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Abstract

In this work we study the order consolidation process of an e-retailing warehouse using real

data. Order consolidation is a process that follows the picking operation in a warehouse.

After stock keeping units (SKUs) of an order are picked into possibly multiple totes, they

are sorted and the SKUs are consolidated back into orders to be packed and shipped to cus-

tomers. There are two main operations in order consolidation: wave sortation and putting.

Wave sortation involves tote sequencing which is a major driver of how smooth the system

runs. First, totes should be sequenced so that the work load is balanced. Second, totes

that carry SKUs of the same order should be close in sequence in order to reduce order

processing times, and to reduce resource utilization. At the same time, orders should be

assigned to operators for putting in order to balance operator workload and to avoid recir-

culation. The assignment and sequencing of totes, when assuming known and constant tote

induction times and when the goal is total completion time, is a problem similar to parallel

machine scheduling. However, the goal from order consolidation is minimizing order, as

opposed to tote, consolidation times. Order consolidation also depends on the putting op-

eration. Moreover, processing times are uncertain and may vary because of different sizes

and weights of SKUs and because of variations in manual and automatic processes. In

order to reflect a realistic system performance accurately, we need to take randomness into

account when evaluating measures like order completion time, resource utilization, and

congestion. In this thesis, we first build a simulation model for the consolidation process

using a given tote assignment and sequencing. We use the empirical distributions derived

from the data to run the simulation. Second, we develop a simulated annealing heuristic
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and apply it to solve the deterministic tote sequencing problem with the goal of minimizing

order completion time or order processing time. Third, we develop a stochastic simulated

annealing algorithm to optimize the whole consolidation process. The algorithm decides on

tote assignment and sequencing and evaluates the sequences using the simulation model.

We experimented with optimizing order completion times and SKU wait times for putting.

Our approach is then a simulation optimization to optimize the consolidation process using

different metrics. We report on numerical tests using real instances.
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Chapter 1

Introduction

E-commerce is booming and is predicted to grow significantly in the coming decades.

Retail e-commerce sales worldwide is predicted to grow to 4,058 billion US dollars in 2020

([Statista, 2017]). E-retailers, like Amazon, Walmart and JingDong, are operating on very

large scales. For example, the total operation expense of Amazon during fourth quarter in

2016 was 42.48 billion ([Amazon, 2017]). An e-retailer receives thousands of online orders

daily. Such orders have the following features: low volume, high variety and short lead

time. Low volume means that there are only a few items required by an order. High

variety means that different orders request very different products, consequently e-retailers

carry many categories of products. Short lead time means that an e-retailer has to fulfill

an order in a short time, once placed. For example, JingDong uses next day delivery

and three-hour delivery across cities in China ([Yu et al., 2016]). In order to achieve fast

order fulfillment, e-retailers operate large warehouses strategically located and equipped

with sophisticated warehouse control systems and logistics software. Such warehouses are
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referred to as e-warehouses.

An e-warehouse is a major component of the logistic system of an e-retailer. It performs

the following operations to fulfill online orders: receiving, picking, consolidation, packing

and shipping. Receiving refers to receiving online orders, grouping many orders together

into waves to be processed simultaneously, and preparing pick lists. A pick list is a list of

SKUs (stock keeping units), generally stored in close proximity, to be picked together in one

or more containers called totes. Picking refers to picking SKUs in pick lists from short term

storage area. Generally, pick lists, and consequently totes, contain SKUs from multiple

orders. SKUs are then put back into orders using a process called order consolidation.

Once all of the SKUs of an order are consolidated, the order is packed and shipped to the

customer. E-warehouses use a wide range of technologies from manual to fully automated

systems to perform these operations. In this work we study the operation of an e-warehouse.

It is part of the industrial project “Adding Analytics to Warehouse Logistics”. This project

is a collaboration with Dematic, a global leader in warehouse control systems and supply

chain solutions. The project is funded by Dematic and Ontario Centres of Excellence

(OCE)’s Voucher for Innovation and Productivity (VIP).

In this work, we study the order consolidation process of an e-warehousing system using

data provided by Dematic. Order consolidation is a process that follows the picking opera-

tion. After items of an order are picked into possibly multiple totes, they are consolidated

again to be packed and shipped. An order consists a list of items, and the items are picked

in different totes. Totes are then selected and items are consolidated into orders. There are

two main operations in the consolidation process under study, wave sortation and putting.

Recall that a wave is a set of orders processed together through the warehouse. First,
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Figure 1.1: Order Consolidation System

SKUs are picked into totes based on pick lists. Totes are then collected into a buffer area

before being diverted to the sortation system. In sortation, totes are directed to induction

stations where the SKUs are emptied (inducted) onto a conveyor leading to a putting area.

The putting area is composed of several putwalls, and a putwall is a wall of cubbies. A

cubby is used to consolidate the SKUs or an order. Once all SKUs of an order are placed in

the assigned cubby, the order is ready for packing and shipping. In the system under study,

there are four induction lines, two of which are automatic and the other two are manual.

At the putwall, putting is done manually. An operator is guided by a put-to-light system,

picks up SKUs on the conveyor and places them in the pre-assigned cubby. Figure 1.1

shows the main components of an order consolidation system.
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The assignment of totes to induction lines and the sequence in which they are inducted

is a major driver of how smooth the system runs. First, totes should be assigned to

induction lines so that the work load is balanced. Second, totes that carry SKUs of the

same order should be inducted as close as possible in order to reduce order processing

times, and to reduce cubby utilization. At the same time, orders should be assigned to

putwalls in order to balance operator workload and to avoid long recirculation on the

conveyor. The assignment and sequencing of totes, when assuming known and constant

tote induction times and when the goal is total completion time, is a problem similar to

parallel machine scheduling. However, the goal from order consolidation is minimizing

order, as opposed to tote, consolidation times. Order consolidation also depends on the

putting operation. Moreover, both induction and putting times are uncertain and may

vary because of different sizes and weights of SKUs and because of variations in manual

and automatic processing. In order to reflect a realistic system performance accurately,

we need to take randomness into account when evaluating measures like order completion

time, resource utilization, and congestion.

