do not occur in the
axils of individual leaflets [8].

3.2 Leaf Venation Patterns

The classification of an angiospermic2 venation pattern starts with the primary
vein, or, if more than one primary vein is present, with all primary veins entering
the leaf from the petiole and the secondary veins branching off the primary veins(s),
which are shown in Figure 3.1. Primary and secondary veins are termed the major
vein class and represent lower order veins [13]. The classification proceeds with

2See Appendix A.
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Figure 3.2: Lobing and division of leaves

progressively higher order veins until the areolation3 which terminates the vein
system.

Most angiosperm leaves have between four and seven orders of venation [13].
The primary vein or veins are somewhat analogous to the main trunk or trunks of
a tree: they are the widest veins, they usually taper along their length, and they
generally run from at, or near, the base of the leaf to the margin. Secondary veins
are analogous to the major limbs of a tree. They are the next set in width after
the primary(s), they also usually taper along their course, and they ordinarily run
from either the base of the leaf or from a primary vein toward the margin [15]. For
tertiary and higher order veins the analogy with the branching system of a tree
breaks down. Tertiary veins are usually considerably narrower than the secondary
set and have courses that connect primary and secondary veins to one another in a
similar fashion throughout the leaf. This procedure implicitly utilizes a basic feature
of angiospermic leaf venation patterns: the hierarchical organization of veins which
is reflected by vein diameter [15].

3A small space or interstice in a tissue or part, such as the area bounded by small veins in a
leaf [1].
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The arrangement of veins of a certain order in relation to other architectural
features of the leaf is also important in identifying a certain venation type [15]. The
existence of cycles in the arrangement of lower order veins is an important criterion
for identifying the leaf venation. That is, if there are cycles in the arrangement
of the lower order veins, then it is classified into a closed venation, which is called
‘Brochidodromous4’, otherwise, it is an open venation. There are two kinds of
arrangement of lower veins in the open type arrangements depending on whether
the lower order veins (especially secondary veins) can reach the leaf margin or
not, which are called ‘Craspedodromous5’ and ‘Eucamptodromous6’, respectively.
One basic feature of angiospermic venation patterns is their hierarchical character
regardless of being open or closed. Figure 3.3 shows the three different types of
lower order vein arrangement in the case of a single primary vein.

Figure 3.3: Leaf venation types (redrawn from [28])

4The secondary veins are joined together in a series of prominent arches [15].
5The secondary veins are terminating at the margin [15].
6The secondaries are upturned and gradually diminishing apically inside the margin [15].
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Chapter 4

Overview of Leaf Shape Modeling

Figure 4.1: Image scanning and binarization

The shape modeling of plant leaves proposed in this thesis starts from a leaf
image, which can be obtained by scanning a real leaf. If a real leaf cannot be
properly scanned, for example, because it is severely folded, then drawing the leaf
in 2D with similar colors may give a possible substitute. The scanned leaf image
(Figure 4.1(a)) will be used as a texture map on to a mesh model of the leaf, which
will be generated by using this leaf modeling process. This scanning procedure is
discussed in § 5.1.1.
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Figure 4.2: Extraction of outline and simplification

The leaf image is also used for extracting its boundary and venation pattern.
The leaf boundary is extracted by using a marching squares algorithm, which is a
2D version of the marching cubes algorithm [16, 36]. Before applying the marching
squares algorithm to the scanned image, which is scanned in color, is converted to
a black and white image in order to obtain a clear boundary (Figure 4.1(b)). The
binarization procedure is discussed in § 5.2.1. Once an image of a leaf is obtained,
the marching squares algorithm gives a discretized boundary (Figure 4.2(a)). The
discretization accuracy of the outline can be adjusted by changing the square size
used in the marching squares algorithm. If a large square is used, a coarsely dis-
cretized outline is obtained. The discretized boundary from the marching squares
has an inherent problem due to digitization, that is, there are some unnatural jagged
portions in the outline. Besides that, there may be excessive nodal points in the
outline, especially in case of using small squares. A simplification algorithm can be
applied to the jagged and unnecessarily densely discretized outline while preserving
characteristics of the outline (Figure 4.2(b)). This produces a polygonal curve that
approximates the leaf profile. The details are discussed in § 5.2 and § 5.3.

Venation modeling is based on the scanned image of the leaf. A shadow side1

image may be suitable for the vein creation because venation patterns are more
clear in shadow side than sunny side. As described in Appendix A.3, veins are

1Although a botanically accurate terminology is ‘abaxial surface’ in this situation, instead
‘shadow side’ is used in this thesis. Similarly, ‘sunny side’ is used instead of ‘adaxial surface’.
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Figure 4.3: Vein generation and triangulation

worth to be modeled up to 3rd order (tertiary vein) because those kinds of veins
are responsible for leaf structure stability2. It is based on the assumption that the
leaf structural stability is mostly given by the leaf venation. However, if necessary,
high order veins may be added to the vein modeling. Vein modeling process starts
from generating primary veins, then proceeds to secondary veins, and so forth, in
a hierarchical manner(Figure 4.3(a)). This is discussed in § 6.1.

It should be noticed that there are two functions of the leaf venation. The first
function is the main idea of this thesis, that is, the venation system provides a
skeleton for transforming the leaf blade. It means that the leaf veins are regarded
as structural components to support the leaf shape. As the configuration of the
leaf venation changes, the leaf blade wrapping the venation changes conforming to
the venation. The second function is the appearance of the leaf venation itself. If
a vein protrudes considerably from the leaf blade and is big in its size, the vein is
modeled as a generalized cylinder with its center displaced from the leaf blade. The
vein as a generalized cylinder off-centered from the leaf blade gives both shadowing
and masking effects shown in a real leaf. Therefore this venation modeling plays a
critical role in making the leaf rendering image look realistic. In this thesis, lower
order veins are modeled as generalized cylinders using their radii and an offset value
from the leaf blade.

2In this context, ‘structural stability’ means structural strength to maintain the leaf shape.
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Figure 4.4: Vein transformation and interpolation

Now a leaf domain is defined with a outline and the domain has a set of veins,
which are interactively generated. The leaf domain is triangulated (Figure 4.3(b))
with Triangle [29] which is a well known unstructured triangular mesh generation
program and is very robust. This triangulation provides the leaf model, which had
only a boundary and veins before, with a leaf blade tissue. The leaf outline becomes
a domain boundary and the veins become constraints for the Conforming Delaunay
Triangulation (CDT) [29]. There are two control parameters for the CDT, which are
a minimum angle constraint and maximum area constraint, respectively. These two
control parameters are used to generate quality meshes for better rendering because
skinny triangles or comparatively big triangles are not desirable for rendering. The
triangulation algorithm creates new nodes on both interior and constrained edges
where the veins lie while triangulating the leaf domain. After this triangulation,
the vein objects are updated by adding the newly generated nodes on the vein edges
of the mesh. The detail is given in § 6.2.

The updated leaf venation model is used for deforming the leaf mesh in 3D.
This 3D deformation of the leaf mesh can be done in two steps. The first step
modifies the vein representation. The second step modifies the mesh that is the
leaf blade tissue representation. The vein transformation, which is the first step,
can be done by one of the following two ways. The one way is to control every vein
segment independently, so numerous configurations are possible but manipulating
every segment individually may be tedious because there are usually too many
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Figure 4.5: Rendering with texture mapping

segments in a vein. The other way is to select a small number of control nodes in
the vein nodes to construct a spline curve and then use the curve to modify the
vein. A modified shape of a leaf venation is shown in Figure 4.4(a). The details
are discussed in § 7.1.

The coordinates of the modified veins are used for interpolating the other mesh
nodes, which corresponds to the second step mentioned above. The interpolation
procedure is based on the FVM [33, 32], which uses Voronoi diagrams obtained when
triangulating the leaf domain. In this way, modifying veins and then interpolating
the meshes result in a 3D leaf shape (Figure 4.4(b)). This is discussed in § 7.2.

Once a 3D leaf shape in the unstructured meshes is obtained, then the rendering
of the leaf can be done instantly using texture mapping in OpenGL, which is shown
in Figure 4.5(a) and (b). Since such a rendering by OpenGL is very fast, a user
can use it as a preview and improve the leaf shape. If the leaf shape model is good
enough to use, then the mesh data can be exported to POV-Ray [24], which is a
public domain off-line ray tracer. In general, off-line renders like POV-Ray can
provide various rendering effects like soft shadow, so excellent rendering images
can be obtained with the mesh data. With the off-line renderer, the leaf venation
can be rendered by a bunch of generalized cylinders. And the leaf blade can be
rendered with multiple textures, for example, sunny side and shadow side textures.
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Besides, if bump map3 or displacement map4 data is available, such a mapping can
be done on the leaf model depending on the capabilities of the off-line renderer.
The examples of the off-line rendering are shown in Chapter 8.

3Bump mapping relies on normal perturbations to create the appearance of ‘bumps’ on the
surface of the object [2]; the surface of the object is not changed.

4Unlike bump mapping, where the normals are skewed to give an illusion of a bump, displace-
ment map creates real bumps [2].
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Chapter 5

Capturing the Leaf Profile

For modeling realistic leaves, it does not seem to be appropriate to generate leaf
profiles and textures automatically or manually without referring to actual leaf
images because some leaves like maple have very complicate profiles and textures.
Therefore, in this thesis, real leaves are used for capturing leaf profiles and textures.
A leaf profile is captured as a polygonalized curve in three steps. First, a leaf
is properly scanned without any serious wrinkles. Second, the scanned image is
binarized to give an accurate boundary profile of the leaf. Finally, the marching
squares algorithm is applied to the binarized image to capture the profile.

