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Abstract

Ferrets are amusing, flexible creatures that have been under represented in com-
puter models. Because their bodies can assume almost any curved shape, splines
are the natural tool for modelling ferrets. Surface pasting is a hierarchical method
of modelling with spline surfaces, where features are added onto a base surface. Ex-
isting surface pasting techniques are limited to modelling rectilinear shapes. Using
the task of modelling a ferret as a driving force, I propose a method of pasting cylin-
ders in world space; I looked at methods for reducing distortion of pasted features;
and I created a method for pasting trimmed features to allow for features that do
not have the rectilinear shape of standard pasting. With my methods, modelling
ferrets with surface pasting is easier, and the resulting models are closer to a real
ferret.
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Chapter 1

Ferrets, pasting, and pasting
ferrets

Ferrets [29] are the only domesticated member of the mustelid family. They are
small, usually with a masked face, and have a bundle of personality. Historically,
they have had a close working relationship with humans in warrening and rodent
extermination. Currently, they are popular as a charming if rather misunderstood1

pet.
Ferrets need to turn easily in small confined spaces, so they are long and narrow,

with a body that can assume almost any curved shape (Figure 1.1). Therefore,
splines are the natural tool for modelling their bodies.

Surface pasting is a spline-based hierarchical modelling technique that is im-
plemented only in Side Effects Houdini [30]. Creating 3D computer models is a
time consuming task with a steep learning curve for an artist. Surface pasting is
based on the idea that refined features can be added onto a simpler base surface,
much as a child would add details such as eyes and ears to an oval head when mod-
elling in clay. Because surface pasting is conceptually similar to modelling in clay,
I believe it is easier for an artist to visualize the modelling process and create 3D
computer models using surface pasting, compared to methods such as subdivision
surfaces [31].

1An opinion, formed after taking my ferrets for many walks in the park, and shared by many
ferret owners.

1
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Figure 1.1: Ferrets can assume almost any curved shape, as demonstrated here by
Birch.

Figure 1.2: A ferret modelled in clay.

1.1 Clay modelling paradigm

If we were to model in clay, we can imagine making a ferret as follows: first we
model a tubular body with a tail on one end and a vague shape for the head on
the other; then we model the front legs and hind legs as elongated tubes, and stick
them onto the body; finally we make ears, eyes and nose and stick them onto the
head to get our final ferret. Figure 1.2 shows a ferret modelled in clay. The clay
joins have been smoothed out, but evidence that the limbs and ears were added
onto a body is evident in the close ups (Figure 1.3).

Modelling in clay is a task most people are familiar with from childhood, but
there are no equivalents in software. If we were to follow the clay modelling
paradigm in a commercial package such as Houdini, it is easy to model the ferret’s
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Figure 1.3: Close ups of the ferret display the barely visible evidence that the ears
and limbs are stuck on and smoothed out.

long body, the fore legs and hind legs, with cross sections, skinning and capping.
Attaching the features is more complex. To attach a leg, we have to create a blend
from the leg to the body. First, we define a closed curve on the body. Next, we
join the curve on the body to the boundary curve on the leg. We may need to
adjust the parameterization and start of the curves to ensure that the blend is not
twisted. This will give us a C0 join; a smooth join requires more work.

1.2 Motivation for improving surface pasting

Surface pasting is closer to the clay modelling paradigm than other hierarchical
modelling methods. Suppose we want to create a digital model of a ferret using
surface pasting. We would like to follow the steps as for our clay model. First,
we can create a tubular body with a generalized cylinder as the base surface on
which to stick features. Next, we create feature patches to paste on. With patch
pasting [2, 3, 8], the features are limited to rectangular bumps, which are inadequate
for modelling arms, legs, eyes or ears. The underlying rectangular structure of the
feature is often visible as well. The feature warps to the curvature of the surface
it is pasted on, so that the result is not always predictable. Figure 1.4 shows the
ferret model I made using patch pasting. Patch pasting is supported in Houdini,
but as we can see from the model, the objects we can create with it are somewhat
limited.

Based on these observations, I want to improve surface pasting as follows: find
a better way to create tubular shapes such as arms or legs; allow arbitrarily shaped
bumps as features; and maintain better control over the warping of the features.
With the introduction of cylindrical pasting, arms and legs could potentially be
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Figure 1.4: A ferret model I built in 1999 using patch pasting.

modelled more easily. However, existing work [24, 25] merely shows that cylinders
can be pasted, and the user interface aspects of making and pasting cylinders need
further exploration before this technique becomes useful as a modelling tool.

1.3 This thesis

For this thesis, I investigate some of the user interface issues of cylindrical pasting.
Then I take some of the ideas I used in cylindrical pasting and apply them to patch
pasting to support the creation and pasting of arbitrary shape features. I also touch
on a method of improving the join between the feature and its base surface.

In Chapter 2, I give an overview of B-spline curves and surfaces, the different
techniques used in surface pasting, and some tools used in building cylindrical
objects and user interfaces for surface pasting.

In Chapter 3, I describe the tools I built for creating ferrets. I first describe
the improvements I made to cylindrical pasting, and then how I applied these
techniques to patch pasting, and finally how I modified patch pasting to allow for
arbitrary shaped features. These techniques can be combined to achieve different
modelling goals. I also explain a technique I used to improve the boundary between
feature and base.

In Chapter 4, I illustrate the techniques I have developed in my program. I also
compare my boundary improvement with the standard method of pasting. I give
a step by step description of how I build a ferret, and show other models that can
be built with improved surface pasting.

In Chapter 5, I discuss the pros and cons of the tools I have developed, and give
suggestions for improvements. I end with some thoughts on modelling and how
much further I have to go to achieve a truly computer aided ferret design.



Chapter 2

Ferreting out the background

2.1 Little splines

The word ferret comes from the latin word furonem, which means thief. Ferrets,
Mustela putorius furo, are the only domesticated species in the family Mustelidae,
which has members such as weasels, otters, polecats, badgers and wolverines [14].
They were domesticated about 2500 years ago, with the first known references in
Greek plays by Aristophanes around 400 BC [29]. Ferrets were first used in warren-
ing, rodent control, and later as transporters. They have played an indispensable
role in an English sport named ferret-legging [14]. More recently, they act as pam-
pered pets in many households.

A typical ferret lives between 6 to 8 years, although some have lived up to 11 or
12 years. Ferrets are full grown by a year, and become geriatric around 3 to 4. A
female ferret weighs between 0.3 to 1.1 kilograms, and is about 16 to 18 inches long,
including the tail. A male generally weighs 0.9 to 1.6 kilograms, and is about 18 to
20 inches long. The most common ferret colour is sable, recognized by yellow-buff
fur with patches of black or dark brown on the tail and limbs, with light facial fur
and a dark mask over dark brown eyes [14]. Albinos are also seen frequently, and
mutations have produced a wide variety of colours and patterns.

Ferrets have poor eye sight, can see a limited range of colours, but have a su-
perior sense of smell and sensitive paws. Fueled by their natural curiousity, they
can get into no end of trouble. A ferret at play behaves like a toddler on a double
expresso [29], dooking and hopping forward and sideways, with an arched back and
a bushy tail (Figure 2.1). Ferrets are burrowing critters that engage in digging,
stealing, and hoarding. They have developed certain anatomical adaptations be-
cause of their burrowing behaviour, such as the placement of the carotid arteries to

5
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Figure 2.1: Diefenbaker with an arched back and a bushy tail.

help maintain cerebral blood flow when they turn in tightly confined spaces. They
have a flexible vertebral column that is large in comparison to their size, with 7
massive cervical vertebrae, 15 thoracic vertebrae, 5 to 7 lumbar vertebrae, 3 sacral
vertebrae, and 18 caudal vertebrae forming the tail [14]. Ferrets are the physical
manifestation of splines, and ideal candidates for modelling and animation.

2.2 From curves to surfaces

Piecewise polynomial curves are used in modelling. Two common representations
are Bézier curves and B-spline curves. In this section, I will define and briefly
describe B-spline curves. More details can be found in Farin’s book [12] and Mann’s
course notes [22].

2.2.1 B-spline curves

B-spline curves are a generalization of Bézier curves. The ”B” stands for basis
and the term B-spline was coined as a short way of saying Shoenberg’s spline
basis functions. A degree d B-spline curve B(t) is defined by a number of control
points Ci and a knot sequence ti from which the B-spline curve is calculated. The
control points can also be derived from the polynomial curve’s blossom function, a
symmetric, multi-affine map f(t1, t2, . . . , td) such that f(t, t, . . . , t) = B(t). Each
control point Ci is the value f(ti, ti+1, . . . , ti+d−1). If we have n control points, then
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f (t0, t1, t2) f (t3, t4, t5)

f (t1, t2, t3)
f (t2, t3, t4)

Figure 2.2: A cubic B-spline curve.

we need n+ d− 1 knots1, and the B-spline curve will be n− d segments long. The
domain of the curve ranges from td−1 to tn−1. The mathematical representation is

B(t) =
n∑
i=0

CiN
d
i (t),

where Nn
i (t) are the B-spline of the curve.

As illustrated in Figure 2.2 a cubic B-spline curve with one segment will have
four control points, and a knot vector {t0, t1, t2, t3, t4, t5}. The domain of the curve
is [t2, t3].

Segment i of a B-spline curve is defined by control points Ci through to Ci+d and
knots ti to ti+2d−1. The valid range of this segment is [ti+d−1, ti+d]. In general, each
segment shares d control points (and thus d− 1 derivatives) with its neighbouring
segments. However, if a knot is repeated, then one less control point is shared and
there will be a segment of zero length. A B-spline curve of degree d is generally
Cd−1 continuous, but each time a knot is repeated, the continuity drops by one at
that knot. If a knot has full multiplicity, that is, it is repeated d times, then the
adjacent segments share only one control point (the end point) and the B-spline
curve is generally only C0 continuous at that point.

We can extend a B-spline curve at either end by adding additional control points
and knots. To add control to a B-spline curve in the middle, we find additional
control points by knot insertion. In Figure 2.3, we insert a knot t ∈ (t2, t3) to get a
new knot sequence {t0, t1, t2, t, t3, t4, t5}. The new control points can be calculated
using blossoming. The original control points are replaced by the ones in bold
outline.

One method of evaluating a B-spline curve is by using repeated knot insertion
(Figure 2.4). When a knot t has full multiplicity, the value of the curve at t is

1Traditional definitions of B-spline curves require an additional knot at each end of the knot
sequence.
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f (t1, t2, t3) f (t2, t, t3)

f (t, t3, t4)

f (t3, t4, t5)f (t0, t1, t2)

f (t1, t2, t)

Figure 2.3: Adding a knot to a cubic B-spline curve
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f (t1, t2, t)

f (t0, t1, t2) f (t3, t4, t5)

f (t, t3, t4)
f (t, t, t)

f (t2, t, t) f (t, t, t3)
f (t2, t, t3)f (t1, t2, t3)

f (t2, t3, t4)

Figure 2.4: Repeated knot insertion. t is inserted into {t0, t1, t2, t3, t4, t5} three
times.

the blossom value of f(t, t, .., t). This process is known as the de Boor algorithm.
Figure 2.5 shows the data flow diagram for one segment of the cubic B-spline curve.

The derivative of B(t) or f(t, t, t) can be expressed in terms of its previous level
of the data flow diagram:

B′(t) = d
f(t3, t, t)− f(t2, t, t)

t3 − t2
.

Subsequent derivatives can be expressed in terms of the previous derivatives,
e.g., the derivative of f(t3, t, t) can be expressed as

(d− 1)
f(t3, t4, t)− f(t2, t3, t)

t4 − t2
,

and so the second derivative of B(t) can be expressed as

B′′(t) =
d(d− 1)

t3 − t2

[
f(t3, t4, t)− f(t2, t3, t)

t4 − t2
− f(t2, t3, t)− f(t1, t2, t)

t3 − t1

]
.
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t3−t
t3−t2

t4−t
t4−t2

t3−t
t3−t1

f (t3, t4, t5)f (t2, t3, t4)f (t1, t2, t3)f (t0, t1, t2)

f (t2, t3, t)

f (t2, t, t) f (t3, t, t)

t−t2
t3−t2

t−t2
t4−t2

t−t1
t3−t1

t−t0
t3−t0

t−t1
t4−t1

t−t2
t5−t2

t5−t
t5−t2

t3−t
t3−t0

t4−t
t4−t1

f (t, t, t)

f (t3, t4, t)f (t1, t2, t)

Figure 2.5: Data flow diagram for the de Boor algorithm

2.2.2 Closed B-spline curves

Sometimes we need to model with a closed curve. To construct a closed curve, we
can simply make the first and last control points of the curve be the same and raise
the end knots to full multiplicity so the curve touches. However, this curve is only
C0 continuous at its ends.

In a B-spline curve, two segments meet with Cd−1 continuity when they share d
control points. So for the first and last segment to meet with Cd−1 continuity, the
last d control points should be the same as the first d control points, and the knot
spacing should also be the same. For example, Figure 2.6 shows a cubic B-spline
curve with knot sequence t0, t1, t2, t3, t4, t5, t6, t7, t8, t9. The first three control points
are replicated so that the curve meets with C2 continuity at its start and end. The
knot spacing for the last three control points must be the same as the initial three,
so our constraints on t6, t7, t8, and t9 are

t6 = t5 + t1 − t0
t7 = t6 + t2 − t1
t8 = t7 + t3 − t2
t9 = t9 + t4 − t3.