In this work we analyze the order consolidation process under uncertainty. First, we

build a simulation model for the consolidation process using a given tote assignment and

sequencing. We use the empirical distributions derived from the industry data to run the

simulation. Second, we develop a simulated annealing heuristic and apply it to solve the

deterministic tote sequencing problem with the goal of minimizing order completion time

or order processing time. Third, we develop stochastic simulated annealing algorithms to

optimize the whole consolidation process. The simulation optimization approach decides

on tote assignment and sequencing and evaluates the sequences using the simulation model.

4



We test and report results using real data.

The organization of the thesis is as follows. Chapter 2 defines the different problems

addressed in this work and reviews related literature. Chapter 3 details the simulation

model and the simulated annealing algorithms. Chapter 4 provides results of numerical

testing using real industry instances under deterministic and stochastic settings. Chapter

5 presents the conclusion.
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Chapter 2

Problem Definitions and Literature

Review

In this chapter, we define the two main optimization problems in the order consolidation

process. First, we define the tote sequencing problem and relate it to parallel machine

scheduling. Second, we describe the order consolidation problem and explain the uncer-

tainty involved in that operation. Finally, we review the literature related to parallel

machine scheduling, simulation optimization, and simulated annealing.

2.1 Tote Sequencing and Related Literature

We use tote sequencing to refer to the two main decisions in tote sortation: assigning

and sequencing totes to the multiple induction lines. Totes are inducted at the assigned
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induction line in the order they arrive. Consequently, the sequence of totes determines

their completion time. This is known in the literature as the Parallel Machine Scheduling

(PMS) problem where induction lines correspond to machines, totes represent jobs and the

objective is to minimize total completion time. This problem is known to be NP-hard ([Du

et al., 1990]).

Within order consolidation, an order may have items in multiple totes and the totes may

be inducted at different induction lines. An order is considered complete, i.e., consolidated

and ready for packing, when all the totes that have a SKU from that order are inducted

and put in the corresponding cubby. If we ignore the put operation, we may use tote

completion times to approximate order completion times.Order completion time is equal

to the completion time of the last inducted tote containing a SKU from the order. So

the goal from tote sequencing becomes minimizing the total completion time of all orders.

When SKUs of an order start arriving at the putwall, they occupy a cubby until all SKUs

arrive. So cubby utilization may be approximated by order processing time defined by the

difference between the first and last totes corresponding to an order. In the system under

study, the size of a wave is set by the number of cubbies so that the number of orders in a

wave does not exceed the number of cubbies. Consequently, minimizing order processing

time may free up cubbies which may lead to forming larger waves.

To the best of our knowledge, the only work that studies the tote sequencing problem

as defined above is by [Yildiz, 2017]. However, given that it relates closely to MPS, we

review related literature briefly.

The first paper on parallel machine scheduling is [McNaughton, 1959]. It provides three
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performance metrics, completion time, makespan and total weighted tardiness. [Cheng

and Sin, 1990] provide a comprehensive review on parallel machine scheduling works that

appeared before 1990. [Du et al., 1990] proves that when the number of machine is at least

2, the machine scheduling problem is NP-hard. [Eck and Pinedo, 1993] provides a heuristic

to minimize makespan through completion-time optimal solutions and guarantee that the

makespan achieved will be almost 5/4 times the optimal value. [McCormick and Pinedo,

1995] develop an algorithm to search for Pareto-optimal solution for both completion time

and makespan. [Schutten and Leussink, 1996], [Lee and Pinedo, 1997] provides a three-

phase heuristic algorithm for parallel machine scheduling with sequence-dependent setup

times. The first phase is to compute the factors that characterize the instances (job-

machine factor and the setup time severity factor). The second phase is to construct a

sequence by a dispatching rule, which is a function depending on the factors from the

first phase. The third phase is to use simulated annealing, with the sequence from the

second phase as an initial solution. In the computational experiments of [Lee and Pinedo,

1997], there are 60 items for all the instances and the number of machines ranges from 1

to 12. [Chen and Powell, 1999] propose a column generation method. [Chen and Powell,

1999] first use Dantzig-Wolfe Decomposition to get a set partitioning problem, then they

use the branch-and-bound to solve the set partitioning problem. In the branch-and-bound

tree, [Chen and Powell, 1999] further use column generation to solve the linear relaxation

problem at each node with a single machine subproblem. In the computational experiments

of [Chen and Powell, 1999], they have used instances with at most 20 machines and 100

items. [van Den Akker et al., 1999] is another work that use column generation on parallel

machine scheduling problem. They first obtain the set-covering reformulation, then solve
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the LP-relaxation of the reformulation with column generation. For the pricing problem

in the column generation, they provide a pseudo-polynomial time algorithm. [Dell’Amico

et al., 2008] provides both metaheuristic and exact algorithms for identical parallel machine

scheduling problem. [Dell’Amico et al., 2008] associate parallel machine scheduling problem

to the bin packing problem, another well-known NP-hard problem. They propose an exact

algorithm that solves bin packing problem in its subroutine to verify if the upper bound

needs to be updated. They also provide a scatter search metaheuristic. The instances in

[Dell’Amico et al., 2008] have at most 25 machines and 1000 items. [Tavakkoli-Moghaddam

et al., 2009] uses genetic algorithm to minimize the number of tardy item and the total

completion time of items simultaneously. They assume that there are sequence-dependent

setup times and precedence constraints. [Tran et al., 2016] publish their work on solving

parallel machine scheduling with setup time by logic-based benders’ decomposition and

branch and check.

