
Quantitative Analysis of Petroleum Hydrocarbons (PHC) in Soils 

and Chemically Augmented Plant Growth Promoting Rhizobacteria 

Enhanced Phytoremediation Systems 

 

by 

 Matthew Wong Di Nino 

 

A thesis  

presented at the University of Waterloo 

in fulfillment of the  

thesis requirement for the degree of 

Masters of Science 

in  

Biology 

 

 

 

 

Waterloo, Ontario, Canada, 2017 

 

© Matthew Di Nino 2017



ii 

 

Author’s Declaration 

 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

 

  



iii 

 

Abstract 

Petroleum hydrocarbons (PHC) are a complex mixture of organic compounds, which can 

negatively impact terrestrial ecosystems. The Canadian Council of Ministers of the Environment (CCME) 

provides recommendations on the allowable concentrations of PHC in Canadian soils. The preferred 

method for PHC analysis according to the CCME is solvent extraction with 1:1 acetone/hexane (1:1 AH) 

to recover PHC from soils, followed by quantification via gas chromatography with a flame ionization 

detector (GC-FID). However, the 1:1 AH solvent often co-extracts naturally occurring biological organic 

compounds (BOC) along with PHCs from soils. This co-extraction of BOC could lead to an incorrect 

PHC concentration in soil. One potential PHC soil remediation technology is plant growth promoting 

rhizobacteria (PGPR) enhanced phytoremediation systems (PEPS). PEPS use plants and their associated 

microbiota to remove PHC from soils. This investigation was divided into two sections. First was 

optimization of PHC quantification methods. Second was the investigation of the efficacy of chemical 

augmentation with PEPS (CA-PEPS) with respects to increasing the rate of PHC remediation in soils. The 

PHC concentrations of these soils were tested using the PHC quantification methods optimized in the first 

part of this study.  

Two analytical methods were developed in this investigation, to accurately quantify PHCs in soils 

while minimizing BOC interference. The first method used the 1:1 acetone/hexane solvent mixture to 

extract PHC from soils, followed by the addition of activated silica to remove BOC from the PHC-extract 

(1:1 AH silica cleanup). The second method used the solvent dichloromethane along with the in situ 

addition of anhydrous sodium sulfate to dry the soils, and activated silica to remove BOC 

(DCM+SS+Silica). Both 1:1 AH silica cleanup and DCM+SS+Silica extracted similar amounts of PHC 

(2809.56 mg/kg and 2895.60 mg/kg, respectively; P>0.05) from the weathered PHC-impacted soils, 

except when soil moisture was higher than 12%. At higher soil moistures the extraction efficiency of the 

DCM+SS+Silica method decreased by 11.7% (P=0.013) while the 1:1 AH with silica cleanup PHC 

extraction efficiency was unaffected.  
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PEPS generally remediate PHCs in soils at a slower rate compared to traditional physical cleanup 

methods (e.g. removal of soils to land fill).  In an attempt to increase PHC remediation rates with PEPS, 

two chemical classes, surfactants and oxygen releasing compounds (ORCs) were investigated.  To test 

this, CA-PEPS greenhouse trials using PGPR-treated seed (Lollium multiflorum, annual rye grass), were 

performed on weathered PHC-impacted soils. Prior to PEPS application, soils were treated with 

increasing concentrations of surfactants (petroleum sulfonate oil; PSO) and ORCs (calcium peroxide; 

CaO2). Increasing PSO concentration (0.00-12.5 µL/g) did not improve (P>0.05) PHC remediation rates, 

and decreased both L. multiflorum root and shoot dry biomass relative to PEPS. Furthermore, 100 µL/g of 

PSO treatment completely inhibited L. multiflorum germination resulting in significant decrease in the 

PHC remediation rate. Conversely, the CaO2 (3.33 mg/g) treatment increased the PHC remediation rate 

by 11.0% (P=0.038), as well as increasing L. multiflorum root and shoot dry biomass by 22.7% (P=0.016) 

and 10.6% (P=0.086), respectively, relative to PEPS alone.  

The rates of PHC remediation in the CA-PEPS experiments were determined by the methods 

developed in the first part of this study (Chapter 2).  The DCM+SS+Silica extracted 7.80% (p=0.038) less 

PHC from soils then 1:1 AH with silica cleanup. Likely, this was due to the moisture content of the soils, 

preventing complete PHC extraction with DCM+SS+Silica.  When soils were treated with PSO, the 

removal of PSO from the PHC-extract with activated silica is highly recommended. Otherwise, the GC-

FID would overestimate the PHC concentration in the soils, as it cannot distinguish PSO from PHC.  
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Chapter 1: 

Introduction of Petroleum Hydrocarbons and Phytoremediation 
 

1.1.0 Petroleum Hydrocarbons 

Crude oil is a viscous liquid mixture that is mainly composed of hydrocarbons, plus heterocylic 

organic compounds containing sulfur, nitrogen and oxygen and metals (Lubeck, 1998).  Petroleum 

hydrocarbon (PHC) molecules found in crude oil vary greatly in size and structure. Open chain (aliphatic) 

carbons are the most abundant structural class of PHCs, followed by cyclic hydrocarbons (e.g. 

naphthenes) and lastly by molecules with multiple aromatic rings (polycyclic aromatic hydrocarbons; 

PAHs). It is predicted that there may be over a thousand different PHC molecules in crude oil (Lubeck, 

1998). The diversity of PHC molecules makes identification of all compounds in PHC mixtures 

unrealistic (CCME, 2012). Instead the Canadian Council of Ministers of the Environment (CCME) 

separates PHCs into four fractions (F1, F2, F3 and F4) based on carbon chain length (CCME, 2012). This 

classification system allows for comparisons to be made between different PHC mixtures in contaminated 

environments. The F1 (C1-C10) and F2 (C11-C16) fractions are composed of short, single chain 

hydrocarbons which, due to their low molecular weight (LMW), are highly volatile. The F3 (C17-C34) and 

F4 (C34+) fractions are composed of long single or branched chains and aromatic hydrocarbons with low 

volatility. The F3 fraction is mostly comprised of single chain hydrocarbons with some PAH, and can be 

transported away from a spill site by water, albeit to lesser extent than F1 and F2. The F4 fraction is 

comprised mostly branched and aromatic hydrocarbons that are generally immobile in soils due to their 

high molecular weight (CCME, 2012). 

1.1.1 Weathering of PHC in Soil 

Weathering is defined as chemical or physical changes to a molecule by abiotic and/or biotic 

factors (CCME, 2008). This affects how PHC molecules behave in soils (CCME, 2008). The most 
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significant abiotic mechanisms of PHC weathering in soil are volatilization, photooxidation, aging and 

sequestration (McGill et al., 1981; Ghore et al., 1983). Volatilization is the vaporization of molecules into 

a gaseous state (McGill et al., 1981). Furthermore, volatilization tends to decrease with increasing 

molecular weight of PHCs, due to London dispersion forces acting to keep the PHC molecules in the 

liquid state (McGill et al., 1981). Photooxidation is oxidation from radiation (mostly UV radiation), 

which generally increases the susceptibility of PHC molecules to biodegradation (Ghore et al., 1983). 

Only PHCs at or close to the soil surface are susceptible to photooxidation as photons cannot penetrate 

more than approximately 1  mm into the soil (McGill et al., 1981;  Hawkins, 2012).  Sequestration is the 

binding of PHC molecules to organic matter (humic substances) in the soil through intermolecular forces 

(McGill et al., 1981). Humic substances mainly sequester small aromatic and carbonyl compounds; rarely 

do they sequester aliphatic PHCs (McGill et al., 1981; Robertson  et al., 2007). Aging is a decrease in 

PHC bioaccessiblity over time due to the movement (diffusion, capillary action or gravitational flow) of 

PHC molecules into micro- and macro-pore spaces in the soil (McGill et al., 1981).   

Biotic weathering is the metabolism (biodegradation) of PHC molecules by soil organisms (Atlas, 

1981; Sierra-Garcia et al., 2013). Generally, low molecular weight PHCs (F1 and F2) are more readily 

biodegraded by soil organisms than high molecular weight hydrocarbons (F3 and F4, branched alkanes, 

and PAHs; Atlas, 1981).  The vast majority of biotic PHC weathering is carried out by aerobic microbes, 

while anaerobic microbes contribute little to PHCs weathering in soils (Sierra-Garcia et al., 2013; 

Northrup and Cassidy, 2008). Overall weathered soils tend to have higher concentrations of HMW PHCs 

compared to unweathered soils, due to their slower rates of weathering (Alexander, 2000, Atlas, 1981; 

McGill et al., 1981). 

1.1.2 Soil Properties   

Soil is a heterogeneous matrix composed of organic matter, minerals, air and water. The 

composition of these components greatly influences properties of the soil which can vary from soil to soil 

(Yong et al., 2012). Organic matter can be classified as either unaltered organics or transformed organics 
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(Orsi, 2013; Yong et al., 2012). Unaltered organics are biogenic compounds that have not undergone any 

chemical transformation process in the soils (Orsi, 2013; Yong et al., 2012). In contrast, transformed 

organic compounds of biogenic origin have undergone biological and chemical reaction, and are no 

longer structurally similar and contain no properties of the original parent compounds. These transformed 

organics often originate from decayed plant matter and are often referred to as humic substances. They 

compose the bulk of organic matter in soils.  

Air and water is the total amount of gas and water respectively contained within the soil. Their 

exact contribution to the overall soil mass is dependent upon the mineral and organic content of the soil. 

Minerals are the inorganic crystalline materials such as; clay, oxides and hydrous oxides of iron, 

sulphates, phosphates, sulphides, carbonates, and silicon; and non-crystalline materials such as; iron 

hydroxide, aluminum hydroxide and silicon hydroxide (Yong et al., 2012).  

Soil is classified based on soil particle size (diameter), clay is <0.002 µm, silt is 0.002-0.05 µm 

and sand is 0.05-2.00 µm. (Plaster, 2013; Osman, 2013). The relative composition of clay, silt, and sand 

particles determines the soil type. The soil type greatly influences the properties of the soil such as 

specific surface area, water holding capacity, bulk density and pore size all of which affect how PHCs 

behave in the soil (Plaster, 2013).  

The specific surface area (SSA) is the total surface area at a given weight of dry soil; thus SSA 

increases as soil particle size decreases (clay soil>silt soil>sand soil) (Plaster, 2013; Osman, 2013). 

Higher SSA provides more area for liquid and chemicals (e.g., water or PHC) to sorb onto, thereby 

increasing their retention within the soil matrix. As such, clay soils tend to retain more PHC as compared 

to sandy soils. The latter would allow PHCs to move more readily through the soil into ground water 

(Simanzhenkov and Idem, 2005).  

The Water Holding Capacity (WHC) of a soil is defined as the ability of a soil to retain water, by 

overcoming the downward force of gravity (Hudson, 1994; Osman, 2013). WHC tends to increase with 

SSA. As such, clay soils generally retain more moisture than sandy soils (Simanzhenkov and Idem, 

2005). WHC is also greatly affected by the organic matter content of soil even though it accounts for only 
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a small percentage of the total soil composition. According to Hudson (1994) a 1.0% increase in organic 

matter improves the soil WHC by 3.7%. This is due to the porous nature of organic matter which 

increases SSA, as well as the number of micro-pore capillaries (Hudson, 1994). Generally soils with 

higher WHC limit the downward migration of PHC; this causes PHCs instead to migrate laterally due to 

the hydrophobic repulsion between PHC compounds and water in the soil (Fingas, 2015). 

 The Bulk Density of soil is calculated as the mass of dry soil (g) relative to the volume that the 

dry soil occupies (cm
3
; Equation 1.1) and is heavily influenced by soil texture (Osman, 2013; Plaster, 

2013). Bulk density increases as soil particle size decreases (clay soil>silt soil>sand soil; Plaster, 2013).    

 
Soils with lower bulk density have a greater volume of pore spaces, which can be occupied by water, air 

or other compounds (Osman, 2013; Plaster, 2013). Pore spaces are classified as being either macro-pores, 

which have large diameters (>75µm), or micro-pores, which have small diameters (5-75 µm; Plaster, 

2013). Generally the ratio between macro to micro-pore spaces decreases as the bulk density of the soil 

increases. Soils with higher bulk density tend to hold more recalcitrant PHC contaminants compared to 

low bulk density soil due to the lower bioavailability of PHCs trapped within micro-pores (Gerhardt et 

al., 2015; Volkering et al., 1998). Furthermore high bulk density soils compared to low bulk density soils, 

have less air in the soil matrix and higher WHC which will generally lower PHC degradation rates 

(Plaster, 2013).  

PHC behavior in soils varies greatly and is heavily influenced by soil type (McGill et al., 1981). 

In general PHCs in clay soils compared to sandy soils tend to be less mobile and bioavailable as a result 

of the soils high WHC, SSA and bulk density (Gerhardt et al., 2015; Maletic et al., 2003). Higher WHC 

of clay soils content impedes the downward migration of PHC into soils, due to the repulsion between 

water in soils and PHC (Fingas, 2015). As well, clay soils can sorb large amounts of PHCs due to soil 

particles high SSA (Fingas, 2015). This limits their downward migration and bioavailability to PHC 

𝑩𝒖𝒍𝒌 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 𝒐𝒇 𝑺𝒐𝒊𝒍 (𝒈/𝒄𝒎𝟑) =
𝑾𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝑫𝒓𝒚 𝑺𝒐𝒊𝒍 (𝒈)

𝑽𝒐𝒍𝒖𝒎𝒆 𝒐𝒇 𝑫𝒓𝒚 𝑺𝒐𝒊𝒍 (𝒄𝒎𝟑)
                         Equation 1.1 
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degrading microbes (Gerhardt et al., 2015). Finally, the decreased aeration in clay soils due to their high 

bulk density limits the biotic PHC weathering (Sierra-Garcia et al., 2013; Olajire and Essien, 2014).  

In contrast to clay soils, the low bulk density and SSA of sandy soils provide lower surface area 

for PHC sorption thus increasing its mobility. Furthermore, sandy soils have the low WHC which 

increases the downward migration of PHCs due to the lack of repulsion from water. Overall, sandy soils 

tend not to retain as much PHC as clay soils and contain less weathered PHC contaminants (Fingas, 

2015).  

1.1.3 Canadian Guidelines for PHC in the Environment  

The Canadian Council of Ministers of the Environment (CCME) has developed a three tier 

system with specific guidelines on allowable PHC concentrations for each of the four PHC fractions they 

have defined (CCME, 2008). Tier 1 is the baseline of acceptable PHC concentrations in the soil according 

to land use (Agricultural., residential/parkland, commercial., industrial; Table 1.1).  

 

Table 1.1: Allowable levels of PHC in Surface Soils (Tier 1)  

 Land Use Soil Texture 
F1, C6-C10 

(mg/kg) 

F2, C11-C16 

(mg/kg) 

F3, C17-C34 

(mg/kg) 

F4, C34+ 

(mg/kg) 

Agricultural 

Fine 210 (170
b
) 150 1300 5600 

Coarse 30
b 

150 300 2800 

Residential/Parkland 

Fine 210 (170
b
) 150 1300 5600 

Coarse 30
b
 150 300 2800 

Commercial 

Fine 320 (170
a
) 260 (230

a
) 2500 6600 

Coarse 320 (240
a
) 260 1700 3300 

Industrial 

Fine 320 (170
a
) 260 (230

a
) 2500 6600 

Coarse 320 (240
a
) 260 1700 3300 

Data taken from CCME guidelines (CCME, 2008) 

a= Protection for groundwater  

b= Assumes contamination near residence 

If grain size of soil <75µm it is classified as fine 

If grain size of soil >75µm it is classified as coarse 
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Tier 2 and 3 guidelines, which are adjustments of Tier 1 guidelines, are set by regulators using 

site specific criteria (CCME, 2008). For Tier 2, human exposure to PHCs must be limited by specific site 

criteria such as the location being remote geographically. For Tier 3, the site must be undergoing specific 

site cleanup (e.g, reclamation, phytoremediation etc.) thereby mitigating the risks to the public health and 

the environment (CCME, 2008).  

1.2.0 Current Analytical Techniques for PHC Analysis in Soil 

Various analytical techniques can be employed to determine the concentration of PHC in the soil; 

each has its own benefits and drawbacks (CCME, 2008; Okparanma, 2013) (T able 1.2). However, the 

inability of certain techniques to distinguish PHCs from naturally occurring biological organic 

compounds (BOC) present in soil can be problematic (CCME, 2008; Okparanma, 2013). The presence 

BOC in a sample may lead to an overestimation of PHC in the soil, potentially resulting in expensive and 

unnecessary PHC cleanup (Wang et al., 2009).   

1.2.1 Gravimetric Analysis 

Gravimetric analysis is the simplest technique used to analyze PHC in soils. It has a detection 

limit of 1.4 mg/L (PHC/volume of sample; EPA, 2010). This method involves use of an organic solvent 

(e.g., hexane, chloroform, toluene; EPA,2010; CCME, 2007) to extract PHC from soils.  The resulting 

extract is collected and the solvent is evaporated (EPA,2010; CCME, 2007). The residue is then weighed 

and reported (Equation 1.2; EPA,2010; CCME, 2007).  

Where: Wh= Weight of Residue (mg); Vs= Volume of Sample (L) 

 

Although this method is relatively inexpensive to perform, it cannot distinguish between BOC 

and PHC molecules (EPA,2010; CCME, 2007; Okparanma, 2013). Furthermore this method has very 

limited accuracy for low molecular weight PHC compounds (F1 and F2) due to the volatilization of 

       

 

𝑃𝐻𝐶 (
𝑚𝑔

𝐿
) =  

𝑊ℎ(𝑚𝑔)

𝑉𝑠(𝐿)
                                                    Equation 1.2 
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analyte during the solvent evaporation step. Thus, this method is best suited for HMW PHC compounds 

(F3 and F4) where loss of analyte by volatilization is limited and where BOC interference is not an issue. 

This method is being phased out in favor of more accurate analytical techniques; however, this method 

does have the benefit of being economical and rapid (Okparanma, 2013). 

1.2.2 Infrared Spectroscopy 

Infrared (IR) spectroscopy measures the stretching and bending of bonds within PHC or other 

molecules when they are excited by an infrared energy source (Okparanma, 2013). The PHCs in impacted 

soil samples are extracted using a halogenated solvent (which does not interfere with the IR signal), 

typically Freon-113 (EPA, 1978; Okparanma, 2013). The molecules in the sample extract are then excited 

by IR (2900 to 3000 cm
-1

) and detected to quantify the concentration of PHCs (Okparanma, 2013). IR-

spectroscopy has the benefit of being fast, while having low cost to perform. However, it cannot 

differentiate between PHC and BOC molecules (Okparanma, 2013). As well, heavier hydrocarbons 

(weathered PHC, F3, F4) have poor solubility in Freon (the extraction solvent) resulting in poor 

recoveries when analyzed by IR-spectroscopy (Schwartz et al., 2012). Furthermore, IR-spectroscopy 

reliance on Freon-113 has limited its appeal as a PHC quantification method due Freon-113’s damaging 

effect on the ozone layer. For these reasons, IR-spectroscopy has largely been replaced by gas 

chromatography for PHC analysis (Okparanma, 2013;). 

1.2.3 Gas Chromatography with a Flame Ionization Detector 

Gas-chromatography with flame ionization detector (GC-FID) is recommended by the CCME as 

the industry standard for quantifying PHCs in soils (CCME, 2001). PHCs are extracted from soils using 

an organic solvent and quantified based on molecular weight using a GC-FID. LMW compounds elute 

first from the GC column followed by HMW compounds. When the sample reaches the FID at the 

terminal end of the GC column it is combusted and the resulting ions are detected by the FID. The 

strength of signal is proportional to the amount of combusted PHC.  The GC-FID has several advantages: 

(1) it has a low detection limit (50 µg/kg); (2) it is highly sensitive for the detection of hydrocarbon 
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compounds, with limited interference from inorganic molecules; (3) it can potentially differentiate 

between un-weathered and weathered PHC molecules. The GC-FID method, however, requires relatively 

high equipment and operational costs when compared to IR-spectroscopy and gravimetric methods. It is 

also unable to directly differentiate between BOC and PHC, as well as PHC and PAH compounds. 

However, suspected BOC and PAH peaks can be identified on the GC-FID trace (CCME, 2001). Despite 

these disadvantages the GC-FID method is currently the preferred analytical method for PHC soils 

analysis by the CCME and EPA (CCME, 2008; EPA, 1992). 