5.1 Image Scanning

In general, sunny sides1 of plant leaves are much different from their shadow sides,
so both sides of the leaves are required for texture mapping when rendering the
leaves. Since the both side images should be aligned, it may be required that the
leaf images are rotated and scaled using digital image processing tools. To express
details of the leaf images, the scanning should be done in 24 bit RGB2 color which
is corresponding to compound color of 8 bit red, 8 bit green and 8 bit blue. The
24 bit RGB color scheme can have 224 ≈ 16 millon different colors. The image
resolution can be determined depending on where the leaf model is used. If a very
close-up rendering image is required, then the texture image also should be made
in high resolution. In this thesis, the scanning of real leaves is done in 300 DPI3

1As mentioned in Chapter 4, the sunny side means the adaxial surface of the leaf throughout
this thesis. Similarly, the shadow side does the abaxial surface.

2‘RGB’ is an acronym of ‘Red, Green and Blue’.
3‘DPI’ is an acronym of ‘Dots Per Inch’.
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Figure 5.1: Sunny and shadow sides of English oak leaf

and 24 bit RGB color scheme. Both images of a silver maple leaf is already shown
in the previous chapters. Figure 5.1 shows the sunny and shadow side images of an
oak leaf.

5.1.1 Difficulties in Image Scanning

In fact scanning a leaf with a flat bed scanner is not easy because real leaves are
not perfect flat. For example, some leaves are considerably curved along their veins
and margins of some leaves are severely undulated. Therefore, scanning such a leaf
while pressing it with a scanner cover to reduce the leakage of the scanning light
may cause the leaf to be wrinkled and result in a stained image with wrinkles. A
leaf image with small wrinkles may be acceptable, but if the wrinkles are obvious,
then the image cannot be used as a texture image for off-line rendering.

However, even in scanning a relatively flat leaf like a silver maple leaf, there may
be another problem to cause the scanned image to be inappropriate for a texture
image. If the veins of the leaf seriously extrude from its blade, then some unwanted
shadows by the veins appear. These vein shadows are usually not matched with
a light direction used in rendering. Such self shadowing from scanning should
be avoided but it is often inevitable. Therefore, for some leaves with high blade
curvatures, serious marginal undulation or extremely extruded veins, 2D image
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scanning may not be possible, which gives an image used for extracting the leaf
outline and a texture for rendering. Scanning a leaf should be carefully done to
avoid image artifacts mentioned above. Sometimes color corrections of scanned leaf
images are required because scanning a real leaf does not give exact same colors
like those in a real leaf. The color difference between the scanned image and the
real leaf should be minimized in order to make the leaf rendering, when the image
is used as a texture, look realistic.

5.2 Extraction of Leaf Profile

The marching squares algorithm used in this thesis is a modified 2D version of
the well known “Marching Cubes ” algorithm [16, 36]. Here is an overview of
the marching squares algorithm applied to an image of a leaf in order to extract
its outline. The basic assumption of the application is that a leaf profile can be
approximated by a polygon, that is, a closed curve. Any holes in a leaf blade are not
considered in extracting the outline because such holes can be treated by using an
appropriate texture map. Initially, a square scans the leaf image from the left-top
corner to the right bottom corner until at least one of its corners runs into the leaf
image domain. When the square crosses the leaf boundary, then the square starts
to walk along the boundary of the leaf domain counter-clockwise instead of the
parallel line scanning. Since the leaf domain is assumed a solid continuous domain,
if the size of the square is appropriate, this marching squares algorithm gives a
profile close to the actual leaf image. The outline of the leaf image depends on the
square size used in the algorithm because the polygon edge can be one of an edge
or a half diagonal of the square. The detailed description will be given in § 5.2.2.

However, the scanned leaf image in 24 bit RGB color scheme may not be ap-
propriate for extracting its boundary because the marching square algorithm de-
termines whether a corner the square is in the leaf image or not according to the
value of the image pixel lying on the corner. Therefore, the color image needs to
be converted into a black and white image where an image pixel can have only two
values, that is, 0 or 1. Before the marching square method is applied to the scanned
leaf image, the color image is binarized to make the leaf image domain clear from
the background.
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5.2.1 Image Binarization

The purpose of the binarization is to make it easy and clear to decide which pixel
in a leaf image belongs to a leaf or not. In image binarization, any pixel in a leaf
image of which value satisfying a criterion is converted to a black pixel and anything
else to a white pixel, so after binarization process the leaf image becomes a black
and white image. If an image pixel has only two values instead of 224 ≈ 16 million
values, then such decision will be simple and clear, which is a general benefit of
image binarization.

Such conversion depends on a threshold value, which is used a criterion for the
conversion. A criterion used for the image binarization is called a binary threshold.
If the threshold value set for the image binarization is greater than an average color
value of a pixel, then the pixel is converted to a black pixel, otherwise the pixel
becomes a white pixel. Figure 5.2 show the effect of the different binary threshold
values on the image binarization. Although a high threshold value is desirable for
the maple leaf shown in Figure 5.2, such a high threshold value may show some
background noise in other cases, so a proper value should be used.

5.2.2 Marching Squares Algorithm

The marching squares algorithm used in this thesis is a specialized algorithm for
extracting an outline from a binarized 2D leaf image. The basic notion is that a
square is defined by the pixel values at its four corners. If one, two or three corner
pixels are black, the square must cross the boundary of the binarized leaf image. If
no corners are black, then the square must lie in the exterior of the leaf image. In
the meantime, if all corners are black, then the entire square must lie on the leaf
image. By determining which edges of the square are intersected by the boundary,
a segment of the leaf outline is created. By connecting these segments obtained
while the square tracing along the leaf image boundary, an outline is extracted.

In the marching squares algorithm, the possible number of outline segment
configurations is 24(= 16) because one corner can have only one of two values, that
is, a black or a white pixel. If all corners of a square are totally white or totally
black, there is no boundary segment crossing the edges of the square. For the
remaining 14 cases, there exists one or two boundary segments crossing the square
edges, which are shown in Figure 5.3. Among them, the two crossing patterns, (7)
and (10) in Figure 5.3 are ambiguous cases. Although the pattern (7) shows two
separate boundary segments connecting edges 1-2 and 3-4, there may be another
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Figure 5.2: Effect of threshold value on image binarization

crossing pattern with two boundary segments connecting edges 1-3 and edges 2-
4, which is shown in Figure 5.4. In this thesis, only solid continuous images are
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Figure 5.3: Crossing patterns of marching squares algorithm

considered, so such ambiguity can be avoided by not allowing the crossing patterns
like (7) and (10) when querying a crossing pattern. Although it is possible to have
(7) or (10) pattern for a narrow image region, then reducing the size of the marching
square can eliminate such ambiguous patterns because the crossing pattern with
the small size square may change .

As mentioned earlier, a square does not march the whole image area but traces
a boundary of a leaf, which is shown in Figure 5.5. At the instant the square crosses
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Figure 5.4: Ambiguous patterns

Figure 5.5: Tracing boundary with marching squares

the leaf image boundary during running from the top-left corner to the bottom-right
in line by line scanning, the square starts to walk along the boundary of the image
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Figure 5.6: Application of marching squares algorithm to silver maple leaf

globally counter-clockwise. For example, if the crossing pattern of the square is (3)
in Figure 5.3 when the square run into the leaf image, a following square should be
neighboring at the bottom edge of the current square and the crossing pattern of the
following square should be one of (5)-(10) because the following square must have
a crossing at its top edge. The tailored marching squares algorithm is summarized
as follows.

Step 1. Select the size of the square which is used for tracing the boundary. If the
size is too big, then it cannot trace the boundary curve with high curvatures,
so the details of the boundary will be lost.

Step 2. Start scanning the binary image with the square from the top-left corner
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Figure 5.7: Application of marching squares algorithm to English oak leaf

until it runs into the boundary, which is shown in Figure 5.5.

Step 3. Instead of moving the square from the top-left to bottom-right, move the
square along the boundary using the crossing pattern shown in Figure 5.3.

Step 4. If the boundary segments make a closed loop, stop tracing.

The above algorithm is applied to a silver maple leaf and a English oak leaf to
extract their outlines with different square sizes. Both leaves have multiple lobes,
but a silver maple leaf has acutely angled lobes while an English oak leaf has round
lobes. The resultant outlines of the silver maple leaf and the English oak leaf
are shown in Figure 5.6 and Figure 5.7, respectively. As previously mentioned,
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Table 5.1: Effects of the square size on the number of nodes.

Square size Number of nodes
(pixel unit) Maple leaf Oak leaf

8 512 449
5 849 735
3 1,433 1,229
2 2,155 1,845

when small squares are used, detailed outlines are obtained for both leaves no
matter how complicated those are, but small squares increase the number of nodes
in the profile and the complexity of the profile. These adverse effects of using
small squares are clearly shown in Figure 5.6 and Figure 5.7. Table 5.1 shows how
many boundary nodes are generated as the square size decreases in a quantitative
manner. As expected, as the square size decreases, the number of nodes increases
proportionally. That is, if the square size is reduced in half, the number of nodes is
almost doubled. How to reduce the complexity while preserving prominent outline
characteristics will be addressed in the following section.