[Lo and Bavarian, 1991], [Ruiz-Torres et al., 1997], [Radhakrishnan and Ventura, 2000]

and [Lee et al., 2006] are the papers on using simulated annealing to solve parallel machine

scheduling problem. [Lo and Bavarian, 1991] is the first research using simulated annealing

on parallel machine scheduling. They use “item insertion” as the neighborhood structure,

i.e., a new solution is obtained by moving an item from its current slot to another. Our

work use the same neighborhood structure as [Lo and Bavarian, 1991]. [Ruiz-Torres et al.,

1997] uses both pairwise interchange (swapping) and item insertion in their simulated

annealing algorithm. Their objective is to minimize both the number of tardy item and

the average completion time. [Radhakrishnan and Ventura, 2000] adopts a strategy to

get the best succeeded solution from the neighborhood of the current solution, instead of
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randomly picking a solution from its neighborhood. [Lee et al., 2006] uses the following

neighborhood. They randomly select a item from a machine that has the largest completion

time and randomly choose another item from the remaining machines, and interchanging

the positions of the two selected items.

For the above work, the objective is to minimize the makespan of the jobs (or totes). To

the best of our knowledge, [Yildiz, 2017] is the first study PMS with the objective of min-

imizing order completion. [Yildiz, 2017] provides a nonlinear mixed integer programming

formulation of the problem, and a simulated annealing metaheuristic. They also develop

a set partitioning formulation and column generation based solution. Our neighborhood

structure is “insertion” while the neighborhood structure in [Yildiz, 2017] is “swapping”.

2.2 Order Consolidation

In this section, we extend the scope to the whole consolidation process. After an SKU

is inducted, it circulates on the conveyor until it reaches the destined putwall. An order

is not consolidated until all of its SKUs are put in the cubby. If we think of putwalls

as a set of second stage parallel machines, the problem becomes similar to a two stage

hybrid flow shop problem. The hybrid flow shop problem is a generalization of the parallel

machine scheduling problem with multiple stages of parallel machines. However, in the

system under study, the traveling time from the induction lines through the conveyor to

the putwalls are different. Also, SKUs from the same order should be assigned to the same

putwall. These characteristics make order consolidation different from the hybrid flow shop

problem. We refer readers to the review paper by [Ribas et al., 2010] on the hybrid flow
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shop problem. Another important characteristic of the system under study is uncertainty

in processing times. Induction is performed either manually or using automatic induction

stations and putting is done manually by operators. Consequently, induction times, con-

veyor travel times, and putting times are all variable. In order to accurately account for

order completion times, we study the order consolidation process under uncertainty where

induction times and put times are variable and follow empirical distributions derived from

the data. Our approach uses simulation and optimization to optimize order consolidation

by deciding on tote sequencing and simulating the process to evaluate system performance.

Our approach falls within the simulation optimization framework which we review next.

Simulation optimization (SO) is also called optimization via simulation (OvS), simulation-

based optimization or black-box optimization. While the meaning can vary slightly de-

pending on context, in this study we mainly refer to the definition given by [Fu, 2002]:

“optimization of an objective function subject to constraints, both of which can be eval-

uated through a stochastic simulation.” The field of SO is further divided into discrete

simulated optimization (DSO) and continuous simulated optimization (CSO), depending

on whether the solution space is discrete or continuous. The decisions in our study, namely,

the sequence of totes and the assignment of orders to putwalls, are discrete decisions. Con-

sequently, our work relates to DSO. For readers who are interested in SO, we recommend

the review by [Amaran et al., 2016].

[Bianchi et al., 2009] characterizes stochastic optimization problems based on how the

objective value is estimated. In the first case, exact closed-form expressions of the expected

values are available. In the second case, closed-form expression of the expected value

exists but it is very time consuming to calculate, so an estimate of the expected values
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is applied. In the third case, there is no closed-form expression for the expected value.

In that case the objective value is estimated by simulation, such a situation is also called

Simulation Approximation. In this work, we use simulation to estimate the performance

of the order consolidation system with different tote sequencing solutions. Consequently,

our work falls under simulation approximation. [Amaran et al., 2016] gives a survey for

the field of simulation optimization. Some of the common solution methodologies that

can be applied to DSO include genetic algorithms ([Whitley, 1994]), simulated annealing

([Bertsimas et al., 1993]) and tabu search ([Glover, 1990]. In our work, we use simulated

annealing as the main approach to optimize the order consolidation process. We review

simulating annealing for deterministic and stochastic optimization problems next.

2.3 Review on Simulated Annealing

Simulated annealing (SA) originates from [Metropolis et al., 1953] which provides a pro-

cedure to optimize the properties of substances in the field of statistical mechanics. Later,

[Kirkpatrick et al., 1983] propose the simulated annealing method by generalizing the con-

cept of energy from [Metropolis et al., 1953] into objective minimization in optimization.

Assuming a minimization problem, SA starts with an initial feasible solution referred to as

the current solution. It selects a candidate solution from the neighborhood of the current

solution. The neighborhood of a solution is the set of feasible solutions that can be reached

from the current solution using a simple operation that is problem specific. It evaluates

the objective value of the candidate solution. If the objective value of the candidate so-

lution is smaller than that of the current solution, the candidate solution is accepted and
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becomes the current solution. Otherwise, the candidate solution may still be accepted

with a certain probability. The probability of accepting inferior solutions is a function

of a temperature parameter and the gap between the objective values of the current and

candidate solutions. The reason behind accepting inferior solutions is for the algorithm to

escape local optimal solutions and search more neighborhoods that may be promising and

lead to better solutions.