1.2.4 Gas Chromatography with a Mass Spectroscopy Detector (GC-MSD)  

Gas chromatography with a mass spectroscopy detector (GC-MSD) is similar to the GC-FID 

method; however, a mass spectroscopy detector (MSD) is used in place of a FID (CCME,2008; EPA, 

2014). The process of GC-MSD is similar to that of GC-FID, PHC compounds travel through the GC-

column at different rates based on their molecular weight. However, at the terminal end of the GC-

column, PHC compounds are impacted by electrons which ionize them into molecular fragments 

(Hoffman and Stroobant, 2013; Fen et al., 1989). A magnetic field then separates PHC molecular 

fragments based on their mass to charge before being detected (Hoffman and Stroobant, 2013; Fen et al., 

1989). The major benefit of GC-MSD over GC-FID is that it can potentially distinguish PHC compounds 

from BOCs (Okparanma, 2013). However, the GC-MSD method is not as sensitive to PHC compounds, 

resulting in a higher detection limit (660 µg/kg) when compared to GC-FID (50 µg/kg). Furthermore, 

GC-MSD is both cost prohibitive for large scale analysis and requires a substantially longer run time per 

sample relative to GC-FID (Okparanma, 2013; EPA, 2014).    
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Table 1.2: Analytical Equipment used to Quantify PHC in Soils.  

Equipment or 

Technique 

Target 

Compound 

Method 

Detection 

Limit 

(MDL) 

Benefits Disadvantages Reference 

Gravimetric Non-volatile 

PHC 

compounds 

1.4 mg/L -Very inexpensive 

-Low technical skill  

-Prone to error 

-Cannot 

distinguish BOC 

from PHC 

-Cannot 

distinguish 

between PHC 

fractions 

 

 

EPA 

Method 

1664, 2010 

IR-Spectroscopy PHC 1.0 mg/L -Inexpensive run per 

sample 

-Fast 

 

-Use of 

halogenated 

solvents 

-difficult to 

calibrate 

-insensitive to 

heavier PHCs 

-Cannot 

distinguish BOC 

from PHC 

 

 

EPA 

Method 

418.1, 1978 

GC-FID PHC 50 µg/kg -Highly accurate and 

sensitive 

- potentially identifies 

weathered PHC 

-Expensive 

-High maintenance 

cost  

-Cannot directly 

distinguish BOC 

from PHC 

 

 

EPA 

Method 

8015, 2000 

 

GC-MSD PHC 

PAH 

BOC 

~660 

µg/kg 

-Highly accurate and 

sensitive 

-Distinguishes BOC 

vs PHC 

-Isolates PAH from 

PHC 

-Very expensive 

-not as sensitive as 

FID 

-long runtime per 

sample 

EPA 

Method 

8270, 1998 

MDL is expressed as mass of target compound/volume or mass of soil. 
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1.2.5 The Current CCME PHC Analysis Protocol 

The current CCME protocol recommends extracting PHCs from dry soils with non-polar solvents 

such as hexane or dichloromethane (DCM). However, as soil moisture increases non-polar solvents 

become less effective at PHC extraction, due to the hydrophobic repulsion of non-polar solvent with 

water (CCME, 2008). To increase the efficiency of PHC extraction from soils, a polar organic solvent, 

such as acetone is combined with the non-polar solvents (Semple et al., 2003; Schwab et al., 1999). The 

current CCME method recommends a 1:1 ratio of acetone to hexane for PHC extraction from soil before 

being analyzed by GC-FID (CCME, 2008). Unfortunately, acetone also readily extracts the BOCs due to 

their polar functional groups, which interferes with PHC analysis (Wang et al., 2009). Operators can 

possibly differentiate between PHC and BOC when observing the GC-FID trace but this is subjective and 

not recommended by the CCME. Thus the BOC co-extraction leads to an overestimation of PHC in soils 

and possibly resulting in unnecessary and costly remediation (CCME, 2008; Hooper et al., 2013). 

1.3.0 Biological Organic Compounds (BOCs) 

BOCs are organic molecules derived from living organisms, as opposed to PHCs which are 

derived from petroleum (Wang et al., 2009). Like PHCs, BOCs are a diverse group of organic molecules, 

which include sterols, sterones, plant alkanes, humic substances, fatty acids, alcohols, waxes, and wax 

esters (Wang et al., 2009). Thus, BOCs often contain polar functional groups in contrast to PHC which 

have very few polar functional groups (Wang et al., 2009). BOCs typically favour odd carbon chain 

lengths compared to PHCs which show no bias towards even or odd chain length. Furthermore, BOCs are 

typically found in the F3 region, but may also be present in the F2 and F4 albeit to a lesser extent (Wang 

et al., 2009; Marzi et al., 1993).  

If the biomass is sufficiently high in soils, BOC concentrations may exceed the allowable CCME 

PHC concentrations (Table 1.1) despite no PHC being present (CCME, 2008; Wang et al., 2009; Hooper 

et al., 2013). For example, several underground diesel fuel storage tanks were suspected of leaking due 

the sudden detection of PHC compounds in the soil which exceeded regulatory limits (Zemo et al., 1995). 
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Upon further inspection, the GC-FID trace did not resemble diesel fuel, but rather looked like an 

innocuous unidentified BOCs likely due to effluent from a nearby spinach farm (Zemo et al., 1995). Thus, 

it is important to account for BOC when quantifying PHC concentrations in the soil to limit the risk of 

false positives.  

There are several methods to mitigate the interference of BOCs when quantifying PHC in soils.  

The simplest method is to use representative un-impacted soil to serve as a control for endogenous BOC 

in the soil (Hooper et al., 2003). This control would serve as a baseline for BOC when determining the 

PHC concentration in PHC-impacted soils (Equation 1.3). However, this maybe unfeasible for bio-

remediated soils as the microorganism and plant amendments are likely to increase the BOC 

concentration above that of the un-impacted soil (Hooper et al., 2003). 

Equation 1.2 

 
 

Where: PHC = Concentration of PHC in Impacted Soil (mg/kg); BOC = Concentration of Organics 

in Un-Impacted Soil (mg/kg) 

 

 Another method is to determine the carbon preference index (CPI), which is the ratio between 

organic compounds with an odd number of carbon chain length and organic compounds with an even 

number of carbon chain length (Wang et al., 2009; Marzi et al., 1993). Thus, CPI greater than 1.0 is 

indicative of the presence of significant amounts of BOC in soil and is used as a diagnostic tool to 

determine if BOCs are present in the soil. However, it does not quantify PHC concentrations and has 

limited effectiveness in weathered soils (Wang et al., 2009; Marzi et al., 1993).   

An effective method used to mitigate the interference of BOCs from PHC sample is to pass the 

extracts through an activated silica column (CCME, 2008).  The activated silica binds the polar functional 

groups of BOC compounds and removes them from the sample. While non-polar PHC molecules are 

eluted from the silica column and then quantified by an analytical technique (CCME, 2008). Care must be 

taken to remove polar solvents prior to the column clean-up step so as not to inactivate (foul) the silica.  

This can be a time consuming process when dealing with large number of samples (Schwab et al., 1999; 

PHC in Soils Corrected for BOC (mg/kg) = [PHC– BOC] 
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CCME, 2008). Despite this, the silica column cleanup is the CCME recommended method in removal of 

BOC from PHC samples (CCME, 2008). 

1.4.0 The Environmental Impact of Terrestrial PHC Contamination 

In Canada, an average of twelve PHC spills occur each day amounting to 14,000 tons of PHC 

spilled annually (Fingas, 2013). The major sources of terrestrial PHC spills in Canada are from pipelines, 

storage/refineries and oil wells (Fingas, 2013). After a terrestrial oil spill, PHCs penetrate into the ground 

by gravity and capillary action (McGill et al., 1981), occupying both micro- and macropores (Fingas, 

2015). As a result the properties of soil are altered, decreasing the cation exchange capacity (CEC), 

aeration and WHC of the soil, which can negatively impact the health of plants and soil microbes (Uzoije, 

2011; Amadi, 1996; Fingas, 2015). As well, PHC-impacted soil can have negative impact on wildlife, 

livestock, and human health (CCME,2008). Furthermore, the PHC can migrate into ground water and 

aquatic systems (CCME,2008). 

  The cation exchange capacity (CEC) is the ability of soil to bind cations (including some plant 

nutrients) through negatively charged clay or humic substances on the surface of soil particles (Chapman, 

1965; Sumner, 1996). In PHC-impacted soils, hydrophobic PHC compounds block cation exchange (CE) 

sites on the surface of the soil particles decreasing the ability of soil to retain plants nutrients (Uzoije, 

2011; Amadi, 1996; Essien and John, 2010). The lack of nutrient in soils stresses plants, resulting in 

stunted growth or possibly death (Uzoije, 2011; Essien and John, 2010; Njoku et al., 2008). This is 

further exacerbated by native hydrocarbonoclastic bacteria (bacteria that use PHC as preferred the carbon 

source) which compete with plants for soil nutrients as they consume PHC (Robertson et al., 2007; Njoku 

et al., 2008). Gas exchange is often limited in PHC-impacted soil due to PHC compounds occupying 

micro and macro-pore spaces which may cause plant stress due to the limited aeration of root systems 

(Fingas, 2015; Shukry et al., 2013). Furthermore, plant roots might be damaged by organic acids found in 

small amounts in some PHC mixtures (Robertson et al., 2007). Lastly, PHC-impacted soils have lower 

WHC relative to non-impacted soils, as a result of water being repelled from soil particles due to the 
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hydrophobic nature of PHC (Fingas, 2015). As a result plants growing in PHC-impacted soils are often 

subject to osmotic or drought-like stresses, due to the lack of water ( Robertson et al., 2007). Direct 

phytotoxicity of PHC is limited, as only small sized PHC molecules (C1-C12) can diffuse through the 

plant cell wall and imbed themselves in the cell membrane, disrupting its integrity (Baker, 1970). 

 Soil microbes, compared to plants, are more affected by direct toxicity of PHC compounds 

compared to changes in soil properties (Efroymson et al., 2004; Robertson et al., 2007). Toxicity towards 

microbes is dependent upon PHC composition. For example, PHC mixtures with high PAH 

concentrations tend to be more toxic than PHC mixtures containing only aliphatic hydrocarbons 

(Robertson et al., 2007). Despite the exact degree of toxicity being dependent on the composition of PHC 

mixture, a couple of generalizations can be made. PHCs may replace monomers of the microbial 

membranes disrupting the lipid bilayer resulting in cell stress or death. Furthermore, PHC may inhibit 

invertases and hydrogenases which are essential enzymes for bacterial metabolism. Finally, the overall 

microbial diversity may decrease in PHC-impacted soil, often favoring hydrocarbonoclastic bacteria over 

other microbes (Robertson et al., 2007). 

1.5.0 Physical Remediation of PHC-Impacted Soil 

In Canada over 60% of contaminated soils are PHC-impacted and they are often left 

unremediated due to the lack of resources to secure a site or remediation technologies (Sanscartier, 2010). 

Physical cleanup methods are based on the removal of PHC-impacted soil to remediate a site. Landfilling 

in which PHC-impact soil is excavated and relocated to a waste disposal site is the most common. 

Although landfilling is one of the fastest cleanup methods, it does not restore the soil to its preexisting 

state before the spill (Ezeji et al., 2007). As well landfilling is relatively expensive in comparison to other 

methods, costing approximately $200–$1500 per ton (Gerhardt et al., 2009).  

1.6.0 Bioremediation of PHC-Impacted Soil 

Bioremediation employs living organisms to breakdown PHC contaminants in the soil to 

potentially restore the soil to its previously un-impacted state (Gerhardt et al., 2009). The bioremediation 
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efficiency of PHC-impacted soils is dependent on bioavailability of PHC molecules to microorganisms 

(Volkering et al., 1999). Most soil microbes reside in the aqueous phase on the surface of soil particles, 

thus, increased solubility of PHC compounds in water is correlated to increased bioavailability 

(Volkering et al., 1999). The solubility of PHC compounds in water is mainly determined by the 

molecular weight of the PHC molecules and the degree of weathering (Pilon-Smits, 2005;  Robertson et 

al., 2007). HMW PHC compounds have low water solubility relative to LMW PHCs, and are usually 

tightly sorbed to soil particles (Robertson et al., 2007). As well, PHCs might be absorbed into the soil 

particle through the weathering processes of ageing and sequestration, limiting their bioavailability. In 

most cases, recalcitrant PHC contaminants in soils tend to be HMW (F3 and F4) compounds that have 

undergone a high degree of weathering (Robertson et al., 2007). Lastly, the bioremediation is highly 

dependent on the titer of microbes capable of degrading PHC, as increased microbial titer in soil 

correlates with higher rates of PHC degradation (Gerhardt et al., 2009; Jordhal et al., 1997).  

1.7.0 Phytoremediation of PHC-Impacted Soil 

Of the three most common types of bioremediation techniques- microbial remediation, myco-

remediation, and phytoremediation- phytoremediation is the most common (Moosavi and Seghatoleslami, 

2013). Phytoremediation is a cost effective solution ($25-50 per ton) which uses plants and their 

associated microbes to degrade PHC contaminants in the soil (Gerhardt et al., 2009). Phytoremediation 

can remove contaminants from soils by the following four mechanisms; phytoextraction, 

phytovolatilization, phytostabilization, and rhizoremediation. Each mechanism targets different class of a 

soil contaminant (Moosavi and Gholamreza, 2013; Zhang et al., 2010).  

 Phytoextraction involves the uptake of target contaminants from the soil by plant roots, which are 

then transported and sequestered into vacuoles (Moosavi and Seghatoleslami, 2013; Zhang et al., 2010). 

Phytoextraction is typically used for metal and salt remediation, but rarely with PHCs (Moosavi and 

Seghatoleslami, 2013; Zhang et al., 2010). 
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Phytovolatilization involves the uptake and transport of contaminants by plants, followed by 

transpiration through the leaves (Moosavi and Seghatoleslami, 2013). Volatile inorganic contaminants 

such as mercury, selenium and arsenic, as well as some volatile organic compounds such as 

trichloroethylene can be removed from soils by phytovolatilization (Moosavi and Seghatoleslami, 2013; 

Zhang et al., 2010).   

Phytostabilization is the sequestration or immobilization of target contaminants within the 

rhizosphere and plants thereby limiting the bioavailability of the contaminants (Moosavi and 

Seghatoleslami, 2013).  Phytostabilization is used mostly for metal contaminants such as cadmium, lead, 

chromium, copper and zinc. It is rarely effective for PHC remediation in soils (Moosavi and 

Seghatoleslami, 2013; Zhang et al., 2010).  

Rhizoremediation is the metabolic consumption (degradation) of organic compounds by plants 

and their associated microbes within the rhizosphere, a one to two millimeters radius from the plant roots 

(Pilon-Smits, 2005; Dotanyia and Meena, 2015). Rhizoremediation is primarily used for PHC remediation 

in soils (Pilon-Smits, 2005). Plants rarely take up PHCs from the soil as the vast majority of PHC 

contaminants are too large to pass through the plant cell wall (Pilon-Smits, 2005). Instead, the role of 

plants in rhizoremediation is to promote the microbial degradation of PHCs. The plant achieves this by 

the secretion of phyotosynthates, employing extracelluar enzymes and aerating the soil (Gerhardt et al., 

2009; Chaudhry et al., 2005).  Photosynthates are plant-derived molecules (sugars, organic acids and 

larger organic compounds) which can be released into the rhizosphere soil through plant roots (Gerhardt 

et al., 2009). The release of photosynthates has been shown to dramatically increase the microbial density 

(10-100 fold) within the rhizosphere compared to the surrounding soil; this is known as the rhizosphere 

effect (Dotanyia and Meena, 2015). The increased microbial density correlates with increased PHC 

degradation (Dotanyia and Meena, 2015). Plants may also secrete a variety of extracellular-enzymes such 

as peroxidases, nitrilases, phosphatases, nitroreductases, and cytochrome p450 monoxygenases that aid in 

the microbial degradation of PAHs (Novotny et al.,1997), as well as halogenated hydrocarbons (Susaria 

et al., 2002), organic molecules with cyanide functional groups (Kaplan et al., 2006), organophosphates 
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(Susaria et al., 2002), organics with nitro-groups (Liu et al., 2007)  and PAH and aliphatic hydrocarbons 

(Sandermann, 1992). As well, plant roots physically break up the soil, increasing aeration thereby 

promoting aerobic microbial growth and PHC degradation (Gerhardt et al., 2009). Overall, plants are 

essential for rhizoremediation as they increase microbial density in soils (rhizosphere effect) resulting in 

improved bioremediation rates (Gerhardt et al., 2009; Dotanyia and Meena, 2015; Pilon-Smits, 2005).  

1.7.1 Bacterial Degradation of PHC in the Rhizosphere  

The majority of bacteria prefer not use PHCs as a carbon source due to PHC’s poor solubility in 

water and lack of polar functional groups resulting in weak chemical reactivity (Sierra-Garcia et al., 

2013). However, hydrocarbonoclastic bacteria (e.g., Pseudomonas bacteria) use PHC as their preferred 

carbon source (Sierra-Garcia et al., 2013). These bacteria take up PHC compounds from the soil by 

diffusion through the cellular membrane, the PHC are then activated through addition of polar functional 

groups to increase chemical reactivity (Gerdhart et al., 2009).  The biodegradation of PHC contaminants 

in soil may either be anaerobic or aerobic process. However, anaerobic biodegradation does not have a 

significant impact on phytoremediation of PHC-impacted soils and will not be discussed further (Sierra-

Garcia et al., 2013; Olajire and Essien, 2014). Aerobic biodegradation of PHC contaminants by microbes 

in the soil can be divided into two categories based on their substrate: aliphatic (straight or branching 

carbon chains) or aromatic (cyclic carbon chains) hydrocarbons (Sierra-Garcia et al., 2013; Olajire and 

Essien, 2014). 

Aerobic bacterial biodegradation of aliphatic hydrocarbon compounds is a two stage process 

which involves the hydroxylation of PHC chain followed by breakdown through β-oxidation (Sierra-

Garcia et al., 2013; Olajire and Essien, 2014). The first step (rate limiting step) the bacteria must have 

direct contact with the PHC to achieve uptake and hydroxylation of the PHC chain (Rojo, 2010). The 

aliphatic PHC is hydroxylated either terminally (long chain carbons) or sub-terminally (short chain 

carbons) by different membrane bound monoxygenase enzymes, which require molecular oxygen to 

function (Rojo, 2010; Sierra-Garcia et al., 2013; Olajire and Essien, 2014). Following hydroxylation, 
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aliphatic chains are then further oxidized to aldehydes by alcohol dehydrogenases and finally into fatty 

acids by aldehyde dehydrogenases (Sierra-Garcia et al., 2013; Olajire and Essien, 2014).  The resultant 

fatty acids are then converted to acetyl-CoA by β-oxidation and used as a carbon source in the citric acid 

cycle or used as building blocks for biomolecules (Sierra-Garcia et al., 2013; Olajire and Essien, 2014).   

Aromatic PHC compounds, unlike aliphatic PHC compounds are resistant to degradation in the 

environment due to their resonance stability (Sierra-Garcia et al., 2013; Olajire and Essien, 2014). Three 

enzyme superfamilies: Rieske non-heme iron oxygenases, flavoprotein monooxygenases and soluble di-

iron multicomponent monooxygenases are known to oxygenate aromatic hydrocarbons (Sierra-Garcia et 

al., 2013; Olajire and Essien, 2014). These enzyme superfamilies are encoded by genes from the 

Protobacteria or Actinobacteria phyla. Aromatic degradation involves two stages; first the aromatic ring 

must be activated, involving the oxidation of aromatic ring by one of the aforementioned enzymes. The 

oxidized aromatic intermediate is either a catechol or protocatechol depending on the substrate undergo 

meta- and ortho-cleavage respectively. Its products (acetaldehyde, pyruvate, and β-ketoadipate) are used 

as  carbon sources in central metabolism for the bacterial (Cao et al.,2009; Sierra-Garcia et al., 2013). It is 

highly unlikely that a single species of bacteria has all the required monooxygenase enzymes to break 

down every type of hydrocarbon; thus microbial consortia have a higher efficiency at degrading PHC than 

any single species of bacteria (Rojo, 2010; Sierra-Garcia et al., 2013). However, the bacterial breakdown 

of petrogenic aromatics may not be required in PHC phytoremediation of soil, due to the low 

concentration of aromatics in PHC mixtures.  

1.7.2 Advantages and Challenges of Phytoremediation 

Phytoremediation has several advantages over other remediation methods. It can target a wide 

range of both organic (PHC, PAH, halogenated organics) and inorganic (metals and salts) contaminants 

(Zhang et al., 2010; Gerhardt et al., 2009). Phytoremediation can be applied both ex-situ and in-situ in the 

environment. Since phytoremediation can be applied in-situ it is an attractive option in remote locations 

where physical cleanup methods would be impractical. Phytoremediation has low cost ($25-50 per ton of 
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soil) relative to other remediation methods and requires minimal maintenance (Gerhardt et al., 2009). 

Unlike physical methods (such as landfilling), soils are remediated, thus soil disposal sites are not 

required. Finally, phytoremediation is more aesthetically pleasing than the open pit excavations associated 

with physical cleanup methods (Gerhardt et al., 2009). 

 Phytoremediation, however, is not without its limitations. It can be slow in comparison to 

physical cleanup methods often requiring more than one year to remediate PHC-impacted soils (Ezeji et 

al., 2007; Gerhardt et al., 2009). PHC remediation is largely limited to the plant root zone (Gerhardt et 

al., 2009). The selection of plants can be limited to native species, as the introduction of non-native 

species may be detrimental to a given ecosystem (Chibuike and Obiora, 2014). With in-situ 

phytoremediation, plants are subject to environmental stressors such as, herbivory, pathogens, weather, 

etc. This can negatively affect both plant growth rates and phytoremediation rates (Gomes, 2012).  

