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Abstract

Let F[∂; σ, δ] be a ring of Ore polynomials over a field F, where σ is an auto-
morphism of F and δ is a σ-derivation. In this thesis, we present algorithms to
compute canonical forms of non-singular input matrix of Ore polynomials while
controlling intermediate expression swell. We first give an extension of the algo-
rithm by [Labhalla et al., 1992] to compute the Hermite form of a non-singular
input matrix A ∈ F[∂; σ, δ]n×n. We also give a new fraction-free algorithm to
compute the Popov form P of a non-singular A ∈ F[∂; σ, δ]n×n, accompanied by
an implementation and experimental results that compare it to the best known
algorithms in the literature. Our algorithm is output-sensitive, with a cost that
depends on the orthogonality defect of the input matrix: the sum of the row
degrees in A minus the sum of the row degrees in P. We also use the recent ad-
vances in polynomial matrix computations, including fast inversion and rank
profile computation, to describe an algorithm that computes the transformation
matrix U such that UA = P. This algorithm is asymptotically faster than the
fraction-free algorithm described above, but it has not been implemented yet.
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Chapter 1

Introduction

Ore polynomial rings, also known as skew polynomial rings, are non-commutative
generalisations of univariate polynomial rings, introduced by Oystein Ore [Ore,
1933]. They have a variety of applications, such as modelling recurrence rela-
tions and differential equations [Ore, 1933].

Let F be a field, σ : F 7→ F be an automorphism of F, and δ : F 7→ F be a
σ-derivation such that

δ(a + b) = δ(a) + δ(b)

and
δ(ab) = σ(a)δ(b) + δ(a)b.

The Ore ring F[∂; σ, δ], also called the skew polynomial ring, is the set of all
polynomials in ∂ with coefficients from F. Addition for two Ore polynomials
is defined as for the ordinary polynomials from commutative domains. The
premultiplication of an element a ∈ F by ∂ is defined by the following:

∂a = σ(a)∂ + δ(a).

Often F = k(z), the field of rational functions in z, where k is a field. For
F = k(z), we highlight two important Ore rings.
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i Differential polynomials where σ( f (z)) = f (z) and δ( f (z)) = f ′(z) is the
usual derivative with respect to z. We follow [Giesbrecht and Kim, 2012]
and use F[∂, ′] to denote this Ore ring.

ii The shift case, or time-dependence, where σ( f (z)) = f (z + 1) is the shift
automorphism and δ = 0.

One of the motivations to study the differential polynomial ring is that it
can be used to model linear differential equations. A matrix of differential Ore
polynomials can be used to solve a system of linear differential equation. For
example, the following equation

(2z + 5)
∂2 f (z)

∂z2 + 2
∂ f (z)

∂z
+ 5 f (z) = 0

is equivalent to (
(2z + 5)

∂2

∂z2 + 2
∂

∂z
+ 5

)
f (z) = 0,

and can be modeled by the polynomial

(2z + 5)∂2 + 2∂ + 5 ∈ Q(z)[∂; ′],

with ∂ being the differential operator with respect to z and σ and δ defined as
in i. Then a system of differential equation such as the following

∂ f1(z)
∂z

+ (2z + 5) f1(z) + 5
∂2 f2(z)

∂z2 + z
∂ f2(z)

∂z
+ (z2 − z) f3(z) = 0

2
∂2 f1(z)

∂z2 + (3z3 + 1) f1(z) + z2 ∂3 f2(z)
∂z3 + (z− 2) f2(z) + (z + 1)

∂ f3(z)
∂z

+ 3 f3(z) = 0

∂ f1(z)
∂z

+ z2 f1(z) + (3z + 2)
∂2 f2(z)

∂z2 + 4z f2(z) + z2 ∂2 f3(z)
∂z2 + (2z4 + 3z3) f3(z) = 0

can be modeled by
∂ + (2z + 5) 5∂2 + z∂ (z2 − z)

2∂2 + (3z3 + 1) z2∂3 + (z− 2) (z + 1)∂ + 3
∂ + z2 (3z + 2)∂2 + 4z z2∂2 + (2z4 + 3z3)




f1(z)
f2(z)
f3(z)

 =


0
0
0

 . (1.1)
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Similarly, let us consider S to be the shift operator such that

S(z f (z)) = (z + 1) f (z + 1)

and
S( f g)(z) = f (z + 1)g(z + 1).

The Fibonacci sequence 1, 1, 2, 3, 5, · · · = f (1), f (2), f (3), f (4), f (5), . . . satisfies
the following recurrence relation (with S being the shift operator)

S2 f (z) = S f (z) + f (z),

which can be modeled by the polynomial

S2 − S − 1 ∈ Q(z)[S ; σ, δ],

where σ and δ are defined as in ii.

Another example is the recurrence relation

(z2 + 1) f (z + 3) + 5z f (z + 1) + 3z3 f (z) = 0,

which can be modeled by

(z2 + 1)S3 + 5zS + 3z3 ∈ Q(z)[S ; σ, δ].

An Ore ring F[∂; σ, δ] is both a left and right Euclidean ring, with division al-
gorithms which essentially work as for usual univariate polynomials. Ore rings
also admit unique left skew field of fractions. These facts mean that matrices
over Ore rings behave mostly as we are used to: the notions of rank and (non)-
singularity make sense, in particular, and performing row or column operations
on a matrix will not change its rank. Further, two matrices M, M′ ∈ F[∂; σ, δ]n×m

generate the same left row space if and only if there exists U ∈ GLn(F[∂; σ, δ])

such that M = UM′, where GLn(F[∂; σ, δ]) denotes the set of invertible n × n
matrices over F[∂; σ, δ]. We refer to [Draxl, 1983] for the basic skew algebra, or
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[Beckermann et al., 2006, Giesbrecht and Kim, 2012] for discussions particular
to the Ore polynomial case. Also, [M. Bronstein, 2001] gives a well detailed
overview of pseudo linear algebra describing skew polynomials properties, dif-
ference and differential operators.

Row spaces of matrices over Ore polynomial rings arise in studying coupled
systems of such equations. Two matrices A and B generate the same row space
if and only if there is unimodular matrix U such that A = UB. Computing so
called canonical forms of matrices of Ore polynomials allows comparing sys-
tems and finding small or otherwise special elements in the space. In this thesis,
we focus on computing two canonical forms for a square non-singular input
matrix A ∈ k(z)[∂; σ, δ]n×n: the Hermite and the Popov canonical forms which
are left unimodular equivalent to the input matrix.

The Hermite canonical form is upper triangular matrix with each diagonal
entry monic and with degree in ∂ strictly higher than off-diagonal entries in the
same column. For example, in the differential Ore ring Z7(z)[∂; ′], the matrix

A =


1 + (5 + z)∂ + ∂2 5 + 4∂ + 4∂2

4 + 3∂ 2z 4∂ + 4∂2

3 4 + 4∂

 ∈ Z7(z)[∂, ′]3×3 (1.2)

is unimodular left equivalent to its Hermite form

H =


1 6 + 6∂

1 2
z +

2
z ∂

6 + (z + 3)∂ + (z + 3)∂2 + ∂3

 ∈ Z7(z)[∂, ′]3×3.

As illustrated in the above example, the Hermite form can have degrees larger
than the input matrix.

The Popov form is a canonical form of A which has row degrees as small as
possible. First consider a row reduced form of A: a row reduced form is not
canonical but has row degrees, when sorted, that are lexicographically minimal
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among all possible basis of the row space of A (a formal definition is given in
Section 2.1.) For example,

R =


4 + (z + 2)∂ + ∂2 2 + 4∂

4 2z
4 4z 4 + 4∂

 ∈ Z7(z)[∂, ′]3×3

is a row reduced form of A (1.2). The Popov form is the unique row reduced
form of A which satisfies some additional conditions. Each diagonal entry is
monic and has degree in ∂ higher or equal than entries to its left and strictly
higher than entries above it, below it and to its right (a formal definition is given
in Section 2.2). As an example, the matrix A from (1.2) has Popov form

P =


1 + (z + 2)∂ + ∂2 5

2
z 1
6 1 + ∂

 ∈ Z7(z)[∂, ′]3×3.

In coding theory, the base field is usually a finite field, and faster methods
than what we present are possible. In this thesis we mainly focus on the case
where F is infinite, for example F = k(z), even k = Q. When F is infinite, the
infamous problem of intermediate coefficient swell becomes a concern. We use
a linearization technique [Kaltofen et al., 1990, Labhalla et al., 1992, Storjohann,
1994, Giesbrecht and Kim, 2012] which allows us to map the problem back to
the commutative domain where we can use some of the known techniques (e.g.,
modular or fraction-free algorithms) to control coefficient growth.

[Labhalla et al., 1992] gave an algorithm to compute the Hermite form over
a commutative ring of polynomials based on linearization. They show that the
Hermite rows of an input matrix could be recovered from the row echelon form
comutation of a large linearized matrix. We adapt their approach to the Ore case.
We show how their algorithm can be extended to compute the Hermite form of
a square non-singular input matrix of Ore polynomials. We note that the idea of
building a larger matrix than the input and computing the row echelon form to
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recover the rows of the solution has also been used in [Beckermann and Labahn,
2000] and [Jeannerod et al., 2017].

The problem of computing reduced matrices and canonical forms over F[∂; σ, δ]

where F is an infinite field has been studied in the past and different algorithms
have been introduced. [Beckermann et al., 2006, Cheng, 2003] gave a fraction-
free algorithm for computing row reduced matrices of Ore polynomials. Their
approach was based on computing “order basis” as known from F[x] matrix
arithmetic, and using them to retrieve the reduced form. In this thesis we will
review and use some of the properties established in their paper.

A year later, [Cheng and Labahn, 2007] improved on the approach used by
[Beckermann et al., 2006] and gave a modular algorithm for computing the re-
duced form of matrices. [Cheng and Labahn, 2007] improved the overall cost of
computing the row reduced form of matrices (compared to [Beckermann et al.,
2006]). [Cheng and Labahn, 2007] still used an order basis approach but it was
a modular algorithm and not fraction-free.

[P. Davies, 2008] reduce the problem of computing the Popov form to that of
computing the nullspace of the input matrix, a problem for which fraction-free
[Beckermann et al., 2006] and modular algorithms [Cheng and Labahn, 2007]
can be used.

[Giesbrecht and Kim, 2012] gave an algorithm to compute the Hermite form
H of a input matrix A over the ring F[∂; σ, δ]. Their approach consists of lineariz-
ing the input matrix A to a larger matrix over F. They can then use techniques
from commutative domains such as homomorphic imaging. [Giesbrecht and
Kim, 2012] derive good bounds on the degrees in ∂ of the unimodular transfor-
mation matrix U such that UA = H. We will appeal to some of the bounds and
techniques established in [Giesbrecht and Kim, 2012].

In this thesis, we present algorithms to compute the Hermite form and Popov
form of a non-singular square input matrix. We give a detailed cost analysis for
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these algorithms in Chapters 4 and 5 but we will summarize some of these costs
here and compare, to the best of our abilities, with the best algorithms in the
literature. Let A ∈ k(z)[∂; σ, δ]n×n be a non-singular matrix over the Ore ring
F[∂; σ, δ] for F = k(z) where k is a field. Recall that the entries in A are polyno-
mials in ∂ with the coefficients being rational functions in k(z). We can assume,
without loss of generality, by clearing denominators of these coeffcients in k(z),
that A is over k[z][∂; σ, δ].

A running time estimate in terms of operations from k thus involves three
parameters:

• n, the dimension if the square input matrix A.

• d, an upper bound on the degree in ∂ of the entries in A.

• e, an upper bound on the degree in z of the coefficients of the Ore polyno-
mial entries in A.

Our main algorithm for Popov form computation, reported in Chapter 5, con-
structs from A a structured matrix of dimension O(n2d) × O(n2d) over k[z].
It then performs a structured fraction-free Gaussian elimination to recover the
Popov form. The cost of the algorithm is O(nω+2d3 M(n2de)) operations from k.
Here, ω is an exponent for matrix multiplication, and M is a multiplication time:
two polynomials from k[z] of degree strictly less than t can be multiplied in
M(t) operations from k. Assuming ω = 3 and a pseudo-liner multiplication
time, and ignoring logarithmic factors, the cost of our algorithm is then on the
order of n7d4e operations from k. For comparison, the fraction-free algorithm
supporting [Beckermann et al., 2006, Corollary 7.7] seems to require on the or-
der of n9d4e2 operations from k to produce a row reduced form of A, while the
modular algorithm in [Cheng and Labahn, 2007, Theorem 6.2] requires on the
order of n8d4e + n7d3e2 operations from k.
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Now consider the case k = Q. Like before, we assume our input matrix
is over Z[z][∂; σ, δ]. Ignoring logarithmic factors, and again assuming pseudo-
linear integer arithmetic, our algorithm requires on the order of n9d5e log β bit
operations. Here, β is a paramater that depends on the magnitude of integer
coefficients in A. The modular algorithm supporting [P. Davies, 2008, Theo-
rem 6.3] seems to require about n10d5e log β + n9d4e2 log β bit operations.