5.2.3 Algorithm Details

The marching squares algorithm uses a special look-up table for querying crossing
edge patterns, which is called “ lineTable ”. The look-up table maps the vertices
of the marching square to the intersecting edges shown in Figure 5.3. The table uses
a 4 bit index in binary called “ squareIndex ”. Each bit in the “ squareIndex ”
corresponds to a vertex. For example, if the index in binary is “ 0010 ”, then it
means that vertex 2 is in the leaf domain. In other words, a pixel corresponding
to vertex 2 is black and others are white, so edges connecting to vertex 2 cross
the leaf boundary. The crossing pattern is equivalent to (3) in Figure 5.3. Now
let imagePixel[i][j] be the brightness of the i-th row and j-th column pixel. A
white pixel has a brightness value of 255 and a black pixel does a value of 0. Then,
squareIndex of the square is obtained as follows.

squareIndex = 0;

if(pixels[i][j] < 128) squareIndex += 1;

if(pixels[i + squareSize][j] < 128) squareIndex += 2;
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if(pixels[i][j + squareSize] < 128) squareIndex += 4;

if(pixels[i + squareSize][j + squareSize] < 128) squareIndex += 8;

With the above routine and Figure 5.3, the edge crossing pattern look-up table
is obtained as follows. The table is a collection of the crossing patterns shown in
Figure 5.3, which can be queried with squareIndex.

int lineTable[16][4] =

{{0, 0, 0, 0}, {1, 2, 0, 0}, {1, 3, 0, 0}, {2, 3, 0, 0},

{2, 4, 0, 0}, {1, 4, 0, 0}, {1, 2, 3, 4}, {3, 4, 0, 0},

{3, 4, 0, 0}, {1, 3, 2, 4}, {1, 4, 0, 0}, {2, 4, 0, 0},

{2, 3, 0, 0}, {1, 3, 0, 0}, {1, 2, 0, 0}, {0, 0, 0, 0}};

Looking up the table with the squareIndex returns a set of 4 numbers standing
for edge numbers. If only a pixel value of vertex 2 is black, the squareIndex

becomes 2 and querying the crossing pattern with lineTable[2][] gives {1, 3, 0,
0}. This indicates that there is a boundary segment crossing edges 1 and 3. If the
squareIndex is 7, then querying the look-up table gives {1, 2, 3, 4}. It means there
are two edges connecting 1-2 and 3-4, respectively. Since only two kinds of pixels,
white and black, are considered, the crossing point should be the midpoint of the
crossing edge. Now the procedure of extracting boundary segments for a square
can be extended to squares along the leaf image boundary.

5.3 Simplification of Leaf Outlines

If the size of the marching square is small, the obtained boundary curve can be
close to the original boundary, but there may be too many points to be used for
triangulating the maple leaf. If there are unnecessarily many nodes in the boundary
curve, then the excessive nodes may cause extremely fine meshes near the boundary
curve, which is not desirable in terms of memory usage and speed. The concept of
the simplification algorithm is shown in Figure 5.8. As shown in Figure 5.8, the
basic idea of simplification is eliminating intermediate nodes in a straight boundary
segment except two end nodes. Based on this idea, the algorithm inherently includes
a routine for simplifying a jagged boundary made of many small segments. This is
an artifact caused by the marching squares algorithm.

The boundary simplification algorithm proposed in this thesis is based on the
concept that newly generated boundary segments are within a preset tolerance from
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Figure 5.8: Basic concept of boundary simplification

original boundary segments from the marching squares algorithm. At first, two
deviation tolerance schemes were examined. The one is limiting a maximum error
between newly generated simplifying boundary segments and original boundary
segments. The other is limiting a sum of errors between two different boundary
segments. The latter scheme gave locally big deviations between the two boundaries
although it limited a total accumulation of errors. So the former scheme was chosen
for simplifying the boundary segments from the marching squares. The following
steps describe the simplification algorithm limiting the maximum error of newly
generated boundary segments.

Step 0. Assume that there are n nodes, v0, v1, v2, . . . , vn−1 in the leaf outline ob-
tained by the marching squares algorithm. Let τ be a preset tolerance to limit
the difference between the original boundary and the simplified boundary. Let
Bs be a container storing the nodes of the simplified boundary.

Step 1. Let i and j be the nodal indices of a boundary segment. Initialize i ← 0
and j ← 2. Put vi into Bs.

Step 2. If j = n − 1, stop the simplification routine. Otherwise calculate a line,
`ij, connecting vi and vj.
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Figure 5.9: Simplification algorithm of boundary segments

Step 3. Calculate the distances from the intermediate nodes, vk, where i < k < j,
to `ij. Let the distances be dk and the maximum among dk be dmax.

Step 4. If dmax < τ , then j ← j + 1 and go to step 2. Otherwise, that is, if
dmax ≥ τ , put vj−1 into Bs, i← j − 1, and j ← j + 1. Then, go to step 2.

After the simplification algorithm is applied to the original leaf boundary, Bs

has the nodes of the simplified boundary. Figure 5.9 explains the above algorithm
graphically. The example shown in Figure 5.9 can have a simplified boundary
segment from v0 to v5 because the difference between the intermediate nodes and
the new line segment is limited to the preset tolerance. The next new line segment
from v0 to v6, on the other hand, does not satisfy this requirement because the
difference between the new segment and the original exceeds the tolerance. Now
v0v5 becomes a new simplified boundary segment and the algorithm seeks a next
simplified segment starting from v5 as explained in the above.

This simplification routine can smooth a jagged boundary as well as reduce the
number of boundary points obtained from the marching squares. The simplification
algorithm is applied to both the outlines of the silver maple leaf and the English
oak leaf which are obtained by applying the marching squares algorithm. Table 5.2
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Table 5.2: Effects of the deviation tolerance on the number of nodes.

Deviation tolerance Number of nodes
(pixel unit) Maple leaf Oak leaf

8 45 47
5 72 58
3 125 88
2 195 122
1 493 198

shows how the algorithm simplifies the boundaries quantitatively. According to the
table, 80 ∼ 90% of the original nodes are reduced in the example cases which use the
square size of 3 in pixel unit for the marching squares algorithm and the deviation
tolerances of 1 ∼ 8 pixels. An interesting observation is that the reduction ratio of
the oak leaf is greater than that of the maple leaf because the outline of the oak
leaf is smoother. The simplified boundary segments are shown in Figure 5.10 and
Figure 5.11, where the square size is 3 pixels. The Figures show that the simplifica-
tion algorithm greatly reduces the complexity of the original outlines and smoothes
the jagged part. It is noticeable that as the deviation tolerance decrease, the newly
generated boundary segments come close to the original boundary segments. Even
in the case that the deviation tolerance is 1 pixel, the complexity of the boundary
is considerably reduced because intermediate nodes in straight lines are eliminated.
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Figure 5.10: Effects of deviation tolerance on simplifying silver maple leaf
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Figure 5.11: Effects of deviation tolerance on simplifying English oak leaf
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Chapter 6

Modeling Leaf Venation and
Triangulation

A leaf domain is defined with a polygonalized boundary, which is described in the
previous chapter. On the leaf domain, a leaf venation is interactively modeled by
a user. A vein is modeled as a piecewise linear curve of which nodes are created
by a user. Then, the leaf domain is triangulated using the venation as constraints.
The triangulated leaf domain and the constrained venation are two important data
structures for the leaf shape modeling. The detail processes of modeling venation
and triangulation are discussed in this chapter. A comprehensive review of plant
venation modeling is beyond the scope of this thesis. The interested readers can
refer to a state of art review by Taylor-Hell, et al. [34]

6.1 Modeling Leaf Venation

Modeling of a leaf venation is based on the characteristics of the leaf venation
discussed in Chapter 3. First, for dicot leaves, the structural stability generally
depends on veins up to third order, that is, primary, secondary, and tertiary veins
play dominant roles in the leaf structure because the lower order veins are much
stronger than higher order veins. Second, there is a network-like or a tree-like
low order venation in a dicot leaf while higher order veins usually make networks.
Third, a low order vein structure existing in a dicot leaf is generally a hierarchical
structure, so it is natural to model the structure as a hierarchical system. That is,
primary veins in a leaf starts from a petiole and secondary veins branches out from
the primary veins, and so on (see Figure 3.1).
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6.1.1 Characteristics of a Dicot Leaf Venation

Figure 6.1: Venation of a silver maple leaf (shadow side)

Figure 6.1 shows close-up images of the familiar silver maple leaf, which show
all the venation characteristics mentioned above. A silver maple leaf is a palmately
lobed leaf, so the mid-veins running through the middle regions of the lobes are
primary veins according to the vein classification rule [15]. These veins are bigger
than any other veins in the leaf and start from the leaf base, which connects to
the petiole, which is shown in Figure 6.1 (a) and (d). Low order veins, especially
primary veins, have a lot of fibers below their vascular tissue, so it is worth to notice
that the veins bulge toward the shadow side of the leaf and they do not project
toward the sunny side of the leaf [20], which is shown in Figure 6.1 (d).
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In modeling a leaf, low order veins in the leaf are modeled as generalized cylin-
ders with a radius-varying circular cross section. Low order veins have their biggest
radii at where their branches start and smallest radii at the end of their branches
when they are modeled as circular generalized cylinders, which is shown in Fig-
ure 6.1 (b), (c) and (d). The protrusion of the leaf venation toward the shadow side
is modeled by assigning an offset value to each generalized cylinder, so the center-
line of every generalized cylinder is off-centered by the given offset value from the
leaf blade toward the shadow side.

Figure 6.2: Venation of a catalpa leaf

For the silver maple leaf, the venation system can be modeled by a tree-like
structure because its low order veins do not normally make any cycles while higher
order veins make numerous nets. A hierarchical venation structure is observed in
Figure 6.1. Figure 6.1 (c) shows that two secondary veins branch out from the
primary vein of the right big side lobe to the small sub-side lobes. Vein orders are
usually determined based on such hierarchies, that is, primary veins start from the
petiole connection at the leaf blade boundary, secondary veins from the primary
veins, and tertiary veins from the secondary veins in the venation modeling proposed
in this thesis. It is worth to notice that this kind of classification is different from
the one actually used in the botany [15], where the size of the vein is an important
factor in vein ordering. In Figure 6.1 (c), the secondary veins have significantly
small diameters compared to the diameter of the primary vein they start from. In
most dicot leaves, low order veins up to third order almost uniformly spread over
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the leaf blade. It means the transformation of those vein curves can affect all the
leaf domain. In other words, various leaf shapes can be made by a venation model
considering only low order veins. The details are discussed in § 7.1.

A catalpa leaf, however, have a network-like venation because secondary veins
are joining instead of reaching to the leaf boundary or just ending, which is shown
in Figure 6.2. Such a tree-like or a network-like venation pattern may be modeled
as a graph [18]. The cycle in the graph model makes it difficult to regard the
vein in the cycle as a secondary vein because the vein has no direction that is a
characteristic of the tree-like venation. If the vein in the cycle is to be divided into
two veins, it is difficult to distinguish one vein from another vein in the cycle. In
addition to such ambiguity, using two veins in a cycle as constraints for triangulation
gives a redundant constraint which makes the vein modeling and the triangulation
complicated. Therefore, the modeling method proposed in this thesis considers
only tree-like venation, that is, no cycle in the leaf venation. Network-like venation
existing in a catalpa leaf can be approximated by tree-like graphs to avoid the
difficulties mentioned above.