1.7.3 Plant Growth Promoting Rhizobacteria (PGPR) Enhanced Phytoremediation System 

for PHC Impacted Soils 

Plant growth promoting rhizobacteria (PGPR) are bacteria that improve overall plant growth 

largely by mitigating the effects of environmental stressors (Huang et al., 2005; Gerhardt et al., 2009). 

PGPR enhanced phytoremediation system (PEPS) is the use of PGPR in conjunction with 

phytoremediation in order to increase the rate of PHC remediation (Huang et al., 2005; Liu et al., 2013).  

For a bacterium to be classified as a PGPR the following criteria must be met: 1) the bacterium 

must have the ability to colonize plant root surfaces; 2) the bacterium must have the ability to survive, 

multiply and compete with other soil-dwelling microbes; 3) the bacterium must have the ability to 

increase overall plant growth (Ahemad and Kibret, 2014). Currently, PGPR can be divided into 2 broad 

categories; intracellular PGPR (iPGPR) which infiltrate plant roots living in specialized nodule cells; and 

extracellular PGPR (ePGPR) which reside on the root surface. The iPGPR generally increase plant 

growth by fixing nitrogen gas, and are usually not used for PHC phytoremediation. Unlike iPGPR, 

ePGPR are preferred in regards to PHC phytoremediation, due to their ability to mitigate environmental 
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stress through the production 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole-3-

acetic acid (IAA; Ahemad and Kilbret, 2014; Arshad et al., 2007).  Environmental stressors (e.g., PHC-

impacted soil) can cause plants to produce the phytohormone ethylene from its precursor ACC (Figure 1).  

Ethylene inhibits plant root, shoot, and axillary meristem growth (Baker, 1970; Ahemad and Kilbret, 

2014). ACC deaminase is produced by PGPR and can mitigate the ethylene stress responses in plants by 

hydrolysis of ACC into α-ketobutyric and ammonia (Ahemad and Kilbret, 2014; Arshad et al., 2007). 

This decreases ethylene production in plants and results in an increased plant growth rate despite presence 

of some environmental stressors (Ahemad and Kilbret, 2014; Arshad et al., 2007).  

Indole-3-acetic acid (IAA) is a phytohormone (Auxin), which can also be produced by PGPR, 

and can have a wide range of physiological effects on plants (Ahemad and Kilbret, 2014; Mirza et al., 

2001; Idris et al. 2007). IAA increases root length, xylem development, germination rates, tuber 

formation, root exudate secretions and upregulates plant defense genes. (Figure 1.1; Khalid et al., 2004; 

Ahemad and Kilbret, 2014; Fu and Wang, 2011). Furthermore, IAA limits ethylene stress responses in 

plants by inhibiting ACC synthase, thus improving the overall plant growth rate (Kim et al., 2001; Arshad 

et al., 2007). 
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Figure 1.1: The Effects of IAA and ACC Deaminase Produced by ePGPR on Plant Tissue 
Both IAA and ACC deaminase are beneficial for plant growth. IAA is produced in ePGPR and is 

transported into the plant root tissue stimulating cell elongation and proliferation. ACC produced in the 

plant cells are transported into the ePGPR where it is hydrolyzed into ammonia and α-ketobutyrate by 

ACC deaminase. This decreases the available ACC in the plant cells, mitigating the ethylene stress 

response in plant tissues. Diagram taken from Ashad et al. (2007).  
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1.8.0 Chemically Enhanced Phytoremediation 

PHC-impacted soil may take several years to be fully phytoremediated, especially in soils with 

recalcitrant PHC (e.g., PAHs or high molecular weight hydrocarbons; Mulligan et al., 2000). 

Phytoremediation can be chemically enhanced with the in-situ application of chemical additives (oxygen 

fertilizers and surfactants) to the soil to increase phytoremediation rates (Mulligan et al., 2000). 

Furthermore, chemically enhanced phytoremediation could be combined with PEPS (Chemically 

enhanced PEPS) for increased remediation rates. 

1.8.1 Oxygen Releasing Compounds  

In poorly aerated (e.g., waterlogged and compacted) soils, PHC phytoremediation might be 

impeded due to low oxygen content, because O2 is required for both aerobic PHC biodegradation and 

cellular respiration by PHC degrading microbes (Sierra-Garcia et al., 2013; Olajire and Essien, 2014).  

To limit low oxygen soil conditions and increase biodegradation rates of PHC, oxygen releasing 

compounds (ORC), which release molecular oxygen in the presence of H2O, can be added into the soils 

(Figure 1.2; Goi et al., 2011, Northrup and Cassidy, 2008 ).  

XO2 (s) + 2H20(aq) → X(OH)2 (s) + H2O2 (aq)        (1) 

 

H2O2 (aq) → H2O (aq) + O2 (g)                           (2) 

 

Figure 1.2: Mechanism for the Production of Oxygen by ORCs.   

Reaction 1 shows the production of H2O2 from an ORC, where X can either be Mg
2+

 or Ca
2+

.
  
Reaction 2 

shows a disproportionation reaction of H2O2 in to H2O and O2 (Northrup and Cassidy, 2008). 

 

The three most common ORCs are hydrogen peroxide (H202), calcium peroxide (CaO2), and magnesium 

peroxide (MgO2)(Northrup and Cassidy, 2008; Wang et al., 2011). Of these three ORCs, H2O2 has the 

highest solubility in water and rapidly decomposes releasing large amounts of oxygen into the soil 

(Northrup and Cassidy, 2008). However, the rapid decomposition of an ORC is not ideal, because excess 

oxygen may escape rather than be used by bacteria for PHC biodegradation. Due its short half-life, H2O2 

must be regularly reapplied to PHC-impacted soils to be effective (Northrup and Cassidy, 2008). Unlike 
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H2O2, both CaO2 and MgO2 have low solubility in water, allowing for the slow release of oxygen into the 

soil over an extended period of time (Wang et al., 2010; Northrup and Cassidy, 2008).  

 The majority of ORC-enhanced remediation trials to date have been carried out with laboratory-

based microbial bioremediation. In a field study, Davis et al., (1997) showed that PHC-impacted soil 

(300-400 mg/kg) treated with CaO2 and MgO2, had a 68% decrease in PHC concentration relative to the 

untreated PHC-impacted soil (no ORCs) within the first 13 days. Cassidy and Irvine (1999), investigated 

the effect of CaO2 on microbial remediation of bis-(2-ethylhexyl) phthalate (BHEP) in solid state 

bioreactors over a 20 day period. In the CaO2 treated bioreactor, the BHEP concentration decreased by 

75% while in the untreated control bioreactor it decreased by 26% (Cassidy and Irvine, 1999). Recent 

research has focused on extending the half-life of ORC by developing ORC-containing soluble polymer 

beads which release CaO2 50% slower than CaO2 applied directly to soil, thus limiting the need for 

reapplication (Lee et al., 2014; Wu et al., 2014). To date little research has been done on the effects of 

ORC on phytoremediation.   

1.8.2 Surfactant Enhanced Phytoremediation 

The bioavailability of PHCs to soil microbes is one of the many rate limiting steps in 

phytoremediation, as many recalcitrant PHC compounds have low bioavailability (Robertson et al., 

2007). These recalcitrant PHC compounds are often very hydrophobic, and remain adsorbed to the 

surface of soil particles or within soil micropores (Das and Chandran, 2011). PHC bioavailability can be 

increased with the use of surfactants which decrease the surface tension between hydrophobic molecules 

(PHC contaminants) and the aqueous phase (water) (Volkering et al., 1999; Ron and Rosenberg, 2002). In 

the context of enhanced bioremediation, surfactants can either be classified as biosurfactants or synthetic 

surfactants (Kile and Chou, 1990; Mulligan, 2005; Volkering et al., 1998).  Synthetic surfactants can 

either be ionic (anionic or cationic) or non-ionic (neutral) (Volkering et al., 1998). Generally ionic 

surfactants (e.g., sodium dodecyl sulfate and sodium dodecylbenzenesulfonate) are more effective at 

solubilization of non-polar compounds than non-ionic surfactants (e.g., Tween-80 and Triton-x100), due 
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to their higher solubility in aqueous environments (Figure 1.3; Despande et al., 1999). However, unlike 

non-ionic surfactants, ionic surfactants often have greater toxic interactions to microbial surface proteins 

due to ionization over certain pH ranges (Volkering et al., 1998; Cserhati et al., 2002). Generally 

synthetic surfactants have low steric hindrance, and may insert themselves into microbial lipid bilayers 

more readily compared to biosurfactants. In sufficient quantities synthetic surfactants might solubilize the 

microbial lipid bilayer resulting in cell death (Volkering et al., 1998). As such, synthetic surfactants are 

not used as frequently as biosurfactants in conjunction with bioremediation (Mulligan, 2005; Pacwa-

Płociniczak et al., 2011). Synthetic surfactants may still be suitable in ex-situ soil washing remediation 

projects or as a pretreatment where PHC-containing effluent would be collected and disposed of properly 

(Volkering et al., 1998).   

Biosurfactants are naturally occurring and are mostly produced by soil microbes (Jorfi et al., 

2014; Mulligan, 2005; Pacwa-Płociniczak et al., 2011). They are usually less toxic than synthetic 

surfactants possibly because they are more readily degraded and do not easily insert themselves into 

phospholipid bilayers (Mulligan, 2005). The main classes of biosurfactants are glycolipids, lipopeptides, 

lipoproteins, fatty acids, phospholipids, and polymeric surfactants (Figure 1.3; Mulligan, 2005; Gautam 

and Tygai, 2006). The most widely studied biosurfactant is rhamnolipid, a subclass of glycolipids, which 

is produced by several Pseudomonasspecies (Jorfi et al., 2014; Pacwa-Płociniczak et al., 2011). 

Rhamnolipids are composed of two rhamnose sugars linked to a β-hydroxydeconic acid or one rhamnose 

connected to a fatty acid (Mulligan, 2005). Several remediation studies have been carried out to test the 

efficacy of rhamnolipids as  surfactants with varying results. Whang et al. (2008) found that rhamnolipid-

treated soils had a 97% (un-weathered soil) and 47% (weathered soil) decrease in PHC concentration 

relative to the untreated control soil. Rahman et al. (2003) showed that rhamnolipid-treated unweathered 

PHC-impacted soils had an 80-85% (C22-C31 compounds) and 57-73% (C32-C40 compounds) decrease in 

PHC concentration relative to untreated control soil. Conversely, a one year field study by Szulc et al. 

(2014) found a no significant increase in microbial PHC degradation in rhamnolipid-treated plots relative 
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to the untreated control soil after 60 days. Currently, the majority of surfactant enhanced research has 

been focused on microbial bioremediation with minimal research focused on phytoremediation.  
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B) 

A) 

Figure 1.3: Chemical Structures of Surfactants 

A) Structures of Synthetic Surfactants: Triton X-100, SDBS and SDS B) Structures of Biosurfactants: Glycolipids, Polymeric Biosurfactant, 

Cyclic Lipopetide Surfactin 

 

Triton X-100 

Sodium Dodecyl Sulfate (SDS) 

Glycolipid 
Cyclic Lipopeptide Surfactin 

Polymeric Biosurfactant 

Sodium Dodecylbenzenesulfonate (SDBS) 
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1.9.0 Hypothesis and Research Objectives 

The investigation of this research is divided into two sections: 1) method development for PHC 

quantification in soils and, 2) efficacy of chemically enhanced PEPS on weathered PHC-impacted soil 

quantified using PHC methods developed in section 1. BOC are naturally occurring in soils derived from 

endogenous soil organisms (plants and microbes) may interfere with quantification of PHC when 

analyzed by the GC-FID possibly leading to an overestimation of PHC (Wang et al., 2009; Hooper et al., 

2013). The current, standard CCME PHC extraction and quantification method does not account for BOC 

contamination in soil extract samples (CCME, 2012; Wang et al., 2009; Hooper et al., 2013; Zemo et al., 

1995). The objective of this research was to develop a method that is effective at extracting PHC from 

soils as the CCME protocol while limiting BOC interference. To test this objective the following was 

carried out: (1) Compare the efficacy of different combinations and concentrations of acetone, hexane, 

and dichloromethane (DCM) on PHC and BOC extraction; (2) Investigate the effectiveness of increasing 

concentration of activated silica for BOC removal in extract samples.  

 Chemically enhanced phytoremediation employs the in-situ application of chemical additives to 

the soil to increase phytoremediation rates (Mulligan et al., 2000). Currently, there is limited research on 

the effects of both CaO2 and petroleum based surfactants (Petroleum sulfonate oil; PSO) carried out on 

chemically enhanced PEPS of PHC-impacted soil. Furthermore, most remediation experiments use spiked 

as opposed to weathered soil contaminants which are resistant to bioremediation and are representative of 

an actual PHC-impacted soils (Cassidy and Irvine, 1999; Jofri et al., 2013; Hewei et al., 2014; Goi et 

al., 2011). Both CaO2 and PSO may increase the rate of PHC phytoremediation relative to unamended 

phytoremediated soils. To test this hypothesis 3 objectives were pursued: 1) Test the efficacy of PSO and 

CaO2 on the rates of PHC phytoremediation in a four-week-long enhanced PGPR-phytoremediation 

greenhouse trial; 2) monitor plant health by measuring dry biomass and chlorophyll concentration to 

determine if CaO2 or PSO had impacts on plant health; (3) Determine the efficacy of the PHC extraction 

methods developed, on quantification of PHC from chemically enhanced PEPS soil.
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Chapter 2: 

Analytical Techniques for Petroleum Hydrocarbon Quantification 

and BOC Mitigation in Impacted Soils. 
 

2.1 Overview 

The allowable concentration of petroleum hydrocarbons (PHC) in Canadian soils is 

recommended by the Canadian Council of Ministers of the Environment (CCME) and set by provincial 

authorities. Several methods exist for the extraction and quantification of PHC from soils. The preferred 

method according to the CCME is solvent extraction with 1:1 acetone/hexane (1:1 AH) to recover PHC 

from soils, followed by quantification via gas chromatography with a flame ionization detector (GC-FID) 

(CCME, 2008). Unfortunately, the 1:1 AH mixture extracts both PHC and endogenous biological organic 

compounds (BOC), potentially resulting in an overestimation of total PHC. In this research, two 

analytical methods were compared for their ability to extract PHC from soils while also limiting 

interference from BOC. The first method (1:1 AH with silica cleanup) used the 1:1 acetone/hexane 

solvent mixture to extract PHC from soils, followed by the addition of activated silica to remove BOC 

from the PHC-soil extract. The second method (DCM+SS+Silica) uses the solvent dichloromethane 

(DCM) along with anhydrous Na2SO4 to dry soils and activated silica to remove BOC. Both methods 

extracted similar amounts (P>0.05) of PHC from the weathered PHC-impacted soils, except when soil 

moisture was higher than 12.0%. At higher soil moistures the extraction efficiency of the 

DCM+SS+Silica method decreased by 11.7% (P=0.013) while the 1:1 AH with silica cleanup PHC 

extraction efficiency was unaffected. 

. 
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2.2 Introduction 

The Canadian Council of Ministers of the Environment (CCME) suggests strict guidelines on the 

allowable levels of petroleum hydrocarbons (PHC) in soils (CCME, 2008). To quantify the concentration 

of PHC in soils, PHC are first extracted from soils using an organic solvent often aided by mechanical 

agitation. The PHC-extracts can be analyzed by a variety of analytical techniques such as gravimetrics 

analysis, IR-spectroscopy, gas chromatography (GC) with a flame ionization detector (FID), or GC mass 

spectroscopy (GC-MS; CCME, 2008; Okparanma, 2013). Among these techniques, GC-FID is usually 

preferred due to its high sensitivity in detecting PHC. When analyzed by GC-FID, PHC-extracts are 

vaporized and are transported through the GC-column and into the FID located at the terminal end of the 

column (CCME, 2008). During transport through the GC-column, PHC separate based on boiling points 

with lower molecular weight compounds eluting from the column first. Upon reaching the terminal end of 

the GC-column, PHCs are ignited and the resultant ions are quantified by the FID (CCME, 2008).  

However, analysis by GC-FID, gravimetrics and IR-spectroscopy cannot distinguish between 

PHC and biological organic compounds (BOCs). The latter are naturally occurring soil bound organic 

compounds produced by soil organisms and plants (CCME, 2008; Wang et al., 2009; Marzi et al., 1993; 

Yang et al., 2013; Hooper et al., 2003). Generally, BOC are found among PHC with chain lengths of 17-

34 (the F3 fraction of PHC). This can cause an overestimation of PHC in soils, potentially resulting in 

unnecessary and expensive remediation (CCME, 2008; Wang et al., 2009).  Currently, GC-MS is the only 

analytical equipment that can distinguish between PHC and BOC molecules (EPA, 2014). However, it is 

not widely used, because GC-FID are more sensitive to PHC, analyzes samples faster and is the lower 

cost option (Okparanma, 2013; EPA, 2014). 

Currently, the CCME recommends the cold shake method with 1:1 acetone:hexane (1:1 AH) to 

extract PHC from soils followed by quantification by GC-FID (CCME,2008).  The cold-shake method 

involves mechanical agitation of PHC-impacted soils in the solvent mixture 1:1 AH at room temperature. 

However, this method also extracts BOC from soils (if they are present). This is due to the polar solvent 

(e.g., acetone) solubilizing BOC from soils. To remove BOC contaminants, the CCME recommends 
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passing PHC-extract through a column of activated silica which binds to the polar functional groups of 

the BOC, allowing the non-polar PHC to elute (CCME, 2008). However, polar solvents (i.e acetone) must 

be removed from the PHC-soil extract before it is passed through the silica column. If the polar solvent 

was not removed from the PHC-extract, it would occupy the majority of binding sites on the silica, 

drastically decreasing its efficacy (CCME 2008; Schwab et al., 1999). As a result, the removal of BOC 

from PHC-extracts using activated silica (silica cleanup) can be a laborious task (Schwab et al., 1999).  

 The objective of this investigation was to develop a protocol which will accurately quantify PHCs 

within the soil while limiting interference from BOCs. To accomplish this, there were three objectives: 

(1) Test the efficacy of different combinations and concentrations of solvents (acetone, dichloromethane, 

and hexane) on both PHC and BOC extraction. (2) Develop an effective in situ silica cleanup protocol for 

removal of BOCs from extracts of weathered PHC-impacted soils and freshly spiked PHC soils. (3) 

Compare the efficacy of the 1:1 AH with the in situ silica cleanup method to the DCM with an in situ 

silica cleanup method on the PHC extraction using non-simulated weathered PHC-impacted soils. 
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2.3.0 Materials and Methods 

2.3.1. Soil Preparation 

Both PHC-impacted and non-impacted soil was collected from a site in Alberta after two full 

seasons of phytoremediation. Roughly 10.0 kg of each soil type were sieved through a wire mesh (2.00 

cm diameter) and vigorously mixed in their respective containers to ensure homogenous distribution of 

PHC. Soils were then stored at room temperature in sealed containers.  In addition to soils from Alberta, 

artificial soils were also prepared in 20 mL scintillation vials. These artificial soils (4.50 ±0.01 g of silica 

sand and 0.50 ±0.01 g of peat) were spiked with both 0.50 ±0.01 mL solution of 1:100 diesel to hexane 

and 1:10 of motor oil to hexane. A 3.00 ±0.01 mL solution of 1:1 acetone:hexane (1:1 AH) was then 

added to each scintillation vial and then vortexed for 30 seconds to evenly disperse the PHC solution 

throughout the artificial soil. The cap of each scintillation vial was removed and the solvent was allowed 

to volatilize in a fume hood for 24 hrs.  

2.3.2 Cold Shake PHC Extraction from Soil  

PHC in soils are extracted using a modified cold-shake extraction method as recommended by the 

CCME (CCME, 2008). PHC-impacted soil samples were weighed (5.00-6.00 ±0.01 g) and then placed 

into 20 mL scintillation vials. Various solvent mixtures were used to extract PHC from soils using the 

cold-shake extraction method (Table 2.1). In the first extraction 7.50 ±0.01 mL of solvent was added to 

the sample which was then vortexed for 30 seconds and shaken for 30 minutes at 170 rpm. Vials were 

then stored in a refrigerator at 4.0°C for 1 hour, to allow soil to settle. The extract/solvent layer was 

transferred into test tubes which were tightly sealed and returned to the refrigerator to minimize 

volatilization. In the second extraction, 7.50 ±0.01 mL of fresh solvent was added to each soil sample in 

the scintillation vials. The samples were then vortexed for 30 seconds and shaken for 30 minutes at 170 

rpm. The extract/solvent in the test tube (stored in the refrigerator) was returned to its respective 

scintillation vial and allowed to settle for 1 hour at 4.0°C. Approximately 1.50 mL of extract/solvent was 

transferred from each scintillation vial into GC vials and then analyzed using the GC-FID. 
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Table 2.1: Different Combinations of Acetone, DCM, and Hexane used for Cold Shake PHC 

Extraction. 
1

st
 Extraction (7.50 mL) 2

nd
 Extraction (7.50 mL) 

Acetone Acetone 

Acetone Hexane 

1:1 Acetone:Hexane 1:1 Acetone: Hexane 

1:2 Acetone:Hexane 1:2 Acetone:Hexane 

1:2 Acetone:Hexane Hexane 

1:4 Acetone:Hexane 1:4 Acetone:Hexane 

1:4 Acetone:Hexane Hexane 

Hexane Hexane 

DCM DCM 

1:1 DCM:Hexane 1:1 DCM:Hexane 

1:1 DCM:Hexane Hexane 

1:2 DCM:Hexane 1:2 DCM:Hexane 

1:2 DCM:Hexane Hexane 

1:4 DCM:Hexane 1:4 DCM:Hexane 

1:4 DCM:Hexane Hexane 
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2.3.3 Preparation of both Activated Silica and Anhydrous Sodium Sulfate 

Reagent grade silica (CAS# 1344-09-8, Sigma Aldrich, Oakville, Ontario, Canada) (0.50±0.01 g) 

and anhydrous sodium sulfate (Na2SO4; CAS# 7757-82-6, Sigma Aldrich, Oakville, Ontario, Canada) ( 

0.10±0.01) were weighed using a top loading analytical balance and then transferred into glass test tubes.  

