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Longitudinal Vehicle State Estimation Using
Nonlinear and Parameter-Varying Observers

E. Hashemi, S. Khosravani, A. Khajepour, A. Kasaiezadeh, S. K. Chen, and B. Litkouhi

Abstract—A corner-based velocity estimation approach is pro-
posed which is used for vehicle’s traction and stability control
systems. This approach incorporates internal tire states within
the vehicle kinematics and enables the velocity estimator to
work for a wide range of maneuvers without road friction
information. Tire models have not been widely implemented
in velocity estimators because of uncertain road friction and
varying tire parameters, but the current study utilizes a simplified
LuGre model with the minimum number of tire parameters
and estimates velocity robust to model uncertainties. The pro-
posed observer uses longitudinal forces, updates the states by
minimizing the longitudinal force estimation error, and provides
accurate outcomes at each tire. The estimator structure is shown
to be robust to road conditions and rejects disturbances and
model uncertainties effectively. Taking into account the vehicle
dynamics is time-varying, the stability of the observer for the
linear parameter varying model is proved, time-varying observer
gains are designed, and the performance is studied. Road test
experiments have been conducted and the results are used to
validate the proposed approach.

I. INTRODUCTION

VEHICLE control systems require lateral and longitudinal
states (velocities and forces) to control wheel slip, vehicle

yaw rates, and side slip angles. Among these states, longitu-
dinal state estimation makes major contributions into vehicle
stability and traction control. Recent literature has adopted
two fundamental approaches regarding longitudinal velocity
estimation. One is the modified kinematic-based approach [1],
which uses acceleration and the yaw rate measurements from
an inertial measurement unit (IMU) and estimates the vehicle
states employing stochastic estimators such as Kalman. This
method does not employ a tire model, but instead usually
utilizes GPS receiver to remove estimation bias. Bevly et al.
proposed an estimation method in [2], [3] using a single-
antenna GPS and measurements from IMU. Integrating the
yaw rate during turning, their method obtains the vehicle
heading. The state estimation structure provided by Ryu and
Gerdes in [4] is a practical approach for determining vehicle
states in which integration of the inertial sensors is performed
when GPS data is unavailable. A full description of the planar
vehicle dynamics is also implemented in their work to estimate
lateral states using the yaw angle obtained by a GPS. However,
these tire-free approaches rely on accurate GPS data which
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may be lost. It also imposes additional high costs on production
vehicles.

The other longitudinal velocity estimation method exploits
an observer on vehicle’s longitudinal dynamics with the tire
model. The advantage of this method is that it considers
the tire capacities, although it still needs road conditions
and tire parameters, which may vary significantly in different
driving conditions. Using a linear Kalman filter, together
with the fuzzy logic approach, Kobayashi et al. proposed a
state estimator in [5], which exhibits acceptable performance
and low computational loads. To deal with the varying tire
parameters and model uncertainties, tire slips are used to define
a model scheduling in [6], [7]. Nonlinear observers are studied
on bicycle model in [8], [9] for vehicle state estimation. An
Extended Kalman filter (EKF) is employed for both longitu-
dinal and lateral vehicle state estimation in [10], [11]. EKF
has also been used in [12], [13] along with the Burckhardt
model [14] to estimate the vehicle states and parameters of
the tire model; an EKF with smooth variable structure is
also utilized in [15]. Computational complexities of the EKF
justify using a reliable approach such as the unscented Kalman
filter (UKF) [16], [17] without any need for linearization in
system dynamics. Nonlinear stochastic estimation capability of
the UKF provides acceptable numerical efficiency compared
with the EKF. Antonov et al. [18] employed an UKF for
vehicle state estimation and provided a longitudinal/lateral
velocity estimator at each corner. They utilized wheel torques,
wheel speeds at each corner, and a simplified empirical Magic
formula [19] as the tire model. However, this method needs
the road condition and is sensitive to the effective tire rolling
radius because it uses the slip ratio. Wielitzka et al. presented
a method in [20] for the vehicle state estimation using UKF,
but their approach employs tire model that needs road friction.

On the other hand, to tackle the unknown road condition
issue, other approaches estimate vehicle states as well as the
road friction [21]. A sliding-mode observer is proposed in
[22] based on the LuGre dynamic friction model to estimate
longitudinal velocity as well as the friction limit. However,
concurrent estimation of the road friction for low excitation
and low-slip regions is challenging. Li et al. used nonlinear
observer and the Dugoff tire model in [23] for the vehicle
state estimation, but their method necessitates steering torque
measurement for identification of the tire model’s friction
parameter. A nonlinear model and a gain scheduling scheme is
considered in [24] on the linear parameter-varying observer to
cope with the road friction changes. Zhang et al. presented
a different version of the sliding-mode observer in [25] to
estimate velocities using wheel speed sensors, braking torques
and longitudinal/lateral accelerometer measurements. Their
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approach utilizes a sliding-mode observer for the velocity
estimation and an EKF for estimation of the Burckhardt tire
model’s friction parameter.

In real situations, a tire model is highly dependent on
the presence of tire wear, variable tire parameters, inflation
pressure, and uncertainties in road conditions. Therefore, de-
veloping an observer for the velocity estimation robust to
road conditions and fairly insensitive to tire parameters is
desirable. A time-varying Kalman observer is proposed in [26]
for longitudinal force estimation using wheel dynamics as well
as longitudinal speed estimation at each corner with known
and stochastic initial conditions and without road friction
information, but utilizes derivatives of the LuGre model’s
internal states.

This study thus focuses on a method that treats the road con-
dition and acceleration measurement noises as uncertainties. Its
observations are also based on tire forces, which are accessible
based on wheel dynamics using an unknown input observer
[27] or a Kalman-based estimation [28] whenever measured (or
estimated) effective torque is available. The proposed velocity
estimator in this article uses a parameter-varying observer
which can address high-slip conditions in different speed.

This article has been divided into five sections. A longitu-
dinal force estimator is proposed in section II, which includes
corner-based force estimation methodology using UKF. Sug-
gested observer and stability analysis of the linear parameter-
varying (LPV) error dynamics is provided in section III. Sec-
tion IV contains simulation and experimental results used to
verify the approach in various maneuvers and road conditions
with high and low longitudinal excitations. Finally, conclusions
are provided in section V.

II. LONGITUDINAL FORCE ESTIMATION

Longitudinal force estimation significantly contributes to
vehicle stability control in the model-based velocity estimator
and tire capacity identifier. Estimation of longitudinal forces
independent from the road condition may be classified on the
basis of wheel dynamics into the Kalman-based estimation
[26], [28], [29] and the nonlinear observers [27], [30], [31].