Now suppose we want to do knot insertion in this cubic B-spline curve. The
valid range for this B-spline curve is [t2, t7]. If we insert t ∈ (t4, t5), then we can
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f (t1, t2, t3) = f (t6, t7, t8)

f (t0, t1, t2) = f (t5, t6, t7)

f (t2, t3, t4) = f (t7, t8, t9)
f (t3, t4, t5)

f (t4, t5, t6)

Figure 2.6: A closed cubic B-spline curve. The first three control points are repli-
cated and the spacing between t0, t1, t2, t3, t4 and t5, t6, t7, t8, t9 is the same.

proceed as with a regular B-spline curve. However, suppose we insert a knot in the
first two segments of the curve, say a ∈ (t2, t3) (Figure 2.7). Our first five knots,
which specify the first three control points, are now t0, t1, t2, a, t3. Our last three
control points must be adjusted to reflect the new control points and our last five
knots must be adjusted so that the spacing matches the first five knots:

b = t6 + a− t2
t′8 = b+ t3 − a
t′9 = t′8 + t4 − t3.

Our new knot sequence is t0, t1, t2, a, t3, t4, t5, t6, t7, b, t
′
8, t
′
9. If we insert a knot in

the last two segments of the curve, we would have to adjust the first five knots so
the knot spacing matches the new knots at the end.

We can also think of closed B-spline curves as the result of curves defined over a
periodic parameter, such that t+T = t for all t and some fixed T . We can think of
matching the knot spacing and control points at the beginning and end as cutting
and unrolling the the periodicity to impose the periodic form onto a linear domain.
When we knot insert, we have to do additional work to keep the beginning and end
coordinated.
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f (t2, a, t3) = f (t7, b, t
′

8
)

f (t1, t2, a) = f (t6, t7, b)

f (a, t3, t4) = f (b, t′

8
, t′

9
)

f (t1, t2, t3) = f (t6, t7, t8)

f (t2, t3, t4) = f (t7, t8, t9)

f (t4, t5, t6)

f (t3, t4, t5)

f (t0, t1, t2) = f (t5, t6, t7)

Figure 2.7: Inserting a knot in a closed cubic B-spline curve. The last few knots
must be adjusted to match the spacing for the new initial knots. The control points
in bold are the new control points specifying the curve.

2.2.3 Greville points

Greville points are the averages of knots. Each control point has a corresponding
Greville point. For a degree d B-spline curve, each Greville point is defined as

gi =
1

d
(ti + ti+1 + . . .+ ti+d−1).

(Note that f(ti, ti+1, . . . , ti+d−1) is the blossom value of the corresponding control
point.) The point on the B-spline curve evaluated at gi is the point that is maxi-
mally influenced by control point Ci. For an open curve, if the Greville point does
not lie within the valid range, it is clamped to the valid range. For a closed curve,
if the valid range is [ta, tb], then a Greville point t outside of the valid range is
wrapped around:

t′ =

{
t+ tb − ta if t < ta
t− tb + ta if t > tb.

In this thesis, any open curves I use will have full end knot multiplicity, so the
Greville points are never clamped. I will also refer to the 2-D or 3-D points on a
curve or surface evaluated at Greville points as curve or surface Greville points, to
differentiate from the domain Greville points.

A curve Greville point Gi corresponding to a control point Ci is the result of an
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t3−g
t3−t0

N 2

2
(g)

t3−g
t3−t2

N 2

1
(g)

N 1

0
(g) N 1

1
(g)

g−t2
t3−t2

g−t1
t3−t1

g−t0
t3−t0

g−t1
t4−t1

N 2

0
(g)

1

N 3

3
(g)N 3

2
(g)N 3

1
(g)N 3

0
(g)

g−t2
t5−t2

t3−g
t3−t1

t−g2

t4−t2

t4−g
t4−t2

t4−g
t4−t1

t5−g
t5−t2

Figure 2.8: Running the de Boor algorithm backwards for a cubic B-spline curve.
We feed 1 into the root and evaluate at a Greville point g to obtain the values of
the B-splines at g.

evaluation at B(gi), which can be written as

B(gi) =
n∑
i=0

CiN
d
i (gi).

The B-splines Nd
i evaluated at each gi remains the same as long as the knot sequence

is unchanged. We can calculate the values of the B-splines at each Greville point by
running the de Boor algorithm backwards (Figure 2.8). Then for any open curve,
we can calculate and store the B-splines evaluated at its Greville points. If the
control points are changed while the the knot sequence remains the same, the new
curve Greville points can be calculated as

G = NC,

where G is the vector of curve Greville points, C is the vector of control points
and N is an n × n matrix where each row i consists of the B-splines for the first
segment j to which Ci belongs, evaluated at gi. The entries in row i start at j, and
the remaining entries are 0. For example, for a cubic B-spline curve two segments
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long, we have
G0

G1

G2

G3

G4

 =


N3

0 (g0) N3
1 (g0) N3

2 (g0) N3
3 (g0) 0

N3
0 (g1) N3

1 (g1) N3
2 (g1) N3

3 (g1) 0
N3

0 (g2) N3
1 (g2) N3

2 (g2) N3
3 (g2) 0

N3
0 (g3) N3

1 (g3) N3
2 (g3) N3

3 (g3) 0
0 N3

1 (g4) N3
2 (g4) N3

3 (g4) N3
4 (g4)




C0

C1

C2

C3

C4

 ,

where Nd
k indicates the kth B-spline used to weight the kth control point.

If we are working with a closed curve, then the last d Greville points will be
repeated and need not be calculated. We can also use the first d control points in
our calculations since the control points are repeated. The entries for the matrix
N that we create will wrap around and N can be generated with the following
algorithm:

for (i=0; i<n-d; i++) {
set j to segment for gi
run de Boor backwards for gi on segment j

for (k=0; k <= d; k++) {
set matrix[i][(j+k)%(n-d)] to be Ndj+k(gi)

}
}

The cubic closed curve shown in Figure 2.6 has eight control points and five
segments. We only have to calculate the first five Greville points, so our equation
would look something like this:

G0

G1

G2

G3

G4

 =


N3

5 (g0) N3
6 (g0) N3

7 (g0) 0 N3
4 (g0)

N3
0 (g1) N3

1 (g1) N3
2 (g1) N3

3 (g1) 0
0 N3

1 (g2) N3
2 (g2) N3

3 (g2) N3
4 (g2)

N3
5 (g3) 0 N3

2 (g3) 023
3(g3) N3

4 (g3)
N3

5 (g4) N3
6 (g4) 0 N3

3 (g4) N3
4 (g4)




C0

C1

C2

C3

C4

 .

Because of the matching spacing of the knot sequence for the last few control points,
N3

0 (g) = N3
5 (g), N3

1 (g) = N3
6 (g) and so on.

Since each B-spline is non-zero on its Greville point, we know by the Schoenberg-
Whitney theorem [11] that N is non-singular, and hence an invertible matrix. We
can use N−1 to calculate the control points from a given set of Greville points:

C = N−1G.
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2.2.4 Tensor product B-spline surfaces

Tensor product B-spline surfaces are one extension of B-spline curves to surfaces.
Mathematically, an n×m tensor product B-spline patch is given as

T (u, v) =
n∑
i=0

m∑
j=0

Ci,jN
d
i (u)N e

j (v),

where u, v is a rectilinear domain, Ci,j are the control points, and Nd
i (u), N e

j (v)
are the B-splines. This equation can be rewritten as

T (u, v) =
n∑
i=0


m∑
j=0

Ci,jN
e
j (v)

Nd
i (u).

Here,
∑
C0,jN

e
j (v) can be treated as a degree e curve with control points

C0,0, C0,1, . . . , C0,m−1.

There are n such curves composed to form a surface. We can also rearrange the
terms and view it as m degree d curves with n control points each parameterized
by u joined together to form a surface. The curves in each direction share the same
knot sequence, so one knot sequence for u and one for v are used in evaluation of
the curves.

Evaluation and knot insertion for tensor product B-splines surfaces generalize
from curves. To insert a knot in u, we knot insert into each of the m B-spline
curves. Similarly for v. To evaluate, we can apply the de Boor algorithm to all the
curves in one parametric direction, say u, which gives us the control points for a
curve in v which we evaluate to get a point on the surface.

Using the above method for evaluation, if we want the partial derivatives for
the surface in both directions (for example, to compute the surface normal), we will
have to evaluate the surface twice, starting with a different parametric direction
each time. Mann and DeRose [23] gave a less expensive method of evaluation.

Using a series of closed B-spline curves in one direction, we can build a cylin-
drical surface.

In a tensor product B-spline surface, Greville points are now (u, v) domain pairs,
and surface Greville points can be calculated. We can still apply the equation
G = NC, but now G and C are both 2-dimensional arrays of points, and N is a
3-dimensional array of B-spline evaluations. For patches that have full end knot
multiplicity, we can apply the curve version of G = NC to just the boundary curves
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Figure 2.9: Adding details via knot insertion adds complexity to other parts of the
surface as well.

to calculate the Greville points.
In this thesis, I will use tensor product B-spline surfaces with full end knot

multiplicity in both u and v directions, unless they are cylindrical surfaces. Cylin-
drical surfaces will have full end knot multiplicity in u and the closed curves will
be defined with respect to v.

2.3 Surface pasting

When modelling, we often have mostly smooth surfaces with areas of high detail.
One method of adding detail to a surface is by knot insertion (Figure 2.9). However,
this method adds complexity to the control mesh even where it is not needed. Meth-
ods to overcome this limitation include hierarchical B-splines refinement [13] and
surface pasting, a generalization of the hierarchical B-splines refinement method.

Surface pasting is as it sounds, a method to glue surfaces on top of one another.
Detailed complex surfaces are pasted on other surfaces, thus preserving the simplic-
ity of base surfaces. The next few sections describe standard surface pasting [2, 3],
projective surface pasting [8, 30], and cylindrical surface pasting [24, 25].

2.3.1 Standard surface pasting

Standard surface pasting, developed by Barghiel, Bartels and Forsey [5, 3, 2], consist
of a tensor product B-spline surface, called a feature, and another tensor product
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B-spline surface or a composite surface from pasting, known as the base surface.
The feature surface is represented as a Greville displacement surface using a

diffuse coordinate system [5]. In a diffuse coordinate system, each control point
has an associated local coordinate frame. The control point Ci,j is expressed as an
origin Oi,j and a displacement vector di,j in its local coordinate space. The equation
for a tensor product B-spline surface becomes

T (u, v) =
n∑
i=0

m∑
j=0

Ci,jN
d
i (u)N e

j (v)

=
n∑
i=0

m∑
j=0

(Oi,j + di,j)N
d
i (u)N e

j (v).

In a Greville displacement surface, the domain is embedded in the range by
mapping u, v to x, y respectively. The origin of the frame of each control point Ci,j
is chosen as Ci,j’s corresponding 3D Greville point (gui, gvj, 0).

Given a base surface B(u, v) and a feature surface F (u, v), pasting is done in
the following way (see Figure 2.10 for an illustration):

1. In a domain window, the user can translate, rotate or scale the feature domain.
We initiate the pasting process when the feature domain lies entirely inside
the base domain via a transformation T . Each Greville point gi,j in the feature
becomes g′i,j = Tgi,j.

2. For each transformed Greville point g′i,j, we calculate the corresponding point
B(g′ui, g

′
vj) on the base surface. This point is taken to be the new origin of

the local coordinate frame F = {B(g′ui, g
′
vj),~ı,~,

~k} of the control point Ci,j.

The basis vectors (~ı,~,~k) for Ci,j is constructed from the partial derivatives
of B(g′ui, g

′
vi) as

~ı =
∂

∂x
B(g′ui, g

′
vj)

~ =
∂

∂y
B(g′ui, g

′
vj)

~k = i× j.
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base surface

~

Ci,j = (gui, gvi, 0) + di,j

~k

~ı
~

~k

(g′

ui, g
′

vj)

~ı

(gui, gvj)

B(g′

ui, g
′

vj) + di,j

B(g′

ui, g
′

vj)

(g′

ui, g
′

vj)

Figure 2.10: Pasting a feature onto a base surface via standard surface pasting.

3. The control hull for the pasted feature is now represented by

F ′(u, v) =
n∑
i=0

m∑
j=0

C ′i,jN
d
i (u)N e

j (v)

=
n∑
i=0

m∑
j=0

(B(g′ui, g
′
vi) + di,j)N

d
i (u)N e

j (v).

When pasting a feature onto a base, we want the feature to mold itself to the
base. If the feature is flat (all di,j are the zero vector), then we want it to lie precisely
on the base surface. However, surface pasting is only an approximation technique.
If we look at a pasted boundary curve, each boundary control point lies on the base
surface. If the base surface is not flat, then the boundary curve does not touch its
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Figure 2.11: Before (left) and after (right) knot insertion. Knot insertion after
pasting gives a closer approximation to the base surface.

control point, and does not overlap the base surface exactly. We can improve the
boundary approximation to the base surface by knot insertion (Figure 2.11). The
more knots we insert, the closer the boundary curve is to the base.