On the one hand, we point out that the algorithms of [Beckermann et al.,
2006, Cheng and Labahn, 2007] solve a considerably more general problem then
we do in this thesis: their algorithm can be applied to an input matrices of ar-
bitrary shape and rank. Although we hope to consider the rank deficient case
in the future, our analysis currently assumes the input matrix is square non-
singular. On the other hand, the algorithms in [Beckermann et al., 2006, Cheng
and Labahn, 2007] only produce a row reduced form of A and not the canonical
Popov form. In many applications a row reduced form may be sufficient, but in
some cases the canonical Popov form can be asymptotically smaller than a row
reduced form [Jeannerod et al., 2016, Appendix B].

Beyond the improved asymptotic worst case cost estimates we have reported
above, our algorithm has two additional noteworthy features. First, in the shift
case, the worst case running times we have reported above are improved by
a factor of n: the linearized system has a special shape in this case which the
algorithm is able to exploit. Second, for inputs that are are not too far from being
row reduced the running time is asymptotically faster. The orthogonality defect of
A is the difference between the sum of the row degrees in A and the sum of the
row degrees in its Popov form P, denoted by OD(A). Our algorithms reported in
Chapter 5 are output sensitive in the parameter OD(A), which can be as small as
0 and as large as nd. If n 6 OD(A) 6 nd then the running times reported above
are improved by a factor of OD(A)/(nd). For OD(A) < n further improvements
are obtained. In the special case OD(A) = 0, which means the input matrix is
already reduced, the algorithm detects this and avoids the lions share of the
computation, instead applying a fast normalization to transform the input to
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Popov form.

Our extension of [Labhalla et al., 1992] that is described in Chapter 4, which
deterministically compute the Hermite form of A, constructs a linearized ma-
trix of size O(n2d) ×O(n2d) over k[z]. It then performs a Gauss-Jordan elimi-
nation on the linearized matrix and extracts the rows of the Hermite form from
the transformed system. The cost of this algorithm is O(n6d3M(n2de)) opera-
tions from k. For comparison, the algorithm described in [Giesbrecht and Kim,
2012] computes deterministically the Hermite form of an input matrix A of Ore
polynomials in O(n7d3 log(nd)M(n2de)) operations from k. We get an n log(nd)
speed up as the algorithm of [Labhalla et al., 1992] does not need to know the
Hermite row degrees in advance, which is necessary in the approach of [Gies-
brecht and Kim, 2012]. [Giesbrecht and Kim, 2012] do n binary searches to find
the row degrees of the Hermite form which costs n log(nd) operations from k

(hence, the speed up). Then they solve a large linear system to recover the en-
tries of the transformation matrix U | UA = H. [Giesbrecht and Kim, 2012] also
describe a Las Vegas randomized algorithm for computing the Hermite form of
an Ore polynomial matrix with cost O˜(n7d3e) operations in k.

Let A be a n× n non-singular matrix over F[∂; σ, δ] such that deg A 6 d. The
main contributions of this thesis are the followings:

• For the problem of computing the Hermite normal form of A, we give
an extension of the algorithm from [Labhalla et al., 1992] to the Ore case
which improves on the complexity of the deterministic algorithm of [Gies-
brecht and Kim, 2012] (the best algorithm to our knowledge) by a factor of
n log(nd).

• For the problem of computing the Popov normal form of A, we present a
fraction-free output-sensitive algorithm which improves on the modular
approach of [Cheng and Labahn, 2007] (the best algorithm for reduced
form computation to our knowledge) by a factor of n. An implementation
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of this algorithm and timing tables to compare with other algorithms from
the literature are also given.

• We use some recent work related to polynomial matrix computations: rank
profile [Zhou, 2012], structured inverse [Zhou et al., 2014], and linear solv-
ing [Zhou et al., 2014], to present a fast algorithm that computes the uni-
modular transformation matrix U such that UA = P and P is the Popov
form of A.

The rest of this thesis is organized as follows.

In Chapter 2, we give some mathematical definitions and properties that will
be used throughout.

In Chapter 3, we review the Mulders-Storjohann algorithm by [Mulders and
Storjohann, 2003] which can be used to compute a reduced form or a Popov
form, and we show how it can be applied to the Ore case. Then we discuss the
intermediate coefficient swell problem which occurs when Mulders-Storjohann
algorithm, or similar row reductions algorithms, are used. We then review some
modular approaches which can be used to control coefficient growth.

In Chapter 4, we show how we can extend the algorithm by [Labhalla et al.,
1992] to compute the Hermite form of an input matrix A ∈ F[∂; σ, δ]n×n. To do
that we need to linearize the input matrix by mapping it to a larger matrix of size
O(n2d) ×O(n2d) with entries from the field. We then apply Jordan-Gaussian
elimination on the large matrix and retrieve the Hermite form at the end.

In Chapter 5, we present a fast algorithm for Popov form computation of an
input matrix A ∈ F[∂; σ, δ]n×n, F a field. First, we show how to construct an
O(n2d)×O(n2d) block upper triangular matrix with entries from the field. We
then explain how we can exploit the structural properties of the large matrix and
retrieve the Popov form of A. We give a cost analysis in terms of operations from
F and then in terms of operations from k, for F = k(z) and k a field. We also give
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the bit complexity when k = Q(z) for the differential Ore ring Q(z)[∂; ′] (where
σ(z) = z, δ(z) = 1) and the shift Ore ring Q(z)[∂; σ, δ] (where σ(z) = z + 1,
δ(z) = 0). We conclude this chapter by giving some timings and experimental
results. This chapter is joint work with Arne Storjohann and Johan Rosenkilde.

In Chapter 6, We show how we can recover the unimodular transformation
matrix U ∈ F[∂; σ, δ]n×n, after computing the Popov form P ∈ F[∂; σ, δ]n×n, of a
non-singular input matrix A ∈ F[∂; σ, δ]n×n such that UA = P using linear sys-
tem solving. We then give an algorithm to compute the transformation matrix
U directly without having to know the Popov form a priori. The Popov form
can then be obtained immediately by multiplying U mod ∂d+1 by A mod ∂d+1

where d is the degree in ∂ of A.

In Chapter 7, we summarize the different algorithms described in this thesis
and give some future work directions.
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Chapter 2

Preliminaries

For the rest of this thesis, let Ai,j denote the entry in A ∈ F[∂; σ, δ]n×n at the i’th
row and the j’th column. Let rowi A, coli A denote the i’th row and i’th column
of A respectively for 1 6 i 6 n.

Let F[∂; σ, δ] be an Ore polynomial ring. The degree of a row vector ~v ∈
F[∂; σ, δ]1×n, denoted deg~v, is the maximal degree in ∂ of entries of ~v (we de-
fine deg 0 = −∞). For example, if

v = [z∂ | 6z3∂2 | (3z + 1)∂2],

then deg v = 2.

Similarly, the degree of the matrix A ∈ F[∂; σ, δ]n×n, denoted deg A, is the
maximal degree of entries of A. For example, if

A =


z∂ 4 3(z + 1)

(4z2 + 2z)∂ 2z2 ∂2 + z
6∂2 + 2∂ 5z3 (3z + 1)∂3

 ∈ Q(z)[∂; ′]3×3,
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then deg A = 3.

By rdegA we mean the list [d1, d2, . . . , dn] where di is the degree of rowi A,
1 6 i 6 n.

Different Ore rings can be introduced based on the definition of σ and δ.
Next we will list some examples of those rings. Examples i, ii, iv, v, vi, and viii
are also mentioned in Example 2.2 from [Cheng, 2003]. Examples iii and vii are
mentioned in Example 2.1 from [Abramov et al., 2005]. Let f (z) ∈ k(z) be a
rational polynomial function in z, for F = k(z) and k a field.

i The ring of differential polynomials where σ( f (z)) = f (z) and δ( f (z)) = f ′(z)
is the usual derivative with respect to z. We will follow [Giesbrecht and
Kim, 2012] and use k(z)[∂; ′] notation to describe it. ∂ here represents the
differential operator.

ii The ring F[∂; σ, δ] where σ is the shift automorphism and δ is the zero map:
σ( f (z)) = S( f (z)) = f (z + 1) and δ( f (z)) = 0. S here represents the shift
operator.

iii The ring F[∂; σ, δ] where σ( f (z)) = f (z + 1) and δ( f (z)) = f (z + 1)− f (z).
∂ here represents the difference operator.

iv The ring F(z, q)[∂; σ, δ] where σ( f (z)) = f (qz) and δ( f (z)) = 0. ∂ here
represents the q-shift operator.

v The ring F(z, k)[∂; σ, δ] where σ( f (z)) = f (zk) and δ( f (z)) = 0. ∂ here rep-
resents the Mahlerian operator.

vi The ring F[∂; σ, δ] where σ( f (z)) = f (z) and δ( f (z)) = z f ′(z). ∂ here repre-
sents the Eulerian operator.

vii The ring F(z, q)[∂; σ, δ] where σ( f (z)) = f (qz) and δ( f (z)) = f (qz)− f (z).
∂ here represents the q-difference operator.

viii The ring F(z, q)[∂; σ, δ] where σ( f (z)) = f (qz) and δ( f (z)) = f (qz)− f (z)
(q−1)z . ∂

here represents the q-differentiation operator.
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2.1 Rank

For a matrix A ∈ F[∂; σ, δ]n×n, we denote by the rank the number of rows of
A which are linearly left-independent (the left space spanned by A’s rows). As
shown by [Giesbrecht and Kim, 2012, Beckermann et al., 2006], row operations
on an input matrix of Ore polynomials will not change its rank. Also, two ma-
trices M, M′ ∈ F[∂; σ, δ]n×n generate the same left row space if and only if there
exists U ∈ GLn(F[∂; σ, δ]) such that M = UM′, where GLn(F[∂; σ, δ]) denotes
the set of invertible n× n matrices over F[∂; σ, δ].

Example 1. Consider the matrix

A =


z3 + z2∂ 2 9 + ∂

5z3 z + 1 3∂

6z3 + z2∂ z + 3 9 + 4∂

 ∈ Z11(z)[∂, ′]3×3.

We can clearly see that the third row is just the sum of the first two rows which means
it is linearly dependent. So if we apply the transformation row3A ← row3A −
(row1A + row2A) on A, we get


z3 + z2∂ 2 9 + ∂

5z3 z + 1 3∂

0 0 0

 ∈ Z11(z)[∂, ′]3×3.

The first two rows are linearly independent, so the rank of A will be equal to 2.

One way to figure out the rank of a certain matrix is by computing its row
reduced form. A row reduced form will have rows with degrees reduced to the
minimum (i.e., no linear combinations of the matrix rows will produce anything
with lower degrees).

14



Definition 2. Let A ∈ F[∂; σ, δ]n×n be a non-singular matrix of Ore polynomials with
the row degrees of A equal to rdegA = [d1, d2, . . . , dn]. The leading matrix of A,
denoted LM(A) ∈ Fn×n, is the matrix whose (i, j) entry is the coefficient of ∂di of Ai,j.

Example 3. let us consider the matrix A such that

A =


1 + z∂ 5∂ + z∂4 10 + ∂2

4∂ (2z + 4) 1 + ∂

∂2 3∂ + 2z3∂2 1 + (5z4 + 4z)∂2

 ∈ Z11(z)[∂, ′]3×3

with rdeg(A) = (4, 1, 2). The leading matrix of A is

LM(A) =


z

4 1
1 2z3 (5z4 + 4z)

 ∈ Z11(z)3×3.

Definition 4. Let A ∈ F[∂; σ, δ]n×n be a non-singular matrix of Ore polynomials. A
is said to be row reduced if and only if rank(LM(A)) = n.

We consider the matrix A from Example 3. LM(A) has full row rank and so
A is row reduced.

2.2 Popov form

In this section we define the Popov form, show its properties and establish some
bounds and assumptions that will be used in later chapters.

As shown in Section 1.1, a system of differential equations can be modeled
by a matrix of differential Ore polynomials. By computing the Popov form, we
get a canonical row reduced basis for the row space of that matrix with minimal
row degrees. Also, using Popov form we can express derivatives with high
order in terms of other derivatives with lower order.
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The Popov form can be defined for any matrix of arbitrary shape and rank,
but in this thesis we will only focus on the case of non-singular square matrices.

Definition 5. A non-singular matrix P ∈ F[∂; σ, δ]n×n is in Popov form if LM(P) is
unit lower triangular and the degrees of off-diagonal entries of P are strictly less than
the degree of the diagonal entry in the same column.