A. Force estimation with the unscented Kalman filter
The following describes the proposed UKF implementation

for longitudinal tire force estimation. Julier et al. [16] proposed
a deterministic sampling approach, namely UKF, for state
and parameter estimation in discrete-time nonlinear systems
and to overcome the linearization problem of the extended
Kalman filter. Their method was modified later with augmented
states in [32]. Proper capturing of nonlinearities contributed to
the unscented transformation that defines the sample vectors
P̄ ∈ RN×2N+1 around states where N is the length of the state
vector. With some minor changes, UKF can also be employed
for the parameter estimation instead of state estimation as
provided in [33], [34] for the vehicle parameter identification
and in [28] for the longitudinal force estimation. The wheel
dynamics at each corner yields:

T̄ −ReFx − Cbω + ΩF = Iwω̇, (1)

where Re is the wheel effective radius, Fx is the longitudinal
tire force, ω is the wheel rotational velocity, Iw is the wheel’s
moment of inertia, Cb shows the wheel bearing’s linear vis-
cous damping, and ΩF represents uncertainties in the system
including wheel torques, effective radius, and forces. The total
effective torque on the wheels is shown by T̄ = Ttr − Tbr,
whereas traction and braking torques are denoted by Ttr
and Tbr correspondingly. For the proposed UKF-based force
estimation, the effective torque Tt provides input; the wheel
speed ω is available and assumed to be the measurement yk,
and the longitudinal force F̂x is treated as the parameter p̂.
The discrete-time parameter estimation problem then can be
expressed as:

pk+1 = pk + %pk
yk = G(xk, pk) + %mk , (2)

where yk corresponds to nonlinear observation on pk and
%pk, %

m
k represent process and measurement noises respec-

tively. The estimated mean is updated as p̂mk = p̂k−1 and
initialized by p̂0 = E[p]. The sample points P̄k|k−1 =[
p̂mk p̂mk + ς

√
Γ̄pk p̂mk − ς

√
Γ̄pk

]
are generated around

the estimated mean p̂mk of the parameters as in [32]. The
square root factorization of the covariance matrix Γ̄pk can
be obtained by Cholesky decomposition at each time step
k. The error covariance matrix of the estimated parameter is
initialized with Γp0 and updated by Γ̄pk = Γpk−1

+ ρpk−1
with incorporation of the process noise covariance ρpk−1.
Furthermore, ς =

√
N + η1 is a scalar and represents the

spread of sample points far from the mean values of random
variables, where η1 is the compound scaling parameter as
η1 = ε2N − N and ε =

√
3/N . Afterward, η2 = 2 is

introduced to employ the prior information on the Gaussian
distribution of the state/parameter. Generated sample points are
supposed to be propagated within the system (wheel dynamics)
as the function output Yk|k−1 = G(xk, P̄k|k−1) with the
conventional unscented transformation pattern. The output ŷk
is achievable from the expected value [35]:

ŷk =

2N∑
i=0

Wm
i Yi,k|k−1. (3)

The weighting coefficients are also defined by W c
i = Wm

i =
1
2 (N + η1) for all sets i ∈ {1, 2, . . . , 2N}. These coefficients
are W c

0 = η1
N+η1

+ 1 − ε2 + η2 and Wm
0 = η1

N+η1
for i = 0.

The estimated function output ŷk from (3) is then employed in
the updated covariance matrices Γykyk ,Γpkyk as follows using
the measurement noise covariance ρmk :

Γykyk =

2N∑
i=0

W c
i (Yi,k|k−1 − ŷk)(Yi,k|k−1 − ŷk)T + ρmk

Γpkyk =

2N∑
i=0

W c
i (Pi,k|k−1 − p̂mk)(Yi,k|k−1 − ŷk)T . (4)

Implementing covariance matrices (4), the Kalman gain is
defined by Kk = ΓpkykΓ−1

ykyk
. Finally, the updated parameter

and error covariance are expressed as follows where p̂k is the
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updated parameter estimate and the estimated output is denoted
by ŷk [35]:

Γpk = Γ̄pk −KkΓzkzkKTk
p̂k = p̂mk +Kk(yk − ŷk). (5)

The estimated longitudinal force at each corner (tire) is F̂xk :=
p̂k. The developed method in this article uses different process
and measurement error covariance matrices for high wheel
acceleration cases to address high-slip conditions at which the
level of reliance on process and measurement should change,
but the proposed approach in [28] does not consider this
change.

The moving sample points through the wheel dynamics
(1) reduce the estimation fluctuations as discussed in [28],
especially during transient regions, even with the presence of
major uncertainties such as the road condition and changes in
the effective rolling radius during different maneuvers. A small
variation of Re may lead to high fluctuations of estimated
forces and consequently velocity estimates in conventional
model-based estimation methods. This type of sensitivity does
not exist in the proposed force estimation method because of
model uncertainties defined in UKF. Highly slippery cases on
ice has been a challenge for both nonlinear [27], [31] and
Kalman-based [28], [29] longitudinal force estimators; it is
addressed in this study by covariance matrices changes in case
of high wheel acceleration ω̇.

To evaluate the force estimation method, simulations and
road experiments are performed. Simulations using an elec-
trified four independent wheel drive SUV are provided in
this section. Results of road experiments are also presented
in Section IV. Measured vehicle specifications and related
parameters for the simulation and experimental validation are
listed in Table I:

TABLE I: Vehicle Spec. for Road Experiments & Simulation

Parameter Unit Value Description
m [kg] 2275 Vehicle mass
Iz [kg.m2] 4610 Moment of inertia
Iw [kg.m2] 1.7 Wheel moment of inertia
Lwb [m] 2.85 Vehicle wheel base
bf (br) [m] 1.42(1.43) Front (Rear) axle to CG
Re [m] 0.34 Effective radius
h [m] 0.54 Roll axis height

Trf (Trr) [m] 1.6(1.57) Front (Rear) track width

The first set of analysis examines the estimated longitudinal
forces by UKF with CarSim for some standard maneuvers.
Fig. 1 presents estimated forces compared with longitudinal
forces measured at a corner (rear-left wheel) in CarSim. The
maneuver is a successive accelerations/brakes on a slippery
road with the friction coefficient µ = 0.3.