Simulated annealing has been applied to solve many classes of deterministic problems,

including parallel machine scheduling ([Radhakrishnan and Ventura, 2000]), facility lo-

cation ([Yigit et al., 2006]), and analog circuit design. [Bertsimas et al., 1993] gives an

analysis of the convergence property of SA and discusses some of its applications. How-

ever, when the optimization problem is stochastic and the evaluation of the objective value

is randomized, the solution may diverge ([Branke et al., 2008]). Because the algorithm

does not in general know whether it has accepted a better solution or not, the solution

may diverge over time. To handle the randomness in evaluations, some researchers present

stochastic simulated annealing (SSA). [Bulgak and Sanders, 1988] propose a confidence-

interval-based SA that can be applied to instances with randomness in their parameters.

At each iteration, the algorithm evaluates the objective value of the candidate solution mul-

tiple times. If the confidence interval of the candidate solution covers the current solution,

more evaluations are performed. [Gelfand and Mitter, 1989] add a random variable to the

difference of the current and the previous objective values in transition probability. They

prove that their SA is able to converge in probability to the global minimal solution, when

there is a certain level of noises in evaluating the difference of the current and previous

objective values. [Gutjahr and Pflug, 1996] show the methodology proposed by [Gelfand
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and Mitter, 1989] guarantees convergence to an optimal solution when the evaluation noise

is normally distributed and the standard deviation of the noise reduces at a certain rate.

[Alrefaei and Andradóttir, 1999] provide two SA algorithms with constant temperature;

these two algorithms involve storing and tracking the number of visits to past solutions.

[Alkhamis et al., 1999] present another confidence interval based SA algorithm and proves

that the algorithm converges to a global optimal solution with a probability.
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Chapter 3

Optimizing Order Consolidation

using Simulated Annealing

In this chapter, we describe the simulated system in detail, and we discuss the details of

the simulation model of the order consolidation process. Then we provide the simulated

annealing algorithms developed to optimize both the deterministic tote sequencing problem

and the stochastic order consolidation process.

3.1 Simulation Model

The system under study is composed of three main components. After totes leave the

picking area, they are stored temporarily in a multi-shuttle system that is fully automatic.

When enough totes of a particular wave are in the multi-shuttle system, order consolidation
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of the wave is initiated. Totes that leave the multi-shuttle system, are picked by induction

operators and are processed at one of four induction lines. At the induction line, SKUs

are emptied one at a time, scanned and placed on the conveyor. Once on the conveyor,

SKUs are directed to the assigned putwall. There are three putwalls and a wave is assigned

to only one of the putwall. Each putwall is divided into sections. Each section has one

dedicated operator who picks up SKUs and place them in the right cubby. Orders are

assigned to cubbies apriori and the whole operation is guided by a put-to-light system.

Since orders are small, an order generally uses only one cubby. Consequently, the size of

a wave is limited by the number cubbies in the putwall. An order is complete when all its

SKUs arrive at the cubby. It is then packed and shipped to customers.

The simulation model represents the induction lines, conveyor, and putwall. The in-

put to the model is an assignment of totes to induction lines and their sequence at each

induction line. The model then simulates the order consolidation process according to the

following rules.

• Totes are inducted in the order they arrive at the induction station.

• First, SKUs are emptied and scanned followed by the empty tote.

• SKUs are emptied from a tote in no predetermined order.

• SKUs are put in cubbies in the order they arrive at the putwall.

Induction times are variable and depend on whether a SKU or a tote is inducted

and on whether the induction is done manually or automatically. We use the empirical
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distributions derived from the data for the automatic induction lines to generate SKU

and tote induction times randomly. Let the induction time between two SKUs be (t1),

the induction time between a SKU and the previous tote be (t2), and the induction time

between an empty tote and the last SKU be (t3), as in Figure 3.1. Figures 3.2, 3.3, 3.4,

3.5, 3.6 and 3.7 display the distributions of t1, t2 and t3 for induction lines 1 and 2. In

the current implementation we assume that the travel time on the conveyor is fixed but

depends on the relative location of the induction stations from the putwall. The travel

time from induction lines 1, 2, 3 and 4 is set to 6, 5, 4 and 3 seconds, respectively. SKUs

then join a queue waiting to be put in the cubby. At the putwall, we assume that there are

three identical operators assigned equal sections of the putwall. The put times are random

and are generated using an empirical distribution. When a SKU is inducted it either joins

the putwall section with smallest queue if it is the first SKU of an order or it joins the

same section as its order.

Item Item ItemTote

t1 t2 t3

Figure 3.1: Timeline of item and tote induction

3.2 Simulated Annealing Algorithms

This section describes the simulated annealing algorithms developed to optimize order

consolidation. To solve the deterministic tote sequencing problem, we use the framework

given in [Bertsimas et al., 1993]. We use the confidence-interval based stochastic simulated

annealing algorithms by [Bulgak and Sanders, 1988] and [Alkhamis et al., 1999] to optimize
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Figure 3.2: Distribution of t1 for line 1

Figure 3.3: Distribution of t1 for line 2
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Figure 3.4: Distribution of t2 for line 1

Figure 3.5: Distribution of t2 for line 2
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Figure 3.6: Distribution of t3 for line 1

Figure 3.7: Distribution of t3 for line 2
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the whole operation. In discussing the algorithm, we assume the objective function is a

minimization.

3.2.1 Deterministic Simulated Annealing

Simulated annealing is a metaheuristic algorithm that avoids local optimal solutions by

accepting worse solutions. At each iteration, the algorithm randomly selects a candidate

solution from the neighborhood of the current solution, and evaluates its objective value.

A neighborhood is a set of solutions that may be obtained by some modification of the

current solution. The evaluated objective value of the candidate solution may or may not

be better than the current solution. If the objective of the candidate solution is better

than that of the current solution, the candidate solution becomes the new current solution.

Otherwise, the algorithm accepts the worse candidate solution using a probability function.

The probability function relates to a temperature parameter T , and is non-increasing. The

algorithm stops either if the temperature T has reached zero, or if the maximum number

of iterations is reached. Before presenting the pseudo-code of generic simulated annealing,

we first give a list of notations.