For the rest of this section, we define the pivot of a row vector~v ∈ F[∂; σ, δ]1×n,
denoted piv(~v), as right-most entry of ~v which has deg~v. For example, for
n = 4, if

~v = [2∂2 + 4∂ + 1 | 5 + 6∂ | 9∂29∂29∂2 | 5∂],

then the pivot entry would be 9∂2.

Notice from the definition of Popov form (5), that the pivot entry of rowiP is
always at column index i, with 1 6 i 6 n.

Example 6. Let A ∈ Z7[z][∂; ′]3×3 be defined as follows.

A =


1 + (5 + z)∂ + ∂2 5 + 4∂ + 4∂2

4 + 3∂ 2z 4∂ + 4∂2

3 4 + 4∂

→
degree structure︷ ︸︸ ︷

2 −∞ 222
1 0 222
0 −∞ 111

 .

The Popov form P ∈ Z7(z)[∂; ′]3×3 of A is


1 + (z + 2)∂ + ∂2 5

2
z 1
6 1 + ∂

→
degree structure︷ ︸︸ ︷
222 −∞ 0
0 000 −∞
0 −∞ 111

 .

In the example above, notice how in the Popov form all pivots have different
column index. Also, all pivots dominate their columns in terms of degree in ∂,
that is every entry in that column (other than the pivot itself) will have degree
strictly less than the pivot degree.
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Lemma 7. Let A ∈ F[∂; σ, δ]n×n and P ∈ F[∂; σ, δ]n×n be the Popov form of A, then
P is row reduced.

Proof. This follows immediately as the leading matrix of P will always be lower
triangular with unitary diagonal entries.

Remark 8. A matrix in Popov form is row reduced but the converse is not true.

The following is classical for F[x] matrices, see [Kailath, 1980, Section 6.3.2].
For the extension to F[∂; σ, δ] matrices, see [Beckermann et al., 2006, Lemma A.1 (a)].
The last item is often called the Predictable Degree Property.

Theorem 9. Let A ∈ F[∂; σ, δ]n×n be non-singular. Then the following are equivalent:

1. A is row reduced.

2. Among all matrices that are left equivalent to A, the list of row degrees of A, when
sorted in non-decreasing order, will be lexicographically minimal.

3. For any ~v ∈ F[∂; σ, δ]1×n, we have

deg(~vA) = max
i=1,...,n

(deg rowi A + deg vi) .

Lemma 10. If A, U, P ∈ F[∂; σ, δ]n×n, all non-singular and U invertible and P in
Popov form such that UA = P, then deg U 6 (n− 1)deg A.

Proof. By Item 3 of Theorem 9, then deg U−1 6 deg A since the degree of P is
non-negative. By [Giesbrecht and Kim, 2012, Corollary 3.3] then U = (U−1)−1

has degree at most (n− 1)deg A.

The following notion is a measure for how far A is from being row reduced:

Definition 11. Let A ∈ F[∂; σ, δ] and non-singular. The orthogonality defect of A,
denoted OD(A), is given as

∑
rdegA−∑ rdegP, where P is the Popov form of A.
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In Example 6, the sum of the row degrees of A is equal to 5, the sum of the
row degrees of P is equal to 3. So the orthogonality defect of A is: OD(A) =

5− 3 = 2.

Lemma 12. If A is row reduced then OD(A) = 0.

Proof. Follows immediately from Theorem 9, Item 2.

2.3 Hermite form

For the rest of this section, we define the pivot of a row vector ~v ∈ F[∂; σ, δ]1×n,
denoted piv(~v), as the left-most non-zero entry in ~v. For example, for n = 4, if

~v = [0 | 0 | 2∂2 + 4∂2∂2 + 4∂2∂2 + 4∂ | 9∂4],

then the pivot entry would be 2∂2 + 4∂.

The Hermite form can be defined for any matrix of arbitrary shape and rank,
but in this thesis we will only focus on the case of non-singular square matrices.

Definition 13. A matrix H ∈ F[∂; σ, δ]n×n is in Hermite form if and only if it satisfies
the following:

i H is upper triangular;

ii For 1 6 i 6 n, Hi,i has degree strictly higher than all other entries in the same
column;

iii All pivot entries (i.e., diagonal entries) are monic.

Similar to the Popov form, the Hermite form pivot entries has to dominate
the column in terms of degree in ∂ (Definition 13, item ii). On the other hand the
pivot entries do not have to dominate the degree in ∂ of their respective rows.
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Example 14. Let A be defined as in Example 6 then H, the Hermite form of A, is equal
to

H =


1 6 + 6∂

1 2
z +

2
z ∂

6 + (z + 3)∂ + (z + 3)∂2 + ∂3

→
degree structure︷ ︸︸ ︷

000 −∞ 1
−∞ 000 1
−∞ −∞ 333

 .

Notice that the pivot entries do not dominate the row degrees (i.e., you can have entries
with higher degrees to the right of the pivot) but they do dominate the column degrees:
Entries below the pivot are zero and entries above the pivot have degrees strictly less
than that of the pivot.
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Chapter 3

Techniques and challenges

In this chapter, we will start by reviewing the Mulders-Storjohann algorithm
[Mulders and Storjohann, 2003] which can be used to compute a row reduced
form and the Popov form of an input matrix. The complexity for the algo-
rithm is O(n3d2) operations from the field F, for an input matrix A of degree d
filled with ordinary commutative polynomials, that is, from F[x]. Even though
there are faster methods in the literature to compute the Popov form over F[x]
(e.g., [Gupta et al., 2012] and [Neiger, 2016]), we choose to review the Mulders-
Storjohann algorithm as it extends easily to the case of matrices over an Ore ring
F[∂; σ, δ].

The Mulders-Storjohann algorithm [Mulders and Storjohann, 2003] has a
polynomial complexity in F but a more refined cost analysis should consider
the growth in the size of the coefficient from the field when coefficient growth
is a concern. We give an example in Section 3.2 that shows intermediate coef-
ficient swell using the Mulders-Storjohann algorithm [Mulders and Storjohann,
2003]. In Section 3.3, we give a brief review of some well known methods in the
commutative domains that are used to control this growth. Then, we discuss
the possibility of applying some of these approaches to the Mulders-Storjohann
algorithm when applied to the Ore case.
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For the rest of this chapter, and as we did in Section 2.2, we define the pivot
of a vector ~v ∈ F[∂; σ, δ]1×n, denoted piv(~v), as right-most entry of ~v which has
deg~v.

3.1 Mulders-Storjohann algorithm

The Mulders-Storjohann algorithm [Mulders and Storjohann, 2003] is used to
compute a row reduced form, and can be exploited to further compute the
Popov form [Mulders and Storjohann, 2003]. The algorithm can compute the
Popov form of a square non-singular input matrix A ∈ F[x]n×n, F a field, with-
out increasing the row degrees of the input throughout the computation. It
finds any two pivots in A which share the same column and uses the one with
lower degree to reduce the one with higher degree. The algorithm stops when
all pivots have distinct column indices, in which case the leading matrix has an
upper triangular shape (when rows are sorted by pivot column index), hence
the matrix is row reduced by Definition 4.

Example 15. Let A ∈ Q[x]2×2 be an input matrix. We follow Mulders-Storjohann
algorithm [Mulders and Storjohann, 2003] to compute a row reduced form of A.

A =

0 5 + 3x
2 1 + x + −4

3 x2

→
degree structure︷ ︸︸ ︷−∞ 111

0 222


row2←row2+( 4

9 x)row1
============⇒0 5 + 3x

2 1 + 29
9 x

→
−∞ 111

0 111


row1←row1− 27

29 row2
===========⇒
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−54
29

118
29

2 1 + 29
9 x

→
0 000

0 111


row2←row2−( 292

1062 x)row1
==============⇒ −54

29
118
29

2 + 87
59 x 1

→
0 000

111 0


swap(row1,row2)
=========⇒2 + 87
59 x 1

−54
29

118
29

→
111 0

0 000



Notice in the last matrix how the pivots (in bold font) do not share the same column.
The leading matrix, like it was stated earlier, is upper triangular

LM(A) =

 87
59
−54
29

118
29

 .

The algorithm extends naturally to the non-commutative Ore case thanks to
the following Lemma.

Lemma 16. Let us consider s1, s2 ∈ F[∂; σ, δ] two Ore polynomials such that deg(s1) >

deg(s2) > 0, then there exists t ∈ F[∂; σ, δ] such that deg(s1 − ts2) < deg(s1).

Proof. Let l1 and l2 be the leading coefficients of s1 and s2 respectively, and λ ∈ Z

such that λ = deg(s1)− deg(s2). Then the leading monomial of l1
l2

∂λs2 will be

equal to that of s1. It follows that deg(s1 − l1
l2

∂λs2) < deg(s1).

For an input matrix A ∈ F[∂; σ, δ]n×n of degree d, the cost of the algorithm
is still O(n3d2) operations from F. The unimodular row operations used in the
Ore case are the followings (analogous to the row operations used in the com-
mutative domains):
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• Swap two rows.

• Multiply one row by an element from the field F.

• Multiply a row by an element from F[∂; σ, δ] and add it to another row.

The Mulders-Storjohann algorithm [Mulders and Storjohann, 2003] was de-
signed for the case when F is finite. Although the algorithm can be extended
over any field F, it seems that the intermediate coefficients grow exponentially
when doing reduction over an infinite field F, e.g., F = k(z). This is known in
the literature as the intermediate coefficient growth problem.

3.2 Intermediate coefficient growth

As stated in Section 3.1, the algorithm by [Mulders and Storjohann, 2003] can
be used to compute a row reduced or a Popov form of an input matrix A ∈
F[∂; σ, δ]n×n. We consider the case F = k(z), that is, the coefficients of the Ore
polynomials are rational functions in z over a field k. A nice feature of the
Mulders-Storjohann algorithm [Mulders and Storjohann, 2003] is that the row
degrees (in ∂) of the entries in the matrix being reduced are monotonically non-
increasing. However, the true cost of the algorithm will also depend on the size
of the rational function coefficients from k(z). Abusing notation slightly, define
the degree of a (reduced) rational function from k(z) as the maximum of the
numerator and denominator degree. By extension, let degz f for an Ore polyno-
mial f ∈ k(z)[∂; σ, δ] be the maximum degree of any coefficient of f . Although
the degree in z of an input matrix A can be small, degrees in z of the intermediate
entries in the matrix being reduced can grow large. In the following example,
for a matrix M over k(z)[∂; σ, δ], let degz M be the integer matrix of degrees in z
of entries in M, that is, each entry is replaced with the maximum degree in z of
any rational function coefficient.
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Example 17. We consider an input matrix A ∈ Z11(z)[∂; ′]5×5. Notice that the coef-
ficients from Z in A are reduced modulo the prime integer 11 as we will only focus in
this example on the degree growth of the coefficients from Q(z).

degz A→



5 5 5 5 5
4 5 5 5 5
4 4 5 5 5
5 5 5 5 5
5 5 5 5 5


.

We follow the extension of the algorithm by [Mulders and Storjohann, 2003] described
in Section 3.1 to compute a row reduced form W ∈ Z11(z)[∂; ′]5×5,

degz W →



159 160 160 160 160
1158 1159 1159 1159 1159
1810 1811 1811 1811 1811
1917 1918 1918 1918 1917
1909 1909 1910 1910 1907


.

Notice the blow-up in the degree in z of the coefficients from Z11(z). The highest degree
in z in W is 1918 versus 5 in our input matrix. We compute the Popov form P ∈
Z11(z)[∂; ′]3×3 of our input matrix A,

degz P→



159 160 160 160 160
137 138 138 138 138
135 136 136 136 136
136 136 136 136 136
136 137 137 137 137


.
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Example 17 shows how the intermediate coefficient swell can be a problem
when using the [Mulders and Storjohann, 2003] algorithm in the Ore case. Other
examples to show intermediate coefficient swell do exist in the literature. For in-
stance, [Hafner and McCurley, 1991] gave an example where they started with
a 20× 20 matrix with integer entries between 0 and 10, then after triangulariza-
tion, they had an entry of size 105011 in the output.

There are two major methods to contain the coefficient growth problem. The
first one is to apply fraction-free algorithms (e.g., fraction-free Gaussian elimi-
nation [Geddes et al., 1992]), while the second one is using modular algorithms
where we compute images of the solution then recover the result at the end.