Fig. 1 demonstrates good performance of the suggested
method even on such slippery road conditions. The observed
fluctuations in the force profile curves exist in the CarSim
measured forces and are attributed to the requested acceleration
with high magnitude without tire capacity, but the suggested
longitudinal force estimator provides smooth results.
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Fig. 1: Estimated Fx with UKF on a slippery roads

A standard acceleration-in-turn (AiT) maneuver on dry road
is simulated as well, and estimated force results are presented
in Fig. 2. Accelerator is applied to 100% at t = 0.5[s] and
a δ = 0.06[rad] steering angle (at tires) is imposed at t =
2[s]. This maneuver is repeated on a slippery road with µ =
0.4. Oscillations in the transient regions of this type of harsh
maneuver are captured well by the UKF approach.
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Fig. 2: Long. force Est. for AiT on dry and snowy road

Estimated longitudinal forces are normalized to be utilized
in the velocity estimator, which will be explored in the next
section. In order to normalize the longitudinal forces, the
corner-based normal force estimation approach developed in
[26] is employed here in this article. The normalized lon-
gitudinal forces are defined as µxq = F̂xq/Fzq for q ∈
{fL, fR, rL, rR} where F̂xq is the estimated force from (5)
and Fzq is the normal force from [36] at each tire.

III. LONGITUDINAL VELOCITY ESTIMATION

Relying only on the measured acceleration from the stock
IMU and using a slip detection algorithm along with a proper
stochastic estimator is not sufficient to guarantee the effec-
tiveness of the kinematic-based velocity estimation approaches
due to sensor noise (or bias) and uncertainties in the model.
Therefore, using vehicle kinematics and accelerations with
implementation of an observer on tire forces µxq is a reliable
approach to estimate a vehicle speed. Although this method
seems promising because of the bounded nature of the tire
forces, which prohibits accumulated errors, it requires a precise
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tire model, as well as a good perception of the road condition,
which does not seem practical.

The key problems of using the tire forces for velocity
estimation are in dealing with the road friction and several
tire parameters that are time varying. There are at least two
approaches to tackle this problem: a) jointly estimating the
road condition and slip ratio; b) utilizing an observer-based
approach which considers the unknown road condition as a
bounded uncertainty, then employing the estimated friction-
independent tire forces for correcting the estimates. In this
manuscript, the second method is developed to design an
observer at each corner and estimate the longitudinal velocity
robust to road conditions. The performance of the proposed
method is tested for both dry and slippery roads. The proposed
method in this paper has time-varying observer gains with
acceptable disturbance attenuation level to tackle very high-
slip conditions in different speed which is a challenge in
[26]. Moreover, the proposed estimator dynamics in [26]
uses Gaussian noise assumption and derivatives of the LuGre
internal state which should be handled meticulously, but the
approach in this article has different estimator dynamics.

The lumped LuGre tire model and its significance on the
estimation method are first provided in this section. Then,
designing the parameter-varying observer is discussed and its
stability and robustness are investigated.

A. The tire model
The longitudinal/lateral forces generated at each tire’s patch

during traction, braking, and cornering maneuvers are realized
to be dependent on the road condition, slip ratio, slip angle, and
normal forces. The steady-state assumption in semi-empirical
tire models such as Pacejka, known as “Magic Formula” [37]
will not precisely exhibit tire forces during transient acceler-
ation/braking maneuvers. Therefore, dynamic tire models are
introduced for considering transient phases, as examined in
[19], [38], [39]. Canudas-de-Wit et al. proposed the dynamic
LuGre tire-road friction model in [40]–[42] and introduced tire
deflection as a state with some simplifications on the normal
force distribution by the averaged representation. Velenis et
al. provided combined friction characteristics of the average
lumped LuGre model in [43]. As a result, longitudinal and
lateral tire parameters together with corresponding relative
velocities vri serve as input to the combined slip model:

˙̄zi = vri − C0iz̄i − κRe|ω|z̄i, (6)

in which C0i =
||M2

cvr||σ0i

g(vr)µ2
ci

for both longitudinal and lat-
eral directions (i.e., i ∈ {x, y}), vr = [vrx vry]T , and
Mc = [µcx 0; 0 µcy]. The internal state z̄ = [z̄x z̄y]T

is defined for the patch element at the point ζ at a time t and
the rubber stiffness is denoted by σ0 = [σ0x 0; 0 σ0y]. The
longitudinal relative velocity is related to the slip ratio λ by
vrx = λReω and vrx = λVxt for the traction and brake cases,
respectively. Vxt shows the longitudinal velocity component
in the tire coordinates at each corner. Force distribution is
represented by parameter κ = [κx 0; 0 κy] in the average
lumped model and could be a constant, or a function of time,
or may be approximated by an asymmetric trapezoidal scheme.

The suggested value for κ in [42] is κi = 7
6Li

, where
L is the tire patch length. The level of the tire and road
adhesion is represented by introducing a so-called ”Road
Classification Factor”, which may vary between 0.1 <
θ < 0.98 according to icy, wet, and dry conditions. The
transient region between the Columb and static friction
in the combined slip tire model is introduced in [44] as
g(vr) =

||M2
cvr||

||Mcvr|| +
(
||M2

svr||
||Msvr|| −

||M2
cvr||

||Mcvr||

)
e−|

||vr||
Vs
|α where

Ms = [µsx 0; 0 µsy] and Vs represents the transition be-
tween the Columb and static friction state. The tire parameter
α is introduced to shows the steady-state friction and slip
interaction.

The final form of the normalized friction force µ of the
average lumped [44] LuGre model yields:

µ = σ0z̄ + σ1 ˙̄z + σ2vr, (7)

where µ = [µx µy]T , the rubber damping is σ1 =
[σ1x 0; 0 σ1y], and the relative viscous damping is defined
by σ2 = [σ2x 0; 0 σ2y]. The vehicle stability is analysed
with the pure and combined-slip LuGre tire models in [45].
The steady-state normalized longitudinal LuGre tire forces
are shown in Fig. 3 for an acceleration maneuver on roads
with different classification numbers 0.3 < θ < 0.98 and
longitudinal tire parameters σ0x = 610, σ2x = 0.002, µs =
1.5, µc = 0.9, Vs = 6.4, κ = 8, Re = 0.35, and α = 0.5.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

Norm. Long. Forces, Traction
N

or
m

al
iz

ed
 L

on
g.