Notation

S: The finite solution space.

k: Iteration number.

i: Current solution.

S∗: The set of global minima, which is assumed to be a proper subset of S.
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f : A deterministic cost function f : S → R.

N (i): The neighbor of i ∈ S, i /∈ N (i).

xk: The vector of decision variables at iteration k.

x∗: The best solution so far.

qij: A collection of positive coefficients qij, j ∈ N(i), such that
∑

j∈N(i) qij = 1. j ∈ N(i)

if and only if i ∈ N(j).

Tk: A nonincreasing function Tk : Z → (0,∞), called the cooling schedule. Z is the set

of nonnegative integers, and T (k) is called the temperature at iteration k.

Algorithm 1 is the generic simulated annealing algorithm, and we present a pseudo-code

as follows.

Algorithm 1:

Step 1: Determine xk arbitrarily at k = 0 and obtain an initial temperature Tk > 0.

Step 2: While stopping criteria = false do the following:

2.1 Given xk = i choose a candidate solution zk ∈ N (i) with probability distribution

P [zk = j|xk = i] = qij, j ∈ N (i)

2.2 Evaluate f(j), if f(j) < f(i), set xk+1 = zk, else go to step 2.3

2.3 Given zk = j, generate Uk ∼ U [0, 1], and set

xk+1 =


zk, if Uk ≤ exp[−[f(zk)−f(xk)]

Tk
]

xk, otherwise
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2.4 Set k = k + 1.

Step 3: Update Tk and go to Step 2.

The initial solution, objective function, and neighborhood structure used in the case of

deterministic tote sequencing are defined in Section 3.3.

3.2.2 Stochastic Simulated Annealing

[Bulgak and Sanders, 1988] provide a simulated annealing algorithm that may be applied

to stochastic optimization problems. Compared to the generic simulated annealing, there

are two major differences. First, as the evaluation of the objective function is an approx-

imation, [Bulgak and Sanders, 1988] require more than one evaluation of the candidate

solution, and take the average of the calculated objective values from multiple evaluations

as an estimate. The objective values of the candidate solution and the current solution

in the probability acceptance function, are replaced by the sample average estimate of the

candidate solution and the sample average estimate of the current solution, respectively.

Second, the number of samplings in each iteration may vary depending on how significant

is the difference between the estimated objective values of the candidate solution and the

current solution. [Bulgak and Sanders, 1988] uses a statistical confidence interval to decide

on whether more evaluations are required. The confidence interval is set so that the mean

falls into with a certain probability. For example, if the mean value of a random number is

in the interval of [0, 1] with 95% probability, then we call [0, 1] a 95% confidence interval for

the random variable. The method determines whether to accept a candidate solution by

calculating the confidence interval of its objective value. If the objective value of candidate
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solution is estimated to be smaller than that of the current solution, and its confidence

interval covers the current solution, then the algorithm evaluates the objective value of

candidate solution again.

In addition to the notation introduced in Section 3.2.1, we list the following notation

in order to present the pseudo code of the algorithm in [Bulgak and Sanders, 1988]. In the

rest of this thesis, we refer to the algorithm of [Bulgak and Sanders, 1988] as Algorithm 2.

Notation:

F (xk): The objective function whose value is estimated by discrete event simulation at

xk.

r: The number of discrete event simulation replications currently performed.

R: The maximum number of replications allowed where R is chosen a priori.

mxkr: Statistical estimate of the mean of F (xk) based on r replications.

δ̂xkr: Statistical estimate of the variance of F (xk) based on r replications.

CIxkr: Confidence interval defined as [mxkr − tα/2,r−1(δ̂xkr)1/2,mxkr + tα/2,r−1(δ̂xkr)
1/2].

Algorithm 2:

Step 1: Determine xk arbitrarily at k = 0 and obtain an initial temperature Tk > 0.

Step 2: Assign xk → x∗ and compute m∗xkr where r = R at k = 0.

Step 3: Generate xk ∈ N(x∗).

Step 4: Compute mxkr and CIxkr based on r replications where initially r = 2 at j.

Step 5a: Check if m∗xkr ∈ [mxkr − tα/2,r−1(δ̂xkr)1/2,mxkr], go to Step 5b, otherwise go to

Step 6a.
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Step 5b: If r < R, r → r + 1; if r = R, go to Step 3.

Step 6a: If mxkr < m∗xkr, go to Step 6b, otherwise go to Step 6c.

Step 6b: xk → x∗.

Step 6c: Generate u, if u < exp[
−(mxkr−m∗

xkr)

Tk
], xj → x∗, otherwise reject xk. In both

cases, go to Step 7.

Step 7: j → k + 1, and update Tk. If stopping criterion is satisfied, go to Step 8,

otherwise go to Step 3.

Step 8: Stop

Another confidence interval based simulated annealing algorithm is proposed by [Alkhamis

et al., 1999]. The main difference between [Bulgak and Sanders, 1988] and [Alkhamis et al.,

1999] is that the latter uses the standard deviation of the estimate δ̂xkr at iteration k to

modify the probability of accepting the candidate solution. While [Bulgak and Sanders,

1988] does not theoretically guarantee a convergence to a global optimal solution, [Alkhamis

et al., 1999] prove that their algorithm converges under suitable conditions on the random

error. The algorithm is described next, and in the rest of this thesis, we refer to the

algorithm of [Alkhamis et al., 1999] as Algorithm 3.

Algorithm 3:

Step 1: Determine xk arbitrarily at k = 0 and obtain an initial temperature Tk > 0.

Step 2: While stopping criteria = false do the following:

2.1 Given xk = i choose a candidate zk ∈ N (i) with probability distribution

P [zk = j|xk = i] = qij, j ∈ N (i)
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2.2 Evaluate m∗xkr, mxkr, and δ̂k.