The test tubes containing silica and Na2SO4 were transferred to an oven at 103°C for a period of 24 hours 

to remove any residual moisture.  

2.3.4 Use of Activated Silica for BOC Removal in PHC-Soil Extract Containing Acetone 

The cold shake extraction method was used to extract PHC from 5.00-6.00 g soil samples. A 

volume of 5.00 mL of cold shake 1:1 AH extract was extracted with 10.0 mL of reverse osmosis water 

(RO-H2O). The top layer (organic phase) containing PHC, hexane and BOC was then transferred to 

another test tube containing 10.0 mL of RO-H2O to maximize acetone removal. The organic layer (PHC, 

hexane and BOC) were transferred to a test tubes containing 0.10 ±0.01g of anhydrous sodium sulfate 

(dried at 103°C for 24 hr) to remove any residual RO-H2O. The samples were then vortexed for 15 

seconds and the liquid was transferred to another test tube. Hexane (1.00 mL) was used to wash the 

anhydrous sodium sulfate to remove any remaining solvent/extract and transferred to the respective 

labeled test tube. The volume of solvent in the test tube was brought up to 10.0 mL using hexane and then 

transferred to test tube containing activated silica. Samples were vortexed for 15 seconds and centrifuged 

until activated silica was pelleted. The supernatant was transferred into GC vials and analyzed using a 

GC-FID (see below). 

2.3.5 DCM Cold Shake Extraction with Addition of Na2SO4 and Activated Silica 

A modified cold shake extraction method used DCM to extract PHC from soils. PHC impacted 

soil samples were weighed to 5.00-6.00 ±0.01 g using a top-loading balance (OHAUS TS400, M&L 

Testing Equipment (1995) INC. Dundas, Ontario) and then placed into 20 mL scintillation vials. Na2SO4 

(0.50±0.01 g) was added into the scintillation vials which were stored in the refrigerator (4.0°C) for 30 

minutes. Activated silica (0.50±0.01 g) was then added to the scintillation vials. For the 1
st
 extraction 7.5 
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mL of DCM was added to the sample, vortexed (30 seconds) and then placed on a shaker (30 min at 170 

rpm). Samples were stored in the refrigerator (4.0°C) for 1 hour, allowing soils to settle. The solvent layer 

was then transferred into respective test tubes capped with septa and returned to the refrigerator. This 

process was repeated two more times for a total of three extractions before quantification by GC-FID.  
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2.3.6 PHC Quantification by GC-FID 

Sub-samples from each soil sample were weighed out to approximately 2.00-3.00 g and left to air 

dry at room temperature for 24 hours. These were then weighed to determine the dry weight and passed 

through a sieve with 2 cm diameter holes. The gravel was then weighed. Soil mass was corrected for 

moisture and gravel using Equation 2.1. 

Equation 2.1 

 
Where: W= Wet Soil Mass (g); D= Dry Soil Mass (g); G= Gravel Mass (g); Sample Weight =Mass 

of Soil (g). 

 

The GC-FID detector and injector temperature were set to 340°C and 300°C, respectively. The carrier gas 

was nitrogen (Praxair, CAS #7727-37-9) set a flow rate of 9.96 mL/min. The temperature program used for 

PHC determination was the following: hold 40°C for 1 minute, increase temperature by 15°C per minute to 300° C, 

and hold for 20 minutes. From the GC-FID trace the area under the curve known as the unresolved complex 

mixture (UCM; shown as in red) was measured using GC solutions lite software (Shizmadu Inc; Figure 

2.1). Using the soil mass corrected soil moisture and gravel content (Equation 2.1) and the UCM area 

from the GC-FID trace, the concentration of PHC in soil (mg/kg) was calculated (CCME, 2001) 

(Equation 2.2). 

 

 
Figure 2.1: Sample GC-FID Trace of PHC-Extract. 

The area of the UCM (highlighted in red), represents the total amount of PHC in the PHC-extract. The 

area of the UCM was used to calculate the PHC concentration in soils (mg/kg) using equation 2.2.  

𝑆𝑎𝑚𝑝𝑙𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 (1 −
𝑊−𝐷−𝐺

𝑊
) = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑆𝑜𝑖𝑙 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑔)         
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Where: UCM = UCM Area; Vol = Solvent Volume (mL); Df = Dilution Factor; Rf = Retention 

Factor; W = Corrected Soil Weight (g). 

 

2.3.7 Statistical Analysis  

To determine if data sets from each replicate could be combined, data were tested for normality 

prior to statistical testing with Z-values for kurtosis and skewness between -1.96 and +1.96; and Shapiro-

Wilk test P-value greater than 0.05. ANOVA along with LSD post hoc tests were used to determine 

statistical significance (α=0.05) for PHC concentration in soils. All statistical tests were conducted using 

IBM SPSS Statistics software. 

 

  

𝑈𝐶𝑀 𝑥 𝑉𝑜𝑙 𝑥 𝐷𝑓

𝑅𝑓 𝑥 𝑊
= 𝑃𝐻𝐶 (

𝑚𝑔

𝑘𝑔
)              Equation 2.2 
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2.4.0.0 Results 

2.4.1.0 Cold-Shake Extraction of PHC from Soils using Various Solvent Mixtures 

The CCME recommends the cold-shake extraction method to isolate PHC from soils prior to 

quantification by GC-FID. The cold-shake method has two PHC extraction steps using using 1:1 

acetone:hexane (1:1 AH) to maximize PHC recover from soils. Each PHC extraction step involves 

addition of 7.50 mL of the solvent 1:1 AH to approximately 5.00 g of soil, followed by a mechanical 

agitation to aid in the breakup of soil aggregates.  However, 1:1 AH would co-extracts BOC (if present) 

along with PHC from soils. Ideally, another solvent combination would be preferred, if it was as effective 

as 1:1 AH at PHC removal and co-extracted less BOC. To test this, different combinations and ratio of 

solvents (Acetone, DCM, and Hexane) were used at the different extraction steps (1
st
 7.5 mL solvent 

extraction or 2
nd

 7.5 mL solvent extraction step). In all cases the cold shake extraction was used to recover 

PHC from soils. Weathered PHC-impacted soil from Alberta was used to determine the PHC extraction 

efficiency of each solvent combination. As well, un-impacted soil was used to determine the amount of 

BOC extracted with each solvent combination.  

Solvent combinations containing acetone, generally extracted the most PHC and BOC from soils, 

compared to the other solvent combinations (DCM and Hexane; Figure 2.2). As the ratio of acetone in 

hexane decreased so did the extraction of both PHC and BOCs from soils. The various DCM solvent 

combinations were not as effective at PHC extraction from soils compared to the CCME recommended 

1:1 AH (P<0.05).  Furthermore, like acetone, decreases in ratio between DCM and hexane, limited both 

PHC and BOC extraction from soils. Overall, the most effective DCM solvent combination, was 100% 

DCM solvent which extracted 32.6% (P<0.05) and 45.7% (P<0.05) less PHCs and BOC, respectively, 

than 1:1 AH.  Solvent mixtures, with increasing concentration of hexane decreased the overall PHC 

extraction but had the least BOC co-extraction. Finally, 100% hexane was the least effective solvent, 

which extracted significantly less (P<0.05) PHC and BOC than 1:1 AH. Overall, the CCME 1:1 AH was 
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the most effective solvent mixture, as it extracted the most PHCs from the soil, despite extracting highest 

levels of BOC (Figure 2.2). 
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Figure 2.2: PHC Extraction from Soils with Various Solvents 

Various concentrations of acetone and DCM in hexane were used to extract PHC+BOC and BOC from PHC-impacted and un-impacted soil 

respectively.  Various solvents combinations were used at different wash steps within the cold shake method. Samples were run in duplicate for 

three independent replicates (n=6). Identical letters indicate groups are not significantly different P>0.05 by one-way ANOVA. Error bars 

indicates standard error (SE).  
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2.4.1.1 Appearance of PHC-Impacted Soils after PHC-Extraction 

Generally, soil homogenization and lack of soil aggregates after undergoing cold-shake extraction 

indicates better solvent penetration and improved PHC recovery from soils. Upon completion of the cold-

shake extraction with various solvents (Figure 2.2), representative images of PHC-impacted soils were 

obtained demonstrate the degree of soil homogenization (Figure 2.3).  Generally, increased concentrations 

of either DCM or acetone in hexane improved soil homogenization. However, acetone solvent mixtures 

were substantially more effective at soil homogenization than DCM solvent mixtures (Figure 2.3). 

 
Figure 2.3: Images of PHC-Impacted Soils after PHC Extraction  

Representative images of PHC-impacted soil from cold shake extraction with increasing concentrations of 

acetone (A) and dichloromethane (DCM) in hexane (H).  

 

Increasing % DCM in Hexane 

Increasing % Acetone in Hexane 
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2.4.1.2 GC-FID Traces of PHC-Extracts from the Cold-Shake Extraction  

The GC-FID traces of 5 solvent mixtures and the least effective solvent mixture are provided in 

Figure 2.4. PHC extracted from soils with acetone solvents had larger unresolved complex mixtures 

(UCM) and suspected BOC peaks (according to the GC-FID traces) compared to solvent mixtures with 

DCM (Figure 2.4a-e). Furthermore, lower UCMs and suspected BOC peaks were observed as 

concentrations of acetone or DCM in solvent mixtures decreased (Figure 2.4a-e). The GC-FID trace of 

PHCs extracted from soils with hexane alone had the smallest UCM and BOC peaks of all the various 

solvent combinations (Figure 2.4f). 
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Figure 2.4: GC-FID Traces of PHC Extracted from Soils Using Various Solvents. 
Representative GC-FID traces of the PHC-impacted soil after undergoing cold-shake extraction with 

various solvent mixtures from the experiment presented in Figure 2.2. Suspected BOC peaks highlighted 

by the red box. A) 1
st
 Extraction = acetone, 2

nd
 Extraction = acetone; B) 1

st
 Extraction = 1:1 AH, 2

nd
 

Extraction = 1:1 AH; C) 1
st
 Extraction = acetone, 2

nd
 Extraction = hexane; D) 1

st
 Extraction = 1:2 AH, 2

nd
 

Extraction = 1:2 AH; E) 1
st
 Extraction = DCM, 2

nd
 Extraction = DCM; F) 1

st
 Extraction = hexane, 2

nd
 

Extraction = hexane. 
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2.4.2.0 Use of Activated Silica for BOC Removal from PHC-Extracts 

The results above indicate that 1:1 AH was the most effective solvent mixture at extracting PHC 

from soils using the cold shake method. However, it also extracted the most BOC from soils, the BOC 

should be removed if PHCs are to be accurately quantified by GC-FID. The BOC (co-extracted) in 

solvent containing extracted PHC from soil (PHC-extract) can be removed with activated silica. However, 

presence of either acetone or water in the PHC-extract would greatly limit the effectiveness of activated 

silica with respects to BOC removal (Schwab et al., 1999; CCME, 2008). Thus, a protocol must be 

devised to remove acetone and water from the PHC-extract, prior to determining the effective 

concentration of activated silica for BOC removal.  
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2.4.2.1 Removal of Acetone from the PHC-Extracts with RO-H2O 

Acetone can be removed from the PHC-extract via a liquid-liquid extraction with reverse osmosis 

water (RO-H2O), as acetone is miscible in H2O (Table 2.2). The aqueous layer can be removed resulting 

in a PHC- extract devoid of significant concentrations of acetone. To determine the amount of RO-H2O 

required for acetone removal, increasing volumes of RO-H2O (7.0, 8.0, 9.0, 10.0 mL) were added to 5.00 

mL 1:1 AH samples. The organic phase volume was measured following the addition of RO-H2O into the 

sample. Theoretically, the total amount of acetone in the 5.00 mL of 1:1 AH is 2.50 mL, thus the removal 

of acetone is complete when the volume of the organic phase decreases to 2.50 mL. All RO-H2O 

extractions removed significant amounts of acetone (92.0-101.2%) from the 5.00 mL 1:1 AH sample. 

Based on the data, two 10.00 mL RO-H2O washes were used for all subsequent work (Table 2.2). 

 

 

Table 2.2: Volume of RO-H2O required to Remove Acetone from Organic Phase. 

Volume RO-H2O Wash 

(mL) 

Volume of Organic 

Phase (mL) 

Acetone Removal (%) Standard Error (mL) 

2 x 7.0 2.53 98.8 0.067 

2 x 8.0 2.47 101.2 0.033 

2 x 9.0 2.70 92.0 0.082 

2 x 10.0 2.60 96 0.000 

All treatments were conducted in triplicate (n=3). 
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2.4.2.2 Water Removal from PHC-Extracts Following Acetone Removal 

Like acetone, H2O is polar molecule that can decrease efficacy of silica.  Anhydrous Na2SO4 were 

used to remove RO-H2O from the PHC- extracts. After 2 washes with 10.0 mL of RO-H2O a final volume 

of roughly 2.60 mL was reached. It was assumed that approximately 2.50 mL of this liquid was hexane 

while the remaining 0.10 mL might be residual RO-H2O. Thus, the amount of Na2SO4 must be sufficient 

in removing at least 0.10 mL of RO-H2O.  

To investigate this, increasing amounts of Na2SO4 were added into 2.00 mL of RO-H2O  and the 

resultant volume was measured. As expected, higher amounts of Na2SO4 removed larger volumes of 

dH2O from the sample (Table 2.3). Overall, 0.10 g of Na2SO4 was decided on for drying (adsorbing H2O) 

the PHC extracts, because it removed twice the amount of RO-H2O expected to be present (0.2 mL of 

RO-H2O; Table 2.3). Furthermore, higher amounts of Na2SO4 might require multiple hexane washes to 

remove all the residual PHC adhering to the surface of Na2SO4.  

 

Table 2.3: The Amount of Anhydrous Na2SO4 Required to Remove 0.10 mL of RO-H2O 

Sample Amount of Anhydrous Na2SO4 (g) Volume of RO-H20 (mL) recovered 

from 2.0 (mL) of RO-H2O 

1 0.10 1.8 

2 0.10 1.8 

3 0.50 1.7 

4 0.50 1.6 

5 1.00 1.4 

6 1.00 1.5 
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2.4.2.3 Amount of Activated Silica Required for BOC Removal from PHC- Extracts 

Once both the acetone and residual RO-H2O were removed from the PHC- extract, activated 

silica could be used to remove the BOC contaminants present in the sample. To determine the amount of 

activated silica required for BOC removal, increasing amounts of activated silica were added directly into 

PHC- extract (in situ).  The PHCs of each sample were then quantified by GC-FID (Figure 2.6) (Note 

only the F3 is shown as the majority of BOC falls within this fraction). 

Generally, higher amounts of activated silica slightly decreased (P>0.05) the F3 concentration in 

PHC-impacted soil (Figure 2.5a). The decreases in F3 (mg/kg) concentration are likely the result of BOC 

removal by activated silica.  To get a more accurate representation of silica effect on BOC, only suspected 

BOC peaks from the GC-FID trace were integrated using equation 2.2 (Section 2.3.6). This resulted in 

significant decreases in BOC with activated silica treatments (0.25, 0.50, 0.75, 1.00 g) relative to the 

untreated control (Figure 2.5b). Overall, 0.50 g (or greater) of activated silica was sufficient to decrease 

BOC in the PHC- extracts to acceptable levels (i.e nearly full removal of BOC).  
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PHC-impacted soil extracted with the cold shake method using 1:1 AH solvent.   After the removal 

of acetone and water from the PHC-extract, increasing amounts of activated silica were added in 

situ. The resultant PHC-extract was analyzed by GC-FID. A) The F3 fraction of PHC-extract with 

increasing amounts of activated silica. B) Suspect BOC peaks in PHC-extract with increasing 

amounts of activated silica. Error bars represent standard error (SE). All treatments were conducted 

in triplicate with three independent replicate (n=9). Identical letters indicate groups are not 

significantly different P>0.05 by one-way ANOVA. 

Figure 2.5: Removal of BOC from PHC-Extract of Impacted Soils Using Activated Silica 

A) 

B) 
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2.4.2.4 GC-FID Traces of PHC Samples with Increasing Amounts of Activated Silica 

In the above data (See section 2.4.2.3) increased amounts of activated silica were added into PHC-extracts 

to remove of BOC. The GC-FID traces of this data are shown below with suspected BOC peaks 

highlighted in red (Figure 2.6). The suspected BOC peaks in the GC-FID traces decreased in intensity as 

the amount of activated silica added into the PHC-extract increased (figure 2.6). This suggests that BOC 

was being removed by activated silica.  

 

Figure 2.6: GC-FID Traces of PHC-Extract with Activated Silica. 

Representative GC-FID traces of PHC-extract following removal of BOC with increasing amounts of 

activated silica. Red box highlights the suspected BOC peaks. 
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2.4.2.5 Use of Activated Silica for Removal of BOC from Extracts of Artificial Soil Spiked 

with PHC 

 To verify the effects of activated silica on removing BOCs from PHC-extracts, artificial soils 

spiked with known quantities of PHC (1:10 diesel and motor oil) and BOC (Dried peat) were used (Figure 

2.7). This eliminates the variance of BOC and PHC concentrations in weathered PHC-impacted soils. 

PHC were extracted from samples using the 1:1 AH solvent followed by acetone removal and addition of 

activated silica (silica cleanup), before being analyzed by GC-FID.   

 All PHC-extracts undergoing silica cleanup showed a decrease in both F2 and F3 compared to 

samples without silica cleanup (Figure 2.7). Furthermore, this decrease was more prominent in artificial 

soil samples containing peat. Surprisingly, silica cleanup treatment decreased F3 of both PHC+Silica and 

PHC+Peat+Silica samples by 27.6% (P<0.001) and 36.3% (P<0.001), respectively, compared to their 

counterparts without silica cleanup. This was substantially more than expected. Interestingly, these 

samples had roughly the same F2 concentration, suggesting that activated silica was only removing PHC 

from the F3 fraction. Thus, inspection of the GC-FID traces may provide more insight into the effects of 

activated silica on BOC and PHC in the PHC-extract (See next section).  
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Figure 2.7: Removal of BOC from PHC-Extract of Artificial Soils Using Activated Silica.  

Artificial soils samples were composed of sand, with peat and/or PHC (1:10 disel:motor) added into their 

respective samples. Soils were extracted with 1:1 AH using the cold shake method. The “Silica” PHC-

extracts samples underwent the 1:1 AH with silica cleanup to remove BOC. A) The F2 concentration in 

soils. B) The F3 concentration in soils. All treatments were conducted in triplicate (n=3).Significance was 

detected by One-way ANOVA (α =0.05). Identical letters indicate no significant differences between 

treatments. 
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2.4.2.6 Artificial Soil GC-FID Traces 

To verify the effect of activated silica on BOC removal from the PHC-extract an artificial soil experiment 

was conducted (See Section 2.4.2.5). The representative GC-FID traces of these PHC-extracts provide 

more insight into BOC removal with activated silica (Figure 2.8). The location and intensity of these 

BOC peaks are shown in the Figure 2.8b as the GC-FID trace from the sample only contained peat (BOC) 

and sand (inert). Thus, any signal from the GC-FID trace was BOC. After the addition of activated silica 

into the PHC-extract sample (Peat+PHC+Silica; Figure 2.8f), suspected BOC peak intensity decreased by 

approximately 40% compared to PHC-extract without silica (Peat+PHC; Figure 2.8d).  Unexpectedly, a 

substantial decrease in the unresolved complex mixture (UCM) specifically the F3 region was observed, 

with the activated silica treatment (Figure 2.8c versus Figure 2.8e).  However, no obvious decrease in the 

UCM of the F2 region was observed with the addition of activated silica, suggesting that activated silica 

was interacting with the F3 fraction (Figure 2.8c and e).  It was later theorized that aromatic compounds 

and/or polar compounds in the motor oil spike were removed by the activated silica, resulting in the 

decrease in F3 (explained in detail in the disscussion). Overall, it appears that the 0.50 g of activated silica 

is sufficent at removing BOC from PHC-soil extract. 
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Figure 2.8: GC-FID traces of PHC-Extracts from Artificial Soils. 

