
 

Cutting Mechanics of the  

Gear Shaping Process 

 

by 

Andrew Katz 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Applied Science 

in 

Mechanical and Mechatronics Engineering 

 

 

 

Waterloo, Ontario, Canada, 2017 

 

© Andrew Katz 2017



 

ii 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

  



 

iii 

Abstract 

In the machining industry, there is a constant need to increase productivity while also maintaining 

dimensional tolerances and good surface quality. For many classical machining operations (e.g. milling, 

turning, and broaching), research has been established that is able to predict the part quality based on 

process parameters, workpiece material, and the machine’s dynamic characteristics. This allows process 

planners to design their programs virtually to maximize productivity while meeting the specified part 

quality. To accomplish this, it is necessary to predict the cutting forces during the machining operation. 

This can be done using analytical equations for a lot of operations; however, in more recent research for 

complicated processes (e.g. 5-axis milling, gear hobbing), this is done by calculating the cutter-workpiece 

engagement with geometric CAD modellers and calculating incremental cutting forces along the cutting 

edge. With knowledge of the cutting forces, static deflections and dynamic vibrations of the tool and 

workpiece can be calculated which is one of the most prominent contributors to dimensional part 

inaccuracies and poor surface quality in machining. The research presented in this thesis aims to achieve 

similar goals for the gear shaping process. 

Gear shaping is one of the most prominent methods of machining cylindrical gears. More specifically, it is 

the most prominent method for generating internal gears which are a major component in planetary gear 

boxes. The gear shaping process uses a modified external gear as a cutting tool which reciprocates up and 

down to cut the teeth in the workpiece. Simultaneously, the tool and workpiece are also rotating 

proportionally to their gear ratio which emulate the rolling of two gears. During the beginning of each gear 

shaping pass, the tool is radially fed into the workpiece until the desired depth of cut is reached. In this 

study, the three kinematic components (reciprocating feed, rotary feed, and radial feed) are mathematically 

modelled using analytical equations and experimentally verified using captured CNC signals from the 

controller of a Liebherr LSE500 gear shaping machine. 

To predict cutting forces in gear shaping, the cutter-workpiece engagement (CWE) is calculated at discrete 

time steps using a discrete solid modeller called ModuleWorks. From the CWE in dexel form, the two-

dimensional chip geometry is reconstructed using Delaunay triangulation and alpha shape reconstruction 

which is then used to determine the undeformed chip area along the cutting edge. The cutting edge is 

discretized into nodes with varying cutting directions (tangential, feed, and radial), inclination angle, and 

rake angle. If engaged in cutting during a time step, each node contributes an incremental three dimensional 

force vector calculated with the oblique cutting force model. Using a 3-axis dynamometer, the cutting force 
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prediction algorithm was experimentally verified on a variety of processes and gears which included an 

internal spur gear, external spur gear, and external helical gear. The simulated and measured force profiles 

correlate very closely (about 3-10% RMS error) with the most error occurring in the external helical gear 

case. These errors may be attributable due to rubbing of the tool which is evident through visible gouges 

on the finished workpiece, tool wear on the helical gear shaper, and different cutting speed than the process 

for which the cutting coefficients were calibrated. More experiments are needed to verify the sources of 

error in the helical gear case. 

To simulate elastic tool deflection in gear shaping, the tool’s static stiffness is estimated from impact 

hammer testing. Then, based on the predicted cutting force, the elastic deflection of the tool is calculated at 

each time step. To examine the affect of tool deflection on the final quality of the gear, a virtual gear 

measurement module is developed and used to predict the involute profile deviations in the virtually 

machined part. Simulated and measured profile deviations were compared for a one-pass external spur gear 

process and a two-pass external spur gear process. The simulated profile errors correlate very well with the 

measured profiles on the left flank of the workpiece, however additional research is needed to improve the 

accuracy of the model on the right flank. Furthermore, the model also serves as a basis for future research 

in dyamic vibrations in gear shaping. 

The above-mentioned algorithms have been implemented into a tool called ShapePRO (developed in C++). 

The software is meant for process planners to be able to simulate the gear shaping operation virtually and 

inspect the resulting quality of the gear. Accordingly, the user may iterate the process parameters to 

maximize productivity while meeting the customer’s desired gear quality. 

  



 

v 

Acknowledgements 

I would like to thank my supervisors Professor Kaan Erkorkmaz and Professor Fathy Ismail for their 

continuous support, ideas, and enthusiasm during my studies. Their knowledge and guidance have been 

pivotal in my ability to reach my research goals. 

I would like to thank Ontario Drive and Gear (Jamie McPherson, Bob Reiter, Jacob Van Dorp, Sash 

Rakanovic, end everyone else) who has graciously sponsored this project and provided invaluable resources 

such as machine time at their facility, material, tools, and general knowledge which has been essential in 

the success of the research. 

I would also like to thank the MME technical staff, particularly Robert Wagner and Jason Benninger, for 

their assistance with experimental setups. 

Finally, I would like to thank all my colleagues from the Precision Controls Laboratory, my friends, and 

my family for their continuous support during my degree. 

  



 

vi 

Dedication 

To my parents. 



 

vii 

Table of Contents 

List of Figures .............................................................................................................................................. x 

List of Tables ............................................................................................................................................ xiv 

Nomenclature ............................................................................................................................................ xv 

Chapter 1 Introduction ............................................................................................................................... 1 

1.1 Gear Shaping ....................................................................................................................................... 1 

1.2 Thesis Objectives ................................................................................................................................ 1 

1.3 Thesis Layout ...................................................................................................................................... 2 

Chapter 2 Literature Review ..................................................................................................................... 4 

2.1 Introduction ......................................................................................................................................... 4 

2.2 Classical Machining Literature ........................................................................................................... 4 

2.3 Gear Machining Literature .................................................................................................................. 6 

2.3.1 Gear Hobbing ............................................................................................................................... 6 

2.3.2 Gear Shaping ................................................................................................................................ 8 

2.4 Conclusions ......................................................................................................................................... 9 

Chapter 3 Kinematics of Gear Shaping .................................................................................................. 10 

3.1 Introduction ....................................................................................................................................... 10 

3.2 Gear Terminology ............................................................................................................................. 11 

3.3 Cutter and Workpiece Geometry ...................................................................................................... 14 

3.4 Kinematics ........................................................................................................................................ 16 

3.4.1 Coordinate Systems ................................................................................................................... 16 

3.4.2 Reciprocating Motion ................................................................................................................ 18 

3.4.3 Rotary Feed Motion ................................................................................................................... 19 

3.4.4 Radial Feed Motion ................................................................................................................... 20 

3.5 Experimental Validation ................................................................................................................... 23 

3.6 Conclusions ....................................................................................................................................... 27 

Chapter 4 Cutting Force Prediction ........................................................................................................ 28 

4.1 Introduction ....................................................................................................................................... 28 

4.2 Cutting Force Models ........................................................................................................................ 28 

4.2.1 Orthogonal ................................................................................................................................. 28 

4.2.2 Oblique....................................................................................................................................... 29 



 

viii 

4.2.3 Orthogonal to Oblique ............................................................................................................... 30 

4.2.4 Exponential Chip Thickness ...................................................................................................... 31 

4.2.5 Kienzle ....................................................................................................................................... 32 

4.2.6 Generalized Model ..................................................................................................................... 32 

4.3 Cutter-Workpiece Engagement ......................................................................................................... 33 

4.3.1 Multi-Dexel Representation ....................................................................................................... 33 

4.3.2 Material Removal Simulation .................................................................................................... 34 

4.4 Tool Edge Discretization .................................................................................................................. 35 

4.4.1 Rake Face Model ....................................................................................................................... 36 

4.4.2 Cutting Direction Calculation .................................................................................................... 40 

4.5 Force Calculation .............................................................................................................................. 46 

4.6 Experimental Validation ................................................................................................................... 51 

4.6.1 Experimental Setup .................................................................................................................... 54 

4.6.2 Cutting Coefficient Determination ............................................................................................ 55 

4.6.3 Results ........................................................................................................................................ 62 

4.7 Conclusions ....................................................................................................................................... 84 

Chapter 5 Elastic Deformation and Form Error Prediction ................................................................ 86 

5.1 Introduction ....................................................................................................................................... 86 

5.2 Elastic Deformation Model ............................................................................................................... 86 

5.2.1 Impact Hammer Testing ............................................................................................................ 87 

5.2.2 Deflection Calculation ............................................................................................................... 92 

5.3 Virtual Gear Measurement ................................................................................................................ 93 

5.3.1 Experimental Validation ............................................................................................................ 95 

5.4 Conclusions ..................................................................................................................................... 106 

Chapter 6 ShapePRO Software ............................................................................................................. 107 

6.1 Introduction ..................................................................................................................................... 107 

6.2 User Workflow ................................................................................................................................ 108 

6.3 Virtual Gear Measurement .............................................................................................................. 112 

Chapter 7 Conclusions and Future Work ............................................................................................. 113 

7.1 Conclusions ..................................................................................................................................... 113 

7.2 Future Work .................................................................................................................................... 114 



 

ix 

Bibliography ............................................................................................................................................ 115 

 



 

x 

List of Figures 

Figure 1.1: Gear shaping process. ................................................................................................................. 1 

Figure 2.1: 2D dynamic analysis in milling (from [27]). .............................................................................. 6 

Figure 2.2: Cutting force prediction in HOB3D (from [39]). ....................................................................... 7 

Figure 2.3: Influence of tool tip width and chip cross-section on tool wear (from [50]). ............................. 9 

Figure 3.1: Kinematic components in gear shaping. ................................................................................... 10 

Figure 3.2: Transverse plane and normal plane in spur and helical gears. ................................................. 12 

Figure 3.3: Basic gear geometry ................................................................................................................. 12 

Figure 3.4: Gear tooth profile shift. ............................................................................................................ 14 

Figure 3.5: Gear shaper relief angles. ......................................................................................................... 15 

Figure 3.6: Comparison of spur gear shaper (from [56]) and helical gear shaper (from [57]). .................. 15 

Figure 3.7: Coordinate systems in gear shaping. ........................................................................................ 17 

Figure 3.8: Reciprocating motion kinematics ............................................................................................. 18 

Figure 3.9: Slider-crank vs pure sinusoidal motion. ................................................................................... 19 

Figure 3.10: Comparison of constant acceleration and linear acceleration infeed profiles. ....................... 22 

Figure 3.11: Liebherr LSE500 Machine (from [59]). ................................................................................. 24 

Figure 3.12: Liebherr LSE500 Axes Labels (from [60]). ........................................................................... 25 

Figure 3.13: Position, velocity, and acceleration profiles of X1 axis during infeed. .................................. 26 

Figure 3.14: Comparison of simulated and captured X1, C1, C2, and ZL3 profiles. ................................. 27 

Figure 4.1: Orthogonal cutting model. ........................................................................................................ 29 

Figure 4.2: Oblique cutting model. ............................................................................................................. 30 

Figure 4.3: Single direction and two direction dexel representation of a circle (from [66]). ...................... 34 

Figure 4.4: Tool and workpiece representation in ModuleWorks engine. .................................................. 34 

Figure 4.5: Cutter-workpiece engagement. ................................................................................................. 35 

Figure 4.6: Rake face model in spur gear shaping. ..................................................................................... 36 

Figure 4.7: Projection of transverse nodes onto rake face. ......................................................................... 37 

Figure 4.8: Rake face model in helical gear shaping. ................................................................................. 38 

Figure 4.9: Illustration of tooth angle (𝜸). .................................................................................................. 39 

Figure 4.10: Cutting velocity and directions in spur and helical shaping. .................................................. 41 

Figure 4.11: Cutting direction calculation. ................................................................................................. 43 

Figure 4.12: Local approximation of normal rake angle for curved rake face. ........................................... 45 



 

xi 

Figure 4.13: Distribution of inclination and rake angles on single gear tooth with cutter rake angle of 𝟓° 

and helical angle of 𝟐𝟓° in helical gear shaper case. .................................................................................. 46 

Figure 4.14: Typical chip geometry in helical gear shaping case. .............................................................. 47 

Figure 4.15: Reconstruction of two-dimensional chip cross-section. ......................................................... 48 

Figure 4.16: Projection of triangles onto plane normal to tangential direction. .......................................... 50 

Figure 4.17: Finished workpiece (left) and tool (right) for internal spur gear case study........................... 53 

Figure 4.18: Finished workpiece (left) and tool (right) for external spur gear case study. ......................... 53 

Figure 4.19: Finished workpiece (left) and tool (right) for external helical gear case study. ..................... 53 

Figure 4.20: Experimental setup for spur internal gear case. ...................................................................... 54 

Figure 4.21: Experimental setup for external gear cases. ........................................................................... 55 

Figure 4.22: Cubic search for shear stress, friction angle, shear angle. ...................................................... 56 

Figure 4.23: Error contour plot for AISI 1141 steel at 𝝉 = 𝟖𝟎𝟓. 𝟔 [N/mm2]. ............................................ 58 

Figure 4.24: Error contour plot for AISI 5130 steel at 𝝉 = 𝟕𝟔𝟒. 𝟏 [N/mm2]. ............................................ 58 

Figure 4.25: Error contour plot for AISI 8620 steel at 𝝉 = 𝟔𝟑𝟑. 𝟑 [N/mm2]. ............................................ 59 

Figure 4.26: Exponential chip model for AISI 1141 steel. ......................................................................... 61 

Figure 4.27: Exponential chip model for AISI 5130 steel. ......................................................................... 61 

Figure 4.28: Exponential chip model for AISI 8620 steel. ......................................................................... 62 

Figure 4.29: Comparison of simulated and measured cutting forces for internal spur gear, one-pass, AISI 

1141 steel process. ...................................................................................................................................... 64 

Figure 4.30: Comparison of simulated and measured cutting forces for internal spur gear, one-pass, AISI 

1141 steel process, zoomed in..................................................................................................................... 65 

Figure 4.31: Comparison of simulated and measured cutting forces for internal spur gear, two-pass, AISI 

1141 steel process. ...................................................................................................................................... 67 

Figure 4.32: Comparison of simulated and measured cutting forces for internal spur gear, two-pass, AISI 

1141 steel process, zoomed in..................................................................................................................... 68 

Figure 4.33: Comparison of simulated and measured cutting forces for internal spur gear, one-pass, AISI 

5130 steel process. ...................................................................................................................................... 69 

Figure 4.34: Comparison of simulated and measured cutting forces for internal spur gear, one-pass, AISI 

5130 steel process, zoomed in..................................................................................................................... 70 

Figure 4.35: Comparison of simulated and measured cutting forces for internal spur gear, two-pass, AISI 

5130 steel process. ...................................................................................................................................... 71 



 

xii 

Figure 4.36: Comparison of simulated and measured cutting forces for internal spur gear, two-pass, AISI 

5130 steel process, zoomed in..................................................................................................................... 72 

Figure 4.37: Comparison of simulated and measured cutting forces for external spur gear, one-pass, AISI 

8620 steel process. ...................................................................................................................................... 74 

Figure 4.38: Comparison of simulated and measured cutting forces for external spur gear, one-pass, AISI 

8620 steel process, zoomed in..................................................................................................................... 75 

Figure 4.39: Comparison of simulated and measured cutting forces for external spur gear, two-pass, AISI 

8620 steel process. ...................................................................................................................................... 77 

Figure 4.40: Comparison of simulated and measured cutting forces for external spur gear, two-pass, AISI 

8620 steel process, zoomed in..................................................................................................................... 78 

Figure 4.41: Comparison of simulated and measured cutting forces for external helix gear, one-pass, AISI 

8620 steel process. ...................................................................................................................................... 80 

Figure 4.42: Comparison of simulated and measured cutting forces for external helix gear, one-pass, AISI 

8620 steel process, zoomed in..................................................................................................................... 81 

Figure 4.43: Gouges and scraping as seen on the finished external helix gear, one-pass process. ............. 82 

Figure 4.44: Comparison of simulated and measured cutting forces for external helix gear, two-pass, AISI 

8620 steel process. ...................................................................................................................................... 83 

Figure 4.45: Comparison of simulated and measured cutting forces for external helix gear, two-pass, AISI 

8620 steel process, zoomed in..................................................................................................................... 84 

Figure 5.1: Elastic deformation of cutting tool due to cutting forces. ........................................................ 87 

Figure 5.2: Measured and fit receptance FRF of the 5.08 module spur gear shaper. .................................. 89 

Figure 5.3: Measured and fit receptance FRF of the workpiece. ................................................................ 91 

Figure 5.4: Scanning measurement of gears. .............................................................................................. 94 

Figure 5.5: Profile errors in gear inspection. .............................................................................................. 95 

Figure 5.6: Pitch deviation in gear inspection. ............................................................................................ 95 

Figure 5.7: Leading/left and Trailing/right flank in gear shaping. .............................................................. 96 

Figure 5.8: Comparison of measured and simulated profile deviations in external spur gear, one-pass 

process (Teeth 1-8). .................................................................................................................................... 98 

Figure 5.9: Comparison of measured and simulated profile deviations in external spur gear, one-pass 

process (Teeth 9-16). .................................................................................................................................. 99 



 

xiii 

Figure 5.10: Comparison of measured and simulated profile deviations in external spur gear, one-pass 

process (Teeth 17-22). .............................................................................................................................. 100 

Figure 5.11: Measured and simulated profile error metrics in external spur gear, one-pass process. ...... 101 

Figure 5.12: Comparison of measured and simulated profile deviations in external spur gear, two-pass 

process (Teeth 1-8). .................................................................................................................................. 102 

Figure 5.13: Comparison of measured and simulated profile deviations in external spur gear, two-pass 

process (Teeth 9-16). ................................................................................................................................ 103 

Figure 5.14: Comparison of measured and simulated profile deviations in external spur gear, two-pass 

process (Teeth 17-22). .............................................................................................................................. 104 

Figure 5.15: Measured and simulated profile error metrics in external spur gear, two-pass process. ...... 105 

Figure 6.1: ShapePRO software main screen. ........................................................................................... 107 

Figure 6.2: ShapePRO workpiece configuration dialog. .......................................................................... 108 

Figure 6.3: ShapePRO material configuration dialog. .............................................................................. 109 

Figure 6.4: ShapePRO tool configuration dialog. ..................................................................................... 110 

Figure 6.5: ShapePRO machine configuration dialog............................................................................... 111 

Figure 6.6: ShapePRO process configuration dialog. ............................................................................... 111 

Figure 6.7: ShapePRO virtual gear measurement module. ....................................................................... 112 

  



 

xiv 

List of Tables 

Table 3.1: Cutting pass radial distances ...................................................................................................... 20 

Table 3.2: Cutting pass parameters and gear data for kinematic experimental validation. ......................... 25 

Table 4.1: Cutting pass parameters and gear data for internal spur case study. .......................................... 52 

Table 4.2: Cutting pass parameters and gear data for external spur case study. ......................................... 52 

Table 4.3: Cutting pass parameters and gear data for external helical case study. ..................................... 52 

Table 4.4: Identified orthogonal to oblique coefficients. ............................................................................ 57 

Table 4.5: Identified orthogonal exponential chip thickness coefficients. .................................................. 60 

Table 4.6: RMS error for internal spur gear, one-pass, AISI 1141 steel process. ....................................... 63 

Table 4.7: RMS error for internal spur gear, two-pass, AISI 1141 steel process. ...................................... 66 

Table 4.8: RMS error for internal spur gear, one-pass, AISI 5130 steel process. ....................................... 69 

Table 4.9: RMS error for internal spur gear, two-pass, AISI 5130 steel process. ...................................... 71 