 F
or

ce
 [−

]

Slip Ratio [%]

θ=0.3

θ=0.4

θ=0.5

θ=0.6

θ=0.7

θ=0.8

θ=0.9
θ=0.98

Fig. 3: LuGre tire forces under various road conditions

As can be seen from Fig. 3, the normalized longitudinal
tire forces are highly influenced by the road friction even in
the linear region. The proposed approach in the following
assumes the longitudinal friction term σ0x|vrx|

θg(vrx) z̄x in (6) as
uncertainty and utilizes a linear parameter-varying observer
without information on the road friction to estimate the vehicle
speed at each tire.

B. State estimation robust to the road condition
The issues of sensor bias/noise removal in the kinematic-

based velocity estimators and unknown model parameters
(road friction and tire parameters) in the model-based velocity



5

estimators are addressed in the current study using self-
bounded tire states. The tire internal deflection state z̄x(ζ, t))
of the average lumped LuGre model has known dynamics and
can be used in the velocity estimation as a state. The LuGre
internal longitudinal non-measurable deflection states can be
written in the presence of uncertainty Ω1 as [46]:

˙̄zx(ζ, t) = vrx − κxRe|ω|z̄x(ζ, t) + Ω1(t). (8)

where the longitudinal road friction term σ0x|vrx|
θg(vrx) z̄x of the

LuGre model presented in (6) is replaced with the uncertainty
Ω1(t). This uncertain friction term is amplitude bounded be-
cause of the road condition range and physical characteristics
of the g(vrx) function that is defined by g(vrx) = µcx +
(µsx − µcx) e−|

vrx
Vs
|α . Boundedness of the LuGre model de-

scribes that the set ∆ = {z̄x : |z̄x| ≤ µs/σ0} is an invariant set.
Internal state dissipativity (energy-dissipation) shows that the
map vr to z̄x is dissipative with respect to the storage function
h(z̄x) = z̄2

x/2. Thus,
∫ t

0
vr(τ)z̄x(τ)dτ ≥ h(z̄x)−h(z̄x(0)) for

all t ≥ 0. This characteristic confirms that if all parameters of
the model are positive, the model is input to state passive [47]
and produce bounded outputs for bounded inputs.

In order to construct a state representation, the derivative
of the relative velocity is required. This derivative is also
corrupted due to the sensor noise [26]:

v̇rx = Reω̇ − V̇xt + Ω2(t), (9)

where the rotational acceleration is ω̇ and Ω2(t) shows the
deviation of the measured relative acceleration Reω̇−V̇xt from
the system state of v̇rx. The mapped longitudinal acceleration
of the wheel’s center in the tire coordinate system is denoted by
V̇xt. This mapping is achievable using conventional kinematic
equations, vehicle geometry, the yaw rate rCG, and both lateral
and longitudinal measured acceleration axCG , ayCG , which are
corrected by the estimated road angles from an unknown
input observer in [48]. The aim is to develop an observer
to estimate both the tire deflections z̄x and relative velocities
vrx concurrently. The observer output (longitudinal force)
is then compared with the one estimated by the UKF (see
previous subsection). Consequently, the following observer for
the longitudinal velocity estimation is proposed for each corner
in which µx is the normalized longitudinal force at that corner:

˙̄̂zx(ζ, t) = vrx − κxRe|ω|ˆ̄zx(ζ, t) + L1(µx − µ̂x)

˙̂vrx = Reω̇ − V̇xt + L2(µx − µ̂x). (10)

The output is also the normalized force as:

µ̂x = σ0x ˆ̄zx + σ1x
˙̄̂zx + σ2xv̂rx. (11)

Therefore, the observer can be written as:[
˙̄̂zx
˙̂vrx

]
=

[−κxRe|ω| 1

0 0

] [
ˆ̄zx

v̂rx

]
+

[
0

Reω̇ − V̇xt

]
+

[
L1

L2

]
(µx − µ̂x)

= A(ω)x̂+Bu+ L(y − ŷ). (12)

Taking into account that the systems dynamic is time-varying
with respect to the wheel speed, the suggested estimation
method must be designed for the corresponding uncertain
linear parameter-varying system. Now, the LPV system could
be described as:

˙̂x = A(ω)x̂+Bu+ L(y − ŷ), (13)

where x̂(t) = [ˆ̄zx v̂rx]T ; the bounded time-varying parameter
is the wheel speed ω : R≥0 → Sp; and the parameter varying
state transition matrix is A(ω) ∈ R2×2. The output is the
longitudinal normalized force µ̂x, which can be written as:

ŷ = Cx̂+ C ′ ˙̂x (14)

with matrices C = [σ0x σ2x] and C ′ = [σ1x 0]. The linear
time-varying system presented in (12) and (14) employs a
reduced number of tire parameters, such as rubber stiffness
σ0x, rubber damping σ1x, relative viscous damping σ2x, and
the normal force distribution factor κ. These tire parameters
in the average lumped LuGre model, are not related to the
road friction. Thus, the road condition is not required for this
tire-based method. If road friction information is available, the
estimator would be more accurate and allocated observer gains
would be less conservative.

The general structure of the discussed observer is shown in
Fig. 4 in which subscript ij represents the estimation at each
corner.
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Fig. 4: Structure of the longitudinal velocity estimation

The corner-based Long. Force Est. module provides longi-
tudinal forces using wheel dynamics , the unscented transfor-
mation, sample points P̄k|k−1, wheel torques T̄ij , and wheel
speeds ωij . The Long. Velocity Est. module utilizes normalized
forces µxij , accelerations axCG , ayCG , wheel speed, and yaw
rate rCG measurements to estimate relative velocities vrxij by
combining the kinematic approach and the longitudinal tire
states z̄xij . The estimated relative velocities at each corner
are then mapped to corners and the vehicle’s CG to get
V̂xij , V̂xCG . The advantage of this structure is that it does not
need road friction information. Robustness of this approach to
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disturbances and its Stability are next discussed in this section.
Front and rear axle weights (gains) W i are also implemented
to have more reliable estimates at vehicle’s CG and tires.

Remark 1: The linear system (12) with output y = Cx +
C ′ẋ is observable. Note that the output equation may be writ-
ten as y = (C +C ′A(ω))x+C ′Bu. Hence, the observability
matrix for this system yields [49]:

On = [τ1 τ2... τn]T

τ1 = C + C ′A(ω), τi+1 = τiA+ τ̇i. (15)

To check the observability condition (15), determinant of On
is graphically illustrated in Fig. 5. As can be seen from
Fig. 5, the observability determinant is always positive for the
specified ranges of the wheel speed and its derivative. Thus,
the observability matrix On has the full rank and the suggested
parameter-varying system, (12) is observable.