3.3 Modular algorithms

We call modular algorithms any approach that uses modular homomorphisms
to control coefficient growth. For instance, one can work modulo some primes
and use the chinese remaindering theorem to reconstruct the final answer from
the images of the solution. When coefficients have a polynomial structure (coef-
ficients from k(z) for instance, where k is a field), an evaluation homomorphism
can be employed which maps the problem from k(z) to k. Lifting and rational
function reconstruction can then be used to recover the final result. When em-
ploying evaluation homomorphisms or computing modular homomorphisms,
the primes chosen have to be non-roots of the largest invariant factor of the ma-
trix in question, otherwise the result computed may not be a proper image of
the desired solution. Also, one can work modulo a big irreducible (bigger than
the entries in the final result) and use rational function reconstruction to recover
the final result at the end.

To be able to use the algorithms described above, we need to have bounds
on the size of the coefficients in the final result. In Section 5.3, we derive bounds
on the degree and on the size of the coefficients in the final result for an Ore
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ring F[∂; σ, δ], where F = k(z) and k a field. This suggests using a modular
scheme for our extension of the Mulders-Storjohann algorithm. Unfortunately,
none of the modular algorithms described above will yield a correct result as
the following map does not commute with multiplication by ∂.

p 7→ p mod Γ

with p ∈ F[∂; σ, δ] and Γ ∈ k[z], for F = k(z) and k a field. For example, let
p = z∂ ∈ Q(z)[∂; ′] and Γ = z− 2 ∈ Q(z). If we first premultiply p by ∂ and
then reduce the result modulo Γ, we obtain the following:

(∂p) mod (z− 2) = (∂z∂) mod (z− 2)

= (z∂2 + ∂) mod (z− 2)

= 2∂2 + ∂.

However if we first reduce p modulo Γ, then premultiply by ∂ then we getÅ
∂ mod (z− 2)

ãÅ
p mod (z− 2)

ã
= (∂)(2∂)

= 2∂2.

We can clearly see from the above example that the modular algorithms will not
yield a correct image of the result for some Ore rings.

So, to summarize, the Mulders-Storjohann algorithm can be extended to the
Ore case to compute the Popov form of an input matrix A ∈ F[∂; σ, δ]n×n. When
F is infinite (i.e., coefficient growth is a concern), modular approaches cannot be
incorporated with the algorithm to contain the intermediate coefficient swell.
We will see in later chapters how we can use some linearization techniques to
map A to a larger matrix with entries from F. This will allow us to employ some
modular algorithms to control coefficient growth when doing row operations.
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Chapter 4

Computing the Hermite form of a
matrix of Ore polynomials via
linearization

In this chapter we describe an extension to the Ore case of the method of [Lab-
halla et al., 1992] which computes the Hermite form of a matrix with entries
from F[x]. [Giesbrecht and Kim, 2012] gives an algorithm which computes the
Hermite form of an input matrix A ∈ F[∂; σ, δ]n×n of degree d in O(n7d3 log nd)
operations from F. The algorithm by [Giesbrecht and Kim, 2012] does a binary
search to find the Hermite column degrees first then solve a linear system to get
the actual rows corresponding to the Hermite form.

The nice thing about the approach of [Labhalla et al., 1992] is that you can get
the Hermite rows directly from the the reduced row echelon form of a big lin-
earized matrix without the need to know the Hermite column degrees a priori.
Avoiding the search for the column degrees makes the extension of [Labhalla
et al., 1992] method n log(nd) times faster than the deterministic algorithm of
[Giesbrecht and Kim, 2012].
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In Section 4.1 we will describe how we linearize the input matrix to a larger
matrix over F. In Section 4.2 we will show how we extract the Hermite rows
from the row reduced echelon form of the linearized matrix. We then prove the
correctness of this algorithm and give the complexity analysis.

For the rest of this thesis, we define the pivot of a vector ~v ∈ F1×(n2d+n) as
the index of the left-most non-zero element of ~v (not to be confused with the
other two pivot definitions of an F[∂; σ, δ] vector, see Section 2.2 and 2.3). For
the rest of this chapter, and as we did in Section 2.3, we define the pivot of a
vector ~v ∈ F[∂; σ, δ]1×n, denoted piv(~v), as the left-most non-zero entry in ~v.

4.1 Linearize the input matrix

In this section we show how we can convert an input matrix A ∈ F[∂; σ, δ]n×n

such that deg A = d to Alin ∈ F(n
2d+n−dn)×(n2d+n) where all the entries of Alin are

from F. This conversion will be used in the next section to compute the Hermite
form of A.

Based on the parameters n and d, define the polynomial linearization φH :
F[∂; σ, δ]∗×n 7→ F∗×(n

2d+n) by

φH(v) = φH
[

v1 · · · vn
]

=
[
[v1]nd · · · [v1]0 · · · [vn]nd · · · [v1]0

]
∈ F∗×(n

2d+n),

where [vi]k denotes the coefficient of ∂k of vi ∈ F[∂; σ, δ]∗×1. The function φH

maps each polynomial (modulo ∂nd+1) to its coefficient vector of length nd + 1,
padded with zeroes if the polynomial has degree less than nd. For example, if
n = 2 and d = 2 then

φH(
[

∂2 + 3∂ + 6 2∂ + 5
]
) =

[
0 0 1 3 6 0 0 0 2 5

]
. (4.1)
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[Giesbrecht and Kim, 2012, Theorem 4.9] establishes the following bound on
the transformation matrix U ∈ k(z)[∂; σ, δ]n×n such that UA = H is the Hermite
form of A

deg U 6 (n− 1)d. (4.2)

Based on the bound in (4.2), we construct the following linearized matrix:

φH




∂(n−1)d A

...
∂A
A



 ∈ F(n
2d+n−dn)×(n2d+n). (4.3)

The row space of (4.3) is equal toφH

Ñ
n∑

i=1
ui rowiA

é
| ui ∈ F[∂; σ, δ], deg ui 6 (n− 1)d, 1 6 i 6 n

 . (4.4)

Since (4.3) includes the derivatives of all rows of A up to (n− 1)d, then the φH-
linearized rows of the Hermite form of A are contained in the row space of (4.3).

4.2 Compute the Hermite form

[Labhalla et al., 1992] showed that computing the reduced row echelon form
is enough to recover the Hermite rows when A ∈ F[x]n×n. Similarly, we can
recover the φH-linearized rows of the Hermite form when A ∈ F[∂; σ, δ]n×n.

We review the following lemma from [Giesbrecht and Kim, 2012, Lemma 5.1]
which is analogous to [Storjohann, 1994, Lemma 4] but for the Ore case.

Lemma 18. Let A ∈ F[∂; σ, δ]n×n non-singular matrix of Ore polynomials and H ∈
F[∂; σ, δ]n×n be its Hermite form. Let hi = deg Hii for 1 6 i 6 n be the pivot degrees
of H. Let ~v = [0, . . . , vk, vk+1, . . . , vn] ∈ F[∂; σ, δ]1×n such that deg vk < hk and
1 6 k 6 n. Finally let L(A) = {∑n

i=1 bi rowi A) | bi ∈ F[∂; σ, δ]}.

If v ∈ L(A) then vk = 0, otherwise if vk 6= 0 then v /∈ L(A).
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Theorem 19. Let A be non-singular, and let Klin be the reduced row echelon form
of (4.3). Then the Hermite form H of A is the matrix whose i’th row is the φ−1

H -image
of the row of Klin with smallest pivot l such that (i− 1)(nd + 1) < l 6 i(nd + 1).

Proof. We know that the unique unimodular matrix U ∈ F[∂; σ, δ]n×n has deg U 6

(n − 1)d (4.2), the matrix constructed in (4.3) contains (n − 1)d derivatives of
every row of A, therefore the φH-linearized rows of H are contained in the row
space of Klin.

For 1 6 i 6 n, consider the i’th row~h of H, which has pivot column i. Let
~rk be the row of Klin with the smallest pivot l such that (i − 1)(nd + 1) < l 6

i(nd + 1). Let k be the row index of~rk.

If ~w is the unique vector over F satisfying ~wKlin = φH(~h) then using Lemma 18,
it is clear to see that wk = 1 and wj = 0 for j < k.

We claim wj = 0 also for j > k in which case~rk = φH(~h) as we wanted to
prove.

Suppose, to arrive at a contradiction, that wj 6= 0 for some j > k, and let~rj be
the j’th row of Klin such that j′ and d′ are the pivot-column and the pivot-degree
of φ−1

H (~rj). This means that
deg Hi,j > d′. (4.5)

On the other hand, since we pick the smallest pivot l such that (i − 1)(nd +

1) < l 6 i(nd + 1) then for i = j′, we know that l > piv(~rj), which means
deg Hj′,j′ 6 d′. But then, using (4.5), this means that deg Hi,j′ > deg Hj′,j′ , which
contradicts that H is in Hermite form (i.e., violates item ii from Definition 13).

We conclude that Wj = 0 for j > k, and hence φH(~h) =~rk.

Notice that in Example 20, A has entries from F[∂; ′] and F = Z7. This means
that the Ore polynomials will behave exactly like ordinary commutative poly-
nomials. This was chosen just for space reasons as our algorithm works for any
field F (e.g: F = k(z) where k is a field).
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Example 20. Consider the input

A =


3 ∂2 + 6 ∂ + 6 5 ∂2 + 3 ∂ + 3 6 ∂2 + ∂

5 ∂2 + 5 6 ∂2 + ∂ 5 ∂2 + 2 ∂ + 6

3 ∂ + 5 4 ∂ + 5 5 ∂2 + 2 ∂ + 1

 ∈ F[∂, ′]3×3,

where F = Z7.

φH


∂4A

...
∂A
A

 =



3 6 6 5 3 3 6 1 0
5 0 5 6 1 0 5 2 6
0 3 5 0 4 5 5 2 1

3 6 6 5 3 3 6 1 0
5 0 5 6 1 0 5 2 6
0 3 5 0 4 5 5 2 1

3 6 6 5 3 3 6 1 0
5 0 5 6 1 0 5 2 6
0 3 5 0 4 5 5 2 1

3 6 6 5 3 3 6 1 0
5 0 5 6 1 0 5 2 6
0 3 5 0 4 5 5 2 1

3 6 6 5 3 3 6 1 0
5 0 5 6 1 0 5 2 6
0 3 5 0 4 5 5 2 1



∈ F15×21. (4.6)

Note that up to row permutations, the matrix (4.6) has the shape

3 6 6 5 3 3 6 1
3 6 6 5 3 3 6 1

3 6 6 5 3 3 6 1
3 6 6 5 3 3 6 1

3 6 6 5 3 3 6 1
5 0 5 6 1 5 2 6

5 0 5 6 1 5 2 6
5 0 5 6 1 5 2 6

5 0 5 6 1 5 2 6
5 0 5 6 1 5 2 6

3 5 4 5 5 2 1
3 5 4 5 5 2 1

3 5 4 5 5 2 1
3 5 4 5 5 2 1

3 5 4 5 5 2 1



∈ F15×21,

which better illustrates the Sylvester-like structure. The reduced row echelon form
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of (4.6) is 

1 4 0 2 1 4 0
1 0 3 6 1 0 4

1 0 4 0 6 5 3
1 0 3 0 0 0 4

1 0 4 0 0 4 3
1 0 3 0 0 0 4

1 0 4 0 0 0 0
1 1 2 2 3 6

1 6 0 2 4 1
1 1 0 0 0 6

1 6 0 0 6 1
1 1 0 0 0 6

1 6 0
1 6 0

1 6 0



.

The φH-linearized rows of the Hermite form correspond to the last nonzero row in each
horizontal slice, namely rows 7, 12 and 15. Indeed,

φ−1
H

 1 0 4 0 0 0 0
1 1 0 0 0 6

1 6 0

 =

 1 4 0
∂ + 1 6

∂2 + 6∂


is the Hermite form of A.

Computing the reduced row echelon form of Alin is equivalent to trying to
find a nonzero entry in every column to use in annihilating what is above and
underneath. Now let us remember that the first nd+ 1 columns in Alin represent
the first column in A and all the derivatives of that column. So trying to find a
nonzero entry in every column within that range (the first nd+ 1 column) means
that we are trying to find the smallest degree polynomial in F[∂; σ, δ] which can
be used in annihilating all other entries in the first column of A (i.e., computing
the (left) greatest common divisor of the first column of A). The same thing
applies to the rest of the matrix.

Theorem 21. Let A ∈ F[∂; σ, δ]n×n be non-singular with deg A 6 d. We can compute
the Hermite form of A in O(n2ωdω) operations in F.

Proof. We compute the row reduced echelon form of (4.3) using the Gauss trans-
form [Storjohann, 2000, Section 2.3] which costs O(n2ωdω) operations in F.
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In the next chapter we give bounds on the degree of entries and coefficients
when F = k(z) with k being a field. In addition, we give some analysis on
coefficient size when k = Q for the differential and the shift Ore rings.
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Chapter 5

Computing the Popov form of a
matrix of Ore polynomials via
linearization

This chapter develops algorithms to deterministically compute the Popov form
of an input matrix of Ore polynomials. Section 5.1 defines a linearization of an
input matrix A ∈ F[∂; σ, δ]n×n to a matrix Alin ∈ F(n

2d+n−
∑

rdeg(A))×(n2d+n) such
that the reduced row echelon form of Alin will reveal the Popov form of A. We
prove the overall correctness of the approach, then we establish some structural
properties of Alin. In Sections 5.2 and 5.3, we show how we can exploit those
structural properties of Alin to get a fast algorithm for Popov form computation.
In Section 5.4 we conclude this chapter with some concrete complexity analysis
for the differential and the shift case when F = Q(z).

