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Abstract 

Recently, the potential catalytic properties of manganese dioxide have attracted attention as a 

means to activate persulfate. This focus of this research was on the potential ability of MnO2(s) 

solids synthesized through permanganate oxidation of organics to activate persulfate. A combined 

permanganate + persulfate (PM/PS) system is proposed for the treatment of organic compounds.  

In this system, a limited mass of permanganate is first introduced into a contaminated zone to 

generate MnO2(s) and then, after an appropriate reaction period, persulfate is delivered and 

activated by MnO2(s) for enhanced treatment.   

MnO2(s) generated from non-aqueous phase trichloroethylene (TCE) and potassium 

permanganate were employed to activate persulfate for the treatment of 1-methylnaphthalene in a 

series of batch experiments at various MnO2(s) to persulfate mass ratios. The results from these 

batch experiments showed that MnO2(s) is capable of activating persulfate. The highest 1-

methylnaphthalene degradation rate was achieved at a mass ratio 20 g MnO2(s) /g persulfate with 

synthetic groundwater. The mass of 1-methylnaphthalene removed increased with an increase in 

MnO2(s) dosage. The degradation of 1-methylnaphthalene using a mass ratio 5:1 (g MnO2(s): g PS) 

with Milli-Q water was slightly higher than for unactivated persulfate. The degradation kinetics of 

1-methylnaphthalene by persulfate activated by MnO2(s) solids was one order of magnitude higher 

than that achieved by unactivated persulfate.  The surface of MnO2(s) solids remained unaltered 

during the experiment period. The performance of the PM/PS system for the degradation of 

aqueous phase benzene and TCE was investigated in a series of batch reactors.  The PM/PS system 

produced higher benzene degradation than unactivated persulfate for the same mass of PS 

consumed. Bench-scale stop-flow column systems that closely mimic in situ conditions were 

executed to evaluate the performance of the proposed PM/PS system for the treatment of a residual 

TCE and 1-methylnaphthalene mixture. The TCE and 1-methylnaphthalene mass removed in the 

PM/PS system was 11% and 25% higher than by only permanganate or persulfate, respectively. 

Based on the findings from batch and column experiments, the minimum permanganate to 

persulfate molar ratio for effective treatment is 13:1. 

The results of this research confirm that MnO2(s) solids are able to enhance persulfate reactivity, 

and that the proposed PM/PS system is a promising remedy for the treatment of soil and 



 

iv 

groundwater contaminated with organic compounds. The research efforts provide key insights into 

the design of a PM/PS system for ISCO.  
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Chapter 1  
Introduction 

  

1.1 General  

Groundwater and soil contamination by toxic organic chemicals released from various human 

activities are a risk to the natural environment and human health. As of September 2016, the 

National Priority List (NPL) released by the USEPA indicated 1338 active contaminated sites with 

more than 1000 of them suffering from groundwater and soil contamination (USEPA 2016). 

Volatile and semi-volatile organic compounds (VOCs and SVOCs) are the most widespread 

(Siegrist et al. 2011) and have been observed at > 60 % of these sites (USEPA 2013).  

About 70% of the VOC impacted sites have non-aqueous phase liquids (NAPLs) present which 

as a long-term source of contamination to the groundwater system (Newell et al. 1995; Pivetz 

2012; Siegrist et al. 2001). Halogenated solvents, fuel hydrocarbons (i.e., benzene, toluene, 

ethylbenzene, and xylene (BTEX) compounds), as well as polycyclic aromatic hydrocarbons 

(PAHs), are often found in these NAPL source zones (USEPA 2013). Trichloroethylene (TCE) is 

the most common halogenated solvent observed, and is denser than water and will not readily 

degrade in the subsurface environment (Huling and Weaver 1991; Liang et al. 2003). Due to the 

widespread use of fuel, benzene is commonly found in the subsurface and is volatile, highly soluble 

and hence very mobile in groundwater (ATSDR 2007). 1-methylnaphthalene is a PAH and is a 

common co-contaminant at many contaminated sites (USEPA 2013). Exposure to these 

compounds even at low concentration levels pose a carcinogenic risk to humans and thereby 

complete removal of the NAPL source zone and contiguous plume is generally required to satisfy 

regulatory standards (Siegrist et al. 2011). 

Remedy approaches include institutional controls (ICs), on-site containment, in situ treatment 

(e.g., in situ bioremediation or chemical treatment), ex situ treatment (e.g., pump and treat (P&T)), 

and monitored natural attenuation (MNA) (USEPA 2013; Xu 2006). According to the Superfund 

Remedy Report (SRR) 14th Edition, the groundwater remedies selected by the Superfund remedial 

program have been a mix of primarily P&T, in situ treatment, MNA, and some ICs. P&T can be 
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used for primary hydraulic containment, but its high cost and inability to treat VOCs in NAPL 

source zones limits its application. MNA has a low cost but very slow removal rates. The 

percentage of sites where P&T or MNA have been selected has decreased, but the selection of in 

situ treatment remedies, which are effective to address the NAPL source zones, continues to rise 

from 30 % during 2005-08 to 38 % during 2009-11. Of these in situ treatment technologies, in situ 

bioremediation and chemical oxidation (ISCO) were the most frequent selected remedy approach 

to address NAPL source zones (USEPA 2013). The increasing application of ISCO at 

contaminated sites suggests the need for evolving innovation and optimization of this technology 

is required. 

Strong oxidants generate reactive species (including free radicals) which are capable of 

transforming or degrading organics (Siegrist et al. 2011). In general, an ISCO system delivers 

strong oxidants at varied concentrations and mass loading rates into the subsurface as a solution to 

degrade and hence reduce the mass of the organic contaminants to less harmful species (Huling 

and Pivetz 2006; Siegrist et al. 2011; Watts et al. 2006). ISCO has the advantage of immediately 

destroying contaminants in place and enhancing the mass transfer of NAPLs to the aqueous phase 

which accelerates mass removal (Siegrist et al. 2011). The most common oxidants applied are 

hydrogen peroxide (H"O"), permanganate (MnO&') and persulfate (S"O)"') (Krembs et al. 2010). 

Each chemical oxidant has advantages and disadvantages with respect to stability and reactivity as 

listed in Table 1.1. 

 

1.2 Hydrogen Peroxide 

Catalyzed H"O" propagations (CHP) reactions which occur when elevated concentrations of 

peroxide are mixed with ferrous iron was the first ISCO process thoroughly studied and employed 

at the field scale. In a CHP system, the strong oxidant hydrogen peroxide is activated by a catalyst 

(e.g., soluble iron and iron oxide minerals) to generate free radicals (hydroxyl radical, OH∙; and 

hydroperoxyl radical, HO"∙ ) and anions (hydroperoxide anion, HO"'; and superoxide radical anion 

O"∙') (Mitchell et al. 2014) as given by:  

 H"O" + Fe". → OH∙ + OH' + Fe0. (Eq 1.1) 
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 OH∙ + H"O" → HO"∙ + H"O (Eq 1.2) 

 HO"∙ ↔ O"∙' + H. (Eq 1.3) 

 HO"∙ + Fe". ↔ HO"' + Fe0. (Eq 1.4) 

The generation of active radicals and reactive species enable the CHP system to have universal 

reactivity with a wide range of organic contaminants (Watts et al. 2007). The rapid degradation of 

aqueous phase organic contaminants adjacent to the NAPL-water phase increases the mass transfer 

of organic contaminants from the NAPL phase to aqueous phase, which can significantly enhance 

NAPL degradation rates in a CHP system (Petri et al. 2011). However, H"O"  is a short-lived 

oxidant with a half-life of several hours to days, which limits H"O"  travel to < 3 m from an 

injection well in some cases (Watts et al. 2007; Xu and Thomson 2007). This low persistence 

significantly reduces the effectiveness of the CHP system to interact with organic contaminants. 

To overcome this issue, stabilizers such as ethylenediamine tetraacetic acid (Xu and Thomson 

2007) or a phosphate stabilizer (Baciocchi et al. 2004) have been used to stabilize H"O".  

 

1.3 Permanganate 

Permanganate (MnO&') is a strong transition metal oxidant with a high reduction potential of 

+1.68 volts (V) and is available as sodium permanganate (NaMnO& ) (a liquid) or potassium 

permanganate (KMnO&) (a solid) (Huling et al. 2006; Petri et al. 2011). The form of permanganate 

has little impact on the reactivity with organics, and related consumption during the oxidation 

process (Petri et al. 2011; Siegrist et al. 2002). Permanganate mainly degrades organic compounds 

through direct electron transfer rather than a free radical process. The following half reactions 

show the electron transfer behavior of permanganate at different pH conditions (Petri et al. 2011): 

 MnO&' + 8H. + 5e' → Mn". + 4H"O				pH < 3.5 (Eq 1.5) 

 MnO&' + 2H"O + 3e' → MnO" s + 4OH'				3.5 < pH < 12 (Eq 1.6) 

 MnO&' + 1e' → MnO&"'				pH > 12 (Eq 1.7) 
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Three electrons are transferred in the half-reaction given by Eq 1.6, which is the dominant reaction 

in most natural groundwater systems. The non-toxic by-product (manganese dioxide solid) is 

inevitably generated when this dominant reaction occurs. 

The use of permanganate in the field is well understood and there exists a substantial amount 

of supporting literature (Petri et al. 2011). Permanganate is very stable and can persist for months 

and travel considerable distances in the subsurface. The predictable chemical behavior and high 

stability makes permanganate the most often selected oxidant based on the statistics gathered by  

Krembs et al. (2010). The reaction between permanganate and TCE generates CO2 and Cl' from 

TCE, and MnO2(s) from MnO&'  (Li & Schwartz 2004a): 

 C"HCl0 TCE + 2MnO&' → 2MnO"(F) + 2CO"(H) + 3Cl' + H. (Eq 1.8) 

Li and Schwartz (2004b) determined that the MnO2(s) generated from the oxidation of TCE by 

permanganate was semi-amorphous potassium-rich birnessite with a chemical formula of 

KI.)J&MnK.L)MO& ∙ 1.55	H"O.  

The by-product MnO2(s) can adversely affect the performance of permanganate for NAPL 

treatment (Heiderscheidt et al. 2008; Siegrist et al. 2002). Many studies have shown that the 

formation and deposition of MnO2(s) at the NAPL/water interface reduces NAPL/water mass 

transfer (Li and Schwartz 2004a; MacKinnon and Thomson 2002; Tunnicliffe and Thomson 2004). 

Li and Schwartz (2002) reported that MnO2(s) was rapidly formed as a precipitate rind above a 

NAPL pool once permanganate came in contact with NAPL, and further limited dissolution. In a 

two-dimension model sand aquifer, the MnO2(s) deposited from the reaction between PCE and 

permanganate directly limited water flow around a PCE pool and hence the PCE/water mass 

transfer rate (MacKinnon and Thomson 2002). The accumulation of MnO2(s) may also reduce the 

permeability of a porous medium (Huling et al. 2006; Petri et al. 2011; Schroth et al. 2001). Li and 

Schwartz (2004a) quantified a hydraulic conductivity reduction as high as 80 % in a series of 

column experiments. Huang et al. (2002) indicated that the MnO2(s) generated from the reaction 

between TCE and permanganate caused a 20 % reduction of pore space in a column test. Other 

stduies have shown that the MnO2(s) accumulated close to the oxidant injection point and reduced 

the local permeability of the porous medium (Huang et al. 2002; Li and Schwartz 2002), and then 

subsequent injections were limited (Heiderscheidt et al. 2008; Huling and Pivetz 2006; Petri et al. 

2011). Tunnicliffe and Thomson (2004) observed that MnO2(s) formation appeared and behaved 
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like a flexible “membrane skin” that varied between 1 and 15 mm over a DNAPL. In an interfacial 

deposition experiment reported by Urynowicz and Siegrist (2005), MnO2(s) was observed to 

rapidly deposit as a film at a DNAPL interface.  

The reduction of the NAPL dissolution rate and clogging of pore spaces may limit the oxidation 

rate and hence treatment performance using permanganate. Research efforts have focused on the 

development of approaches to eliminate the effects of the MnO2(s). Li and Schwartz (2004 b&c) 

proposed to use organic acids (citrate and oxalate) to dissolve and remove MnO2(s). Likewise, 

sodium hexametaphosphate (HMP) has been implemented to stabilize MnO2(s) during 

permanganate delivery in column studies (Crimi et al. 2009). Chokejaroenrat et al. (2014) recently 

found that sodium HMP was able to prevent the formation of a MnO2(s) crust and improve the 

treatment of TCE in a low permeability zone.  

Permanganate is regarded as selective oxidant because its simple electron transfer scheme 

restricts its reactivity to a limited range of organic contaminants compared to other oxidants (Petri 

et al. 2011). Permanganate has a high reactivity with alkenes, chlorinated ethenes (e.g., TCE, 

PCE), phenols, and some PAHs, which are electron-rich (Table 1.1). Permanganate is ineffective 

in oxidizing saturated hydrocarbons without functional groups, such as alkane compounds, 

benzene, and chlorinated aromatics.  

1.4 Persulfate 

Compared to hydrogen peroxide and permanganate, persulfate (S"O)"') is the newest chemical 

oxidant. Persulfate can be activated by various means (e.g., transition metals, heat, alkaline 

substances, and UV) to form the sulfate radical SO&∙' (Eq 1.9) (Wilson et al. 2013). The sulfate 

radical not only oxidizes organic compounds but also initiates the formation of other radicals (e.g., 

the hydroxyl radical OH∙ and superoxide anion radical O2∙−) through a series of radical propagation 

chain reactions (Furman et al. 2010). The termination reactions consume these radicals to oxidize 

target organic compounds and form reaction products (Petri et al. 2011).  