6.1.2 Data Structure of Venation System

Figure 6.3: Venation modeling of a maple leaf
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The overall data structure of the venation system for a dicot leaf used in this
thesis is a venation tree. It will be referred to as the venation model in § 6.2.2.
The term ‘node’ is used with two different meanings in this description. A vein is
a sequence of position nodes which are point objects in 3D. On the other hand,
the venation tree is a general tree structure whose nodes are vein objects. In the
general tree, a parent node can have more than two child nodes unlike a binary
tree where a parent node can have only two child nodes. Here, a node in the tree
structure corresponds to a vein and the root node of the tree stands for a primary
vein of a leaf if there is one primary vein while there can be several primary veins.
The vein class has a set of position nodes, a set of edges, and a set of child veins
which has the information of the hierarchy existing in the venation system. The
data structures used in this thesis are shown as follows.

/* The class header files are written in C++,

where STL (C++ Standard Library) is used. */

class Node {

float x, y, z; //position data of a node

};

class Edge {

Node *vPtr[2]; //connectivity information of two nodes

};

class Vein {

vector<Node *> nodeVector; //a container of nodes

vector<Edge *> edgeVector; //a container of edges

vector<Vein *> veinVector; //a container of child veins

};

For the maple leaf, high order veins over third order have almost same diameter
as the thickness of the leaf blade, so those veins do not contribute to the structural
stability more than the leaf blade tissue part. Therefore, it is appropriate to consider
veins usually up to third order when modeling the leaf venation as a hierarchical
tree system. For the silver maple leaf shown in Figure 6.1, there are three primary
veins. A root node corresponds to a primary vein and child nodes of the root become
secondary veins starting from the primary vein, and so forth. The venation model
corresponding to the maple leaf shown in Figure 6.1 (a) is shown in Figure 6.3,
where the hierarchical structure of the venation is also given.
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6.2 Triangulation of a Leaf with Vein Constraints

A leaf domain is defined as a region enclosed by a piecewise linear curve which is
extracted from the leaf image by the marching squares method. Since some dicot
leaves have very complicated shapes, the boundaries are topologically the same
but their boundaries are very complex. Therefore, simple geometrical shapes like
ellipse or rhombus cannot represent the complex leaf domains, so triangulation is
needed to represent such complicated domains with a set of triangles. It is because
the triangle is the simplest 2D geometry and the most basic shape used in many
applications like finite element methods (FEM) and computer graphics.

6.2.1 Triangulating the Leaf Domain

There are two kinds of triangulation. The one kind of triangulation gives struc-
tured meshes1 and the other kind does unstructured meshes2. Structured meshes
are most commonly used in computational fluid dynamics (CFD) because the target
objects of most applications in the CFD field have simple shapes and the struc-
tured meshes are suitable to such simple shapes. On the other hand, unstructured
meshes demand on storage space and spend more processing time compared to the
structured meshes, but the unstructured meshes are very flexible, so can be applied
to very complicated domains like dicot leaves.

Unstructured mesh generation is generally based on the Delaunay triangula-
tion [30], where a triangles is created by joining nearest neighboring nodes as its
edges. The Delaunay triangulation of a vertex set always maximizes the minimum
angle among all possible triangulations of that vertex set. A mesh with large angles
or small angles makes a very thin triangle which results in bad shaping of the leaf
mesh and poor rendering quality, so should be avoided.

The input for mesh generation is a Planar Straight Line Graph (PSLG). The
PSLG includes both the polygonalized boundary and the veins made of piecewise
linear lines. A PSLG is a set of vertices and segments that satisfies two con-
straints [30]. The first one is that each segment in PSLG has always the two end
points and the second is that the segments in PSLG connect only at their end points.
Conforming constrained Delaunay triangulation (CCDT) of a PSLG is similar to
the Delaunay triangulation, but every input segment appears as an edge of the

1In structured meshes, all internal nodes have equal number of adjacent elements.
2Unlike structured meshes, every internal node does not require equal number of adjacent

nodes.
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Figure 6.4: Triangulation of a maple leaf with different size constraints

triangulation. Some of the edges of the CCDT are constrained Delaunay. CCDT’s
are not necessarily Delaunay triangulations [30]. In order to make CCDT become
Delaunay triangulation, additional vertices should be inserted into the mesh until
all constraints on minimum angle and maximum area are met. This triangulation
is called a conforming Delaunay triangulation.

The triangulation tool used in this thesis is Triangle [29], which is a well known
unstructured triangular mesh generation program and has many control parame-
ters. Although there are many options in the independently operating Triangle,
the embedded form of Triangle can have only two control parameters because the
GUI of the interactive modeler provides those two input boxes. The two control
parameters are minimum angle and maximum area of triangles. The details of the
GUI is given in Appendix C. Triangle also gives the Voronoi diagram data for
the meshes, which is used for interpolating the leaf mesh nodes. The detail of the
interpolation is discussed in § 7.2.

Figure 6.4 shows two results obtained from applying the CDT to the maple
leaf domain with varying size constraints. The leaf image is given in a square
area of 800 × 800 p2 where ‘p’ stands for pixel. The two size constraints limiting
the maximum size of the triangles are 1,000 p2 and 400 p2, respectively. The
minimum angle constraint is set as 20◦. Figure 6.4 shows that the constraint of
1,000 p2 causes some size irregularities in the triangulation, but the triangulation
with 400 p2 gives uniform and small triangles. The uniform and small triangles
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Figure 6.5: Voronoi diagrams of a maple leaf with different size constraints

are desirable because rendering of the mesh shows smooth surface and minimize
shadow artifacts. However, as the maximum area constraint becomes smaller, the
calculation time and the number of triangles increase.

Table 6.1 shows this trend in a quantitative way. Since the leaf domain is so
complicate, there is no simple relationship between the triangle numbers and the
constraint size. For example, from Table 6.1, when the area constraint changes in

Table 6.1: Effects of the area constraint on the triangulation.

Maximum size Maple leaf (minimum angle = 20◦)
(square-pixel) nodes edges triangles

300 726 1,920 1,195
400 626 1,621 996
500 575 1,469 895
600 549 1,391 843
700 528 1,329 802
800 520 1,306 787
900 511 1,279 769
1000 508 1,270 763
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Figure 6.6: Change in the venation model by conforming DT

600 ∼ 1000 p2, there is no significant changes in the triangle numbers because the
minimum angle constraint is more important in the actual triangle size. While tri-
angulating the leaf, the Voronoi diagram is obtained, which is used in transforming
the shape. The Voronoi diagrams are shown in Figure 6.5.

6.2.2 Updating the Venation Model

The triangulation process (CDT) of the leaf domain, which is defined by the bound-
ary and constrained by the venation, adds new mesh nodes to the constrained edges
that form the boundary and the veins. These new nodes must also be added to the
venation model. Updating the venation model after the triangulation is based on
the property that the new nodes for the venation model are always created on the
original straight lines of the vein, which is shown in Figure 6.6.

The update scans the list of nodes in the original venation model. For a node,
v in the original venation, let S be a segment of the venation starting at v. The
sequence of mesh nodes on S can be identified iteratively by finding the mesh
neighboring node of v in the direction of S. For this, it is necessary to be able to
access the neighboring nodes of each mesh node. The update of the venation model
can be done by the following algorithm that automatically updates the venation
model after the triangulating the leaf domain.
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Preprocess for updating

Make a neighboring node pointer array for every node in the leaf mesh. The
node pointer arrays are stored in a container which is used for querying about
neighboring nodes of a node. Let V o

i , where i = 0, . . . , nV − 1, be vein i in
the original venation model and vij, where j = 0, . . . , nVi

− 1, be node j in
V o

i . Let V u
i stand for the updated i− th vein of the venation model.

Main routine for updating

For i = 0, . . . , nV − 1, do

For j = 0, . . . , nV o
i
− 1, do

v ← vij.

put vij into V u
i .

While (j 6= nV o
i
− 1 && v 6= vi(j+1)), do

find a neighboring node vn of v such that vvn ‖ vvi(j+1).

put vn into V u
i .

v ← vn.

endWhile

endFor

endFor
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Chapter 7

Generation of a 3D Leaf Shape

A 3D leaf shape is generated in the form of a 3D parametric surface, which is
obtained by transforming the 2D leaf veins into 3D veins and interpolating the
nodal points of the 2D leaf mesh into 3D, using the 3D veins. This idea is to use
the leaf venation as an embedded skeleton in the leaf and the leaf blade tissue as
a ‘skin’ spanned by the skeleton. Since the skin is assumed very flexible and the
skeleton is assumed very stiff, once the skeleton has a specific shape, the skin is
stretched or shrunk to conform the skeleton shape. As mentioned earlier, for a
general dicot leaf, its low order veins are responsible for the mechanical stability
of the leaf, so such shape modeling technique can give a botanically plausible 3D
shape of the leaf.

The transformation of 2D leaf veins into 3D veins is done interactively by using
the modeling tool developed in this thesis (see Appendix C). Then, the leaf blade
mesh nodes are transformed to conform to the transformed vein curves, which
is automatically done by interpolation using the FVM, which will be discussed in
Appendix B. The processes of transforming veins and interpolating leaf blade nodes
are discussed in the following two sections.

7.1 Transformation of Leaf Venation

The basic assumptions for transforming 2D veins into 3D veins used in this thesis
are two; the first one is that a vein is not stretchable, that is, the vein length is fixed
and the second is that the vein cannot be twisted. The first assumption is made
not to change the overall size of the leaf while transforming its veins. Although this
assumption limits interesting applications in the shape modeling like the growth of
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the leaf or the morphing of the leaf, such an assumption is helpful in preventing
a user’s modeling mistake. Of course, this assumption can be eliminate later by
allowing for a user to select whether the vein length is stretchable or not.