Since the existence and uniqueness of the Popov form of an input matrix of
Ore polynomials has been shown in previous work [Cheng and Labahn, 2007,
P. Davies, 2008], we omit showing that in this thesis.

For the rest of this chapter, and as we did in Section 2.2, we define the pivot
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of a vector ~v ∈ F[∂; σ, δ]1×n, denoted piv(~v), as right-most entry of ~v which has
deg~v.

5.1 Popov form via linearization

In this section we apply a linearization technique to transform an input ma-
trix with Ore polynomial entries to a big linearized matrix over the field F. We
show the unique structure of our linearized matrix, then we discuss the different
properties of the linearized matrix.

Define the linearization φP : F[∂; σ, δ]∗×n 7→ F∗×(n
2d+n) by

φP(~v) = φP
[

v1 · · · vn
]

=
[
[vn]nd · · · [v1]nd · · · [vn]0 · · · [v1]0

]
∈ F∗×(n

2d+n),

where [vi]k denotes the coefficient of ∂k of vi ∈ F[∂; σ, δ]∗×1. Note that output of
φP is simply a permutation of the φH in Section 4. Using the same example as
in (4.1),

φP(
[

∂2 + 3∂ + 6 2∂ + 5
]
) =

[
0 0 0 0 0 1 2 3 5 6

]
.

Let now Alin be given as the φP-image of the vectors

∂j rowi(A) for i = 1, . . . , n and j = 0, . . . , nd− deg rowi(A) ,

ordered by descending degrees and breaking ties by the i index. In other words,
consider for t = 0, . . . , nd the matrix

B̂t := diag(∂t−deg row1(A)row1(A), . . . , ∂t−deg rown(A)rown(A)
ä
.

Each row of B̂t has degree exactly t, but some elements now have negative-
degree terms. Let Bt ∈ F∗×(n

2d+n) be given as the φP-image of the rows of B̂t

which have no negative-degree terms. Then Alin consists of putting the Bt on

35



top of each other. More precisely, we can write Alin uniquely in block upper
triangular form as

Alin =


Bnd

Bnd−1
...

B0

 =


Cnd ∗ · · · ∗

Cnd−1 · · · ∗
. . . ...

C0

 , (5.1)

where each C∗ ∈ F∗×n has no zero rows. Note that the rowspace of Alin is in
one-to-one correspondence, through φP, with the set

n∑
i=1

ui rowi A
∣∣∣∣ ui ∈ F[∂; σ, δ], deg ui 6 nd− deg rowi A

 . (5.2)

Lemma 22. If A is non-singular, then Alin has full row rank and row dimension n2d +
n−∑ rdegA. For d 6 t 6 nd, then Bt (and Ct) has exactly n rows.

Proof. Alin has full row rank, since any F-linear relation between rows of Alin

maps to an F[∂; σ, δ]-linear relation between rows of A through φP and A is non-
singular. The i’th row of A is represented in exactly nd− deg rowi(A) + 1 of the
Bt, so the row dimension of Alin becomes as claimed. This also shows that Bt

has n rows when t ≥ d since every row of A is represented.

Recall that the pivot of a vector ~v ∈ F1×(n2d+n) is the index of the left-most
non-zero element of ~v. Define η : {1, . . . , n} ×Z≥0 → {1, . . . , n2d + n} as the
map between (pivot, degree) of F[∂; σ, δ]1×n vectors and the pivot in F1×(n2d+n)

vectors induced by φP, that is,

η(i, d′) = n(nd− d′) + n + 1− i .

For a vector ~v ∈ F1×(n2d+n) we say that the P-pivot and P-degree of ~v are the first
and second components of the 2-tuple η−1(l), where l is ~v’s pivot.
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Now let Rlin be the reduced row echelon form of Alin. Then Rlin can also be
written uniquely in block upper triangular form as

Rlin =


Tnd ∗ · · · ∗

Tnd−1 · · · ∗
. . . ...

T0

 , (5.3)

where each T∗ ∈ F∗×n has no zero rows. Note that those rows in Rlin with P-
degree t are contained in the submatrix of Rlin occupied by Tt. Because Rlin is
in echelon form, for any given degree t and pivot i, there is at most one row in
Rlin with P-degree t and P-pivot i, and any row in the row space of Rlin with
P-degree t and P-pivot i will be a linear combination of this row, and possibly
rows below it.

Theorem 23. Let A be non-singular, and let Rlin be the reduced row echelon form of
Alin. Then the Popov form P of A is the matrix whose i’th row is the φ−1

P -image of the
row of Rlin with minimal P-degree having P-pivot i.

Proof. The unique unimodular matrix U ∈ F[∂; σ, δ]n×n with UA = P has deg U 6

(n− 1)d by Lemma 10, and therefore the φP-linearized rows of P are contained
in the row space of Rlin. We will prove that they in fact appear directly as rows
of Rlin. By the minimality of the row degrees of the Popov form, item 2 of The-
orem 9, the rows chosen as in the theorem must therefore be exactly those rows
of Rlin.

So for 1 6 i 6 n, consider the i’th row ~p of P, which has pivot i. Since
φP(~p) is in the row space of Rlin, there must be exactly one row~rk of Rlin with
the same pivot, with row index k. If ~w is the unique vector over F satisfying
~wRlin = φP(~p) then clearly wk = 1 and wj = 0, for some j < k. We claim
wj = 0 also for j > k, in which case~rk = φP(~p) as we wanted to prove. Suppose,
to arrive at a contradiction, that wj 6= 0 for some j > k, and let ~rj be the j’th
row of Rlin. Since all other rows of Rlin are zero at the pivot position of~rj, that
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means deg pi,j′ ≥ d′, where j′, d′ are the P-pivot respectively P-degree of~rj. On
the other hand, since the φ−1

P (~rj) is in the row space of A and has pivot j′, the
minimality of the degrees of the Popov form implies d′ ≥ deg pj′,j′ . But then
deg pi,j′ ≥ deg pj′,j′ , which contradicts that P is in Popov form. We conclude
that wj = 0 for j > k, and hence φP(~p) =~rk.

Example 24. For clarity, we exemplify the approach with a usual polynomial ring,
i.e. σ = id and δ = 0. Consider the input A ∈ F[∂; ′]3×3 from Example 20, F = Z7.
Then

Alin = φP


∂4A

...
∂A
A

 =



6 5 3 1 3 6 0 3 6
5 6 5 2 1 0 6 0 5
5 0 0 2 4 3 1 5 5

6 5 3 1 3 6 0 3 6
5 6 5 2 1 0 6 0 5
5 0 0 2 4 3 1 5 5

6 5 3 1 3 6 0 3 6
5 6 5 2 1 0 6 0 5
5 0 0 2 4 3 1 5 5

6 5 3 1 3 6 0 3 6
5 6 5 2 1 0 6 0 5
5 0 0 2 4 3 1 5 5

6 5 3 1 3 6 0 3 6
5 6 5 2 1 0 6 0 5
5 0 0 2 4 3 1 5 5



∈ F15×21.

(5.4)
The row reduced echelon form of Alin is

Rlin =



1 6 6 2 0 0
1 2 4 6 3 6 5

1 0 6 2 4 1
1 2 4 2 5 3

1 0 6 0 0
1 2 0 0 0

1 6 0 0
1 0 6 5

1 0 4 1
1 6 0 0

1 6 1 2
1 4 3 6

1 6 5
1 4 1

1 2



.

We pick out the rows of Rlin with minimal degree having P-pivot 1,2, and 3, respectively.
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The Popov form of A is thus

φ−1
P

 1 4 1
1 2

1 6 0 0

 =

 ∂ + 1 0 4
2 1 0
0 0 ∂2 + 6∂

 ∈ F[∂; ′]3×3.

We now consider some structural properties of Alin and Rlin. Recall that we
have written Alin as a block upper triangular matrix

Alin =



Cnd · · · ∗ ∗ · · · ∗
. . . ...

... . . . ...
Ck+1 ∗ · · · ∗

Ck · · · ∗
. . . ...

C0


with each C∗ of column dimension n and with no zero rows. Let {a1, a2, . . . , an}
be the multi-set of row degrees of A. The following lemma follows from the
definition of Alin.

Lemma 25. For k = 0, 1, . . . , nd, the trailing submatrix
Ck · · · ∗

. . . ...
C0


of Alin has row dimension (k + 1)n−∑n

i=1 min(ai, k + 1).

We have also written Rlin in a block upper triangular form as

Rlin =



Tnd · · · ∗ ∗ · · · ∗
. . . ...

... . . . ...
Tk+1 ∗ · · · ∗

Tk · · · ∗
. . . ...

T0


(5.5)
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where each T∗ ∈ F∗×n has no zero rows. Let {p1, p2, . . . , pn} be the multi-
set of row degrees in the Popov form of A. The following lemma follows as a
corollary of Theorem 23.

Lemma 26. For k = 0, 1, . . . , nd, the trailing submatrix
Tk · · · ∗

. . . ...
T0

 (5.6)

of Rlin has row dimension at most (k + 1)n−∑n
i=1 min(pi, k + 1).

For k = 0, 1, . . . , nd, define ODk to be the nullity (row dimension of the left
nullspace) of the principal submatrix

Cnd · · · ∗
. . . ...

Ck+1

 (5.7)

of Alin. Recall that OD(A) :=
∑

rdegA−∑ rdegP.

Theorem 27. For k = 0, 1, . . . , nd we have ODk 6 OD(A).

Proof. Let P be a permutation, and U be a unit lower non-singular matrix over
F that such that premultiplying (5.7) by UP transforms it to echelon form Rk+1


with ODk zero rows. Then applying diag(U, I) to Alin yields

U
I





Cnd · · · ∗ ∗ · · · ∗
. . . ...

... . . . ...
Ck+1 ∗ · · · ∗

Ck · · · ∗
. . . ...

C0


=



Rk+1 ∗ · · · ∗
Ek · · · ∗
Ck · · · ∗

. . . ...
C0


, (5.8)
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where Ek ∈ FODk×n. Considering that Alin has full row rank, the row dimension
of the submatrix 

Ek · · · ∗
Ck · · · ∗

. . . ...
C0

 (5.9)

of the matrix on the right of (5.8) will be equal to the row dimension of the
trailing submatrix (5.6) of Rlin. Lemmas 25 and 26 now give

ODk 6
n∑

i=1
min(ai, k + 1)−

n∑
i=1

min(pi, k + 1)

=
n∑

i=1
(min(ai, k + 1)−min(pi, k + 1)).

Assume now that a1 6 a2 6 · · · 6 an and p1 6 p2 6 · · · pn. Then ai − pi ≥ 0 for
i = 1, 2, . . . , n by Item 2 of Theorem 9, and

min(ai, k + 1)−min(pi, k + 1)


= ai − pi if ai 6 k + 1
= 0 if ai > k + 1 an pi ≥ k + 1
< ai − pi if ai > k + 1 and pi < k + 1

.

Thus min(ai, k + 1)−min(pi, k + 1) 6 ai− pi in all cases, establishing the result.

5.2 Block elimination of the linearized system

Let A ∈ F[∂; σ, δ]n×n be non-singular with deg A 6 d. In this section we show
how to perform a structured Gaussian elimination of the linearized system Alin

over F. We first consider in Section 5.2.1 the problem of transforming A to
Popov form when A is already row reduced, the so called normalization prob-
lem [Sarkar and Storjohann, 2011]. Then we consider the general case in Sec-
tion 5.2.2.
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5.2.1 Normalization of an already row reduced matrix

We can detect if A is row reduced by testing its leading coefficient matrix for
non-singularity. Suppose A is already row reduced. Let U be the unique ma-
trix such that UA = P is in Popov form. By the predictable degree property
[Beckermann et al., 2006, Lemma A.1 (a)] then deg coliU 6 d − deg rowi A,
1 6 i 6 n. Consider the following submatrix of Alin (5.1) comprised of the
last n(d + 1)−∑ rdegA rows:

Ālin =


Bd
...

B0

 =


Cd · · · ∗

. . . ...
C0

 .

Note that the rowspace of Ālin is in one-to-one correspondence, through φP, with
the set 

n∑
i=1

ui rowi A
∣∣∣∣ ui ∈ F[∂; σ, δ], deg ui 6 d− deg rowi A

 .