Table 4.10: RMS error for external spur gear, one-pass, AISI 8620 steel process. .................................... 73 

Table 4.11: RMS error for external spur gear, two-pass, AISI 8620 steel process. .................................... 76 

Table 4.12: RMS error for external helix gear, one-pass, AISI 8620 steel process. ................................... 79 

Table 4.13: RMS error for external helix gear, two-pass, AISI 8620 steel process. ................................... 82 

Table 5.1: Fit modes and static stiffness in 𝒙 direction of 5.08 module spur gear shaper. ......................... 90 

Table 5.2: Fit modes and static stiffness in 𝒚 direction of 5.08 module spur gear shaper. ......................... 90 

Table 5.3: Fit modes and static stiffness in 𝒙 direction of workpiece. ........................................................ 92 

Table 5.4: Fit modes and static stiffness in 𝒚 direction of workpiece. ....................................................... 92 

  



 

xv 

Nomenclature 

Symbol Definition Units 

𝛼 Rake angle ° 

𝛼𝑛 Normal rake angle ° 

𝑎 Undeformed chip area mm2 

𝑎infeed Linear acceleration during infeed mm/s2 

𝛽 Helix angle / friction angle ° 

𝑏 Gear face width / undeformed chip width mm 

𝑑𝑝,𝑏,𝑎,𝑑 Pitch / base / addendum / dedendum diameter mm 

𝑑stroke Stroke length mm 

𝑑top/bottom Tool top / bottom overrun length  

𝜖 Gear type modification factor (+1 for external, -1 for internal)  

𝑓cut Cutting stroke frequency DS/min 

𝑓rotary Rotary feedrate mm/DS 

𝑓radial Radial feedrate mm/DS 

ℎ Undeformed chip thickness mm 

ℎ𝑐 Deformed chip thickness mm 

ℎ𝑎,𝑑 Addendum / dedendum height  

𝑖 Inclination angle ° 

𝜂 Chip flow angle ° 

𝐾𝑥,𝑦 Static tool stiffness in x / y direction N/μm 

𝐾𝑡𝑐 , 𝐾𝑓𝑐 , 𝐾𝑟𝑐 Cutting coefficients for orthogonal/oblique force model N/mm2 

𝐾𝑡𝑒 , 𝐾𝑓𝑒 , 𝐾𝑟𝑒 Edge coefficients for orthogonal/oblique force model N/mm 

𝐾𝑡 , 𝐾𝑓 , 𝐾𝑟, (𝑝, 𝑞, 𝑟) Cutting coefficients for exponential chip thickness force model N/mm2 ( ) 

𝐾𝑢, 𝐾𝑣 , (𝑢, 𝑣) Cutting coefficients for Kienzle force model N/mm2 ( ) 

𝑚𝑛/𝑡 Normal / transverse module mm 

𝑁𝑐,𝑔 Number of teeth in cutter/gear  



 

xvi 

𝜓𝑛/𝑡 Normal / transverse pressure angle ° 

𝑅 Gear ratio  

𝑟 Radius / center-to-center distance mm 

𝑟𝑐 Chip ratio  

𝑟𝑝,𝑏,𝑎,𝑑 Pitch / base / addendum / dedendum radius mm 

𝑟scrape Scrape distance between tool and workpiece mm 

𝑟𝑔𝑐 Nominal center-to-center distance between tool and workpiece mm 

𝑠𝑝 Circular tooth thickness at pitch diameter mm 

∆ Area of a triangle mm2 

𝑡infeed Amount of time required for tool infeed s 

𝑡pass Amount of time required for entire shaping pass s 

𝜙𝑐,𝑔 Cutter / gear rotation about 𝑧 axis in machine coordinate system rad 

𝜙𝑐𝑔 Relative rotation between cutter and gear rad 

𝑉𝑐 Cutting velocity mm/s 

𝑣𝑟 Linear velocity during infeed mm/s 

𝜔𝑠 Cutting stroke frequency rad/s 

𝜔𝑐,𝑔 Cutter/gear angular velocity about 𝑧 axis rad/s 

𝜔𝑐𝑔 Relative angular velocity between cutter and gear rad/s 

𝑥 Profile modification factor  

𝑧 Vertical distance between bottom of tool and top of workpiece mm 

 



 1 

Chapter 1 

Introduction 

1.1 Gear Shaping 

Gear shaping is one of the prominent methods of manufacturing cylindrical gears. It is a generating process 

which uses a modified cylindrical gear as a tool that axially reciprocates up and down to cut the teeth in the 

workpiece (shown in Figure 1.1). The cutter and workpiece continuously rotate during the cutting action 

which simulate the rolling of two gears and, at the beginning of the process, the cutter is radially fed into 

the workpiece until it reaches the final depth of cut. Compared to gear hobbing (which uses a worm gear 

cutter), gear shaping is generally not as productive, however is more versatile [1]. For example, gear 

hobbing is unable to generate internal gears or gears with geometric constraints which would interfere with 

a gear hob. Furthermore, gear shaping may be used as a finishing operation of hardened gears [2]. Therefore, 

it is important to have an understanding of the physics of the operation to improve productivity and the 

quality of the machined gears.  

 

Figure 1.1: Gear shaping process. 

1.2 Thesis Objectives 

The objective of this thesis is to conduct research in the cutting mechanics of gear shaping which will serve 

as a basis for machining simulation tools that allow process planners to optimize their programs. 
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Specifically, the goal is to develop a virtual model of the gear shaping process which is capable of predicting 

the three-dimensional chip geometry, cutting forces, static tool/workpiece deflections, and vibrations.  

1.3 Thesis Layout 

In Chapter 2, a literature review is presented on existing research in general and gear machining. In classical 

machining operations (such as turning, milling, and drilling), chip geometry and cutting forces can be 

calculated using analytical expressions. Furthermore, there exists thorough research in elastic tool 

deflections and dynamic (chatter) vibrations in these operations, which allow for accurate prediction of 

machined part quality. This allows for process planners to design their programs to maximize material 

removal rate while maintaining a specified part quality and avoiding chatter vibrations that would otherwise 

lead to premature tool wear/breakage. However, due to the complex kinematics and complicated 

cutter/workpiece geometries in gear shaping, there is a lack of research of the cutting mechanics in gear 

shaping, which has been the main motivation of this thesis. 

The kinematics of the gear shaping are mathematically described in Chapter 3. Gears are normally 

manufactured in two to three passes; at least one roughing and one finishing pass. Each pass is defined by 

its cutting frequency (reciprocating motion), rotary feed (rolling of the cutter and workpiece), and radial 

feed which establishes the depth of cut for the pass. Using signals taken directly from the CNC controller 

of a Liebherr LSE500 gear shaping machine, the kinematics have been validated by comparing the 

measured and simulated position of the tool and workpiece. 

Chapter 4 presents a model for predicting chip geometries and cutting forces in the gear shaping process. 

A discrete solid modeller that uses multi-dexel volume to represent the workpiece is used to calculate the 

cutter-workpiece engagement (CWE) at each time step during the process. The CWE is obtained in dexel 

format, and the chip cross-section is reconstructed using Delaunay triangulation and alpha shape method. 

By discretizing the tool cutting edge into nodes with varying cutting directions, inclination angle, and rake 

angle, incremental cutting forces are determined and integrated to obtain the force vector for the time step. 

Several case studies are presented which show good correlation between experimentally measured and 

simulated cutting forces in three directions. The most discrepancy occurred in the helical gear shaping cases 

where further study is needed to verify the sources of error. 

A basic model for elastic deflection of the tool is presented in Chapter 5. The static stiffness at the bottom 

of the gear shaper cutter is characterized through modal hammer testing of the machine. Using the estimated 

stiffness, a feedback loop is established which calculates the deflection of the tool based on the cutting 
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forces at the previous time step. A virtual gear measurement system, which analyzes cross-sections of the 

gear, is used to calculate the profile deviations of the tooth profiles in the machined gears. Experimental 

measurements show good correlation between the simulated and measured profiles, however further 

research is needed to improve the simulated results. 

Lastly, Chapter 6 gives an overview of the ShapePRO software which has been developed based on the 

presented research. ShapePRO is capable of predicting the cutting forces, tool deflections, and machined 

gear quality during gear shaping and is meant to be used as a tool for process planners in industry to optimize 

their programs.  
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Chapter 2 

Literature Review 

2.1 Introduction 

In machining research, increasing the productivity (material removal rate), while maintaining or improving 

the quality of the machined workpiece is of utmost priority. In general, the limiting factors for achieving 

these goals are: 

o Process stability (forced and chatter vibrations lead to poor surface quality and tool breakage/wear 

due to unstable cutting forces). 

o Tool/machine rigidity (elastic deflections of the tool relative to the workpiece due to cutting forces 

lead to dimensional errors of the finished workpiece). 

o Tool and workpiece overheating. 

In classical machining operations (e.g. milling, turning, and drilling) these phenomena have been 

thoroughly researched and, in industry, the research is now methodically being applied to improve 

productivity and quality. In gear machining, however, this area of research is still in its infancy due to the 

complex nature of the processes used to machine gears. This chapter presents an overview of the existing 

machining research in the literature. Section 2.2 talks about some of the research in the field of classical 

machining operations, and Section 2.3 talks about the existing research in the field of gear machining. 

2.2 Classical Machining Literature 

In order to be able to predict the process stability and machined part quality, it is essential to be able to 

predict the chip geometry and cutting forces in any machining operation. In classical machining operations, 

the chip geometry can usually be calculated with analytical expressions as a function of the process 

parameters and tool geometry. Using a mechanistic approach, the cutting forces can be predicted by 

determining the varying chip thickness and width along the cutting edge and calculating incremental cutting 

forces with an orthogonal or oblique cutting model. For example, in the simple case of turning, the chip 

geometry is a function of the axial feedrate, radial depth of cut, and the geometry of the turning tool. For 

calculation of the cutting forces, the chip is  analyzed in two sections: the tool nose radius zone and straight 

edge zone [3] [4] [5]. The chip thickness varies along the tool nose radius zone and so the cutting force is 

calculated by discretizing the chip into small segments and integrating the incremental cutting forces. 
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Although more complicated, similar methods are applied to the calculation of cutting forces in milling [6] 

[7] [8], multi-point thread turning [9], drilling [10] [11], and broaching [12] [13]. 

In recent literature, CAD software has been used to calculate the cutter-workpiece engagement in more 

complicated processes. In milling, for example, cutting forces can be calculated analytically if the axial 

depth of cut, feedrate, and tool immersion is known, however, for complicated workpieces machined with 

long CNC programs, CAD software is often needed to determine the depth of cut and tool immersion. To 

do this, the intersection of the tool and workpiece is calculated and the workpiece is continuously updated. 

This method is shown in [14] [15] [16] for 3-axis milling, extended to 5-axis milling in [17], and shown for 

broaching in [18].  In [14] - [18], exact solid modellers (using boundary representation) are used to model 

the workpieces. Although boundary representation is accurate, it can be slow and unstable (due to excessive 

computation) with complicated workpieces. Discrete modellers (such as dexel representation) are also used 

for modelling workpieces ( [19] for example) which offers better computational speed and robustness. 

With knowledge of the cutting forces, elastic deflections of the tool can be considered to predict 

dimensional errors and surface quality of machined surfaces. Budak and Altintas [20] modelled a helical 

end mill as a cantilever beam with a flexible fixture. Analytical expressions are used for calculating the 

cutting forces, the elastic deflection of the tool, and the expected surface errors. Experiments showed good 

agreement in the predicted surface quality and dimensional error. Moreover, using this information, they 

developed a method of identifying the optimal feedrates and depth of cut which maximizes the material 

removal rate while maintaining a specified maximum error. This work was extended in [21] which used a 

finite element model (FEM) to calculate the flexibilities in thin walled workpieces. Workpiece flexibilities 

are also modelled in turning [22] to predict dimensional errors in the turned workpiece. 

Moreover, dynamic deflections of the tool (forced and chatter vibrations) limit the productivity of 

machining processes as well as cause severe tool wear, tool breakage, and poor surface quality. By 

characterizing the dynamics at the contact point between the cutter and workpiece with modal transfer 

functions and considering the regenerative chip thickness mechanism (Figure 2.1), the self-excited 

vibrations in machining can be predicted [23] [24] [25]. Due to structural modes of the machine being 

excited by cutting forces, a wavy surface pattern is produced by the cutter. Subsequently, the chip thickness 

also becomes oscillatory which results in unstable and large oscillatory cutting forces until the tool breaks 

or jumps out of the cut. Using these theories, stability lobes can be determined in flat-end milling [26] [27], 

ball-end milling [28], plunge milling [29], 5-axis flank milling [30], turning/boring [31], and broaching 
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[32]. Stability lobes allow for process planners to choose spindle speeds and cutting depths that maximizes 

productivity while avoiding chatter vibrations, which ensures high quality of the workpiece, and maximizes 

tool life. 

 

Figure 2.1: 2D dynamic analysis in milling (from [27]). 

2.3 Gear Machining Literature 

Since gear hobbing and gear shaping are the two most prominent methods for manufacturing cylindrical 

gears, this section will focus on the review of literature for those two processes. However, there is some 

cutting mechanics research in other processes as well, such as bevel gear cutting [33], generating gear 

grinding [34], and gear shaving [35]. 

2.3.1 Gear Hobbing 

In gear hobbing, there has been extensive research in chip formation and cutting forces. However, there is 

little research in elastic tool deflection and vibrations during the process. Several studies have been 

performed in CAD based process simulation for gear hobbing. Klocke et al. [36] developed a software 

(called SPARTApro) capable of calculating the cutter-workpiece engagement and cutting forces in gear 

hobbing. Using a unique finite element approach, the workpiece is represented with an array of planes 
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perpendicular to the axis of the gear. Then, 2D chip geometry is determined on each plane by a penetration 

calculation between the cutter and workpiece. The chip cross-sections are discretized into volumetric 

elements and cutting forces are determined. Some experimental validation is presented in the form of 

spindle torque which showed adequate correlation between the simulated and measured profiles. They also 

studied the correlation between certain characteristics from the process simulation to the occurrence of 

surface defects in the finished gear (welded-on chips and smeared areas) [37]. Furthermore, the model was 

extended to be able to predict profile deviations as a result of certain process errors (tool clamp eccentricity 

and tool tooth profile errors) [38]. Tapoglou and Antoniadis [39] created a similar model (called HOB3D) 

which uses a commercial CAD software to calculate the cutter-workpiece engagement and is capable of 

calculating the cutting forces. The 3D chip geometry is sectioned onto planes which correspond to different 

revolved positions of the hob. The chip sections are partitioned into rectangles and incremental cutting 

forces are determined (Figure 2.2). Experimental validation is shown for the cutting forces in three 

directions which show good correlation. Sabkhi et al. also showed a similar model in [40]. 

 

Figure 2.2: Cutting force prediction in HOB3D (from [39]). 

FEM models of the hobbing process have also been established. Using loading conditions calculated from 

CAD based cutting simulation, Antoniadis et al. [41] created an FEM model of a hobbing tool which 
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calculated stresses and strain on the hob tooth. They focused on prediction of tool failure due to fatigue 

mechanisms and how to design the hobbing process to lower the chances of premature tool failure. Bouzakis 

et al. [42] created an FEM simulation of hobbing during the generation of a single tooth gap which focused 

on the prediction of chip flow obstruction and chip collision, while also being able to predict stresses, strain, 

and temperature. Furthermore, several other FEM based studies have been performed on tool wear 

mechanisms and the effect of process parameters on the distribution of tool wear on the gear hob [43] [44] 

[45]. 

2.3.2 Gear Shaping 

In gear shaping, there has been some study in chip formation during cutting. However, there is little 

published research in the cutting forces, elastic tool deflections, and vibrations. There exists several two-

dimensional models which can predict the 2D generated cross-section of the workpiece. By tracing the 

trochoidal path of the shaper cutter on a plane (considering the tool geometry and process parameters), the 

generated tooth profile can be mathematically determined. This model is shown in [46] which focused on 

the effects of asymmetric teeth and tip fillets, in [47] which focused on the effect of protuberance and semi-

topping, in [48] which focused on the effect of the gear ratio in internal gear generation, and in [49] which 

focused on the generation of non-circular gears. Bouzakis and König [50] studied the typical 2D chip cross-

sections found in a gear shaping process and analyzed their effects on the chip flow and tool wear. They 

concluded that based on the width of the tip of the teeth on the gear shaper, there are different cross-sections 

of chip which will result in better tool life characteristics due to the way the chips flow off the rake face 

(Figure 2.3). Although this information is interesting, there is only limited insight presented on how to use 

the research to improve shaper cutter designs or improve process productivity.  
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Figure 2.3: Influence of tool tip width and chip cross-section on tool wear (from [50]). 

Datta et al. created an FEM model of the gear shaping operation [51]. They used ten-node tetrahedral 

elements to represent the gear cutter and assumed different loading conditions to predict the stress 

distribution on the gear shaper cutter. The work was extended in [52] which analyzed the stress and 

deflection of the tool under different cutting process parameters (cutting speed, feedrate, and depth of cut). 

The analysis, however, used empirical cutting forces, lacked experimental validation, and does not provide 

any insight on the effect of the tool deflections on workpiece quality.  

2.4 Conclusions 

From the studied literature, it is clear that there is a lack of a complete model for three dimensional chip 

geometry and cutting forces in gear shaping. Furthermore, there is a lack of study in elastic tool deflection 

and vibrations during the process which would allow for the accurate prediction of workpiece quality. The 

research presented in this thesis includes a complete three dimensional model of chip geometry, cutting 

forces, and a model for tool deflection. To the author’s best knowledge, it is the first of its kind in regards 

to the gear shaping process. The research also serves as a basis for future research in vibration prediction 

for the gear shaping process.  
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Chapter 3 

Kinematics of Gear Shaping 

3.1 Introduction 

In this chapter, the kinematics of the gear shaping process are described in detail. The motion involved in 

the process is complex as both the cutter and workpiece are moving simultaneously. The kinematics can be 

considered a superimposition of three different components: the reciprocating motion, rotary feed motion, 

and radial feed motion. Figure 3.1 shows these components for both internal and external gear generation.  

 

Figure 3.1: Kinematic components in gear shaping. 

The reciprocating motion moves the cutter up and down which cuts the teeth in the workpiece. During the 

return stroke, there is back-off motion which prevents the tool cutting edge from rubbing against the 

workpiece while moving up. Although the back-off motion is important for ensuring good quality of the 
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finished gear, the motion does not affect the position of the tool during cutting and therefore is not included 

in the kinematic model. The cutter and workpiece both have rotary feeds which rotate proportionally to 

their gear ratio. There is radial motion of the tool at the beginning of each cutting pass which slowly feeds 

the cutter into the workpiece to avoid overloading the tool. In internal gear shaping, the tool radial feed 

moves away from the center of the workpiece and the rotary feeds are in the same direction. In external 

gear shaping, the tool radial feed moves towards the center of the workpiece and the rotary feeds are in the 

opposite direction. Furthermore, for helical gears, there is additional cutter rotation while reciprocating 

following the helical profile of the gear teeth.  

In general, the magnitude of the rotary and radial feeds are proportional to the generated chip thickness 

while the frequency of the reciprocating motion is proportional to the cutting speed. In the remainder of 

this chapter, Section 3.2 talks about the basic gear nomenclature necessary for understanding the process, 

Section 3.3 describes the geometry of the cutter and workpiece, Section 3.4 mathematically describes the 

kinematics components of gear shaping, and Section 3.5 shows experimental validation of the kinematic 

model. 