Hence when the boundary control points have zero displacement, we have ap-
proximate C0 continuity. Approximate Cd continuity is achieved by setting the
outer most d layers of control point to have zero displacement.

2.3.2 Projective surface pasting

Standard surface pasting is usually implemented by manipulating (scaling, trans-
lating, and rotating) the feature domain inside the base domain, which is an unin-
tuitive user interface. A more direct user interface is provided by projective surface
pasting [8, 30].

Projective surface pasting (Figure 2.12) differs from standard pasting mainly in
the first step. The four corner points of the feature surface are projected on to the
base surface. The domain for the feature surface forms a rectangle D = F1F2F3F4.
The corresponding domain points for the base are found, and these form a polygon
D′ = F ′1F

′
2F
′
3F
′
4. Since the target polygon is not necessarily a rectangle, we cannot

use a linear transformation. Instead, a bi-linear transformation T is used. With a
bi-linear transformation, all points inside D can be represented by

P (u, v) = L1(v) · u+ L2(v) · (1− u),

where

L1(v) = F1 · v + F4 · (1− v)

L2(v) = F2 · v + F3 · (1− v).
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Figure 2.12: Pasting a feature onto a base surface via projective pasting.

Similarly, points in D′ are represented by

P ′(u, v) = L′1(v) · u+ L′2(v) · (1− u),

where

L′1(v) = F ′1 · v + F ′4 · (1− v)

L′2(v) = F ′2 · v + F ′3 · (1− v).

After transforming the feature domain, we calculate the new control points as
before. This method of pasting is more intuitive for the user as they work directly
with the 3D model. It also allows skewing of the feature domain.

In the remainder of this thesis, I will refer to this type of pasting as bilinear
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T (umax, v)

(umax, vmax)

T (umin, vmin) = T (umin, vmax)

(umin, vmin)

T (u, vmin)

domain

Figure 2.13: Domain mapping for a cylinder.

pasting or projective bilinear pasting, to differentiate from other types of projection
based pasting methods I will explore.

2.3.3 Cylindrical pasting

Cylindrical pasting [24, 25] is a method that integrates techniques of parametric
trimline-base blending into surface pasting. It takes two base surfaces and creates a
smooth transitional cylinder between them. There are two different ways of pasting
a cylinder: pasting the cylinder’s end onto a surface, or pasting two cylinders end
to end. In this thesis, I am only concerned with the former. For details on the
latter, refer to Mann and Yeung [24].

A cylindrical tensor product B-spline surface can be built by using a series of
B-spline curves closed in one parametric direction. Figure 2.13 shows the domain
mapping for a cylinder. The closed B-spline curves are represented in the parametric
v direction.

The cylinder is the feature surface. The cylinder used has circular cross sections
defined by n unique control points. We paste one of the edges of the feature cylinder
onto the base surface via a domain mapping. We denote the control points for this
edge L0. In the base domain, n points are spaced evenly on a circle. For each
domain point dk = (uk, vk) in the circle, the control point L0,k is mapped to the
base surface B(uk, vk) (Figure 2.14). As with standard pasting, the boundary of the
pasted feature may not lie directly on the base surface, but it will be an adequate
approximation.
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(uk, vk)
B(uk, vk)

points
control
L0

base surface

feature cylinder

v edge of feature
domain

base domain

Figure 2.14: Pasting a feature cylinder onto a base surface. The layer of control
points forming the edge of the cylinder is mapped onto the base domain.

The above gives an approximate C0 paste of a cylinder to a base surface. For
an approximate C1 join, we need to map the next layer of control points L1 as well.
Following the rules for standard pasting, we could just map the L1 layer to a second
inner circle in the base domain, and paste the control points directly on the base
surface.

There is a second method that gives a better C1 continuity approximation. A
coordinate frame is constructed at each L0 control point. The frame is constructed
such that the basis vectors that lie on the tangent plane to the control point are
tangent to the domain circle and perpendicular to the domain circle, as shown in
Figure 2.15. Each L1 control point is then expressed as a displacement relative to
its corresponding L0 frame, and lies on the tangent plane to its corresponding L0

control point.

2.3.4 Limitations of surface pasting

Surface pasting provides a relatively low cost and low storage method of adding de-
tail to tensor product B-spline surfaces. Modelling is intuitive as features are refined
individually and then added to the base surfaces. Base surfaces maintain simplicity,
and complexity is created by overlaying features. A world space interface [8] lets
users interact directly with their models.

While surface pasting seems ready to revolutionize the world, there remain
many problems that need to be solved. Surface pasting is only an approximation
technique, and as stated earlier, there are often gaps at the boundaries where feature
meets base, although work done by Conrad [9, 10] and Leung [19, 18] improved the
boundary approximation and continuity tremendously.
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Figure 2.15: Pasting the L1 layer of control points to achieve an approximate C1

paste.

The limitation this thesis deals with is one of modelling. Standard pasting is
only good for adding details with a rectilinear boundary. With bilinear projec-
tive pasting, a quadrilateral domain increases flexibility, but non-convex domains
present a problem for bilinear interpolation of the feature domain space. Cylin-
drical pasting adds to the modelling pool, but is currently limited to an indirect
approach to modelling via domain manipulation. And while molding of the feature
to the base surface may be desirable sometimes, the feature is often unacceptably
distorted (Figure 2.16).

2.4 Reference frames for generalized cylinders

Cylinders are good starting points for modelling elongated shapes such as arms and
legs. A cylinder created with arbitrary cross-sections along a 3D curve (Figure 2.17),
known as a generalized cylinder, is a common and useful modelling construct. Ref-
erence frames are positioned along a centroid curve to align each cross-section with
its neighbour consistently. The description of generalized cylinders and discussion
of reference frames are found in a paper of Bloomenthal [6].

A common type of reference frame is the Frenet frame. At any point P on the
curve, a Frenet frame consists of a vector T tangent to the curve at P , a principal
normal N , and a binormal B. T is simply the normalized first derivative V of
the curve. The principal normal is defined be in the direction of the curvature
K = V×Q×V

|V |4 , where Q is the second derivative of the curve. The remaining vectors
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Figure 2.16: Distortion of a feature after pasting.

cross sections

frame

reference

Figure 2.17: Generalized cylinder.
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Figure 2.18: Calculating rotational minimizing frames.

are defined to be N = K
|K| and B = T ×N .

Frenet frames are convenient because they can be computed independently at
arbitrary points on the curve. But they are ill defined wherever the curvature is
zero, such as on straight lines or at points of inflection. The normal can also flip
after an inflection point, causing a violent twist in the frames along the curve.

Rotational minimizing frames solve some of the problems of Frenet frames. An
initial reference frame is defined at the beginning of the curve, and each subsequent
frame is calculated using small local rotations with respect to the previous frame
(Figure 2.18). Given a frame Fi = {Pi, Ti, Ni, Bi} at point Pi, we calculate the
normalized tangent Ti+1 at point Pi+1. The new frame Fi+1 can be calculated by
rotating Fi so that Ti aligns with Ti+1. Ni+1 and Bi+1 are rotated around T0 × T1

by the angle cos−1
(
T0·T1

|T0||T1|

)
.

Rotational minimizing frames cannot be calculated independently, and the frames
generated are dependent on how the initial frame is created. As well, the resulting
frames may not be what the user expected, so sometimes a Frenet frame may be
preferable.

2.5 Ray intersect spline surface

There are a few instances in which we need to know where a line intersects a spline
surface. First, to paste a cylinder on a surface, the user needs to select a paste
point on the surface. We can find this point by calculating the direction of the
eye to the pixel of the mouse click based on the parameters of the viewing frustum
(Figure 2.19), and intersecting this line with the spline surface.

Second, we need to know the intersection of a ray with a spline surface for
projective pasting. In bilinear projective pasting, the four corners of the feature
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(mx, my)

screen

intersection

Figure 2.19: Surface point can be calculated by intersecting the spline surface with
the direction from the eye point to the mouse

are projected onto the base surface to determine how the the feature domain is
transformed in the base domain. For projective cylindrical pasting discussed in
the next chapter, I create a gnomon for the selected point with the paste direction
corresponding to the surface normal. The tangent of the cylinder spine point to be
pasted is matched with this paste vector. I cast lines from the cylinder’s current
outer control/surface Greville points in the direction of the paste vector. The new
control/surface Greville points are determined by where the lines intersect the spline
surface.

To compute the intersection of a ray with a spline surface, I looked at two meth-
ods, an algorithm given by Kajiya [16] and a method that makes use of hardware
via OpenGL.

2.5.1 Kajiya’s method

In ray tracing, spline surfaces are subdivided and ray intersections with the subse-
quent polygons are calculated. This requires high overhead in terms of calculating
and storing the mesh. In surface pasting, the surfaces change often, and the number
of ray intersect surface calculations are few, so a numerical approach seems more
reasonable. The method I chose to investigate was Kajiya’s method [16]. It is as
follows:

1. Convert the degree n×m tensor product B-spline surface into degree n×m
Bézier patches via knot insertion.

2. Convert each patch to a monomial representation [12]. If the Bézier control
points are given by C, then the monomial coefficients C ′ are given by M tCN ,
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where

Mij = (−1)j−i
(
m
j

)(
j
i

)
and

Nij = (−1)j−i
(
n
j

)(
j
i

)
,

for i = 1 . . . n and j = 1 . . .m.

3. Represent the ray p(t) = E +wt as the intersection of two planes P1 and P2,
where the normals of the planes are given by

N1 =

{
(wy,−wx, 0), if |wx| > |wy| and |wx| > |wz|
(0, wz,−wy), otherwise

N2 = N1 × w.

4. Substitute the monomial surface representation into the equations of the
planes to obtain bivariate polynomials

a(u, v) = N1 · (C ′(u, v)− E) = 0

and
b(u, v) = N2 · (C ′(u, v)− E) = 0.

After rewriting the equations we have

n∑
i=0

m∑
j=0

aiju
ivj = 0

and
n∑
i=0

m∑
j=0

biju
ivj = 0.

Note that the derivation used here differs slightly from Kajiya’s paper in that
ai and bj corresponds to the coefficient of the degree i, j terms, whereas in
Kajiya’s paper ai and bj corresponds to the degree n− i, m− j terms.

5. Create the Bezout determinantal form of the resultant with respect to u or v,
which ever has the higher degree. To illustrate the method, we will proceed
as if v has the higher degree.
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The resultant [1] is defined by

R(a, b) = am0 b
n
0 (−1)m+n−1

n∏
i=1

m∏
j=1

(αi − βj),

where a, b are univariate polynomials and αi and βj are roots of the polyno-
mials respectively. R(a, b) = 0 if and only if a and b share a common root,
that is, αi = βj for some i and j. The resultant can also be expressed as
a polynomial in the coefficients of a and b. This allows us to calculate the
resultant and use it to determine if the two polynomials share a common root
without factoring them. In the case where a and b are bivariate polynomi-
als in u and v, we can treat them as univariate polynomials in u or v with
polynomial coefficients in v or u respectively. We can calculate the resultant
with respect v so the coefficients will be in u. The value of the resultant is a
univariate polynomial in u.

The resultant can be obtained by calculating the determinant of the Sylvester
matrix, which is given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . an 0 . . . . . . 0
0 a0 a1 . . . an 0 . . . 0
...

. . .
...

...
. . . 0

0 . . . . . . 0 a0 a1 . . . an
b0 b1 . . . bn 0 . . . . . . 0
0 b0 b1 . . . bn 0 . . . 0
...

. . .
...

...
. . . 0

0 . . . . . . 0 b0 b1 . . . bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

For two degree n polynomials, the size of the matrix is 2n × 2n. A more
efficient way to calculate the resultant is to use the Bezout determinantal
form which is an n × n matrix. The entries for this matrix are given by the
following code:
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for (row=0; row<n; row++) {
for (col=0; col<n; col++) {

s = col+row+1;

m[col][row] = 0;

for (k=0; k <= row; k++) {
m[col][row] += akbs−k − bkas−k

}
}

}

The resultant of two degree 4 polynomials would have the following form:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣ a0 b0

a1 b1

∣∣∣∣∣
∣∣∣∣∣ a0 b0

a2 b2

∣∣∣∣∣
∣∣∣∣∣ a0 b0

a3 b3

∣∣∣∣∣
∣∣∣∣∣ a0 b0

a4 b4

∣∣∣∣∣
∣∣∣∣∣ a0 b0

a2 b2

∣∣∣∣∣
∣∣∣∣∣ a0 b0

a3 b3

∣∣∣∣∣−
∣∣∣∣∣ a1 b1

a2 b2

∣∣∣∣∣
∣∣∣∣∣ a0 b0

a4 b4

∣∣∣∣∣−
∣∣∣∣∣ a1 b1

a3 b3

∣∣∣∣∣
∣∣∣∣∣ a1 b1

a4 b4

∣∣∣∣∣
∣∣∣∣∣ a0 b0

a3 b3

∣∣∣∣∣
∣∣∣∣∣ a0 b0

a4 b4

∣∣∣∣∣−
∣∣∣∣∣ a1 b1

a3 b3

∣∣∣∣∣
∣∣∣∣∣ a1 b1

a4 b4

∣∣∣∣∣−
∣∣∣∣∣ a2 b2

a3 b3

∣∣∣∣∣
∣∣∣∣∣ a2 b2

a4 b4

∣∣∣∣∣
∣∣∣∣∣ a0 b0

a4 b4

∣∣∣∣∣
∣∣∣∣∣ a1 b1

a4 b4

∣∣∣∣∣
∣∣∣∣∣ a2 b2

a4 b4

∣∣∣∣∣
∣∣∣∣∣ a3 b3

a4 b4

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6. Find the roots of the resultant r(u). The degree of r(u) is at most 2n2. I used

Laguerre’s method [28] to find the roots u1, u2, . . . , uq. r(v) is a polynomial
with real coefficients, so the roots are either real or in conjugate pairs of
complex numbers.