As a corollary of Lemma 22 we have that Ālin has full row rank n(d + 1) −∑
rdegA. The next theorem is a corollary of Theorem 23.

Theorem 28. Let A be non-singular and row reduced, and let R̄lin be the reduced row
echelon form of Ālin. Then the Popov form P of A is the matrix S whose i’th row is the
φ−1

P -image of the row of R̄lin with minimal degree having P-pivot i.

Because A is row reduced, by Lemma 12 we have OD(A) = 0, so by Theo-
rem 27 each block C∗ in Ālin will have full row rank. Since the right block of Ālin

has column dimension n(d + 1), performing standard Gauss Jordan elimination
would cost O((nd)3) operations from F to produce R̄lin in its entirety. We can
save a factor of d by avoiding the complete computation of R̄lin. Instead, first
compute an echelon form of Ālin by applying Gaussian elimination to each full
rank slice B∗. Gaussian elimination of a single B∗ has cost O(n3d), yielding a
total cost for all slices of O(n3d2) operations in F. Then use back substitution
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(as it will be shown in Example 30) to reduce the n rows whose φ−1
P -image has

minimal degree and P-pivot i, 1 6 i 6 n. This costs an additional O(n3d2). Fi-
nally, scale these n rows so their pivots are equal to one. We obtain the following
result.

Theorem 29. Let A ∈ F[∂; σ, δ]n×n be non-singular and row reduced, with deg A 6

d. The Popov form of A can be computed within the following cost:

• Computing ∂k rowi A for 1 6 k 6 d− deg rowi A, 1 6 i 6 n.

• An additional O(n3d2) operations from F.

5.2.2 General case

Now assume that A is not already row reduced, so that OD := OD(A) > 0.
The key observation is that since deg P 6 d, the φP-linearization of the rows of
P will be contained in the row space of the trailing submatrix (5.6) of Rlin for
k = d. This implies that the rows of Rlin occupied by Tnd, Tnd−1, · · · , Td+1 are not
required.

Our algorithm for performing the elimination of Alin has three phases. The
first phase computes the matrix (5.9) for k = d, whose rowspace is equal to
that of (5.6) for k = d. The second phase transforms this matrix to row echelon
form. The third phase performs back substitution to reduce the n rows whose
φ−1

P -image has minimal degree and P-pivot i, 1 6 i 6 n.

Our main computation tool is the Gauss transform [Storjohann, 2000, Sec-
tion 2.3]. Given as input a matrix Ek

Ck

 ∈ FO(OD+n)×n, (5.10)
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the so called Gauss transform algorithm [Storjohann, 2000, Algorithm 2.14] can
be used to produce a permutation matrix Pk and unit lower triangular matrix Uk

such that
Uk︷ ︸︸ ︷ Fk

Nk I

Pk

 Ek

Ck

 =

 Gk

 ,

with
[

Nk I
]

Pk and Gk are the left nullspace basis and a row echelon form,
respectively, of the input matrix (5.10).

Phase 1: For convenience, let End be the 0 × n matrix. We will compute a
Gauss transform as described above for k = nd, nd − 1, . . . , d + 1. At the start
of stage k we are exactly in the situation shown in (5.8). The key observation is
that no entries in the rows occupied by R are required, and so the computation
of these rows can be avoided. To go from stage k + 1 to k we can thus apply only
the nullspace to the next slice and obtain

[
Nk I

]
Pk

 Ek ∗ · · · ∗
Ck ∗ · · · ∗

 =
[

Ek−1 · · · ∗
]

.

Continue this for k = nd, nd− 1, . . . , d + 1.

Phase 2: For k = d, d− 1, . . . , 0, we apply the complete Gauss transform to
the work matrix:

UkPk

 Ek ∗ · · · ∗
Ck ∗ · · · ∗

 =

 Gk ∗ · · · ∗
Ek−1 · · · ∗

 .

Repeating this for k = d, d− 1, . . . , 0, we have computed the row echelon form

G =


Gd · · · ∗

. . . ...
G0

 ∈ F∗×n(d+1).

Phase 3: Identify for i = n, n− 1, . . . , 1, the row in G whose φ−1
P -image has

minimal degree and P-pivot i, and use back substitution to zero out the en-
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tries in this row which are above a pivot, similar to how we proceeded in Sec-
tion 5.2.1. Finally, scale these n rows to make their pivots equal to one.

Example 30. Consider the input matrix

A =


7∂2 + 3∂ + 8 9∂2 + 7∂ + 4 ∂2 + 2∂ + 2

3∂2 + 4 7∂2 + 6∂ + 8 5∂2 + 10∂

3∂2 + 2∂ + 5 7∂2 + 5∂ + 1 4∂2 + 8∂ + 5

 ∈ Z11[∂; ′]3×3.

Then

Alin =


C6 ∗ ∗ ∗ ∗ ∗ ∗

C5 ∗ ∗ ∗ ∗ ∗
C4 ∗ ∗ ∗ ∗

C3 ∗ ∗ ∗
C2 ∗ ∗



=



1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5



.

For phase 1, step k = 6, we compute and apply the nullspace of C6 to obtain


E5 ∗ ∗ ∗ ∗ ∗
C5 ∗ ∗ ∗ ∗ ∗

C4 ∗ ∗ ∗ ∗
C3 ∗ ∗ ∗

C2 ∗ ∗

 =



0 0 0 0 4 8
1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5



.
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For phase 1, step k = 5, we compute and apply the nullspace of the 4 × 3 matrix
occupied by E5 and C5 to obtain

 E4 ∗ ∗ ∗ ∗
C4 ∗ ∗ ∗ ∗

C3 ∗ ∗ ∗
C2 ∗ ∗

 =



0 4 8
0 0 0 0 4 8
1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5

1 9 7 2 7 3 2 4 8
5 7 3 10 6 0 0 8 4
4 7 3 8 5 2 5 1 5


.

We continue phase 1 for steps k = 4, 3 applying only the nullspace at every step. For
phase 2, steps k = 2, 1, 0, we apply the entire Gauss transforms, yielding the echelon
form

 G2 ∗ ∗
G1 ∗

G0

 =


1 9 7 2 7 3 2 4 8

1 10 3 8 2 0 0 0
1 10 1 3 0 0 0

1 2 0 0 0
1 10 1 3

1 2

 .

For phase 3, we identify the Popov rows (rows 1, 5 and 6 in this example) and then do
back substitution, 

1 2 2 0
1 10 3 8 2 0 0 0

1 10 1 3 0 0 0
1 2 0 0 0

1 10 1
1 2

 .

The Popov form of A is thus

φ−1
P

 1 10 1
1 2

1 2 2 0

 =

 ∂ + 1 0 10
2 1 0
0 0 ∂2 + 2∂ + 2

 .

The next theorem gives a cost analysis of the algorithm just described in
terms of operations from F. The theorem gives three cost estimates. First, we
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give an unconditional cost estimate based only on the input parameters n and
d. Second, we give a refined cost estimate in terms of OD. Third, we consider the
case of special Ore rings (such as the shift case) for which Alin matrix may have
the shape shown in Example 24 , that is, with a large block upper triangular
submatrix of zeroes in the northeast corner: the cost estimates are improved by
a factor of n in this case.

Theorem 31. Let A ∈ F[∂; σ, δ]n×n be non-singular with deg A 6 d. The Popov form
of A can be computed within the following costs.

1. General case:

• Computing ∂k rowi A for 1 6 k 6 nd− deg rowi A, 1 6 i 6 n.

• Additional O(nω+2d3) field operations from F.

2. A more refined cost is obtained by considering the parameter OD. Assume that
A is not already row reduced, so that OD := OD(A) > 0. Then the number of
additional operations is reduced to:

• O(ODω−2n4d2) if OD < n

• O(OD nω+1d2) if OD ≥ n

3. Finally, suppose that the Ore ring F[∂; σ, δ] has the property that for any nonzero
element f ∈ F[∂; σ, δ], the trailing degree of ∂ f is at least one more than the
trailing degree of f . Then the Big Oh estimates in parts 1 and 2 above for the
additional operations are reduced by a factor of n.

Proof. We first establish part 2 of the theorem. By Theorem 27, the row dimen-
sion of each nullspace N∗ is bounded by OD. Instead of considering the three
phases separately, we will partition the computational work done as follows.
The nullspace Nk is applied for all k, 0 6 k 6 nd, but the unit lower triangular
block Fk is applied only for 0 6 k 6 d. Also note that for k 6 d, the column
dimension of the slice to which Fk is being applied to is bounded by (d + 1)n.
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The application of the permutations P∗ does not dominate the cost. We can thus
partition the computational work as follows.

A Gauss transform: at most nd + 1 times, compute a Gauss transform of a
matrix bounded in dimension O(OD+ n)× n.

B Nullspace application: at most nd+ 1 times, multiply an O(OD)× n matrix
by an n×O(n2d) matrix.

C Computing the echelon form: at most d + 1 times, multiply an O(n) ×
O(n) matrix by a O(n)×O(nd) matrix.

D Back substitution: O(n3d2) operations.

Since the rank of the input matrix (5.10) is bounded by its column dimension
n, the cost of computing (Uk, Pk) for a given k is bounded by O((OD+ n)nω−1)

by [Storjohann, 2000, Proposition 2.15]. This gives a total cost for (A) of O((OD+

n)nωd). Using an obvious block decomposition shows (C) can be done in time
O(nωd2).

It remains to bound the cost of (B). There are two cases, depending on whether
OD 6 n or OD > n. Using an obvious block decomposition shows a single
nullspace application has cost O(ODω−2n3d) if OD 6 n and O(OD nωd) other-
wise. The total cost for (B) is thus O(ODω−2n4d2) if OD 6 n and O(OD nω+1d2)

if OD > n. In both cases these upper bounds for the cost of (B) dominate the
cost bounds for (A), (C) and (D).

Part 1 of the theorem follows by substituting the a priori upper bound OD 6

nd into the O-bound in part 2 for the case OD ≥ n.

For part 3, note that the (nonzero part) of the slice to which the nullspace is
applied will now have dimension O(nd) instead of O(n2d). The cost estimates
for the work in part (B) are thus reduced by a factor of n, but they still dominate
the cost of parts (A), (C) and (D).
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5.3 Fraction-free block elimination

Now consider the case when all entries in Alin are coming from an integral do-
main, for example F = k(z) for a field k but all entries are in F[z], or even Z[z]
when k = Q. It is desirable in this setting to keep all intermediate quantities in
the computation integral, while at the same time controlling their growth. The
classic technology for this purpose in the linear algebra setting is fraction-free
Gaussian elimination [Edmonds, 1967, Bareiss, 1968].

The Gauss transform algorithm [Storjohann, 2000, Algorithm 2.14] is actually
designed to do fraction-free Gaussian elimination, and because of its column
recursive formulation, is well suited to the elimination of Alin.

The incorporation of fraction-free techniques into the algorithm supporting
Theorem 31 is straightforward. For k = nd, nd− 1, . . . , 0, the fraction-free Gauss
transform algorithm also computes ∆k+1, the minor of Rk+1 in (5.8) comprised
of its rank profiles columns. To start the process set ∆nd+1 = 1 since Rnd+1 is the
0× 0 matrix, and recall that End is the 0× n matrix. At step k we have the scaled
matrix

∆k+1

[
Ek ∗ · · · ∗

]
from the previous step, together with ∆k+1. The rows of Alin occupied by Ck are
premultiplied by ∆k+1 to form the next slice

∆k+1

 Ek ∗ · · · ∗
Ck ∗ · · · ∗

 , (5.11)

which will be fraction-free, that is, all entries are minors of Alin of dimension
bounded by one plus the rank of Rk+1. (We remark that only scaling the rows
of Alin that will be involved in the next elimination step is important for the
complexity, and similar to [Lee and Saunders, 1995].) At stage k, the fraction-
free Gauss transform takes as input (5.11), together with ∆k+1, and returns as
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output the permutation Pk and the scaled matrix

Ūk =

 F̄k

∆kNk ∆k I

 , (5.12)

together with ∆k. The matrix F̄k is equal to the unit lower triangular Fk from
before but with each row scaled by a certain minor of Alin which is known a
priori to clear any denominators. The output (5.12) is also fraction-free, that
is, all entries are minors of Alin of dimension bounded by the rank of Rk. The
nullspace applications in Phase 1 can now be done in a fraction-free fashion as

1
∆k+1

Ñ(
∆k

[
Nk I

]
Pk

)Ñ
∆k+1

 Ek ∗ · · · ∗
Ck ∗ · · · ∗

éé
yielding

∆k

[
Ek−1 · · · ∗

]
.