 ω

ω̇
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n
)

0 50 100 150

−500
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500
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2.5e+5
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Fig. 5: Observability study for the operating regions

Therefore, it is feasible to observe the longitudinal tire
internal states z̄x and the relative velocity vrx by employing the
normalized force measurement as the output. The estimation
error can be defined as e = x− x̂. Thus, the estimation error
dynamic is as follows:

ė(t) = Ae(ω)e(t) +AΩΩ, (16)

where Ae(ω) = (I + LC ′)−1(A(ω) − LC), AΩ = (I +
LC ′)−1, and Ω ∈ R2 contains uncertainties and is defined
by [Ω1 Ω2]T .

C. Stability analysis

This section first investigates the stability and performance
of the constant gain observer obtained based on experiment.
Afterward, it is shown that the extension of the current
method to the parameter-varying observer design improves the
performance of the estimator.

To study the quadratic stability of an affinely dependent sys-
tem, it is convenient to assume lower and upper bounds for the
parameters ρi ∈ [ρli, ρui] and for the corresponding rate of the
parameters ρ̇i ∈ [ρ̇li, ρ̇ui]. The set of vertices of the parameter
box is denoted by Sp := {(ν1, ..., νf )|νi ∈ [ρli, ρui]} and the
set of corners of the parameters rate box are also represented by

Sr := {(ψ1, ..., ψf )|ψi ∈ [ρ̇li, ρ̇ui]}. The following parameter-
varying system is then assumed with an initial condition of
x(0) = x0 for all t ≥ 0.

ẋ(t) = Ā(ρ)x(t). (17)

The state matrix Ā(ρ) is said to be affinely dependent on the
parameters ρi when known and fixed matrices a0, a1, ..., af
exist such that Ā(ρ) = a0 + ρ1a1 + ... + ρfaf . The system
(17) is defined as robustly stable [50] if the positive definite
V (x, ρ) = xTP (ρ)x is a Lyapunov function for such a system
and P (ρ) � 0. Addressing the robust stability of the parameter-
varying system (17) and dealing with linear matrix inequalities
for all trajectories of the parameter ρ(t) is hard in general, thus
less conservative approaches, such as affine quadratic stability,
to evaluate the robust stability are of more interest.

Theorem 1: [51] The linear system (17) is affinely quadrat-
ically stable over all possible trajectories of the parameter
vector (ρ1(t), ..., ρf (t)) if Ā(ρm) is stable (ρm is the average
of the parameter span) and there exists an affine positive
definite Lyapunov function V (x, ρ) = xTP (ρ)x with P (ρ) =
P0 + ρ1P1 + ... + ρfPf � 0 such that dV (ν, ψ)/dt ≺ 0
for all initial conditions x0 and the additional multi-convexity
constraint aTi Pi + Piai � 0 holds for all i ∈ {1, ..., f} where
ai are fixed matrices in Ā(ρ). The condition V̇ (ν, ψ) ≺ 0
resembles.

ĀT (ν)P (ν) + P (ν)Ā(ν) + P (ψ)− P0 ≺ 0, (18)

for all (ν, ψ) ∈ Sp × Sr. The foremost reason for adding the
multi-convexity constraint aTi Pi + Piai � 0 is that finding
f + 1 symmetric matrices P0, ..., Pf to make P (ρ) � 0
and satisfying (18) is itself a nonconvex problem. The affine
quadratic stability condition implements the variation rate ρ̇(t),
which makes it less conservative than the quadratic stability
criteria

Proposition 1: The error dynamics (19) of the suggested
observer is affinely quadratically stable with respect to param-
eter ω in the sets Sp = [ωl, ωu],Sr = [ω̇l, ω̇u] with constant
observer gains of L = [L1 L2]for all t ≥ 0:

ė(t) = Ae(ω)e(t) (19)

Proof: The stability of the linear time-varying error dy-
namics can be addressed with rewriting the state matrix A1(ω)
in the form of affinely dependent Ae(ω) = a0 + ωa1 where

a0 =

[ −L1σ0

1+L1σ1

1−L1σ2

1+L1σ1

−L2σ0

1+L1σ1

−L2(σ1+σ2)
1+L1σ1

]
; a1 =

[
−κxRe 0
L2Reσ1κ
1+L1σ1

0

]
. (20)

The wheel speed is a bounded variable with operating region
of ω ∈ [ωl, ωu]. The rate of variation is also bounded between
ω̇ ∈ [ω̇l, ω̇u]. Now consider the Lyapunov function V (x) =
xT (P0 + P1ω)x for analyzing the system stability. The affine
matrix P (ω) = P0 +ω1P1 can be found numerically for each
set of observer gains L1, L2 such that LMIs (18) holds for all
(ν, ψ) ∈ Sp × Sr and aT1 Pi + Pia1 � 0.

For the specific case in this article, two observer gains
L1 = 0.65, L2 = 197 are obtained by several simulations and



7

experimental tests on different road conditions. Thus, stability
of the system (19) will be guaranteed with the substitution of
the operating region |ω| ≤ 180[rad/s]. The rate of variation
is also assumed to be |ω̇| ≤ 600[rad/s2], which is practical
for this case according to the sampling frequency 200[Hz]
and measurement errors in the wheel speed. Given the tire
specifications in the previous section, observer gains, and the
affinely dependent form of (20), the numeric values of the
symmetric matrix P (ω) results in

P (ω) =

[
1e− 4ω + 0.024 0.005ω − 3.54

0.005ω − 3.54 2744− 11.43ω

]
. (21)

D. Performance analysis

Consider a linear parameter-varying system (22) with
bounds for parameters and their rates and affine state and input
matrices Ā(ρ), B̄(ρ): with uncertainties Ω̄ in (22):

ẋ(t) = Ā(ρ)x(t) + B̄(ρ)Ω̄

y(t) = C̄(ρ)x(t) + D̄(ρ)Ω̄, (22)

where x ∈ Rn, and y ∈ Rm. The robustness performance
of such system can be addressed by several methods, such
as quadratic stability tests [52], Km or real µ analysis
[53], [54], Integral Quadratic Constraint, IQC [55], and the
affine quadratic H∞ performance analysis [51]. Bounded Real
Lemma secures:

||y||L2ε
< γ||Ω̄||L2ε

(23)

for all L2 bounded input Ω̄ where γ is the affine quadratic H∞
performance. Solving set of LMIs, obtained by bounded real
lemma inequality, for all possible trajectories of the parameter
vector imposes an infinite number of constraints on unknown
Pi. To resolve this issue, Gahinet et al. in [51] imposed a multi-
convexity constraint for the such affine system. Thus, a linear
system (22) has affine quadratic H∞ performance γ if there
exists f + 1 symmetric matrices Pi such that P (ρ) = P0 +
ρ1P1 + ...+ρfPf � 0 and (24) holds for all (ν, ψ) ∈ Sp×Sr: T̄ (ν, ψ) P (ν)B̄(ν) C̄T (ν)

