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Abstract

Quantum many-body systems are comprised of complex networks of microscopic interac-
tions that work together to produce novel collective phases and phenomena. For strongly-
interacting systems, the connection between the underlying atomic-scale behaviour and
the resulting emergent observable phenomena is exponentially (and, in practice, infinitely)
complicated such that it becomes impossible to fully understand the connection between
the physics at the microscopic and macroscopic levels. The most promising theoretical
approaches to addressing this infinite complexity utilize microscopic coarse-graining along
with powerful computational simulations and strategies. In this thesis, we apply numer-
ical methods to effective lattice models and field theories with the goal of shedding light
onto universal critical behaviour and exotic low-temperature phases in condensed matter
physics.

We start by exploring universal features of critical non-interacting systems, for which sev-
eral analytical strategies are readily available for calculating certain observables. We study
the behaviour of the system’s entanglement for various entangling geometries, and utilize
numerical techniques in order to isolate new universal features of Gaussian fixed points,
which provide insight into the underlying critical theory’s renormalization group flow. We
then proceed to examine computational strategies and, in particular, Monte Carlo sim-
ulations for studying more general interacting models. We focus on the application of
such strategies to the field of high-temperature superconductivity, for which we develop
a coarse-grained model, simulate macroscopic observables and compare our results with
those of recent experiments. We conclude that lattice field theories together with inno-
vative computational methods offer new perspectives on both universality and emergent
phenomena in quantum matter.
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Chapter 1

Introduction

Observable macroscopic behaviours of many low-energy quantum systems are governed by
the interactions and dynamics of underlying microscopic degrees of freedom that live on
a crystal lattice. One of the fundamental challenges within the field of condensed matter
physics is to understand how interactions at the lattice length scale are connected to a
material’s thermodynamic properties and emergent phases. Within strongly-interacting
quantum systems, the physics at these microscopic scales leads to large collections of
coupled, analytically-unsolvable equations such that computational methods and numerical
approximation schemes become essential tools for advancing studies of quantum many-body
systems.

Advancements in computer technology and algorithms have been instrumental in pushing
the boundaries of research within condensed matter and materials physics for decades.
In the 1940s, Monte Carlo simulations performed on one of the first electronic vacuum
tube computers played a pivotal role in developing an understanding of neutron diffu-
sion in materials. Transistors subsequently began to replace vacuum tubes in computers,
and since then the power of computational technology has increased exponentially with
time. The need for more efficient computational methods within condensed matter physics
became apparent in the 1980s when the experimental discovery of materials such as high-
temperature superconductors began to reveal exotic emergent phenomena that result from
strong correlations. Since effective non-interacting models and perturbative techniques
cannot describe such phenomena within strongly-interacting systems, the past few decades
have seen a rapid growth in research within the field of computational condensed matter
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physics, resulting in algorithmic developments such as quantum Monte Carlo methods, the
density matrix renormalization group, tensor networks and machine learning. Modern in-
vestigations into complex phenomena such as quantum entanglement and universality have
demonstrated that the advantages and applications of numerical methods are not limited
to interacting systems. As we will see, within both non-interacting and interacting mod-
els, computational methods and technologies have unveiled otherwise-unattainable insights
into emergent behaviour within quantum matter.

In order to appreciate the value of advanced computational techniques within condensed
matter physics, let us first consider the limits of more naive brute-force approaches to ex-
tracting thermodynamic observables. A general system’s microscopic features are encoded
within a model that is characterized by a Hamiltonian H. After defining H, all information
needed to calculate macroscopic observables is then contained within the partition function

Z = Tr
[
e−H/T

]
, (1.1)

where T is the temperature and we have elected to employ units where the Boltzmann
constant is equal to one. The trace in this equation is over all underlying degrees of freedom
that parametrize the Hamiltonian. For most practical models H, performing this trace
(either analytically or numerically) is an exponentially difficult and, in practice, impossible
task. Analytical techniques for calculating Z only exist for special simplified models, and
calculating Z exactly through numerical techniques involves summing over the elements
of an exponentially large Hilbert space. Such numerical schemes thus limit calculations to
systems with less than one hundred constituent particles, while physical materials comprise
on the order of 1023 interacting particles. As a result, more sophisticated computational
methods are necessary in order to extract predictions for macroscopic observables in the
thermodynamic limit.