There is one special case in calculating the resultant. If one of the polynomials,
say a(v), has degree 0 in u, then a, b have a common root only when a(v) has
a zero. In this case, we can solve for the roots of a(v), and for each root vj
solve for the roots of b(u, vj). For this case, we can skip step 7 and proceed
directly to the polishing step.

7. Substitute each root ui to obtain univariate polynomials a(ui, v) and b(ui, v).
For each pair, calculate the GCD via the Euclidean algorithm to obtain
c(ui, v), which has degree m or less.
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8. Find the roots vj of each c(ui, v). Polish (ui, vj) to get the resulting domain
point [15].2

Calculate the surface point C(ui, vj) and the distance t from the ray origin E.
The difference between the surface point at (ui, vj) and the ray point E +wt
should be the zero vector: x(ui, vj, t)

y(ui, vj, t)
z(ui, vj, t)

 = C(ui, vj)− (E + wt) = ~0.

If (uo, vo, to) is the current guess, then a better guess is given by

 uo+1

vo+1

to+1

 =

 uo
vo
to

−


∂x(uo,vo,to)
∂u

∂x(uo,vo,to)
∂v

∂x(uo,vo,to)
∂t

∂y(uo,vo,to)
∂u

∂y(uo,vo,to)
∂v

∂y(uo,vo,to)
∂t

∂z(uo,vo,to)
∂u

∂z(uo,vo,to)
∂v

∂z(uo,vo,to)
∂t


−1  x(uo, vo, to)

y(uo, vo, to)
z(uo, vo, to)



=

 uo
vo
to

−


(∂C(uo,vo)
∂u

)x (∂C(uo,vo)
∂v

)x wx
(∂C(uo,vo)

∂u
)y (∂C(uo,vo)

∂v
)y wy

(∂C(uo,vo)
∂u

)z (∂C(uo,vo)
∂v

)z wz


−1  x(uo, vo, to)

y(uo, vo, to)
z(uo, vo, to)

 .

9. Keep the root pairs (ui, vj) where 0 ≤ ui ≤ 1 and 0 ≤ vj ≤ 1 to obtain the
intersection points..

Unfortunately, for bicubic patches, combinatorial constants resulting from the
change of basis and expansion exceeds double floating point precision, leading to
inaccurate answers. Possibly interval analysis [26] or use of a different basis would
solve these problems.

2.5.2 Making use of OpenGL

An alternative method to find intersections between rays and spline surfaces is to
use OpenGL’s picking and colour buffers to retrieve the domain values of the spline
surfaces [20]. I use the following steps to calculate the location under a user’s mouse
click:

1. The user clicks on a pixel location (mx,my) in the application on the screen.

2. Determine the surface selected via OpenGL’s picking.

2With many thanks to Richard Bartels for explaining this in detail.
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Figure 2.20: A 2-bit domain (left) with its corresponding surface textured in the do-
main (right). Each pixel sharing the same colour corresponds to one (u, v) location
on the surface, inadequate for selection purposes.

3. Render a false coloured version of the surface from the same viewpoint as the
user into an OpenGL colour buffer. The r, g, b colours of the surface should
be textured such that r = 0 corresponds to the minimum u value, and r = 1
corresponds to the maximum u value, and g = 0 corresponds to the minimum
v value, and g = 1 corresponds to the maximum v value.

4. Read the r and g values of the colour buffer at (mx,my) and map them to
obtain u and v.

This method is limited by the number of bits in the OpenGL’s colour buffer,
which is machine dependent. I used a machine with a 5-bit colour buffer and one
with an 8-bit buffer. With an n-bit buffer, the surface is divided into 2n×2n sections
each represented by a unique r and g. The number of sections is independent of
the number of surface segments given by the B-spline surface.

With the 8-bit buffer, the surface point calculated usually corresponds to the
screen location under the user’s mouse click, but with the 5-bit buffer, the sec-
tion can be large and the surface point can be quite far off. See Figure 2.20 for
an example of the problem demonstrated by a 2-bit buffer. This method can be
made more accurate by using the (u, v) values as an initial guess in the same root
polishing method stated in the previous section. The new surface point calculated
corresponds to the screen location.

I can calculate the domain values at which the new control/surface Greville
points should be by rendering the surface from each control/surface Greville point
in the paste direction, and reading the (u, v) value off the middle of the screen.
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A more efficient way would be to render just once and read off all the (u, v)
values from the same buffer. We do this the following way:

1. Project the control/surface Greville points on to the plane defined by the
paste point and the paste direction.

2. Find the maximum distance between the projected points and the paste point.

3. Render the surface with the eye point at 1 unit behind the paste point in the
paste direction, and the up direction from the paste point’s gnomon. The near
plane should be 1 unit from the eye point. Use an orthographic projection
and make sure that the width and height of the viewport are at least twice
the maximum distance calculated.

4. Read the r and g values off the colour buffer. The location indices can be
calculated using the projected points and the paste points.

The (u, v) pairs for the new control/surface Greville points should also be pol-
ished for better accuracy.

Instead of polishing, I can also refine by rendering to hardware multiple times.
For each r value read in from an n-bit colour buffer, the corresponding colour range

is given by ( br×(n2−1)+0.5c
n2 , br×(n2−1)+0.5c+1

n2 ). We take the range and convert it to
domain values in u. Then we knot insert in the surface to obtain a smaller surface
bounded by the u range. We do the same with g to obtain the patch associated
with the given (r, g) pair. Now colour this smaller patch in a similar manner, read
in the new colour values and convert with respect to the new u, v ranges. This
process can be repeated multiple times for additional accuracy.



Chapter 3

Ferret building tools

This chapter discusses in detail the improvements I have made to surface past-
ing. The first issue I have looked at is creating a more flexible cylindrical pasting
paradigm. The ferret’s long, sinuous body and tail, as well as its limbs, can be more
closely represented by generalized cylinders than by bumps. This cylinder is built
around a 3D spine curve. I devised a method to paste the feature cylinder onto a
base surface in world space using a single point on the base and the cylinder’s spine
as guides. The feature cylinder is pasted on to the base by projection in world
space rather than domain pasting.

To improve the boundary approximation, I also tested the pasting of surface
Greville points. One question with surface pasting was how to place control points
so that the feature boundary approximates the base surface better. While control
points pasted onto the base lie on the surface, their corresponding surface Greville
points may not lie on the base surface, creating gaps. By fixing the locations of sur-
face Greville points such that they lie on the base surface, and then determining the
locations of the control points, I can achieve a better C0 boundary approximation.
This improvement can be applied to both cylinders and patches.

To minimize distortion in pasting patches, I took my ideas for cylindrical pasting
and applied them to patch pasting. Instead of representing patches as Greville
displacement surfaces, I displaced their control points from a single point, and use
it as a guide for pasting. The edges of the patch are pasted by projecting all
boundary control points onto the base.

My last goal is to allow pasting of arbitrarily shaped patches. Such a patch
is created by taking a regular rectangular patch and trimming away the boundary
according to a domain curve. It is pasted as if it is an untrimmed patch, and a
cylinder is pasted onto the trimmed feature and the base to join the two surfaces
smoothly.

32
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2π0

Ci,j

vj = θj

θj

Fi,j

Fi,0

S(ui)

valid v range

Figure 3.1: Building cylinder T (u, v) from spine S(u). Fi,j is calculated by taking
the associated frame for spine point S(ui) rotated by angle θj.

I end the chapter by explaining how these different techniques can be combined
for hierarchical modelling.

3.1 Projective cylindrical paste

3.1.1 Building a cylinder

The cylinders that I use are tensor product B-spline surfaces wrapped around a
spine curve. For a n×m cylinder that is degree d× e, the spine is a B-spline curve
defining the parametric u direction of the surface and shares the degree and knot
vector with the surface. Figure 3.1 shows how the cylinder is constructed. The
cylinder T (u, v) is built as a displacement surface from the spine S(u), such that

T (u, v) =
n∑
i=0

m∑
j=0

Ci,jN
d
i (u)N e

j (v)

=
n∑
i=0

m∑
j=0

(S(ui) + di,j)N
d
i (u)N e

j (v)
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Figure 3.2: The second curve in a double spine determines how the reference frames
are oriented.

where ui is the ith Greville point, di,j is the displacement for control point Ci,j,

and the local coordinate frame for Ci,j is Fi,j = {S(ui),~ı,~,~k}. Fi,j is calculated
by taking the associated frame for S(ui) rotated by angle θj. The valid range for
v is linearly mapped to angles from 0 to 2π, and θj is the mapping for vj, the jth
Greville point.

The spine of the cylinders are 3D curves with Frenet frames or rotational mini-
mizing frames as discussed in Section 2.4. Because of the limitations of these two
types of construction, I implemented a third option, a double spine (Figure 3.2)
where a second user manipulated curve is placed next to first curve. The principal
normal for each spine frame is constructed by taking the closest normal that lies on
the plane normal to the spine’s tangent, and in the direction of the corresponding
parametric point on the second curve.

3.1.2 Determining the paste

The user interface for projective pasting is in world space. To paste a surface, the
user needs to specify a base surface, the end of the feature cylinder to paste, and
the direction to project. My user interface is a multi-step process. See Figure 3.3
for details.

1. The user clicks on a surface B, the base surface for pasting. The location of
the surface point where the user clicked, P = B(u, v), is determined using

methods discussed in Section 2.5. An initial coordinate frame F = {P,~ı,~,~k}
is built as follows:

~ı =
∂B

∂u

~ =
∂B

∂v
−
(
∂B

∂v
·~ı
)
×~ı
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Figure 3.3: Projective cylindrical paste.

~k = ~ı× ~

The set of equations used to build the vectors ensures that they form an
orthogonal frame, which we normalize to get an orthonormal frame. An
orthonormal frame is needed so we can use it to match the coordinate frame,
also an orthonormal frame, on a feature cylinder’s spine. The default direction
for pasting is ~k, which is normal to the surface at point P .

2. The user clicks on one end of a cylinder. We first find out the u parameter
of the clicked point, and then check if u is within the first quarter of the
domain, or the last quarter of the domain. This determines whether we paste
the start or end of the cylinder. Let T be the tangent vector at the cylinder’s
spine end. The cylinder is transformed (rigid body) by aligning the tangent
vector T at the cylinder’s spine’s selected end. The cylinder is transformed
by aligning T with the coordinate frame’s basis vector ~k on the base surface,
and the remaining basis vectors for the spine’s end frame are aligned with ~ı
and ~. If we are pasting the end of the cylinder where u = umax, the spine’s
frame will have to be negated before alignment.
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~k

projected points

L0

Figure 3.4: Control point paste

3. The initial frame F is built only as a guide. It can be rotated via a trackball
interface. The cylinder’s selected end is aligned with the paste frame as it is
rotated. The user can also specify a distance d at which the cylinder end is
displaced from the surface.

4. Finally, the user can choose to paste the cylinder using a control point paste
or a surface Greville point paste. The approximate continuity of the paste
is specified as well, and there is an option to keep the domain values of the
paste even if the surfaces are modified. If conditions are not met, the paste
may fail. These details are covered in the next few sections.

3.1.3 C0 control point pasting

For a control point paste, I project the outermost layer of control points L0 at the
cylinder’s selected end onto the base surface in the direction of the paste vector ~k
(Figure 3.4). By intersecting the base surface with the projected lines, I can deter-
mine the projected points on the base surface. The L0 layer of control points are
modified to be at the positions of their projected counterparts while the remaining
control points of the cylinder are not modified. This gives an approximate C0 paste.
The paste fails if any of the projected lines do not hit the base surface.
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G0

projected points

~k

Figure 3.5: Surface Greville point paste

3.1.4 C0 surface Greville point pasting

In surface pasting the feature is pasted by putting the Greville displacement origins
onto the base. If the feature’s boundary is flat, the control points are located at the
Greville displacement origins, and the feature boundary will approximate the trim
curve of the base surface. If the base is curved, then the pasted feature boundary
lies below the base trim curve (Figure 2.11, left). Intuitively, it seems that an
improvement to the approximation can be made by placing the surface Greville
points, which lie on the feature surface boundary, instead of the control points,
which may not.