S"O)"' + 2e' → SO&"' + SO&∙' (Eq 1.9) 

SO&∙' + H"O → 	HSO&' + OH∙ (Eq 1.10) 
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The formation of these radicals enable persulfate to degrade a wider range of organic 

contaminants than permanganate (Huling et al. 2006; Petri et al. 2011; Watts et al. 2006). Sra 

(2010) showed that persulfate is effective to degrade gasoline compounds including benzene 

(C6H6; Eq 1.11) and 1-methylnaphthalene (C11H10; Eq 1.12). 

CMHM + 15S"O)"' + 12H"O → 30SO&"' + 6CO"(H) + 30H. (Eq 1.11) 

CKKHKI + 27S"O)"' + 22H"O → 54SO&"' + 11CO"(H) + 54H. (Eq 1.12) 

Persulfate persists longer in the subsurface than H"O" (Huang et al. 2002; Sra et al. 2014). As 

a result, persulfate has the potential to be transported in porous media, and migrate into low-

permeability zones through diffusion (Liu et al. 2014).   

Ferrous iron (Fe (II)) is the most common activator mainly due to its easy accessibility and low 

environmental toxicity (Petri et al. 2011). When mixed with persulfate, ferrous iron donates an 

electron to generate a sulfate radical (Eq 1.13), which then can oxidize an organic compound or 

produce other radicals through propagation reactions (Liang et al. 2004a; Petri et al. 2011). A 

ferrous iron activated persulfate system can generate high degradation rates (Liang et al. 2004a); 

however, the transport distance and distribution of ferrous iron in the subsurface is limited by 

various reactions (Huling et al. 2006). Liang et al. (2004a) indicated that persulfate activation by 

Fe (II) was not efficient and large amounts of Fe (II) are required because Fe(II) was consumed 

and transformed to Fe(III), which is less efficient as a persulfate activator. 

 S"O)"' + Fe". → SO&"' + SO&∙' + Fe0. (Eq 1.13) 

 

1.5 Research Needs and Objectives 

Recently, the potential properties of MnO2(s) to activate persulfate have gained attention 

(Ahmad et al. 2010b; Jo et al. 2014). Manganese oxides have been identified as a common activator 

for H"O".  As an analogy to H"O", it has been speculated that persulfate could potentially be 

activated by manganese dioxide (Petri et al. 2011).  Ahmad et al. (2010) found that the mineral 

birnessite [R-MnO2] synthesized through permanganate oxidation of concentrated hydrochloric 

acid was the most effective persulfate activator among six subsurface minerals.  Do et al. (2010) 
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revealed that pyrolusite [S -MnO2] increased persulfate reactivity in a series of slurry batch 

reactors.  However, the potential ability of MnO2(s) to activate persulfate is poorly understood, and 

the benefit of a combined permanganate and persulfate (PM/PS) system has not been 

demonstrated. The dual oxidant (PM/PS) system proposed in this research could potentially utilize 

the strong features of each oxidant and produce several attractive benefits.  Figure 1.1 shows a 

schematic representation of the conceptual PM/PS system used to treat a residual NAPL source 

zone.  In this conceptual model, a limited mass of permanganate is initially delivered into the 

source zone to generate MnO2(s) that precipitates in the vicinity of the NAPL/water interface. After 

an appropriate reaction period has passed, persulfate is then delivered into the source zone using 

the same infrastructure.  The presence of the MnO2(s) will activate persulfate at the NAPL/water 

interface where dissolution occurs.  In this PM/PS system the co-injection of an activator solution 

(e.g., ferrous iron) is not required and activator/persulfate reactions that occur away from the 

reaction zone or front are avoided.  As long at the MnO2(s) remains unaltered in situ, multiple 

persulfate injection episodes are possible to ensure dosing requirements are reached.  For a single 

component NAPL amenable to permanganate treatment this PM/PS system will minimize pore 

clogging and related hydraulic conductivity impacts, and maximize treatment efficiency. While 

for a multiple component NAPL containing a complex mixture of saturated hydrocarbons and 

chlorinated ethenes, this PM/PS system will use the permanganate to react with the chlorinated 

ethenes to generate MnO2(s) which can then be used to activate persulfate to treat the saturated 

hydrocarbons.  This proposed PM/PS system limits the amount of permanganate and production 

of MnO2(s), minimizes the need for a separate persulfate activation system, and enhances the 

efficiency of persulfate to destroy NAPL mass.  

The overall goal of this research is a proof-of-concept demonstration of the proposed PM/PS 

system. To achieve this goal, the following specific research objectives were established: 

• Evaluate the ability of MnO2(s) formed separately with different types of organic 

compounds and permanganate to activate persulfate in aqueous batch experiments. 

• Examine the PM/PS system in aqueous batch experiments. 

• Execute a series of column experiments to evaluate the application of the PM/PS system in 

a simulated in situ condition. 

• Provide initial guidance on permanganate and persulfate molar ratios. 
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Figure 1.1 Conceptual model of the proposed PM/PS system to treat residual NAPL in situ.
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Table 1.1 Characteristics of Common Chemical Oxidants for ISCO. 

(adapted from Huling et al. 2006; Siegrist et al. 2011, 2001; Watts et al. 2006). 

Oxidants Hydrogen Peroxide Permanganate Persulfate 

Reagent 
form Liquid Liquid or powder Liquid or powder 

Chemical 
formula H"O" KMnO' or NaMnO' Na2S2O8 

Reactive 
species 

hydroxyl radical (OH∙), 
superoxide radical 
(O"∙+), perhydroxyl 
radical (HO"∙ ), 
hydroperoxide anion 
(HO"+) 

permanganate anion 
(MnO'+) 

persulfate anion 
(S"O-"+), sulfate radicals 
(SO'∙+), hydroxyl radical 
(OH ∙) 
superoxide radical (O"∙+) 

Activator 
soluble iron, iron 
chelates, iron minerals, 
iron oxide minerals 

None 
Heat, alkaline 
substances, UV, 
transition metals, H"O" 

Organics 
amenable 
to treat 

BTEX, polyaromatic 
hydrocarbons (PAHs), 
chlorinated alkenes and 
alkanes, phenols, 
benzene derivatives 

substituted aromatics (with 
ring activating groups), 
chlorinated alkenes, 
chlorinated aromatics, 
phenols, some PAHs 

all aromatics and 
alkenes, halogenated 
aliphatics, 
nitroorganics, fuel 
hydrocarbons 

Organics 
difficult to 
treat 

some alkanes, PCBs 

alkanes, benzene, 
chloroalkanes, 
polychlorinated biphenyls 
(PCBs), MTBE. 

 

Oxidant 
stability Low: hours to days High: > 3 months Mid: hours to weeks 

Limitations 

Minimal persistence in 
subsurface limits 
transport and reaction 
time resulting in the 
insufficient removal of 
organics. Activation is 
required to generate 
radicals. 

Applicable only to a narrow 
range of organic 
contaminants. The solid 
byproducts (MnO2) have the 
potential to impede 
groundwater flow and 
reduce mass transfer from 
NAPL. 

Activation mechanism 
is required to generate 
radical. 
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Chapter 2  
Methodology 

  

2.1 Overview 

Two series of batch experiments were performed to examine the ability of MnO2(s) to activate 

persulfate (PS).  Based on the information generated from these batch experiments, a series of 

column experiments were executed to mimic in situ conditions.  

In the first series of batch experiments, MnO2(s) solids were generated separately through 

oxidation of a PAH compound or a chlorinated ethene by permanganate (PM), and then mixed 

with PS and a dissolved phase model organic compound.  The degradation kinetics of the model 

organic compound were used to evaluate the ability of MnO2(s) to activate PS.  The role of the 

MnO2(s) to PS mass ratio was also investigated. 

The second series of batch experiments focused on the production of MnO2(s) and subsequent 

treatment of a dissolved phase model organic compound in the same reactor.  In this system, a 

limited mass of PM was first added to an aqueous system comprised of a chlorinated ethene and a 

model organic compound, and then PS was added.  This approach closely mimics the sequential 

delivery of oxidants consistent with the conceptual model.  The mass of PS added was controlled 

by the mass of MnO2(s) formed from PM reduction.  The time interval between PM addition and 

PS addition was based on the visual disappearance of the deep purple PM color.  The degradation 

kinetics of the chlorinated ethene and the model organic compound were used to evaluate treatment 

performance. 

Extending from the results of the batch experiments, a series of column experiments were 

performed to closely simulate the application of this dual oxidant system in situ.  Specifically, a 

two-component NAPL (chlorinated ethene + model organic compound) was placed within a 

saturated column.  The column was then flushed sequentially with PM and PS.  The 

PM/chlorinated ethene molar ratio, and MnO2(s)/PS mass ratio determined from the batch 

experiments were used to prescribe the PM and PS mass loading.  Evaluation of treatment 
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performance was based on changes in the system effluent concentration, and the mass of NAPL 

removed.  

 

2.2 Materials 

Potassium permanganate (KMnO4, > 99 %), sodium persulfate (Na2S2O8, ≥ 98%), calcium 

sulfate (CaSO4, 98%) and 1-methylnaphthalene (C11H10, 95%) were purchased from Sigma-

Aldrich, USA.  Potassium iodide (KI, 99%), sodium bicarbonate (NaHCO3, ACS), calcium 

carbonate (CaCO3, ACS), sodium chloride (NaCl, 99%) were purchased from BDH, USA.  

Benzene (C6H6, 99.4 %) and trichloroethylene (ClCHCCl2, 100%) were purchased from J.T. 

Baker, USA.  Dichloromethane (CH2Cl2, ≥	99.5%) and methanol (CH3OH; ≥  99.9%) were 

purchased from EMD Millipore, Germany, and Sudan III (C22H16N4O, 86%) was purchased from 

Fisher Scientific, USA.  All chemicals were reagent grade and used as received.  

Milli-Q water or synthetic groundwater was used to prepare aqueous solutions.  Synthetic 

groundwater was prepared by adding 100 mg/L calcium carbonate, and 50 mg/L calcium sulfate 

to Milli-Q water. Then purified CO2 gas was bubbled until a pH of 4.5 was reached.  Following 

12 hours of vigorous mixing using a magnetic stirrer (IKA® C-MAG HS 7), purified N2 gas was 

bubbled into the solution to adjust the pH to 7. 

For the column experiments, a column was constructed from a 6-cm long section of 1.5 cm 

internal diameter glass tubing. One end of the column was open while the other end was rounded 

to meet a 2.5-cm long by 0.4-cm internal diameter glass tube (Figure 2.3).  Barco silica sand (#71, 

Opta Minerals Inc.) was used as the porous medium in the columns. This sand was washed with 

10 % nitric acid, left overnight, rinsed with Milli-Q water, and then oven dried at 50 ℃ for 24 

hours.  
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2.3 Experimental Design 

2.3.1 Batch tests 

2.3.1.1 Pre-synthesized MnO2(s) system 

2.3.1.1.1 Synthesis of manganese oxide solids 

Four different types of manganese oxide solids were investigated for their potential ability to 

activate PS: birnessite, MnO2(s) generated from the oxidation of a chlorinated ethene by PM in 

Milli-Q water (Sample #1), and in synthetic groundwater (Sample #2), and MnO2(s) formed by the 

oxidation of a PAH compound by PM in Milli-Q water (Sample #3). 

Birnessite [δ − MnO"]  was synthesized in accordance with the Method(a) described by 

McKenzie (1971). Concentrated hydrochloric acid (0.8 M) was dropwise added to a boiling PM 

(0.4 M) solution with vigorous stirring, and boiled for an additional 10 minutes with a magnetic 

stirrer (IKA® C-MAG HS 7).  After cooling, the solution was vacuum filtered (2.5-µm, Grade 42, 

Whatman®), and then the precipitate was rinsed with Milli-Q water to remove residual salts and 

then oven-dried at 50 ℃ for 28 hours. The mass of the birnessite precipitate produced was 22 g/L 

of the mixture.  

MnO2(s) Sample #1 or Sample #2 was prepared by adding the pure phase chlorinated ethene 

(trichloroethylene, TCE; 0.07 M) and potassium PM (0.125 M) in Milli-Q water or synthetic 

groundwater and vigorous stirring for 24 hours. The solution was then vacuum filtered (2.5-µm, 

Grade 42, Whatman®), and the precipitate was rinsed with Milli-Q water or synthetic groundwater 

and then oven-dried at 50 ℃ for 28 hours. The generated mass of MnO2(s) Sample #1 was 9.5 g/L 

of the mixture, and the mass of MnO2(s) Sample #2 was 11.6 g/L of the mixture.  MnO2(s) Sample 

#3 were prepared by reacting a pure phase PAH (1-methylnaphthalene; 0.01 M) and potassium 

PM (0.125 M) in Milli-Q water.  The solution and the precipitate were treated as stated above. The 

mass of produced MnO2(s) Sample #3 was 9.08 g/L of the mixture. 
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2.3.1.1.2 Experiment setup 

Batch experiments were conducted to estimate the potential for the pre-synthesized MnO2(s) to 

activate PS. As a model PAH organic compound, 1-methylnaphthalene was selected since it is a 

representative compound in PAH mixtures and is present at numerous contaminated sites (USEPA 

2013). The degradation kinetics of 1-methylnaphthalene were used as an indicator to evaluate the 

efficiency of MnO2(s) to activate PS.  For comparison purposes, birnessite which has been shown 

to activate PS (Ahmad et al. 2010; Do et al. 2010) was also used.  

All experiments were performed in 40 mL batch reactors (borosilicate glass vials fitted with 22 

mm open cap and Teflon/silicone septa).  Details of the experimental conditions are provided in 

Table 2.1. The stock solution of Na"S"O- (PS) and 1-methylnaphthalene were prepared by mixing 

the desired quantity of the reagent-grade chemicals with Milli-Q water or synthetic groundwater.  