Representative GC-FID traces of artificial soil with various treatments. A) Sand, B) Sand + Peat, C) Sand 

+ PHC, D) Sand + PHC + Peat E) Sand + PHC + Silica cleanup F) Sand + PHC + Peat + Silica cleanup. 

All samples were analyzed by GC-FID. 
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2.4.3.0 Extraction of PHC Using DCM Solvent 

DCM was further investigated as an alternative PHC extraction solvent to 1:1 AH as it extracts 

less BOC and does not foul the silica (Figure 2.9). Unfortunately, unlike using 1:1 AH, PHC extraction 

with DCM often results in poor PHC recovery due to formation of soil aggregates caused by endogenous 

water in the soil. Thus, to limit the formation of soil aggregates and improve the PHC recovery from soils 

with DCM, additional solvent extraction steps (2x 7.50 mL and 3x 7.50 mL), and desiccating agents 

(Na2SO4 and MgSO4) were tested. As well activated silica was either added directly into soils prior to 

solvent extraction (in situ) or into the PHC- extract (ex situ) after the DCM extraction.  The concentration 

of PHC recovered from soil using 1:1 cleanup was used as a benchmark (represented as a red line) when 

comparing alternative DCM extraction methods (Figure 2.9).  

Additional DCM extraction step (3x extraction vs 2x extraction) generally improved the overall 

PHC recovery (Figure 2.9). PHC extraction from soils with DCM was, further improved upon with 

addition of drying agents (MgSO4 or Na2SO4), with Na2SO4 being slightly more effective than MgSO4.  

Generally, the addition of activated silica in situ improved PHC recovery from soil, while ex situ activated 

silica decreased PHC recovery with respects to DCM control (2x extraction without drying agents or 

activated silica). Overall, the most effective DCM extraction treatments, was 3x extraction, with addition 

of either Na2SO4 or MgSO4, and silica (in situ). Both of these DCM treatments extracted roughly (P>0.05) 

the same amount of PHC as the 1:1 cleanup, but 3x DCM extraction with Na2SO4 and silica (In 

situ)(DCM+SS+Silica) was ultimately chosen as it recovered slightly more PHC than 3x DCM extraction 

with MgSO4 and silica (in situ) (Figure 2.9).  
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Figure 2.9: Comparison between 1:1 AH and DCM on PHC Extraction of Impacted Soils. The 

concentration of F3 (mg/kg) extracted from PHC-impacted soil with different combinations of solvents 

(1:1 AH or DCM);  drying agents (Na2SO4 or MgSO4); activated silica (in situ or ex situ), and number of 

extractions (2x or 3x). Red dashed line repersents the [F3] extracted with 1:1 AH 2x extraction with 

Na2SO4 (ex situ) silica cleanup. One way ANOVA was used to test for statistical significance (α=0.05). 

Error bars represent standard error. All treatments were conducted in triplicate with three independent 

replicate (n=9). Identical letters indicate groups are not significantly different P>0.05 by one-way 

ANOVA. 
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2.4.3.1 Comparison between DCM+SS+Silica Method and 1:1 AH with Silica Cleanup 

Extraction on Two Different Weathered PHC-Impacted Soil 

In the previous experiment, DCM+SS+Silica was shown to be as effective at PHC extraction 

from soils as 1:1 AH with silica cleanup. To further test this DCM+SS+Silica method and 1:1 AH with 

silica cleanup were used to extract PHCs from authentic PHC-impacted soils from two other sites (Site A 

and B; figure 2.10). Due to the great variation in PHC concentrations in soils among sample points, the 

percent recovery of PHC of DCM+SS+Silica method to 1:1 AH with silica cleanup extraction was used 

instead. As well, the soil moisture of each sample point was compared to the PHC recovery (figure 2.10).   

Generally, PHC recovery from soil when using DCM+SS+Silica method decreased as soil 

moisture increases (Figure 2.10). In some cases, DCM+SS+Silica PHC extraction efficiency was poor 

(<80.0%) despite low soil moisture (<12.0%). This was could be attributed to various soil types and PHC 

concentration in the samples.  Between the two sites, the average PHC recovery from soil using 

DCM+SS+Silica method was 11.7% (P=0.013) higher in site B than site A (Figure 2.10). It should be 

noted that the higher moisture in site A (12.47% H2O) likely contributed to the decreased PHC recovery 

from soils, compared to the drier site B (10.13% H2O; Figure 2.10).   
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Figure 2.10: PHC Extraction between 1:1 AH with Silica Cleanup and DCM+SS+Silica Method on other PHC-Impacted Soils. 

Comparison between 1:1 AH with Silica cleanup and DCM+SS+Silica method with regards to PHC extraction from two separate PHC-impacted 

sites (site A and B). The soil moisture of each sample point within the site was also recorded. Red line repersents equal PHC extraction from soils 

with both 1:1 AH with silica cleanup and DCM+SS+Silica method. Identical letters indicate groups are not significantly different P>0.05 by 

Student t-test. Error bars repersents standard error.  
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2.4.3.2 The Effect of Soil Moisture on DCM+SS+Silica Method and 1:1 AH with Silica 

Cleanup PHC Extraction 

The Figure 2.2 and 2.10, suggests that PHC recovery with DCM solvent decreases with increases 

in soil moisture content. To better understand the effects of soil moisture on PHC recovery by 

DCM+SS+Silica extraction, increasing amounts RO-H2O  (0.00, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0%) were 

added into dried PHC-impacted soil and the soil samples then extracted using the DCM+SS+Silica 

method, DCM, and 1:1 AH with silica cleanup method (Figure 2.11). 

At 0.00% soil moisture DCM, 1:1 AH with silica cleanup, and DCM+SS+Silica extracted 

roughly the same amount of PHCs (Figure 2.11). However, as soil moisture increases, the PHC recovery 

from soils using DCM and DCM+SS+Silica decreases. The decrease in extracted PHC was more 

prominent in DCM treatments compared to DCM+SS+Silica treatments.  In contrast, 1:1 AH with silica 

cleanup extraction was largely unaffected by increases in soil moisture, with the exception of 18.00% and 

20.00% soil moisture samples which improved PHC recovery (Figure 2.11).  
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Figure 2.11: PHC Extraction of Soils with Increasing Moisture Content. 

Increased amounts of water were added to dried PHC-impacted soil from site in Alberta PHC 

were extracted from soils using 1:1 AH with silica cleanup, DCM+SS+Silica method and cold 

shake methods using DCM (n=6).  
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2.5.0 Discussion 

 The CCME recommends recovering PHCs from soils using the 1:1 acetone hexane (1:1 AH) 

extraction solvent with the cold shake method. Unfortunately, due the polarity of acetone, BOC (if 

present) would be co-extracted along with PHC causing an overestimation of PHC in soils. Ideally, 

another solvent mixture that extracts PHC as effectively as 1:1 AH, but with less co-extraction of BOC 

would be preferred.  Accordingly, various combinations and ratios of acetone, DCM, and hexane were 

explored as an alternative PHC extraction solvent. Unfortunately, it appears that polar solvents like 

acetone are essential for breaking up soil particles, ensuring a complete PHC extraction. Non-polar 

solvents (DCM and hexane), despite extracting significantly lower amounts of BOC, were not as efficient 

at extracting PHC from soils relative to 1:1 AH. A strategy for removing BOC from the PHC-extract is 

the silica cleanup method (1:1 AH with silica cleanup) developed in this chapter. DCM+SS+Silica 

method (also developed in this chapter) was as effective 1:1 AH silica cleanup method at extracting PHC 

from soil while limiting BOC co-extraction, as long as soil moisture was below 12.0%. 

2.5.1.0 Cold-Shake Extraction of PHC from Soils Using Various Solvent Combination 

Acetone, DCM, and hexane were used in various ratios and combinations as a PHC extraction 

solvent, with varying degrees of success (Figure 2.2). Acetone is a very polar solvent (dielectric constant 

[ϵ] =20.7; Merck Index) compared to DCM and hexane. The polarity of acetone disperses wet soil into a 

heterogeneous slurry, increasing the total available surface area of the soils (Semple et al., 2003; Schwab 

et al., 1999). This promoted the partitioning of the PHC from the soil into the solvent (Semple et al., 

2003; Schwab et al., 1999). Thus, solvent mixtures that contained acetone, usually extracted the most 

PHCs from soils. Among these acetone solvent mixtures, the CCME recommended 1:1 AH for both 

extraction steps recovered the most PHC.  However, 1:1 AH also extracted the most BOC from soils. 

Interestingly, PHC extraction that used 100% acetone for both extraction steps recovered 12.0% 

(P=0.059) less PHC than 1:1 AH (Figure 2.2), despite dispersing the soil into a slurry (Figure 2.3). This 
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indicated that a non-polar solvent in the solvent mixture is important for complete extraction of PHC from 

the soil.  

When acetone levels in an acetone-hexane mixture were below 50%, PHC recovery from soils 

decreased significantly relative to 1:1 AH extraction (Figure 2.2). This decrease in PHC extraction was 

likely caused by formation of soil aggregates due to insufficient polarity of the solvent mixture. Images of 

the soils after the cold-shake extraction were consistent with this, as larger soil aggregates were observed 

with decreasing acetone concentrations (Figure 2.3). Thus, acetone concentrations of at least 50% are 

recommended. However, acetone concentrations greater than 50% co-extract significant amounts of BOC 

from soils, which may interfere with PHC quantification by GC-FID (Figure 2.2; Wang et al., 2009).  

DCM is a slightly polar solvent (ϵ=9.1; Merck Index), and has limited effectiveness in preventing 

the formation of soil aggregates when used as an extraction solvent (Figure 2.3). The formation of soil 

aggregates was likely the reason that, all DCM solvent combinations that were tested extracted less 

(P<0.05) PHC than 1:1 AH (due to PHC being less available; Figure 2.2). Furthermore, the recovery of 

PHC from soil using DCM as the extraction solvent would likely be less effective at higher soil 

moistures. Hexane is a less polar solvent (ϵ=1.9; Merck Index) than DCM. Hexane extracted the lowest 

amount of BOC and PHC from soil (Figure 2.2). The non-polar properties of hexane limit BOC 

solubilisation but also significantly hindered PHC extraction, notably in high moisture soils. Again soil 

aggregation was likely the reason for the poor PHC extraction.  

 Overall, the most effective solvent for PHC extraction was the CCME recommended 1:1 AH, as 

it extracted the highest amount of PHC from soils, despite co-extracting the most BOCs. Therefore, to 

accurately quantify PHCs in soils, BOCs should be removed from the PHC-extract prior to analysis by 

GC-FID. This could be accomplished with the addition of activated silica into the PHC-extract.  
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2.5.2.0 Silica In situ Cleanup of PHC-Extract from Weathered PHC-Impacted Soil 

Activated silica can remove polar compounds from organic solvents predominantly through 

hydrogen bonding and/or dipole-dipole forces (Rimola et al., 2013). Activated silica can bind to the polar 

functional groups of BOCs, removing them from PHC-extract (Wang et al., 2012; Kelly-Hopper et al., 

2012). However, to maintain silica effectiveness in sequestering BOCs, polar solvents must be removed 

from the PHC-extract. If polar solvents (i.e. acetone) are not removed they are likely to occupy the 

majority of binding sites on the silica (fouling) greatly diminishing its effectiveness. Thus, the acetone 

present in the samples was removed by liquid-liquid extraction with RO-H2O (Table 2.2). The residual 

water in the hexane from acetone removal can also foul the silica and must be removed using 0.50 of 

Na2SO4 (Table 2.3). 

 After the PHC-extract is devoid of both acetone and RO-H2O the amount of activated silica 

required for BOC removal was determined. Increasing amounts of activated silica (0.01, 0.10, 0.25, 0.50, 

0.75, 1.00 g) were added into PHC-extract effluent.  A slight but non-significant decrease in F3 was 

observed as the amount of silica increased (Figure 2.5a). However, when only the suspected BOC peaks 

from the GC-FID trace were integrated using equation 2.2 (see section 2.3.6), a significant decrease 

(P<0.05) in BOC was detected with activated silica treatments greater than 0.25 g (Figure 2.5b). The GC-

FID traces supported this, as decreases in suspected BOC peaks (in the F3 region) were observed with 

increases of added silica (Figure 2.6). As well, for concentrations of activated silica above 0.50 g, the GC-

FID traces showed a slight decrease in the UCM in areas where no significant amount BOC should be 

present. This suggested that activated silica at concentration of 0.75 g and 1.00 might remove some PHC 

from the PHC-extract.  This was an unexpected result, because PHC are highly non-polar and as such 

should not interact with activated silica. However, it is possible that the soils analyzed in this experiment 

contained polycyclic aromatic hydrocarbons (PAH) which interacted with activated silica due to increased 

electron density within the aromatic rings (Mair and White, 1935). Alternatively, microbial 

biodegradation may have partially oxidized some PHC in the soil, which could now interact with 

activated silica (Sierra-Garcia et al., 2013; Olajire and Essien, 2014).  
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 Uneven distribution of PHC throughout the soil matrix could also have impacted the results, 

despite vigorous attempts at mechanically homogenizing the soil in the storage container.  As a result, 

some soil samples taken from the storage container might have had higher PHC concentration then others. 

This PHC variability among soil samples could account for the decrease in PHC concentration when 

higher amounts of activated silica (>0.50 g) were added into the PHC-extract. To limit such confounding 

factors, artificial soils spiked with known amounts of both PHC and BOC prior to PHC extraction and 

silica cleanup, were assessed to confirm the findings with authentic PHC-impacted soils. 

2.5.3.0 Silica In situ Cleanup of PHC-Extract from Artificial Soil 

 Artificial soils were used instead of PHC-impacted soil, to limit variability of BOC and PHC. 

Known quantities of both BOC (dried peat) and PHC (1:10 Diesel: Motor Oil) were added into silica 

sand.  The cold shake extraction with 1:1 AH was used to extract PHC from soils, followed by silica 

cleanup protocol (See Section 2.5.2.0) to remove any BOC from the PHC-extract. 

The addition of activated silica (0.50 g) into the PHC-extracts of Peat+PHC decreased the F3 

fraction by 36.0% (P<0.001), relative to the PHC-extracts of Peat+PHC without silica (Figure 2.7). 

Furthermore, the GC-FID trace of Peat+PHC+Silica PHC-extract showed approximately 40% decrease in 

suspected BOC peaks (Figure 2.8). Thus, the activated silica likely removed BOC from the PHC-extract. 

However, the magnitude of the F3 fraction decrease (36.0%) following the addition of activated silica into 

the PHC-extract of Peat+PHC was unexpected, as BOC only accounted for 5.74% of the total F3 fraction 

(Figure 2.7). Furthermore, this decrease in PHC was only observed in the F3 (composed mostly motor oil) 

and not the F2 (composed mostly of diesel) fraction. Likely, the motor oil contained compounds with 

polar functional groups that were sequestered by activated silica, thus decreasing the PHC concentration. 

This is supported by Kuparvera et al. (2012) who found that 33% of motor oil compounds contained 

phenol, carbonyl, and amine polar functional groups, and coinciding with the 36.0% (P<0.001) decrease 

in F3 fraction following silica treatment (Figure 2.7). Additionally, motor oil could contain aromatic 

hydrocarbons. Aromatic hydrocarbons have an electron
 
dense system in the center of the carbon ring, 
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creating a slight negative charge on either side of the molecule. This slight negative on the molecule could 

interact with silica decreasing the F3 fraction (Hall et al., 2009).  

Overall, the addition of activated silica into PHC-extracts of Peat+PHC removed the majority of 

BOC, confirming the previous findings (see Section 2.5.3).  The decrease in F3 fraction was likely the 

removal of motor oil (due to polar functional groups) in the PHC-extracts by silica.  Unlike motor oil, the 

overwhelming majority of PHC found in nature are extremely non-polar and should not be removed by 

activated silica.  Therefore, it is the opinion of this author that activated silica should be used to remove 

BOC from PHC-extracts. 

2.5.4.0 DCM PHC Extraction Method with Na2SO4 and Activated Silica 

 The removal of acetone from the PHC-extract is a laborious process and a potential source of 

error. Ideally, an alternative solvent would be preferred. DCM would be a promising alternative solvent, 

as it does not foul the silica and co-extracts less BOC than acetone (CCME, 2008). However, due to DCM 

being hydrophobic, wet soils tend to aggregate in its presence, decreasing PHC extraction efficiency 

(CCME 2008; Richter 2000; Figure 2.2 and 2.3). Thus, drying agents, additional extraction steps, and 

activated silica were tested, in an attempt improve PHC extraction with DCM by limiting soil aggregation 

(Figure 2.9).  

To limit the formation of soil aggregates and improve PHC extraction, soils were dried prior to 

extraction process with the in situ addition of dry agents (Na2SO4 or MgSO4)(Figure 2.9). It was found 

that drying agents improved all DCM PHC extraction from soils, compared to DCM PHC extraction 

without drying agents (P<0.05). This was expected as drying agents decreased the moisture content in 

soils limiting the hydrophobic interactions between DCM and water in soils. As a result aggregation of 

soil is mitigated and PHC are more available for extraction by DCM. This was supported by the fact that 

drying agents had no significant effect (P<0.05) on PHC extraction from soil with the polar solvent (1:1 

AH) where soil moisture is not a factor (Figure 2.9). In addition to drying agents, PHC extractions with 

DCM were further improved upon with additional extraction steps (3x extractions). This was expected as 
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increased volume of DCM solvent and more agitation likely aided in the breakup of soil aggregates. 

Therefore, it is likely that the combined effect of both drying agents and additional extraction steps 

increased PHC extraction with DCM (Figure 2.9).  

Activated silica was added either prior (in situ) or after (ex situ) the DCM extraction to remove 

BOC contaminants from samples (Figure 2.9). The silica in situ addition extracted more PHC from soil 

compared to both DCM control and ex situ silica treatments. Likely, activated silica acted similar to a 

drying agent, absorbing soil moisture resulting in increased PHC extraction efficiency. Despite H2O 

molecules binding to activated silica, the activated silica was still able to remove BOC from the PHC-soil 

extract, as shown by the decrease in suspected BOC peaks relative to 1:1 AH GC-FID trace. In 

comparison to in situ silica, the ex situ silica DCM extraction recovered significantly less PHC than with 

DCM extraction alone (Figure 2.9). This was an unexpected result, as PHC are highly non-polar and 

should not be removed by activated silica. Furthermore, the magnitude of the F3 decrease with ex situ 

silica DCM was not observed with 1:1 AH with silica cleanup. Thus, more research is required, to 

determine why ex situ silica decreases F3 in PHC-extract. Overall, it was determined that DCM with 3x 

extraction steps, with the addition Na2SO4 (0.50±0.01g), followed by 0.50 ± 0.01 g of in situ silica 

(DCM+SS+Silica method) was an effective alternative to 1:1 AH with silica cleanup method, as both 

methods extracted roughly the amount of PHC (P=0.462) from soils (Figure 2.9).  

Despite, DCM+SS+Silica method being comparable to 1:1 AH with silica cleanup in respects to 

PHC extraction, it was only tested on one soil type. Thus, weathered PHC-impacted soils from two 

additional sites (Site A and B) were used to confirm that DCM+SS+Silica method was as effective at 

PHC extraction as 1:1 AH with silica cleanup (Figure 2.10).  However, in most cases DCM+SS+Silica 

method extracted less PHC than 1:1 AH with silica cleanup from soils with higher moisture content. 

Possibly, the amount of Na2SO4 was insufficient to decrease soil moisture to a point where aggregation 

did not occur. This would have resulted in poor PHC extraction from soils when using DCM+SS+Silica. 

However, in some cases DCM+SS+Silica method extracted less PHC than 1:1 AH with silica cleanup, 

despite having low moisture content.  This could be attributed to different soil types which affected the 
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PHC extraction process when using DCM+SS+Silica. As well, low PHC concentration (>700 mg/kg) in 

these soil samples might have skewed DCM+SS+Silica method PHC recovery when compared to 1:1 AH 

with silica cleanup. Overall, the DCM+SS+Silica method compared to 1:1 AH with silica cleanup 

method, recovered on average, 25.11% and 15.23% less PHC from site A and B, respectively (Figure 

2.10). Overall, the PHC extraction efficiency was significantly higher with Site B compared to Site A 

when using DCM+SS+silica. It is noteworthy that, site B had lower average soil moisture (10.13%) in 

comparison to site A (12.47%), likely enhancing PHC recovery when using DCM+SS+Silica method 

(Figure 2.10). 