The second assumption is introduced to make the vein transformation algorithm
simple without any significant loss of accuracy. Based on this assumption, an edge
in a leaf vein cannot spin about its axis. The basic user interactive operation for
the leaf shape modeling is the rotation of a vein edge about its node closest to the
vein’s root node. This node is referred to as the hinge node of the edge. Since the
leaf venation is a hierarchical skeleton system, the sub-trees appending this edge
rotate with it as if they are a rigid body, which is shown in Figure 7.1.

The interactive modeler uses three windows that provide 3 orthogonal views of
the veins, a front view (X-Y), a side view (Y-Z) and a bottom view (Z-X). In the
shape modeling, the subtree rotations are accomplished by 2D rotations in these
windows. In fact, since a vein does not elongate or shorten, a user’s translational
drag of the target node1 by using the mouse is expressed by a rotational move of
the edge (see Figure 7.1).

7.1.1 The Method of Controlling Individual Nodes

The leaf shape modeling scheme developed in this thesis uses two different ways
for transforming the 2D leaf veins into the 3D veins, which are complement to each
other. The first one is to control every node except a root node in a vein, on the
other hand, the second one is to use a temporary curve for transforming veins.

Here, a root node of a primary vein is the node connecting to a petiole and a root
node of a higher order vein is the node connecting to the parent vein (see § 6.1.2).
If a node in a vein is selected to move, then the node can be rotated about its
hinge node close to the root node of the vein, which is shown in Figure 7.1. In the
first method, when a node in a vein is rotated about its hinge node, all descendant
veins branching out from the vein after the hinge node are rotated together. This
motion can be easily obtained because the leaf venation model is hierarchical. The
following pseudo recursive routine shows how such hierarchical motions are made.

1This node is one of two nodes in the controllable edge, which is a distant node from the root
node of the corresponding vein. The node close to the root node is a hinge node. When a user
clicks a node to move, the node becomes the target node automatically: the corresponding hinge
node is also automatically determined according to the above rule. See Figure 7.1.
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/* Vein and Node class header files are shown

in the previous chapter. */

rotateEdge (float ang, Vein V, Node hingeNode, Node targetNode)

{

for a node v in V starting from targetNode, do

{

rotate v around hingeNode by the angle ang;

for a child vein VC of V branching out from v, do

call rotateEdge (ang, VC, hingeNode, v);

}

}

Since only rotational motions of the node about its hinge node are allowed, the
segment lengths of the edges do not change. Therefore, the overall size characteris-
tics of the leaf are preserved under such transformation. This scheme is analogous
to moving a bone in a human skeleton, that is, rotating a upper arm causes to

Figure 7.1: Basic concept of moving a node
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rotate its appendages including its lower arm, a hand connecting to the lower arm,
and so forth.

The individual control of many nodes makes the detail local shaping of the veins
possible and this scheme is simple to implement. However, there may be too many
nodes in a vein to control individually, so it may be tedious to rotate every nodes in
order to make a specific leaf shape. In order to alleviate such difficulty, the second
method of transforming vein curves is proposed in the following subsection.

7.1.2 The Method of Using Spline Curves for Veins

The main difficulty of interactively modeling the 3D position of every node in
veins is the fact that there are too many nodes to be controlled. Therefore, if a
small number of nodes are selected and the vein curve can be changed close to a
spline curve specified by a user using only those nodes, then transforming the veins
becomes much easier than the previous method of controlling individual nodes. The
main idea of this method of using spline curves is basically to reduce the degree of
freedom of each veins by replacing it with a spline curve, which is constructed by
a small number of nodes in the vein. The basic idea of this method is illustrated
in Figure 7.2.

The method using spline curves starts from calculating the length of the each
line segment of the veins because the length is used as a parameter for calculating
new nodal coordinates. The vein segment lengths are calculated and stored just
after updating the venation model. Therefore this procedure can be regarded as
a preprocess. First, the control nodes for one vein are selected interactively (Fig-
ure 7.2 (a)). The control nodes should be chosen based on which part of the vein
is transformed. The root and the tip nodes of the vein must be selected. Second,
construct a temporary vein with only those nodes (Figure 7.2 (b)). Third, mod-
ify the temporary vein as if the new vein represents the original vein (Figure 7.2
(c)). Unlike the previous method, any descendant veins do not move at this time.
Fourth, now a spline curve which interpolates the nodes of the temporary vein is
constructed (Figure 7.2 (d)). Fifth, the original nodes are mapped onto the spline
curve by using the parameters calculated at the preprocessing stage (Figure 7.2
(e)). Sixth, recover the original vein by automating the method of controlling in-
dividual nodes, which is described in the previous subsection (Figure 7.2 (f)). At
this stage, all nodes except the root node in the vein are rotated so that the nodes
on the transformed curve may be close to the nodes mapped on the spline. At this
time, all descendant veins are moved by the recursive routine mentioned.
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Figure 7.2: Schematics of using splines for transforming veins
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The two methods for transforming vein curves are not entirely different meth-
ods. In fact, the second method of using a temporary spline curve uses the first
method of controlling individual nodes as a subroutine at its final stage of the
vein modification. The second method has an easy interface because there can be
small number of nodes and can make a smooth vein curve more easily than the
first method because the second method uses spline curves as an intermediate step.
These two methods can be used together in a mixed mode, that is, with the second
method, the overall vein curves can be easily modified and with the first method,
the local details of the vein curves can be changed. Therefore, the two methods
complement each other.

7.2 Interpolation of a Leaf Mesh

The nodes in the leaf blade meshes which are obtained by triangulating the leaf
domain with the vein constraints in 2D, are interpolated to give a 3D shape by using
the transformed veins in 3D. Basically, the idea of the interpolation is based on the
assumption that the veins of the leaf are uniformly spread over the leaf blade, so
any node of the mesh is well surrounded by the constraining veins of which shapes
are already known and fixed. As mentioned earlier, for the leaves where low order
veins play a great role in providing the mechanical stability, the low order veins
generally cover the whole leaf domain. For such leaves, the interpolation of the
nodes using the vein constraints can give photo-realistic results.

The leaf blade mesh nodes are interpolated to conform to the veins transformed
in 3D using Laplace interpolation [32]. Let f(r, s) = (x(r, s), y(r, s), z(r, s)) be
the function representing the 3D leaf mesh shape, where r and s are parameters
for a position in the 2D leaf domain Ω. Let ∂Ω stand for the outline of the leaf of
Chapter 5 and let Γ be the updated 2D leaf venation which is interactively modeled
and automatically updated during the triangulation as discussed in Chapter 6.
There are two kinds of boundary conditions applied to the domain Ω, the one is a
Neumann boundary condition defined at ∂Ω because ∂Ω is considered as free and
the other is a Dirichlet boundary condition2 defined at Γ, which are illustrated in
Figure 7.3. Let g(r, s) be the forced boundary condition at Γ which is given by
the 3D vein curves modeled interactively as discussed in § 7.1. The interpolation
problem is mathematically defined as follows.

2Although the leaf venation is not the boundary of the domain, the position coordinates of the
leaf venation are treated as if these are Dirichlet boundary condition.
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Figure 7.3: Interpolation of 3D leaf surface coordinates

∇2f =
∂2f

∂r2
+

∂2f

∂s2
= 0 for (r, s) ∈ Ω

f(r, s) = g(r, s) for (r, s) ∈ Γ (7.1)

∂f

∂n
= 0 for (r, s) ∈ ∂Ω

Functions that satisfy Laplace’s equation, ∇2F = 0, are called harmonic func-
tions. The Laplace equation is interpreted as a partial differential equation govern-
ing an elastic membrane problem [25]. The function f specified by Equation 7.1 can
be viewed as 3 harmonic functions defined in Ω that interpolates g(r, s) on Γ. The
application of this mathematical concept to the leaves with complicated boundaries
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starts from discretizing the domain Ω into simple geometrical shapes like triangles.
The parameters r and s represents the coordinates of the nodes in the discretized
2D domain Ω. The coordinates of the transformed veins in 3D space are treated
as the discretized values of g at Γ. Now the Laplace interpolation problem of the
leaf mesh is solved by a finite volume method (FVM) defined for the discretized
domain. The details of FVM in this application is described in Appendix B.

The procedure developed in this chapter is summarized as follows. First, the
veins of the venation model are transformed using the methods developed in Sec-
tion 7.1. Then, the leaf mesh nodes are interpolated conforming the transformed
veins. Finally, texture mapping gives a realistic image to the interpolated mesh
model. The rendered images shown in Figure 7.4 are obtained using OpenGL [35].
OpenGL rendering can be done in real time, so this quick feedback helps a user to
model a leaf interactively. If the user is satisfied with the the resultant leaf shape,
then the mesh model can be exported to a off-line renderer like POV-Ray [24]. Oth-
erwise, the user can repeat the above procedure. The application examples for a
maple leaf and a chestnut leaf are given in Figure 7.4 and 7.5. Figure 7.4 (a) shows
that small sub-lobes beside the three main lobes are bent a little upward. On the
other hand, Figure 7.4 (b) shows the same maple leaf but with slightly bent tips.
Figure 7.5 shows two chestnut leaves with a same venation model. In Figure 7.5
(a), the chestnut leaf blade is bent about its midrib slightly, but in Figure 7.5 (b),
the blade is bent more significantly.

In reality, however, there are some leaves where strong leaf blades are responsible
for their structural stability. These leaves have vague venation patterns or some
regions of the leaf blade are not properly covered by the veins. For these leaves,
the interpolation using the venation model based on the apparent veins may give
poor results. For example, there may be unnatural wrinkles in the resultant 3D leaf
shape. In order to prevent such undesirable interpolation, several methods can be
considered. A more accurate approach is to include the stiffness of the leaf blade
by using the finite element method (FEM). Although this method may solve such
interpolation problem, it creates many other difficult problems. One of those is to
measure the material properties of the leaf blade, for example, Young’s modulus
E3. Therefore, in this thesis, artificial veins which have no physical dimension in
their thickness, may be introduced to improve the interpolation quality in order to
avoid such complicate procedure and those fictitious veins do not appear in their
rendering.