In a surface Greville point paste, I project the outermost layer of surface Greville
points G0 at the cylinder’s selected end onto the base surface in the direction of
the paste vector ~k (Figure 3.5). I want to position the G0 points to their projected
counterparts on the base surface. To do this, I can use the equation discussed in
Section 2.2.3,

L0 = N−1G0,

where L0 is the layer of boundary control points of the selected cylinder end, and
N is the matrix of B-splines that calculates the curve Greville points from a set of
control points. After solving for L0, the outermost layer of control points is moved
to L0. L0 does not in general lie on the base surface.

This also gives an approximate C0 paste, where the surface Greville points are
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projection of base surface

projected

part of the surface
may stick out

projected
surface greville

points

control points

Figure 3.6: Control points may not project onto the base even if surface Greville
points do. If this is the case, part of the cylinder’s end curve may extend out of
the base surface.

guaranteed to touch the base surface. The paste will fail where the projected lines
do not hit the base surface, but since the surface Greville points in general lie much
closer to each other than control points, the paste is less likely to fail. I will call
D the shape formed by the projection of the base surface in the direction ~k in any
plane perpendicular to ~k. Then, for any convex feature cylinder, if the projected
end layer of control points lie in D, so will the end layer of surface Greville points.
The reverse is not necessarily true (figure 3.6). On the other hand, if some control
points lie outside of D, then part of the paste feature may lie outside of the base
surface.

A comparison and analysis between surface Greville point paste and control
point paste can be found in Section 4.2.

3.1.5 Paste parameters

If the projected lines do not intersect the front facing side of the base surface at
a positive distance, then the paste fails (Figure 3.7). The displacement parameter
d translates the cylinder’s end from the paste point on the base surface. This
parameter is adjusted to ensure the above conditions can be met. These conditions
limit the way the pasted surface can distort: if a control point is moved a negative
distance in the paste, the surface is more likely to intersect itself; if it pastes on the
opposite side of the surface, then the derivative at that point will be pointing away
from the surface, causing a warp for an approximate C1 paste, which is discussed
later.

With projective pasting, each control point or surface Greville point has a cor-
responding domain point on the base surface. The user has the option to keep this
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Figure 3.7: The cylinder can only be pasted if all projected points intersect the
front face of the surface at a positive distance.

mapping even if the base surface is modified. One reason for keeping the mapping
is that the base surface could potentially be animated, and modifications to the
base may violate some of the conditions for projective pasting.

As with other kinds of pasting, knot insertion improves the feature approxima-
tion to the base surface. When the user chooses the option to keep the current
mapping, knot insertion is performed on the feature surface and the mapped do-
main curve. The newly generated control points are mapped to the base surface at
the evaluation of their corresponding domain control point. Keeping the current
mapping does not yield the same paste if the paste occurs after knot insertion, but
does guarantee that the mapped control points stay in the same location.

3.1.6 Trimming away the base

After the feature cylinder has been pasted, the base surface is no longer a manifold.
To get an approximate manifold, we can trim away the base surface inside of the
cylindrical paste.

Trim curves in OpenGL must have full end knot multiplicity and start and end
on the same control point. They are also specified in the domain space of the
surface. For the cylinders pasted via control points, all we have to do is figure out
the domain points for each pasted control point, re-use the same sequence of knot
values, and then bring the curve to full multiplicity at its end points.
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For a surface Greville point paste, we need to do a little more. Since the control
points do not necessarily lie on the base surface, there are no domain points in the
base domain that evaluate to their location. But the surface Greville points do have
corresponding domain points in the base. So we apply matrix N−1 to the domain
points D0 for the surface Greville points to get

R0 = N−1D0.

R0 will give a trim curve where the base surface always touches the feature surface
at the surface Greville points.

The base surface for pasting can also be another cylinder. Each cylinder has
a seam where the start and end of the closed curve meets. With domain based
cylindrical pasting, a closed domain curve is mapped to the pasted end of the feature
cylinder. With my method, control points or surface Greville points are mapped
to new locations independently and a closed 3D curve is created. Corresponding
domain points are found for these points. When the feature cylinder is pasted over
the seam of a base cylinder then it is not possible to create a continuous trim curve
in the domain. In this case, we can create two separate trim curves that have edges
on the seam, but I did not implemented this feature as part of my thesis work.

3.1.7 Capping the cylinder

When we are trimming the base surface for standard surface pasting, we have always
trimmed away the inside part of the base surface, onto which the feature is overlaid.
For cylinders however, trimming away the outside of the base surface makes sense
as well. We can paste a cylinder onto a small patch, trim away the outside of the
patch, and cap off the cylinder (Figure 3.8).

A simple algorithm for capping generalized cylinders is to take the centre point
of the closed curve at the end, and triangulate. This works well for closed curves
with a star kernel [27] but not all concave curves (Figure 3.9). Using pasting as
a method of capping, areas outside of curves, convex or non-convex, are always
trimmed, so it is a better algorithm for capping generic closed curves.

3.1.8 Approximate C1 continuity

In existing cylindrical pasting [24, 25], a smooth blend with the base surface is
achieved by mapping two circles in the base domain, and then mapping the bound-
ary layer of the pasted cylinder to the outer curve, and the next layer of con-
trol points by displacement relative to the coordinate frame at each corresponding
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Figure 3.8: The outside of the base is trimmed away when we cap a cylinder.

of curve
area outside

points
centre

Figure 3.9: A simple algorithm for capping that works well for convex curves (left).
For non-convex curves (right), areas outside of the curve may be capped as well.

boundary and

control points overlap
second layer of

Figure 3.10: Left: when the second layer of control points project onto its boundary
layer, we can only achieve C0 continuity. Center: by making the boundary layer
wider than the secondary layer, we can get a smooth approximate C1 blend. Right:
when we make the boundary layer smaller than the secondary layer, we trim the
outside of the base to get a smooth cap.
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Figure 3.11: On the left, the outer layer of control points is projected onto the
base. In the centre, a tangent plane is constructed at each pasted control point on
the boundary. The second layer of control points is projected onto corresponding
tangent planes to yield an approximate C1 paste, shown on the right.

pasted outer control point. The displacement is calculated based on the mapping
of the control points to the two circles in the domain.

With my method of cylindrical pasting, the cylinder’s boundary is mapped to
a closed curve, not necessarily convex, in the domain. I could try to map the
second layer of control points in a similar manner to existing cylindrical pasting,
but it is unclear how to create a smaller inner curve for arbitrary closed curves.
For example, if I were to scale the curve smaller around a central point, it is quite
possible that the inner curve and outer curve will intersect if the curve is not convex.
For example, if the closed curve on the right in Figure 3.9 were to be scaled down
around its centre point, the smaller curve would overlap with the original curve.

For this reason, I approximate C1 continuity as follows. The outer layer of
control points is mapped onto the base as with C0 pastes. For each pasted control
point bi on the boundary, I construct a tangent plane Ti to the base surface at bi.
The corresponding control point si on the second layer is placed at the intersection
of the line created by the unpasted si and the paste direction with the tangent
plane Ti. Figure 3.11 illustrates the process.

How smooth the blend appears is determined by the user. An approximate C1

paste where all the second layer of control points lie in the paste direction from
the boundary layer of control points will appear to have a C0 join, as both layers
of control points will be projected and pasted onto the same location (Figure 3.10,
left). For a smoother looking join, the boundary layer should be moved further
away from the second layer (Figure 3.10, centre). In the case where we are capping
a cylinder, we can make the boundary layer smaller than the second layer to yield
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Figure 3.12: Extending a B-spline curve lengthens the curve disproportionately.
Here, the original curve has knot sequence a, a, a, b, b, b. The curve is extended
by adding control point f(c, c, c), changing the knot sequence to a, a, a, b, c, c, c.
Control points f(a, b, c), and f(b, c, c) have predetermined positions that lengthen
the original curve. Control point f(c, c, c) can be placed freely, but the extended
curve may already be longer than the user desired.

a smooth join to the inside of the trim (Figure 3.10, right).

Extending the cylinder’s boundary

As stated above, to create a smooth approximate C1 join or cap, the user is required
to edit the boundary layer of control points manually so that the boundary curve
is larger or smaller than the curve defined by the second layer of control points.
The distance between the two curves determines the smoothness of the join or cap,
with a larger distance giving a smoother appearance. I investigated simplifying this
process for the user by automatically extending the boundary curves.

I wanted to generate an additional layer of control points for the user automat-
ically. The question then became how to place this additional layer. If a layer was
added and then extended as for trimmed patches (Section 3.3.4), then the boundary
segment of the cylindrical feature surface will be changed, something I thought was
undesirable.

When I changed the end knot values (necessary to maintain full end knot mul-
tiplicity), I can keep the original feature surface unmodified by moving the original
boundary layers of control points as well as adding a new layer of control points.
The downside of this method is that the new segment created by extension may be
longer than the user desired. Figure 3.12 illustrates the problem with respect to
extending one control point on the boundary.
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Figure 3.13: Left: a Greville displacement patch. Right: a displacement patch built
around a centroid.

I decided not to use the method of extending curves just described because trial
curves were lengthened more than I was expecting, often such that the base surface
was not large enough for the feature to be pasted on. For now, manual extension
of the curves is required.

3.2 Centroid projective patch pasting

3.2.1 Building a patch

I wanted to extend the way cylinders are pasted to pasting patches. In existing
surface pasting techniques, patches are represented as Greville displacement tensor
product B-spline surfaces. Each control point is calculated from a displacement
vector associated with a local diffuse coordinate frame. The feature patch may
distort greatly depending on the curvature of the base surface.

In my cylindrical pasting methods, cylinders are built around a spine and pasted
in the direction of the selected spine end. I emulate this by building patches around
a central point. This centroid is the centre point of the domain embedded in the
range. Each control point is calculated from a displacement vector associated with
the centroid. Figure 3.13 shows the standard Greville displacement surface and the
modified displacement surface.

Leung [19] also uses centroids to displace the interior control points of patches.
Our methods differ in how the centroids and their reference frames are constructed:
Leung’s centroids are computed after boundary control points have been placed,
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Figure 3.14: User interface for pasting a patch via its centroid

and his reference frames are based on the average planes computed from the pasted
boundary control points; the centroids I use determine how patches are pasted, and
my reference frames are constructed based on the tangent planes. My methods are
described in detail in the next section.

3.2.2 Pasting a patch

Using the centroid, I can paste patches in a similar way to cylinders (Figure 3.14).
The user selects a paste point and orients its coordinate frame on the base surface.
The centroid is aligned with this coordinate frame. All of the boundary points
are projected in the paste direction. The user can select whether to match the
boundaries at the control point or the surface Greville points.

The tensor product B-spline surfaces used in this thesis have full end knot
multiplicity, so the surface Greville points and the control points are the same at
the patch corners (i.e., the corners of the patch always lie on the base surface).
With a surface Greville point paste, the boundary curve lies closer to the base
surface (see Section 4.2 for error analysis).

With a projective bilinear patch paste (implemented for comparison), the four
corners of the patch are projected onto the base surface, and the feature domain
is mapped onto a quadrilateral in the base domain (see Section 2.3.2 for details).
With the centroid projective paste, the centroid is projected onto the base surface
and displaced by a distance d. All the border control points of the feature are
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projected onto the base surface in the direction of the paste frame and the borders
of the feature domain are mapped onto curves in the base domain. As with pasting
cylinders, the projected lines must intersect the base surface for the paste to be
successful. The interior control points of the feature are not mapped with respect
to its domain, but displaced according to the pasted centroid. Figure 3.15 shows
the pasting process. Only the boundary of the feature domain is mapped to the
base domain; the interior of the feature domain has no corresponding mapping in
the base domain.

For a control point boundary match, the boundary control points lie on the base
surface, which has corresponding points in the base domains. I used these points
as control points for the four 2-dimensional trim curves in the base domain.

For a surface Greville point paste, the surface Greville points have mappings
in the base domains, whereas the control points do not. I calculate the control
points for each of the four boundary curves by multiplying the inverse of matrix N
with the Greville point mappings. This is similar to how I create trim curves for
a cylindrical paste. If the knot sequence is not the same, then Nu and Nv will be
different matrices.

3.3 Trimmed patch pasting

3.3.1 Creating an irregular patch

With the projective centroid method of pasting patches, I can create patches that
have irregular borders for pasting. However, tensor product B-spline patches have
a rectilinear structure and creating irregular borders and shapes is unintuitive.1

Often the shape (displacement of the surface from the plane) of the feature is not
rectangular, but the rectilinear structure of the feature as a whole is prominent
once the feature has been pasted.

A more intuitive way to create an irregular patch is to trim away the unwanted
bits. I can specify a trim curve in the feature domain and use OpenGL to create
the irregular patch. However, the border of this patch may not lie on a plane, and
it is unclear how to paste the feature using standard pasting or my extension.

3.3.2 Pasting an irregular patch

The general idea behind pasting an irregular patch is to use a cylinder to blend
the two surfaces together. First, the user has to specify a trim curve in the feature

1Based on personal experience only; others’ opinions may differ.
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Figure 3.15: The border control points are mapped to curves in the base domain
and the interior control points are displaced with respect to the centroid.
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domain to create the trimmed patch. The feature is pasted as if I am pasting an
untrimmed patch with C0 continuity. I then trim away the border of the patch
and join the trimmed feature boundary to the base surface with a cylindrical paste.
Figure 3.16 shows how an irregular patch is pasted.