 Thus, it is apparent that soil moisture decreases DCM+SS+Silica method ability to extract PHC 

from soils. To further investigate this, DCM+SS+Silica, 1:1 AH with silica cleanup and DCM cold-shake 

extraction were used to extract PHC from soils with increasing soil moisture (Figure 2.11). In dry soils 

(0% moisture), no differences in PHC extraction were observed between extraction methods, suggesting 

that all extraction methods tested were equally effective at PHC recovery when soil moisture is not a 

factor. However, as soil moisture was increased, both DCM cold-shake method and DCM+SS+Silica 

method extract less PHC from soils. Furthermore, DCM+SS+Silica method extracted more PHC from soil 

compared to DCM cold-shake. This was expected, as the Na2SO4 used in DCM+SS+Silica method dried 

the soil, improving PHC extraction. In contrast, increasing soil moisture did not decrease the efficiency of 

the 1:1 AH with silica cleanup ability to extract PHC from soils. This was likely due to the polarity of 

acetone breaking apart soil aggregates. Interestingly, PHC extraction with 1:1 AH with silica cleanup 

appeared to increase as moisture increased (Figure 2.11). The reason for this is unknown and may merit 

further investigation in the future.  

The DCM+SS+Silica method compared to 1:1 AH with silica cleanup method had similar PHC 

extraction efficiencies in soils with moistures below 10% (Figure 2.11).  In soils greater than 12% 

moisture PHC extraction with DCM+SS+Silica method decreased.  Possibly, the amount of Na2SO4 was 

insufficient to dry the soil (Figure 2.11). Stoichiometrically, 0.50 g of Na2SO4 should be able to remove 

0.60 g of water from the soil (equivalent to 12% moisture in 5 g of soil); this would explain the decrease 
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in DCM+SS+Silica method PHC extraction. Furthermore, this supports data in Figure 2.10 where the 

DCM+SS+Silica method PHC extraction was lower in site A soil with an average moisture content of 

12.47% compared to site B with an average moisture content of 10.13%. Despite DCM+SS+Silica 

method limitations with PHC extraction in wet soils (>12% H2O), it is a good alternative to 1:1 AH 

extraction with silica cleanup as it is less labor intensive by comparison while still minimizing BOC 

interference (Figure 2.11). Thus, in future experiments the DCM+SS+Silica method with higher amounts 

of Na2SO4 could be used to improve PHC extraction from soils, at a ratio of 1.00 g of Na2SO4 per 1.20 g 

of water in the soil sample. Also the DCM+SS+Silica method could be used on soils from drier sites.  

2.5.5 Concluding Statements 

In conclusion, it was determined that the absence of soil aggregates during the cold-shake 

extraction maximizes PHC recovery. Generally, this is accomplished with 1:1 AH ratio of a polar solvent 

(i.e acetone) to a non-polar solvent (i.e. hexane). Interestingly, if soils were dried prior to PHC 

extractions, DCM (non-polar solvent) has the same effectiveness as 1:1 AH. Thus in the future, soils 

could be air dried prior to PHC extraction assuming volatile PHC fractions (F1 and F2) are not present, or 

if soils originated from drier sites. 

The reliance on 1:1 AH extraction solvent can result in the overestimation of PHC in soil, due to 

the co-extraction of both BOC and PHC. To accurately quantify PHC in soils two extraction methods 1:1 

AH with silica cleanup (Figure 2.12) and DCM+SS+Silica method (Figure 2.13) were developed that 

remove BOC from the PHC-soil extract with activated silica. Of the two aforementioned methods, the 1:1 

AH with silica cleanup method is effective at most soil moisture levels. In contrast, DCM+SS+Silica 

method is faster and less laborious, but in wet soils (>12.0% soil moisture) PHC recovery decreases. 

Overall, it is the opinion of this author that DCM+SS+Silica method should only be used in place of 1:1 

AH with silica cleanup in dry soils (<12.0% moisture).  
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Figure 2.12: Brief Overview of 1:1 AH with Silica Cleanup Method. 
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Figure 2.13: Brief overview of the DCM+SS+Silica PHC extraction method. 
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Chapter 3: 

The Effects of Chemical Augmentation with Plant Growth 

Promoting Rhizobacteria (PGPR) Enhanced Phytoremediation 

Systems (PEPS) on the Remediation of Weathered-Petroleum 

Hydrocarbons in Soils. 

 

3.1.0 Overview 

Plant growth promoting rhizobacteria (PGPR) enhanced phytoremediation systems (PEPS) use 

plants and their associated microbiota to remediate petroleum hydrocarbons (PHC) in soils. In addition to 

PHC, PEPS have also been used to remediate soils impacted with salt, metals, and other organic 

compounds. However, this process is generally slower compared to physical cleanup methods. PEPS 

might be able to be used in conjunction with chemical augmentation (CA-PEPS) to improve remediation 

rates of PHC contaminated soils.  The two chemicals classes that could increase PEPS rates are 

surfactants and oxygen releasing compounds (ORCs). To test this, CA-PEPS greenhouse trials using 

PGPR-treated seed (Lollium multiflorum, annual rye grass), were performed on weathered PHC-impacted 

soils. Prior to PEPS application, soils were treated with increasing concentrations of surfactants 

(petroleum sulfonate oil; PSO) and ORCs (calcium peroxide; CaO2). Higher PSO concentration (12.5 and 

100 µL/g) did not increase PHC remediation rates (P>0.05), and decreased both L. multiflorum root and 

shoot dry biomass relative to PEPS. Furthermore, 100 µL/g of PSO treatment completely inhibited L. 

multiflorum germination resulting in significant decrease in PHC remediation rate. Conversely, the CaO2 

(3.33 mg/g) treatment increased the PHC remediation rate by 11.0% (P=0.038), as well as increasing L. 

multiflorum root and shoot dry biomass by 22.7% (P=0.016) and 10.6% (P=0.086), respectively, relative 

to PEPS alone.  



69 

 

The rates of PHC remediation in the CA-PEPS experiments were determined using the PHC 

extraction methods developed in the first part of this thesis (Chapter 2).  The DCM+SS+Silica protocol 

extracted 7.80% (p=0.038) less PHC from soils then 1:1 AH with silica cleanup. Likely, this was due to 

the moisture content of the soils, preventing complete PHC extraction with DCM+SS+Silica.  When soils 

were treated with PSO, the removal of PSO from the PHC-extract with activated silica is highly 

recommended. Otherwise, the GC-FID would overestimate the PHC concentration in the soils, as it 

cannot distinguish PSO from PHC.  
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3.2.0 Introduction 

Phytoremediation involves the use of plants along with their associated microbiota to remove 

contaminants such as PHC from soils at an affordable cost (Gerdhart et al., 2009; Wiltse et al., 1998). 

Plant growth promoting rhizobacteria (PGPR) enhanced phytoremediation systems (PEPS), can accelerate 

phytoremediation in soils by mitigating environmental stress to plants.  With respects to petroleum 

hydrocarbon (PHC), a drawback of phytoremediation and PEPS is the slow rate of remediation compared 

to physical cleanup methods. This is most notable with weathered and/or high molecular weight (F3 and 

F4) PHC contaminated soils (Atlas, 1981; McGill et al., 1981; Mulligan et al., 2000).  It might be 

possible to improve PEPS with chemical augmentation (CA-PEPS), which can accelerate PHC 

degradation rates in impacted soils, potentially improving its feasibility over slower traditional 

phytoremediation methods (Mulligan et al., 2000). 

Surfactants and oxygen releasing compounds (ORCs) are the two most common types of 

chemical additives for microbial bioremediation and phytoremediation. Surfactants increase the 

dissolution of organic contaminants (i.e. PHC) into the aqueous phase, thereby increasing their 

bioavailability, and potentially accelerating phytoremediation (Volkering et al., 1999; Mulligan et al., 

2001). Without surfactants, PHC molecules may remain tightly bound to soil particles limiting their 

bioavailability (Volkering et al., 1999). Surfactants are most effective where PHC bioavailability is low, 

such as in heavily weathered or high molecular weight PHC contaminated soils (Ron and Rosenberg, 

2002; Abbasnezhad et al., 2011). Potential surfactants include compounds such as rhamnolipids, sodium 

dodecyl sulfate, Triton X-100 (Mulligan, 2005; Volkering et al., 1998; Despande et al., 1999). Petroleum 

sulfonated oil (PSO) was selected for this study. Unlike some other surfactants, it does not have defined 

structure, rather it is a complex mixture of sulfonated PHC compounds ranging from F2 to F4 (Sun and 

Boyd, 1993).  

ORCs are chemicals release molecular oxygen as they decompose. The most commonly used 

ORC is calcium peroxide (CaO2), which decomposes into molecular oxygen in the presence of water 

(Northrup and Cassidy, 2008). CaO2 has a longer half-life in soils compared to most other ORCs (e.g. 
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H2O2), limiting the need for reapplication into soils. With respect to CA-PEPS, ORCs can mitigate the 

effect of the poor gas exchange common in waterlogged soils, promoting healthy respiration of plant roots 

(Jackson, 1985).  Furthermore, well aerated soils limit the production of phytotoxic compounds such as, 

hydrogen sulfide, acetic acid, oxalic acid and formic acid  (Northrup and Cassidy, 2008; Sharma, 2001). 

ORCs should also improve the biodegradation of PHCs as the both monooxygenases and cellular 

respiration of aerobic microbes require molecular oxygen to function (Sierra-Garcia et al., 2013).   

The majority of research using chemical additives has been focused on surfactant-augmented 

microbial bioremediation (Volkering et al., 1999; Mulligan, 2005; Sierra-Garcia et al., 2013). Currently, 

limited research exists on the effects of ORCs and surfactants on phytoremediation. Furthermore, most of 

the research on remediation was conducted using bioreactors under ideal conditions, where environmental 

factors such as sunlight, temperature, and precipitation have minimal impact (Sun and Boyd, 1995; 

Cassidy and Irvine, 1999). Finally, many chemically augmented remediation experiments use freshly 

spiked PHC soils, which generally remediate faster than the weathered PHC-impacted soil found at 

authentic contaminated sites (Robertson et al., 2007; Rahman et al., 2003).   

The objective of this investigation was to test whether PSO and CaO2 augmented PEPS (CA-

PEPS) had increased rates of PHC remediation compared to PEPS. To carry this out there were three 

objectives: (1) Determine effectiveness of CA-PEPS using CaO2 and PSO, relative to PEPS with respects 

to accelerating remediation of weathered PHCs in soils in 28 day greenhouse trial. (2) Analyze both the 

chlorophyll content and dry biomass of plants used in CA-PEPS to determine if PSO or CaO2 had 

beneficial or deleterious effects on plants. (3) Apply, the DCM with anhydrous sodium sulfate and silica 

(DCM+SS+Silica), and 1:1 acetone:hexane extraction with silica cleanup (1:1 AH with silica cleanup) 

(Chapter 2), in the quantification of PHC in soils from the greenhouse trial.  
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3.3.0.0 Materials and Methods 

3.3.1.0 Weathered PHC Impacted Soil Preparation 

Weathered PHC-impacted soil was collected from a site in Alberta Canada and allowed to air dry 

in a fume hood.  Non-volatile F3 composed the majority of the PHC in the soil, thus no significant loss of 

product was expected. Soils were sieved through a wire mesh (2.00 cm diameter) and vigorously mixed in 

their respective containers to ensure homogenous distribution of PHC. Soils were then stored at room 

temperature in sealed containers until required.  

3.3.2.0 Water Holding Capacity of Soil (WHC) 

The WHC of PHC-impacted soil was determined following the protocol outlined by Environment 

Canada (2007). Filter paper circle (Fisher Scientific, Ottawa, Ontario) was placed into a glass funnel and 

primed with 10.0 mL of deionized water. The combined mass of the wet filter paper and glass funnel was 

weighed on a top loading balance (OHAUS TS400, M&L Testing Equipment (1995) INC., Dundas, 

Ontario). Soil (100 g) for use in the CA-PEPS experiment was dried at 103°C in an oven. A slurry of 100 

g dried soil and 100 mL of deionized water was added to the glass funnel. Excess water was allowed to 

drain into a 250 mL Erlenmeyer flask. The top of the soil filled glass funnel was covered in aluminum foil 

to prevent evaporation. After 4 hours the combined mass of wet soil, glass funnel, and the filter paper was 

weighed on a top loading balance. The WHC was then determined using equation 3.1 as outlined by 

Environment Canada (2007). 

 
 

𝑊𝐻𝐶 =  
𝐹−𝐼

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐷𝑟𝑦 𝑆𝑜𝑖𝑙
 𝑥 100%                                          Equation 3.1 

 

Where: WHC = Water Holding Capacity of Soil (%); F= Combined mass of filter paper, wet soil 

and funnel; I = Combined mass (g) of filter Paper, dry soil, and funnel 
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3.3.3.0 Effective Concentration of PSO in Soil for PHC Solubility  

A PHC extraction experiment was performed to determine the concentration of PSO required for 

increased PHC solubility into the aqueous phase.  Increasing amounts of PSO (0.0, 0.2, 12.5, 100.0, 250.0 

µL/g) were added to 5.00 g of weathered PHC-impacted soil at 20% soil moisture and vortexed for 30 

seconds to ensure full homogenization. Soils were covered with 5.00 mL of reverse osmosis water (RO-

H2O) and vortexed again for 30 seconds. The RO-H2O layer above the soil (with dissolved PHC and 

PSO) was then transferred to a test tube where both PHC and PSO were extracted by liquid-liquid 

extraction with hexane (5.00 mL). PSO blanks were generated (0.0, 0.2, 12.5, 100, 250 µL/mL of hexane) 

to account for PSO inference with PHC quantification. All samples were analyzed using a gas 

chromatography (GC) -Flame ionizing detector (FID) (Shizmadu, Model 2014, Guelph, Ontario, Canada). 

3.3.4.0 PGPR Seed Preparation     

Lolium multiflorum (annual rye grass) seeds were coated with two PGPR strains: Pseudomonas 

sp. UW3 (UW3) and Pseudomonas sp. UW4 (UW4). UW3 and UW4 were inoculated into separate flasks 

containing 100 mL of tryptic soy broth (TSB) and placed on an orbital shaker at room temperature. After 

an incubation period of 24 hours the bacterial density was quantified by measuring the absorbance of each 

culture at 600 nm using a UV-2101PC UV-VIS scanning spectrophotometer. When the cultures reached 

late log phase (absorbance > 2.00) PGPR were isolated and re-suspended with Milli-Q-water to achieve a 

final absorbance of 2.0. The re-suspended UW3 and UW4 were combined with sterile 10% 

methylcellulose (200 mL/L of bacterial slurry) (Sigma Aldrich) and Neutral Dye Red (17.5 mL/L of 

bacterial slurry) (Sigma Aldrich). An aliquot of PGPR slurry (20 mL) was applied onto 2.50 L of L. 

multiflorum seeds (Ontario Seed Co., Waterloo, Ontario, Canada) using a Hege 11 Liquid Seed Treater 

(Wintersteiger, Saskatoon, Saskatchewan, Canada).  PGPR-treated L. multiflorum seeds were planted the 

same day.  
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3.3.5.0 Chemically Augmented PGPR Enhanced Phytoremediation System (CA-PEPS) 

Two, four-week long randomized CA-PEPS experiments (low concentration CA-PEPS and high 

concentration CA-PEPS) were conducted in a greenhouse using CaO2 and increasing concentrations of 

PSO. Both CaO2 and PSO were vigorously mechanically mixed into soils to achieve full homogenization. 

Three independent replicates for both CA-PEPS experiments were conducted on weathered PHC-

impacted soil to determine PHC remediation rates.  The chlorophyll concentration of L. multiflorum 

leaves was measured weekly. Both L. multiflorum dry biomass and PHC concentration of the soil were 

measured at the end of the four-week CA-PEPS experiment. 

3.3.5.1 CA-PEPS with Lower Concentrations of PSO and CaO2 

In the first of the CA-PEPS experiments, PHC-impacted soil (150 ± 1.00 g) was added to six-inch 

plastic pots along with various combinations of reagent grade CaO2 (CAS# 78403-22-2, Sigma Aldrich, 

Oakville, Ontario, Canada) and PSO (Frac Rite Environmental Ltd, Calgary, Alberta, Canada)(Table 3.1). 

The soil was then mixed and brought to water holding capacity (25% soil moisture) with addition of 40.0 

mL of de-ionized water. The PGPR-inoculated L. multiflorum seeds (5.0 g) were planted into PHC-

impacted soils and covered with approximately 0.5 cm of PHC-impacted soil. Pots were arranged in a 

randomized block design in the greenhouse and plants were allowed to grow for four weeks. Each 

treatment was repeated in triplicate with three independent replicates (n=9). 
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Table 3.1: Low Concentrations of PSO and CaO2 CA-PEPS Treatments. 

Plants CaO2 (mg/g) PSO (µL/g) 

No Plants 

  

0.00 

  

0.00 

0.07 

0.20 

0.60 

1.80 

0.33 

  

0.00 

0.07 

0.20 

0.60 

1.80 

L. multiflorum  

  

0.00 

  

0.00 

0.07 

0.20 

0.60 

1.80 

0.33 

  

0.00 

0.07 

0.20 

0.60 

1.80 

 

During CA-PEPS experiments, pots were watered daily to maintain water holding capacity (25% soil 

moisture) in soils and were rotated daily to reduce environmental variability within the greenhouse. 

In addition 15.0 mL of 20:20:20 (N:P:K ) fertilizer dissolved in water (10.00 ±0.01 g of fertilizer per  liter 

of water) was added to all pots.  

3.3.5.2 CA-PEPS with Higher Concentrations of PSO and CaO2 

 A second 4-week long CA-PEPS experiment was conducted in the greenhouse with higher 

concentrations of both CaO2 and PSO compared to the experiment in Section 3.3.5.1. Weathered PHC-

impacted soil (100.0 ± 0.5 g) was added to 4-inch plastic pots. Reagent grade calcium peroxide (3.33 

mg/g)(CAS# 78403-22-2, Sigma Aldrich, Oakville, Ontario, Canada) and various concentrations of PSO 

(Frac Rite Environmental Ltd, Calgary, Alberta, Canada) were added to designated soil samples and 
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vigorously mechanically mixed to ensure homogenization (Table 3.2). The soil was then brought to water 

holding capacity with the addition of 25 mL of de-ionized water. PGPR-treated L. multiforum seeds 

(5.00g) were added into soils and covered with approximately 0.5 cm of PHC-impacted soil.  Pots were 

arranged in a randomized block design with each block (n=3) containing each treatment (Table 3.2). Each 

treatment was repeated in triplicate with three independent replicates for the entire experiment (n=9). 

 

Table 3.2: High Concentrations of PSO and CaO2 CA-PEPS Treatments. 

Plants CaO2 (mg/g) PSO (µL/g) 

No Plants 0.00 0.00 

L. multiflorum 0.00 0.00 

  0.20 

  12.5 

  100 

 3.33 0.00 

  0.20 

  12.5 

  100 

 

During CA-PEPS experiments, all pots were watered daily to maintain water holding capacity 

(25% soil moisture) in soils and were rotated daily to reduce environmental variability within the 

greenhouse. In addition 15.0 mL of 20:20:20 (N:P:K ) fertilizer dissolved in water (10.00 ±0.01 g of 

fertilizer per  liter of water) was added to all pots. 

3.3.5.3 Chlorophyll Analysis of L. multiflorum  

The chlorophyll content of each treatment was measured weekly during the four week CA-PEPS 

experiment. Two representative whole leaves were collected from each treatment and weighed using an 

analytical balance. Leaf samples were then submerged in 5.0 mL of dimethylformamide (DMF) and kept 

in the dark at 4°C for a period of 5 days or until chlorophyll was fully extracted from leaves. After this 
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period the absorbance of the chlorophyll DMF extract was measured using a spectrophotometer at λ 667 

and λ 647 nm (Moran, 1982). If the absorbances were greater than 0.90 samples were diluted with DMF 

by a factor of five.  Chlorophyll content was calculated by equation 2: 

Equation 3.2 

𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑙 (
𝑔

𝑚𝐿
) = 7.53 𝐴667 + 30.19 𝐴647                                   

Where: Total Chl is total chlorophyll content, A667 is the absorbance at 667 nm; A647 is the 

absorbance at 647 nm. 

 

3.3.5.4 Growth of L. multiflorum 

At the end of the four week CA-PEPS experiment, shoots and roots were harvested. Roots were 

washed with water to remove excess soil. Shoots and roots were dried at 50°C for a week and dry 

biomass was quantified using an analytical balance.  

3.3.5.5 Soil Sample Collection & PHC Analysis  

At the end of the four week trial, soil samples were collected from each pot from approximately 

2.0 cm below the soil surface and were stored at 4°C until analysis. PHC from soil samples were 

extracted using either the 1:1 acetone:hexane cold-shake method with in-situ silica cleanup (1:1 AH with 

silica cleanup) or the dichloromethane with anhydrous sodium sulfate and activated silica method 

(DCM+SS+Silica). These methods were developed and described in chapter 2. PHC-extracts were then 

analyzed using a GC-2014 with FID (Shizmadu, Guelph, Ontario, Canada). 