In Phase 2 the entire Gauss transform is applied to obtain

1
∆k+1

Ñ
ŪkPk

Ñ
∆k+1

 Ek ∗ · · · ∗
Ck ∗ · · · ∗

éé = ∆k

 Ḡk ∗ · · · ∗
Ek−1 · · · ∗

 .

The back substitution in Phase 3 can be done iteratively in a fraction-free fashion
also [Bareiss, 1968].

Next we give the detailed steps of the fraction-free block elimination algo-
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rithm.

Procedure FFPopov(A)
Input: A ∈ k[z][∂; σ, δ]n×n such that A is non-singular, d = deg A
Output: P ∈ k(z)[∂; σ, δ]n×n the Popov form of A.

1 Construct Alin , µ, ν← Dimensions(Alin)

2 i, j, Ĕ1, ∆1, n′ ← 1, 1, 0, 1, n
3 while i 6 µ do
4 n′ := min(n,,,µ− (i− 1 + Ĕ1)) , ψ← i− 1 + Ĕ1 + n′

5 Alin[i + Ĕ1..ψ,,,j..ν]← ∆1.Alin[i + Ĕ1..ψ,,,j..ν]
6 T, P, r, ∆2 := GaussTransform(Alin[i..ψ,,,j..j− 1 + n], ∆1)
7 Ĕ2 ← Ĕ1 + n′ − r , τ ← i− 1 + r + Ĕ2

8 Apply the permutation P

9 Alin[i + r..τ,,,j..ν] := T[r+1..r+Ĕ2].Alin[i..τ,,,j..ν]
∆1

10 if j > ν− n(d + 1) then
11 Alin[i..i− 1 + r,,,j..ν] :=T[1..r].Alin[i..τ,,,j..ν]

∆1

12 i← i + r , j← j + n , ∆1 ← ∆2 , Ĕ1 ← Ĕ2

13 Identify the rows of P in Alin

14 Let $← ν− n(d + 1) + 1, ρ := index of first row in Td in (5.5)
15 Let lstPiv be list of first non-zero entry in Alin[ρ..µ]
16 for i looping the identified rows of P do
17 for ii from i + 1 to µ− ρ do
18 Alin[i] := Alin[ii,j]∗Alin[i]−Alin[i,j]∗Alin[ii]

lstPiv[ii−ρ] # Back substitution

19 Make the identified Popov rows’ leading entry monic
20 Retrieve the rows of P from Alin through φ−1

P
21 return P

Before every call to the Gauss transform algorithm at step 6, we multiply the
new rows by the appropriate minor at step 5. Step 5 costs O(n3d) operations in
F, repeated O(nd) times, so overall cost of this step is O(n4d2).
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• For OD < n, step 5 does not dominate the cost in Theorem 31 as ODω−2n4d2 >

n4d2 when OD < n (note that OD > 0, see Section 5.2.1 for OD = 0).

• For OD > n, step 5 does not dominate the cost in Theorem 31 as OD nω+1d2 >

n4d2 when OD > n and ω > 2.

Using the fraction-free approach, all intermediate quantities arising during
the elimination (i.e., the entries of (5.11) and (5.12)) will thus be minors of Alin.
We recall some well known a priori bounds for the size of these minors for some
common cases. We will use size and size for the bounds for Alin and Ālin respec-
tively.

• F = k[z] with degz Alin, degz Ālin 6 e. Multiplying the row dimension of
Alin and Ālin by e gives explicit bounds for the degrees sizek[z] and sizek[z] of
minors of Alin and Ālin that satisfy

sizek[z] ∈ O(n2de) and sizek[z] ∈ O(nde).

• F = Z with the magnitude of entries of Alin and Ālin bounded by β.
Hadamard’s inequality [Horn and Johnson, 1985, Corollary 7.82] gives an
explicit bound 2sizeZ and 2sizeZ for the magnitudes of minors of Alin and
Ālin that satisfy

sizeZ ∈ O(n2d log(ndβ)) and sizeZ ∈ O(nd log(ndβ)).

• F = Z[z] with degz A 6 e, and with the magnitude of integer coefficients
of entries of Alin and Ālin bounded by β. Multiplying the determinant
degree bound above with the logarithm base 2 of an explicit magnitude
bound for the coefficients [Goldstein and Graham, 1974] gives

sizeZ[z] ∈ O(n4d2e log(ndeβ)) and sizeZ[z] ∈ O(n2d2e log(ndeβ)).
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Now let M be a multiplication time for k[z], that is, two polynomials from k[z]
with degree strictly less than t can be multiplied in M(t) operations from k. Then
over k[z] a cost estimate in terms of operations from k is obtained by multiply-
ing the algebraic cost estimates of Theorem 31 by M(sizek[z]). Note that the poly-
nomial multiplication can be done modulo zp for p = 2 sizek[z] + 1 to control
degrees during the fast matrix multiplications.

If M is a multiplication time for Z, that is, two integers with bit-length bounded
by t can be multiplied with M(t) bit operations, then a cost estimate in terms of
bit operations for the cases Z and Z[z] are obtained by multiplying the alge-
braic cost estimates by M(sizeZ) and M(sizeZ[z]). Note that for the Z[z] case we
can use Kronecker substitution [Harvey, 2009] to reduce the integer polynomial
multiplication to integer multiplication. Similar to the case k[z], the multiplica-
tion can be done modulo 2p for an appropriate p ∈ O(sizeZ[z]).

All these cost estimates can be improved (by logarithmic factors) by per-
forming the matrix multiplications using a homomorphic imaging scheme. For
example, if #k > 2nd+ 1, then two n× n matrices over k[x] with degree bounded
by d can be multiplied using only O(nωd + n2M(d)) operations from k [Bostan
and Schost, 2005], instead of O(nωM(d)). For integer matrix multiplication we
refer to [Harvey and van der Hoeven, 2014].

5.4 Cost analysis for some common Ore rings

Let A ∈ F[∂; σ, δ]n×n be non-singular with degree d. Theorem 31 gave cost esti-
mates for computing the Popov form P of A in terms of operations from F. In
this section we give refined cost estimates for some specializations of F, focusing
on the differential and shift cases.

First consider the case F = k(z). We will assume that A has entries over k[z].
This can be achieved by clearing denominators, if necessary. As in [Giesbrecht

53



and Kim, 2012], we will assume that σ(z) ∈ k[z] and degz δ(z) 6 1. Then ∂z =

σ(z)∂ + δ(z) ∈ k[z][∂; σ, δ] and the degree in z and in ∂ remains unchanged. The
linearized systems will thus be over k[z], allowing application of our fraction-
free algorithm.

In the following theorems recall that OD = OD(A) :=
∑

rdegA−∑ rdegP.

Theorem 32. Let A ∈ k[z][∂; σ, δ]n×n be non-singular with deg A ≤ d and degz A 6

e. If A is row reduced, this can be detected and the Popov form of A computed in
O(n3d2 M(nde)) operations from k. If A is not row reduced, the Popov form can be
computed in

1. O(nω+2d3 M(n2de)) field operations from k.

2. A more refined cost is obtained by considering the parameter OD. Then the num-
ber of operations from k is reduced to:

• O(ODω−2n4d2 M(n2de)) if OD < n

• O(OD nω+1d2 M(n2de)) if OD ≥ n

3. Finally, suppose that k[z][∂; σ, δ] has the property that for any nonzero element
f ∈ k[z][∂; σ, δ], the trailing degree of ∂ f is at least one more than the trailing
degree of f . Then the Big Oh estimates in parts 1 and 2 above are reduced by a
factor of n.

Proof. To test if A is row reduced we can check if its leading coefficient matrix is
non-singular. This check will not dominate the cost. The theorem now follows
from Theorems 28 and 31 and the estimates for sizek[z] and sizek[z].

Now consider the case F = Q(z). As before, we will assume that A has
entries over Z[z]. Then A has entries polynomials in ∂ whose coefficients are
polynomials in Z[z]; let ||A||∞ denote the largest in abolulte value of any (inte-
ger) coefficient of any of these Z[z] coefficients.
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As mentioned in Section 5.3, we can use Kronecker substition to reduce arith-
metic operations from Z[z] to integer arithmetic, and we get the following.

Theorem 33. A ∈ Z[z][∂; σ, δ]n×n be non-singular with deg A 6 d and degz A 6 e.
Suppose our Ore ring is either the differential polynomials (where σ(z) = z, δ(z) = 1)
or the shift polynomials (where σ(z) = z + 1, δ(z) = 0). If A is row reduced, this
can be detected and the Popov form of A computed in O(n3d2) operations with integers
bounded in length by O˜(n2d2e(log ||A||∞ + e)) bits. If A is not row reduced, the
Popov form can be computed in

1. O(nω+2d3) operations with integers bounded in length by O˜(n4d2e(log ||A||∞ +

e)) bits.

2. A more refined cost is obtained by considering the parameter OD. Then the num-
ber of operations on integers is reduced to:

• O(ODω−2n4d2) if OD < n

• O(OD nω+1d2) if OD > n

3. In the shift case the Big Oh estimates for numbers of operations in parts 1 and 2
above are reduced by a factor of n.

Proof. As before, we can test if A is row reduced by checking if its leading co-
efficient matrix is non-singular using fraction-free Gaussian elimination. From
the proof of [Giesbrecht and Kim, 2012, Corollary 5.9] we have that log β :=
log ||Alin||∞ ∈ O(log ||A|| + e log(nd)). The theorem now follows from Theo-
rems 28 and 31 and the estimates for sizeZ[z] and sizeZ[z].

5.5 Experimental Results

In this section, we report on experiments and timings that compare FFPopov to
other algorithms from the literature. The experiments reported in Table 5.1, Ta-
ble 5.2, and Table 5.3 are all performed on square non-singular Ore polynomial
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matrices with entries from the differential ring (i.e., σ(z) = z and δ(z) = 1). A
random input matrix is more likely to be row reduced or almost row reduced
(i.e., couple row operations away from being row reduced), in which case FF-
Popov will do a minimal amount of computation to get the Popov form. For all
the experiments, we generate an input matrix A ∈ F[∂; ′]n×n with skewed col-
umn degrees. For example if deg A = 6 and n = 6, we can have column degrees
of A equal [2, 4, 6].

We compare four different Maple implementations of four different algo-
rithms,

• Modular: The modular algorithm for computing a row reduced form of
an input matrix [P. Davies, 2009];

• SparseFF: We use the sparse fraction-free Gaussian elimination algorithm
from [Lee and Saunders, 1995] to put an input matrix in reduced row ech-
elon form then extract the Popov form at the end;

• Muld-Stor: The Mulders-Storjohann algorithm from [Mulders and Storjo-
hann, 2003] which computes the Popov form of an input matrix by per-
forming unimodular row operations from the Ore ring (described in Sec-
tion 3.1) directly on the rows of the input matrix;

• FFPopov: The fraction-free output-sensitive algorithm described in Sec-
tion 5.3.

We use the parameters n and d where n denotes the dimension of a square non-
singular input matrix A ∈ F[∂; ′]n×n and d = deg A. For the cases where F =

k(z), k is a field, we use the parameter e to denote the degree in z of the entries
of A. All experiments were run on the same machine, and the timings reported
were averaged over 5 trials (for the experiments where all the algorithms run to
completion). We fill the table with a dash mark whenever the algorithm does
not finish after twenty four hours of execution.
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We consider three different cases: when F = k(z) = Z11(z), F = k(z) =

Q(z), and F = Q. For the first two cases, we assume that the input matrix is
fraction-free (i.e., A ∈ k[z][∂; ′]n×n). Table 5.1 considers the first case where our
non-singular input matrix with skewed column degrees is A ∈ Z11(z)[∂; ′]n×n.
Notice that we use the modp1 package from Maple for SparseFF and FFPopov,
and we use the OreTools[Modular] package from Maple for Muld-Stor modular
computations.

Parameters Algorithms
nnn eee ddd SparseFF Muld-Stor FFPopov

2 8 16 4.4 0.53 0.55
3 8 8 5 0.6 0.9
4 10 20 7265.4 5789 738.5
6 5 10 1672 428.1 200.1
6 10 20 - - 20146

Table 5.1: Execution time (in seconds) over a non-singular input matrix

A ∈ F[∂; ′]n×n, with F = Z11(z), deg A = d, degz A = e, and A has

skewed column degrees.

Table 5.2 considers the case where our non-singular input matrix with skewed
column degrees is A ∈ Q(z)[∂; ′]n×n.
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Parameters Algorithms
nnn eee ddd Modular SparseFF Muld-Stor FFPopov

2 8 16 2172 88 0.23 4.13
3 5 5 345 8.4 0.16 1.1
4 10 20 - - - 12200
5 5 10 - 13815 15025 1464
6 5 10 - - - 9616

Table 5.2: Execution time (in seconds) over a non-singular input matrix

A ∈ F[∂; ′]n×n, with F = Q(z), deg A = d, degz A = degz Alin = e,
‖A‖∞ 6 99, and A has skewed column degrees.