3The ratio of the stress to the strain in a material [9].
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Figure 7.4: Transforming venation and interpolating mesh of a maple leaf
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Figure 7.5: Transforming venation and interpolating mesh of a chestnut leaf
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Chapter 8

Interactive Modeling of a 3D Leaf
Shape

8.1 Interactive Modeler of a Leaf

An interactive modeler has been developed to help a user to model plant leaf shapes
as realistically as possible. The operating system where the modeler is developed is
Microsoft Windows XP and the language used for the modeler is Microsoft Visual
C++. Qt1 [4] library for Visual C++ is used for constructing the GUI and the
OpenGL [35] API is used for rendering the leaf mesh model in real time. As
mentioned in § 6.2, the mesh generating routine uses Triangle [29]. According to
the guideline enclosed in Triangle distribution package for Unix and Linux operating
systems, the source code is slightly modified so that the mesh generation tool is
embedded in the interactive modeler. The modeler has the following capabilities
and most of them are explained in the previous chapters.

• Capturing a leaf profile and simplifying the profile (Chapter 5).

• Creating a venation model and generating a mesh model of the leaf (Chap-
ter 6).

• Transforming the venation model and interpolating the mesh (Chapter 7)

• Rendering the mesh model with the leaf image as an instant feedback, where
the rendering is done through OpenGL.

1An open source graphics library for the Microsoft Windows and the X Window System on
GNU/Linux, which is used by programmers to create buttons, menus, and other graphical objects.
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• Save and load the leaf venation and mesh model for later modification.

• Export the mesh model to an off-line renderer.

Like most organic materials, plant leaves, especially dicot leaves, are generally
very complicate in their shapes. Manual generation of such complex models for
the leaves is not impossible but very tedious, so a modeling tool to facilitate the
modeling processes described in the previous chapters is indispensable. The mod-
eler makes it easy to generate many realistic variants from a leaf shape model by
transforming the venation model differently, which is the greatest benefit in using
such a modeler.

Figure 8.1: Structure of the interactive modeler

The graphic user interface (GUI) of the modeler is shown in Figure 8.1. The
GUI is partitioned into 3 parts to use the limited space efficiently. The first part is
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a square window shown in the left of the GUI, which contains 4 different working
panes. The window can show one working pane at a time or four panes by splitting
the window into four quadrants, which is shown in Figure 8.2. The second part is
located in the top-right of the GUI. This part has a spin box for selecting which
working pane to use and buttons for zooming a specific region in the working pane,
where the region is specified by the user. The bottom-right part has five tab menus,
which are providing the functions mentioned above. The details of the tab menus
are described in Appendix C.

Figure 8.2: Working panes in the interactive modeler

The working pane shown in Figure 8.1 has a fixed size of 800 × 800 p2, where
‘p’ stands for pixel. The square size for the marching squares and the tolerance
for the simplification of the profile are given in p while the maximum size criteria
for meshing is given in p2. The purpose of using such pixel unit is to normalize
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Figure 8.3: Perspective view in the interactive modeler

the physical characteristics of the leaf model because the leaf image size is fixed to
800×800. The venation model for the chestnut leaf shown in Figure 8.1 is generated
in a hierarchical manner. First, a primary vein is created by clicking the mouse
at positions where the nodes of the primary veins are located. Primary veins have
their root nodes on the leaf boundary where the petiole is connected. Then, child
veins branching out from their parent veins are created. Therefore, there should
be a node where a parent vein and a child vein are supposed to connect. Using the
leaf image as a background layer image, a user can make a venation model for the
leaf with ease.

As mentioned in Chapter 2, Hammel et al. [14] proposed the automatic gen-
eration of leaf venation by using L-system and leaf boundary by using implicit
functions along the venation. Their method can be fully automatic in generating
the leaf venation and margin, but the resulting venation and margin are not satis-
factory because the appearance of the leaf is far from being realistic. Mündermann
et al. [21] generated the leaf venation mathematically by extracting the medial axis
from the scanned leaf image. However, the leaf venation by their method is not
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acceptable because the medial axis is much different from the real venation of the
leaf. Although their methods can be improved by adding probabilistic components,
at present the interactive modeling of the leaf venation used in this thesis seems to
give most realistic venation.

The working pane shown in Figure 8.1 can be split into four sub-panes of which
size is 400 × 400. These four panes shown in Figure 8.2 are used specially for
transforming veins. This kind of GUI is a popular form of GUI found in many
3D modelers like Maya2. The top-left pane is the default pane which appears at
starting the modeler and shows a front view (X-Y). This pane is the main working
place for extracting a leaf profile, creating a leaf venation model, etc. The top-right
(a side view, Y-Z) and the bottom-left (a bottom view, Z-X) panes are auxiliary
panes for transforming veins where only one vein is shown in order to avoid any
confusion with other veins.

Unlike the above mentioned three working panes, the last pane, which is the
bottom-right pane in the working window, is not working place. That is, a user
cannot modify anything about the leaf model in this pane. It just shows a per-
spective view of the venation model, the mesh model or the rendering of the mesh
model through OpenGL. The purpose of this pane is to give the user an instant
feedback of the model the user is currently making. The perspective view can be
given with a various viewing angle because the model can be rotate around x, y or
z axis of the model by using the slide bars in the last tab menu, which is shown in
Figure 8.3. If the user is satisfied with the model he has made, the venation model
or the mesh model can be saved for later uses and the mesh model of the leaf shape
can be exported to an off-line renderer.

8.2 Rendering Leaves

The interactive modeler described in the previous section provides a real-time ren-
dering for the leaf which is based on OpenGL functions like texture mapping and
transformation. The rendering through OpenGL is very fast, so such rendering is
helpful for a user to get a instant feedback to his/her shape modeling. However, the
rendering based on OpenGL is not very satisfactory in its quality because it is not
easy to provide proper light conditions, material properties and so forth. To circum-
vent this difficulty, the modeler has a capability to export the leaf shape model to
other off-line renderers like POV-Ray [24]. Such off-line renderers in general use ray

2Maya from Alias is an integrated graphics software providing 3D modeling, animation, effects,
and rendering solution.
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tracing techniques to give high quality rendering, that is, many sophisticated effects
like anti-aliasing and soft shadow are available without complicated programming.
Although most ray tracers are commercial, POV-Ray is a copyrighted freeware ray
tracer to provide a lot of excellent rendering functions. Therefore, the modeler has
a function to export the mesh model to POV-Ray for high quality rendering while it
has a simple rendering function based on OpenGL to give an instant feedback to a
user. In this section, some ray traced rendering examples are given to demonstrate
the validity of the proposed method.

8.2.1 Common Horse Chestnut Leaves

Chestnut leaves are compound leaves which have blades that are fully divided into
leaflets. In chestnut leaves, leaflets arise from a single point at the top of the leaf
stalk and the leaflets are almost stalkless. It is interesting to know that compound
leaves are usually shed as a single unit. According to [8], the botanical name of
the common horse chestnut is ‘Aesculus hippocastanum’ and the common horse
chestnut tree is vigorous, spreading, rounded trees with 5 to 7 palmate, mid-green
leaves consisting of obovate leaflets, 30 cm or long. Some of leaves turn deep yellow
or red in autumn.

A chestnut leaflet, which is shown in Figure 8.4, is modeled into several shapes
simulating changes which are usually observed in common chestnut trees at the
change of seasons. The corresponding ray-traced images are shown in Figure 8.5.
In case of the chestnut leaflet, there is a primary vein, a lot of secondary veins and
several tertiary veins. The primary vein is very thick and strong, so the curvature of
the vein is normally small, however, the secondary veins may have high curvatures
because of their low stiffness. If the leaflet is extremely dried, then the primary vein
can have a rather high curvature and the secondary veins are severely deformed,
so almost wrapped like a roll cake. The compound leaves consisting of the various
shaped leaflets are shown in Figure 8.6. The rendering images look realistic, and
demonstrate that the proposed method and the interactive modeler are suitable for
modeling shapes of plant leaves in a botanically faithful manner.

The veins existing in the chestnut leaflet are modeled and rendered using gen-
eralized cylinders. Although the cross-section of the generalized cylinder is circular
whereas the cross-sections of the actual veins are not so regularly shaped, the in-
troduction of the generalized cylinder for the leaf vein dramatically improves the
realistic appearance of the rendering images. Figure 8.7 shows how realistic the
rendering images of the chestnut leaflet looks when the shadow lines appear be-
cause of the veins. If the cross-section of the generalized cylinder has more natural
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shapes, then the rendering image can be enhanced and more realistic.

8.2.2 Maple Leaves

There are many kinds of maple trees. Among them, silver and sugar maple trees
are very common in Ontario, Canada. According to [8], the botanical name of the
silver maple is ‘Acer saccharinum’ and the silver maple is spreading, fast-growing,
deciduous tree, often with pendent branches. The silver maple leaves are sharply-
toothed, shallowly to deeply 5 lobed leaves, 10 to 20 cm long. The leaves are lightly
green above, silvery white beneath, and turn yellow to orange or red in autumn.

Several maple leaves are modeled starting from a silver maple, which is shown
in Figure 8.8. Those leaf models are simulating the aging phenomena of the maple
leaves. When the leaf is young, the shape is almost flat, but as the season turns
from spring to autumn, the the leaf blade becomes dried and distorted while the
leaf color is turning orange or red. The shape deformation according to the season
changes is not deterministic but tends to follow the deformation of the venation as
mentioned in Chapter 3. The rendering images of several different shapes of the
silver maple leaf are shown in Figure 8.9.