3.2 Gear Terminology 

Before the kinematics of gear shaping is described in detail, basic gear terminology and nomenclature must 

first be established. There are four possible types of cylindrical gears which can be generated with gear 

shaping: spur internal, spur external, helical internal, and helical external. Spur gears have straight teeth 

(parallel to the axis of rotation), while helical gears have teeth which follow a helix profile around the axis 

of rotation. External gears have teeth on the outside circle of a cylinder, while internal gears have teeth on 

the inside circle of a ring. 

As shown in Figure 3.2, two different planes can be defined for the gear teeth. The transverse plane which 

is perpendicular to the axis of rotation, and the normal plane which is perpendicular to the helix of the tooth. 

For spur gears, the normal plane and transverse plane are coincident. In gear design, the gear data 

parameters are typically given on the normal plane, however it is convenient to construct the gear profile 

on the transverse plane. The number of teeth on the gear is given by 𝑁, the helix angle of the gear is 𝛽 (𝛽 =

0 for spur gears), and the face width of the gear is given by 𝑏. 
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Figure 3.2: Transverse plane and normal plane in spur and helical gears. 

 

Figure 3.3: Basic gear geometry 
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Figure 3.3 illustrates basic gear geometry and nomenclature for both internal and external gears on the 

transverse plane. The size of the gear is proportional to its transverse module 𝑚𝑡 which is given in units of 

length. The transverse module can be calculated from the normal module 𝑚𝑛 as: 

𝑚𝑡 =
𝑚𝑛

cos𝛽
  [53] (3.1) 

The pitch circle radius 𝑟𝑝 and base circle 𝑟𝑏 radius are given by: 

𝑟𝑝 =
𝑁 𝑚𝑡

2
  [53] (3.2) 

𝑟𝑏 = 𝑟𝑝 cos𝜓𝑡  [53] (3.3) 

Here, 𝜓𝑡 is the transverse pressure angle which is defined as the angle tangent to the tooth profile at the 

pitch radius. The transverse pressure angle can be calculated from the normal pressure angle 𝜓𝑛 as: 

𝜓𝑡 = tan
−1 (

tan𝜓𝑛 

cos𝛽
) [53] (3.4) 

Each tooth begins at the root (dedendum circle) and ends at the tip (addendum circle) where each side 

(flank) of the tooth is the involute profile of the base circle. The radius of the addendum 𝑟𝑎 and dedendum 

circles 𝑟𝑑 are given by: 

𝑟𝑎 = 𝑟𝑝 + 𝜖ℎ𝑎 (3.5) 

𝑟𝑑 = 𝑟𝑝 − 𝜖ℎ𝑑 (3.6) 

𝜖 = {
+1 for external gear

−1 for internal gear
 (3.7) 

In a standard profile, ℎ𝑎 = 𝑚 and ℎ𝑑 = 1.25 𝑚 [54], however these are often modified to non-standard 

values on gear shaper cutters. 

The circular tooth thickness at an arbitrary radius 𝑟 is given by 𝑠𝑟: 

𝑠𝑟 = 𝑟 [
𝑠𝑝

𝑟𝑝
+ 2𝜖 (inv𝜓𝑡 − inv (acos

𝑟𝑏

𝑟
))]  (𝑓𝑜𝑟 𝑟 > 𝑟𝑏)  [53] (3.8) 

inv 𝜃 = tan𝜃 − 𝜃  [53] (3.9) 

𝑠𝑝 =
𝜋 𝑚𝑡

2
+ 𝜖2𝑥𝑚𝑡 tan𝜓𝑡  [53] (3.10) 

Here, 𝑠𝑝 is the tooth thickness at the pitch radius and 𝑥 is a profile modification factor which affects the 

thickness of the teeth. In a standard profile, 𝑥 = 0, however manufactured gears often have slight profile 

shifts due to errors in the manufacturing process. In particular with gear shaping, gear shaper cutters are 
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often oversized or undersized due to the regrinding process which results in profile shifted gears [55]. Figure 

3.4 shows how the profile modification factor affects the tooth thicknesses. 

 

Figure 3.4: Gear tooth profile shift. 

Finally, there are often fillets connecting the root to the flanks and the tip to the flanks. The tip fillet radius 

is given by 𝑟tip and the root fillet radius is given by 𝑟root. 

3.3 Cutter and Workpiece Geometry 

Gear shaper cutters take the form of modified cylindrical external gears. The shaper cutter must have the 

same module, pressure angle, and helix angle of the desired manufactured gear. The teeth are of involute 

profiles to generate involute profiles in the workpiece, there is increased addendum which creates additional 

clearance in the root of the produced gear, and there are several relief angles which are cut into the shaper 

cutter [55]. Figure 3.5 shows the design of a generic shaper cutter. The bottom face of the cutter has a rake 

angle (denoted by 𝛼) which forms a conical cutting face in the spur shaper case (shown in Figure 3.6 left) 

and allows for easier chip flow. The rake angle in a typical shaper cutter is between 0° and +10°, however 

can be negative for finishing of hardened gears [2]. Additionally, there is side clearance and outside 

diameter clearance angles cut into the teeth which prevent rubbing of the cutter teeth onto the workpiece 

teeth. The side clearance angle is typically 1.5° - 2°, and the outside diameter angle is typically 2° - 4° [55]. 

In the helical gear shaper case, each tooth has its own rake face (shown in Figure 3.6 right) which has the 

effect of the rake angle and helix angle. The mathematical modelling of the rake face in each case is 

described in Section 4.4.1. 
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Figure 3.5: Gear shaper relief angles. 

  

Figure 3.6: Comparison of spur gear shaper (from [56]) and helical gear shaper (from [57]). 

Although workpiece blank geometry can be complicated for real gearbox parts, for the purpose of 

investigating the machining process, the geometry can be simplified to a cylinder for external gears and a 

ring for internal gears. For external gears, the outer diameter of the cylinder is equal to the addendum 

diameter of the desired gear. For internal gears, the inner diameter of the ring is equal to the addendum 
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diameter of the desired gear and the outer diameter is arbitrary as long as it is larger than the dedendum 

diameter. 

3.4 Kinematics 

3.4.1 Coordinate Systems 

Several different coordinate systems can be defined for convenience in different parts of the gear shaping 

analysis.  Figure 3.7 illustrates three different coordinate systems: 

o Machine coordinate system (MCS) or the world coordinate system is the stationary coordinate 

system in which the cutter and workpiece can be defined in absolute coordinates. This coordinate 

system is convenient for performing modal analysis of the machine.  

o Workpiece coordinate system (WCS) is the coordinate system in which the observer is rotating 

with the gear. This coordinate system is convenient for measuring the cutting forces as it is easiest 

to attach a dynamometer to the workpiece fixture. 

o Tool coordinate system (TCS) is the coordinate system in which the observer is rotating and 

translating with the cutter. This coordinate system is convenient for representing and defining 

the cutting edge. 

The kinematics of gear shaping can be described with four variables: the axial rotation of the cutter 𝜙𝑐(𝑡), 

the axial rotation of the gear workpiece 𝜙𝑔(𝑡) , the center-to-center distance between the cutter and 

workpiece 𝑟(𝑡), and the vertical position of the tool 𝑧(𝑡). For generalization of the process, the origin of 

the MCS can be assumed to be coincident with the origin of the WCS. Therefore, the homogenous 

transformations of the workpiece and tool relative to the MCS can be defined as: 

𝑇𝑊𝐶𝑆
𝑀𝐶𝑆(𝑡) = [

cos𝜙𝑔(𝑡) − sin𝜙𝑔(𝑡) 0 0

sin𝜙𝑔(𝑡) cos𝜙𝑔 (𝑡) 0 0

0 0 1 0
0 0 0 1

] (3.11) 

𝑇𝑇𝐶𝑆
𝑀𝐶𝑆(𝑡) = [

cos𝜙𝑐 (𝑡) − sin𝜙𝑐(𝑡) 0 −𝑟(𝑡)

sin𝜙𝑐 (𝑡) cos𝜙𝑐(𝑡) 0 0

0 0 1 𝑧(𝑡)
0 0 0 1

] (3.12) 

For the cutting simulation, it is convenient to keep the workpiece stationary and represent the tool in the 

WCS. The transformation between the tool and the workpiece can then be calculated as: 
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𝑇𝑇𝐶𝑆
𝑊𝐶𝑆(𝑡) = [𝑇𝑊𝐶𝑆

𝑀𝐶𝑆]
−1
𝑇𝑇𝐶𝑆
𝑀𝐶𝑆 =

[
 
 
 
cos𝜙𝑐𝑔(𝑡) − sin𝜙𝑐𝑔(𝑡) 0 −𝑟(𝑡) cos𝜙𝑔(𝑡) 

sin𝜙𝑐𝑔 (𝑡) cos𝜙𝑐𝑔(𝑡) 0 𝑟(𝑡) sin𝜙𝑔(𝑡)

0 0 1 𝑧(𝑡)
0 0 0 1 ]

 
 
 
 (3.13) 

Here, 𝜙𝑐𝑔(𝑡) = 𝜙𝑐(𝑡) − 𝜙𝑔(𝑡) is the relative angular position between the cutter and gear. Sections 3.4.2 

- 3.4.4 below will describe how the four variables (𝑧(𝑡), 𝑟(𝑡), 𝜙𝑐(𝑡), 𝜙𝑔(𝑡)) are determined. 

 

Figure 3.7: Coordinate systems in gear shaping. 
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3.4.2 Reciprocating Motion 

In modern gear shaping machines, the reciprocating motion is accomplished using a slider crank mechanism 

as illustrated in Figure 3.8a. The length of the crank rod is CNC controlled which governs the length of the 

cutting stroke, hence the crank rod length is 0.5 𝑑stroke. The connecting rod length 𝑑con is a constant which 

is a parameter of the machine. The stroke length is a function of the workpiece face width and tool overruns 

(𝑑stroke = 𝑏 + 𝑑top + 𝑑bottom) as illustrated in Figure 3.8b. The 𝑧 axis datum is defined at the top of the 

workpiece and is positive above the workpiece. The cutting stroke frequency 𝑓cut is normally defined in 

units of DS/min in industry (double strokes per minute where a double stroke is one cutting stroke and one 

return stroke), therefore the cutting stroke frequency 𝜔𝑠 expressed in engineering units is: 

𝜔𝑠  [
rad

s
] = 𝑓cut [

DS

min
] ∙
2𝜋

60
 (3.14) 

 

Figure 3.8: Reciprocating motion kinematics 
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Using trigonometric relationships, the reciprocating motion from the slider-crank mechanism can be 

expressed as:  

𝑧(𝑡) = 𝑑top − 0.5𝑑stroke(1 − cos(𝜔𝑠 𝑡)) + √𝑑con
2 − (0.5𝑑stroke sin(𝜔𝑠𝑡))

2 − 𝑑con (3.15) 

However, this can be simplified to a pure sinusoidal equation without the effect of the slider-crank 

mechanism: 

𝑧(𝑡) = 𝑑𝑡𝑜𝑝 − 0.5𝑑stroke(1 − cos(𝜔𝑠 𝑡)) (3.16) 

Figure 3.9 shows a comparison of the two above equations for a single stroke with 𝑑𝑡𝑜𝑝 = 1, 𝑏 = 10, 

𝑑𝑏𝑜𝑡𝑡𝑜𝑚 = 1, 𝑑𝑐𝑜𝑛 = 500, and a stroke frequency of 400 DS/min. The maximum difference between the 

two profiles is about 0.03 mm, therefore the pure-sinusoidal equation is a very close approximation of the 

full slider-crank equation and in most cases can be used as a substitute.  

 

Figure 3.9: Slider-crank vs pure sinusoidal motion. 

3.4.3 Rotary Feed Motion 

The rotary feeds of the workpiece can be expressed as a function of a single process parameter 𝑓rotary which 

is given in units of mm/DS (millimeters per double stroke). The rotational velocity of the workpiece (𝜔𝑔) 

can be solved as: 
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𝜔𝑔 [
rad

s
] = 𝑓rotary [

mm

DS
] ∙
𝑓𝑐𝑢𝑡 [

DS
min]

 60 𝑟𝑝𝑔
 (3.17) 

Here, 𝑟𝑝𝑔 is the pitch radius of the gear (workpiece). Therefore, the rotational position of the workpiece 

(𝜙𝑐) is simply: 

𝜙𝑔(𝑡) = 𝜔𝑔𝑡 (3.18) 

The rotational position of the tool (𝜙𝑐) is a function of the workpiece rotation and the vertical position of 

the tool. The tool must rotate as the workpiece rotates to emulate the rolling of the gears. For helical gears, 

the tool must also rotate while reciprocating following the profile of the helical teeth. The rotation of the 

cutter can be expressed as: 

𝜙𝑐(𝑡) = −
𝜖𝜔𝑔

𝑅
𝑡

⏟    
rolling of
gears

+
𝑧(𝑡) tan𝛽

𝑟𝑝𝑐⏟      
helical

component

 
(3.19) 

𝑅 = 𝑁𝑐/𝑁𝑔 (3.20) 

Here, 𝑅 is the gear ratio between the cutter and workpiece, and 𝑟𝑝𝑐 is the pitch radius of the cutter. 

3.4.4 Radial Feed Motion 

A gear shaping process consists of one or more cutting passes (usually 1 or 2 roughing passes and 1 finishing 

pass). Each pass removes some radial depth of cut which can be defined using the center-to-center radial 

distances 𝑟start and 𝑟end. For internal gears, 𝑟start < 𝑟end, and for external gears, 𝑟start > 𝑟end. Table 3.1 

shows how these radial distances are determined for the 𝑖th cutting pass in 𝑛 number of passes.  

Table 3.1: Cutting pass radial distances 

 

Cutting Pass 

First 

𝑖 = 1 

Intermediate 

1 < 𝑖 < 𝑛 

Last 

𝑖 = 𝑛, 𝑛 > 1 

𝑟start𝑖 𝑟scrape 𝑟𝑒𝑛𝑑𝑖−1 𝑟𝑒𝑛𝑑𝑖−1 

𝑟end𝑖 {
𝑟start𝑖 − 𝜖 𝑑cut𝑖 for 𝑛 > 1

𝑟𝑔𝑐 for 𝑛 = 1
 𝑟start𝑖 − 𝜖 𝑑cut𝑖 𝑟𝑔𝑐 

 

Here, 𝑑cut  is the depth of cut specified for the pass, 𝑟scrape = 𝑟𝑎𝑔 + 𝜖 𝑟𝑎𝑐 is the scraping distance (the radial 

distance at which the addendum of the cutter just touches the addendum of the workpiece), and 𝑟𝑔𝑐 = 𝑟𝑝𝑔 +
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𝜖 𝑟𝑝𝑐 is the final nominal center-to-center distance (in practice, 𝑟𝑔𝑐 is often manually overridden to correct 

for tooth thickness errors in the finished gear).  

There are a couple different radial infeed strategies which exist. The most common method is Radial with 

Rotary (RwR) in which the cutter is radially fed into the workpiece whilst simultaneously rotating. 

Typically, the infeed motion is defined by radial feed at start of infeed (𝑓radial, start) and radial feed at end 

of infeed (𝑓radial, end) given in units of mm/DS. These can be translated into respective radial velocities with 

the formulas: 

𝑣𝑟,start [
mm

s
] = −𝜖 𝑓radial, start [

mm

DS
] ∙
𝑓𝑐𝑢𝑡 [

DS
min]

 60
 

(3.21) 

𝑣𝑟,end [
mm

s
] = −𝜖 𝑓radial, end [

mm

DS
] ∙
𝑓𝑐𝑢𝑡 [

DS
min]

 60
 

(3.22) 

Usually, |𝑣𝑟,end| < |𝑣𝑟,start| to prevent overloading of the tool since the chip area will increase as the cutter 

approaches the final center-to-center distance. After the infeed is complete, the workpiece is rotated an 

additional 360° to complete the cutting pass. Although the infeed can be defined using the four parameters 

(𝑟𝑠tart, 𝑟end,  𝑓radial, start , and  𝑓radial, end), different gear shaping machines will use different velocity and 

acceleration profiles during the infeed. For example, sophisticated machines may use jerk limited trajectory 

planning where the rate of change in acceleration is limited [58]. In the simplest case, a constant step 

acceleration could be used where the radial kinematics can be described with the below equations. The 

position, velocity, and acceleration profiles are illustrated in Figure 3.10.  

𝑡infeed = 2 |
𝑟end − 𝑟start
𝑣𝑟,end + 𝑣𝑟,start

| (3.23) 

𝑡pass = 𝑡infeed +
2𝜋 

𝜔𝑔
 (3.24) 

𝑎infeed =
𝑣𝑟,end − 𝑣𝑟,start

𝑡infeed
 (3.25) 

𝑟(𝑡) = {
𝑟start + 𝑣𝑟,start𝑡 +

1

2
𝑎infeed𝑡

2 for 0 ≤ 𝑡 < 𝑡infeed

𝑟end for 𝑡infeed ≤ 𝑡 ≤ 𝑡pass

 (3.26) 

𝑑(𝑟(𝑡))

𝑑𝑡
= {
𝑣𝑟,start+ 𝑎infeed𝑡 for 0 ≤ 𝑡 < 𝑡infeed

0 for 𝑡infeed ≤ 𝑡 ≤ 𝑡pass
 (3.27) 
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𝑑2(𝑟(𝑡))

𝑑𝑡2
= {
𝑎infeed for 0 ≤ 𝑡 < 𝑡infeed
0 for 𝑡infeed < 𝑡 ≤ 𝑡pass

 (3.28) 

 

Figure 3.10: Comparison of constant acceleration and linear acceleration infeed profiles. 

Here, 𝑡infeed is the time required for the infeed, 𝑡pass is the total time required for the cutting pass, 𝑎infeed is 

the radial acceleration during the infeed, and 𝑡 is the amount of time passed since the beginning of the 

cutting pass.  

In a more complicated case, linear acceleration may also be used during infeed where the acceleration of 

the drive begins at 𝑎infeed, start and ends at 𝑎infeed, end. In this case, the kinematics of the radial feed is 

described by the below equations:  

𝑟(𝑡) = {
𝑟start + 𝑣𝑟,start𝑡 +

1

2
𝑎infeed, start𝑡

2 +
𝑎infeed, end − 𝑎infeed, start

6 𝑡infeed
𝑡3 for 0 ≤ 𝑡 < 𝑡infeed

𝑟end for 𝑡infeed ≤ 𝑡 ≤ 𝑡pass

 (3.29) 
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𝑑(𝑟(𝑡))

𝑑𝑡
= {

𝑣𝑟,start + 𝑎infeed, start𝑡 +
𝑎infeed, end − 𝑎infeed, start

2 𝑡infeed
𝑡2 for 0 ≤ 𝑡 < 𝑡infeed

0 for 𝑡infeed ≤ 𝑡 ≤ 𝑡pass

 (3.30) 

𝑑2(𝑟(𝑡))

𝑑𝑡2
= {

𝑎infeed, start +
𝑎infeed, end − 𝑎infeed, start

𝑡infeed
𝑡 for 0 ≤ 𝑡 < 𝑡infeed

0 for 𝑡infeed < 𝑡 ≤ 𝑡pass

 (3.31) 

Here, the value of the accelerations would be determined by the machine’s proprietary algorithms. For 

example, if the machine has a pre-determined 𝑎infeed, end, then the 𝑡infeed can be calculated by solving a 

quadratic equation, and then the 𝑎infeed, start can be determined: 

𝑡infeed =
(2𝑣𝑟,end + 𝑣𝑟,start) ± √(2𝑣𝑟,end + 𝑣𝑟,start)

2
− 6 𝑎infeed, end(𝑟end − 𝑟start)

 𝑎infeed, end
 

(3.32) 

𝑎infeed, start =
2(𝑣𝑟,end − 𝑣𝑟,start)

𝑡infeed
− 𝑎infeed, end (3.33) 

Above, logic may be used to determine the signage of the plus-minus in the quadratic formula. If only one 

of the answers is positive, than the positive answer is correct. If both answers are positive, than the smaller 

answer can be chosen. The linear acceleration profile is compared against the constant acceleration profile 

in Figure 3.10 for the same 𝑟𝑠tart, 𝑟end,  𝑓radial, start , 𝑓radial, end, and a pre-set 𝑎infeed, end of −0.01. Depending 

on the value of 𝑎infeed, end, the linear acceleration profile may be shorter or longer than the constant 

acceleration profile. 