The cylinder I use for merging the feature with the base has a single segment
cubic B-spline curve in the u (spine) direction. Kim and Elber [17] has a similar
approach for blending surfaces with specified trim curves that requires more user
input. In my implementation, the number of segments in v is calculated based on
the size of the feature patch, although there is no real correlation between the two.
As with knot insertion, the higher the number of segments, the closer the cylinder’s
boundary will fit to the trimmed feature. There are a couple of different approaches
I can take to achieve the cylindrical blend.

3.3.3 Tangent projective paste

In the first approach, I take evenly spaced samples along the trimmed feature’s
domain boundary to generate the closed curve of one end of the cylinder. For each
sample s, I calculate the vector ~t normal to the boundary curve that also lies on the
tangent plane at that point. I then project from s in the direction of ~t. If any of the
projected lines do not hit the base surface, then a paste is not allowed. If all the
lines intersect the base surface, then it is easy to create a cubic blending cylinder
with continuity C0. I take the first ring of control points to be the sample points
along the trimmed feature, the last ring of control points to be the intersection
points on the base, and the two middle rings to be points between the first and last
rings. See Figure 3.17 for an illustration. By construction, the cylinder will join the
trimmed feature with approximate C1 continuity and the base with approximate
C0 continuity. I can also construct a better blending cylinder by taking the above
points as surface Greville points, and calculating the control points of the blend
cylinder from those using the N−1 matrices for the cylinder.

I can get an approximate C1 paste in a similar manner to projective cylindrical
pasting. But first I need to create an outer curve for the blending cylinder so that
the second layer of control points can be set to achieve approximate C1 continuity.
This is discussed in the next section.

3.3.4 Extending the boundary for an approximate C1 paste

For an approximate C1 continuity paste, I need to project further away from the
trimmed boundary. This way I can get a ring of intersection points with the base
surface such that the projected feature boundary is inside the ring of points. This
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.
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Figure 3.17: C0 trimmed tangent projective paste for patches.

lets me manipulate the inner layer of control points to achieve approximate C1

continuity with the base surface.
There are a few different ways I can project. The user specifies a percentage

p, which determines how much further I project from a central point c. One way
to project is to extend the projection point from the feature, that is, I take c the
centre of the feature domain, s a sample point at the feature trimmed boundary,
and project in the direction of ~t (calculated at s) at s′ = (1 + p)(s− c). However,
s′ may lie close to the line defined by s and ~t, and in this case our ring of points
will not be much bigger than the one we get if we do a C0 paste.

A better way is to project as if we are doing a C0 paste, and then define s′b to
be (1 + p)(sb − cb), where sb is the domain pair for the C0 intersection at sample
s, and cb is the centre of the feature projected onto the base domain. s′ is the
corresponding surface point for s′b, which I use as a point in my ring. The diagram
on the left in Figure 3.18 illustrates how each s′ is calculated.

Another alternative is to calculate the projection in world space. I take s to
be the sample point on the trimmed boundary, c to be the closest point to s that
lies on the line defined by the feature centroid and the paste direction. I calculate
sp to be (1 + p)(s − c) and project in the direction ~t from sp to get s′, as shown
in Figure 3.18 right. I implemented these last two methods for comparison in my
thesis.
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Figure 3.18: Sample points for the approximate C1 boundary curve can be found
by extending points in the domain and calculating the corresponding surface point
(left), or by extending points directly in range space (right).

3.3.5 Parallel projective paste

The paste achieved with tangent projection depends on the curvature at the trimmed
boundary, which may vary a lot if the control points are moved just a little. The
parallel projective method avoids this problem as it does not depend on the curva-
ture. This methods works similarly to tangent projection, with the exception that
instead of projecting lines normal to the feature boundary that lie on the tangent
plane at each sample, I project in the paste direction. Figure 3.19 illustrates how
the points used to construct the blending cylinder are created.

For a C0 paste, the blending cylinder meets with approximate C0 continuity at
both the feature and the base. For an approximate C1 paste, the trimmed boundary
must be extended to be a bit wider, and this is done as discussed in the previous
section. The two middle layers of control points must be set so that the blending
cylinder meets both the feature and the base with approximate C1 continuity.

This is how I determine the location of the middle points. For each sample point
si on the feature boundary, there is a corresponding point bi on the base surface
found by projecting. I find the midpoint mi between these two points, and intersect
the line defined by mi and the paste direction with the tangent planes to si and bi.
The middle control points of they cylinder are placed at the intersection points to
give a smooth blend.



CHAPTER 3. FERRET BUILDING TOOLS 52

frame

paste direction
project in

paste

blending cylinder
middle control points of

on feature boundary
cylinder control pointsfeature

trimmed

base surface
intersections with

Figure 3.19: C0 trimmed parallel projective paste for patches.

3.4 Hierarchical pasting

One of the appeals of surface pasting is that a surface can be augmented repeat-
edly by pasting on features in a hierarchical manner. With patch pasting, feature
domains are transformed onto base domains, so that the respective domains can be
embedded in one domain space, and the relation between features and bases forms
a directed acyclic graph.

When cylinders are added, one domain space is no longer enough. Cylinders are
pasted onto base domains by their ends, which represents one edge in their rectan-
gular domain. Both ends of a cylinder can be pasted as well, so a simple tree or dag
structure is inadequate. In my implementation, I use a tree structure to represent
the drawing order of the surfaces. At the same time, I store the base and feature
relationships. Figure 3.20 shows a set of pasted surfaces, the connection between
the domains of the bases and features, as well as the parent/child relationships.

For a discussion on the issues in allowing for more complicated pasting (such
as multiple bases and two ends of a cylinder sharing the same base), please see
Section 5.5.
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Chapter 4

Making a better ferret

In this chapter, I demonstrate the tools I have created. First, I look at the different
extensions of pasting. Then I show the improvements in approximation made by
using a surface Greville point paste instead of a control point paste. Finally, I
illustrate step by step how I build a ferret. With the ferret building tools, I can
also create toys for my ferret as well as other models, which I show at the end of
this chapter.

4.1 Illustration of pasting techniques

The first extension to surface pasting for better ferret building involves a way to
add limbs. Figure 4.1 shows a generalized cylinder before and after it was pasted.
On the left, lines parallel to the paste direction in the paste frame project from the
surface Greville points. On the right, the resulting approximate C1 surface Greville
paste is shown. The smoothness of the approximate C1 paste is determined in part
by how far apart the user makes the two boundary layers of control points. In the
figure, the control points on the outermost layer are not at equal distance from the
second layer, so that part of the paste is smoothed out more gradually. Figure 4.2
shows the domain of the base surface with the projected boundary of the pasted
feature. With projected cylindrical pasting, the domain curve is not limited to a
circle.

In Figure 4.1, the inside of the base surface where the feature is pasted has been
trimmed away. If we trim away the outside of the base, we can cap our cylinders.
Programs such as Houdini use a simple algorithm for capping surfaces. These
simple algorithms are effective for capping cylinders formed by convex curves, but
do not work well if we want smooth caps for concave curves. Figure 4.3 shows

54
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Figure 4.1: Left: the projected cylinder. Right: the cylinder pasted with approxi-
mate C1 continuity

Figure 4.2: Domain of the base surface. The closed curve shows where the boundary
of the projected cylinder lies and where the base surface is trimmed.

capping in Houdini. A non-convex, ferret shaped cylinder was created and capped
with a faceted flat cap and a smooth tangential cap. The flat cap is represented
by one non-convex polygon. The smooth cap is created by taking the centroid of
the curve and extending it to the boundary, which causes overlaps when the curve
is non-convex. Figure 4.4 shows capping done with my program. The non-convex
cylinder on the left is pasted onto a patch, and the outside of the patch is trimmed
away. A C0 paste gives a similar result as a faceted flat cap, and an approximate
C1 paste gives a cap with a smooth join. The trim curve for the cap is shown in
Figure 4.5. It is possible to create a cap for a non-convex cylinder in Houdini using
other methods. However, more steps are needed than just paste and trim.

As a first step to allow for arbitrary shaped features, I extended patch pasting to
a centroid projective paste. This method calculates a centroid for the feature patch
and projects the feature boundary control points onto the base surface. Figure 4.6
compares the traditional bilinear projective paste with my method. The feature
surface distorts more with a bilinear projective paste, since each interior point has
its own local coordinate frame that follows the curvature of the base surface. In
a bilinear projective paste, only the corners of the patch are projected, so the
domain boundary is always a quadrilateral (Figure 4.7 left). With the centroid
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Figure 4.3: Capping a non-convex cylinder in Houdini. From left to right: the
cylinder; a polygon cap; a tangential cap.

Figure 4.4: Capping a non-convex cylinder by pasting. From left to right: the
cylinder; a C0 cap; an approximate C1 cap.

Figure 4.5: The boundary for the non-convex cylinder feature is shown in the base
cap.
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Figure 4.6: From left to right: unpasted surface; C0 bilinear projective paste; C0

centroid projective paste.

Figure 4.7: Left: the domain boundary of a bilinear projective paste is always a
quadrilateral. Right: the domain boundary of a centroid projective paste is formed
by four B-splines.

projective paste, the boundary control points can be moved, and each boundary
point is projected onto the base. The resulting domain on the right in Figure 4.7
is bounded by four B-splines curves.

Moving boundary control points to create arbitrary shaped features is not an
intuitive method. Hence I introduced the pasting of trimmed features. In trimmed
features, a closed curve in the feature domain (Figure 4.9, left) defines the trimmed
region of the feature patch (Figure 4.8, left). The feature can be pasted via a tangent
projective paste (Figure 4.8, centre) or a parallel projective paste (Figure 4.8, right).
From the domain curves shown in Figure 4.9 (centre and right), we can see that
the curve with a tangent projective paste may resemble a rectilinear shape more
closely than a parallel projective paste. This is partly due to the sensitivity of the
projection to the curvature at the boundary of the trimmed feature.
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Figure 4.8: From left to right: unpasted trimmed surface; approximate C1 tangent
projective paste; approximate C1 parallel projective paste.

Figure 4.9: Domains for trimmed features. From left to right: unpasted feature is
trimmed with circle in the domain; boundary of feature on base domain for a tan-
gent projective paste; boundary of feature on base domain for a parallel projective
paste.
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Figure 4.10: Cylinders used for error comparison. From left to right: a standard
cylinder; a convex cylinder; a non-convex cylinder

Figure 4.11: The bases used for error calculations are a bump and a bump with an
indentation. The spine shows how the test cylinders are pasted.

4.2 Comparison of surface Greville point and con-

trol point paste

In this thesis, I implemented a simple improvement to the boundary approximation
of pasted surfaces. My basic idea is that by ensuring surface Greville points of the
feature lie on the base surface, the feature boundary would be closer than the base.
This section describes a few simple tests used to compare the two methods.

The two types of pasting were implemented for both cylinders and patches,
but we only need to compare the boundaries for cylinders. I used three test cases
for cylinders (Figure 4.10): a standard cylinder; a cylinder with a convex boundary
curve; and a cylinder with a non-convex boundary curve. These cylinders are pasted
on two different bases (Figure 4.11): a bump and a more complex bump with an
indentation. The cylinders are all pasted at the same location and paste direction.
Note that when we paste on a flat plane, the error for both a surface Greville
point paste and a control point paste is 0. Initially, the cylinders have 6, 6, and 9
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Figure 4.12: A non-convex cylinder pasted on a bump with a surface Greville point
paste (left) and a control point paste (right).

control points respectively, not including duplicate control points. At each level of
testing, the number of control points is doubled so we can look at improvement via
knot insertion as well. I took 960, 960, and 1440 samples along both the feature
boundary and the base trimmed boundary to compute the minimum, average and
maximum differences between the two curves. The number of samples taken was
chosen so that there are at least 20 samples for each unique control point on the
feature boundary. Figure 4.12 shows the non-convex cylinder pasted on the more
complex bump. Note the larger gaps in the control point paste.

Tables 4.1 to 4.6 show the comparison results. The minimum is not shown as
the surface Greville point paste always yields a minimum difference of 0, since by
construction the feature’s surface Greville points always touch the base surface.
Our main interest is in the maximum difference between the two boundary curves,
and the ratio of the maximum before knot insertion compared to after knot inser-
tion. From the tables, we can see that surface Greville point paste is always an
order of magnitude better than a control point paste, and is comparable to dou-
bling the number of knots. Further, control point paste appears to have order two
convergence. However, there is no discernible pattern for surface Greville points.