The initial 1-methylnaphthalene concentration was 5 mg/L due to its low aqueous solubility (25 

mg/L), and the PS concentration was chosen to be 0.5 g/L in order to allow sufficient temporal 

data to be collected over a reasonable timeframe. A prescribed mass of birnessite or MnO2(s) were 

loaded into a reactor, then Milli-Q water or synthetic groundwater was added, then the 1-

methylnaphthalene and PS stock solutions were added simultaneously (Figure 2.1).  

Approximately 2 mL of headspace was purposely left in the reactor to allow potential pressure 

buildup due to gas production (likely O2, CO2). 

Negative experimental controls consisted of 1-methylnaphthalene and Milli-Q water (Ctrl-

MQ), and 1-methylnaphthalene and synthetic groundwater (Ctrl-GW). A positive experimental 

control consisted of 1-methylnaphthalene and PS only in Milli-Q water (Ctrl-PS). Birnessite was 

employed at a mass ratio of 5 g birnessite /g persulfate (PS-Birnessite (1:5)) based on a series of 

preliminary experiments (not discussed) and the findings from Ahmad et al. (2010).  For MnO2(s) 

Sample #1 and Sample #3, the following three mass ratios were explored with Milli-Q water: 5, 

10 and 20 g MnO2(s) /g PS (denoted as PS-MnO2 (1:5), PS-MnO2 (1:10), and PS-MnO2 (1:20)).  

Finally, for the highest mass ratio, the role of synthetic groundwater instead of Milli-Q water was 

investigated with MnO2(s) Sample #2 (PS-MnO2 (1:20) /GW). 

All experimental series were prepared in triplicate with sacrificial reactors. At least 25 mL of 

supernatant was extracted from each reactor with a glass syringe (Micro-Mate®) and used to 

quantify pH and the concentration of PS and 1-methylnaphthalene. The pH and PS concentration 
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were determined daily. The concentration of 1-methylnaphthalene was determined at Day 0, 1, 2, 

4, 6, 8 and 10 for pre-synthesized MnO2(s) Sample #1 and Sample #2 systems, and at Day 0, 1, 2, 

4, and 7 for the pre-synthesized MnO2(s) Sample #3 system. All reactors were kept in the dark at a 

temperature of ~20 ℃ and manually shaken daily. 

 

2.3.1.2 PM/PS system 

The focus of these batch experiments was to investigate elements of the PM/PS system where 

MnO2(s) solids are produced by the initial addition of PM and then PS is added and activated by 

the generated MnO2(s).  Preliminary trials were conducted with an aqueous combination of TCE 

and 1-methylnaphthalene; however, the relatively high concentration of TCE interfered with the 

analytical method used to determine the concentration of 1-methylnaphthalene.  To avoid this 

complication, benzene was employed as the model organic compound in place of 1-

methylnaphthalene.  Benzene is unreactive to PM but reacts with PS (Petri et al. 2011).  A series 

of experiments similar in principal to those discussed in Section 2.3.1.1 was conducted to 

demonstrate that benzene can be degraded by PS activated by MnO2(s) (see Appendix).  

These experiments were performed in 40 mL reactors (borosilicate glass vials fitted with 22 

mm open cap and Teflon/silicone septa) with synthetic groundwater. The detailed experimental 

conditions are listed in Table 2.2. The stock solution of PS and PM were prepared separately by 

mixing the required quantity of chemicals with synthetic groundwater.  The organic compound 

stock solution was prepared by mixing pure phase benzene (0.2 mL) and TCE (8 mL) with 1L of 

synthetic groundwater. This mixture was placed on a stirrer (IKA® C-MAG HS7) in the dark for 

24 hours and then left undisturbed for > 48 hours to allow equilibrium to be established. Each 

reactor was filled with 37 mL of the mixed organic compound solution, followed by 2 mL of the 

PM stock solution. After a predetermined time interval for the PM to be completely consumed by 

the TCE, 1 mL of the PS stock solution was added (Figure 2.2). Headspace was intentionally left 

to accommodate pressure buildup due to gas production (likely O2, CO2).  

The treatment of benzene and TCE by the PM/PS system was examined in the series identified 

as PM/PS. The initial benzene and TCE concentrations were 18 and 750 mg/L, respectively, and 

the initial concentration of PM was 1.6 g/L. The PM to TCE molar ratio was 1.77, which was less 

than the theoretical stoichiometric ratio of 2.0 required for complete oxidation of TCE. The mass 
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of PM was selected to produce the desired mass of MnO2(s) (estimated to be 35.2 mg). To achieve 

a high MnO2(s) to PS mass ratio, a low PS concentration was used (0.5 g/L). One negative control 

experiment was conducted with the mixed organic compound solution and synthetic groundwater 

in place of the oxidant(s) (Ctrl-GW), and two positive experimental controls were conducted with 

the mixed organic compound solution and a single oxidant PM or PS (Ctrl-PM, and Ctrl-PS).  

All experimental series were prepared in triplicate using sacrificed reactors. An aliquot of the 

supernatant (30 mL) was extracted from each reactor with a glass syringe (Micro-Mate®) and used 

to quantify pH and the concentration of TCE, benzene, PS and PM. The pH, and PS and PM 

concentrations were analyzed daily. The concentrations of TCE and benzene were determined at 

Day 0, 1, 2, 3, 5, 7, 9, and 11. All reactors were kept in the dark at a temperature of ~20 ℃ and 

manually shaken daily. 

 

2.3.2 Column experiments 

To verify and complement the findings from the batch experiments, column experiments were 

executed to evaluate the performance of the proposed PM/PS system in a situation that closely 

mimics in situ conditions. The design was consistent with the conceptual model of the PM/PS 

system (Figure 1.1) where PM is delivered to the treatment zone to generate MnO2(s) and then PS 

is subsequently delivered and activated at the NAPL/water interface by MnO2(s).  The experimental 

design of this bench-scale stop-flow column system is shown in Figure 2.3.  

The glass tube at the bottom of the column was filled with Pyrex® fiber glass wool (8 µm) to 

ensure the column contents remained intact.  The bottom glass tube was fitted with 316 stainless 

steel tubing fittings (Swagelok®, reducing union, 1/4 in.×1/8 in.) to facilitate connection with 

Teflon tubing.  Each column was packed in the following order: (1) the bottom 1.5 cm of the 

column was filled under saturated conditions with sand (Zone 1), (2) the next 1.5 cm was the 

source zone and consisted of saturated sand mixed with 50 µL pure TCE and 50 µL pure 1-

methylnaphthalene dyed red (Sudan III, Fisher Scientific) (Zone 2 or the source zone), and (3) the 

top 3 cm was filled under saturated conditions with sand and then topped with a 0.15 × 0.15 mm 

stainless steel mesh (Zone 3). The NAPL saturation in the source zone was approximately 10%. 

The weight difference between the saturated and unsaturated column was used to determine the 

pore volume. After packing, the top of the column was fitted with a 316-stainless steel Swagelok® 
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tube fitting (Swagelok®, bored-through reducing union, 3/4 in.×1/4 in.) and then connected to 

Teflon tubing. A seal was maintained between the fitting and the column with a Teflon O-ring. 

The top outlet tubing was connected to a stainless steel three-way ball valve (1/8 inch, SS-41GXS2 

series, Swagelok, USA).  The effluent sample was collected by a 5-mL borosilicate glass syringe 

equipped with Luer locks, interchangeable barrels, and plungers (Chemglass®), which was 

connected to the three-way ball valve through a stainless-steel syringe needle. This column outlet-

valve-syringe system ensured that the column was sealed at all times and minimized volatilization 

of TCE and 1-methylnaphthalene (Figure 2.4). A peristaltic pump (Cole-Parmer) was used to 

control the flow rate.  The influent was either synthetic groundwater supplied from an Erlenmeyer 

flask or PM/PS supplied from a glass pipette.  

Each column was initially flushed with synthetic groundwater for 3 PVs prior to the injection 

of an oxidant. The flow rate of synthetic groundwater was set at 0.003 mL/min (pore velocity of 

2.4 cm/day) to closely mimic a natural groundwater flow system. The PM or PS solution was then 

subsequently flushed into the column. The flow rate of an oxidant injection episode was increased 

to 0.03 mL/min (pore velocity of 24 cm/day). The effluent sample associated with each system PV 

was collected for analysis of TCE and 1-methylnaphthalene. The injection concentration of PM 

was determined by the PM/TCE molar ratio of 0.8: 1. The mass of TCE in the system was estimated 

as the difference between the mass emplaced and mass removed by the 3 PVs of synthetic 

groundwater. The PS concentration was controlled by the mass of MnO2(s) generated.  The target 

PS to MnO2(s) mass ratio was 1:5 based on the results from the batch experiments.   

Replicated column trials (PM/PS-1 and PM/PS-2) were performed to examine the performance 

of the PM/PS system to treat the TCE/1-methylnaphthalene source zone. Following the flush of 

synthetic groundwater, 0.25 PV of the PM solution was injected followed by the injection of 0.25 

PV of synthetic groundwater to transport the PM solution into the source zone. The flow was then 

stopped to allow the PM to be reduced to MnO2(s). After a 1- day reaction period, 1 PV of the PS 

solution was injected and then the flow was stopped for 5 days. Following this 5-day reaction 

period, 1 PV of synthetic groundwater was flushed through the PM/PS-1 column to capture 

aqueous rebound conditions immediately post treatment. One negative control column was 

operated with synthetic groundwater used in place of the oxidant(s) (Ctrl-GW). Two positive 

control columns were conducted using a single oxidant followed by a 5-day reaction period. At 

the conclusion of each column experiment, the columns were opened and the complete source zone 
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and Zone 3 were removed and analyzed for remaining TCE and 1-methylnaphthalene mass. The 

detailed column operating conditions are provided in Table 2.3.  

 

2.4 Analytic Methods 

PS concentration was determined by the spectrophotometric method developed by Liang et al. 

(2008). In this method, 0.2 g of sodium bicarbonate (NaHCO3) and 4 g of potassium iodine (KI) 

are added into the PS measurement vial (40 mL, EPA glass vial) followed by 10 mL of Milli-Q 

water. Then 0.1 mL of the sample or diluted sample (if required) was added to the PS measurement 

vial.  After mixing for at least 15 minutes, the absorbance of the solution was determined 

spectrophotometrically (wavelength of 352 nm) using a UV spectrophotometer (GenesysTM 10S 

UV-Vis, Thermo Fisher Scientific, Inc).  Eight standards (0.1 to 2 g/L) were prepared by diluting 

a fresh sodium PS stock solution (10 g/L) with Milli-Q water in a series of 100 mL volumetric 

flasks. Based on the standards an absorbance calibration curve (r2 > 99%) was developed from 0.1 

to 2 g/L.  All PS concentrations reported are in g of Na2S2O8/L. PM concentration was also 

measured spectrophotometrically at a wavelength of 525 nm with a UV spectrophotometer 

(GenesysTM 10S UV-Vis, Thermo Fisher Scientific, Inc). A fresh stock solution of potassium PM 

was prepared at 1 g/L and then diluted with Milli-Q water to a concentration between 0.005 and 

0.2 g/L in seven 100 mL volumetric flasks. An absorbance calibration curve (r2 > 99%) was 

developed for the range from 0.005 to 0.2 g/L. All PM concentrations reported are in g of 

KMnO4/L.  

The quantification of TCE was accomplished by a head-space solid phase micro-extraction 

(HS-SPME) method (ASTM-D6520-06, 2012) using an HP 6890 series GC coupled with a Varian 

8200 series autosampler. The GC was equipped with a flame ionization detector (FID), a 30 m × 

0.53 m column length with a 3 µm film (Supelco®), and an SPME absorbing fiber 100 µm coated 

by PDMS (Supelco®). A spilt/spiltless injector equipped with SPME injection sleeve (0.75 mm, 

Hewlett-Packard® 26375) was used. The injector temperature was 200 ℃ . The column was 

monitored with helium flowing at 4.5 mL/min under a pressure of 24 kPa. The detector temperature 

was 280 ℃  with hydrogen flowing 35 mL/min. The extraction time was 2 minutes and the 

desorbing time was 2 minutes. A fresh methanolic stock solution of TCE was prepared by injecting 

0.3 mL of pure phase TCE through a septum into 20 mL aliquot of methanol. TCE standards (10 
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to 1000 mg/L) were prepared by spiking Milli-Q water with aliquots of the fresh stock solution. A 

sample of 0.7 mL was extracted by a gas-tight syringe (1 mL, 1001 Hamilton syringe series, 

Sigma-Aldrich, USA). A calibration curve with a linear slope (>99%) was constructed by plotting 

the concentration of standards versus their GC responses. The MDL for TCE was 1.6 µg/L. 