2.3 Given zk = j, generate Uk ∼ U [0, 1], and set

xk+1 =


zk, if Uk ≤ exp[

−(mxkr−m∗
xkr−tk δ̂xkr)

+

Tk
]

xk, otherwise

2.4 Set k = k + 1.

Step 3: Update Tk and go to Step 2.

3.3 Simulated Annealing for Tote Sequencing and Or-

der Consolidation

To apply simulated annealing to our problems, we specify the initial solution, the neigh-

borhood structure, the temperature and the stopping criteria. For the initial solution, we

use the sequence generated by the warehouse system in all our testing. The solutions of

tote sequencing can be represented by a set of queue data structures. Each induction line

is a queue and the elements in the queues are the totes. Every tote of a wave should

be in one and only one induction line, and they are represented unique indices. We use

an insertion type neighborhood structure. By insertion, we mean that we first randomly

select an induction line with a uniform distribution and randomly select a tote from that

induction line using a uniform distribution. We then randomly select an induction line and

a tote, with uniform distribution as well, and insert the former selected tote to the front.

As we can regard the end of each induction line queue as a dummy tote, we can also insert

26



the totes to the end of the induction line. Figure 3.8 gives two examples of how to obtain

new solutions by insertion. The same neighborhood structure is used for the deterministic

and stochastic problems.

Figure 3.8: Neighborhood structure

[Nourani and Andresen, 1998] summarize and benchmark different cooling schedules for
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SA. Our work adopts the exponential schedule and the logarithmic schedule. In exponential

cooling schedule, in subiteration k, Tk = α× Tk−1, where α is a constant between 0 and 1.

logarithmic schedule is defined as Tk = C
ln(1+k)

, where C is a constant. For Algorithm 1, we

use exponential schedule and set the initial temperature T0 = 1 and α = 0.99 if we do not

specify otherwise. For Algorithms 2 and 3, we use logarithmic schedule, where C is the

magnitude of the objective value of the initial solution. Figure 3.10 displays the cooling

schedule when C = 100.

Figure 3.9: Cooling schedule of exponential schedule with C = 100

We set the initial number of replications r0 = 30 and the maximum number of replica-

tions R = 50 and a 95% confidence interval in Algorithm 2. We perform 30 replications

at each iteration k in Algorithm 3. The stopping criterion is based on the number of

iterations, and is set to 10,000 iterations.
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Figure 3.10: Cooling schedule of logarithmic schedule with T0 = 100
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Chapter 4

Numerical Results

In this chapter, we present the numerical testing of the simulated annealing algorithm

for deterministic tote sequencing and stochastic order consolidation. All the algorithms

including the simulation model are implemented in C++. We carried out the testing on

a 2014 version Macbook Pro with 2.5 GHz Intel Core i7 Processor. We use 10 industry

instances based on 10 waves processed by the order consolidation system under study and

used by [Yildiz, 2017]. A wave is characterized by the number of totes, number of orders

and number of SKUs. Except for wave number 292, an average wave has 321 totes, 1147

orders and 4881 SKUs. Table 4.1 summarizes the number of totes, orders and items for

each wave. Since we have the scan times for all operations in order consolidation, we are

able to determine the tote assignment and sequencing solution used by the system. We use

this solution as an initial solution in our testing. We also use the system data to calculate

actual tote induction times and use these as tote processing times in the deterministic tote

sequencing problem. While in the stochastic problems, we use the empirical distributions
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of induction times to run the simulation model.

Waves #Totes #Orders #SKUs

67 353 1243 4202
73 374 1384 6702
74 420 1374 6275
75 368 1373 5646
76 336 1367 5601
78 257 851 2978
90 253 932 3925
188 377 989 4667
193 169 949 3932
292 121 267 1234

Table 4.1: Summary of the industry instances

4.1 Results on Deterministic Tote Sequencing

In deterministic tote sequencing, we minimize the total completion time of all orders. We

measure order completion time as the finish time of the last tote that has SKUs of the

order. We also calculate order processing time as the difference between its completion

time and the start time of the first tote that has SKUs of the order processing time is an

estimate of the time an order occupies a cubby. The tote processing times are calculated

as in [Yildiz, 2017].

Table 4.2 shows the results of using simulated annealing to solve the industry instances.

The second and third columns are the average order completion time in seconds for the

initial solution (Initial obj val) and the optimized solution (Final obj val), respectively.

The fourth column is for the percentage improvement calculated as Initial obj val - Final obj val
Initial obj val

.

The last column gives the CPU time in seconds.
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Waves Initial obj val Final obj val Yildiz, 2017 Improvement % Time (sec)

67 1516.76 871.17 879.60 42.56 63.63
73 2639.32 1660.82 1662.60 37.07 96.17
74 2236.04 1551.85 1560.60 30.60 91.94
75 1911.32 1278.31 1286.40 33.12 82.41
76 1930.38 1289.37 1293.60 33.21 79.14
78 1129.63 681.13 687.60 39.70 44.38
90 1650.42 1062.98 1066.20 35.59 55.16
188 1977.98 1685.35 1845.00 14.79 67.25
193 1247.91 1133.37 1135.80 9.18 51.24
292 489.74 315.11 318.00 35.66 16.69

Table 4.2: Simulated annealing for deterministic tote sequencing with 10000 iterations

By optimizing tote sequencing, the total order completion time is reduced by 31.15%

on average and by more than 30% in 8 out of the 10 instances.

We also perform a set of experiments on using exponential scheduling and logarithmic

scheduling for the deterministic tote sequencing with different initial temperatures T0 and

constant parameters C, respectively. Table 4.3 shows that in the case of using exponential

cooling schedule, T0 does not impact solution quality within the iteration limit. On the

other hand, the value of C plays a significant role in the quality of the solutions. As C

increases, solution quality decreases significantly.