B̄T (ν)P (ν) −γI D̄T (ν)

C̄(ν) D̄(ν) −γI

 ≺ 0, (24)

where T̄ (ν, ψ) = ĀT (ν)P (ν) + P (ν)Ā(ν)P (ψ) − P0. This
suggests solving (24) instead of solving LMIs for infinite
allowable trajectories of the parameter vector [ρ1(t), ..., ρf (t)].
The additional multi-convexity constraint should be taken into
account for i = 1, ..., n[

aTi Pi + Piai Pibi

bTi Pi 0

]
� 0. (25)

The above affine quadratic H∞ performance method incorpo-
rates the rate of parameter variation, which is an advantage of
this method as it addresses the conservativeness and infinite

Fig. 6: Response to uncertainties for L1 = 0.65, L2 = 197

number of constraints induced by the quadratic H∞ perfor-
mance. Using observer gains L1 = 0.65, L2 = 197, the worst
case gains γwc of the system are illustrated in Fig. 6.

Figure 6 demonstrates diminishing uncertainties with the
allocated gains in all channels except one that shows poor
performance γwc = 1.23 of measurement noise rejection in the
second channel of the observer at low frequencies. To resolve
this problem, the observer is designed for such LPV system
in the following subsection.

E. LPV observer design
Taking into account that the wheel speed changes signif-

icantly in different maneuvers, designing LPV gains for the
suggested observer is necessary for capturing the parameter-
varying characteristics of the wheel speed. The current setting
of the observer leads to a nonlinear matrix inequality; thus,
a transformation is proposed to linearize the system. This
enables us to cast the design procedure in an LMI that can
be solved properly. One can choose the following change of
variables:

L1 =
1− t1σ1

t1σ2
1

;L2 =
−t2
t1σ1

. (26)

Considering T = [t1 t2]T , Ct = [σ0 − κReωσ1 σ1 + σ2]
and substitution of (26) into (16) yield:

ė = (At + TCt)e+ EΩ

ye = [0 1]

[
ezx
evrx

]
= He, (27)

in which E = TE0 + E1, E0 = [σ1 0], E1 = [0 0; 0 1]
and:

At =

[−σ0

σ1

−σ2

σ1

0 0

]
. (28)

The aim is to find the observer gains such that the ratio of
the estimation error to the disturbance energy is minimized
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considering the fact that the process disturbance Ω1 and the
measurement disturbance Ω2 are L2ε[0, tf ] signals. This can
be expressed as follows with Ω(θ) 6= 0, e(0) = 0:∫ tf

0

yTe (θ)ye(θ)dθ ≤ γ2

∫ tf

0

ΩT (θ)Ω(θ)dθ. (29)

Lemma 1: Given a compact set ω ∈ [ωl, ωu] and a bounded
rate of variation of |ω̇| < ψ, the system (27) is robustly
exponentially stable if there exist a continuously differentiable
positive definite matrix P (ω) and a matrix η(ω) such that
the following LMI (30) holds. The induced L2ε norm from
the input disturbance to the output error is less than the
performance level γ > 0T (ω) η(ω)E0 + P (ω)E1 HT

∗ −γI 0

∗ ∗ −γI

 ≺ 0, (30)

where P (ω)T (ω) = η(ω), T (ω) = ATt P (ω) + P (ω)At +
CTt (ω)η(ω) + η(ω)Ct(ω) + ∂P

∂ω ω̇ and symmetric terms in
symmetric matrices are denoted by ∗.

Proof: Consider V (x, ω) = xTP (ω)x. Taking derivative
of the function over the system trajectory yields:

V̇ (t) = xT
[(
ATt + CTt T

T
)
P + P (At + TCt) +

∂P

∂ω
ω̇

]
x,

(31)

which results in:(
ATt + CTt (ω)TT

)
P (ω) + P (ω) (At + TCt(ω))

+
∂P

∂ω
ω̇ ≺ 0.

(32)

Substituting conditions (32) in the Bounded Real Lemma, one
can write the following inequalities:T ′(ω) P (ω)(TE0 + E1) HT

∗ −γI 0

∗ ∗ −γI

 ≺ 0, (33)

in which T ′(ω) =
(
ATt + CTt (ω)TT

)
P (ω) +

P (ω) (At + TCt(ω))+ ∂P
∂ω ω̇. Inequalities (33) guarantees that

V̇ + yTe ye − γ2ΩTΩ < 0. (34)

Taking the integration and considering V (0) = 0, V (tf ) > 0

results in
∫ tf

0
yTe (θ)ye(θ)dθ ≤ γ2

∫ tf
0

ΩT (θ)Ω(θ)dθ for any
nonzero ω.

The final result will be obtained by T (ω) = P (ω)−1η(ω).
To solve the infinite dimensional parameter-varying LMI (30),
one can define the parametric matrices using appropriate basis
functions to explicitly turn the LMI into finite dimensional
problem. For the sake of simplicity, we defined P (ω) :=∑f
i=0 Piω

i and η(ω) :=
∑f
i=0 ηiω

i.
To estimate the solution of the infinite dimensional convex

optimization, we uniformly grid the set ω = [0 120] to Ngr =

120 points {ω}Ngrk=1. Consequently, time-varying observer gains
L1, L2 are:

L1 =
1.78ω2 − 50.1ω − 2.83e+ 4

0.0221ω2 + 154ω − 2.38e+ 4

L2 =
4822(2.76ω2 + 150ω − 7.34e+ 4)

0.885ω2 + 6140ω − 9.51e+ 5
. (35)

Since |ω̇| < ψ and it enters linearly in the matrix inequali-
ties, one only needs to check the LMI feasibility at the vertices
of the produced convex hull.

The condition for getting the H∞ performance can be checked
graphically by plotting ||H(jω)|| for different values of the
vehicle wheel speed. The corresponding frequency responses
of the LPV system with time-varying observer gains are
illustrated in Fig. 7 for different wheel speeds.