3.5 Experimental Validation 

In order to validate the kinematic model, servo position commands are captured from the Siemens 840D 

CNC servo controller in a Liebherr LSE500 gear shaping machine tool (pictured in Figure 3.11). The 

Liebherr LSE500 machine is a CNC based machine that is capable of producing cylindrical gears of all 

types up to a diameter of 500 mm. Earlier versions of gear shaping machines were completely mechanical 

and thus had limitations. For example, gearing was used to link the motion between the cutter and workpiece 

rotation drives, thus only certain gear ratios could be used. Moreover, mechanical guides were used to 

generate the helical component of the tool rotation, thus only certain helix angles could be generated. In the 

Liebherr machine, each drive is numerically controlled so there are no such limitations and the setup time 

is significantly reduced. 
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Figure 3.11: Liebherr LSE500 Machine (from [59]). 

The axis layout for the Liebherr machine is shown in Figure 3.12. The axis which controls the center-to-

center distance of the cutter and workpiece 𝑟(𝑡) is labelled X1, the tool rotation 𝜙𝑐(𝑡) is C1, the workpiece 

rotation 𝜙𝑔(𝑡) is C2, the crank rotation drive for the reciprocating motion is Z3, and there is additionally a 

ZL3 axis (not pictured) which uses linear encoders to measure the vertical position of the tool 𝑧(𝑡). There 

are several other axes (for example the process automation axes) which are not important for the 

experimental validation of the kinematic model.  

Commanded position data from the four important axes (X1, C1, C2, and ZL3) are captured from the 

machine during a shaping cutting pass. Table 3.1 shows the gear data and process data for the cutting pass. 

The machine has its own proprietary optimization algorithms which can slightly alter the nominal process 

parameters to achieve better quality gears. For example, there is temperature compensation which 

automatically adjusts the center-to-center distance to take into account thermal deformations of the 

machine. It is difficult to reverse engineer the machine’s proprietary compensation algorithms, so the 

parameters are manually adjusted to improve the alignment of the measured and simulated profiles (shown 

in the bold values in Table 3.2).  
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Figure 3.12: Liebherr LSE500 Axes Labels (from [60]). 

Table 3.2: Cutting pass parameters and gear data for kinematic experimental validation. 

Gear Data 

𝜖 1 (external gear) 

𝑚𝑛 [mm] 2.1167 

𝜓𝑛 [deg] 20 

𝛽 [deg] -20 (helix angle) 

𝑁𝑐 36 

𝑁𝑔 52 

𝑏 50 
 

Cutting Pass Parameters 

𝑓𝑐𝑢𝑡 [DS/min] 300 (300.11) 

𝑓rotary [mm/DS] 0.8 (0.75) 

𝑓radial, start  [mm/DS] 0.1 

𝑓radial, end  [mm/DS] 0.025 

𝑟𝑠𝑡𝑎𝑟𝑡 [mm] 103.03 

𝑟𝑒𝑛𝑑  [mm] 98.243 

𝑑𝑡𝑜𝑝 [mm] 5 

𝑑𝑏𝑜𝑡𝑡𝑜𝑚 [mm] 5 
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Linear acceleration profiles are used in the simulation where the 𝑎infeed, end = 0.0075 is determined 

manually from the captured position profile. Figure 3.13 shows the position of the X1 axis during the infeed 

from the captured servo data and simulated profiles, along with their velocity and acceleration determined 

by numerical differentiation. It can be seen that the profiles based on linear acceleration closely emulate 

the movement of the gear shaping machine. Comparisons for position of all four of the axes can be seen in 

Figure 3.14 during the whole process and during a zoomed in portion at the beginning of the cutting pass. 

The only post processing applied to the captured profiles is shifting to account for the initial position of the 

axes. As seen, all four axes in the simulated profiles match closely to the captured commanded position 

data.  

 

Figure 3.13: Position, velocity, and acceleration profiles of X1 axis during infeed. 
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Figure 3.14: Comparison of simulated and captured X1, C1, C2, and ZL3 profiles. 

3.6 Conclusions 

The kinematics of the gear shaping process include three different components (reciprocating motion, rotary 

feed motion, and radial feed motion). The reciprocating motion moves the cutter up and down which 

generates the majority of the cutting action. The rotary feed motion of the cutter and workpiece emulate the 

rolling of two gears, and in addition the tool rotates while reciprocating following the helical profile of the 

workpiece. The radial motion slowly feeds the cutter into the workpiece, usually in one to three cutting 

passes, until the final depth of cut is reached. The kinematic model has been experimentally verified using 

measured data from the CNC controller of a Liebherr gear shaping machine. 
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Chapter 4 

Cutting Force Prediction 

4.1 Introduction 

In this chapter, the cutting force prediction model is described in detail including experimental validation. 

To predict the cutting forces, the cutter-workpiece engagement is first calculated using a discrete solid 

modeller, called ModuleWorks, which uses the multi-dexel representation. The tool cutting edge is 

discretized into nodes where each node represents a generalized oblique cutting force model with varying 

principle cutting directions, local inclination angle, and local normal rake angle. At each time step, two 

dimensional chip geometry is calculated and the force contribution from each node is summated to achieve 

the total force vector. 

4.2 Cutting Force Models 

4.2.1 Orthogonal 

The orthogonal cutting model [61] is the most basic cutting force model. As illustrated in Figure 4.1, the 

cutting edge is perpendicular to the cutting velocity 𝑉𝐶. There are two force components which are 

generated in this model: the tangential force 𝐹𝑡, and feed force 𝐹𝑓. The tangential force is parallel and 

opposite in direction to the cutting velocity 𝑉𝑐. The feed force is perpendicular to the cutting edge and 

cutting velocity and is directed outward from the workpiece surface. Each of the cutting forces are linear 

with respect to the undeformed chip width 𝑏, undeformed chip thickness ℎ, and the cutting coefficients 

(𝐾𝑡𝑐, 𝐾𝑡𝑒, 𝐾𝑓𝑐, 𝐾𝑓𝑒): 

𝐹𝑡 = 𝐾𝑡𝑐𝑏ℎ + 𝐾𝑡𝑒𝑏 = 𝐾𝑡𝑐𝑎 + 𝐾𝑡𝑒𝑏 (4.1) 

𝐹𝑓 = 𝐾𝑓𝑐𝑏ℎ + 𝐾𝑓𝑒𝑏 = 𝐾𝑓𝑐𝑎 + 𝐾𝑓𝑒𝑏 (4.2) 

The cutting components 𝐾𝑡𝑐𝑏ℎ and 𝐾𝑓𝑐𝑏ℎ are due to the shearing of the material and are thus proportional 

to the undeformed chip area (𝑎 = 𝑏ℎ), while the edge components 𝐾𝑡𝑒ℎ and 𝐾𝑓𝑒ℎ are due to the rubbing of 

the edge against the workpiece and are thus proportional to the undeformed chip width 𝑏. Additional 

parameters in the model include the tool rake angle 𝛼𝑟 which is defined as the angle between the rake face 

and the feed direction, and the shear angle 𝜙𝑐 which is defined as the angle between the shearing plane of 

the material and the cutting velocity. The cutting coefficients are affected by many factors (for example, 
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workpiece material, tool coating, tool wear, lubrication, rake angle, cutting speed, chip thickness) and are 

typically determined with experimental orthogonal cutting tests. 

 

Figure 4.1: Orthogonal cutting model. 

4.2.2 Oblique 

The oblique cutting force model [61] is an extension of the orthogonal cutting model where the cutting edge 

is not perpendicular to the cutting velocity as shown in Figure 4.2. In addition to the tangential and feed 

force as seen in the orthogonal model, there is a radial force 𝐹𝑟 which is perpendicular to the tangential and 

feed force. Similar to the orthogonal model, the radial force is proportional to the undeformed chip area, 

chip thickness, and cutting coefficients (𝐾𝑟𝑐, 𝐾𝑟𝑒): 

𝐹𝑟 = 𝐾𝑟𝑐𝑏ℎ + 𝐾𝑟𝑒𝑏 = 𝐾𝑟𝑐𝑎 + 𝐾𝑟𝑒𝑏 (4.3) 

The angle between the cutting edge and the radial direction is defined as the inclination angle 𝑖. Similar to 

the orthogonal model, the tool normal rake angle 𝛼𝑛 is defined as the angle between the feed direction and 



 

30 

the rake face measured on the plane orthogonal to the cutting edge (called the normal plane). In addition, 

there is a chip flow angle 𝜂 which is defined as the angle at which the chip flows on the rake face measured 

from the vector on the rake face normal to the cutting edge. The chip flow angle is normally assumed to be 

equal to the inclination angle (𝜂 = 𝑖) [62].  

 

Figure 4.2: Oblique cutting model. 

4.2.3 Orthogonal to Oblique 

A more comprehensive cutting model is the orthogonal to oblique model [61]. This model allows cutting 

coefficients to be estimated by orthogonal cutting experiments, however is still applicable to tools with 

oblique angles. The shear angle (𝜙𝑐), average friction angle (𝛽𝑎), and shearing stress (𝜏𝑠) are determined 

from orthogonal cutting experiments. The shear angle can be calculated with the below equation where 𝑟𝑐 

is the chip ratio and ℎ𝑐 is the deformed chip thickness. 

𝜙𝑐 = tan
−1 𝑟𝑐 cos𝛼𝑟

1−𝑟𝑐 sin𝛼𝑟
,  𝑟𝑐 =

ℎ

ℎ𝑐
 (4.4) 
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The friction angle, which is a representation of the coefficient of friction on the rake face, can be calculated 

as: 

𝛽𝑎 = 𝛼𝑛 + tan
−1
𝐾𝑓𝑐

𝐾𝑡𝑐
 (4.5) 

Finally, the shearing stress can be calculated with the below formula where 𝐹𝑠 is the shearing force and 𝐴𝑠 

is the chip cross-section area on the shearing plane: 

𝜏𝑠 =
𝐹𝑠
𝐴𝑠
=
𝐹𝑡𝑐 cos𝜙𝑐 − 𝐹𝑓𝑐 sin𝜙𝑐

𝑏ℎ/ sin𝜙𝑐
= sin𝜙𝑐 (𝐾𝑡𝑐 cos𝜙𝑐 − 𝐾𝑓𝑐 sin𝜙𝑐) (4.6) 

To obtain the oblique cutting coefficients, the orthogonal to oblique transformation is applied. The shearing 

cutting coefficients (𝐾𝑡𝑐 , 𝐾𝑓𝑐 , 𝐾𝑟𝑐) are determined with the below equations. The tangential and feed edge 

coefficients (𝐾𝑡𝑒 , 𝐾𝑓𝑒) are assumed to be equal to the edge coefficients identified in the orthogonal cutting 

tests, and the radial edge coefficient 𝐾𝑟𝑒 is typically approximated as zero. 

𝐾𝑡𝑐 =
𝜏𝑠

sin𝜙𝑛

cos(𝛽𝑛 − 𝛼𝑛) + tan 𝑖 tan 𝜂 sin𝛽𝑛

 √cos2(𝜙𝑛 + 𝛽𝑛 − 𝛼𝑛) + tan
2 𝜂 sin2 𝛽𝑛

 (4.7) 

𝐾𝑓𝑐 =
𝜏𝑠

sin𝜙𝑛 cos 𝑖

sin(𝛽𝑛 − 𝛼𝑛) 

 √cos2(𝜙𝑛 + 𝛽𝑛 − 𝛼𝑛) + tan
2 𝜂 sin2 𝛽𝑛

 (4.8) 

𝐾𝑟𝑐 =
𝜏𝑠

sin𝜙𝑛

cos(𝛽𝑛 − 𝛼𝑛) tan 𝑖 + tan 𝜂 sin𝛽𝑛

 √cos2(𝜙𝑛 + 𝛽𝑛 − 𝛼𝑛) + tan
2 𝜂 sin2 𝛽𝑛

 (4.9) 

Here, the normal shear angle 𝜙𝑛 is assumed to be equal to the identified orthogonal shear angle 𝜙𝐶, and the 

normal friction angle 𝛽𝑛 is assumed to be equal to the identified orthogonal friction angle 𝛽𝑎. It is 

noteworthy that the shear angle, friction angle, and shear stress are dependent on the rake angle of the tool. 

In the orthogonal to oblique transformation, the normal rake angle 𝛼𝑛 (i.e. projection of the oblique tool’s 

rake angle onto the normal plane) is also assumed to coincide with the rake angle in the pure orthogonal 

cutting conditions. 

4.2.4 Exponential Chip Thickness 

The above models have assumed linear relationships with respect to the undeformed chip area. However, 

it has been shown that the cutting forces can exhibit nonlinear behaviours with respect to the chip thickness 

[61]. Therefore, the cutting forces are often expressed as nonlinear functions of the undeformed chip 

thickness: 
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𝐹𝑡 = (𝐾𝑡ℎ
−𝑝)𝑎, 𝐹𝑓 = (𝐾𝑓ℎ

−𝑞)𝑎, 𝐹𝑟 = (𝐾𝑟ℎ
−𝑟)𝑎 (4.10) 

Here, the exponents (𝑝, 𝑞, 𝑟) are additional coefficients determined from experiments. Furthermore, cutting 

forces can also be nonlinear with respect to the cutting speed, therefore the above equations can also be 

extended to include the effect of the cutting speed. 

4.2.5 Kienzle 

The nonlinear Kienzle cutting force model [63] is another widely used model in the literature. In this model, 

there is a friction force 𝐹𝑢 and a normal force 𝐹𝑣, as seen in Figure 4.2. The normal force is normal to the 

rake face while the friction force is coincident with the rake face and is parallel to the vector which defines 

the chip flow angle 𝜂. Similar to the exponential chip model, each force component is nonlinear with respect 

to the chip thickness ℎ: 

𝐹𝑢 = (𝐾𝑢ℎ
−𝑢)𝑎, 𝐹𝑣 = (𝐾𝑣ℎ

−𝑣)𝑎 (4.11) 

Here, 𝐾𝑢, 𝐾𝑣, 𝑢, and 𝑣 are cutting coefficients which are determined experimentally. The coefficients in 

the Kienzle model can be transformed into the oblique cutting coefficients with the following 

transformation [64]:  

𝐾𝑡𝑐 = 𝐾𝑢ℎ
−𝑢 (sin 𝑖 sin 𝜂 + cos 𝑖 sin 𝛼𝑛 cos 𝜂) + 𝐾𝑣  ℎ

−𝑣(cos 𝑖 cos 𝛼𝑛) (4.12) 

𝐾𝑓𝑐 = 𝐾𝑢ℎ
−𝑢(cos 𝛼𝑛 cos 𝜂) − 𝐾𝑣  ℎ

−𝑣sin𝛼𝑛 (4.13) 

𝐾𝑟𝑐 = 𝐾𝑢ℎ
−𝑢 (− cos 𝑖  sin 𝜂  + sin 𝑖 sin𝛼𝑛 cos 𝜂)  + 𝐾𝑣 ℎ

−𝑣 sin 𝑖 cos𝛼𝑛  (4.14) 

4.2.6 Generalized Model 

In each of the above defined cutting force models, the forces can be generalized into the oblique cutting 

model with the three principle directions (tangential, feed, and radial) where the cutting coefficients may 

be constants or functions of other process parameters such as the chip thickness, cutting speed, inclination 

angle, tool rake angle, etc. 

𝐹𝑡 = 𝐾𝑡𝑐(ℎ, 𝑉𝑐 , … )𝑎 + 𝐾𝑡𝑒(ℎ, 𝑉𝑐 , … )𝑏 (4.15) 

𝐹𝑓 = 𝐾𝑓𝑐(ℎ, 𝑉𝑐 , … )𝑎 + 𝐾𝑓𝑒(ℎ, 𝑉𝑐 , … )𝑏 (4.16) 

𝐹𝑟 = 𝐾𝑟𝑐(ℎ, 𝑉𝑐 , … )𝑎 + 𝐾𝑟𝑒(ℎ, 𝑉𝑐 , … )𝑏 (4.17) 
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4.3 Cutter-Workpiece Engagement 

As evident in the cutting force models, knowledge of the chip geometry is a pre-requisite for calculating 

the cutting force. Specifically, the undeformed chip area (𝑎), thickness (ℎ) and width (𝑏) must be known. 

To obtain this information in simulation, the cutter-workpiece engagement (interference) must be calculated 

and the workpiece geometry must be continuously updated while material is being removed. In the gear 

shaping operation, it is very difficult to do this analytically as the kinematics are complex, and the cutter 

and workpiece geometries are complicated. Therefore, a solid modeller is used to compute the cutter-

workpiece engagement. There are two different types of solid modellers available: exact modellers, and 

discrete modellers. Exact modellers (such as boundary representation) represent the solids with exact 

equations and, in general, offer better accuracy. Discrete modellers (such as multi-dexel representation) 

represent the solids approximately while offering better speed and robustness. In this analysis, a discrete 

solid modeller, called ModuleWorks [65], is used. The ModuleWorks engine is a highly optimized solid 

modeller specifically developed for material removal simulation which uses the multi-dexel representation 

to model the workpiece. 

4.3.1 Multi-Dexel Representation 

The multi-dexel representation is a method of modelling surfaces and volumes with arrays of parallel line 

segments (called ‘nails’) [66]. The nails have points on them which represent where material begin and end. 

Figure 4.3 shows the dexel representation of a circle. It can be seen that if only a single array of nails is 

used, curves/surfaces which are near parallel the direction of the nails are not represented well. Therefore, 

multiple orthogonal sets of nails are used. The two-direction dexel representation of the circle has an 

improved distribution of points on the curve versus the single-direction representation. In three dimensions, 

three orthogonal sets of nails are used to represent volumes. 
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Figure 4.3: Single direction and two direction dexel representation of a circle (from [66]). 

4.3.2 Material Removal Simulation 

In the gear shaping simulation, the cutter-workpiece engagement and cutting force is calculated at discrete 

time steps. Within the ModuleWorks engine, the cutter is represented by a single transverse plane at the 

bottom of the cutter as seen in Figure 4.4. Using a thin plane at the bottom of the cutter as a representation 

of the tool allows for the cutter clearance angles to be omitted from the CAD model which decreases 

simulation time.  

 

Figure 4.4: Tool and workpiece representation in ModuleWorks engine. 
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To perform the cutter-workpiece engagement calculation with the ModuleWorks engine, the workpiece 

must be kept stationary and the tool is swept from a starting position to an end position. Therefore, the 

position of the cutter at the beginning and end of each time step is calculated in the Workpiece Coordinate 

System using the transformation defined in Equation (3.13). Then, a cutting operation is performed in the 

engine to obtain the removed material in dexel representation as depicted in Figure 4.5. The nails in the 

removed material are then analyzed to determine the two-dimensional chip geometry and cutting force 

which is explained further in Section 4.5. 

 

Figure 4.5: Cutter-workpiece engagement. 