4.2 Results on Order Consolidation Optimization

Before simulating the whole operation, we experiment with solving the tote sequencing

problem with uncertain processing times. Instead of using deterministic processing times

recorded by the system, we use the empirical distributions of SKU and empty tote induction

times to simulate the tote induction operation. In this case, we use items as opposed to
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Waves Exponential schedule Logarithmic schedule
T0 = 1 T0 = 103 T0 = 104 T0 = 106 C = 1 C = 103 C = 104 C = 106

67 871.17 873.45 873.28 874.90 874.50 878.70 975.30 1322.38
73 1660.82 1661.25 1664.66 1662.74 1664.46 1663.34 1750.27 2210.14
74 1551.85 1550.27 1554.18 1554.51 1553.79 1555.77 1664.16 2072.84
75 1278.31 1280.70 1282.05 1278.29 1282.66 1287.96 1386.77 1754.45
76 1289.37 1284.03 1283.75 1283.39 1284.26 1287.17 1381.05 1732.32
78 681.13 680.06 679.67 679.73 681.10 688.73 787.82 1017.95
90 1062.98 1059.71 1062.81 1059.31 1062.43 1068.30 1151.00 1500.46
188 1685.35 1674.57 1678.63 1678.48 1678.50 1679.70 1819.45 1919.37
193 1133.37 1134.41 1131.09 1136.31 1130.01 1129.67 1189.04 1234.94
292 315.11 314.88 314.19 313.75 313.54 330.79 403.15 437.94
Avg 1152.95 1151.33 1152.43 1152.14 1152.52 1157.01 1250.80 1520.28

Table 4.3: Simulated annealing for deterministic tote sequencing with different cooling
schedules and initial temperature T0

totes to approximate order start and finish times. Order start time is the induction time

of its first SKU, and its completion time is the induction time of its last SKU. We apply

both algorithms 2 and 3 to minimize the order completion time. To better evaluate the

goodness of these two methods, we also simulate the deterministic solution 100 times and

take the average as the estimated objective value. Table 4.4 shows the test results of the

three methods where the initial solution and the best solutions found are simulated 100

replications and the average is presented. In general, the deterministic solution performs

the best, followed by Algorithm 2, then Algorithm 3. In comparison with the deterministic

solution, the stochastic simulated annealing solutions only achieve small improvements.

We now present the results on the whole order consolidation process. A tote sequence is

generated at every iteration of simulated annealing and is evaluated using the simulation

model. In addition to order completion time, we also calculate order processing times

and SKU wait time for the operators at the putwall. To better understand the difference

between the three metrics, we refer to the timeline in Figure 4.1 for the main events of

33



W
av
es

In
it
ia
l
ob

j
va
l

F
in
a
l
ob

j
va
l

Im
p
ro
ve
m
en
t%

T
im

e
(s
ec
)

A
lg
or
it
h
m

1
A
lg
o
ri
th
m

2
A
lg
o
ri
th
m

3
A
lg
o
ri
th
m

1
A
lg
o
ri
th
m

2
A
lg
o
ri
th
m

3
A
lg
o
ri
th
m

1
A
lg
o
ri
th
m

2
A
lg
o
ri
th
m

3
67

23
62
.6
8

20
02
.6
2

2
30
8.
5
9

2
2
9
4
.3
9

1
5
.2
4

2
.2
9

2
.8
9

8
9
.5
8

3
6
5
5
.1
5

1
9
1
7
.9
8

73
43
97
.5
2

37
76
.7
9

4
17
4.
1
5

4
2
0
7
.1
6

1
4
.1
2

5
.0
8

4
.3
3

1
3
7
.7
4

4
4
1
0
.8
8

2
8
8
5
.5
6

74
37
22
.4
5

32
19
.2
3

3
65
0.
9
7

3
6
0
1
.5
0

1
3
.5
2

1
.9
2

3
.2
5

1
3
9
.3
2

4
0
3
3
.0
0

2
6
5
2
.7
3

75
31
83
.0
7

27
38
.2
4

3
14
6.
4
5

3
1
2
9
.0
1

1
3
.9
7

1
.1
5

1
.7
0

1
2
1
.0
5

4
0
4
6
.3
9

2
5
9
0
.2
2

76
32
30
.2
7

26
97
.5
3

3
10
6.
1
5

3
0
6
0
.7
3

1
6
.4
9

3
.8
4

5
.2
5

1
2
2
.0
6

3
9
4
1
.1
6

2
4
5
7
.2
8

78
39
21
.5
1

33
18
.2
5

1
54
4.
6
4

1
5
4
1
.2
9

1
5
.3
8

4
.4
0

4
.6
1

1
3
7
.0
9

2
7
0
1
.2
9

1
3
8
9
.9
0

90
24
10
.9
8

20
38
.2
0

2
29
3.
6
2

2
2
6
2
.2
2

1
5
.4
6

4
.8
7

6
.1
7

8
4
.9
9

3
1
2
4
.0
3

1
6
2
3
.9
8

18
8

28
34
.3
1

24
02
.3
1

2
76
5.
3
6

2
7
2
8
.8
5

1
5
.2
4

2
.4
3

3
.7
2

1
0
1
.8
6

3
6
0
8
.3
1

2
0
1
8
.9
8

19
2

26
20
.3
3

23
51
.1
9

2
57
3.
8
1

2
5
6
9
.2
0

1
0
.2
7

1
.7
8

1
.9
5

1
0
5
.0
3

3
6
8
5
.9
9

2
3
1
2
.7
7

19
3

21
61
.6
8

19
55
.4
8

2
09
9.
9
2

2
1
3
9
.6
0

9
.5
4

2
.8
6

1
.0
2

8
3
.3
3

3
5
2
2
.9
7

1
6
1
0
.6
0

29
2

72
0.
51

56
4.
91

6
42
.5
3

6
8
2
.8
4

2
1
.6
0

1
0
.8
2

5
.2
3

2
6
.3
1

2
1
5
3
.3
2

3
9
6
.9
4

T
ab

le
4.