The aqueous concentration of 1-methylnaphthalene and benzene was determined using a 

micro-extraction GC technique. The GC (Agilent 7890 A) was equipped with a splitless injection 

port, a 30 m × 0.25 mm DB5 capillary column with a film thickness of 0.25 µm and a flame 

ionization detector. The injection port temperature was 275 ℃. The initial column temperature was 

35 ℃ followed by a heating rate of 15℃/min to reach a final temperature of 300 ℃ with helium 

flowing 5 mL/min. The detector temperature was 325 ℃. A fresh methanolic stock solution of 1-

methylnapthalene or benzene was prepared by injecting 0.3 mL of the pure compound into a 60 

mL aliquot of methanol. The calibration standards covering the expected sample range were 

prepared by spiking Milli-Q water with a concentrated methanolic stock solution. The aqueous 

standard or sample was placed in a 20-mL vial (borosilicate glass vials fitted with 22 mm open 

cap & Teflon/silicone septa) followed by the addition of 1 mL of dichloromethane. The vial was 

quickly sealed and agitated at 350 rpm on a platform shaker (Thermolyne) for 20 minutes. After 

shaking, the vial was inverted and left to stand for > 30 minutes to allow for phase separation.  An 

aliquot of the solvent phase (~ 0.5 mL) was removed through the septa using a 1 mL gas-tight 

syringe (1001 Hamilton syringe series, Sigma-Aldrich, USA) and then placed in a 2 mL Teflon-

sealed autosampler vial (VWR) for GC measurement. A calibration curve with a linear slope 

(>99%) was developed for benzene or 1-methylnaphthalene. The method detection limit ranged 

from 2-5 µg/L. 

To determine the bulk soil concentration of TCE and 1-methylnaphthalene present in the porous 

medium used in the column experiments, the material collected from a column was placed in a 40 

mL Teflon-septa glass vial previously filling 20 mL dichloromethane.  The vial was then quickly 

sealed and placed on a platform shaker (Thermolyne) and shaken at 50 rpm for at least one day.  

After shaking, the solvent phase was allowed to separate and extracted with a 1 mL gas-tight 

syringe for TCE and 1-methylnaphthalene analyses as described above. 

The pH of aqueous samples was measured by an Orion pH meter (Model A324, 

ThermoScientific). 
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The surface morphology and chemical composition of the synthesized manganese oxides were 

characterized by environmental scanning electron microscopy (ESEM) (Quanta 250 FEG, FEI) 

coupling with energy dispersive X-ray spectroscopy (EDX) (Oxford INCA).  The dried 

synthesized manganese oxides were crushed into powder size and placed on a silicon wafer (one 

side, polished, Sigma-Aldrich, USA) in small chambers for SEM and EDX analyses with an 

acceleration voltage of 20 kV.
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Figure 2.1 Schematic of the pre-synthesized MnO2(s) system batch reactors.  
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Figure 2.2 Schematic of PM/PS system batch reactors. 
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Figure 2.3 Schematic of the set-up of bench-scale column experiment. 
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Figure 2.4 The out-valve-syringe system in the column experiments. 
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Table 2.1 Summary of experimental conditions for batch experiments using the pre-synthesized 

MnO2(s). 

Series identifier a 
Initial concentrations 

1-methylnaphthalene 
concentration (mg/L) 

PS concentration 
(g/L) 

Mass of MnO2(s) 
(g) 

Ctrl-MQ 5.5 - - 
Ctrl-GW 5.3 - - 
Ctrl-PS 5.4 0.56 - 
PS-Birnessite (1:5 a) 5.1 0.57 0.1 b 

PS-MnO2 (1:5) 5.3 0.54 0.1 c 

PS-MnO2 (1:10) 5.3 0.56 0.2 c 

PS-MnO2 (1:20) 5.3 0.58 0.4 c 

PS-MnO2 (1:20) /GW 5.5 0.58 0.4 d 

Notes: 
a. mass ratio of PS to MnO2(s). 
b. Pre-synthesized birnessite. 
c. Pre-synthesized MnO2(s) Sample #1 or MnO2(s) Sample #3.  
d. Pre-synthesized MnO2(s) Sample #2. 

 

Table 2.2 Summary of experimental conditions for batch experiments using the PM/PS system. 

Series 
identifier 

Initial concentration 
Benzene 
concentration (mg/L) 

TCE concentration 
(mg/L) 

PM concentration 
(g/L) 

PS concentration 
(g/L) 

Ctrl-GW 17.5 723 - - 

Ctrl-PM 16.0 742 1.6 - 

Ctrl-PS 16.8 735 - 0.5 

PM/PS a 16.4 747 b 1.6 0.5 c 
Notes:  

a. The time interval between the addition of PM and PS was 1 day. 
b. The molar ratio of TCE and PM was 1:1.77. 
c. The mass ratio of PS and MnO2(s) was 1:1.76. 
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Table 2.3 Column operating conditions. 

Ctrl-GW Ctrl-PM Ctrl-PS PM/PS-1 PM/PS-2 

GW (3 PVs) a GW (3 PVs) GW (3 PVs) GW (3 PVs) GW (3 PVs) 

GW (1 PV) PM (1 PV) b PS (1 PV) c PM (0.25 PV) + GW 
(0.25 PV) d 

PM (0.25 PV) + GW 
(0.25 PV) 

Stop-flow-1 (1 day) 
e 

Stop-flow 
(5 days) f 

Stop-flow 
(5 days) Stop-flow-1 (1 day) Stop-flow-1 (1 day) 

GW (1 PV) g Open 
Column h 

Open 
Column PS (1 PV) i PS (1 PV) 

Stop-flow-2 (5 days)   Stop-flow-2 (5 days) Stop-flow-2 (5 days) 

Open Column   GW (1 PV) Open Column 

   Open Column  
Notes:  

a. Synthetic groundwater was flushed through column for 3 pore volumes (PVs) at flow rate of 0.003 
mL/min. 

b. PM was flushed through column for 1 PV at flow rate of 0.03 mL/min. 
c. PS was flushed through column for 1 PV at flow rate of 0.03 mL/min. 
d. PM was flushed through column for 0.25 PV at flow rate of 0.03 mL/min, and synthetic 

groundwater was flushed through column for 0.75 PV at flow rate of 0.03 mL/min. 
e. Stop flow for 1 day. 
f. Stop flow for 5 days. 
g. Synthetic groundwater was flushed though column at flow rate of 0.05 mL/min. 
h. Column was open and the complete source zone and Zone 3 were removed.  
i. PS was flushed through column at flow rate 0.05 mL/min. 
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Chapter 3  
Result & Discussion 

  

3.1 Batch Experiments 

3.1.1 Pre-synthesized MnO2(s) system 

PS activation was investigated in the presence of four types of manganese oxide solids: the 

synthesized birnessite, and MnO2(s) Sample #1, Sample #2 and Sample #3. The degradation 

kinetics of 1-methylnaphthalene were used to evaluate the ability of these manganese oxide solids 

to activate PS.  

 

3.1.1.1 Characterization of the pre-synthesized manganese oxide solids 

The elemental composition and the micromorphology of the four manganese oxide solids were 

determined by EDX and SEM, respectively. The synthesized birnessite was reddish-brown and 

lumpy, while the MnO2(s) Sample #1, Sample #2 and Sample #3 were darker and finer (Figure 

S3.1). The synthesized birnessite contained 4.89% potassium (K), 55.95% manganese (Mn), 

38.47% oxygen (O), and 0.7% chloride (Cl) (Figure 3.1; Table 3.1). This composition was 

consistent with the elemental composition of birnessite reported by others (Händel et al. 2013; 

Table S3.1). According to McKenzie (1971), birnessite (δ − MnO& ) contained less than the 

stoichiometric proportion of oxygen, and thus the oxygen to manganese ratio should be < 1.9. 

Based on the elemental analysis, the molecular formula of the birnessite produced in this study 

could be expressed as K(.&*Cl(.(-Mn&O-../ . The oxygen to manganese ratio of 2.37 was not 

consistent with the ratio reported by McKenzie (1971). The micromorphology images (Figure 

S3.2) showed that the crystalline structure of the synthesized birnessite contained clusters of 

needles which was similar to the crystalline structure of cryptomelane (α − MnO&) reported by 

McKenzie (1971) and Mn oxide powder reported by Li and Schwartz (2004a). Hence the generated 

birnessite is likely cryptomelane. 
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The element weight fractions indicated that MnO2(s) Samples #1, Sample #2 and Sample #3 

contained a K content of 5.16, 3.83 and 14.03 %, respectively (Table 3.1). McKenzie (1971) 

indicated that the K content of cryptomelane was < 7% (wt), which suggested that Sample #3 was 

not cryptomelane. Based on the expected ratio of oxygen to manganese, Sample #1 and Sample 

#2 could be either birnessite or cryptomelane. The molecular formula of Sample #1, Sample #2 

and Sample #3 could be represented as, K(.&/Mn&O/.-1 , K(.2.Mn&O/.33 , and K(...Mn&O-..2 

respectively. The crystalline structure of Sample #1 and Sample #2 appeared as rounded 

aggregates (Figure S3.3 and S3.4). Sample #3 had a cloudy and spherical microstructure (Figure 

S3.5). 

 

3.1.1.2 Results and discussion 

The normalized 1-methylnaphthalene profiles for the MnO2(s) systems are shown in Figure 3.2 

and Figure S3.6. Each data point is the average from the triplicate reactors, and the standard 

deviation was < 8.5 %. Data from the two negative controls series (Ctrl-MQ and Ctrl-GW) show 

that 1-methylnaphthalene was stable in Milli-Q water and synthetic groundwater, suggesting that 

no significant loss of 1-methylnaphthalene occurred during the experimental period.  

The degradation of 1-methylnaphthalene in the presence of MnO2(s) Sample #3 at the different 

mass ratios explored was less than Ctrl-PS suggesting that MnO2(s) Sample #3 was not able to 

significantly activate PS (Figure S3.6 and Figure S3.7).  

The Ctrl-PS series resulted in 50 % degradation of 1-methylnaphthalene over the 10-day 

reaction period. According to the direct 1-methylnaphthalene oxidation by unactivated PS (Eq 

1.12), the complete oxidation of 0.2 mg of 1-methylnaphthalene required at least 9 mg of PS, 

suggesting that sufficient PS was available at the beginning of the reaction (20 mg) to degrade 1-

methylnaphthalene through direct oxidation. McIsaac (2013) observed almost completed 

degradation of 1-methylnaphthalene in an aqueous system using 20 g/L of unactivated PS.  

The highest 1-methylnaphthalene degradation (99.6 %) was achieved by MnO2(s) Sample #2 at 

a mass ratio of 20:1 (g MnO2(s): g PS) using synthetic groundwater. Birnessite at a mass ratio of 

5:1 (g birnessite: g persulfate) using Milli-Q water was able to degrade 94.8 % of 1-

methylnaphthalene. The 1-methylnaphthalene removal percentages achieved by MnO2(s) Sample 

#1 at a mass ratio 5:1, 10:1 and 20:1 (g MnO2(s): g PS) with Milli-Q water were 65.1, 73.6, and 
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87.2 %, respectively (Figure 3.3). It is clear that the degradation of 1-methylnaphthalene increased 

with an increase in the mass of MnO2(s) present in the system. 

At the same mass ratio of 5:1, the 1-methylnaphthalene degradation in the birnessite system 

was 30% higher than that in the MnO2(s) Sample #1 system, suggesting that the birnessite system 

was more efficient to degrade 1-methylnaphthalene.  

The degradation of 1-methylnaphthalene was accompanied by the consumption of PS. The PS 

consumption over 10 days in the presence of MnO2(s) Sample #1 and Sample #2 is shown in Figure 

3.4. Less than 30% PS consumption was observed in all systems. The greatest PS consumption 

(27% over 10 days) occurred in the presence of MnO2(s) Sample #2 at a mass ratio of 20:1 (g 

MnO2(s): g PS) with synthetic groundwater, followed by birnessite (26 %). PS consumption was 

between 16 to 21 % in the presence of MnO2(s) Sample #1 with Milli-Q water. Approximately 13 

% PS was consumed in the Ctrl-PS series. The stoichiometry mass ratio of PS to 1-

methylnaphthalene (Table 3.2) ranged from 26 to 30 g-PS /g-1-methylnaphthalene for the reactors 

containing manganese oxide solids (birnessite, MnO2(s) Sample #1 and Sample #2). The 

stoichiometric mass ratio in the presence of MnO2(s) was higher than for the Ctrl-PS series 

reflective of the interaction between PS and MnO2(s).The overall kinetic rate law for the oxidation 

of 1-methylnaphthalene by PS can be written as: 

 4 =
d[C22H2(]

dt = −;2<=>?@ABCDE@?@DB>C> S&O1&< C22H2(  (Eq 3.1) 

The initial molar ratio of PS:1-methylnaphthalene was approximately 60:1 and hence PS was in 

excess and Eq 3.1 can be simplified to: 

 4 =
d[C22H2(]

dt = −;GHI C22H2(  (Eq 3.2) 

where ;GHI = ;2<=>?@ABCDE@?@DB>C> S&O1&<  is the observed 1st-order reaction rate coefficient. 

Applying the integrated form of Eq 3.2, ;GHI can be determined with Eq 3.2, where  J( is the initial 

concentration of 1-methylnaphthalene, and J? is the concentration of 1-methylnaphthalene at time 

t. ;GHI was determined by linear least square regression analysis of ln(C/C0) versus reaction time 

(t). 

 ln
J?
J(

= −;GHI ∗ L (Eq 3.3) 
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The best-fit observed reaction rate coefficient for all systems varied from 10<& to 10<2 day-1 

with r2 > 0.96 (Table 3.2) indicating that the pseudo first-order rate law could represent the 

degradation of 1-methylnaphthalene. The reaction rate coefficient for the Ctrl-PS series was 

7.78×10<& (r2 > 0.96), which is similar to the reaction coefficient reported by McIsaac (2013).  

The reaction rates for the birnessite or MnO2(s) (Sample #1 and Sample #2) systems were one-

order of magnitude higher than for the Ctrl-PS series, and followed the order of Sample #2 > 

birnessite > Sample #1. A higher dose of MnO2(s) resulted in a higher 1-methylnaphthalene reaction 

rate coefficient and produced a linear relationship (r2 = 0.99) (Figure 3.5). For the same PS to 

MnO2(s) mass ratio (1:20), the reaction rate coefficient for the system containing synthetic 

groundwater was 2.6 times greater than the system containing Milli-Q water.  A higher PS 

consumption was also observed in the presence of synthetic groundwater (PS-MnO2 (1:20)/GW), 

implying that synthetic groundwater enhanced the interaction between PS and MnO2(s) and the 

degradation of 1-methylnaphthalene. This observation is consistent with the findings reported by 

Li et al. (2017) that the presence of ions in groundwater will impact PS activation and therefore 

the treatment of organic compounds.  