Fig. 7: Response of the observer with time-varying gains

The new observer gains resolve the worst case gain in the
low frequency of a channel and provide a more reliable design.

Estimated relative velocities vrxij at each corner are utilized
for V̂xtij (tires’ longitudinal velocities) as V̂xtij = Reωij −
v̂rxij . The estimated velocities in the tire coordinates are then
transformed to corners to get the corners’ longitudinal veloc-
ities V̂xij . Weighted longitudinal velocities at each corner are
used for the estimation of the vehicle’s CG, V̂xCG . Specifically,
each axles’ longitudinal velocities are defined by V̂xf and V̂xr
that are the mean values between V̂xfL = V̂xCG + rCG

Trf
2

and V̂xfR = V̂xCG − rCG
Trf

2 for the front axle and V̂xrL =

V̂xCG + rCG
Trr

2 and V̂xrR = V̂xCG − rCG
Trr

2 for the rear
axle, respectively. Then, the velocity of the vehicle’s CG is
achievable by allocating weights W f ,W r to each axle as
V̂xCG = W f V̂xf + W rV̂xr with weights W f = W r = 0.5,
but can be allocated based on the slip ratio and the level of
reliance on estimated velocities at each track.

IV. RESULTS AND DISCUSSION

Several experiments and simulations have been carried out
on an instrumented SUV to validate the proposed estimation
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schemes without road friction information. The vehicle is an
all-wheel drive (AWD) with an independent electric motor for
each wheel. The vehicle specifications are provided in Table I.
The vehicle sensors include the steering wheel angle sensor,
wheel speed sensors, a 3-axis IMU (and GPS for verification),
and sensors to measure each tire’s forces and moments (for
verification). This test platform is equipped with additional
sensors for direct measurement of longitudinal/lateral tire
forces at each corner and velocities for evaluation of the force
and velocity estimation algorithms. The allocated observer
gains in (12) are parameter-varying (with respect to the wheel
speed) and obtained from (35) for the friction and acceleration
noise effect attenuation respectively.

The followings contain simulation results of the velocity
estimation. To check the performance of the estimator during
harsh maneuvers, acceleration and brake-in-turn are done and
results are illustrated in Fig. 8 and Fig. 9. CarSim simulation
results are depicted in Fig. 8 for an acceleration-in-turn (AiT)
maneuver. The test is carried out on both dry and slippery
(µ = 0.3) roads and the maneuver includes maximum steering
angle δ = 0.05[rad]. In addition, the gas pedal is pushed to
100% for t = 5− 10[s].
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Fig. 8: Estimated VxCG , AiT on dry and slippery roads

Velocity estimation is evaluated for a brake-in-turn maneu-
ver (BiT) in Fig. 9, on a slippery road with µ = 0.25. The
input steering angle δ = 0.06[rad] is fixed at t = 2[s] for the
entire test, and the brake pedal forces up to 100% at t = 5[s].
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Fig. 9: VxCG , Brake-in-turn maneuver, µ = 0.25

From the simulation results provided in Fig. 8 and Fig. 9 it
is perceptible that the suggested observer can handle both dry
and slippery road conditions.

The followings include experimental results on the AWD
test platform SUV shown in Fig. 10. Different tests on dry
roads, snowy roads, and on test facility surfaces with known
friction were executed to validate both the velocity and force
estimators.

Measured signals are communicated using a CAN-bus that is
a conventional communication method in production vehicles.
Real-time logging of this sensory information was done using
the dSPACE MicroAutobox shown in Fig. 10. Compiling
measurements for MATLAB/SIMULINK were done with the
dSPACE, and the controller provides control signals for the
actuators through dSPACE. The AUTOBOX has interfaces
with actuators (electric motors) and provides control signals.

Fig. 10: 4WD SUV test platform and I/O layout

The developed longitudinal force estimator is examined on a
wet road with traction and braking and results at the front-right
corner tire are compared in Fig. 11-a with measurements and
that of the unknown input observer (UIO) method suggested
in [27]. Force transducers are mounted on the wheel hub
at each corner and are capable of measuring tire forces and
moments. The sensors are strain gauge-based rims. The test
is executed on a slippery surface with µ ≈ 0.3 and the
traction configuration is all-wheel drive (AWD). In addition,
experimental results of the estimated forces by UIO and UKF
are compared with the filtered forces of the wheel hub sensor
measured on the rear-left wheel in Fig. 11-b. This maneuver
is a double lane change (DLC) on snow with µ ≈ 0.35.

A low-pass filter with time constant τ = 0.04 is used
for removing high oscillations from the measured longitudi-
nal forces. Deviations of the filtered measurements from the
estimated forces (by UIO and UKF) in Fig. 11-b are attributed
to this filtering for such a harsh maneuver on snow with several
steering attempts. These figures show consistency between the
outcomes of two methods, but oscillations of the suggested
UKF estimator is less than the unknown input observer. The
advantage of the proposed force estimation approach over the
existing and widely practiced unknown input observers is its
reliability; this is due to the stochastic nature of the road-
wheel forces, wheel torques, and effective radius, which are
considered as uncertainty and has been addressed with the
UKF. Moreover, the UKF force estimator can address non-
Gaussian process or measurement noises.

The proposed velocity estimator is examined on the test
vehicle and the following paragraphs provide experimental
results. The velocity estimates are employed for traction
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Fig. 11: Longitudinal force Est. (a) Accel./brake on wet (b)
DLC on snow

and stability control systems including torque vectoring and
differential breaking. The estimator is tested together with
the controller in the loop with sampling frequencies of 100
and 200 [Hz]. Fig. 12 depicts estimated longitudinal velocity
at vehicle’s CG on a dry road with a successive accelera-
tion/deceleration for the AWD case. The GPS is RT2500 and
it has slip-angle measurement accuracy of 0.2◦ at 50[kph] and
longitudinal speed measurement accuracy of 0.1[kph].
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One of main objectives of the velocity estimator is to
provide reliable V̂xtij at each corner for the traction/slip control
systems during launch/brake on slippery roads. Thus, a launch
maneuver on ice in the test facility (with known µ ≈ 0.2)
without any traction control is performed and results are shown
in Fig. 13. The developed velocity estimator provides V̂x at CG
without road condition information as illustrated in Fig. 13-a;
the wheels speed at each corner are shown in Fig. 13-b, which
confirms the extreme slip characteristic of this maneuver.
There is an almost 60[mSec] delay for the longitudinal speed
estimator which is due to the UKF observer for the longitudinal

force estimation and the filtered accelerations for the LPV
velocity observer.4WD, DLC on snow 20140121_test010
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Fig. 13: Launch on ice (a) estimated V̂xCG (b) wheels speed
at all corners