4.4 Tool Edge Discretization 

To perform the cutting force prediction, the tool edge is discretized into points called nodes where each 

node contributes a three dimensional force component per the generalized oblique cutting force model. The 

geometry of the cutting edge is different for the spur and helical gear shaper cases. However, in both cases 

the tool edge is first discretized by generating points on the transverse plane of the cutter based on the gear 

data. Then, the nodes on the transverse plane are modified based on the model of the rake face to obtain the 

nodes on the cutting edge. Afterwards, the cutting directions (tangential, feed, radial), local inclination 

angle, and local normal rake angle are determined for each node. 
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4.4.1 Rake Face Model 

4.4.1.1 Spur Gear Shaper 

In spur gear shaping, the rake face is modelled as a downward facing cone where the angle between the 

gear transverse plane and the rake face is the cutter global rake angle 𝛼 as shown in Figure 4.6. 

 

Figure 4.6: Rake face model in spur gear shaping. 
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Figure 4.7: Projection of transverse nodes onto rake face. 

The equation of the cone is simply: 

𝑧 = −√𝑥2 + 𝑦2  tan𝛼 (4.18) 

Starting from the generated transverse gear profile, the cutting edge can be obtained by the vertical 

projection of each point onto the conical rake face (shown in Figure 4.7 left). Denoting the location of a 

node on the transverse profile (in the tool coordinate system) as 𝑝𝑡 = [𝑥𝑡 𝑦𝑡 0]𝑇, the corresponding 

point on the rake face is: 

𝑝𝑟 = [𝑥𝑟 𝑦𝑟 𝑧𝑟]𝑇 = [𝑥𝑡 𝑦𝑡 −√𝑥𝑡
2 + 𝑦𝑡

2 tan𝛼]
𝑇

 (4.19) 

4.4.1.2 Helical Gear Shaper 

In the helical gear shaper case, each tooth has its own rake face which includes the effects of the helix angle 

and global rake angle of the cutter as seen in Figure 4.8.  
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Figure 4.8: Rake face model in helical gear shaping. 

The transverse nodes are first orthogonally projected onto the normal plane of the tooth to obtain the normal 

nodes and then vertically projected onto the rake face to obtain the rake face nodes as seen in the right side 

of Figure 4.7. 

The equation of the normal plane for a tooth is given by: 

𝑛̂normal ∙ (𝑝𝑛 − 𝑝normal ) = 0 (4.20) 

Here, 𝑝𝑛 is any point on the plane, 𝑛̂normal and 𝑝normal define the plane geometry where 𝑛̂normal is the vector 

normal to the normal plane, and 𝑝normal  is a point coincident with the plane. In this case, 𝑝normal =

[0 0 0]𝑇 and 𝑛̂normal is determined as:  

𝑛̂normal = 𝑅tooth 𝑛̂normal, 0 = 𝑅tooth (𝑉̂helix × 𝑋̂) 

= [
cos 𝛾 − sin𝛾 0
sin 𝛾 cos𝛾 0
0 0 1

] ([

0
−cos𝛽
sin𝛽

] × [
1
0
0
]) 

= [

− sin𝛽 sin𝛾
sin𝛽 cos𝛾
cos𝛽

] 

(4.21) 

Here, 𝛽 is the helix angle of the cutter. 𝑅tooth is the yaw rotation matrix for the particular tooth; hence, 𝛾 

defines the angle of the tooth on the transverse plane measured from the 𝑥 axis to the tip of the tooth as 

illustrated in Figure 4.9. 𝑛̂normal, 0 is the normal vector of the normal plane for a tooth where 𝛾 = 0. This is 
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determined by the cross product of the 𝑥 axis and 𝑉̂helix = [0 −cos𝛽 sin𝛽]𝑇, which are both vectors 

that are coincident with the normal plane (illustrated in Figure 4.7 right).  

 

Figure 4.9: Illustration of tooth angle (𝜸). 

To perform the orthogonal projection of the transverse nodes onto the normal plane of the tooth, the 

following projection is used: 

𝑝n = [𝑥𝑛 𝑦𝑛 𝑧𝑛]𝑇 = 𝑝𝑡 − [(𝑝𝑡 − 𝑝normal ) ∙ 𝑛̂normal] 𝑛̂normal (4.22) 

The equation of the rake plane of the tooth which also has the effect of the cutter’s global rake angle (𝛼) is, 

given by: 

𝑛̂rake ∙ (𝑝𝑟 − 𝑝rake ) = 0 (4.23) 

𝑝rake = [0 0 0]𝑇 is a point coincident with the plane, and 𝑛̂rake is the vector normal to the plane which 

is determined by: 
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𝑛̂rake = 𝑅tooth 𝑛̂rake, 0 = 𝑅tooth (𝑉̂helix × 𝑉̂rake) 

= [
cos 𝛾 −sin 𝛾 0
sin𝛾 cos 𝛾 0
0 0 1

] ([

0
− cos𝛽
sin𝛽

] × [
cos𝛼
0

−sin𝛼
]) 

= [

cos𝛽 cos 𝛾 sin𝛼 − cos𝛼 sin𝛽 sin 𝛾
cos𝛼 cos 𝛾 sin𝛽 + cos𝛽 sin𝛼 sin 𝛾

cos𝛼 cos𝛽
] 

= [

𝑛rake𝑥
𝑛rake𝑦
𝑛rake𝑧

] 

(4.24) 

Similarly, 𝑛̂rake, 0 is the normal vector of the rake plane for a tooth with 𝛾 = 0 which is determined by the 

cross product of two vectors coincident with the plane (𝑉̂helix = [0 − cos𝛽 sin𝛽]𝑇 and 𝑉̂rake =

[cos𝛼 0 −sin𝛼]𝑇, shown in Figure 4.7 right). 

Using the equation of the plane, the vertical projection of the normal nodes onto the rake plane can be 

performed to obtain the rake face nodes: 

𝑝𝑟 = [𝑥𝑟 𝑦𝑟 𝑧𝑟]𝑇 = [𝑥𝑛 𝑦𝑛 −
𝑛rake𝑥 𝑥n + 𝑛rake𝑦𝑦n

𝑛rake𝑧
]

𝑇

 (4.25) 

4.4.2 Cutting Direction Calculation 

In the generalized cutting force model, the tangential, feed, and radial direction must be determined which 

is a function of the cutting edge geometry and the cutting velocity relative to the workpiece. The cutting 

velocity 𝑉̅𝐶 of the tool is a combination of the three different kinematic components: 

𝑉̅𝑐(𝑡) = 𝑉̅rad(𝑡)⏟  
radial feed

+ 𝑉̅rot(𝑡)⏟  
rotary feed

+ 𝑉̅rec(𝑡)⏟  
reciprocating

 
(4.26) 

4.4.2.1 Spur Gear Shaping 

In spur gear shaping, it can be seen that the magnitude of the radial feed and rotary feed are 2-3 orders of 

magnitude smaller than the reciprocating motion. For a typical cutting pass (e.g. 𝑓cut = 400, 𝑓rotary = 0.2 

feed,  𝑓radial, start =  𝑓radial, end = 0.1, and 𝑑stroke = 30), the average cutting speed due to reciprocating 

motion is 400 mm/s, the average tangential velocity due to the rotary feed of the cutter is 1.3 mm/s, and the 

velocity due to the infeed motion is 0.67 mm/s. Therefore, the radial and rotary feed can be ignored and the 

cutting velocity can be approximated as: 
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𝑉̅𝑐(𝑡) ≅ 𝑉̅rec(𝑡) = [0 0
𝑑𝑧(𝑡)

𝑑𝑡
]
𝑇

 (4.27) 

𝑑𝑧(𝑡)

𝑑𝑡
=
𝑑 (𝑑𝑡𝑜𝑝 − 0.5𝑑stroke(1 − cos(𝜔𝑠 𝑡)))

𝑑𝑡
= −0.5𝜔𝑠𝑑stroke sin(𝜔𝑠 𝑡) (4.28) 

Since cutting only occurs during the down stroke, the unit vector of the cutting velocity (𝑉̂𝑐) is constant for 

every node location (shown in Figure 4.10): 

𝑉̂𝑐 = [0 0 −1]𝑇  (spur case) (4.29) 

 

Figure 4.10: Cutting velocity and directions in spur and helical shaping. 

4.4.2.2 Helical Gear Shaping 

In helical gear shaping, there is additional tool rotation due to the helical engagement of the tool and 

workpiece. In this case, the magnitude of the helical component is significant. The rotation of the cutter 

relative to the gear workpiece is: 
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𝜙𝑐𝑔(𝑡) = 𝜙𝑐(𝑡) − 𝜙𝑔(𝑡) = −
𝜖𝜔𝑔

𝑅
𝑡

⏟  
rotary feed 
of cutter

+
𝑧(𝑡) tan𝛽

𝑟𝑝𝑐⏟      
helical component

− 𝜔𝑔𝑡⏟
rotary feed 
of gear

≅
𝑧(𝑡) tan𝛽

𝑟𝑝𝑐
 

(4.30) 

The angular velocity of the cutter relative to the gear is then: 

𝜔𝑐𝑔(𝑡) =
𝑑𝜙𝑐𝑔(𝑡)

𝑑𝑡
≅

𝑑𝑧(𝑡)
𝑑𝑡

tan 𝛽

𝑟𝑝𝑐
 (4.31) 

For rake node location 𝑝r = [𝑥r 𝑦r 𝑧r]𝑇, the tangential velocity due to the rotation of the tool is: 

𝑉̅rot(𝑡) = √𝑥r
2 + 𝑦r

2⏟      
radial distance to
node location

 

𝑑𝑧(𝑡)
𝑑𝑡

tan𝛽

𝑟𝑝𝑐⏟      
angular 
velocity

 
[−𝑦𝑟 𝑥𝑟 0]𝑇

√𝑥r
2 + 𝑦r

2⏟          
tangential unit vector

=

𝑑𝑧(𝑡)
𝑑𝑡

tan𝛽

𝑟𝑝𝑐
[−𝑦𝑟 𝑥𝑟 0]𝑇 

(4.32) 

Then, the total cutting velocity is: 

𝑉̅𝑐 ≅ 𝑉̅rot(𝑡) + 𝑉̅rec(𝑡) =

𝑑𝑧(𝑡)
𝑑𝑡

tan𝛽

𝑟𝑝𝑐
[−𝑦𝑟 𝑥𝑟 0]𝑇 + [0 0

𝑑𝑧(𝑡)

𝑑𝑡
]
𝑇

  

=
𝑑𝑧(𝑡)

𝑑𝑡
[
−𝑦𝑟 tan 𝛽

𝑟𝑝𝑐

𝑥𝑟 tan𝛽

𝑟𝑝𝑐
1]

𝑇

 

(4.33) 

Therefore, the unit vector of the cutting velocity will be constant for each node (in the tool coordinate 

system) regardless of the value of 𝑑𝑧(𝑡)/𝑑𝑧. Since cutting always occurs in the negative 𝑧 direction, the 

unit vector of the cutting velocity is: 

𝑉̂𝑐 =
[
𝑦𝑟 tan𝛽
𝑟𝑝𝑐

−𝑥𝑟 tan𝛽
𝑟𝑝𝑐

−1]

√(
𝑦𝑟 tan𝛽
𝑟𝑝𝑐

)
2

+ (
−𝑥𝑟 tan 𝛽
𝑟𝑝𝑐

)
2

+ 1

  (helical case) 
(4.34) 

It is noteworthy that the tangential velocity due to tool rotation is different for each node location. Nodes 

that are farther away from the axis of rotation will have larger tangential velocity than nodes which are 

closer (seen in Figure 4.10) and therefore, each node also has a different cutting velocity vector. 

4.4.2.3 Tangential, Feed, and Radial Direction Calculation 

In both the helical and spur cases, the cutting directions for each node are calculated with the same 

procedure given the knowledge of the cutting velocity and rake node location. The location of the current 
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node is denoted by 𝑝0,𝑟, the location of the next node is denoted by 𝑝1,𝑟, and the location of the previous 

node is denoted by 𝑝−1,𝑟 as shown in Figure 4.11.  

 

Figure 4.11: Cutting direction calculation. 

𝑝0.5,𝑟 and 𝑝−0.5,𝑟 are midpoint nodes which are calculated as follows: 

𝑝0.5,𝑟 =
(𝑝1,𝑟 + 𝑝0,𝑟)

2
 

𝑝−0.5,𝑟 =
(𝑝0,𝑟 + 𝑝−1,𝑟)

2
 

(4.35) 
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The tangent direction 𝑡̂ is defined opposite to the cutting velocity unit vector: 

𝑡̂ = −𝑉̂𝑐 (4.36) 

An edge vector 𝑒̅ and unit edge vector 𝑒̂ is defined which adjoins the two midpoints: 

𝑒̅ = 𝑝0.5 − 𝑝−0.5, 𝑒̂ =
𝑒̅

‖𝑒̅‖
 (4.37) 

With the assumption that the node locations are ordered in a clockwise manner around the axis of rotation, 

the feed direction 𝑓 is orthogonal to the edge vector and tangent direction: 

𝑓 = 𝑒̂ × 𝑡̂ (4.38) 

Next, an inclination vector 𝑖 ̂is defined as orthogonal to the feed vector and edge vector: 

𝑖̂ = 𝑓 × 𝑒̂ (4.39) 

Accordingly, the inclination angle 𝑖 can be calculated as the angle between the inclination vector and 

tangent direction  

𝑖 = acos(𝑖̂ ∙ 𝑡̂) (4.40) 

The radial direction 𝑟̂ is calculated as orthogonal to the tangential and feed directions, however care must 

be taken to flip the radial direction if necessary: 

𝑟̂ = 𝑡̂ × 𝑓,       if 𝑟̂ ∙ 𝑖̂ < 0 ⇒ 𝑟̂ = −𝑟̂ (4.41) 

The edge width 𝑏 is calculated as the length of the edge vector projected onto the radial direction: 

𝑏 = ‖𝑒̅‖ cos 𝑖 (4.42) 

Finally, the normal rake angle 𝛼𝑛 is defined as the angle between the feed direction and rake face on the 

cutting normal plane where the cutting normal plane is the plane normal to the cutting edge. A rake vector 

𝑔 is defined which is the vector that intersects the cutting normal plane and rake face. The normal rake 

angle is then calculated as the angle between the rake vector and feed direction, with care being taken for 

the negative rake angle case: 

𝛼𝑛 = acos(𝑔 ∙ 𝑓) ,       if 𝑔̂ ∙ 𝑖̂ < 0 ⇒ 𝛼𝑛 = −𝛼𝑛 (4.43) 

The rake vector is calculated differently for the spur and helical shaping cases. For the spur shaping case, 

since the rake face is a cone, the rake vector must be approximated locally (i.e. the rake face is a curved 

surface). To do the approximation, a ghost point 𝑝𝑔 is determined which lies on the rake face and cutting 
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normal plane, then the rake vector is calculated by adjoining the ghost point and node location as illustrated 

in Figure 4.12. 

 

Figure 4.12: Local approximation of normal rake angle for curved rake face. 

The ghost point is calculated by first perturbing the node location a small amount (𝜀) in the feed direction: 

𝑝𝑔
′ = 𝑝0,𝑟 + 𝜀𝑓 (4.44) 

Then, the 𝑧 coordinate is adjusted to be on the rake face: 

𝑝𝑔𝑍
′ = −tan𝛼 √𝑝𝑔𝑥

′ 2
+ 𝑝𝑔𝑦

′ 2
 (4.45) 

Finally, the point is orthogonally projected onto the cutting normal plane to obtain the ghost point: 

𝑝𝑔 = 𝑝𝑔
′ − ((𝑝𝑔

′ − 𝑝0,𝑟) ∙ 𝑒̂) 𝑒̂ (4.46) 

𝑔̅ = 𝑝𝑔 − 𝑝0,𝑟, 𝑔 =
𝑔̅

‖𝑔̅‖
  (spur case) (4.47) 
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Based on the value of 𝜀, different values for the normal rake angle will be obtained as seen in Figure 4.12. 

In this case, a small 𝜀 (0.000001) is used to obtain the approximation of the normal rake angle close to the 

cutting edge.  

For the helical shaping case, the rake face is a plane so the rake vector can be calculated analytically: 

 𝑔 = 𝑛̂rake⏟
normal vector 
of rake face

× 𝑒̂⏟
normal vector of

cutting normal plane

(helical case) 
(4.48) 

Figure 4.13 show how the local rake angle and inclination angles vary along the cutting edge in a spur and 

helical gear shaper case. In general, there is high rake angle and low inclination angle at the tip and root of 

the teeth while there is low rake angle and high inclination angle on the flanks of the teeth. 

 

Figure 4.13: Distribution of inclination and rake angles on single gear tooth with cutter rake angle of 𝟓° 

and helical angle of 𝟐𝟓° in helical gear shaper case. 

4.5 Force Calculation 

Since the cutting force model is a function of the chip thickness and width, the chip geometry must be 

analyzed on a two-dimensional plane. The chip cross-section is constructed on the plane normal to the Z-
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axis at the dexel height closest to the midpoint of the tool movement during the time step. As seen in Figure 

4.14 which shows a typical chip generated during a helical shaping case, the chip cross-section can change 

drastically throughout the movement of the tool during a time step, therefore analyzing the chip at the 

middle of the tool movement gives the best representation of the average chip cross-section.  

 

Figure 4.14: Typical chip geometry in helical gear shaping case. 

To reconstruct the chip cross-section from the dexel format, a point cloud is generated on the construction 

plane which includes the end points of each X and Y nail on the plane, the intersection of the Z nails on the 

plane, and the engaged nodes along the tool edge (Figure 4.15a). The engaged nodes include any nodes on 

the tool which are within a certain distance to any of the X and Y nail endpoints or Z nail intersections. The 

distance threshold is chosen to be the dexel precision (𝑑dexel) which is the distance between two adjacent 

nails. Here, the transverse node locations are used since the tool is represented with a transverse plane in 

the CWE calculation. However, since the node geometry is defined in the TCS (see previous section) and 

the CWE is in the WCS, the node locations are transformed into the WCS: 

[𝑝𝑡
𝑊𝐶𝑆

1
]

⏟    
transverse node
location in WCS

= 𝑇𝑇𝐶𝑆
𝑊𝐶𝑆
⏟  
transform
between tool
and workpiece

[𝑝𝑡
𝑇𝐶𝑆

1
]

⏟  
transverse node
location in TCS

 

(4.49) 
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Figure 4.15: Reconstruction of two-dimensional chip cross-section. 
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From the point cloud on the plane, the chip geometry is reconstructed using the alpha shape method [67]. 