Figure 3.6 shows the pH profile for each system. The pH of the two negative controls (Ctrl-MQ 

and Ctrl-GW) was neutral (6 and 7.3, respectively). The pH of birnessite and Sample #1 systems 

with Milli-Q water were between 4 and 5 (Figure 3.6, Table S3.4). The pH in the Sample #2 system 

using synthetic groundwater was below 4.  

PS oxidation reactions mainly involves two pathways: (a) a kinetically slower direct reaction 

between PS and target organic; and (b) the decomposition of PS to form highly reactive free 

intermediate radicals that can rapidly degrade target organics (Petri et al. 2011). It is speculated 

that the 1-methylnaphthalene degradation by unactivated PS in the Ctrl-PS system was mainly 

through direct oxidation involving electron transfer. In the MnO2(s) (Sample #1 and Sample #2) 

systems, the greater removal of 1-methylnaphthalene, the higher loss of PS, and the acceleration 

of 1-methylnaphthalene reaction rate kinetics may be attributed to MnO2(s) activated PS, which 

produces highly reactive radicals (e.g., SO-∙<) (Liu et al. 2016; Liu et al. 2014; Petri et al. 2011).  

More PS was converted in the presence of MnO2(s) (Sample #1 and Sample #2); however, the pH 

difference between the MnO2(s) system and Ctrl-PS system was insignificant, which indirectly 

demonstrates that a portion of consumed PS likely formed intermediate species through a series of 

chain reactions rather than protons through direct oxidation. Liang et al. (2007) stated that the 
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sulfate radical (SO-∙<) predominated under acidic conditions. Combined with the findings from Liu 

et al. (2014), the following MnO2(s) (Sample #1 and Sample #2) catalyzed decomposition reaction 

of PS is proposed: 

 2S&O1&<
TUVW(Y)

SO-&< + SO-∙< + S&O1∙< (Eq 3.4) 

No significant color change of MnO2(s) solids was observed during the experiment period 

(Figure S3.8), suggesting that the MnO2(s) surface remained unaltered. A similar result was 

reported by Do et al. (2010) that manganese oxide (pyrolusite) did not transform when used to 

activate persulfate. 

The data assembled show that MnO2(s) (Sample #1 and Sample #2) is able to activate PS, and 

that the higher mass of MnO2(s) present in the system the greater 1-methylnaphthalene degradation 

and reaction kinetics.  The lowest reaction rate coefficient was achieved at the mass ratio of 5:1 (g 

MnO2(s): g PS) with Milli-Q water, and the difference between the performance of this system and 

the Ctrl-PS system was minimal (Figure 3.2).  This suggests that the mass ratio of MnO2(s) to PS 

should be > 5 to impact treatment.  Ahmad et al. (2010) demonstrated that for PS to be activated 

by birnessite the mass ratio of birnessite to PS must be > 0.084.  The difference in the minimum 

dosage required for PS activation between MnO2(s) and birnessite is related to the greater 

effectiveness of birnessite compared to MnO2(s) solids.  

MnO2(s) Sample #1 and Sample #2 were able to activate PS, while MnO2(s) Sample #3 was not 

able to activate PS at observable rates.  Extending from the EDX and SEM results, the potassium 

(K) content might be a key factor in determining the capability of MnO2(s) to activate PS.  Based 

on the limited data collected in this study, MnO2(s) with a K content < 7% appears to be required. 

 

 

3.1.2 PM/PS system 

The potential for the PM/PS system to degrade a benzene and TCE mixture in synthetic 

groundwater was investigated. The Ctrl-PM and PM/PS system at 0, 2 and 20 hrs are shown in 

Figure 3.7. The purple color of the mixed solution faded over time and by 20 hrs the color was 

clear and the precipitated brown-black MnO2(s) solids settled at the bottom of reactor. In the PM/PS 

system, the amount of MnO2(s) was estimated ~0.88 g/L based on the consumed mass of PM.  
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The percent TCE and benzene removed at Day 11 are shown in Figure 3.8. Approximately 10 

% TCE and 1.45 % benzene were removed in the Ctrl-GW system likely due to volatilization. A 

rapid degradation of TCE was observed in the Ctrl-PM and PM/PS systems over the first 24 hrs 

(Figure S3.9) due to the presence of PM which was completely consumed (Table S3.5). 

Approximately 91 % removal of TCE was observed in the Ctrl-PM system (Figure 3.8). Based on 

the reaction between TCE and PM (Eq 1.8), the applied PM mass (64 mg) should have been 

sufficient to oxidize 26.6 mg of TCE (91 % of the initial TCE mass in a reactor), which was 

observed in Ctrl-PM system. TCE was less than MDL in the PM/PS system after Day 9 indicating 

that continuous removal of TCE was accomplished by PS after PM had disappeared from this 

system. 

Approximately 20 % of TCE and 9 % of benzene was degraded in the Ctrl-PS system, and ~15 

% of benzene was degraded in the PM/PS system.  About 13 and 15 % of the initial PS mass was 

consumed in the Ctrl-PS and PM/PS systems, respectively (Table S3.5). A slightly higher mass of 

benzene was degraded in the PM/PS system with the same mass of PS consumed as the Ctrl-PS 

system suggesting that the use of PS was more efficient in the PM/PS system.  The low benzene 

removal was attributed to the low PS concentration. According to the direct oxidation of benzene 

by PS (Eq 1.11), the oxidation of benzene (0.72 mg) requires at least 32 mg of PS, which was 

higher than the initial PS concentration. The mass ratio of MnO2(s) to PS used was 1.76:1, which 

was much lower than the mass ratio used in the pre-synthesized MnO2(s) systems. The low mass 

ratio of MnO2(s) to PS might also have contributed to the low benzene degradation and PS 

decomposition in the PM/PS system.  Ahmad et al. (2010) also only observed 15 % PS 

decomposition at a mass ratio of 1.68:1 (g birnessite: g PS). However, a low mass ratio of MnO2(s) 

to PS still resulted in a higher mass of benzene removed (15 %) in the PM/PS system compared to 

the 9 % achieved in the Ctrl-PS system.  

The results from the PM/PS system showed enhanced reactivity of PS without the co-addition 

of an activator solution.  It was concluded that the sequential injection of PM and persulfate (dual 

oxidant system) leads to persulfate activation and effective treatment particularly for some organic 

compounds that are not reactive with PM (i.e., benzene). 
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3.2 Column Experiments 

The column experiments were designed to examine the capability of the PM/PS system, 

outlined in the conceptual model, to degrade a simulated NAPL mixture (pure phase TCE and 1-

methylnaphthalene).   

The weight difference between the saturated and unsaturated column was used to determine the 

column pore volume (PV; 4.0 to 4.3 mL).  

After the injection of the PM solution into the PM/PS-1 and PM/PS-2 columns (Figure 3.9), a 

pressure build-up was observed at the inlet of column resulting presumably from a decrease of 

hydraulic conductivity due to MnO2(s) precipitates (Huang et al. 2002b; MacKinnon and Thomson, 

2002). To overcome this pressure build-up, the flow rate for the PS injection phase was increased 

from 0.03 to 0.05 mL/min for PM/PS-1 and PM/PS-2. 

Based on the findings from the batch experiments and a host of preliminary column 

experiments, the PM dosage was estimated based on the remaining TCE mass in the source zone 

after flushing with 3 PVs of synthetic groundwater, and a PM to TCE molar ratio of < 2. The 

remaining TCE mass was estimated by subtracting the aqueous effluent TCE mass from the initial 

loading of TCE mass (73 mg or 50 \L).  Limited by the PM solubility (63 g/L) and using a PM to 

TCE molar ratio of 0.8:1, the concentration of the PM injection solution was determined as 50 g/L. 

Thus, the PM mass dosage delivered into the source zone was ~65 mg.  Theoretically this PM 

mass is reduced to ~35.8 mg of MnO2(s) with the majority remaining within the source zone. The 

PS concentration was constrained by the need to satisfy the MnO2(s) to PS mass ratio of 5:1 (from 

the Pre-synthesized MnO2(s) Sample #1 batch experiment). As a result, the PS injection 

concentration was 6 g/L, and a PS dosage delivered into the source zone was 7.5 mg.  

Images of the columns are shown in Figures S3.11-S3.15. In the PM/PS columns, the color of 

the source zone changed from red (dyed NAPL) to black after the exposure to PM, confirming 

MnO2(s) formation (Figures 3.9 (a)&(d)). After the injection of PS, the dark color in the source 

zone did not change. 
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3.2.1 Effluent concentrations 

For the Ctrl-GW column, the TCE effluent concentration increased from 687 to 950 mg/L 

during the first 3 PVs of synthetic groundwater injection. As dissolution proceeded, TCE 

concentration gradually increased to ~1000 mg/L before Stop-flow-2 (Figure 3.10; Table S3.6). 

The 1-methylnaphthalene concentration also gradually increased from 4.4 mg/L to about 8.5 mg/L 

during the first 3 PVs of synthetic groundwater injection, and then to 9 mg/L before Stop-flow-2 

(Figure 3.11; Table S3.6). The increasing trend of TCE and 1-methylnaphthalene concentration in 

the other columns was consistent with these data during the first 3 PVs of synthetic groundwater 

injection (Figures 3.10 and 3.11). A baseline concentration of TCE (935 mg/L) and 1-

methylnaphthalene (9.25 mg/L) was established and used for the comparison to the treatment 

systems.  

Following PM injection into Ctrl-PM, the TCE and 1-methylnaphthalene aqueous effluent 

concentrations decreased by about 75% and 11% compared to the baseline concentrations, 

respectively (Figure 3.10 and 3.11; Table S3.7). The rapid decrease in the aqueous effluent 

concentration for TCE is likely due to its high solubility (Thomson et al. 2008). Following PS 

injection into Ctrl-PS, the TCE effluent concentration decreased by about 55%, but the 1-

methylnaphthalene effluent concentration increased by 10% (Figures 3.10 and 3.11; Table S3.8). 

After the addition of PM into the PM/PS columns (‘Before treatment’), the effluent TCE 

concentration decreased by 73 %, and after the addition of PS (‘After treatment’), the TCE effluent 

concentration reduced to less than MDL. In the PM/PS-2 column, the effluent 1-

methylnaphthalene concentration increased by ~12 % after PM addition, and then reduced by ~11 

% after PS addition compared to the baseline concentration (Figures 3.10 and 3.11). The rebound 

of the 1-methylnaphthalene effluent concentration before treatment can be explained by Raoult’s 

law given by 

 ]^_ = ^̀×]^ (Eq 3.5) 

where ]^_ was the effective solubility of compound i, ^̀ was the molar fraction of compound i, 

and ]^ was the solubility of compound i. The decline of TCE concentration decreased the molar 

fraction of TCE from 99 to 95%, and increased the molar fraction of 1-methylnaphthalene from 1 

to 5% in NAPL. Based on Raoult’s law (Eq 3.5), the effective solubility of 1-methylnaphthalene 

was expected to increase which was consistent with the slight increase of the 1-methylnaphthalene 
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concentration following PM injection.  This rebound has also been reported by Thomson et al. 

(2008) after source zone treatment with PM during a pilot scale field trial. The decrease of the 

effluent 1-methylnaphthalene concentration after the addition of PS implies that the 1-

methylnaphthalene degradation was enhanced in the presence of PS in the PM/PS systems.  

The slight change in the 1-methylnaphthalene concentration compared to the significant decline 

in the TCE concentration for the Ctrl-PM and PM/PS columns indicated that TCE degradation was 

preferred to 1-methylnaphthalene in the presence of PM.  This is consistent with the findings from 

Waldemer and Tratnyek (2006) that the reaction rate coefficient for TCE was one-order-of-

magnitude higher than for 1-methylnaphthalene.  

After PS addition in PM/PS-1, the 1-methylnaphthalene aqueous effluent concentration 

decreased by about 25% compared to the baseline concentration; after 1 PV of synthetic 

groundwater injection following the 5-day reaction period, the 1-methylnaphthalene concentration 

decreased by about 50 %.  

The decrease of the effluent TCE and 1-methylnaphthalene concentration is consistent with the 

PM/PS aqueous batch experiments that the PM/PS system could improve the treatment of aqueous-

phase organics.  

 

3.2.2 Residual mass  

Residual mass is defined as the mass of aqueous and non-aqueous organic compounds 

remaining in the column at the termination of the experiment. Residual mass was estimated by the 

analysis of the remaining aqueous and non-aqueous phase TCE and 1-methylnaphthalene mass in 

the source zone and Zone 3. 

In the Ctrl-GW column, about 70 % of the initial TCE mass and 80 % of the initial 1-

methylnaphthalene mass remained in the source zone (Table 3.3).  Approximately 14 and 74 % of 

initial TCE and 1-methylnaphthalene mass remained in the source zone of the Ctrl-PM column. 

The TCE mass remaining in the source zone indicated that the PM dosage delivered into the source 

zone was insufficient to completely degrade all the TCE. About 57% and 70% of initial TCE and 

1-methylnaphthalene mass remained in the source zone of the Ctrl-PS column.  