With a surface Greville point paste, we construct the matrix N and its inverse,
and compute the control points from given surface Greville points. For a degree
e boundary with m control points, computing N and N−1 is an O(m3) operation,
and needs to be calculated once per knot sequence. N is a sparse matrix, and the
runtime for calculating its inverse can be improved. Computing the control points
is an O(me) algorithm, as each control point is weighed by e + 1 surface Greville
points with entries from N−1. Surface Greville point paste is a more expensive
method of pasting, but it is simple to implement, and keeps the number of control
points needed small.
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Table 4.1: Cylinder on bump

Surface Greville paste Control point paste
Level Average Max Ratio Average Max Ratio

0 0.010380 0.034020 - 0.143450 0.168916 -
1 0.000829 0.003155 10.782884 0.030356 0.043508 3.882412
2 0.000333 0.001072 2.943097 0.007250 0.010913 3.986805
3 0.000108 0.000407 2.633907 0.001808 0.002704 4.035873

Table 4.2: Cylinder on bump with indentation

Surface Greville paste Control point paste
Level Average Max Ratio Average Max Ratio

0 0.039490 0.134165 - 0.115000 0.215616 -
1 0.005553 0.032865 4.082306 0.028202 0.109243 1.973728
2 0.000176 0.001033 31.815102 0.007297 0.031621 3.454761
3 0.000010 0.000202 5.113861 0.001896 0.009200 3.437065

Table 4.3: Convex cylinder on bump

Surface Greville paste Control point paste
Level Average Max Ratio Average Max Ratio

0 0.013207 0.028753 - 0.170666 0.241144 -
1 0.001092 0.003523 8.161510 0.032933 0.058518 4.120852
2 0.000100 0.000492 7.160569 0.007818 0.015486 3.778768
3 0.000067 0.000567 0.867725 0.001934 0.003780 4.096825
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Table 4.4: Convex cylinder on bump with indentation

Surface Greville paste Control point paste
Level Average Max Ratio Average Max Ratio

0 0.044435 0.182811 - 0.395789 0.970510 -
1 0.009100 0.051241 3.567670 0.034223 0.122227 7.940226
2 0.000432 0.002869 17.860230 0.008242 0.038473 3.176955
3 0.000402 0.002787 1.029422 0.002112 0.009769 3.938274

Table 4.5: Concave cylinder on bump

Surface Greville paste Control point paste
Level Average Max Ratio Average Max Ratio

0 0.012482 0.039657 - 0.106587 0.185383 -
1 0.000750 0.003290 12.053799 0.016614 0.032521 5.700409
2 0.000125 0.000635 5.181102 0.003776 0.007609 4.274018
3 0.000034 0.000196 3.239796 0.000928 0.002461 3.091833

Table 4.6: Concave cylinder on bump with indentation

Surface Greville paste Control point paste
Level Average Max Ratio Average Max Ratio

0 0.037005 0.124538 - 0.142876 0.291727 -
1 0.003162 0.013467 9.247642 0.023322 0.064534 4.520516
2 0.000353 0.001956 6.884969 0.005403 0.015519 4.158386
3 0.000100 0.000717 2.728033 0.001354 0.004043 3.838486
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Figure 4.13: Building a ferret

Figure 4.14: The ferret before pasting.

4.3 Building a ferret

The process of building a ferret is illustrated in Figures 4.13 and 4.14. I start
by shaping a spline that gives the overall body shape of the ferret (Figure 4.13,
left). The cross sections of the generalized cylinder created around this spline
are adjusted to fill out the ferret (Figure 4.13, middle). The limbs and tail are
generalized cylinders that are pasted onto the body.

Figure 4.14 shows the unpasted features of the ferret body. The legs and tail
are generalized cylinders shaped by a central spline. The ends of the cylinders are
capped by pasting them on patches and then trimming away the excess. The end
of the cylinder forming the head is filled in a similar way. The eyes and ears of
the ferret are trimmed patches pasted onto the head. The final ferret is shown in
Figures 4.15 to 4.17. A ferret in a standing pose is shown in Figure 4.18. The eyes,
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Figure 4.15: The ferret after pasting.

Figure 4.16: The ferret model from the side. Note the creases where the limbs
attached to the body. These can be removed by improving the boundary approxi-
mation via knot insertion.

Figure 4.17: View of the ferret model from the bottom.
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Figure 4.18: A standing ferret.

ears, and tail of the standing ferret are reused features from the previous ferret.

4.4 Other models

In this thesis, I focus on improving the tools for modelling ferrets, but the tech-
niques I have developed can be used to model other less interesting shapes as well.
Figure 4.19 shows a bone chew toy for the ferret modelled by capping a cylinder
with non-convex ends. Figure 4.20 shows a tree model, built from twisted cylinders
pasted together. Figure 4.21 shows a slingshot model. The join at the Y cannot
be reduced with knot insertion, because the feature cylinder is so close in radius
to the base, and the tangent planes at the side are almost parallel to the paste
direction. The fish in Figure 4.22 has a cylinder body and a capped head. The
duck in Figure 4.23 is built from several capped cylinders and trimmed patches.



CHAPTER 4. MAKING A BETTER FERRET 66

Figure 4.19: A bone chew toy.

Figure 4.20: A tree.
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Figure 4.21: A slingshot, requested by Sanjeev Bedi.

Figure 4.22: A fish.
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Figure 4.23: A duck, inspired by Steve.



Chapter 5

Ferret on!

The main focus of this thesis was to extend surface pasting to model ferrets more
effectively (Figure 5.1). To achieve this goal, I devised a world space user interface
for pasting cylinders via a centroid. For better control over warping of features, I
extended this method to patches, creating a centroid projective patch paste. I also
implemented pasting of arbitrarily shaped features by joining trimmed patches to
base surfaces with a cylindrical blend. I made minor improvements to boundary
approximations by experimenting with pasting surface Greville points rather than
control points.

In this last chapter, I summarize each technique I have devised, discuss their
uses and limitations, and present my thoughts on modelling with pasting. As well,
I suggest improvements and extensions for future exploration.

5.1 Projective cylindrical pasting

Ferrets have an elongated body, and their arms and legs can be modelled more
closely with cylinders than with patches. I used generalized cylinders built around
a spline curve to allow easy manipulation of the overall shape of the cylinders. Then
I extended domain based cylindrical pasting to world space manipulation to allow
more direct pasting of cylindrical features.

Reference frames positioned along a centroid spline curve are used to align cross
sections of generalized cylinders. I used three different ways of creating reference
frames in this thesis. Frenet frames can be computed independently at arbitrary
points, but they may flip after an inflection point, causing violent twists in the
cylinder. As well, small changes in the curve may cause the frames to rotate,
making it hard to predict how the cross sections will be aligned. With modelling, it
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Figure 5.1: Comparison of old and new ferret model.

is important that the orientation of the cross sections do not change drastically with
small changes in the centroid curve, so Frenet frames are not feasible. Rotational
minimizing frames cannot be computed independently, but eliminate most of the
problems with Frenet frames. In particular, small changes to the middle of the
curve corresponds to small changes in the reference frames. However, rotational
minimizing frames are dependent on an initial frame, which, in my implementation,
is a Frenet frame, so small changes to the start of the curve results in drastic changes
in the orientation of the subsequent reference frames. To allow for more control
of the reference frames, I implemented the double spine, which does not have the
above problems. However, editing two curves at the same time is more complicated
than editing one, so the interface is not as easy to use as I had hoped. A better
scheme for editing the reference frame may be to use rotational minimizing frames
and allow the user to orient the initial frame to correct drastic rotations inherent
in the creation of Frenet frames.

As with existing patch pasting methods, a world space interface means a projec-
tive interface where the feature is projected onto the base and the domain mapping
is built from the projection. With generalized cylinders, the centroid curve pro-
vides a natural direction for projection. Positioning an object (for projection) in
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3D space is a task that requires a lot of manipulation, and I bypass this task by
asking users to select a paste point on the base surface from which a paste frame is
calculated. The paste frame is easily rotated via a virtual trackball, and matching
the feature cylinder to the paste frame allows the user to preview the projection.
In the current implementation, the user cannot correct the projection easily if they
selected the wrong paste point. Allowing the user to translate the location of the
paste point, using techniques described by Chan [8], would make corrections easier.
Fixing the paste direction and allowing the user to rotate the paste frame around
the paste direction may also help with positioning the paste surfaces.

While a world space projective interface is easier from a user point of view, there
are situations where it is not enough. One example is the slingshot model shown in
Figure 4.21. The radius of the base cylinder is only slightly larger than that of the
projected feature cylinder. Some of the lines projected from the feature boundary
intersect at a tangent to the side of the base cylinder, so it is hard to get a smooth
approximate C1 continuity at those locations. In situations such as this, allowing
the user to manipulate the trim curves directly may yield a better paste.

Projective pasting also extends the feature edge mapping from circular domain
curves to arbitrary shaped closed curves. In particular, I can have cylinders with
non-convex cross sections and map them onto non-convex domain curves. Trimming
away the outside of the base surface rather than the inside is an effective way to
create a smooth cap, and works better than traditional methods for capping non-
convex surfaces.

In my implementation, I explored and discarded a method of extending the
boundary layer of control points for the user such that the feature surface was
extended but the original component was not modified. Instead, I chose to let
the user manipulate the boundary manually. I believe that automatic extension
of the boundary is more desirable and can be implemented. However, keeping the
original feature surface unmodified is unnecessary, since the surface boundary will
be changed once the feature is pasted. An implementation where an additional layer
of control points is added, similar to that of extending the boundary of trimmed
surfaces, and the positions of the original control points are unmodified should be
tested. Currently, The user manually makes the boundary curve larger or smaller by
scaling it along the curve’s normals. Concave curves are less likely to self intersect
when scaled in this manner. Extending the boundary of trimmed surfaces along
the normal of the boundary curves in this manner should also be investigated.
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5.2 Centroid projective patch pasting

Projective patch pasting is undoubtedly a more intuitive interface than domain
based patch pasting, for the simple reason that users are manipulating surfaces
directly. In current implementations [8, 30], users translate and rotate the feature
surfaces in world space to a desired position, which is not an easy task. With pasting
cylinders, I implemented an interface where the user has to select and orient a paste
point on the base surface. I believe this task is simpler than manipulating a feature
surface (the surface may not always rotate around its centre, making it harder to
judge how rotation will change its position and orientation) and is equally intuitive.
Therefore, I extended this interface to pasting patches, by adding a centroid to
feature patches.

I also extended patch pasting in two ways. First, the Greville displacement
patches were modified to be centroid displacement patches. When pasting these
patches, the centroid, as opposed to the Greville origins, were pasted onto the
base. The interior points are displaced with respect to the centroid, so that the
feature retains its original shape much better. The disadvantage of this method
is that knot insertion will create a larger transition between the boundary points
and the interior points, since the number of interior control points changes with
each knot inserted but they are always offset from the same location (Figure 5.2).
With Greville displacement patches, the displacement offset origins change with
knot insertion, so there is a smoother transition.

My second extension was to project all boundary points, rather than just the
four corners of the patch. This allows users to create patches with irregular bound-
aries. I find it is unintuitive to create an irregular shape, such as a star, out of a
rectilinear surface. It may be that the editing operations in my program are limited,
but the task is not any simpler in a package such as Houdini. My extension was a
first step towards pasting of irregular shapes, but it was not a practical method.

5.3 Trimmed patch pasting

A more practical method to create irregular shapes is to use trimmed patch pasting.
Commercial packages (such as Houdini) have operations that allow users to extrude
rectilinear patches to create irregular bumps easily (an example is extruding fonts).
We can paste such patches directly, but the rectilinear boundary is usually visible.
By trimming the patch around the feature bump and blending to the base surface
with a cylinder, I can get a paste boundary that is much closer to the shape of the
bump.
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decrease by much
control points do not
interior and boundary
distance between

Figure 5.2: The transition between boundary and interior control points does not
adjust proportionally to the number of knots inserted.

In my current implementation, there are two different ways to create this blend.
With a tangent projective paste, the cylinder is extended along the curvature at the
trimmed boundary and blended onto the base surface. The projected boundary may
not resemble the trimmed boundary because the projected direction is along the
trimmed feature surface, and the feature’s curvature may vary along the boundary.

Because of the boundary sensitivity of the tangent projective paste, I imple-
mented a parallel projective paste, where the blend cylinder is extended along the
paste direction of the feature. This method gives a paste where the projected
boundary is similar to the trimmed boundary. The disadvantage of this method is
that a C0 paste yields two C0 boundaries at each end of the trimmed cylinder. This
is not a concern, since we prefer approximate C1 continuity for modelling. How-
ever, higher levels of continuity should be added for completion. C2 continuity in
a parallel projective paste may give the blend cylinder an overall smoother looking
join, rather than just local smoothness at the boundaries. For now, a smoother
look can be achieved with a larger paste radius.

There are a number of advantages to trimmed patch pasting. First, we can
paste features with irregular boundaries. Second, we do not have to worry about
boundary continuity when creating the features. In standard pasting, we need
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to leave the outer two layers of control points unmodified if we want to achieve
approximate C1 continuity, but with trimmed pasting, continuity is handled by
the blend cylinder after trimming. In surface pasting, we generally want to paste
features of higher complexity onto a simpler base surface, or knot insert in the
feature to improve the paste. This means that features lower in the hierarchy
must necessarily have higher knot counts. With trimmed patch pasting, we do not
need to worry about the complexity of the feature or base, since the paste can be
improved by knot insertion in the blend cylinder only.

One limitation in my implementation is the lack of tools for editing the trim
curve. Ideally, the user should be able to manipulate the trim curve directly on the
feature surface, and perform knot insertion in the curve as well. Direct manipu-
lation of the trimmed boundary will also make the tangent projective paste more
appealing, as users can adjust the boundary to change the projected direction.