Alpha shapes is a method for determining the shape of a set of points on a plane. To determine the alpha 

shape of the point cloud, the Delaunay triangulation (DT) is first calculated. The DT is defined as the non-

overlapping triangulation of the set of points in which the circumscribed circle of each triangle does not 

contain any other point [68]. This results in the triangulation with the fewest number of thin triangles. There 

are many algorithms for calculating the DT which offer varying levels of speed and robustness. In this case, 

the Bowyer-Watson algorithm [69] is implemented due to its simplicity and robustness. In this algorithm, 

each point is incrementally inserted into a “super” triangle which encompasses the bounds of the point 

cloud. During each insertion, each triangle within the existing triangulation whose circumscribed circle 

contains the inserted point is removed from the triangulation. Then, each vertex from the removed triangles 

is re-triangulated with the inserted point to obtain a valid DT. After all the points are inserted, the triangles 

which contain the vertices of the “super” triangle are removed. The location (𝑥𝑐 , 𝑦𝑐) and radius (𝑟𝑐) of the 

circumscribed circle of a triangle given the coordinates of the three vertices on a plane can be calculated as 

[70]: 

𝑥𝑐 =
(𝑥0
2 + 𝑦0

2)(𝑦2 − 𝑦1) + (𝑥1
2 + 𝑦1

2)(𝑦0 − 𝑦2) + (𝑥2
2 + 𝑦2

2)(𝑦1 − 𝑦0)

2(𝑥0(𝑦2 − 𝑦1) + 𝑥1(𝑦0 − 𝑦2) + 𝑥2(𝑦1 − 𝑦0))
 

𝑦𝑐 =
(𝑥0
2 + 𝑦0

2)(𝑥1 − 𝑥2) + (𝑥1
2 + 𝑦1

2)(𝑥2 − 𝑥0) + (𝑥2
2 + 𝑦2

2)(𝑥0 − 𝑥1)

2(𝑥0(𝑦2 − 𝑦1) + 𝑥1(𝑦0 − 𝑦2) + 𝑥2(𝑦1 − 𝑦0))
 

𝑟𝑐 = √(𝑥𝑐 − 𝑥0)
2 + (𝑦𝑐 − 𝑦0)

2 

(4.50) 

Once the DT of the point cloud is obtained, the alpha shape is determined by removing any triangles whose 

circumscribed circle’s radius is larger than the alpha distance 𝑑𝛼. In this case, the alpha threshold is chosen 

to be 𝑑𝛼 = √2𝑑dexel. Figure 4.15b shows the circumscribed circles of the triangles that are part of the alpha 

shape for that particular case. The triangles in the alpha shape form the geometry of the chip cross-section 

(Figure 4.15c).  

Each triangle in the alpha shape is associated to the tool node that is closest to the centroid of that triangle 

as shown in Figure 4.15d.  

In the cutting force model, the undeformed chip characteristics (area, thickness, width) are defined on the 

plane normal to the tangential direction. In the helical gear shaping case, the tangential direction is not 

coincident with the Z axis, however the alpha shape is constructed on the plane normal to the Z axis. 
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Therefore, the triangles of the alpha shape must be orthogonally projected onto the plane normal to the 

tangent direction as depicted in the left side of Figure 4.16 before calculating the undeformed chip area.  

 

Figure 4.16: Projection of triangles onto plane normal to tangential direction. 

The summation of the area of each triangle associated to a node comprise the undeformed chip area which 

is used to calculate the incremental tangential, feed, and radial forces. The area of a triangle (∆) in three 

dimensions given the coordinates of the three vertices can be calculated using Heron’s formula [71]: 

∆ = √𝑠(𝑠 − 𝑙01)(𝑠 − 𝑙02)(𝑠 − 𝑙12) 

𝑙01 = √(𝑥0 − 𝑥1)
2 + (𝑦0 − 𝑦1)

2 + (𝑧0 − 𝑧1)
2 

𝑙02 = √(𝑥0 − 𝑥2)
2 + (𝑦0 − 𝑦2)

2 + (𝑧0 − 𝑧2)
2 

𝑙12 = √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 + (𝑧1 − 𝑧2)
2 

𝑠 = (𝑙01 + 𝑙02 + 𝑙12)/2 

(4.51) 

The incremental tangential, feed, and radial forces (𝑑𝐹𝑡, 𝑑𝐹𝑓, 𝑑𝐹𝑟) for each node are then calculated (Figure 

4.16 right) with the below formula which coincides with the generalized oblique cutting model. The chip 

thickness, which may be a parameter in the cutting coefficient, is estimated by dividing the chip area with 

the chip width (ℎ = 𝑎/𝑏). 
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𝑑𝐹𝑡,𝑓,𝑟 = 𝐾(𝑡,𝑓,𝑟)𝑐(ℎ, |𝑉𝑐̅|, … ) ( ∑ ∆
associated
triangles⏟      
𝑎,   chip area

) + 𝐾(𝑡,𝑓,𝑟)𝑒(ℎ, |𝑉𝑐̅|, … ) 𝑏 

(4.52) 

Finally, the total cutting force for a time step is determined by integrating the incremental cutting forces 

from each node:  

𝐹̅𝑊𝐶𝑆 = ∑ (𝑑𝐹𝑡 𝑡̂
𝑊𝐶𝑆 + 𝑑𝐹𝑓𝑓

𝑊𝐶𝑆 + 𝑑𝐹𝑟𝑟̂
𝑊𝐶𝑆)

engaged
nodes

 
(4.53) 

In the previous section, the tangential, feed, and radial directions were defined in the TCS, therefore they 

must be rotated into the WCS: 

𝑡̂𝑊𝐶𝑆⏟
tangential 
vector in WCS

= 𝑅𝑇𝐶𝑆
𝑊𝐶𝑆
⏟  

rotation matrix
between tool
and workpiece

𝑡̂𝑇𝐶𝑆⏟
tangential
vector in TCS

 

𝑓𝑊𝐶𝑆 = 𝑅𝑇𝐶𝑆
𝑊𝐶𝑆𝑓𝑇𝐶𝑆, 𝑟̂𝑊𝐶𝑆 = 𝑅𝑇𝐶𝑆

𝑊𝐶𝑆𝑟̂𝑇𝐶𝑆 

(4.54) 

4.6 Experimental Validation 

Experimental validation of the cutting force prediction algorithm has been carried out by defining several 

different case studies designed to validate the model for different types of gears, processes, and materials. 

Cutting force measurements have been recorded during the generation of internal spur gears, external spur 

gears, and external helical gears. In each case, two different processes were tested (a single pass process, 

and a two-pass process with a roughing and finishing pass). The gear data and process parameters for the 

internal gear case study can be found in Table 4.1 and the workpiece/tool can be seen in Figure 4.17. In this 

case, two different workpiece materials were tested (AISI 1141 and 5130 steels) and the tool material is 

PM-HSS with Balinit® Alcrona Pro coating. Similarly, the process parameters for the external spur and 

external helical cases can be found in Table 4.2 and Table 4.3, and the workpiece/tools can be seen in Figure 

4.18 and Figure 4.19. In both the external spur and external helical cases, the workpiece material is AISI 

8620 steel. The tool material for the external spur case is PM-HSS with Balinit® Alcrona Pro coating, and 

the tool material for the external helical case is S390 steel with Balinit® Alcrona Pro coating. All of the 

tools used in the experiments have a rake angle of 5 degrees. 
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Table 4.1: Cutting pass parameters and gear data for internal spur case study. 

Gear Data 

𝜖 -1 (internal gear) 

𝑚𝑛 [mm] 1.5875 

𝜓𝑛 [deg] 25 

𝛽 [deg] 0 

𝑁𝑐 50 

𝑁𝑔 121 

𝑏 34.85 

𝑟𝑎𝑐  41.26 

𝑟𝑎𝑔  94.2 

𝑥𝑐 0.0* 
 

Cutting Pass Parameters 

 One-pass Two-pass 

𝑓𝑐𝑢𝑡 [DS/min] 350 350 450 

𝑓rotary [mm/DS] 0.5 0.8 0.5 

𝑓radial, start  [mm/DS] 0.01 0.015 0.01 

𝑓radial, end  [mm/DS] 0.01 0.01 0.0041 

𝑟𝑠𝑡𝑎𝑟𝑡 [mm] 52.75 52.75 56.609 

𝑟𝑒𝑛𝑑  [mm] 56.89 56.609 56.89 

𝑑𝑡𝑜𝑝 [mm] 2.54 2.54 2.54 

𝑑𝑏𝑜𝑡𝑡𝑜𝑚 [mm] 2.54 2.54 2.54 

*tool profile modification coefficient was unfortunately not 

measured during this trial and assumed zero in simulation 

Table 4.2: Cutting pass parameters and gear data for external spur case study. 

Gear Data 

𝜖 1 (external gear) 

𝑚𝑛 [mm] 5.08 

𝜓𝑛 [deg] 22.5 

𝛽 [deg] 0 

𝑁𝑐 28 

𝑁𝑔 22 

𝑏 25.4 

𝑟𝑎𝑐 [mm] 77.2 

𝑟𝑎𝑔  [mm] 60.875 

𝑥𝑐 0.17 
 

Cutting Pass Parameters 

 One-pass Two-pass 

𝑓𝑐𝑢𝑡 [DS/min] 400 400 400 

𝑓rotary [mm/DS] 0.5 0.5 1 

𝑓radial, start  [mm/DS] 0.1 0.1 0.025 

𝑓radial, end  [mm/DS] 0.025 0.025 0.025 

𝑟𝑠𝑡𝑎𝑟𝑡 [mm] 137.111 137.111 128.561 

𝑟𝑒𝑛𝑑  [mm] 128.361 128.561 128.361 

𝑑𝑡𝑜𝑝 [mm] 2.54 2.54 2.54 

𝑑𝑏𝑜𝑡𝑡𝑜𝑚 [mm] 2.54 2.54 2.54 
 

Table 4.3: Cutting pass parameters and gear data for external helical case study. 

Gear Data 

𝜖 1 (external gear) 

𝑚𝑛 [mm] 2.1167 

𝜓𝑛 [deg] 20 

𝛽 [deg] -20 

𝑁𝑐 36 

𝑁𝑔 52 

𝑏 50 

𝑟𝑎𝑐 [mm] 43.065 

𝑟𝑎𝑔  [mm] 60.875 

𝑥𝑐 -0.06 
 

Cutting Pass Parameters 

 One-pass Two-pass 

𝑓𝑐𝑢𝑡 [DS/min] 300 300 300 

𝑓rotary [mm/DS] 0.8 0.5 0.5 

𝑓radial, start  [mm/DS] 0.1 0.1 0.1 

𝑓radial, end  [mm/DS] 0.025 0.025 0.025 

𝑟𝑠𝑡𝑎𝑟𝑡 [mm] 103.03 103.03 98.343 

𝑟𝑒𝑛𝑑  [mm] 98.243 98.343 98.243 

𝑑𝑡𝑜𝑝 [mm] 5 5 5 

𝑑𝑏𝑜𝑡𝑡𝑜𝑚 [mm] 5 5 5 
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Figure 4.17: Finished workpiece (left) and tool (right) for internal spur gear case study. 

  

Figure 4.18: Finished workpiece (left) and tool (right) for external spur gear case study. 

  

Figure 4.19: Finished workpiece (left) and tool (right) for external helical gear case study. 
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4.6.1 Experimental Setup 

To measure the cutting forces, a Kistler 9255A 3-axis dynamometer is mounted on the Liebherr LSE500 

gear worktable. Hence, the measured cutting forces are in the workpiece coordinate system. A custom 

fixture was designed and built for the internal gear workpiece (seen in Figure 4.20) complete with a 

centering fixture and chip evacuation port. For the external gears, a collet fixture was used as seen in Figure 

4.21. During the cutting, oil lubricant is used very heavily, so the dynamometer is wrapped in plastic to 

avoid contamination. Before each experiment, the dynamometer cable is wrapped around the worktable 

several times and put under tension such that the cable unwraps itself neatly during the process and does 

not get caught in any moving parts. 

 

Figure 4.20: Experimental setup for spur internal gear case. 
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Figure 4.21: Experimental setup for external gear cases. 

4.6.2 Cutting Coefficient Determination 

To calibrate the cutting force coefficients used in the simulation, in-process force measurements are used 

from the case studies. Two different procedures have been developed to identify coefficients for an 

orthogonal to oblique model and an orthogonal exponential chip thickness model. It is expected that if the 

tool has a large rake angle and thus a large variation of inclination along the cutting edge, than the 

orthogonal to oblique model would perform better than the exponential chip thickness model. However, for 

the performed experiments, it was found that the exponential chip thickness model performed better 

(particularly during finishing passes) since the chip thickness varies considerably during the gear shaping 

process. 

4.6.2.1 Orthogonal to Oblique Model 

The orthogonal to oblique model consists of six parameters: the shear stress (𝜏), shear angle (𝜙), friction 

angle (𝛽), and edge coefficients (𝐾𝑡𝑒, 𝐾𝑓𝑒, 𝐾𝑟𝑒). During simulation, the oblique cutting coefficients (𝐾𝑡𝑐 , 

𝐾𝑓𝑐, 𝐾𝑟𝑐) are determined using the orthogonal to oblique transformations (equations (4.7) - (4.9)) which are 

a function of the shear stress, shear angle, friction angle, local rake angle, and local inclination angle. To 

predict the shear stress, shear angle, and friction angle from experimental data, a cubic search space is first 
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defined as depicted in Figure 4.22. From the cubic search space, many candidate points are chosen and the 

orthogonal to oblique transformation is used to determine the cutting coefficients based on the average local 

inclination and rake angle of the cutter. Then, based on experimentally measured forces and simulated chip 

characteristics, a least squares problem is formulated for each candidate point that solves for the edge 

coefficients using linear regression. Afterwards, the error for each candidate point is evaluated and the 

candidate set of coefficients with the least error is chosen.  

 

Figure 4.22: Cubic search for shear stress, friction angle, shear angle. 

The least squares problem is formulated as follows where one data point is taken from each stroke during 

a process: 
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(4.55) 

Above, 𝑠 is the stroke number, 𝑆 is the total number of strokes in the process, 𝑡̂, 𝑓, 𝑟̂ are the tangential, feed, 

and radial unit vectors for each engaged tool node, 𝑎 is the chip area determined by the alpha shape 
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reconstruction for each engaged node, and 𝑏 is the chip width for each engaged node. This can be simplified 

to the following form: 

𝑌 = [𝜙𝐶 𝜙𝑒 ] [
𝜃𝑐
𝜃𝑒
] (4.56) 

Here, 𝑌 is the vector of measured forces with size 3𝑆 × 1, 𝜙𝑐 is the matrix of regressors pertaining to the 

cutting coefficients with size 3𝑆 × 3, 𝜙𝑒 is the matrix of regressors pertaining to the edge coefficients with 

size 3𝑆 × 3, 𝜃𝑐 = [𝐾𝑡𝑐 𝐾𝑓𝑐 𝐾𝑟𝑐]𝑇 is the vector of cutting coefficients, and 𝜃𝑒 = [𝐾𝑡𝑒 𝐾𝑓𝑒 𝐾𝑟𝑒]𝑇 is 

the vector of edge coefficients. As mentioned, the cutting coefficients are determined using the orthogonal 

to oblique transformation from the candidate point within the cubic search space of shear stress, shear angle, 

and friction angle. Subsequently, the edge coefficients are determined using linear regression: 

𝜃𝑒 = pinv{𝜙𝑒} (𝑌 − 𝜙𝑐𝜃𝑐) (4.57) 

Here, since the influence of the radial edge coefficient is typically assumed to be negligible (𝐾𝑟𝑒 ≅ 0), the 

3rd column of 𝜙𝑒 is set to zero. The model prediction error for each candidate set of coefficients is evaluated 

using the RMS error of normalized forces:  

Error = √
1

3𝑆
(∑ (𝑒𝑥

2 + 𝑒𝑦
2 + 𝑒𝑧

2)
𝑆

𝑠=1
) (4.58) 

𝑒𝑥 =
𝐹𝑥, measured − 𝐹𝑥, simulated

𝐹𝑥, max
,  𝑒𝑦 =

𝐹𝑦, meas − 𝐹𝑦, sim

𝐹𝑦, max
,  𝑒𝑧 =

𝐹𝑧, meas − 𝐹𝑧, sim
𝐹𝑧, max

 (4.59) 

The identified best set of coefficients for each material is given in Table 4.4. The AISI 1141 and 5130 steel 

cutting coefficients were determined from the internal spur gear one-pass process, and the AISI 8620 steel 

coefficients were determined from the external spur gear one-pass process. Contour plots that show how 

the error changes based on the shear angle and friction angle for the identified shear stress can be seen in 

Figure 4.23, Figure 4.24, and Figure 4.25. 

Table 4.4: Identified orthogonal to oblique coefficients. 

Material 𝝉 [N/mm2] 𝝓 [deg] 𝜷 [deg] 𝑲𝒕𝒆 [N/mm] 𝑲𝒇𝒆 [N/mm] 

AISI 1141 Steel 805.6 26.4 28.6 10.5 15.2 

AISI 5130 Steel 764.1 27.7 36.7 18.9 10.2 

AISI 8620 Steel 633.3 25.9 38.0 31.4 1.26 
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Figure 4.23: Error contour plot for AISI 1141 steel at 𝝉 = 𝟖𝟎𝟓. 𝟔 [N/mm2]. 

 

Figure 4.24: Error contour plot for AISI 5130 steel at 𝝉 = 𝟕𝟔𝟒. 𝟏 [N/mm2]. 
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Figure 4.25: Error contour plot for AISI 8620 steel at 𝝉 = 𝟔𝟑𝟑. 𝟑 [N/mm2]. 

4.6.2.2 Orthogonal Exponential Chip Thickness Model 

An orthogonal exponential chip thickness model is also fit based on in-process force measurements. In spur 

gear shaping, the measured cutting force can be separated into tangential and feed components. Given that 

the cutting velocity is solely in the 𝑧 direction, the measured force in the 𝑧 direction can be attributed to the 

tangential force, and the resultant force on the 𝑥𝑦 plane can be attributed to the feed component. The radial 

component would also contribute to force on the 𝑥𝑦 plane, but here it is assumed to be negligible (𝐾𝑟𝑐 = 0) 

since the inclination angle of the tools are 5° or less. Additionally, all edge components are assumed to be 

zero (𝐾𝑡𝑒 = 𝐾𝑓𝑒 = 𝐾𝑟𝑒 = 0). Accordingly, based on the effective simulated chip area, the tangential and 

feed coefficients can be determined for each data point: 

𝐾𝑡𝑐 =
|𝐹𝑧,  measured|

∑ 𝑎𝑡̂engaged
nodes

∙ 𝑍̂
⏟        
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chip area on z axis

,  𝐾𝑓𝑐 =
√𝐹𝑥,  measured

2 + 𝐹𝑦,  measured
2

√(∑ 𝑎𝑓engaged
nodes

∙ 𝑋̂)

2

+ (∑ 𝑎𝑓engaged
nodes

∙ 𝑌̂)

2

⏟                          
effective feed chip area on xy plane

 

(4.60) 
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Similar to the orthogonal to oblique model, one measured data point is taken from each cutting stroke during 

the gear shaping process. Then, by comparing each measured 𝐾𝑡𝑐 and 𝐾𝑓𝑐 to the average simulated chip 

thickness for the data point, an exponential function can be fit to the data as seen in Figure 4.26, Figure 

4.27, and Figure 4.28. Since chip mechanics typically only act exponentially with small chip thicknesses, a 

linear portion is defined where if the chip thickness is larger than the threshold, then the cutting coefficient 

is constant. Table 4.5 shows the identified coefficients for the three materials used in the experiments. The 

internal spur gear one-pass process was used for the AISI 1141 and 5130 steels, while the external spur 

gear two-pass process was used for the AISI 8620 steel as it was found that the one-pass process did not 

have enough data points with small chip thickness. 

Table 4.5: Identified orthogonal exponential chip thickness coefficients. 

Material 𝑲𝒕𝒄 [N/mm2] 𝑲𝒇𝒄 [N/mm2] 

AISI 1141 Steel 
35.15 ℎ−0.9613 ℎ < 0.01

2941 ℎ ≥ 0.01
 
11.57 ℎ−1.059 ℎ < 0.01

1518 ℎ ≥ 0.01
 

AISI 5130 Steel 
6.859 ℎ−1.346 ℎ < 0.01

3375 ℎ ≥ 0.01
 
4.067 ℎ−1.341 ℎ < 0.01

1956 ℎ ≥ 0.01
 

AISI 8620 Steel 
37.25 ℎ−1.045 ℎ < 0.015

3000 ℎ ≥ 0.015
 
14.41 ℎ−1.14 ℎ < 0.015

1730 ℎ ≥ 0.015
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Figure 4.26: Exponential chip model for AISI 1141 steel. 