The maple leaves shown in Figure 8.10 make a realistic scene against a back-
ground of light gray and yellowish wooden fence. In total, 6 maple leaves are
hanging on a twig of a silver maple tree. The sun light casts the interesting shadow
of the leaves in the bottom left of the scene. The petioles and veins are modeled
with generalized cylinders. Although the scene itself is not entirely biologically pre-
dictable since there are both greenish and reddish leaves in a twig, it has a overall
natural appearance. This scene shows that the proposed method is suitable for
modeling realistic plant leaves.
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Figure 8.4: Sunny and shadow sides of a horse chestnut leaf

Figure 8.5: Chestnut leaves simulating aging phenomena (getting older in clockwise)
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Figure 8.6: Compound chestnut leaves consisting of different aged leaflets
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Figure 8.7: Moving shadow lines while the sun is moving
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Figure 8.8: Sunny and shadow sides of a silver maple leaf

Figure 8.9: Maple leaves simulating aging phenomena (getting older in clockwise)
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Figure 8.10: A twig with different aged silver maple leaves
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis, a novel shape modeling method of plant leaves has been presented.
The main idea of the method is based on the premise that the leaf venation is
responsible for the leaf structural stability. In this method, the leaf venation is
modeled as a hierarchical skeleton. Two methods for deforming the skeleton, which
complement each other, have been developed: one is to control individual joints
of the skeleton, on the other hand, the other is to control the skeleton through an
intermediate spline approximation. Then the leaf blade, which forms the realistic
leaf shape, deforms conforming to the transformed skeleton.

An interactive modeler has been developed to help a user to model and deform
the leaf venation quickly as well as easily. Interactive manipulation of the skeleton
model and real-time rendering with OpenGL API are two important characteristics
of the modeler. With the interactive modeler, several leaf clusters, which are maple
and chestnut leaves, were modeled and rendered using POV-Ray. The ray traced
images look very realistic, so the rendered images prove that the proposed method
is very promising in shape modeling of plant leaves.
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9.2 Future Work

Multi-resolution Leaf Shape Modeling

Although the number of nodes in a leaf mesh model used in this thesis is at most
two thousands, in general there are several hundred of thousands such leaves in a
mature tree. Therefore, it is almost impossible to use the leaf mesh model with
several thousand nodes in the level of a full grown tree. Multi-resolution mesh
models, where the mesh complexity varies depending on the level of detail, are
commonly used to alleviate this problem [17]. If the mesh model proposed in this
thesis is capable of changing its complexity according to the required level of detail,
its applicability will be greatly increased.

Keyframe Animation Using the Leaf Shape Model

Even though the number of nodes in a practical leaf mesh model is at least a
thousand, the number of joints in the skeleton can be reduced to a manageable
level, that is, less than a twentieth of the total nodes. Keyframes can made with
this simplified skeleton embedded in the mesh model and then the remaining frames
will be interpolated using the simplified skeletons in the keyframes. Animation of
realistic looking leaves will dramatically improve the reality of outdoor scenes with
the leaves. Further research is necessary to determine how to make such keyframes
and how to interpolate intermediate scenes.
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Appendix A

Some Background of Botany

A.1 Plant Classification (excerpted from [8])

The plant kingdom, Plantae, is divided into progressively smaller groups according
to shared botanical characteristics, usually represented as a family tree. The most
basic division is between vascular and non-vascular plants [8]. Primitive, non-
vascular plants, such as liverworts1 and mosses2, lack conductive tissue for the
circulation of water and nutrients, and are thus confined to a moist environment.
Vascular plants, on the other hand, which include both flowering and non-flowering
plants, are very diverse and the adaptability of their root and shoot3 systems have
enabled them to thrive in many habitats.

Vascular plants that bear seed are divided into gymnosperms and angiosperms [8].
Gymnosperms produce seed that is only partly enclosed by tissues from the parent
plant. Conifers normally bear seed on the scales of cones. Angiosperms, which
are usually referred to as flowering plants, produce seed in an ovary - a protective
chamber that forms part of the fruit when seed ripen and often aids in their dis-
persal. They are further defined as monocotyledons or dicotyledons, according to
their seed leaves and other differences in their anatomy and growth patterns [8].
Monocots have a single seed leaf, leaves with veins that run parallel to their length,
slender, non-woody stems (except in palms). Dicots have two seed leaves. Apart

1Any of numerous small green nonvascular plants of the class Hepaticopsida growing in wet
places and resembling green seaweeds or leafy mosses.

2Any of various other unrelated plants having a similar appearance or manner of growth, such
as the club moss, Irish moss, and Spanish moss.

3A bud, young leaf, or other new growth on a plant.
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from two seed leaves, dicots have other distinctive anatomical features. Their adult
leaves (those other than the seed leaves) have veins, usually arranged in a net-like
pattern with a distinctive central vein or midrib, and the base of the leaf usually
tapers to a point (see Figure 3.1).

A.2 Anatomy of a Dicot Leaf (excerpted from [10])

Figure A.1: Anatomy of a dicot leaf midvein (Ligustrum) (redrawn from [7])

An anatomy of a typical dicot leaf midrib4 is illustrated in Figure A.1 [7]. The
blade consists of an upper and lower epidermis and a spongy layer of tissue, called
the mesophyll [10]. The epidermis is the leaf blade’s skin. It is a thin, usually
transparent, colorless layer of cells that covers both the upper and lower surfaces
of the blade. The epidermis prevents the leaf from losing excessive amounts of
water and protects it against injury. In most plants the epidermis is covered with

4The vein in the center of a leaf, the primary vein of the leaf.

69



cutin, a waxy substance secreted by the epidermal cells. The layer of cutin, called
the cuticle, is responsible for the glossy appearance of some leaves. The midrib is
enclosed with collenchyma cells, which have thick cellulose cell walls thickened at
the corners and serve as supporting and strengthening the vein [10]. As shown in
Figure A.1, the low order veins up the third order are thick and strengthened parts
in the leaf blade, so they usually play an important role in the structural stability
of the leaf. In general, veins are running through the middle of the mesophyll and
branching out to all of its cells. The veins extend into the petiole and connect with
other veins in the stem of the plant.

Dicot leaves usually present a differentiated mesophyll which is responsible for
their bifacial appearance, that is, the abaxial surfaces look pale because they have
higher reflectance. Monocots usually present an undifferentiate mesophyll and have
a unifacial appearance [3].

A.3 Mechanical Aspects of Leaf Venation

(excerpted from [28])

A major function of the veins is to help support the leaf blade [28]. Each type of
plant has a characteristic pattern of veins forming lines and ridges in the blade. The
veins of a leaf are made up of two specialized tissues, xylem and phloem, which are
shown in Figure A.1. Xylem usually forms the upper half of the vein. It consists
of tubular open-ended cells that are arranged end to end. The walls of the cells
are thick and rigid. Xylem conducts water and dissolved minerals to the leaf blade
from the rest of the plant. Phloem lies on the underside of the vein. It is made
up of thin-walled tubular cells with tiny openings at their ends, somewhat like a
sieve. These cells are also arranged end to end. The mechanical stabilization is
based on the lignified xylem and sclerified elements which can be associated with
the conducting bundle system of a leaf [22].

Most commonly, a leaf is a surface structure that maximizes the surface-to-
volume ratio. It is then adequately described as a flat lightweight structure which
is spread by mechanically stabilizing structures, usually the veins (as is the case in,
for example, insect wings). The leaf lamina can thus be viewed as a stress-skin panel
or a poly-laminated sandwich which is stiffened and stretched by interconnecting
stringers represented by the leaf veins [23]. Inherent folding or curling can also
contribute to the structural stiffness. Large and mechanically stiff midribs are
desirable, because the greatest mechanical stress occurs along the longitudinal axis
of a leaf. On the whole, the mechanical reinforcement of the leaf blade is primarily
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due to lower order veins, that is, veins up to the third order are responsible for leaf
structural stability.
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Appendix B

Finite Volume Method

B.1 Voronoi Diagram (excerpted from [33])

Consider a set of distinct nodes N = {n0, n1, . . . , nm} in R2. The Voronoi diagram
of the set N is a subdivision of the plane into regions Vi is associated with a node ni,
such that any point in Vi is closer to node ni than to any other node nj ∈ N (j 6= i).
The Voronoi diagram in essence partitions space into closest-point regions, which
is shown in Figure B.1. The region Vi for a node ni within a convex hull is a convex
polygon in R2:

Vi = {x ∈ R2 : d(x,xi) < d(x,xj) ∀j 6= i} (B.1)

where d(xi,xj) is the Euclidean distance between xi and xj.

B.2 Laplace Interpolant (excerpted from [32])

The Voronoi cell, which is shown in Figure B.1, is adopted as the computation cell
and an integral balance law is used to derive the finite difference for the diffusion
operator. Consider the following 2D steady-state diffusion equation with Dirichlet
boundary conditions:

Lf = ∇2f(x) = 0 for x ∈ Ω ⊂ R2 (B.2)

f(x) = g(x) for x ∈ ∂Ω (B.3)
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Figure B.1: Voronoi diagram and natural neighbors

where L is the Laplacian operator, ∇ is the gradient operator, Ω is an open set in
2D, and ∂Ω is the boundary of Ω. The above diffusion equation, which written in
flux form, is used to describe diffusion processes such as heat or mass transfer, or
the potential in electrostatics.

The model diffusion problem in Equation B.2 and B.3 is solved using a finite
difference method. The discrete form for the model problem is written as

Lhf = ∇2f(xi) = 0, i = 0, 1, . . . ,m− 1 for xi ∈ Ω ⊂ R2 (B.4)

f(xi) = g(xi) for xi ∈ ∂Ω (B.5)

where m is the number of the nodes in the domain, Lh is the discrete diffusion
operator, and h denotes a measure of the nodal spacing.

Now, let’s find the discrete approximation for the diffusion operator at node i,
that is, Lhf(xi) given in Equation B.4. The starting point is the balance (conser-
vation) law for the divergence of the flux over the Voronoi cell Vi (see Figure B.1).
The flux form can be written as

(∇ · q)i = lim
Ai→0

∫
Ai
∇ · qdΩ∫
Ai

dΩ
= lim

Ai→0

∫
∂Ai

q · ndΓ

Ai

(B.6)
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where Gauss’ (divergence) theorem has been invoked, and Ai is the area of the
Voronoi cell Vi. Since the flux can be given q = ∇f ,

(∇2f)i = lim
Ai→0

∫
∂Ai
∇f · ndΓ

Ai

= lim
Ai→0

∫
∂Ai

∂f
∂n

dΓ

Ai

(B.7)

To find the discrete form for the diffusion operator, the evaluation of Equa-
tion B.7 on the boundary of the Voronoi cell, Vi and a simple central-difference
(cell-based) approximation for the derivative of f normal to the Voronoi edge (see
Figure B.1) are used.