3.3.6.0 Statistical Analysis  

To determine if data sets from each replicate could be combined, data were tested for normality 

prior to statistical testing with Z-values for kurtosis and skewness between -1.96 and +1.96; and Shapiro-

Wilk test P-value greater than 0.05. ANOVA along with LSD post hoc tests were used to determine 

statistical significance (α=0.05) for chlorophyll levels, dry biomass, and PHC concentration in soils 

among CA-PEPS treatments. All statistical tests were conducted using IBM SPSS Statistics software. 
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3.4.0.0 Results  

 3.4.1.0 Effective Concentration of PSO in Soil for PHC Solubility  

PHC-impacted soils were treated with increasing amounts of PSO (0.0, 0.2, 12.5, 100, 250 µL/g) 

to determine the effective PSO concentration at solubilizing PHC from wet soils (20% moisture; Figure 

3.1). Generally, PHC availability in soils increased as higher amounts of PSO were added into soils.  The 

two highest PSO concentrations (100 and 250 µL/g) had the largest increase in PHC availability (Figure 

3.1). 

 

 
Figure 3.1: Increasing Bioavailability of PHC in Soil with PSO 

PHC-impacted soil (5.00 ± 0.01 g) at 20% soil moisture was treated with increasing amounts of PSO 

(0.00, 0.20, 12.5, 100, 250 µL/mg of soil) in an attempt to liberate PHC adsorbed soil particles. Deionized 

water (5.00 ± 0.01 mL) was added to solublize any PHC in the aqueous. Hexane was used for liquid-

liquid extraction for PHC in residing in the aqueous phase before being analyzed by GC-FID (n=3). Error 

bars repersent standard error (SE).  
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3.4.2.0 GC-FID Trace of PSO in PHC-Impacted Soil 

PSO is mixture of various carbon compounds, and thus may interfere with the quantification of 

PHC by GC-FID. The GC-FID trace of PSO dissolved in hexane (100 µL/mL) had several resolved peaks 

of varying intensity (Figure 3.2a). Similar resolved peaks in the PHC F3 and F4 regions (likely PSO) 

were observed in GC-FID trace of a CA-PEPS soil sample (100 µL/g PSO treatment), after extraction 

with 1:1 acetone:hexane (1:1 AH) solvent (Figure 3.2b). When PHCs were extracted from the CA-PEPS 

soil sample using 1:1 AH with silica cleanup method, suspected PSO peaks were greatly diminished 

(Figure 3.2c). Thus, PSO should not interfere with PHC analysis if sample silica cleanup was employed.  

 
Figure 3.2: PSO Effect on Quantification of PHC Concentrations in Soils by GC-FID 

The GC-FID Trace of: A) PSO at 100 µL/mL in 5.0 mL of acetone:hexane. B) 100 µL/g PSO CA-PEPS 

soil samples extracted with acetone:hexane coldshake method. C) 100 µL/g PSO CA-PEPS soil samples 

extracted with 1:1 AH with silica cleanup method. The large peak at 7.62 min is the internal control (o-

terphenyl). 

C
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B
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A)  PSO (100 µL/mL) 

C) PHC-Impacted Soil + PSO (100 µL/g) + Silica 

Cleanup 

B) PHC-Impacted Soil + PSO (100 µL/g) 
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3.4.3.0 Comparison between DCM and Acetone: Hexane PHC Extraction Efficiency 

PHC-impacted soils from CA-PEPS greenhouse trial were extracted using both DCM with 

anhydrous sodium sulfate and activated silica (DCM+SS+Silica), and 1:1 AH with silica cleanup 

methods. The average concentration of PHC (mg/kg) extracted from CA-PEPS soils was measured 

(Figure 3.3). Overall, the 1:1 AH with silica cleanup method extracted 7.80% (P=0.038) more PHC than 

DCM+SS+Silica method from CA-PEPS soils (Figure 3.3). Thus, only the PHC samples quantified by the 

1:1 AH with silica cleanup method were used to determine the effectiveness of CA-PEPS treatments. 

 
Figure 3.3: Quantification of PHC in CA-PEPS Using both 1:1 AH with Silica Cleanup and 

DCM+SS+Silica.  

 A comparison between DCM+SS+Silica and 1:1 AH with silica cleanup method on the amount of PHC 

extracted from all CA-PEPS soil samples (n=162). Identical letters indicate groups are not significantly 

different P>0.05 by Welch t-test. Error bars represent standard error.   
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3.4.4.0 CA-PEPS Low Concentration of PSO and CaO2 

A four week long CA-PEPS greenhouse experiment was conducted on weathered-PHC impacted 

soils using low concentrations of PSO (0.00, 0.07, 0.20 ,0.60, 1.80 µL/g of soil) and CaO2 (0.00 and 0.33 

mg/g of soil). Lower PSO concentrations would be preferred due to the decreased cost of treating soil in 

PHC-impacted sites. The amount of CaO2 treatment (0.33 mg/g) was chosen based on manufacturer’s 

recommendation.  Both chlorophyll content and biomass were measured to determine the effects of PSO 

and CaO2 on L. multiflorum. Upon completion of the experiment, the PHC concentration of soil samples 

were measured by both 1:1 AH with silica cleanup and DCM+SS+Silica methods to determine PHC 

phytoremediation rates.    

3.4.4.1 Chlorophyll Content of L. multiflorum 

Weekly chlorophyll measurements of L. multiflorum leaves were used to determine if CaO2 (0.00 

and 0.33 mg/g of soil) and/or PSO (0.00, 0.07, 0.20 ,0.60, 1.80 µL/g of soil) resulted in decreased 

chlorophyll concentrations (Figure 3.4). No significant differences in chlorophyll content were observed 

for any of the treatments within the same week. PSO did not appear to have a significant impact on 

chlorophyll content. However, CaO2 treatment slightly increased (P>0.05) the chlorophyll content of L. 

multiflorum for the majority of the samples. Generally, chlorophyll concentration was the lowest in week 

1 and then increased significantly in week 2. In week 4 the chlorophyll concentration in samples usually 

decreased relative to the week 3 chlorophyll concentrations (Figure 3.4). Note that the increase in 

chlorophyll levels from week 1 to week 2 was likely due to plant maturation; while the decrease in 

chlorophyll levels from week 3 and week 4 was likely due to plant senescence.  
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Figure 3.4: Total Chlorophyll Concentration of L. multiflorum  from the Low Concentration CA-

PEPS Experiment. 

Total chlorophyll concentration for L. multiflorum grown in PHC-impacted soil over a four week period 

for the CA-PEPS experiment. chlorophyll concentration was measured each week. Each sample was run 

in triplicate with three independent replicates (n=9). 2 outliers were detected by  IQR method (g’ = 1.5) 

and then removed from the data set. Identical letters indicate groups are not significantly different P>0.05 

by one-way ANOVA. Error bars represent standard error. 
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3.4.4.2 Effects of Low Concentrations of CaO2 and PSO on  L. multiflorum Growth  

The dry biomass of L. multiflorum was measured at the end of each four week trial to determine if 

PSO or CaO2 had any effects on the plant growth (Figure 3.5). PSO treatment had minimal effect 

(P>0.05) on either the root or shoot biomass of L. multiflorum. Generally, CaO2 treatment resulted in a 

slight increase in L. multiflorum root biomass, while having no effect on L. multiflorum shoot biomass 

(Figure 3.5).  

  

 
Figure 3.5: Dry Biomass of L. multiflorum from the Low Concentration CA-PEPS Experiment. 

Dry biomass (g) of  L. multiflorum after 28 days of growth in PHC-impacted soil with CaO2 (0.00, 0.33 

mg/g) and PSO (0.00, 0.07, 0.20, 0.60, 1.80 µL/g) treatments (n=9). Samples were run in triplicate with 

three independent replicates (n=9). Identical letters indicate groups are not significantly different P>0.05 

by one-way ANOVA. Error bars represent standard error.  
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3.4.4.3 PHC Concentrations in Soils 

After 4 weeks of plant growth in the greenhouse, soils were extracted (by 1:1 AH with silica 

cleanup and DCM+SS+Sillica method) and then PHC was quantified by GC-FID to determine the degree 

of PHC remediation. DCM+SS+Silica method extracted 1.53-11.2% less PHC among samples compared 

to 1:1 AH with silica cleanup (Figure 3.6b). Thus, some PHCs may still be left in soil after 

DCM+SS+Silica extraction, thus only 1:1 AH with silica cleanup was used to determine the degree of 

PHC remediation. 

The initial PHC concentration in soils (t=0) was 3896.80± 219.98 mg/kg, and after undergoing 

PEPS treatment, soils showed 13.1% (P=0.763) remediation of PHCs (Figure 3.6a). However, none of the 

CA-PEPS treatments (PSO and CaO2) showed different levels of PHC remediation. The most effective 

CA-PEPS treatment was 0.20 µL/g of PSO, remediating 13.8% (P=0.910) of the PHCs in soils. 

Conversely, the least effective treatment was 0.07 µL/g of PSO with 0.33 mg/g CaO2, remediating 3.00% 

(P=0.838) of the PHCs in soils. Finally, no significant differences were detected in the PHC concentration 

in soils between the samples with L. multiflorum and samples without L. multiflorum (Figure 3.6a). This 

might be due to the short time frame of plant growth (4 weeks). As well, the soils used in this study were 

from a site that has been treated with PEPS for 3 years, and would have elevated levels of microbes 

capable of degrading PHC.  
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Figure 3.6: PHC Concentration in Soils at the Conclusion of Low Concentration CA-PEPS 

Experiment. 

PHC concentrations in soil (mg/kg) after undergoing CA-PEPS for 4 weeks, treated with increasing 

concentrations of PSO (0.00, 0.07, 0.20, 0.60, 1.80 µL/g of soil) and CaO2 (0.00, 0.33 mg/g of soil). t=0 

represents the initial PHC concentration in soil. A) CA-PEPS soil samples extracted with 1:1 AH silica 

cleanup method. B) CA-PEPS soil samples extracted with DCM+SS+Silica method. Samples were run in 

triplicate with three independent replicates (n=9). Identical letters indicate groups are not significantly 

different P>0.05 by one-way ANOVA. Error bars represent standard error. 
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3.4.5.0 CA-PEPS with High Concentrations of PSO and CaO2 

The lack of increased PHC remediation in CA-PEPS compared to PEPS suggests that either PSO 

and/or CaO2 levels were too low.  A second 4-week long CA-PEPS greenhouse experiment was 

conducted on weathered-PHC impacted soils using higher concentrations of PSO (0.00, 0.20, 12.5, 100 

µL/g of soil) and CaO2 (0.00 and 3.33 mg/g of soil). The chlorophyll content and biomass were measured 

to determine the effects of PSO and CaO2 on L. multiflorum. Upon completion of the experiment, plant 

biomass was determined and the PHC concentrations of the soils were measured by both 1:1 AH with 

silica cleanup and DCM+SS+Silica methods to determine PHC phytoremediation rates.   

3.4.5.1 Chlorophyll Content of L. multiflorum  

 Weekly chlorophyll measurements of L. multiflorum leaves were used to determine if CaO2 (0.00 

and 3.33 mg/g of soil) or PSO (0.00, 0.20, 12.50, 100 µL/g of soil) resulted in altered chlorophyll levels 

(Figure 3.7). The soils treated with 100 µL/g of PSO had complete inhibition of seed germination, thus no 

chlorophyll data was collected. The PSO treatments (excluding PSO 100 µL/g) did not significantly 

impact chlorophyll levels of L. multiflorum within the same week. No significant differences (P>0.05) in 

chlorophyll content were observed between treatments (excluding 100 µL/g PSO) relative to the untreated 

control soil. Generally, chlorophyll content was highest in weeks 1 and 2, decreasing slightly in 

concentration in the following 2 weeks (Figure 3.7). Note the decrease in chlorophyll content was likely 

due to plant senescence.  
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Figure 3.7: Total Chlorophyll Concentration of L. multiflorum from the High Concentration CA-

PEPS Experiment. 

Comparisons between total chlorophyll concentration in annual rye grass grown in PHC-impacted soil 

over a four week period in the CA-PEPS experiment. Chlorophyll concentration was tested each week. 

Each sample was run in triplicate with three independent replicates (n=9). 8 outliers were detected by IQR 

method (g’ = 1.5) and then removed from the data set. Identical letters indicate groups are not 

significantly different P>0.05 by one-way ANOVA. Error bars represent standard error.  
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3.4.3.2 Effects of High Concentrations of CaO2 and PSO on L. multiflorum Growth 

Dry biomass measurements were taken for both the roots and shoots of L. multiflorum to 

determine the effects of PSO and CaO2 CA-PEPS treatments on plant health. Generally, PSO had a 

negative impact on growth rate of both on L. multiflorum root and shoot biomass. Most notably, 100 µL/g 

PSO treatments completely inhibited L. multiflorum germination (Figure 3.8a). When biomass data were 

combined based on PSO treatment (0.00, 0.2, 12.5, 100 µL/g), a negative trend in biomass was observed 

with increasing PSO treatment (Figure 3.8c). The largest decrease in growth rate among these PSO 

treatment (excluding 100 µL/g PSO treatment) was at 12.5 µL/g PSO, which decreased root and shoot 

biomass by 18.7% (P=0.099) and 25.7% (P=0.003) respectively compared to untreated L. multiflorum 

samples (Figure 3.8b). Conversely, CaO2 treatment improved both the root and shoot biomass of L. 

multiflorum compared to the respective L. multiflorum samples without CaO2 (Figure 3.8a). When 

biomass data were combined based on CaO2 concentration (0.00 and 3.33 mg), the CaO2 treatment 

increased both root and shoot biomass by 22.7% (P=0.016) and 10.7% (P=0.086) respectively (Figure 

3.8b). 
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Figure 3.8: Dry Biomass of L. multiflorum  from the High Concentration CA-PEPS Experiment. 

A) Dry biomass (g) of  L. multiflorum after 28 days of growth in PHC-impacted soil with CaO2 (0.00, 

3.33 mg/g) and PSO (0.00, 0.20, 12.5, 100 µL/g) treatments (n=9). B) Combined dry biomass data 

(excluding 100 µL/g PSO) of L. multiflorum based on CaO2 treatment (n=27). C) Combined dry biomass 

data (excluding 100 µL/g PSO) of L. multiflorum based on PSO treatment (n=18). Each sample was 

conducted in triplicate with three independent replicates. Identical letters indicate groups are not 

significantly different P>0.05 by one-way ANOVA. Error bars represent standard error.  
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3.4.5.3 PHC Concentrations in Soils 

After 4 weeks of plant growth, the PHC concentration in soils was quantified by 1:1 AH without 

silica cleanup, 1:1 AH with silica cleanup and DCM+SS+Silica method to determine the rate of 

phytoremediation among treatments (Figure 3.9). All samples that underwent a silica cleanup had lower 

PHC concentrations than samples without a silica treatment. Furthermore, higher concentrations of PSO 

increased the differences in PHC concentration between with silica cleanup and without silica cleanup 

samples, indicating that PSO contributed to BOC (Figure 3.9a). Thus, the 1:1 AH silica cleanup method 

was used in analyzing PHC remediation rates in CA-PEPS experiment as it likely extracted the vast 

majority PHCs from soils, with little BOC interference (Figure 3.9a). In comparison, DCM+SS+Silica 

method extracted 3.24-21.8% less PHC among samples compared to cleanup (Figure 3.9b). Thus, 

significant amounts of PHCs may still be left in soil after DCM+SS+Silica extraction. 

The initial PHC concentration (t=0) in the soil was 3896± 219.98 mg/kg and after undergoing 

PEPS treatment, soils showed an average of 34.2% (P<0.001) remediation of PHCs (Figure 3.9a). The 

various CA-PEPS treatments (PSO and CaO2) had varied results in improving PEPS (no PSO or CaO2), 

remediating 23.9-40.7% (P<0.001) of the PHCs in soils. Generally, the PSO treatment did not 

significantly improve remediation of PHC, despite a slight trend in decreasing PHC concentration as PSO 

concentration increased from 0.00 to 12.5 µL/g (P>0.05). However, PSO 100 µL/g treatment (with and 

without CaO2) had the smallest decrease in PHC remediation of all CA-PEPS treatments, excluding the 

control soil without plants. Furthermore, samples treated with 100 µL/g PSO had complete inhibition of 

L. multiflorum seeds. The use of CaO2 resulted in increased PHC remediation in all samples compared to 

their respective untreated CaO2 soil. Overall, the most effective CA-PEPS treatment was 3.33 mg/g CaO2 

remediating 40.7% (P<0.001) of the PHC in soils, a 10% (P=0.036) improvement compared to PEPS 

(Figure 3.9a).  
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Figure 3.9: PHC Concentration in Soils at the Conclusion of High Concentration CA-PEPS 

Experiment. 

The PHC concentration in soil (mg/kg) after undergoing CA-PEPS for 4 weeks, treated with increasing 

concentrations of PSO (0.00, 0.20, 12.5, 100 µL/g of soil) and CaO2 (0 , 3.33 mg/g of soil). t=0 represents 

the initial PHC concentration in soil. A) PHC from soil samples extracted with 1:1 AH. B) PHC from soil 

samples extracted with DCM+SS+Silica. Samples were run in triplicate with three independent replicates 

(n=9) and analyzed by GC-FID after cold shake extraction. Identical letters indicate groups are not 

significantly different P>0.05 by one-way ANOVA. Error bars represent standard error. 
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3.5.0 Discussion 

 In this study an attempt was made to improve (accelerate) the rate of PHC remediation in soils 

undergoing PEPS using the chemical amendments PSO and CaO2 (CA-PEPS). To measure the rates of 

PHC remediation, the two analytical methods (1:1 AH with silica cleanup and DCM+SS+Silica) 

developed in chapter 2 were used to accurately determine the PHC concentration in soils. Overall, PSO 

and CaO2 chemical treatments had different effects on the chlorophyll levels and L. multiflorum growth 

rate and PHC remediation in soils. PSO CA-PEPS treatments (0.00, 0.07, 0.2, 0.60, 1.80 12.5, 100 µL/g) 

negatively impacted the both the growth rate of L. multiflorum and the rate of PHC remediation relative to 

PEPS. Conversely, CaO2 CA-PEPS treatments (0.00, 0.33, 3.33 mg/g) generally improved both the 

growth of L. multiflorum and the rate of PHC remediation in soils. Most notably, the 3.33 mg/g CaO2 CA-

PEPS treatment showed an 11.0% (P=0.036) increase in the PHC remediation compared to PEPS. 

3.5.1 Quantification of PHC in CA-PEPS Soils by GC-FID 

 Generally, soils undergoing phytoremediation or PEPS have elevated levels of biological organic 

compounds (BOCs) compared to traditional remediation methods. This is due to the high plant and 

microbial biomass required for phytoremediation and PEPS (Hooper et al., 2003). Thus, BOCs could lead 

to an overestimation of PHCs in soil (Wang et al., 2009). In addition to BOCs, PSO treatments may also 

lead to an overestimation of PHCs due to their petrogenic origins (Figure 3.2a). Therefore, to accurately 

quantify PHCs in soils following CA-PEPS, the impact of both of BOCs and PSO must be accounted for 

(Wang et al., 2009). The two analytical methods for PHC quantification developed in chapter 2 (1:1 AH 

with silica cleanup and DCM+SS+Silica) used activated silica to remove BOC from the PHC extract. It 

was hypothesized that silica could also remove PSO from the PHC-extract by binding to PSO sulfonated 

functional groups. This was supported by the fact that GC-FID traces, which contained PSO with PHC-

impacted soil (Figure 3.2b) had significant decreases in suspected PSO peaks when the PHC-extract 

underwent silica cleanup (Figure 3.2c). By comparison GC-FID traces of the same samples without silica 

cleanup step had several large resolved peaks similar to size and shape of PSO GC-FID trace (Figure 
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3.2b). Thus, both 1:1 AH with silica cleanup and DCM+SS+Silica method can mitigate the inference of 

BOC and PSO on accurately quantify PHCs in soils. 

PHC extracted from CA-PEPS soils using the 1:1 AH with silica cleanup consistently had lower 

PHC concentration compared to PHC extracted from soils using acetone:hexane (1:1 AH) solvent without 

silica cleanup (Figure 3.9a). Furthermore, the difference in PHC concentration between these two PHC 

analysis methods increased with higher amounts of PSO CA-PEPS treatments (Figure 3.9a). This increase 

in PHC when using 1:1 AH without silica cleanup was expected as both PSO and BOC likely caused an 

overestimation of PHCs in soils. The overestimation of PHC by PSO and BOS was supported by 

examination of the GC-FID traces of the soil samples.  The GC-FID traces of samples that did not 

undergo silica cleanup showed several resolved peaks (resembling PSO) becoming more prominent with 

increasing PSO concentration (Figure 3.2b). By comparison GC-FID traces of soils extracted with 1:1 AH 

with silica cleanup did not show have these suspected PSO peaks (Figure 3.2c). Thus, the 1:1 AH with 

silica cleanup method could be used to accurately quantify PHC in CA-PEPS soils.  