 

Figure 4.27: Exponential chip model for AISI 5130 steel. 
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Figure 4.28: Exponential chip model for AISI 8620 steel. 

4.6.3 Results 

The following sections show comparisons of simulated and measured cutting forces in each of the case 

studies. In each case, the identified orthogonal exponential chip thickness model was used. Although both 

models give accurate force predictions, the exponential chip thickness model produced more accurate 

predictions particularly in finishing passes as the chip thicknesses are thin. 

4.6.3.1 Internal Spur Gear, One-Pass, AISI 1141 Steel 

Figure 4.29 shows a comparison of the simulated and measured cutting forces the internal gear, one-pass 

process with AISI 1141 steel workpiece. Several trends can be seen in the forces profiles. During the radial 

infeed of the tool, the cutting forces slowly increase until the peak force is seen at the end of the infeed 

where there is a combination of the radial feed and rotary feed which results in the maximum chip area. 

After the infeed is complete, the forces remain relatively steady as each of the teeth are cut into the 

workpiece. Of course, the magnitude in the 𝑥 and 𝑦 directions are changing sinusoidally as the 

dynamometer is rotating with the gear. Throughout the entire cutting pass, a slight wavy pattern can be 

observed as seen in the zoomed in profiles in Figure 4.30. This is due to the repetitive teeth engagement 



 

63 

pattern of the gear shaping process. Each time a new tooth on the tool starts its engagement in the workpiece, 

a maximum chip area will soon occur after which results in a peak cutting force. After the steady-state 

cutting phase, the completion of the gear occurs which is when the tool comes back around to the area of 

the workpiece where the infeed first began. During this stage, the cutting forces slowly decrease until they 

become zero and the workpiece is complete. 

The accuracy of the simulated cutting forces are evaluated by calculating the RMS error of the forces taking 

one data point from each stroke. Each data point is determined by calculating the average simulated and 

measured force over the cutting stroke. Table 4.6 shows the RMS error along with percentage error 

calculated based on the maximum force in each direction. The simulated and measured cutting forces show 

very good correlation throughout the entire process with an error less than 5%. 

Table 4.6: RMS error for internal spur gear, one-pass, AISI 1141 steel process. 

 𝑬𝒙 [N] 𝑬𝒚 [N] 𝑬𝒛 [N] 

Single Pass 45.7 (3.6%) 56.7 (4.6%) 135 (3.4%) 
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Figure 4.29: Comparison of simulated and measured cutting forces for internal spur gear, one-pass, AISI 

1141 steel process. 
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Figure 4.30: Comparison of simulated and measured cutting forces for internal spur gear, one-pass, AISI 

1141 steel process, zoomed in. 

4.6.3.2 Internal Spur Gear, Two-Pass, AISI 1141 Steel 

Figure 4.31 shows the simulated and measured cutting forces profiles for the internal spur gear, two-pass, 

AISI 1141 steel process. Very similar trends can be seen as with the single pass process, however, there are 

two cycles of the infeed, steady-state, and completion phases. It can be seen in the zoomed profiles (Figure 

4.32), that the wavy repetitive pattern in the finishing pass becomes out of phase contributing to error in the 

predicted force profiles. This is likely due to unknown kinematics in the transition between the two-passes. 

The kinematic model assumes instantaneous change between the rotary/radial feedrate of adjacent cutting 

passes, however this is not likely the case on the gear shaping machine. Nevertheless, the magnitudes of 
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the forces match well. In later experiments (external spur and external helical gear cases), commanded 

trajectories are captured from the CNC during the experiments and used directly in simulation which results 

in closer agreement for the second pass. Table 4.7 below shows the RMS error and percentage for the 

roughing and finishing passes.  

Table 4.7: RMS error for internal spur gear, two-pass, AISI 1141 steel process. 

 𝑬𝒙 [N] 𝑬𝒚 [N] 𝑬𝒛 [N] 

Roughing Pass 64.4 (3.7%) 96.2 (5.5%) 204 (3.8%) 

Finishing Pass 22.1 (10.5%) 24.3 (11.3%) 74.5 (11.3%) 
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Figure 4.31: Comparison of simulated and measured cutting forces for internal spur gear, two-pass, AISI 

1141 steel process. 
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Figure 4.32: Comparison of simulated and measured cutting forces for internal spur gear, two-pass, AISI 

1141 steel process, zoomed in. 

4.6.3.3 Internal Spur Gear, One-Pass, AISI 5130 Steel 

Figure 4.33 and Figure 4.34 shows the simulated and measured cutting forces for the internal spur, one-

pass process with the AISI 5130 steel workpiece. Table 4.8 shows the RMS error of the predicted forces. 

Very similar trends can be seen to the equivalent process with AISI 1141 steel workpiece. 
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Table 4.8: RMS error for internal spur gear, one-pass, AISI 5130 steel process. 

 𝑬𝒙 [N] 𝑬𝒚 [N] 𝑬𝒛 [N] 

Single Pass 61.1 (3.7%) 68.5 (4.2%) 188 (4.0%) 

 

 

Figure 4.33: Comparison of simulated and measured cutting forces for internal spur gear, one-pass, AISI 

5130 steel process. 
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Figure 4.34: Comparison of simulated and measured cutting forces for internal spur gear, one-pass, AISI 

5130 steel process, zoomed in. 

4.6.3.4 Internal Spur Gear, Two-Pass, AISI 5130 Steel 

Figure 4.35 and Figure 4.36 shows the simulated and measured cutting force profiles for the internal spur, 

two-pass process with AISI 5130 steel workpiece material. The RMS of the error for the roughing and 

finishing passes are given in Table 4.9. Very similar trends can be seen as with the internal spur, two-pass 

process with 1141 steel. 
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Table 4.9: RMS error for internal spur gear, two-pass, AISI 5130 steel process. 

 𝑬𝒙 [N] 𝑬𝒚 [N] 𝑬𝒛 [N] 

Roughing Pass 99.8 (4.4%) 109 (4.8%) 301 (4.8%) 

Finishing Pass 42.9 (14.0%) 49.1 (15.7%) 149 (16.7%) 

 

 

Figure 4.35: Comparison of simulated and measured cutting forces for internal spur gear, two-pass, AISI 

5130 steel process. 
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Figure 4.36: Comparison of simulated and measured cutting forces for internal spur gear, two-pass, AISI 

5130 steel process, zoomed in. 

4.6.3.5 External Spur Gear, One-Pass, AISI 8620 Steel 

Figure 4.37 shows the overall simulated and measured cutting forces for the external gear, one-pass process 

with AISI 8620 steel workpiece. Similar trends can be seen as with the internal case. The infeed, steady-

state and completion phases can be seen, however the repetitive pattern due to the varying teeth engagement 

is much more pronounced in this case. This is due to the module being larger and the workpiece being an 

external gear which results in a smaller contact ratio. In this case, there are only 2-3 tool teeth in contact 

with the workpiece at once, whereas in the internal case there are 4-5 teeth in contact at once. This results 

in less uniform chip engagement throughout the process and, therefore, less uniform cutting forces. Figure 
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4.38 shows the zoomed in cutting force profiles and Table 4.10 gives the RMS error. As can be seen, the 

simulated and measured profiles correlate well, however there is more error compared to the internal spur 

one-pass process (5-6% compared to 3-4%). This can be seen particularly in the magnitude of the peak 

forces at the beginning of the repeating waves. It is hypothesized that this error may be caused by thermal 

effects; due to the cutting forces being large, the workpiece may be undergoing temperature increase which 

would change the cutting properties of the material. Further research is needed for confirmation of this 

hypothesis. 

Table 4.10: RMS error for external spur gear, one-pass, AISI 8620 steel process. 

 𝑬𝒙 [N] 𝑬𝒚 [N] 𝑬𝒛 [N] 

Single Pass 207 (6.1%) 210 (6.0%) 410 (4.8%) 
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Figure 4.37: Comparison of simulated and measured cutting forces for external spur gear, one-pass, AISI 

8620 steel process. 
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Figure 4.38: Comparison of simulated and measured cutting forces for external spur gear, one-pass, AISI 

8620 steel process, zoomed in. 

4.6.3.6 External Spur Gear, Two-Pass, AISI 8620 Steel 

Figure 4.39 and Figure 4.40 shows the simulated and measured cutting forces for the external gear, two-

pass process. Similar trends can be seen in both of the passes as seen in the external single pass process. 

However, better correlation can be seen in the finishing pass in this case than the finishing pass of the 

internal gear two-pass processes. In this experiment (and all of the external gear case studies), commanded 

kinematic profiles from the servo controller of the shaping machine tool were captured and used directly as 
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the kinematic profiles in simulation. Because of this, the transition period before and after each pass is 

accurate and the repetitive patterns match well. Table 4.11 gives the RMS error for each of the passes. 

Table 4.11: RMS error for external spur gear, two-pass, AISI 8620 steel process. 

 𝑬𝒙 [N] 𝑬𝒚 [N] 𝑬𝒛 [N] 

Roughing Pass 202 (6.0%) 191 (5.5%) 420 (4.9%) 

Finishing Pass 46.6 (9.8%) 44.0 (8.0%) 67.9 (5.8%) 
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Figure 4.39: Comparison of simulated and measured cutting forces for external spur gear, two-pass, AISI 

8620 steel process. 
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Figure 4.40: Comparison of simulated and measured cutting forces for external spur gear, two-pass, AISI 

8620 steel process, zoomed in. 

4.6.3.7 External Helix Gear, One-Pass, AISI 8620 Steel 

Figure 4.41 and Figure 4.42 shows the simulated and measured cutting force profiles for the external helical 

gear, one-pass process. In this case, the same cutting coefficients are used as with the external spur gear 

with AISI 8620 steel material. It can be seen that the overall trends of the profiles correlate well, however 

there is some noteworthy error in the magnitude of the 𝑧 forces and there are sometimes spikes at the end 

of the cutting strokes in the 𝑥 and 𝑦 directions. It is hypothesized that a lot of this error is attributed due to 

rubbing / interference of the tool during cutting which is evident by gouges and scratches appearing in the 

finished workpiece (Figure 4.43). The interference would cause additional friction as the cutter moves down 



 

79 

the workpiece thus increasing the cutting force in the 𝑧 direction. Once the cutter is finished the cutting 

stroke, than the built up pressure from the tool interference is released which may explain the measured 

cutting force spikes in the 𝑥 and 𝑦 directions. Other possible sources of error include visible tool wear on 

the helical gear shaper (see Figure 4.19) which can affect the cutting forces, and the cutting speed during 

the external helical gear cases is almost double that of the external spur gear cases due to larger cutting 

stroke length. Of course, the cutting force model for helical cutting may also be inaccurate; therefore more 

experiments are needed to investigate the cause of the discrepancy. For example, designing a helical cutting 

test where there is no resulting gouges or scratches on the workpiece would help differentiate whether the 

error is due to tool rubbing. Nevertheless, there is still good correlation between the measured and simulated 

cutting forces. Table 4.12 shows the RMS error and percentage for the process.  

Table 4.12: RMS error for external helix gear, one-pass, AISI 8620 steel process. 

 𝑬𝒙 [N] 𝑬𝒚 [N] 𝑬𝒛 [N] 

Single Pass 206 (6.5%) 210 (6.1%) 697 (13.2%) 
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Figure 4.41: Comparison of simulated and measured cutting forces for external helix gear, one-pass, 

AISI 8620 steel process. 
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Figure 4.42: Comparison of simulated and measured cutting forces for external helix gear, one-pass, 

AISI 8620 steel process, zoomed in. 
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Figure 4.43: Gouges and scraping as seen on the finished external helix gear, one-pass process. 

4.6.3.8 External Helix Gear, Two-Pass, AISI 8620 Steel 

Figure 4.44 and Figure 4.45 shows the simulated and measured cutting forces for the external helical gear, 

two-pass process. Similar trends can be seen for each of the passes as with the helical one-pass process. 

There is error in the magnitude of the 𝑧 (although less than the one-pass process which could be due to the 

decreased rotary feedrate), and there are similar spikes in the forces at the end of the cutting strokes in the 

𝑥 and 𝑦 directions. The finishing pass shows good correlation in all three directions and does not have the 

spikes in the 𝑥 and 𝑦 directions. Table 4.13 gives the RMS error and percentage for each of the passes. 

Table 4.13: RMS error for external helix gear, two-pass, AISI 8620 steel process. 

 𝑬𝒙 [N] 𝑬𝒚 [N] 𝑬𝒛 [N] 

Roughing Pass 137 (6.2%) 155 (6.7%) 338 (8.7%) 

Finishing Pass 13.8 (8.7%) 12.0 (7.6%) 20.6 (7.1%) 
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Figure 4.44: Comparison of simulated and measured cutting forces for external helix gear, two-pass, 

AISI 8620 steel process. 
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Figure 4.45: Comparison of simulated and measured cutting forces for external helix gear, two-pass, 

AISI 8620 steel process, zoomed in. 

4.7 Conclusions 

In this chapter, an algorithm to predict the cutting forces in gear shaping was presented. The cutting edge 

is discretized into nodes with varying cutting directions (tangential, feed, and radial), local inclination angle, 

and local rake angle. Each node represents an oblique cutting force model and, if engaged in cutting, 

contributes a three dimensional cutting force vector. The cutter-workpiece engagement is calculated using 

a dexel based modeller called ModuleWorks at discrete time steps. From the cutter-workpiece engagement, 

the two-dimensional chip geometry is reconstructed using the alpha shape method and the area of the 
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triangles constitute the undeformed chip area for the time step. Several case studies were used to 

experimentally verify the cutting force prediction which included an internal spur gear, external spur gear, 

and external helical gear. Each gear was manufactured with two different processes (a single pass process 

and a two-pass process with a roughing and finishing pass). Using a 3-axis dynamometer mounted on the 

gear workpiece table, experimental cutting forces were recorded for each case and compared against 

simulated forces. The simulated cutting forces show very good correlation with the measured forces, with 

the most discrepancy occurring in the helical external gear case. It is hypothesized that these discrepancies 

are due to rubbing of the tool during cutting, tool wear, and differing cutting speed compared to the process 

for which the cutting coefficients were calibrated.  
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Chapter 5 

Elastic Deformation and Form Error Prediction 

5.1 Introduction 

Due to cutting forces, the tool and/or workpiece in any machining operation will elastically deform away 

from their nominal position, which results in extra material being left on the surface. This deflection of the 

tool relative to the workpiece is one of the major contributors to dimensional part inaccuracies in machining. 

In this chapter, the elastic deflection and its effect on the machined gear’s quality is investigated. 

Furthermore, using a developed virtual gear measurement module, the effect of tool deflection on the gear’s 

profile deviation is examined. Profile deviations can cause transmission error, vibrations, and noise during 

gear operation [72], therefore it is important to study and mitigate sources of profile error in gear 

manufacturing. In the remainder of this chapter, Section 5.2 describes the elastic deformation model, 

Section 5.3 briefly describes the developed virtual gear measurement module, and Section 5.3.1 shows 

experimental validation of predicted profile deviation. 

5.2 Elastic Deformation Model 

In this study, the gear shaper is modelled as an elastic beam as depicted in Figure 5.1. The stiffness of the 

tool is characterized at the bottom of the tool in the 𝑥 and 𝑦 direction (𝐾𝑥 and 𝐾𝑦). Since cutting in gear 

shaping only occurs at the bottom of the cutter, only the bottom of the cutter is characterized. The stiffness 

in the 𝑧 direction is assumed rigid. Then, based on the predicted cutting forces, the deflection of the tool is 

calculated and a feedback loop is established which adds the deflection of the tool from the previous time 

step to the current time step. 
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Figure 5.1: Elastic deformation of cutting tool due to cutting forces. 

5.2.1 Impact Hammer Testing 

To obtain an estimate of the tool’s stiffness, the vibratory dynamics at the bottom of the tool are identified 

through impact hammer testing which obtains the frequency response of the system. The accelerance of the 

system (acceleration per force) can be considered a summation of second order systems (modes) [73]: 

𝐴(𝜔) =
𝑋̈(𝜔)

𝐹(𝜔)
=∑

−(𝜔 𝜔𝑛𝑖⁄ )
2
𝐾𝑖

1 − (𝜔 𝜔𝑛𝑖⁄ )
2
+ 𝑗2𝜁𝑖(

𝜔
𝜔𝑛𝑖⁄ )

𝑁

𝑖=1

 (5.1) 

Here, 𝑁 is the number of vibration modes, 𝜔𝑛𝑖 is the mode’s natural frequency, 𝜁𝑖 is the mode’s damping 

ratio, and 𝐾𝑖 = 𝜔𝑛𝑖
2 𝑘𝑖⁄  is the mode’s contribution factor where 𝑘𝑖 is the mode’s stiffness. This frequency 

response function (FRF) can also be rewritten as the receptance (displacement per force) [73]: 

𝑅(𝜔) =
𝑋(𝜔)

𝐹(𝜔)
=
𝐴(𝜔)

−𝜔2
=∑

(1 𝑘𝑖
⁄ )

1 − (𝜔 𝜔𝑛𝑖⁄ )
2
+ 𝑗2𝜁𝑖(

𝜔
𝜔𝑛𝑖⁄ )

𝑁

𝑖=1

 (5.2) 

From this form, the static stiffness of the system 𝐾static (i.e. inverse of the receptance at zero frequency) can 

be approximated as the inverse of the sum of each mode’s inverse stiffness: 
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𝐾static =
1

𝑅(0)
= 1 ∑

1

𝑘𝑖

𝑁

𝑖=1

⁄  (5.3) 

Using an accelerometer and impact hammer, the accelerance FRF is experimentally measured in the 

machine’s 𝑥 and 𝑦 directions. Then, using CUTPRO® software’s modal analysis module, numerous modes 

are fit to the experimentally measured FRF. This is seen in Figure 5.2 for the 5.08 module spur gear shaper 

used in the external spur gear case studies. In total, 9 modes are fit in the 𝑥 direction and 7 modes are fit in 

the 𝑦 direction which can be found in Table 5.1 and Table 5.2, respectively. Negative modes, which show 

as positive peaks in the imaginary component, are not included in the fit model as they are likely due to 

rotational (not bending) modes of the tool being activated. Subsequently, the static stiffnesses are calculated 

based on the fit modes (𝐾𝑥 = 33.3 [N/μm] and 𝐾𝑦 = 39.2 [N/μm]).  

Similarly, the FRF of the workpiece has been experimentally measured (Figure 5.3) and 10 modes have 

been fit in each direction (Table 5.3 and Table 5.4) resulting in static stiffnesses of 𝐾𝑥,𝑤𝑝 = 151 [N/μm] 

and 𝐾𝑦,𝑤𝑝 = 193 [N/μm]. In the case of this study, the effect of workpiece deformation has not been 

considered, however given that the workpiece is only about 5x stiffer than the tool, including workpiece 

deflection may improve the accuracy of the simulation. On the other hand, it is likely that a lot of the 

compliance in the measured workpiece stiffness is due to the extra fixturing needed to mount the 

dynamometer on the gear worktable, thus the workpiece in a production process would likely be 

significantly stiffer.  
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Figure 5.2: Measured and fit receptance FRF of the 5.08 module spur gear shaper. 
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Table 5.1: Fit modes and static stiffness in 𝒙 direction of 5.08 module spur gear shaper. 