(Lhf)i =

∫
∂Ai

∂f
∂n

dΓ

Ai

=
1

Ai

n−1∑
j=0

fj − fi

hij

sij = 0 (B.8)

where n is the number of natural neighbors for node i, hij is the distance between
nodes i and j, and sij is the length of the Voronoi edge associated with nodes i and
j (see Figure B.1). Now Equation B.8 can give the following interpolation formulae
for fi with fj, j = 0, 1, . . . , n − 1, which are the values at natural neighbors for
xi.

fi =

∑n−1
j=0

sij

hij
fj∑n−1

j=0
sij

hij

=
n−1∑
j=0

cijfj where cij =

sij

hij∑n−1
k=0

sik

hik

(B.9)

As shown in Figure B.1, the number of the neighboring nodes of node i is
generally quite small compared to the total number of nodes existing in the leaf
model. Therefore the system matrix of which the i-th rows is expressed by the
coefficients in Equation B.9 becomes a sparse matrix. The system interpolation
equations having such a sparse matrix can be efficiently solved by a sparse matrix
solver like SparseIt++ [12].
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Appendix C

Manual of the Interactive Modeler

C.1 Profile Tab Menu

Figure C.1: Profile tab menu
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1. To load an image, push [Load image] button. The image should be square
and in png1 format.

2. To show the loaded image, click the check box labeled ‘Show image’.

3. To binarize the loaded image, set a threshold value for the binarization, which
should be in from 0 to 255, which corresponds to 28−1. The spin box labeled
‘Set threshold’ is used for setting for the threshold value.

4. To show the binarized image, click the check box labeled ‘Show binary’. At
this time, the check box labeled ‘Show image’ should be unchecked.

5. To extract outline of the leaf image, first set the size of the square used in the
marching square using the spin box labeled ‘Square size’, then push [Do
marching] button. The text box labeled ‘Number of Nodes’ shows how
many nodes are generated while applying the marching square method to the
leaf image.

6. To show the node markers, click the check box labeled ‘Show marker’.

7. To show the edge lines, click the check box labeled ‘Show edges’.

8. To decide how faithful to the original boundary the simplified boundary is, set
the tolerance required for the simplifying method using the spin box labeled
‘Deviation tolerance’.

9. To simplify the original boundary with too many unnecessary nodes, push
[Do smoothing] button.

10. To use the model made before, push [Read model] button. Then, a file open
dialog box pops up. A user can select a model data file using the dialog box.

C.2 Vein Tab Menu

1. To edit the nodes which are generated by the marching square method and
reduced by the simplifying method as if the nodes lie on a plastically de-
formable wire, click the check box labeled ‘Node edit mode’. If this box is
checked, then a user freely move a node on the screen.

1This is an acronym for Portable Network Graphics and is an extensible file format for the
lossless, portable, well-compressed storage of raster images.
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Figure C.2: Vein tab menu

2. To delete a node, push [Select node] button and if the color of the node is
changed, then push [Delete node] button. If the node is deleted, then two
neighboring nodes are connected.

3. To add a node between two nodes, first select the select the left node by
pushing [Left node] button, then clicking the left. By the similar way, select
the right node. After pushing [Insert node] button, then click an appropriate
position on the screen where a new node will be located.

4. To create veins, click the check box labeled ‘Create vein mode’.

5. To specify a parent vein, set the parent vein using the spin box labeled ‘Select
parent vein’. If the number is ‘−1’, then it means the newly generated vein
starts from the leaf boundary. The first created vein has ‘0’ and then the vein
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number is increased by 1. If a parent vein is chosen, the color of the vein is
changed, so the user can easily recognize which vein is the parent vein.

6. If a parent vein is selected, then the newly created vein can only start from
the parent vein, that is, the user should select a node in the parent vein as
a starting node. If something wrong happens, then the user can cancels the
vein creation by pushing [Cancel creation] button.

7. When a new node created on the new vein corresponds to a node on the
boundary, the vein creation is automatically ended and the color of the newly
created vein is changed. Then the user should push [Finish creation] button
to complete the vein creation. If the user want to end the vein creation, the
user can push [Finish creation] button even when the end node of the newly
created vein does not reach the boundary.

8. To delete a vein and all its child veins, first select the vein number using the
spin box labeled ‘Select vein num’, then push [Delete vein] button.

C.3 Mesh Tab Menu

Figure C.3: Mesh tab menu
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1. To triangulate the leaf domain using the conforming Delaunay triangulation,
the user should set two parameters to limit the minimum angle and the maxi-
mum area in the triangles generated. Two spin boxes labeled ‘Set minimum
angle’ and ‘Set maximum area’ can be used for setting the parameters.
The default values for the two parameters are 20◦ and 500 p2, respectively.

2. After setting the parameters for the conforming Delaunay triangulation, push
[Mesh generation] button. Once the triangulation is completed, the three
text boxes show how many nodes, edges and triangles are generated.

3. To show the meshes, click the check box labeled ‘Show meshes’.

4. To show the Voronoi cells, which are generated while triangulating the leaf and
required for the Finite Volume Method, click the check box labeled ‘Voronoi
Diagram’.

5. The check box labeled ‘Initialized updated vein’ is used to decide whether
the triangulation update the venation model or not. If a new leaf is modeled,
then this check box is unchecked, which is a default state. If a previous model
is loaded, then this check box is checked.

C.4 Model Tab Menu

1. To transform the venation model, click the check box labeled ‘Vein edit
mode’. If this check box is checked, the split windows show up. However, if
necessary, the user can switch the windows.

2. To select the vein to be transformed, set the vein number using the spin box
labeled ‘Set vein number’. As the vein number changes, the color of the
corresponding vein changes, so the user can easily know which vein is chosen.
If a vein is selected, then the user can modify the vein shape in 3D.

3. Three spin boxes are used set the physical dimensions of the vein like starting
radius, ending radius and offset from the leaf blade. A vein is modeled as a
generalized cylinder in ray-traced rendering.

4. To change the default transformation mode with the reduced control nodes
mode, click the check box labeled ‘control node edit mode’.
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Figure C.4: Model tab menu

5. To select specific control nodes, click the check box labeled ‘Pick control
nodes’. The ‘control node edit mode’ check box should be checked for
selecting control nodes. If user clicks a node on the selected vein, the node
changes its color. The starting node and the ending node should be selected.

6. To transform the selected vein with the reduced control nodes, the check box
labeled ‘Control node edit mode’ should be checked and the check box
labeled ‘Pick control nodes’ should be unchecked. The user can deform
the vein by clicking a control node on the vein and dragging the node while
pressing.

7. To interpolate the leaf blade mesh to conform to the deformed venation model,
push [Apply FVM] button.

8. To synchronize the deformation of the vein to the deformation of the blade,
click the check box labeled ‘Synchronize’. This shows instantly the deformed
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blade whenever the user transforms the vein.

C.5 Render Tab Menu

Figure C.5: Render tab menu

1. To show an OpenGL rendering image texture mapped with the loaded image,
click the check box labeled ‘Apply shading’.

2. To remove the overlayed meshes, which is default, uncheck the ‘Overlay
meshes’ check box.

3. The 3 slide bars are used to rotate the leaf mesh model with respect to x, y
and z axes of the leaf. Therefore, the user can control the perspective view
of the OpenGL rendering image.
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4. To set the coordinates of a specific node as 0, 0, 0, click the check box labeled
‘Base node select’, then click the node.

5. To save the mesh model for later modification, push [Save model] button.
Then a file save dialog box shows up and the user can save the model.

6. To export the mesh model for an off-line ray tracer, which is POV-Ray [24],
push [Save file] button. See Figure C.6 for the sample export file.

7. To save the current screen as an image file, push one of 4 buttons in the ‘Save
image’ box.
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Figure C.6: A sample export file to POV-Ray [24]
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protrusion, 36

Qt, 54

rachis, 6
ray tracing, 59
real-time rendering, 58
recursive routine, 45, 47
redundant constraint, 37
RGB color, 18, 20
root node, 45
rotational move, 45

scanner, 19
scanning, 12, 18
secondary vein, 6, 9, 36, 59
seed leaf, 68
self shadowing, 19
shadow line, 59
shadow side, 10, 13, 18
shallowly lobed, 10
shape modeling, 1, 5, 12, 45
simplification algorithm, 13, 28, 30
size characteristics, 46
skeleton, 1, 6, 67
skin, 44
slide bar, 58
sparse matrix, 74
spline curve, 16, 47, 49
stalk, 8
stiffness, 59, 70
structural stability, 1, 34, 38, 70, 71
structured meshes, 39
sub-pane, 58
sunny side, 13, 18

tab menu, 56
target node, 45

tertiary vein, 10, 36, 59
texture image, 2
texture map, 5, 20
texture mapping, 16, 18, 58
transformation algorithm, 45
translational drag, 45
tree-like venation, 34, 37
Triangle, 15, 40, 54
triangulation, 2, 15, 34, 37, 39, 42, 49

unstructured meshes, 2, 16, 39
updating algorithm, 42

vascular, 68
vein classification, 35
vein constraints, 49
vein modeling, 37
vein ordering, 36
vein transformation, 15
venation architecture, 1
venation model, 15, 42, 45, 47, 55, 57, 58
venation modeling, 13, 36
venation pattern, 6–9
venation system, 38
venation tree, 38
Visual C++, 54
Voronoi cell, 74
Voronoi diagram, 16, 40, 42, 72

Windows XP, 54
working pane, 56
wrinkle, 18, 19

xylem, 69, 70
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