The TCE residual mass was less than MDL in the PM/PS columns. It was suspected that any 

TCE mass remained after PM injection was removed by the PS.  About 50 % of the initial 1-
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methylnaphthalene mass remained in the PM/PS system.  This is 24% less than the mass remaining 

in the Ctrl-PM column and 20% less than the mass remaining in the Ctrl-PS column.  Based on 

these data, the PM/PS system was more effective in removing TCE and 1-methylnaphthalene mass 

compared to the control systems.  

 

3.2.3 Mass balance 

To investigate the mass degraded, the following mass balance model was applied: 

 Mab = Mcdd + Mecf + MVg (Eq 3.6) 

where Mab was the initial mass of TCE or 1-methylnaphthalene placed in the source zone at the 

beginning of the experiment, Mcdd was the mass of aqueous phase TCE or 1-methylnaphthalene 

collected in the effluent, Mecf was the residual mass of aqueous phase or non-aqueous phase TCE 

or 1-methylnaphthalene collected from the soil remaining in the column at the end of the 

experiment, and MVg was the mass of oxidized TCE or 1-methylnaphthalene degraded by PM 

and/or PS.  Eq 3.5 was established by assuming that: (a) during the experiment period, TCE and 

1-methylnaphthalene dissolved into aqueous phase, (b) the oxidation of TCE and 1-

methylnaphthalene by PM and PS occurred in the aqueous phase, (c) the effluent only contained 

aqueous phase TCE and 1-methylnaphthalene, (d) the residue in the column captured all the 

remaining aqueous and non-aqueous phase TCE and 1-methylnaphthalene, and (e) organic 

compound removal was accomplished by oxidation. Table 3.3 shows the details of the mass 

balance calculations for the different column systems.  

The Ctrl-GW column was used to ascertain if Eq 3.5 is viable since no mass degradation was 

expected. Comparing to the initial mass of TCE (73 mg) and 1-methylnaphthalene (50 mg) 

emplaced in the column to the sum of MEFF and MRES indicated a mass balance error of 5 % for 

TCE, and 19 % for 1-methylnaphthalene.  

The results from the PM/PS-1 and PM/PS-2 columns were averaged and the final result 

(PM/PS) was used. Eq 3.5 was applied to determine of MVg by subtracting Mcdd and Mecf from 

Mab. The percent of oxidized organics in each column was calculated by dividing MOX by MIN. 

Figure 3.12 shows the percent of oxidized TCE and 1-methylnaphthalene by PM and/or PS. For 

the Ctrl-PM column, the percent of oxidized TCE and 1-methylnaphthalene was 73 and 26 %, 
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respectively.  The high TCE oxidation by PM was likely due to the high dissolved TCE 

concentration (~1000 mg/L). When PS was used alone (Ctrl-PS column), the percent of oxidized 

TCE and 1-methylnaphthalene was 26 and 30 %, respectively. The percent of oxidized organics 

achieved in the PM and PS treatment columns were both higher than the mass balance error 

associated with the Ctrl-GW column. 

The PM/PS system oxidized 84 % of the initial TCE mass, which was 11 % higher than that 

achieved by Ctrl-PM column. Approximately 50 % of initial 1-methylnaphthalene mass was 

oxidized in PM/PS columns, which was 25 % higher than observed in Ctrl-PS column. The higher 

organic mass oxidized in the PM/PS system demonstrated that oxidation was the main mechanism 

for mass removal in the PM/PS system.  

 

3.2.4 TCE and 1-methylnaphthalene mass removal rate 

The mass removal rate was estimated by: 

 
mass	removal	rate	

mg
day = 	

removed	organic s 	mass	 mg
reaction	time	 days  

(Eq 3.7) 

where organic mass removed was MVg, and the reaction time was 5 days, except that the TCE 

reaction time in the PM/PS systems was 7 days:  

 mass	removal	rate	
mg
day = 	

Mtu

5	days	or	7	days	
(Eq 3.8) 

The TCE and 1-methylnaphthalene mass removal rates are shown in Table 3.4. In the PM/PS 

systems, the TCE and 1-methylnaphthalene mass removal rate was 8.7 mg/day and 5 mg/day. The 

1-methylnaphthalene mass removal rate achieved in the PM/PS system was 1.6 times higher than 

that by the Ctrl-PS system.  

In the PM/PS (Table 3.4), the ratio between oxidized TCE mass (MOX-TCE) and consumed PM 

mass was 1.13: 1. This observed stoichiometric ratio (1.13) was less than the theoretical ratio (2) 

for complete oxidation (Eq 1.8). Kim and Gurol (2005) also reported a lower ratio (1.56 to 1.78) 

of oxidized TCE and consumed PM in their study. Yan and Schwartz (2000) proposed a three-step 

reaction between TCE and PM: the first step involves the oxidation of 1 mole TCE by 1 mole PM 

and the production of cyclic hypomanganate ester, which is then transformed to carboxylic acids 
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in the second step and, in the final step, the oxidation of carboxylic acids to CO2 through the 

consumption of the second mole of PM. The observed stoichiometric ratio of less than 2 indicates 

incomplete oxidation of TCE, and the stoichiometric ratio close to 1 suggests that TCE was 

oxidized to cyclic hypomanganate ester or carboxylic acids. 

The minimum mass ratio of MnO2(s) to PS used in the Pre-synthesized MnO2(s) experiments was 

5:1, and the equivalent molar ratio of PM and PS was 13.7:1. In the column experiments, the 

applied molar ratio of PM and PS was 13.1:1.  Based on these data, the PM to PS molar ratio 

should be at least 13: 1. 

Based on the findings from the Pre-synthesized MnO2(s) experiments, PM was able to oxidize 

1-methylnaphthalene and produce MnO2(s), which was not able to activate PS. As a result, the 

produced MnO2(s) in PM/PS system would contain some “ineffective” MnO2(s).  Thus, the mass 

ratio of effective MnO2(s) to PS might be less than 5, while an obvious improvement in mass 

removal was still observed. It is speculated that the underlying mechanisms in the PM/PS system 

might also involve a synergistic effect of the combined use of PS and PM (Cui et al. 2017).
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Figure 3.1 Element analysis of manganese oxide solids by EDX generated in pre-synthesized MnO2(s) systems. (a) Synthesized birnessite; 

(b) MnO2(s) Sample #1; (c) MnO2(s) Sample #2; (d) MnO2(s) Sample #3.  
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Figure 3.2 Normalized 1-methylnaphthalene temporal profiles in pre-synthesized birnessite and MnO2(s) Sample #1 and Sample #2 

systems. The error bars represent the standard deviation from triplicate reactors.  
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Figure 3.3 Percent removal of 1-methylnaphthalene in pre-synthesized birnessite and MnO2(s) Sample #1 and Sample #2 systems. The 

error bars represent the standard deviation from triplicate reactors.   
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Figure 3.4 Normalized persulfate temporal profiles in pre-synthesized birnessite and MnO2(s) Sample #1 and Sample #2 systems. The 

error bars represent the standard deviation from triplicate reactors.  
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Figure 3.5 The linear relationship between 1-methylnaphthalene reaction rate coefficients and MnO2(s) mass (g) in pre-synthesized 

MnO2(s) Sample #1 system.    
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Figure 3.6 pH temporal profiles in pre-synthesized birnessite and MnO2(s) Sample #1 and Sample #2 systems. The error bars represent 

the standard deviation from triplicate reactors.  
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Figure 3.7 Each image shows two reactors (Ctrl-PM on the left, and PM/PS on the right) in the PM/PS system for: (a) start, (b) after 2 

hrs, and (c) after 20 hrs.  
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Figure 3.8 Percent TCE and benzene removed in the PM/PS system. The error bars represent the standard deviation from triplicate 

reactors. 
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Figure 3.9 Images of column PM/PS-1 and PM/PS-2 during and after PM injection in the column experiments. (a, d) during the PM 

injection, (b, e) after PM injection, (c, f) during the 1-day stop-flow period.  
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Figure 3.10 TCE effluent concentration of the column experiments.  
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Figure 3.11 1-methylnaphthalene effluent concentration of the column experiments.  
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Figure 3.12 Percent of oxidized TCE and 1-methylnaphthalene in each column of the column experiments. The error bar in PM/PS is 

the deviation from duplicated column PM/PS-1 and PM/PS-2. 
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Table 3.1 Element weight fraction of manganese oxide solids of pre-synthesized MnO2(s) systems. 

 Element Weight Fraction 

Sample indicator Mn (wt.%) K (wt.%) O (wt.%) Cl (wt. %) 

Synthesized birnessite 56.0 4.9 38.5 0.7 

MnO2(s) Sample #1a 63.0 5.2 31.9 - 

MnO2(s) Sample #2b 62.8 3.8 33.4 - 

MnO2(s) sample #3c 51.0 14.0 34.9 - 
Note:  

a. MnO2(s) Sample #1 generated from TCE and potassium PM in Milli-Q water. 
b. MnO2(s) Sample #2 generated from TCE and potassium PM in synthetic groundwater. 
c. MnO2(s) Sample #3 generated from 1-methylnaphthalene and potassium PM in Milli-Q water. 

 

Table 3.2 Observed reaction rate coefficient and bulk stoichiometry of pre-synthesized MnO2(s) 

Sample #1 and Sample #2 systems. 

Batch reactor indicator !"#$a [10-2 day-1] r2 b PS / 1-methylnaphthalene (g/g) 

Ctrl-MQ - - - 

Ctrl-GW - - - 

Ctrl-PS 7.8 ± 1.4 0.97 24 

PS-Birnessite (1:5) 30 ± 2.3 0.99 31 
PS-MnO2 (1:5) 10.7 ± 0.8 0.99 26 

PS-MnO2 (1:10) 13.4 ± 1.7 0.98 23 
PS-MnO2 (1:20) 21.1 ± 1.7 0.99 27 

PS-MnO2 (1:20) /GW 55.5 ± 9.2 0.98 29 
Note: 

a. !"#$ is observed first-order reaction rate constant (d-1) calculated from the data of Figure 3.2. The 
error based on ±95% confidence interval for linear regression.  

b. r2 is the coefficient of determination; the values shown in the table are at 95% confidence interval. 
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Table 3.3 Mass balance estimates of the column experiments.  

Column Organic MIN a (mg) MEFF 
b (mg) MRES c (mg) MOX d (mg) 

Ctrl-GW 

TCE 73.0 18.2 51.1 0.0 

1Mn 50.1 0.16 40.2 0.0 

Total 123.1 18.4 91.4 0.0 

Ctrl-PM 

TCE 73.0 9.8 10.1 53.1 

1Mn 50.1 0.12 37.0 12.9 

Total 123.1 9.9 47.1 66.0 

Ctrl-PM 
TCE 73.0 11.9 41.9 19.2 
1Mn 50.1 0.13 34.9 15.0 

Total 123.1 12.1 76.7 34.2 

PM/PS e 

TCE 73.0 11.9 0.0 61.1 
1Mn 50.1 0.17 25.1 24.8 

Total 123.1 12.1 25.1 85.9 
Note:  

a. MIN is the initial loading mass of TCE and 1-methylnaphthalene. 
b. MEFF is the mass of TCE and 1-methylnaphthalene in the aqueous effluent. 
c. MRES is the residual mass of non-aqueous phase and aqueous phase TCE and 1-methylnaphthalene 

remaining in the column at the termination of the experiment.  
d. MOX is the mass of oxidized TCE and 1-methylnaphthalene by PM and PS as calculated from Eq 

3.5. 
e. The data for PM/PS was the average of PM/PS-1 and PM/PS-2.  
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Table 3.4 The TCE and 1-methylnaphthalene oxidation rates of the column experiments. 

Column MOX-TCE (mg) 
TCE 
oxidation rate 
(mg/day) 

MOX-1Mn 
a (mg) 1-methylnaphthalene 

oxidation rate (mg/day) 

Ctrl-PM 53.1 10.6 12.6 2.6 

Ctrl-PS 19.2 3.8 15.0 3.0 

PM/PS b 61.1 8.7 24.8 5.0 

Note:  
a. 1Mn represents 1-methylnaphthalene.  

b. The data for PM/PS was the average of PM/PS-1 and PM/PS-2. 
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Figure S3.1 Photos of generated manganese oxide solids in the pre-synthesized MnO2(s) systems. (a) Synthesized birnessite, (b) MnO2(s) 

Sample #1, (c) MnO2(s) Sample #2, (d) MnO2(s) Sample #3.  
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Figure S3.2 Selected SEM images for the synthesized birnessite in the pre-synthesized MnO2(s) systems.  
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Figure S3.3  Selected SEM images for MnO2(s) Sample #1 in the pre-synthesized MnO2(s) systems. 
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Figure S3.4 Selected SEM images for MnO2(s) Sample #2 in the pre-synthesized MnO2(s) systems.  
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Figure S3.5 Selected SEM images for MnO2(s) Sample #3 in the pre-synthesized MnO2(s) systems. 
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Figure S3.6 Normalized 1-methylnaphthalene temporal profiles in pre-synthesized MnO2(s) Sample #3 system. The error bars represent 

the standard deviation from triplicate reactors. 
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Figure S3.7 Percent removal of 1-methylnaphthalene in pre-synthesized MnO2(s) Sample #3 system. The error bars represent the standard 

deviation from triplicate reactors. 
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Figure S3.8 The visual observation of the reactors in pre-synthesized MnO2(s) Sample #1 system. (a) at Day 1, (b) at Day 4, (c) at Day 

7), (d) at Day 8, (e) at Day 10. 
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Figure S3.9 Normalized TCE temporal profiles in PM/PS system. The error bars represent the standard deviation from triplicate reactors. 
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Figure S3.10 pH temporal profiles in PM/PS system. The error bars represent the standard deviation from triplicate reactors. 
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Figure S3.11 The images of the Ctrl-GW column. (a) at initial period, (b) during the synthetic groundwater injection, (c) at the end of 

experiment.  