The DCM+SS+silica would be the preferred PHC extraction method as it is faster and less 

laborious than 1:1 AH with silica cleanup. Like 1:1 AH with silica cleanup, with DCM+SS+silica no 

suspected PSO or BOC peaks were observed on GC-FID traces, thus both PSO and BOC were likely 

removed from the PHC-extract. Unfortunately, DCM+SS+Silica extracted 7.8% (P=0.030) less PHC than 

the 1:1 AH with silica cleanup method (Figure 3.3). The poorer DCM+SS+Silica PHC extraction 

efficiency could be due to the high soil moisture (14.8%) which prevented DCM from fully extracting 

PHCs (as shown in chapter 2).  Stoichiometrically, the amount of anhydrous sodium sulfate (0.50 g) used 

in the DCM+SS+Silica could remove a maximum of 0.63 gram of water from soils (12.6%  soil 

moisture). Thus, in the future, higher amounts of anhydrous sodium sulfate could be used to improve 

DCM+SS+Silica PHC extraction efficiency.  
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3.5.2 PSO and CaO2 Effects on Plant Vigour  

 PEPS is highly dependent on the plant biomass and associated microbes to effectively remediate 

PHC in soils. Therefore, it was essential that the both PSO and CaO2 treatments used in CA-PEPS do not 

negatively impact L. multiflorum vigour. Thus, both biomass and chlorophyll of L. multiflorum were 

monitored to determine the effects of the PSO and CaO2 treatments on plant vigour. 

 PSO is petrogenic based surfactant, and was used in this study to increase PHC bioavailability in 

soils. Low concentrations of PSO treatments (0.00-1.80 µL/g) had minimal effect on L. multiflorum shoot 

biomass, while slightly increasing root biomass (Figure 3.5). However, higher PSO concentrations (12.5 

and 100.0 µL/g) had negative effects for both root and shoot biomass (Figure 3.8). Furthermore, the 100 

µL/g PSO treatment (highest level tested) resulted in complete inhibition of L. multiflorum seed 

germination (Figure 3.8). Thus, it is highly likely that PSO had a toxic effect on L. multiflorum.  

The composition of the PSO mixture used in this study according to the supplier (Frac Rite 

Environmental Ltd.) is 30-60% ethylene glycol, 1.0-5.0% isopropanol, and 10-30% petroleum sulfonate. 

Ethylene glycol at concentrations of 45,000 and 150,000 mg/kg in soils has been found to inhibit 

perennial rye grass (Lolium perenne) seed emergence by 97 and 100%, respectively (Pollard and 

Dufresne, 1999). In addition, an Environment of Canada (1995) study reported a 25% decrease in seed 

emergence in both radishes (Raphanus sativa) and lettuce (Lactuca sativa) when soils were treated with 

5,300 to 9,000 mg/kg of ethylene glycol respectively. In this study, the 100 µL/g PSO treatment added 

roughly 33,300 to 66,600 mg/kg of ethylene glycol to the soil, which was concentrated enough to be 

phytotoxic (Pollard and Dufresne, 1999; Environment of Canada, 1995). It was also possible that seeds 

were inhibited by isopropanol, although not as likely as ethylene glycol. Chvapil et al. (1962) found total 

inhibition of barely grain (Hordeum vulgare) germination when exposed to 39,420 mg/kg of isopropanol 

in soils. In contrast, Chadouef-Hannel and Taylorson (1985) found no inhibition of white amaranth 

(Amaranthus albus) seed germination when treated with 36,050 mg/L of isopropanol.  Therefore, it was 

likely that the isopropanol levels in this study (790 to 3,900 mg/kg of isopropanol in soils) were too low 

to inhibit germination in plants (Chvapil et al., 1962; Taylorson, 1985). Petroleum sulfonates phytotoxic 
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effects on plants is highly dependent on the composition of the petroleum from which they were from 

derived, and as such information on its toxicity is limited. However, petroleum sulfonates are classified as 

anionic surfactants, a group of surfactants which have been shown to be phytotoxic to plants by limiting 

micronutrient uptake (Ewa and Maceij, 1997; Mohammed and Moheman, 2012). Mohammed and 

Moheman (2012) showed that when 10 mL/kg of the anionic surfactant sodium dodecyl sulfate (SDS) 

was added into soils, wheat biomass decreased by 50%. Despite this, it is important to take into 

consideration that petroleum sulfonates have vastly different chemical structures compared to SDS, thus 

they may not be as phytotoxic. Therefore, more research is required to determine if the petroleum 

sulfonates were having an effect on plants in this study. Overall, the ethylene glycol component of PSO 

was the most likely cause of inhibition of L. multiflorum germination. 

 CaO2 is an oxygen releasing compound (ORC), decomposing into molecular oxygen, and thus 

oxygenating the soils after application (Northrup and Cassidy, 2008; Figure 3.10). Unlike PSO, CaO2 

treatments generally increased the overall biomass of L. multiflorum.  The low concentration of CaO2 

(0.33 mg/g) had minimal effect (P>0.05) on L. multiflorum, only slightly increasing its roots biomass 

(Figure 3.6). However, the higher concentration of CaO2 (3.33 mg/g) substantially increased both root and 

shoot biomass by 22.7% (P=0.016) and 10.7% (P=0.086), respectively, compared to L. multiflorum 

without CaO2 treatment (Figure 3.8). It has been shown that CaO2 improved total plant biomass in 

waterlogged soils (Sato and Maruyama, 2005; Ollerenshaw, 1984). However, limited research has been 

conducted on the effects of CaO2 on plant growth in PHC-impacted soils. The improved growth rate of L. 

multiflorum in this study might have been caused by increased PGPR bacterial density due to the more 

aerobic environment provided by CaO2. Furthermore, CaO2 can increase aerobic PHC biodegradation in 

soils, decreasing PHC concentration in soils and limiting their adverse effects on plant growth (Shukry et 

al, 2013; Robertson et al., 2007; Baker, 1970). 

Alternatively, CaO2 might be directly stimulating growth of L. multiflorum through the 

production of hydrogen peroxide (H2O2; Figure 3.10). H2O2 is known to be a plant signaling molecule 

involved in the mitogen activated protein kinases cascade which has numerous effects on the plant, 
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including alleviating abiotic stress responses and increasing cell division (Neil et al., 2002; George, 2014; 

Orozco-Cardenas et al., 1999; Potikha et al., 1999).  Several experiments have shown that the addition of 

H2O2 to soil increased overall plant biomass (Liu et al., 2009; Guzel and Terzi, 2012; Espin et al., 2010, 

Hameed et al., 2004). At this junction, it is unclear if the improved biomass of L. multiflorum treated with 

CaO2 was a result of increased microbial activity in soils or stimulation of growth by H2O2, combination 

of the two, or a different uncharacterized effect.  

 
 

Figure 3.10: The Reactions of CaO2 in Soils.   

Reaction 1 is production of H2O2 from  CaO2 and H2O. Reaction  2 is  a decomposition of H2O2  from 

reaction 1 into O2. (Northrup and Cassidy, 2008). 

 

In the addition to dry biomass, chlorophyll was monitored to assess the PSO and CaO2 treatments 

on L. multiflorum health (Li et al., 2011; Ramana et al., 2012). The PSO treatments at either low (0.00, 

0.07, 0.20, 1.80 µL/g) or high concentrations (0.00, 0.20, 12.5 µL/g) had no significant trend on L. 

multiflorum chlorophyll content (Figure 3.5 and 3.8). However, high concentrations of PSO were shown 

to be detrimental to L. multiflorum biomass, despite not affecting chlorophyll levels (Figure 3.7). This 

suggests that PSO (0.00-12.50 µL/g) had minimal effect on L. multiflorum health following germination. 

In future experiments, PSO could be applied to soils following seed germination.  

The CaO2 treatments at either low (0.00, 0.07, 0.20, 1.80 µL/g) or high concentrations (0.00, 

0.20, 12.5 µL/g) had no impact (P>0.05) on L. multiflorum chlorophyll content (Figure 3.4 and 3.7). This 

was suspected as CaO2 was found to have no toxic effect on plants, and actually resulted in increased L. 

multiflorum biomass relative to untreated control (Figure 3.8).  

3.5.3 PSO and CaO2 Effects on PHC Phytoremediation in Soils  

After four weeks of plant growth, the PHC concentrations in soils were quantified (the 1:1 AH 

with silica cleanup and DCM+SS+Silica methods) to compare the differences in PHC remediation 

CaO2 + 2 H2O → Ca(OH)2 + H2O2       (1) 

 

H2O2 → H2O + O2                                (2) 
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between CA-PEPS and PEPS. A range of PSO and CaO2 treatments were explored for CA-PEPS (0.00-

100.0 µL/g for PSO and 0.00, 0.33, 3.33 mg/g for CaO2).  

The high concentration CA-PEPS experiment generally showed significantly higher remediation 

in samples planted with L. multiflorum compared to samples without L. multiflorum  (P<0.05; Figure 3.8). 

However, in the low concentration CA-PEPS experiment, planted samples showed only a minor 

improvement in remediation (P>0.05) relative to unplanted samples (Figure 3.5). The latter result was 

surprising, as both PEPS and CA-PEPS should have higher rates PHC remediation compared unplanted 

samples. One explanation is that these soils contained significant amounts of PHC-degrading microbes 

prior to the CA-PEPS experiment. This was possible as soils used in this study had been previously 

treated with PEPS for 3 years in the field, and likely contained elevated levels of PHC-degrading 

microbes (Pilon-Smits, 2005; Dotanyia et al., 2015). Therefore, the rhizosphere effect in PEPS would 

have had minimal effect on increasing remediation rates relative to unplanted soil.  

PSO was theorized to improve phytoremediation rates in soils by increasing PHC bioavailability 

to microbes. Unexpectedly, PSO in low concentrations (0.07-1.80 µL/g) had the opposite effect, slightly 

decreasing (p<0.05) PHC remediation rate compared to PEPS soils (Figure 3.6). The decrease in 

remediation rate could be the result of microbes using the more bioavailable PSO as preferred carbon 

source compared to PHC. As well the lack of increased PHC remediation suggests that PSO 

concentrations (0.07-1.80 µL/g) were insufficient in improving PHC bioavailability (Figure 3.6). This is 

supported by Sun and Boyd (1995) who found that substantially higher concentrations of PSO (20 – 200 

mg/L) were required to increase phenanthrene, naphthene, and PCB solubility within the aqueous phase. 

Furthermore, it was shown experimentally that only concentrations above 100 µL/g solubilized PHCs in 

significant quantities (Figure 3.1).   

PSO at higher concentrations (12.50 and 100 µL/g in soils) showed more of an effect on PHC 

concentration in soils compared to low concentrations of PSO (Figure 3.9). The 12.50 µL/g PSO 

treatment had a 7.2% (P=0.237) increase in PHC remediation in soils compared to PEPS. This suggests 

that the 12.50 µL/g PSO treatment was sufficient for increasing the PHC bioavailability. Unfortunately, 
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higher PSO concentration (100 µL/g) decreased PHC remediation in soils (P=0.103) compared to the 

untreated PEPS control. This decrease in remediation was expected, as the PSO treatment (100 µL/g) 

completely inhibited L. multiflorum germination, thus the rhizosphere effect could not occur (Gerdart et 

al., 2009; Pilon-Smits, 2005; Dotanyia et al., 2015). Despite being toxic to plants, it is unlikely PSO had 

toxic effects on PHC degrading microbes, as both 100 µL/g PSO treated soils and unplanted control soils 

had comparable rates of PHC remediation. If PSO was indeed toxic towards microbes, a decrease in PHC 

remediation relative to unplanted control soils would be expected (Figure 3.9).  As well, Sun and Boyd 

(1993) showed even at higher concentrations (20-200 mg/L) PSO had no bactericidal effects in soil. 

Therefore, the low rate of PHC biodegradation in PSO (100 µL/g) treated CA-PEPS was likely due to the 

lack of plant growth. 

CaO2 oxygenates soils as it decomposes into molecular oxygen. This could both increase aerobic 

metabolism of PHC and cellular respiration by aerobic microbes (Sierra-Garcia et al., 2013; Olajire and 

Essien, 2014). Two concentrations of CaO2 (0.33, and 3.33 mg/g of soil) were used in CA-PEPS to 

improve the rate of PHC degradation.  The 0.33 mg/g of CaO2 treatment of planted soils had no 

significant (p>0.05) effect on PHC remediation in soils (Figure 3.6). Likely, the amount of CaO2 used was 

too low to have an effect, as CaO2 has been shown to improve the growth rate of aerobic microbes and 

stimulate bioremediation (Cassidy and Irvine, 1999; Chapman et al., 1997; Davis et al., 1997).  

The higher concentration of CaO2 (3.33 mg/g) without PSO treatment showed 11.0% (p=0.036) 

improvement in PHC remediation rate compared to PEPS soils (Figure 3.9). Furthermore, all soils treated 

with both CaO2 (3.33 mg/g) and PSO (0.02, 0.60, 12.50 excluding 100 µL/g PSO treated soils) had lower 

PHC concentration compared to their respective samples without CaO2 (Figure 3.9). This is supported by 

Davis et al. (1997) who found that after 28 days, soils treated with CaO2 (0.28% of soil mass) had a 10% 

(p<0.05) increase in PHC remediation compared to the soils without CaO2. The increase in PHC 

remediation was likely a result of CaO2 supplying oxygen required for aerobic metabolism of PHC by soil 

microbes (Chapman et al., 1997; Northrup and Cassidy et al., 2008). As well, CaO2 was shown to 



99 

 

significantly increased the root biomass of L. multiflorum (Figure 3.8), thus potentially supporting higher 

density of PHC-degrading microbes within the rhizosphere. 

In conclusion, both PSO and CaO2 treatments did impact the rate of PHC phytoremediation in 

soils when compared to PEPS. The PSO CA-PEPS is not recommended as it inhibits L. multiflorum seed 

germination and PHC phytoremediation. Furthermore, PSO CA-PEPS treatments may even be 

detrimental to the environment as solubilized PHC in soils could leach into groundwater. In contrast to 

PSO, CaO2 CA-PEPS appears to be valid treatment as it improved both the PHC remediation rate of 

PEPS and the biomass of L. multiflorum. Thus, CaO2 CA-PEPS might be advantageous for remediating 

recalcitrant PHC contaminants in soils in a shorter period of time compared to PEPS.  

3.5.4 Concluding Statements 

Overall, this study shows that PSO and CaO2 treatments used in CA-PEPS can impact the rate of 

PHC remediation in soils. The PSO treatment with CA-PEPS is not recommended due to the inhibition of 

seed germination, resulting in greatly decreased remediation. As well, PSO treatment could add more 

PHC into soils (increasing length of remediation), as PSO is derived from PHC. However, in future CA-

PEPS experiments PSO could be added to soils post seed germination, as PSO might not be toxic to 

matured plants according to the chlorophyll data (Figure 3.4 and 3.8). The CaO2 treatment with CA-PEPS 

in contrast to PSO treatment appears to be a viable for increasing PHC remediation in soils. Furthermore, 

CaO2 low cost makes it an attractive option for remediating PHC-impacted soil sites. The CaO2 treatment 

(3.33 mg/g) could cost as little as $1.50 per m
2
 of soil assuming depth of 0.50 meter.  As well, CaO2 could 

easily be applied into soils during fertilization.  In future CA-PEPS experiments, higher concentrations 

(>33.00 mg/g) of CaO2 could be added into soils in an attempt to further increase PHC phytoremediation 

and biomass of L. multiflorum. 
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Chapter 4: 

 

 

Conclusions 
 

The Canadian Council of Ministers of the Environment (CCME) suggests strict guidelines on the 

allowable levels of petroleum hydrocarbons (PHC) in Canadian soils, which are then enforced on the 

provincial level (CCME, 2008). The current CCME protocol recommends using 1:1 ratio of acetone to 

hexane (1:1 AH) to extract PHC from soil followed by quantification using gas chromatography with 

flame ionization detector (GC-FID). However, due to the polar nature of acetone, biological organic 

compounds (BOC) produced by plants and microbes in soils are often co-extracted along with PHC. This 

co-extraction of BOC along with PHC may cause an overestimation of F3 concentration in soils (Wang et 

al., 2009; CCME, 2008). This BOC interference is even more pronounced in soils undergoing 

phytoremediation or plant growth promoting rhizobacteria (PGPR) enhanced phytoremediation systems 

(PEPS) due to the higher amount of biomass required (CCME, 2008; Hooper et al., 2003).  This 

investigation was divided into two sections. First was optimization of PHC quantification methods. 

Second was the investigation of the efficacy of chemical augmented PEPS (CA-PEPS) with respects to 

increasing the rate of PHC remediation in soils. The PHC remediation of CA-PEPS soils were tested 

using the PHC quantification methods optimized in the first part of this study. 

In this research two methods were developed to accurately quantify PHC in soils: 1:1 AH with 

silica cleanup and DCM+SS+Silica. The 1:1 AH with silica cleanup method uses 1:1 AH solvent mixture 

to extract PHC from soils, followed by the removal of acetone from the PHC-extract, and then addition of 

activated silica into the PHC-extract to remove any BOC. Activated silica was effective at removing 

BOC, as the GC-FID trace of PHC-extracts from both artificial and authentic PHC-impacted soils treated 

with silica showed a decrease in suspected BOC peaks. A drawback of 1:1 AH with silica cleanup method 

is that involves many steps to remove the acetone from PHC-extract, which could be potential sources of 

error. However, the 1:1 AH with silica cleanup method works well with most soil moisture levels, as 
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acetone limits soil aggregation in the PHC extraction solvent. Overall, it is the opinion of this author that 

1:1 AH with silica cleanup method should be used in PHC-impacted soils with high levels of BOC to 

prevent an overestimation of PHC. 

The DCM+SS+Silica method uses the extraction solvent dichloromethane (DCM) along with 

anhydrous Na2SO4 to dry soils and activated silica to remove BOC from the PHC-extract.  Like the 1:1 

AH with silica cleanup method, DCM+SS+Silica method was effective at removing BOC from the PHC-

extract. But unlike 1:1 AH with silica cleanup method, the DCM+SS+Silica method uses DCM (instead 

of acetone) which does not need to be removed prior to addition of activated silica (does not foul silica). 

Thus fewer transfer steps are needed, decreasing both time and labour required for PHC extraction.  

However, DCM+SS+Silica PHC extraction efficiency decreases in soil moistures greater than 12.0%, as 

the amount of Na2SO4 was likely insufficient at drying the soils. In future experiments, larger amounts of 

Na2SO4 could be used to in the DCM+SS+Silica to improve PHC extraction in wet soils (> 12.0% 

moisture). Furthermore, soils could potentially be dried in the future (assuming soils contain mostly F3 

and F4 as no significant product loss due to volatilization is expected) prior to DCM+SS+Silica extraction 

to improve PHC recovery. As of now, it is the opinion of this author that DCM+SS+Silica method should 

only be used in place of 1:1 AH with silica cleanup in dry soils (<12.0% moisture).  

 Soils remediated by either PEPS or phytoremediation are generally slower than traditional 

physical cleanup methods (e.g. removal of soils to land fill), especially in weathered soil. In this research 

two chemical classes, surfactants and oxygen releasing compounds (ORCs) were investigated used in CA-

PEPS to increase PHC remediation. The surfactant (petroleum sulfonate oil; PSO) CA-PEPS treatment 

was generally ineffective at increasing PHC remediation relative to PEPS. At high concentrations PSO 

had a negative impact on PHC remediation, as it completely inhibited seed germination of L. multiflorum. 

This phytotoxic effect was likely due to the concentration of ethylene glycol contained in the PSO 

(Environment of Canada, 1995; Pollard and Dufresne, 1999). In addition to being phytotoxic, PSO treated 

soils could solubilize otherwise immobile PHC in soils which could potentially reach the water table 
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causing health concerns. Thus, it is the opinion of this author that PSO should not be used in conjunction 

with PEPS or phytoremediation technologies.  

Calcium peroxide (CaO2) is a commonly used ORC, which releases molecular oxygen in the 

presence of water (Northrup and Cassidy, 2011). Unlike PSO, the CaO2 CA-PEPS treatment increased 

both the rate of PHC remediation and plant biomass when compared to PEPS. Likely, the increase in 

available oxygen in the soils improved the aerobic biodegradation of PHC by soil microbes. However, the 

exact of mechanism of CaO2 on increasing plant biomass is not as clear. Possibly, the more aerobic 

environment provided by CaO2 increased PGPR bacterial density in soils, thus improving plant biomass 

(Shukry et al, 2013; Robertson et al., 2007). Alternatively, H2O2 formed as a byproduct of CaO2 

decomposition, can act as signaling molecule in plants stimulating growth (Neil et al., 2002; George, 

2014; Orozco-Cardenas et al., 1999; Potikha et al., 1999). Currently, it is unclear if the increased 

microbial activity in soils or stimulation of growth by H2O2, combination of the two, or a different 

uncharacterized effect improved the plants biomass. Thus, more research is required to determine the 

mechanism of CaO2 on increasing plant biomass. Overall, it is the opinion of this author that CaO2 

treatments (3.33 mg/g) are viable in increasing PHC phytoremediation. Furthermore, the CaO2 treatment 

(3.33 mg/g) could cost as little as $1.50 per m
2
 of soil assuming depth of 0.50 meter. This low cost makes 

it an attractive option for remediating PHC-impacted soil sites.  In future CA-PEPS experiments, higher 

concentrations (>33.00 mg/g) of CaO2 could be added into soils in an attempt to further increase PHC 

phytoremediation and biomass of L. multiflorum.  
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