The velocity estimator is also studied for combined-slip
maneuvers with simultaneous lateral and longitudinal slips and
the following tests show the outcomes of the observer for
such driving scenarios. A step-steer (SS) maneuver with AWD
traction configuration is performed on a wet surface in the test
facility with µ = 0.4 and the estimated longitudinal velocity
is depicted in Fig. 14-a. Although, this maneuver includes
transition from wet to dry roads, the estimator provides smooth
and reliable results especially for the transient region.
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Fig. 14: Acceleration-in-turn and step steer on dry/wet for
AWD (a) estimated speed at CG (b) measured yaw rate

In addition, results of the longitudinal velocity estimation
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for an acceleration-in-turn (AiT) scenario on dry asphalt are
depicted in Fig. 14-a as well. Difficulties in the maneuvers are
represented by changes of the vehicles yaw rate, as shown in
Fig. 14-b.

Figure 15 compares experimental results of the newly devel-
oped speed estimator for the AWD vehicle with the measured
GPS signal on snow. It depicts performance of the approach on
slippery roads in maneuvers with combined-slip characteristics
such as brake-in-turn (BiT). Furthermore, a lane-change (LC)
on a snowy surface with µ ≈ 0.3 is performed and the
estimation results are depicted in Fig. 15-a.LC on snow 20150120_test006 and AiT on snow 
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Fig. 15: Brake-in-turn and lane-change on snow/ice

Different traction configurations (all-wheel, front-wheel, and
rear-wheel drive) are also allocated to evaluate the corner-
based velocity estimator. For the FWD case, the results are
shown in Fig. 16. A launch on a highly slippery wet sealer
(with µ ≈ 0.25) and transition to dry with steering is
performed in this maneuver. Front wheels speed in Fig. 16-c
confirms high slip ratio due to the low capacity of tires and the
load transfer, but the estimated longitudinal velocity exhibits
good accuracy.

Performance of the developed Kalman-based estimator in
[26] is also compared with the newly proposed LPV observer
for the launch on wet sealer in the same figure. As can be
seen from Fig. 16, the LPV observer exhibits more accurate
estimates specially during large slip incidents. The Kalman-
based approach changes system covariance matrices based on
the slip condition and an adaptive weighted axle algorithm to
cope with high slip cases, but the LPV method allocates ap-
propriate gains (35) implementing the observer design method
discussed in section III.

Velocity estimates of the developed LPV observer at vehi-
cle’s CG for the RWD configuration in a launch and decel-
eration maneuver on the gravel are compared with measure-
ments and Kalman-based longitudinal velocity estimator [26]
in Fig. 17-a. Although both methods, show good performance,
the LPV approach has better outcomes specially for high
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Fig. 16: Launch on wet asphalt and transition to dry with
steering, FWD case (a) V̂xCG (b) accelerations (c) wheel speeds

slip ratio cases on the gravel. The new approach allocates
flexible observer gains by solving LMIs (30) with respect to
the wheel speed that leads to more accurate velocity estimates.
The gravel road has some disturbances on the measured
longitudinal/lateral accelerations as depicted in Fig. 17-b. The
measured wheel speeds at each corner confirms increase in
the slip ratio, but the observer can handle the situation and
provides smooth outcomes.
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Performance of the longitudinal force and velocity estima-
tors are investigated in Table II using the normalized root
mean square of the error, NRMS, for vehicle with AWD
and RWD traction configurations in different driving scenar-
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ios. The normalized error root mean square is defined as

ξn =

√∑Nh
j=1(ĥj−hmj )2/Nh

h̄
, where the estimated and measured

signals are denoted by hm and ĥ respectively, Nh is the
number of signal samples during a driving scenario, and
h̄ = maxi=1...Nh |hmj | shows the maximum value of the
measured signal.

TABLE II: Longitudinal state estimators error NRMS

Maneuvers Est. Vx Estimated Fx
ξn[%] ξn1 ξn2 ξn3 ξn4

RWD
Launch on ice 3.44 5.18 5.3 3.25 4.87
Launch and brake on gravel 4.65 5.71 5.56 2.63 3.22
DLC on snow 2.04 3.24 2.96 2.85 2.16
AWD
Split-µ launch on dry/ice 2.76 3.81 5.66 3.2 4.95
BiT and LC on snow 4.12 5.52 5.06 4.73 4.91
AiT on dry 4.85 6.42 4.13 5.41 3.78

The normalized error RMS for the front-left, front-right,
rear-left, and rear-right tires are denoted by ξn1, ξn2, ξn3, and
ξn4 respectively. With incorporating the tire internal deflection
state and time-varying observer gains, the system dynamics
suggested in (12) prohibits the states (tire deflections and rela-
tive velocities) from high fluctuations and increases accuracy,
as is apparent from experimental data. Therefore, the proposed
corner-based velocity estimator performs well on dry, wet, and
highly slippery roads to provide required measurements for the
traction and stability control systems.

V. CONCLUSION

This article has proposed and tested experimentally a vehicle
state estimation approach. Two main developments have been
adopted into the longitudinal state estimation: a) augmented
states/parameters in the UKF used for the force estimation; b)
velocity estimation with an LPV observer design by decreased
sensitivity to the tire parameters and road uncertainties. The
uncertainties are mainly rooted in the unknown road friction
and the tire parameters. The estimated velocities at each
corner and vehicle’s CG by the proposed approach are used
for the vehicle traction control as well as stability control
by differential braking on the test platform. Based on the
simulation and experimental results, the following conclusions
can be made:
Limitations of the available kinematic-based and model-based
estimators lead to an observer scheme robust to road friction
changes to estimate the longitudinal velocity at each tire. An
LPV observer was designed and variable observer gains are
provided with respect to the wheel speed. A method was
suggested for analyzing of the affine quadratic stability of the
observer’s error dynamics. H∞ performance of the estimator
was also investigated with a transformation from nonlinear to
linear matrix inequalities.
One significant advantage of the suggested observer is that
a unidirectional lumped LuGre model could be used instead
of the combined one since the term containing the combined
friction model was considered as uncertainty. Finding optimal

observer gains that consider both the stability and disturbance
rejection properties and rolling resistance effect for longitudi-
nal force estimation will be addressed in the future.
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