 



 

 67 

 

Figure S3.12 The images of the Ctrl-PM column. (a) at initial period, (b, c) during the PM injection, (d) after the PM injection, (e, f, g, 

h) during the 5-day stop-flow period, (h) open the column.  
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Figure S3.13 The images of the Ctrl-PS column. (a) at initial period, (b) during the PS injection, (c) during the 5-day stop-flow period, 

(h) treated soil in the Zone 3 and source zone.  
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Figure S3.14 The images of the PM/PS-1 column. (a) at initial period, (b) during the PM injection, (c, d) during the synthetic groundwater 

injection, (e) during the 1-day stop-flow-1, (f) during the PS injection, (g) during 5-day stop-flow-2, (h) treated soil in the Zone 3 and 

source zone.  
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Figure S3.15 The images of the PM/PS-2 column. (a) at initial period, (b) during the PM injection, (c, d) during the synthetic groundwater 

injection, (e) during the 1-day stop-flow-1, (f) during the PS injection, (g) during 5-day stop-flow-2, (h) treated soil in the Zone 3 and 

source zone. 
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Table S3.1 Elemental composition of birnessite from different work (after Händel et al. 2013). 

Sample source Mn (wt.%) K (wt.%) Na (wt.%) O+H (wt.%) Cl (wt. %) 

our birnessite 56.0 4.9 - 38.5 0.7 

Händel et al. (2013) 55.5 5.1 0.9 38.5 - 

(Händel et al., 2013) after 
McKenzie’s method 55.7 4.8 <0.02 39.5 - 

Gaines et al. (1997) 52.9 - 6.3 40.8 - 

Ching et al. (1997) 54.9 10.9 - 38.2 - 

Ma et al. (1999) 50.8 11.9 - 37.3 - 

 

Table S3.2 1-methylnaphthalene concentration(mg/L) from pre-synthesized MnO2(s) Sample #1 

and Sample #2 systems. 

Time Ctrl-
MQ 

Ctrl-
GW 

Ctrl-
PS 

PS-
Birnessite 
(1:5) 

PS-
MnO2 
(1:5) 

PS-
MnO2 
(1:10) 

PS-
MnO2 
(1:20) 

PS-MnO2 
(1:20)/GW 

Day 0 5.5 5.3 5.4 5.1 5.3 5.3 5.3 5.5 

Day 1 5.1 5.3 4.9 4.5 4.8 4.5 4.4 3.6 

Day 2 5.0 5.3 4.2 3.5 4.2 3.8 3.7 2.3 

Day 4 5.4 5.4 3.7 2.0 3.4 2.6 2.5 1.0 

Day 6 5.3 5.1 3.5 1.2 3.0 2.3 1.8 0.4 

Day 8 5.5 5.2 3.0 0.5 2.3 1.8 0.9 0.08 

Day 10 5.4 4.6 2.3 0.3 1.9 1.4 0.7 0.02 

Reduction 
(%) 2% 13% 57% 95% 65% 74% 87% 100% 
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Table S3.3 PS concentration (g/L) from pre-synthesized MnO2(s) Sample #1 and Sample #2 

systems. 

Time Ctrl-
MQ 

Ctrl-
GW 

Ctrl-
PS 

PS-Birnessite 
(1:5) 

PS-MnO2 
(1:5) 

PS-MnO2 
(1:10) 

PS-MnO2 
(1:20) 

PS-MnO2 
(1:20)/GW 

Day 0 - - 0.56 0.57 0.54 0.56 0.58 0.58 
Day 1 - - 0.55 0.54 0.54 0.53 0.55 0.54 
Day 2 - - 0.54 0.51 0.52 0.53 0.53 0.50 
Day 3 - - 0.53 0.49 0.51 0.53 0.53 0.50 
Day 4 - - 0.52 0.49 0.50 0.51 0.50 0.47 
Day 5 - - 0.51 0.47 0.50 0.50 0.49 0.45 
Day 6 - - 0.51 0.46 0.49 0.49 0.49 0.45 
Day 7 - - 0.50 0.47 0.50 0.48 0.49 0.45 
Day 8 - - 0.49 0.44 0.49 0.48 0.48 0.44 
Day 9 - - 0.49 0.43 0.47 0.46 0.48 0.44 
Day 10 - - 0.49 0.42 0.45 0.47 0.46 0.42 
Reduction 
(%) - - 13% 26% 17% 16% 21% 27% 

 

Table S3.4 pH change in the reactors from pre-synthesized MnO2(s) Sample #1 and Sample #2 

systems. 

Time Ctrl-
MQ 

Ctrl-
GW 

Ctrl-
PS 

PS-Birnessite 
(1:5) 

PS-MnO2 
(1:5) 

PS-MnO2 
(1:10) 

PS-MnO2 
(1:20) 

PS-MnO2 
(1:20)/GW 

Day 0 6.2 7.2 4.5 4.4 4.7 4.7 4.6 4.2 

Day 1 5.7 7.0 4.4 4.4 4.8 4.6 4.5 3.7 
Day 2 6.3 7.4 4.7 4.3 4.6 4.5 4.9 3.5 

Day 3 6.0 7.4 4.3 4.5 4.7 4.6 4.5 3.6 

Day 4 6.3 7.2 4.3 4.4 4.6 4.5 4.6 3.5 
Day 5 6.0 7.5 4.2 4.3 5.0 4.8 4.6 3.9 

Day 6 6.5 7.5 4.1 4.6 4.7 4.5 4.5 3.9 

Day 7 6.7 7.4 4.0 4.3 4.8 4.6 4.5 3.8 

Day 8 7.1 7.6 3.9 4.5 4.7 4.5 4.4 3.9 
Day 9 6.7 7.6 3.9 4.4 5.4 4.7 4.6 3.8 

Day 10 6.8 7.5 4.2 4.4 5.5 5.0 4.6 3.8 
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Table S3.5 PM and PS concentration in PM/PS system. 

Time 
Ctrl-PM Ctrl-PS PM/PS 

PM concentration 
(g/L) 

PS concentration 
(g/L) 

PM concentration 
(g/L) 

PS concentration 
(g/L) 

PM concentration 
(g/L) 

PS concentration 
(g/L) 

Day 0 1.60 - a - 0.50 1.60 NA b 

Day 1 0.23 - - 0.49 <MDL c 0.49 

Day 2 <MDL d - - 0.49 <MDL 0.48 
Day 3 <MDL - - 0.47 <MDL 0.47 

Day 4 <MDL - - 0.47 <MDL 0.47 

Day 5 <MDL - - 0.47 <MDL 0.46 

Day 6 <MDL - - 0.47 <MDL 0.45 
Day 7 <MDL - - 0.46 <MDL 0.44 

Day 8 <MDL - - 0.45 <MDL 0.43 

Day 9 <MDL - - 0.45 <MDL 0.42 
Day 10 <MDL - - 0.44 <MDL 0.41 

Day 11 <MDL - - 0.43 <MDL 0.41 
Note: 

a. Data is not applicable. 
b. PS is not added into PM/PS system at Day 1.  
c. PM concentration is below method detection method. 
d. PS concentration is below method detection method.
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Table S3.6 The effluent concentrations from Ctrl-GW column of the column experiments. 

Operating conditions Effluent 
(ml, eqv. mg) a 

TCE concentration 
(mg/L) 

TCE mass 
(mg) 

1-methylnaphthalene 
concentration (mg/L) 

1-methylnaphthalene 
mass (mg) 

GW  
(3 PVs) 

1st PV 4.7 687 3.2 4.4 0.02 

2nd PV 4.2 712 3.0 7.7 0.03 

3rd PV 4.1 960 4.0 8.4 0.04 

GW (1 V) 4.1 949 3.9 8.3 0.03 

Stop-flow-1 (1 day) - - - - - 

GW (1 PV) 4.2 1000 4.2 9.1 0.04 

Stop-flow-2 (5 days) - - - - - 
Note: 

a. The volume of effluent was equivalent to the mass of effluent.  

 

Table S3.7 The effluent concentrations from Ctrl-PM column of the column experiments. 

Operating conditions Effluent  
(ml, eqv. mg) 

TCE concentration 
(mg/L) 

TCE mass 
(mg) 

1-methylnaphthalene 
concentration (mg/L) 

1-methylnaphthalene 
mass (mg) 

GW  
(3 PVs) 

1st PV 3.8 603 2.3 4.7 0.02 

2nd PV 3.7 753 2.8 8.2 0.03 

3rd PV 4.0 946 3.8 8.7 0.04 

PM (1 PV) 4.0 233 0.9 8.2 0.03 

Stop-flow (5 days) - - - - - 
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Table S3.8 The effluent concentrations from Ctrl-PS column of the column experiments. 

Operating conditions Effluent  
(ml, eqv. mg) 

TCE concentration 
(mg/L) 

TCE mass 
(mg) 

1-methylnaphthalene 
concentration (mg/L) 

1-methylnaphthalene 
mass (mg) 

GW  
(3 PVs) 

1st PV 4.4 664 2.9 4.8 0.02 

2nd PV 4.1 781 3.2 7.8 0.03 

3rd PV 4.5 953 4.3 8.7 0.04 

PS (1 PV) 3.6 420 1.5 10.2 0.04 

Stop-flow (5 days) - - - - - 

  

Table S3.9 The effluent concentrations from PM/PS-1 column of the column experiments. 

Operating conditions Effluent 
(ml, eqv. mg) 

TCE concentration 
(mg/L) 

TCE mass 
(mg) 

1-methylnaphthalene 
concentration (mg/L) 

1-methylnaphthalene 
mass (mg) 

GW  
(3 PVs) 

1st PV 4.2 651 2.7 4.4 0.02 

2nd PV 4.1 753 3.1 7.5 0.03 

3rd PV 4.6 892 4.1 8.3 0.04 
PM (0.25 PV) + GW 
(0.75 PV) 3.5 276 0.98 8.5 0.03 

Stop-flow-1 (1 day) - - - - - 

PS (1 PV) 4.2 205 0.86 6.3 0.03 

Stop-flow-2 (5 days) - - - - - 

GW (1 PV) 4.1 <MDL - 4.1 0.02 
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Table S3.10 The effluent concentrations from PM/PS-2 column of the column experiments. 

Operating conditions 
Effluent 
(ml, eqv. 
mg) 

TCE concentration 
(mg/L) 

TCE mass 
(mg) 

1-methylnaphthalene 
concentration (mg/L) 

1-methylnaphthalene 
mass (mg) 

GW  
(3 PVs) 

1st PV 4.1 674 2.8 4.1 0.02 

2nd PV 4.8 701 3.3 8.0 0.04 

3rd PV 4.5 934 4.2 9.3 0.04 
PM (0.25 PV) + GW 
(0.75 PV) 4.6 214 1.0 10.4 0.05 

Stop-flow-1 (1 day) - - - - - 

PS (1 PV) 3.9 198 0.8 8.2 0.03 

Stop-flow-2 (5 days) - - - - - 
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Chapter 4  

Conclusions & Recommendations 

  

4.1 Conclusions 

The core findings of this research can be summarized as follows: 

• MnO2(s) is an effective PS activator.  

• In the MnO2(s) activated PS system, the 1-methylnaphthalene reaction rate coefficient is about 

one order-of-magnitude higher than in an equivalent unactivated PS system.  

• Increasing the dosage of MnO2(s) increased the degradation kinetics of 1-methylnaphthalene.  

• The degradation kinetics of 1-methylnaphthalene using the MnO2(s) activated PS system in 

synthetic groundwater is two- to three- fold higher than in Milli-Q water. 

• PS activation by MnO2(s) resulted in 2 to 8 times faster degradation rate compared to 

unactivated PS for 1-methylnaphthalene treatment in batch experiments.   

• MnO2(s) remain unaltered (visually) during the PS activation process.  

• The pre-synthesized MnO2(s) experiments confirmed that some types of organic compounds 

are not able to produce effective MnO2(s) for PS activation. MnO2(s) with a K content higher 

than 7 % did not activate PS.  

• The minimum PM to PS molar ratio for effective organic compound treatment is 13:1. 
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4.2 Recommendations 

Based on this proof-of-concept study, the proposed dual oxidant system (PM/PS) is a promising 

system and should be investigated further.  

The PM/PS system could be enhanced through multiple PS injection episodes since the MnO2(s) 

remains unaltered during the PS activation process. For the stop-flow column experiments, an 

addition flush of synthetic groundwater after the PM injection episode would have provided a 

buffered pH environment for improved PS activation. Increasing the reaction period might also be 

beneficial for the degradation of organics. The effluent PS concentration should be analyzed to 

provide an estimate of the PS decomposition during the treatment process. 

Additional PM/PS batch tests for the treatment of probe contaminants (e.g., nitrobenzene, tert-

butyl alcohol) are needed for the identification of radicals generated during the PS activation 

process. This work would be beneficial to understand the mechanisms and pathways underlying 

the PM/PS system. 

It is thus necessary to identify whether other target organic compounds are able to generate 

effective MnO2(s) after the reaction with PM to activate persulfate. 

The minimum PM and PS molar ratio was determined as 13:1 in this study, but the optimal 

molar ratio was not identified. Excess PM will produce excess MnO2(s), which could reduce the 

NAPL dissolution rate, decrease the local permeability of the porous medium, and further 

adversely affect treatment. Future research is needed to explore the optimum PM to PS molar ratio. 
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Appendix A 
 

The MnO2(s) Sample #2 applied as PS activator for benzene treatment 

In order to verify the applicability of pre-synthesized MnO2(s) Sample #2 as PS activator for 

different types of organics’ treatment, benzene (1.5 mg/L) is examined as treated organic with PS 

(1 g/L) at PS to MnO2(s) Sample #2 mass ratios of 1:20 over 10 days in synthetic groundwater. A 

series of batch reactors similar in principal to those discuss in Section 2.3.1.1 was conducted.  