4:
C

om
p
ar

is
on

of
d
et

er
m

in
is

ti
c

an
d

st
o
ch

as
ti

c
si

m
u
la

te
d

an
n
ea

li
n
g

al
go

ri
th

m
s

on
to

te
se

q
u
en

ci
n
g

so
lu

ti
on

s

34



Start the wave First SKU of
an order
inducted

SKU travel
through
the conveyor

SKU waited to
be put on cubby

SKU is put
on the cubby

Last SKU of
the order
is processed

Finish the wave

Figure 4.1: Timeline of events in order consolidation process

the consolidation operation. We use red text to specify the events for an order and we use

green text to specify the events for a SKU. The order processing time and SKU wait time

are represented by the intervals between events with red text and events with green text

on the time line, respectively.

Similar to the tests for stochastic tote sequencing, we apply Algorithms 2 and 3 and

compare to a simulation of the deterministic tote sequencing solution. At the putwall, the

first SKU of an order is assigned to the operator with smallest queue, and the rest of its

SKUs use the same assignment. Because we do not have the data for item put processing

times at the putwall, we assume that all operators are identical and use the distribution

of SKU induction times at line 1 as generate put times.

The computational results in Table 4.5 show that the deterministic solution outperforms

the solutions found by the stochastic simulated annealing algorithms. Table 4.6 shows

similar results with the objective of minimizing order processing times. With this objective

too, the deterministic solution outperforms the stochastic solutions. Table 4.7 shows the

results when the objective is to minimize the total SKU wait time for putting. With

this objective, the stochastic simulated annealing solutions do as well as the deterministic

solution, and achieve significant improvement compared to the initial solutions.

To analyze the impact of the number of induction lines on the consolidation operaiton,

we vary the number of induction lines between 3 and 6. We assume the distribution of
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induction times in line 5 and 6 will be the same as those of the induction line 1 and 2,

respectively. Also, we set the traveling time on the conveyor to be 8 and 9 seconds for

induction lines 5 and 6, respectively. In addition, we fix the number of operators to be

3, which is the same as the previous setting. We use Algorithm 1 to obtain the tote

sequencing solution and provide the operation results of the simulation. Table 4.8 displays

the order completion times, order processing times and item wait times when using tote

sequencing obtained by Algorithm 1. By comparing to the baseline scenario when there

are 4 induction lines, We can observe that when there are more fewer induction lines, the

order completion times are much longer, and order processing times are slightly longer for

each of the waves. When the number of induction lines increases to 5, the order completion

times drop. The order processing time may increase or decrease depending on waves, but

in general the changes are not so much in compare to those of the order completion times.

When the number of induction lines increases to 6, the order completion time still decreases

in compare to those of the 5 induction lines scenario. However, the order processing time

and the item wait time do not increase significantly, and in some wave they can even

lightly decrease. A possible explanation is that the traveling times from induction lines

have buffered the items from queue up in front of the putting area.
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Waves 3 induction lines 4 induction lines

Order
completion

time

Order
processing

time

Item
wait
time

Order
completion

time

Order
processing

time

Item
wait
time

67 2739.49 1528.50 7.69 2317.21 1458.35 234.34
73 4631.12 3201.34 13.57 4097.45 3415.39 418.46
74 4383.09 2950.56 10.43 3823.62 2760.98 365.23
75 3754.31 2434.90 11.25 3328.88 2345.59 354.95
76 3690.83 2333.01 10.58 3257.90 2253.48 332.46
78 1872.70 988.17 8.15 1578.33 945.07 155.52
90 2806.64 1968.67 10.89 2487.94 1871.00 258.60
188 3278.48 2205.38 10.17 2821.86 2054.03 277.90
193 2713.36 1873.17 15.67 2439.66 1813.85 253.78
292 784.60 439.97 9.16 636.10 402.37 59.77

Waves 5 induction lines 6 induction lines

Order
completion

time

Order
processing

time

Item
wait
time

Order
completion

time

Order
processing

time

Item
wait
time

67 2218.23 1508.12 310.97 2105.54 1513.10 304.17
73 3877.27 3031.30 488.91 3717.94 3004.46 493.00
74 3595.66 2764.63 464.05 3449.35 2773.66 459.84
75 3165.76 2388.21 431.66 3026.56 2370.68 419.71
76 3069.89 2286.85 408.08 2948.13 2300.57 403.95
78 1502.79 980.80 219.52 1424.17 995.05 212.43
90 2356.23 1853.70 312.60 2254.32 1853.94 299.23
188 2668.56 2013.12 357.63 2517.24 1977.44 340.22
193 2312.69 1835.33 289.77 2206.50 1791.90 273.45
292 609.46 410.51 90.13 578.25 412.25 89.98

Table 4.8: Comparison of order completion time, order processing time and item wait time
under different numbers of inductions lines
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Chapter 5

Conclusion

This thesis studies the order consolidation system of an e-commerce warehouse using real

data. The goal is to optimize the order consolidation process and use the resources effi-

ciently. We focus on two main optimization problems: the deterministic tote sequencing

problem and the stochastic order consolidation problem. We propose a simulation opti-

mization approach where we develop a simulation of the operations and use it to evaluate

solutions within a simulated annealing framework. We developed three simulated annealing

algorithms for deterministic tote sequencing and stochastic order consolidation. In partic-

ular, for the order consolidation problem, we carried out experiments with three different

objectives including order completion time, order processing time and SKU wait time. Our

experiments show that using deterministic simulated annealing to solve a deterministic tote

sequencing yields better solutions when the objective is minimizing order completion time

or order processing time. However, for the wait time objective, deterministic solutions may

result in that the SKUs need to wait longer for putting. We also evaluate the impact of
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changing the number of induction lines on the order consolidation process.
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