Mode Frequency [Hz] Damping Ratio [%] Mass [kg] Stiffness [N/μm] 

1 279.3 6.0 32.2 99.0 

2 326.9 3.7 37.7 159.1 

3 487.7 5.0 44.8 420.6 

4 615.9 6.3 14.2 213.0 

5 1202.3 7.0 10.1 578.6 

6 4088.6 4.8 1.3 836.2 

7 4456.9 2.3 3.5 2757.0 

8 5016.5 2.0 0.3 318.8 

9 9720.8 0.3 1.7 6376.4 

Static stiffness: 33.3 

Table 5.2: Fit modes and static stiffness in 𝒚 direction of 5.08 module spur gear shaper. 

Mode Frequency [Hz] Damping Ratio [%] Mass [kg] Stiffness [N/μm] 

1 320.9 10.0 12.5 50.8 

2 452.9 2.7 275.4 2230.5 

3 1761.4 5.6 8.4 1034.0 

4 3712.0 4.9 2.2 1205.5 

5 5265.2 0.9 0.3 349.4 

6 8048.3 3.7 0.7 1814.3 

7 9777.7 0.3 1.6 6153.1 

Static stiffness: 39.2 
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Figure 5.3: Measured and fit receptance FRF of the workpiece. 
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Table 5.3: Fit modes and static stiffness in 𝒙 direction of workpiece. 

Mode Frequency [Hz] Damping Ratio [%] Mass [kg] Stiffness [N/μm] 

1 263.3 6.0 114.2 312.5 

2 463.0 5.0 260.6 2204.9 

3 769.7 15.6 31.7 742.4 

4 1000.5 7.0 40.2 1588.8 

5 1485.8 3.5 25.0 2180.1 

6 1778.1 5.0 32.7 4082.2 

7 2685.3 3.8 32.0 9098.7 

8 2856.3 4.5 31.3 10088.0 

9 3474.3 1.4 148.4 70709.0 

10 4011.8 4.9 29.8 18913.0 

Static Stiffness 151 

Table 5.4: Fit modes and static stiffness in 𝒚 direction of workpiece. 

Mode Frequency [Hz] Damping Ratio [%] Mass [kg] Stiffness [N/μm] 

1 292.0 4.0 149.0 501.6 

2 368.3 3.0 319.2 1709.3 

3 438.3 2.0 1014.2 7690.9 

4 821.3 8.3 38.2 1018.4 

5 1001.1 4.7 39.4 1558.9 

6 1482.0 3.4 32.4 2809.6 

7 1792.9 5.7 32.7 4149.4 

8 2687.0 6.9 20.3 5791.9 

9 3456.8 1.7 306.1 144380.0 

10 3820.0 4.3 28.9 16651.0 

Static stiffness: 193 

 

5.2.2 Deflection Calculation 

Using the estimated static stiffness from the modal testing, the deflection of the tool due to the predicted 

cutting forces can be calculated. Accordingly, a feedback loop is established which adds the deflection 

calculated at the previous time step to the nominal position of the tool at the current time step: 
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𝑝̅𝑡⏟
actual current
position of tool

= 𝑝̅𝑡
′⏟

nominal current
position of tool

+ 𝑑̅𝑡−1⏟
tool deflection
at last time step

 
(5.4) 

Here, 𝑡 denoted the current time step, and 𝑡 − 1 denotes the previous time step. To get the true deflection 

at the current time step, the simulation would need to iterate through the cutter-workpiece engagement and 

cutting force calculation (reverting the workpiece geometry each time) until the solution converges, which 

would be computationally expensive. Therefore, the deflection based off the cutting force at the previous 

time step is used for the sake of efficiency.  To calculate the tool deflection, the cutting force is simply 

divided by the static stiffness of the tool. However, since the cutting force prediction algorithm calculates 

the cutting force in the workpiece coordinate system and the modal testing is performed in the machine 

coordinate system, the cutting force is first transformed into the machine coordinate system: 

𝐹̅𝑡
𝑀𝐶𝑆 = 𝑅𝑊𝐶𝑆

𝑀𝐶𝑆  𝐹̅𝑡
𝑊𝐶𝑆 = [

cos𝜙𝑔(𝑡) − sin𝜙𝑔(𝑡) 0

sin𝜙𝑔(𝑡) cos𝜙𝑔(𝑡) 0

0 0 1

] 𝐹̅𝑡
𝑊𝐶𝑆 (5.5) 

Above, 𝐹̅𝑡
𝑀𝐶𝑆is the cutting force vector in the machine coordinate system, 𝐹̅𝑡

𝑊𝐶𝑆 is the cutting force vector 

in the workpiece coordinate system, and 𝑅𝑊𝐶𝑆
𝑀𝐶𝑆  is the rotation matrix between the workpiece coordinate 

system and machine coordinate system. Then, the tool deflection is calculated by elemental division 

(denoted by ⊘) of the cutting force vector and tool stiffness vector (𝐾̅𝑀𝐶𝑆 = [𝐾𝑥 𝐾𝑦 𝐾𝑧]𝑇 =

[𝐾𝑥 𝐾𝑦 ∞]𝑇): 

𝑑̅𝑡
𝑀𝐶𝑆 = 𝐹̅𝑡

𝑀𝐶𝑆⊘ 𝐾̅𝑀𝐶𝑆 (5.6) 

Finally, the tool deflection is transformed back into the workpiece coordinate system: 

𝑑̅𝑡
𝑊𝐶𝑆 = [𝑅𝑊𝐶𝑆

𝑀𝐶𝑆  ]
𝑇
𝑑̅𝑡
𝑀𝐶𝑆 = [

cos𝜙𝑔(𝑡) sin𝜙𝑔(𝑡) 0

− sin𝜙𝑔(𝑡) cos𝜙𝑔(𝑡) 0

0 0 1

] 𝑑̅𝑡
𝑀𝐶𝑆 (5.7) 

5.3 Virtual Gear Measurement 

To examine the effect of tool deflection on the gear’s quality, a virtual gear measurement module has been 

developed which is capable of predicting the types of error which are used in industry to classify the quality 

of gears. There are two main types of error which are considered in gear quality measurement: deviations 

in the profile curve, and deviations in the lead/helix curve. As depicted in Figure 5.4, the profile curve is 

the curve on the flank of each tooth on the transverse plane (normally the involute of the base circle), and 

the lead curve is the curve along the width of each flank which is a straight line for spur gears or a helix for 
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helical gears. The lead curve is normally evaluated at a diameter halfway between the addendum and 

dedendum called the tolerance diameter. 

 

Figure 5.4: Scanning measurement of gears. 

The ANSI/AGMA 2015-1-A01 standards [74] define several metrics to evaluate profile and lead deviations, 

which are illustrated in Figure 5.5. After unwrapping the nominal and actual profiles, the total error is 

defined as the distance between two nominal profiles that completely enclose the actual profile. The form 

error is defined as the horizontal distance between two mean profiles which enclose the actual profile where 

the mean profile is the line of best fit of the unwrapped actual profile determined by least squares. The slope 

error is defined as the horizontal distance between the two points at which the mean profile intersect the 

evaluation range lines. Finally, the pitch error (illustrated in Figure 5.6) is the error in the position of each 

flank relative to the corresponding flank of an adjacent tooth, and the index error (not illustrated) is the 

error in the position of each flank relative to a datum tooth (i.e. the cumulative pitch error). Although only 

illustrated for profile deviations, total error, form error, and slope error are also metrics used to evaluate 

lead deviations. By analyzing cross-sections taken from the virtually machined gear in the ModuleWorks 

engine, the virtual gear measurement module is able to predict the profile deviations, lead deviations, and 

corresponding metrics.  
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Figure 5.5: Profile errors in gear inspection. 

 

Figure 5.6: Pitch deviation in gear inspection. 

5.3.1 Experimental Validation 

In this investigation, the effect of tool deflection is examined on the profile deviations in the external spur 

gear one-pass and two-pass case studies defined in the previous chapter. In spur gear shaping, lead curve 

deviations are usually not prominent due to the nature of the process unless the rotary feed is set 

exceptionally high, there are chatter vibrations, or the workpiece is not clamped flatly. Therefore, profile 

deviations is the focus of this study. Figure 5.8 to Figure 5.10 show a comparison of simulated and measured 
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profile deviations in the external spur gear one-pass process for both flanks on the workpiece. Here, the left 

flank corresponds to the flank which is cut by the leading flank of the tool, and the right flank corresponds 

to the flank which is cut by the trailing flank of the tool as depicted in Figure 5.7. Simulated profiles are 

shown for an infinitely rigid tool and a flexible tool as identified in the previous section. The measured 

profile deviations were determined by measuring a cross-section of the manufactured gear with a coordinate 

measurement machine (CMM), and then inputting the cross-section through the same virtual gear 

measurement algorithm. 

 

Figure 5.7: Leading/left and Trailing/right flank in gear shaping. 

It can be seen that there is good correlation in the shape and magnitude of the profile deviations on the left 

flanks, however there is discrepancy in the prediction of the shapes and magnitudes of the right flanks 

(particularly for teeth 6-22). Although the simulated tool deflections improve the match between the 

simulated and measured profiles, there are evidently other major sources of error affecting the measured 

profiles. The major discrepancies on the right flank show that there is additional material being left on the 

surface of the machined gear. This suggests that there are likely other deformations occurring during the 

process which are not being considered in the model. These deformations could include: 

o Deformation of individual teeth on the tool: in the current model, the entire tool profile is translated 

due to cutting forces, however, in reality, each individual tooth on the gear shaper can also deform 

relative to its adjacent tooth. 
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o Rotational deformation of the tool: due to the torque created from the cutting force, the tool post 

can rotationally deform.  

o Workpiece deformations: in the current model, the workpiece is assumed rigid, however, in reality 

the workpiece will also deform.  

Further development of the model to include these effects may yield more accurate predictions. The overall 

shift of all flanks of about 0.6 mm shows that the teeth are larger than they nominally should be for a gear 

of that module. This is due to the nominal center-to-center distance of the process not being set correctly 

by the technician to properly account for the profile shifting of the tool.  

Figure 5.11 gives the total error, form error, slope error, pitch error, and index error for the simulated and 

measured profile deviations. As expected from qualitatively comparing the profile deviations, the left flank 

values correlate closely while there are discrepancies in the right flank. 

Figure 5.12 to Figure 5.15 show the measured and simulated profile deviations for the two-pass process. 

As expected, the magnitude of the errors are smaller compared to the one-pass process due to the finishing 

pass having smaller cutting forces. Similar to the one-pass process, the profile deviations show very good 

correlations in shape, however there is more discrepancy in the right flanks. The measured index deviations 

are significantly larger than the simulated index deviations. This could be due to runout of the workpiece 

when machining the gear, or the part may not have been exactly centered and clamped on the CMM when 

measuring the cross-section, though the best care was taken to do so. 
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Figure 5.8: Comparison of measured and simulated profile deviations in external spur gear, one-pass 

process (Teeth 1-8). 
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Figure 5.9: Comparison of measured and simulated profile deviations in external spur gear, one-pass 

process (Teeth 9-16). 
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Figure 5.10: Comparison of measured and simulated profile deviations in external spur gear, one-pass 

process (Teeth 17-22). 



 

101 

 

Figure 5.11: Measured and simulated profile error metrics in external spur gear, one-pass process. 
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Figure 5.12: Comparison of measured and simulated profile deviations in external spur gear, two-pass 

process (Teeth 1-8). 
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Figure 5.13: Comparison of measured and simulated profile deviations in external spur gear, two-pass 

process (Teeth 9-16). 
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Figure 5.14: Comparison of measured and simulated profile deviations in external spur gear, two-pass 

process (Teeth 17-22). 
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Figure 5.15: Measured and simulated profile error metrics in external spur gear, two-pass process. 



 

106 

5.4 Conclusions 

In this chapter, a model for predicting elastic tool deflection and its effect on profile deviations in gear 

shaping is presented. The stiffness of the gear shaper is characterized in the machine’s 𝑥 and 𝑦 axis through 

impact hammer testing. Using the estimated tool stiffness and predicted cutting force, the tool deflection 

can be calculated. The tool deflection from the previous time step is added to the nominal position of the 

tool at the current time step to simulate the effect in gear shaping. To investigate the effect of tool deflection 

on the manufactured gear quality, a virtual gear measurement module is used to evaluate the profile 

deviations. Measured and simulated profile deviation curves are compared. The simulated profiles show 

good correlation for the left flanks, however discrepancies can be seen particularly for the right flanks 

suggesting there are other major sources of dimensional error which is an area of future research. The 

research presented in this chapter also serves as a basis for future research in vibrations in gear shaping. 
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Chapter 6 

ShapePRO Software 

6.1 Introduction 

The algorithms presented in this thesis have been integrated into a program called ShapePRO (Figure 6.1) 

which is designed to be used by process planners in industry. Similar to MachPro® and CutPro® software 

(developed by Manufacturing Automation Lab at the University of British Columbia for milling, drilling, 

and turning), ShapePRO allows planners to virtually machine their parts and then inspect the resulting part 

quality. This is extremely valuable as process planners waste less machine time and material iterating 

through process parameter changes to achieve the desired part quality. 

 

Figure 6.1: ShapePRO software main screen. 
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6.2 User Workflow 

The software (developed in C++) integrates with the ModuleWorks engine and is able to calculate the 

cutter-workpiece engagement, cutting forces, static tool deflections, and (soon) dynamic vibrations. To use 

the software, the user follows a simple workflow. First, the gear data is set with the workpiece configuration 

dialog as seen in Figure 6.2. Here, any time of cylindrical gear can be configured and saved in the directory 

for future use. The software will automatically generate the workpiece geometry (cylinder for external gear 

or ring for internal gear), however the geometry can also be imported into the software using an STL file. 

 

Figure 6.2: ShapePRO workpiece configuration dialog. 

Next, the workpiece material is set through the material configuration dialog as seen in Figure 6.3. Here, 

the user may enter the material properties and cutting force coefficients, or the user may pick a material 

from the material database. The material database has been integrated with the database in CutPro which is 

very extensive and includes many steels, aluminum, titanium, and other materials. Of course, it is possible 

to not choose a material and, in this case, only the effect of kinematics is included in the simulation. 
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Figure 6.3: ShapePRO material configuration dialog. 

Next, the tool data and geometry is set with the tool configuration dialog as seen in Figure 6.4. Certain 

profile modifications can be applied through the software (profile shift, tip fillet, and root fillet), however 

custom tool geometry may also be imported with an STL, CSV, or TXT file. It is also planned to add other 

profile modifications such as protuberance and chamfering. 
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Figure 6.4: ShapePRO tool configuration dialog. 

Next, the machine properties are entered into the machine configuration dialog as seen in Figure 6.5. Here, 

the frequency response function of the tool is entered. The modes of the system can be entered manually, 

imported with a CMP file which is the file type used in CutPro’s modal analysis module, or the tool can be 

set as rigid. In the future, it is planned that the workpiece transfer functions can also be imported to simulate 

workpiece deformations in gear shaping. 

Lastly, the process data is entered in the process configuration dialog as seen in Figure 6.6. Any number of 

cutting passes can be entered and each pass is configured with its cutting frequency, depth of cut, rotary 

feed, and radial feed. Additionally, this dialog gives the estimated machine time for each pass and the entire 

process. 
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Figure 6.5: ShapePRO machine configuration dialog. 

 

Figure 6.6: ShapePRO process configuration dialog. 
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6.3 Virtual Gear Measurement 

After the simulation is complete (which usually simulates faster than real-time), then the quality of the 

machined gear can be inspected using the virtual gear measurement module as seen in Figure 6.7. Here, the 

profile deviations, lead deviations and pitch deviations can be inspected. Additionally, the module 

calculates the AGMA quality grade based on the ANSI/AGMA 2015-1-A01 standards [74]. 

 

Figure 6.7: ShapePRO virtual gear measurement module. 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

In this thesis, the three different kinematic components of gear shaping (reciprocating motion, rotary feed, 

and radial feed) have been mathematically modelled. The kinematic model was then experimentally verified 

using commanded signals captured from the Siemens 840D controller in a Liebherr LSE500 gear shaping 

machine. Although it is extremely difficult to model the machine’s proprietary kinematic generator exactly, 

the linear acceleration profile for the radial infeed matched the commanded signal from the machine very 

closely. The other axes (reciprocating feed, tool rotation, and workpiece rotation) also matched closely, 

however the nominal feedrates had to be manually adjusted to match the commanded feedrate of the 

machine. This can be due to various optimizations or parameter rounding effects which take place inside 

the machine’s controller. 

Next, a new algorithm to predict the cutting forces in gear shaping was presented. Based on a model of the 

cutting rake face, the cutting edge is discretized into nodes. Each node represents a generalized oblique 

cutting force model with its own cutting directions (tangential, feed, and radial), local rake angle, and local 

inclination angle. At each time step, the cutter-workpiece engagement is calculated using a discrete solid 

modeller called ModuleWorks. From the cutter-workpiece engagement in dexel form, the two dimensional 

chip geometry is reconstructed using Delaunay triangulation and alpha shapes. Each triangle in the alpha 

shape is associated to its closest node and forms the undeformed chip area for that node. Finally, incremental 

cutting forces are summated along the cutting edge to determine the total cutting force for that time step. 

To experimentally verify the model, cutting forces were measured on the Liebherr LSE500 gear shaping 

machine using a 3-axis dynamometer for a variety of processes and gear types. The measured and simulated 

cutting force profiles match very closely with an RMS error of about 3-10%. The helical gear shaping case 

showed the most discrepancy. It is hypothesized that the discrepancy may be due to tool rubbing during 

cutting, tool wear, and larger cutting speeds than the process for which the cutting coefficients were 

calibrated. More experiments are needed to test the hypothesis. 

Lastly, a model for predicting the elastic deformations of the cutting tool was presented. Based on 

experimentally measured frequency response functions of the machine, the static stiffness of the tool is 

estimated. Then, the deflection of the tool is calculated by dividing the predicted cutting force with the 



 

114 

static stiffness. The deflection is then added to the nominal position of the tool to simulate tool deflections 

in gear shaping. The effect of tool deflections on the gear’s quality was also investigated by a developing a 

virtual gear measurement module to predict the profile deviation on each of the gear’s teeth following 

established ANSI/AGMA standars. The simulated involute profile deviation showed very good correlation 

to experimentally measured profiles one of the flanks, however further research is needed to improve the 

accuracy of the model for both flanks. 

7.2  Future Work 

The future work of this project includes further research into sources of profile deviation, and dynamic 

vibration prediction during gear shaping.  

The elastic tool deflection model presented in this thesis was simplistic. The deflection of the tool is added 

to the entire cutting edge geometry. However, each gear tooth on the cutting edge can deform relative to its 

adjacent teeth. By modelling each individual tooth as a flexible beam and updating the tool’s geometry at 

each time step, it is hypothesized that better agreement between the simulated and measured profile 

deviations could be achieved. Furthermore, effects of workpiece deformation could be included in the 

simulation.  

Using the already identified frequency response function of the tool, the dynamic response of the machine 

could be simulated to predict chatter vibrations in gear shaping. If the natural frequencies of the machine 

get excited by cutting forces, than the tool will vibrate and leave a wavy surface pattern on the machined 

part. During the next cutting stroke, the wavy surface pattern will produce an oscillatory cutting force which 

will further excite the machine’s dynamics resulting in chatter vibrations, poor gear quality, and tool 

wear/breakage. If this effect can be predicted virtually, than process planner will be able to plan their cutting 

speed, engagement conditions, and feedrates to maximize the potential of the machine more effectively 

without fear of damaging the tool or machine.  
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