The normalized 1-methylnaphthalene, PS and pH temporal profiles are shown in Figure A1, 

A2, and A3. The removal percentage of benzene in Ctrl-PS system reaches to 89% at Day 10 

(Figure A1; Table A1). According to the direct benzene oxidation by PS given in Eq 1.11, at least 

0.06 g/L PS is required to oxidize 1.5 mg/L benzene, suggesting that the PS in the reactors is at 

sufficient amount to degrade benzene without any activators. In the PS-MnO2 (1:20) system, 

benzene is completely removed at day 6, indicating the presence of MnO2(s) could enhance the 

benzene degradation. The PS decomposition with the presence of MnO2(s) is higher than that with 

Ctrl-PS system (Figure A2).  

The pH of the Ctrl-PS system was about 7 (Figure A3). It might because that the buffering 

capacity of synthetic groundwater influences the pH, and the presence of benzene may also be 

having an effect. However, the MnO2(s) could activate PS to release ions (might be hydrogen ions) 

and decrease the pH in the reactors of ‘PS-MnO2 (1:20)’ (Figure A3).  

Benzene is effectively degraded in presence of MnO2(s) and PS. Especially, PM is very 

unreactive with benzene, while PM/PS system is highly reactive with benzene. It suggested that 

the dual oxidant (PM/PS) system is applicable for various types of organic contaminants. 
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Figure A1 Normalized benzene temporal profiles in pre-synthesized MnO2(s) Sample #2 system (benzene as treated organic). The error 

bars represent the standard deviation from triplicate reactors. 
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Figure A2 Normalized PS temporal profiles in pre-synthesized MnO2(s) Sample #2 system (benzene as treated organic). The error bars 

represent the standard deviation from triplicate reactors. 
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Figure A3 pH temporal profiles in pre-synthesized MnO2(s) Sample #2 system (benzene as treated organic). The error bars represent the 

standard deviation from triplicate reactors. 
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Table A1 Benzene concentration (mg/L) in pre-synthesized MnO2(s) Sample #2 system (benzene 

as treated organic). 

Time Ctrl-GW Ctrl-PS PS-MnO2 (1:20) 

Day 0 1.49 1.50 1.68 
Day 1 -a 1.14 1.13 

Day 2 1.47 - 0.80 

Day 3 1.39 0.97 0.52 

Day 4 1.35 0.84 0.24 
Day 5 - 0.62 0.069 

Day 6 1.45 0.42 <MDL 

Day 7 1.30 0.34 <MDL 
Day 8 - 0.22 <MDL 

Day 9 1.31 0.16 <MDL 

Day 10 - 0.045 <MDL 
Reduction (%) 12.1% 89.2% 100% 

Note:  
a. Data was not applicable.
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Appendix B 
Table B1 Summary of ISCO studies using permanganate and persulfate. 

Reference Oxidants System 
type 

Target 
compounds 

MnO2 
formation 
process 

Persulfate 
activation 
mechanism 

Summary of major findings 

(Ahmad 
et al. 
2010)  

Persulfate Aqueous Oxidant 
probe, 
nitrobenzen
e; 
Reductant, 
hexachloro
ethane. 

Manganese 
oxides 
mineral: 
birnessite [!-
MnO2] 

Soil and 
aquifer solids: 
Four iron and 
manganese 
oxides and two 
clay minerals 

• The manganese oxide birnessite was the most 
effective initiator of persulfate for degrading 
the oxidant probe nitrobenzene, indicating that 
oxides are generated at both low and high pH 
regimes. 

• Manganese oxide: goethite [FeOOH], hematite 
[Fe2O3], ferrihydrite [Fe5HO8∙4H2O], birnessite 
[!-MnO2], kaolinite [Al2Si2O5(OH)4], 
montmorillonite [(Na,Ca)(Al, 
Mg)6(Si4O10)3(OH)6∙ nH2O]. 

• Clay minerals: goethite [FeOOH], hematite 
[Fe2O3], ferrihydrite [Fe5HO8∙4H2O] 

(Crimi et 
al. 2009) 

Permanganate 1-D 
column  

TCE  NA • Previous findings on the control and inhibition 
of MnO2 particles deposition: increasing 
repulsive forces between porous media and 
particles. 

• HMP is a promising aid to stabilize MnO2. 
With the use of HMP, a low mass of MnO2 
remained in the mobile phase. The use of HMP 
also can reduce the bypass flow of 
permanganate.  

(Crimi 
and 
Siegrist 
2004) 

Permanganate 
(25 or 50 g/l) 

Bench 
scale, 
batch 
experim
ents. 

TCE (0, 10, 
20, 40 
mg/L) 

With the 
increase of 
TCE and 
permanganate 
concentrations, 
reaction time, 
and the 
influence of 

NA • ‘The presence of calcium results in larger, 
settleable solids than without calcium’. 

• The suspended particles (as opposed to soluble 
and/or settleable) were at a larger amount at 
pH 3 than at pH 7. 

• The manganese transformation progression:  
• #$%&' → #$%)(+,-./-0) →
#$%) 2,--,345- → #$%)(67023638580)  
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pH and matrix 
conditions, the 
MnO2 
transformed 
from soluble 
state, to 
colloidal state 
and precipitate 
state. 

(Cui et al. 
2017) 

Optimal 
combination: 
permanganate 
(1.8 mM), 
peroxymonosu
lfate (PMS, 2.4 
mM) 

Aqueous Aqueous 
mixture of 
0.3 mM 
benzene 
and TCE.  

Colloidal 
MnO2 in the 
initial stage of 
CUPP process, 
and the 
suspended 
MnO2 after 4 h 
of CUPP 
reaction.  

NA • Combined use of PMS and permanganate 
(CUPP) exhibited favorable oxidizing 
capability because the in-situ colloidal and 
amorphous MnO2 linked the two oxidants.  

• The suspended amorphous black MnO2 and 
colloidal MnO2 can activate PMS.  

• The combined use of two oxidants produced a 
synergetic effect on the removal of benzene. 

(Do et al. 
2010) 

Persulfate  slurry Diesel Mineral, 
manganese 
oxide mineral 
pyrolusite (9-
MnO2(s))  

Fe(II) & metal 
oxides: 
goethite, 
hematite, 
magnetite, and 
manganese 
oxide (β −
MnO), 
pyrolusite) 

• Manganese oxide could increase the reactivity 
of PS most. Manganese oxide degraded diesel 
more than did any of the other metal oxides.  

• The highest diesel degradation by PS occurred 
when both manganese oxide and Fe(II) were 
used as activators. 

(Gao et 
al. 2015) 

Permanganate 
(2.9 mM) and 
peroxymonosu
lfate (PMS, 
Oxone; 5.8 
mM) 

Aqueous Acid 
orange 7 
(AO7; 50 
mg/L) 

Suspended 
particulate 
MnO2: the 
particulate 
manganese 
dioxide with a 
brown-black 
color was 
formed. 

Suspended 
particulate 
MnO2 activate 
PMS. 
?-MnO2 or 
Mn3O4 can 
effectively 
activate PMS 

• Suspended particulate MnO2 , ?-MnO2 or 
Mn3O4 can effectively activate PMS. 
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(Huang et 
al. 2002) 

Permanganate  Column 
tests 

Dissolved 
phase and 
pure phase 
TCE 

TCE-KMnO4 
reaction yield 
birnessite-type 
manganese 
oxide.  

NA • The MnOx precipitates retained in columns 
reduced ~20% of the pore space in the 
columns. 

 

(Jo et al. 
2014) 

Persulfate aqueous Carbon 
tetrachlorid
e(CT) and 
benzene 

Purchased 
pure, 
manganese 
oxide mineral 
pyrolusite (9-
MnO2(s)) 

Iron oxide-
immobilized 
manganese 
oxide (MnO2) 
 

• PS decomposed to produce oxidant sulfate 
radical (SO&∙') under acidic conditions; oxidant 
hydroxyl radical (OH∙) under basic conditions; 
reductant superoxide anion (O)∙') under base-
catalyzed PS system. The application of 
appropriate metal oxide composites in PS 
system might provide the reactive species (i.e. 
oxidant and reductant) effectively.	

(Li and 
Schwartz 
2002) 

Permanganate  1-D 
column 
and 2-D 
flow 
tank  

Dissolved 
TCE 

MnO2 rapidly 
formed a 
precipitation 
rind.  

NA • Once permanganate came in contact with 
dissolved TCE, MnO2 was precipitated close 
to the zone with pure TCE DNAPL. 

• The zone of MnO2 precipitation was in a light 
brown color. 

• With time, the precipitation of MnO2 reduced 
the permeability across of the tanks through 
the formation of a precipitation rind above the 
DNAPL pool.  

• The experiment was haltered when MnO2 was 
precipitated and a greater injection pressure 
was required to maintain the flow and 
subsequent permanganate injection.  

(Li and 
Schwartz 
2004a) 

Permanganate  1-D 
columns  

TCE Light-brown 
color Mn 
oxide.  

NA • The column results suggested that the by-
products CO2 and MnO2 could cause pore 
plugging and flow by-passing. 

• A hydraulic conductivity reduction as high as 
80 % was quantified in a series of column 
experiments. 

(Li and 
Schwartz 
2004b) 

Permanganate 
(30 g/L) 

Batch 
experim
ents 

TCE (75 g 
in 500 mL) 

The solid by-
product from 
the oxidation 
of TCE by 

NA • Organic acids including citric acid, oxalic acid 
and ethylenediaminetetraacetic acid (EDTA) 
could dissolve Mn oxide quickly.  
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permanganate 
is semi-
amorphous 
potassium-rich 
birnessite. 

(Li and 
Schwartz 
2004c) 

Permanganate 
(200 mg/L) 

2-D 
flow-
tank  

Blue-dyed 
TCE (2 g) 

- NA • The use of citrate and oxalate could control the 
plugging resulted from the precipitation of Mn 
oxide. 

(Liu et al. 
2014)  

Persulfate (1 to 
50 mM)  

Aqueous Benzene 
(0.1 to 1 
mM) 

Pyrolusite (9-
MnO2(s)) were 
obtained from 
Sigma-Aldrich 

Minerals and 
clay materials.  
 

• Iron- and manganese-containing minerals were 
able to decompose persulfate efficiently. 

• Minerals: Ferrihydrite (Fe(OH)3(s)), Pyrolusite 
(9-MnO2(s)), goethite (?-FeOOH(s)), silica; The 
relative reactivity followed the order 
pyrolusite>ferrihydrite>goethite>silica. 

• The rate of persulfate decomposition 
accelerates when the injected oxidant reaches a 
contaminant plume. The decomposition rate of 
persulfate increased by as much as 100 times 
when benzene concentrations exceeded 0.1 
mM.   

• 2S)OC)'
DE	 GGG HI	JK GL 	HMNOE

SO&)' + SO&∙' +
S)OC

∙' 	 
• The persulfate decomposition could be 

enhanced when the aquifer solids contained 
greater approximately 2% of Fe(III)- or 
Mn(IV)-oxides. 

(MacKinn
on and 
Thomson 
2002) 

Permanganate  2-D 
saturate
d sand 
zone 
overlyin
g a 
capillary 
barrier. 

Dyed red 
perchloroet
hylene 
(PCE) with 
Sudan IV. 

Black MnO2 
deposits. 

NA • The water flow velocity above the PCE pool 
decreased and the overall mass transfer rate 
from the remaining PCE pool also reduced due 
to the presence of MnO2.  
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(Siegrist 
et al. 
2002) 

permanganate Slurry  trichloroeth
ylene 
(TCE) 

- NA • The oxidant form of permanganate or reaction 
time had little effect on oxidant consumption 
or filterable solids (MnO2) particles 
production.  

• ISCO with permanganate has the potential to 
yield system permeability loss. The magnitude 
of these effects is related the subsurface 
conditions (ambient silt/clay particles), target 
organic chemical mass, and permanganate 
dose and delivery method. 

(Tunniclif
fe and 
Thomson 
2004) 

Permanganate  Fracture 
aquifer 
system 

TCE and 
PCE, dyed 
with Sudan 
IV. 

Membrance-
like MnO2(s) 

NA • The MnO2 formation appeared and behaved 
like a flexiable 'membrance skin' varied 
between 1 and 15 mm over the DNAPL. 

(Urynowi
cz and 
Siegrist  
2005) 

Permanganate   TCE Manganese 
oxide solids 
formed a local 
deposition of 
film at the 
DNAPL 
interface.  

NA • The formation of MnO2(s) film could increase 
the interfacial resistance and decrease the TCE 
DNAPL dissolution rate, and further reduce 
the aqueous TCE concentration and the 
chemical oxidation rate.  

(Yan and 
Schwartz 
1999) 

Permanganate aqueous Chlorinated 
ethylenes; 
tetrachloroe
thylene 
(PCE), 
trichloroeth
ylene 
(TCE), 
three 
isomers of 
dichloroeth
ylenes 
(DCEs) 

By-products of 
chlorinated 
ethylenes and 
permanganate 

NA • In O3/H2O2 system, key reactive intermediate 
hydroxyl radical, generated in this advanced 
oxidation process (AOP), strongly reacts with 
common inorganics species in ground water 
such as carbonate and bicarbonate.  

• The modeling results suggest that the effect of 
autocatalysis by MnO2 on TCE degradation s 
significant when the system contains high 
concentration levels of MnO&' and TOC. 

• Competition of TOC for permanganate would 
be offset by the presence of a large quantity of 
MnO2, which promotes the reaction between 
TCE and permanganate.  

 