5.4 Approximation improvements

Surface pasting is an approximation technique, so reducing the boundary gap be-
tween feature and base is useful. I investigated an improvement made by pasting
the feature boundary surface Greville points, rather than control points, onto the
base surface. Intuitively, the improvement makes sense. The boundary surface
Greville points are points on the feature boundary, so by making sure they lie on
the base surface the boundary approximation should be better than pasting control
points. In practice, this is also the case.

In addition to a better boundary approximation, this method also allows us to
paste larger features on the base. Surface Greville points always lie on the surface,
whereas the control points may lie quite far from the surface boundary. Therefore,
lines projected from the control points will need a larger area in the base to project
onto.

However, there are a few concerns with this method. While there is a unique
mapping for each set of control points to its corresponding surface Greville points,
there is no guarantee on how the control points will change if we change the surface
Greville points. Specifically there is no guarantee that the new projected curve will
resemble the original curve. This method is also not efficient. For a cylinder with n
control points in its cross sections, I have to create an n×n matrix and calculate its
inverse. Calculating the control points after retrieving the positions of the surface
Greville point is also an O(n2) operation. It may be more worthwhile to implement
existing approximation techniques [9, 10] into cylindrical pasting.

Because surface pasting is an approximation technique, and rendering spline
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surfaces is expensive, I feel that improving the boundary approximation serves
limited purposes. Current approximation techniques may reduce the gaps between
the feature boundary and the base, but do not necessarily remove them. I believe
that we should convert pasted surfaces into gapless meshes for rendering, and use
surfaces at lower resolution, with fewer knots for interactive pasting.

5.5 Hierarchical pasting

For simplicity’s sake, my implementation of the hierarchical pasting structure is
a tree, which limits the objects I can model. One particular limitation is that I
cannot paste on the blend cylinders of trimmed features.

A more general hierarchical structure should be implemented. With patch past-
ing, the pasting hierarchy can form a directed acyclic graph, where a feature can be
pasted on overlaps in a composite base. With cylinders, a general graph hierarchy
should be possible. Both ends of a cylinder can be pasted, and there is no reason
why one end of a cylinder cannot be pasted onto itself, forming a loop. This allows
modelling of objects with higher topology.

A first step towards a general graph hierarchy that allows self looping would be
to investigate data structures for storing graphs efficiently. We also have to consider
how to modify cylinders so they can paste onto themselves; a technique presented
by Bartels and Beatty [4] may be a good place to start for extending generalized
cylinders for pasting loops. There will also be areas on the cylinder where you
cannot paste a particular end because it will result in recursive updates. Methods
for direct manipulation where a general graph hierarchy is used can be extended
based on what is presented by Ma [20, 21].

5.6 Modelling and editing

I implemented limited editing capabilities in my surface paster to allow creation
of different features. Translation of selected points is allowed in directions parallel
to the view plane. I also allowed translation of control points in the direction of
their normals at their surface Greville points so bumps can be created quickly and
concave curves can be scaled along their normals for approximate C1 pasting.

The limited range of editing tools makes me appreciate the complete interface
offered by commercial packages such as Houdini, which allows complex manipu-
lation of points. Generalized cylinders make it easier to model and manipulate
elongated forms, and it maybe useful to investigate pasting of surfaces with more
complex spines similar to skeletal elements used in implicit surfaces [7].
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Figure 5.3: The model I created is still far from being similar to an albino ferret
like Sprite.

We should also extend pasting to allow features to be pasted on a larger variety
of bases. We can approximate any curve on a smooth surface with a B-spline
curve, with a better approximation achieved by a larger number of control points.
A feature can be pasted on any smooth surface, allowing us to add features to
surfaces created by deformation and other methods.

5.7 Ferret on!

This thesis is a first step in creating the digital ferret. I have shown that surface
pasting can be an effective method to model the shape of a ferret. We need to
investigate the use of textures and fur in surface pasting to properly model sables,
cinnamons, silvers and albinos (Figure 5.3). Animating our pasted ferrets to per-
form the ferret war dance would be the last step needed to bring the digital ferret
to life.

Ferrets rule!



Appendix A

Ferret Paster

In this appendix, I describe the basic operations provided by my implementation,
Ferret Paster. Ferret Paster runs on both SGI IRIX and Linux machines.

A.1 Modes and menus

Figure A.1 shows the layout and menu structure of Ferret Paster. I assume the use
of a three button mouse in my program.

The File menu consist of the following commands:

Load Model allows the user to load in an existing file via a dialog. Files used in
this program have the extension .dook.

Save Model allows the user to save the current model to a file via a dialog.

Save Image saves the contents of the current viewport to a .png file via a dialog.

Quit exits the program.

The View menu allows the user to manipulate their viewing position.

Reset View Position switches to the default viewing position.

Reset View Orientation switches to the default orientation of the world origin,
which looks down the negative z axis.

- X Y plane switches to the default orientation of the world origin to looking
down the positive z axis. This and subsequent menu items for the View
menu are useful for setting the viewport to axis aligned orientations so control
points can be manipulated parallel to the axes.
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Figure A.1: Menu structure and layout of Ferret Paster
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The Model menu allows the user to create and manipulate models.

Create brings up a dialog for creating patches and cylinders. See Section A.2 for
details.

Domains brings up a dialog for domain manipulation of the currently selected
surface. See Section A.3 for details.

Colour brings up a dialog for changing the colour of the currently selected surface.

Reset Model Position will move all selected surfaces back to their default posi-
tions.

Reset Model Orientation will set all selected surfaces back to their default ori-
entations.

Delete will delete all unpasted selected surfaces that do not have features pasted
on them.

There are four different modes for manipulating the different aspects in the
program under the Mode menu. The user can also switch modes via a button
at the bottom left of the screen, which displays the current mode and a short
description of the functionality mapped to each mouse button.

View mode allows manipulation of the viewport. Users can translate their eye
point in x and y with the left mouse button, and zoom in and out in z with
the middle button. The right button allows rotation of the world origin via a
trackball.

Surface mode allows manipulation of selected surfaces. Selected surfaces can be
translated in x and y with the left mouse button, and moved forward or
backward in z with the middle button. Translation is done with respect to
viewing coordinates (i.e., y is always up). The right button rotates each
surface around its origin via a trackball.

Edit mode allows manipulation of selected control points. The left mouse button
will translate each selected point in x and y with respect to viewing coor-
dinates. The middle mouse button will translate each selected control point
for a surface in the direction of its current surface normal. This operation
is particularly useful for shrinking and expanding cross sections of cylinders.
Editing is described in more detail in Section A.2.
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Paste mode allows the user to paste surfaces. The left mouse button is used to
select a paste point on a surface. The middle button selects a patch or an
end of a cylinder to attach to a paste point, and the right button allows the
user to change the orientation of the paste point via a trackball. Pasting is
described in more detail in Section A.4.

The Options menu consists of miscellaneous useful settings.

Lighting turns the lighting on or off. This allows the user to see the undithered
surface colouring shown in Figure 2.20 for any selected surface.

Trackball Circle displays a circle in the screen to aid in rotation via the trackball
interface.

Gnomon draws a set of gnomon indicating the world origin, and a set of gnomon
in the corner of the viewport.

White Background changes the background colour to white.

The Movement slider in the bottom right corner adjusts the amount of trans-
lation per pixel of mouse movement.

A.2 Modelling

Figure A.2 shows the Model Create dialog, with various options set on the surfaces
that make up the ferret in the viewport. The top two rectangles consist of options
for creating patches and cylinders. The bottom rectangle consists of display and
editing options.

The top rectangle allows the user to specify parameters for creating a tensor
product B-spline cylinder. U (spine) specifies the number of control points for the
spine of the cylinder, and V specifies the number of visible control points for the
cross sections of the cylinder. The number of duplicate control points needed for
the cross sections is calculated and maintained by the program internally, and is
dependent on the Degree of the surface. The user can also specified the Length
of the cylinder, and the distance of the control points from the spine (the Radius).
The user creates the cylinder by clicking on the Create Cylinder button.

The middle rectangle contains the parameters for creating a patch. These are
similar to the parameters for a creating a cylinder, except that there are no hidden
control points for a patch.
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Figure A.2: The Model Create dialog.
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The bottom rectangle contains mostly display and editing options. The rectan-
gle is changed from a relief to a groove when exactly one surface is selected, and
the value for each option reflects the value for the selected surface. A surface can
be selected by clicking on it with the left mouse button in View, Surface, or Edit
modes.

U/V Resolution controls how fine the OpenGL spline surface is drawn. The
larger the number, the smoother the surface.

Frame specifies what type of frame is used in a cylinder. The default frame is
Editable, which displays an addition spline (Figure A.3) next to the spine.
This option is discussed in Section 3.1.1. Options for Frenet frames and
Rotational Minimizing frames are discussed in Section 2.4.

Surface specifies how the surface is drawn. Fill draws it as a solid surface, Wire
displays it in wireframe, and Fill hides the surface. The last option is useful
for editing the spine of a cylinder and accessing otherwise hidden parts..

Back Wire displays the back of the spline surface in wire frame rather than solid.

Display Spine shows the spine.

Display Control Points shows the control points.

Display Surface Greville Points shows the surface Greville points.

Hitting the Apply button updates the selected surfaces with the given options.
If no surfaces are selected, all surfaces are updated to the new options.

Users can clicked on the surface Greville points and control points to select them.
Clicking on a control point with the middle button will select all control points on
the same surface that have the same parametric u value. Clicking on a control
point with the right button will select all control points on the same surface that
have the same parametric v value. Selecting a surface Greville point also selects its
corresponding control point, and vice versa. Surface points are shown in blue, spine
points in yellow, and selected points in red. Selected points can be translated in the
view plane with the left mouse button in Edit mode. The middle mouse button
will translate each selected control point in the direction of the surface normal of
its surface Greville point. The normals are shown in Figure A.3 on the selected
boundary points.
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Figure A.3: A Cylinder with a double spine. The selected boundary points show
the surface normal for each surface Greville point.

A.3 Domains

Figure A.4 shows the Model Domain dialog and menu layout. When a single
surface is selected, its domain, along with any trim curves for its features, are
displayed in the domain window. Users can translate in x and y using the left
mouse button and zoom in and out with the middle mouse button. The lines
overlaying the domain show the position of the knot values with respect to the
valid range. Knot insertion in u is done by clicking in a valid region with the
middle mouse button. Knot insertion in v is similar except with the right mouse
button.

In the menu, Reset will revert to the original domain position and zoom level.
Double U knots will insert a knot halfway between every knot in the valid u
region. Double V knots will do it in v.

A.4 Pasting

When pasting, the user first selects a paste point on the base surface by clicking
with the left mouse button. The feature is selected by clicking with the middle
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Figure A.4: The Model Domain dialog.
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button any where on the surface if the feature is a patch, or by clicking close to one
of the ends if the feature is a cylinder. The default paste frame is constructed with
the paste direction normal to the surface, and this can be modified by rotating the
paste frame via a trackball with the right mouse button.

Once a feature is selected, the Paste Options dialog becomes visible. Fig-
ure A.5 shows the layout of the Paste Options dialog. Behind the dialog, you can
see the paste point, displayed in green, on the body of the ferret. The lines extrud-
ing from the boundary surface Greville points indicate the direction the feature is
projected from. The user can bring up the dialog anytime by middle clicking on a
pasted feature. The paste point is only displayed for the current paste feature.

The top rectangle shows the options for pasting cylinders and patches.

Translate sets the distance the end of a cylinder’s spine or the patch’s centroid is
placed from the paste point.

Continuity determines whether it is a C0 or C1 paste.

Paste surface Greville point is checked if the user wants to paste the surface
Greville points rather than the control points.

Keep initial paste UV is checked if the user wants to be able to reorient the
paste frame without repasting the boundary of the pasted feature.

Trim allows the user to specify if there is trimming, and if the inside or the outside
of the base surface is trimmed.

The following options only apply to patch pasting.

Standard projective specifies a bilinear projective paste.

Centroid projective specifies a centroid projective paste.

Standard with cylindrical blend specifies a bilinear projective trimmed paste
with a tangential cylindrical blend.

Centroid tangential cylindrical blend specifies a centroid projective trimmed
paste with a tangential cylindrical blend.

Centroid parallel cylindrical blend specifies a centroid projective trimmed paste
with a parallel cylindrical blend.



APPENDIX A. FERRET PASTER 86

Figure A.5: The Paste Options dialog. The settings are shown for the right foreleg
of the ferret.
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Yet another damn option for patches determines how the boundary is extended
for a trimmed patch paste. If this option is checked, the boundary is extended
via the range space (Figure 3.18, right), otherwise it is extended in the do-
main (Figure 3.18, left). This option is only used for trimmed features pasted
with C1 continuity.

Base Radius sets the how far the boundary curve is extended for the above option.

The Update button allows the user to preview the paste via projected lines.
The Paste button pastes the actual feature. Unpaste removes the feature from
the base surface and deletes the paste point.

The bottom rectangle allows the user for specifying the number of samples taken
when creating an error report for the boundaries.
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