Table 5.3 considers the case where our non-singular input matrix with skewed
column degrees is A ∈ Q[∂; ′]n×n. Since F = Q, the Ore polynomials behave ex-
actly like the usual commutative polynomials (i.e., σ and δ have no effect). This
allows us to also compare our implementations with the default Maple function
PopovForm which is based on the algorithm of [Beckermann et al., 1999] that
computes the Popov form of a univariate polynomial input matrix.

Parameters Algorithms
nnn ddd PopovForm Modular SparseFF Muld-Stor FFPopov

6 10 16.8 347.3 19.8 0.6 9.76
8 12 137.3 3446.6 120.6 1.7 55.6
10 20 3632 71162 2452 9.5 770.5

Table 5.3: Execution time (in seconds) over a non-singular input matrix

A ∈ F[∂; ′]n×n, with F = Q, deg A = d, ‖A‖∞ 6 99, and A has skewed

column degrees.

Notice that in Table 5.1 and Table 5.2 the Muld-Stor algorithm is faster than
the other algorithms for small parameters n, e, and d. But as soon as we increase
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the parameters values, the Muld-Stor algorithm suffers from intermediate co-
efficient growth which makes it slow, even slower than the SparseFF in some
cases (e.g., for n = 5, e = 5, and d = 10).
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Chapter 6

Recovering the transformation
matrix via linear system solving

In Chapter 5, we saw how we can compute the Popov form P of a nonsingular
matrix A of Ore polynomials using fraction-free Gaussian elimination. In this
chapter, we will show how we can recover the unimodular transformation ma-
trix U such that UA = P using the linear system solving method [Storjohann,
2000, Giesbrecht and Kim, 2012]. For the rest of this chapter, and as we did in
Section 2.2, we define the pivot of a vector ~v ∈ F[∂; σ, δ]1×n, denoted piv(~v), as
right-most entry of ~v which has deg~v.

Let A ∈ F[∂; σ, δ]n×n be a non-singular matrix of degree d and let P ∈ F[∂; σ, δ]n×n

be its unique Popov form computed using FFPopov from Chapter 5 with row
degrees ~p = [p1, . . . , pn]. Let U ∈ F[∂; σ, δ]n×n have entries of the format Ui,j =∑(n−1)d

k=0 Ui,j,k∂k with unknowns Ui,j,k ∈ F for 1 6 i, j 6 n. We consider the system
of equations in Ui,j,k with the following constraints:
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(UA)i,i,pi = 1, for 1 6 i 6 n → diagonal entries are monic;

(UA)i,j,k = 0, for k > pi → pivot entry has degree higher or equal than

other entries in the same row or column.

(6.1)

By solving the system of equations with the constraints described in (6.1), we
mean finding all the values of Ui,j,k ∈ F, with 1 6 i, j 6 n and 0 6 k 6 (n− 1)d.
Solving the system of equations, which will be square and non-singular, will
result in the unique transformation matrix U such that UA = P.

Define the linearization φU : F[∂; σ, δ]∗×n 7→ F∗×(n
2d+n) by

φU(~v) = φU
[

v1 · · · vn
]

=
[
[v1]nd · · · [vn]nd · · · [v1]0 · · · [vn]0

]
∈ F∗×(n

2d+n),

where [vi]k denotes the coefficient of ∂k of vi ∈ F[∂; σ, δ]∗×1. Let A ∈ F[∂; σ, δ]n×n

be an input matrix and let P ∈ F[∂; σ, δ]n×n be its Popov form computed us-
ing FFPopov from Chapter 5. Let U ∈ F[∂; σ, δ]n×n be the unimodular transfor-
mation matrix such that UA = P. We can easily map the system of equation
in (6.1) to system of equations in F by constructing Alin (5.1) from A and apply-
ing φU and φP to U and P respectively (i.e., applying φU and φP to every single
entry in U and P respectively):

φU(U)Alin = φP(P). (6.2)

We can assume that after every call to the Gauss Transform in step 6 of FF-
Popov, we apply the returned T to the matrix passed in as an argument (this
clearly does not dominate the cost of the algorithm). After we finish the Gaus-
sian elimination, we can determine the column rank profile columns as any col-
umn containing a pivot. Since Alin has full rank (Lemma 22), then the number
of column rank profile columns is µ = n2d + n−∑ rdegA. Let B ∈ Fµ×µ be the
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submatrix of Alin comprised of the column rank profile columns. Let P′ ∈ Fn×µ

be the submatrix of φP(P) comprised of the columns of indices corresponding
to the column rank profile columns indices in Alin. We can replace the system of
linear equations in the matrix equation (6.2) by

φU(U)B = P′. (6.3)

Solving (6.3) yields the unique transformation matrix U ∈ F[∂; σ, δ]n×n such that
UA = P, the Popov form of A.

Example 34. Let A ∈ Q(z)[∂; ′]2×2 be our input matrix such that

A =

(−16z− 54) 5− 33∂

96 −25− 5∂

 ,

and deg A = 1. We compute the Popov form of A using FFPopov from Chapter 5:

P =

200z+475
1719+40z + ∂ 0
−1719−40z

425 1

 ∈ Q(z)[∂; ′]2×2.

We compute Alin and set up the matrix equation as in (6.2):

φU(U)∈Q(z)2×4︷ ︸︸ ︷ U111 U121 U110 U120

U211 U221 U210 U220

 ×

Alin∈Q(z)4×6︷ ︸︸ ︷
−33 0 5 −16z− 54 0 −16
−5 0 −25 96 0 0
0 0 −33 0 5 −16z− 54
0 0 −5 0 −25 96



=

φP(P)∈Q(z)2×6︷ ︸︸ ︷ 0 0 0 1 0 200z+475
1719+40z

0 0 0 0 1 −1719−40z
425

 .

We determine the column rank profile columns which are columns 1, 3, 4, and 5. So
we remove those columns from Alin and φP(P) and we write the matrix equation as
in (6.3):
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φU(U)∈Q(z)2×4︷ ︸︸ ︷ U111 U121 U110 U120

U211 U221 U210 U220

 ×

B∈Q(z)4×4︷ ︸︸ ︷
−33 5 −16z− 54 0
−5 −25 96 0
0 −33 0 5
0 −5 0 −25



=

P′∈Q(z)2×4︷ ︸︸ ︷ 0 0 1 0
0 0 0 1

 .

The system has a unique solution for the unknown entries in φU(U),

φU(U) =

 −5
3438+80z

33
3438+80z

−25
3438+80z

−5
3438+80z

0 0 1
170

−33
850

 .

We apply φ−1
U to obtain

U =

 −25
3438+80z +

−5
3438+80z ∂ −5

3438+80z +
33

3438+80z ∂
1

170
−33
850

 ∈ Q(z)[∂; ′]2×2

such that UA = P ∈ Q(z)[∂; ′]2×2, the Popov form of A.

Theorem 35. Let A ∈ k(z)[∂; σ, δ]n×n be non-singular with deg A 6 d and degz A 6

e. Let P ∈ k(z)[∂; σ, δ]n×n be the Popov form of A. We can compute the transformation
matrix U ∈ k(z)[∂; σ, δ]n×n such that UA = P in O˜(n7d3e) operations from k.

Proof. We set up the non-singular linear system described by the matrix equa-
tion (6.3). We use the algorithm from [Gupta et al., 2012, Algorithm RationalSys-
temSolve] to solve the n non-singular linear systems in (6.3). The cost of solv-
ing each system of equations is O˜(n2ωdωe) operations in k yielding a total cost
of O(n2ω+1dωe) operations in k. Notice that the algorithm from [Gupta et al.,
2012, Algorithm RationalSystemSolve] solves the matrix equation CX = b for
an unknown column vector X. So to be able to use it, we first have to transpose
the matrix equation in (6.3) so it becomes Transpose(B)Transpose(φU(U)) =

Transpose(P′). The solution to the linear system can then be transposed back to
get the desired result.
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6.1 An asymptotically faster algorithm

There has been a tremendous work in the recent years on algorithms for poly-
nomial matrix computations. This work has lead to some fast algorithms in
matrix rank profile computations, which we use in this Section to compute the
unimodular transformation matrix U ∈ F[∂; σ, δ]n×n such that UA = P for a
non-singular matrix A ∈ F[∂; σ, δ]n×n, P is the Popov form of A, and k is a field.
Let F = k(z), k is a field, and let deg A 6 d and degz A 6 e. The algorithm we
introduce in this section to compute the unimodular transformation matrix U,
is described in the following steps:

a Construct Alin as described in (5.1).

b Compute the column rank profile of Alin using the algorithm from [Zhou,
2012, Algorithm rankProfile]. This costs O˜(n2ωdωe) operations in k using [Zhou,
2012, Theorem 11.2.].

c Construct the system of equation φU(U)B = P′ as in (6.3).

d Compute a structured factorization of the inverse of B using the algorithm
from [Zhou et al., 2014, Algorithm Inverse]. This step has cost O˜(n2ωdωe)
operations in k by [Zhou et al., 2014, Theorem 8.].

e Solve the n non-singular linear systems described by the matrix equation in
step c. This costs O˜(n5d2e) operations in k as by [Zhou et al., 2014, Sec-
tion 5.3.]).

Based on the algorithm just outlined, we obtain the following result.

Theorem 36. Let A ∈ k(z)[∂; σ, δ]n×n be non-singular with deg A 6 d and degz A 6

e. Let P ∈ k(z)[∂; σ, δ]n×n be the Popov form of A (unknown). We can compute the
transformation matrix U ∈ k(z)[∂; σ, δ]n×n such that UA = P in O˜(n6d3e) opera-
tions from the field k.
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Since the Popov form P of A has degrees bounded by d = deg A, we can
now compute P as

(U mod ∂d+1)(A mod ∂d+1).

We immediately get the following corollary.

Corollary 37. Let A ∈ k(z)[∂; σ, δ]n×n be non-singular with deg A 6 d and degz A 6

e. We can compute the Popov form of A in O˜(n6d3e) operations from k.

Notice that the cost reported in Corollary 37 is asymptotically faster than the
cost reported for FFPopov in Theorem 32. Implementing the different advanced
techniques used by this algorithm in step b, step d, and step e will allow us
to see the effectiveness of this algorithm in practise and to compare it with the
FFPopov algorithm from Chapter 5.
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Chapter 7

Conclusion

In this thesis, we give an extension of the algorithm by [Labhalla et al., 1992]
to compute the Hermite form of an input matrix A ∈ F[∂; σ, δ]n×n. This result
is obtained by using a linearization technique that maps the input matrix A to
a much larger one which has entries from the field F, then doing Gauss-Jordan
elimination to recover the Hermite rows.

We also give a new algorithm FFPopov to compute the Popov form of a non-
singular matrix A ∈ F[∂; σ, δ]n×n over an Ore polynomial ring. Our approach
is to construct a large linear system Alin (5.1) over F whose reduced row eche-
lon form reveals the Popov form of A. Using structural properties of Alin, and
since we need only a small, a priori known part of the reduced echelon form,
we are able to speed up the Gaussian elimination, especially in cases where A
is already close to being row reduced. This approach combines immediately
with existing fraction-free techniques which utilize fast matrix multiplication.
For the shift and differential Ore rings we bound the bit complexity of our algo-
rithm when the input matrix is over Z[z]. Our algorithm is faster than [Cheng
and Labahn, 2007] which computes only a row reduced form and not the Popov
form (but, however, handles the important case of non-square and singular in-
put which we do not). FFPopov still works for rectangular and rank deficient
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matrices (of any dimensions) but the complexity can be much higher. Making
the algorithm as efficient for rectangular and rank deficient matrices is left for
future work. We present an implementation of this algorithm for the differential
case and give some timings that compare our algorithm to some other known
algorithms for row reduction and Popov form computation. The timings show
the effectiveness of FFPopov especially for large input matrices where FFPopov
clearly outperforms all other approaches.

An asymptotically faster algorithm than the one reported in Chapter 5 is
given by Corollary 37. This algorithm uses some recent advances in polynomial
matrix computations to compute the transformation matrix U ∈ F[∂; σ, δ]n×n

of a non-singular input matrix A ∈ F[∂; σ, δ]n×n, for F = k(z) and F is a field.
The Popov form of A can then be obtained by multiplying U mod ∂d+1 by A
mod ∂d+1 where d = deg A. This asymptotically faster algorithm for computing
the Popov form with transforming matrix is based on a number of recently intro-
duced techniques which improve the deterministic worst case asymptotic com-
plexity of polynomial matrix computations: rank profile [Zhou, 2012], struc-
tured inverse [Zhou et al., 2014], linear solving [Zhou et al., 2014]. As future
work, it would be desirable to have highly optimized implementations of these
new techniques available.
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