We will see that many phases of classical and quantum matter are well-described by a
classical O(N) model (also known as a nonlinear sigma model), in which the microscopic
variables ni are N -dimensional unit vectors with components niα (for α = 1, 2, . . . , N).
Interactions between neighbouring degrees of freedom are described by the Hamiltonian

HO(N) = −J
∑

〈ij〉
ni · nj, (1.2)

where J is an interaction energy and the notation 〈ij〉 indicates that the corresponding
sum is over all nearest-neighbouring pairs of sites on the lattice. We note that the name
for this model is based upon the Hamiltonian’s invariance under global O(N) rotations of
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the variables ni. The O(N) model goes by several other names for certain values of N .
For example, the O(1) model is referred to as the Ising model, the O(2) case is known as
the XY model, and the O(3) model is called the Heisenberg model. The partition function
corresponding to this model can be expressed as

ZO(N) =
∏

i

∫
Dni δ

(
n2
i − 1

)
e−HO(N)/T , (1.3)

where
∏

i

∫
Dni is a functional integral and the Dirac delta function is used to enforce that

ni has unit magnitude on every lattice site i.

This thesis utilizes numerical methods in order to extract universal quantities and ther-
modynamic observables from models that are closely related to the O(N) model of Equa-
tions (1.2) and (1.3). The remainder of this chapter focusses on deriving other classical
and quantum lattice field theories related to the O(N) model and discusses techniques for
studying phase transitions and critical behaviour on general finite size systems.

Chapter 2 examines the simplest, non-interacting limit of such field theories, for which
one can take advantage of several analytical and numerical simplifications in order to
quantify observables and correlations within the system. Although many features of such
non-interacting systems are already well-established, we find that a wealth of previously
unexplored universal features exist at criticality.

In Chapter 3, we discuss Monte Carlo methods for studying O(N) models as well as
other closely related interacting models with specific broken symmetries. We see that such
methods are capable of extracting thermodynamic observables as well as quantities that
characterize the system’s critical behaviour.

Chapter 4 examines applications of O(N)-like models to the field of high-temperature su-
perconductivity and its so-called pseudogap regime. We find that certain classes of such
models yield observable quantities that agree well with recent experimental measurements
for a wide range of temperatures. This agreement validates the fundamental symmetry
constraints that define the Hamiltonian model, and such constraints can provide deep in-
sight into the underlying physical mechanisms that lead to the unique macroscopic features
observed in the superconducting and pseudogap regimes.

We summarize our findings in Chapter 5 and discuss open questions and unexplored ap-
plications of O(N)-like lattice models and their corresponding field theories.
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1.1 Lattice field theories

In the vicinity of a critical point, it can be useful to study new coarse-grained theories that
average over constraints and structures at the (microscopic) lattice length scale [1, 2, 3].
For the O(N) field theory of Equations (1.2) and (1.3), for example, the degrees of freedom
ni are constrained to only angular fluctuations, but one can also consider related coarse-
grained fields φ(x) that do not impose such hard constraints. One can imagine that the
fields φ(x) within such theories are defined in terms of the underlying degrees of freedom
niα such that [3]

φα(x) ∼
∑

i∈N (x)

niα, (1.4)

where N (x) is some spatial neighbourhood of the coordinate x. We note that such fields
are defined continuously such that x is not restricted to the lattice sites i. However, in
the chapters that follow, we elect to consider values of the field φα restricted to another
lattice (which is, in general, different from the original lattice for the variables niα) in
order to take advantage of certain numerical methods. The fields φ(x) introduced through
the coarse-graining procedure of Equation (1.4) are no longer constrained to have unit
magnitude, but the field theory must incorporate some kind of an effective potential such
that it is not energetically favourable for the magnitude of φ(x) to be large so as to respect
the underlying microscopic constraints [1, 3].

1.1.1 Classical field theories

Through Hubbard-Stratonovich transformation, one can show that a near-critical O(N)
model can be described in terms of a classical action Sc[φ] that includes an expansion in
powers of φ2

α up to order (φ2
α)2 such that

Zc =

∫
Dφ(x) e−Sc[φ], (1.5)

with

Sc[φ] =

∫
ddx





1

2

∑

α

[
(∇φα)2 + rφ2

α

]
+
u

4!

(∑

α

φ2
α

)2


 , (1.6)

where r and u are couplings that incorporate the microscopic degrees of freedom. When
u > 0, this field theory describes a phase transition from a low-temperature phase with
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〈φα〉 6= 0 to a high-temperature, disordered phase with 〈φα〉 = 0. For the classical O(N)
model, the coupling r is proportional to T −Tc in the original Hamiltonian, such that r = 0
at the critical point [3].

If we now consider this theory at a discrete set of sites {x} and on a lattice with spacing
a, we arrive at a classical lattice field theory given by

Sc[φ] =
ad−2

2

∑

〈xx′〉

∑

α

(φx,α − φx′,α)2 + ad
∑

x


r

2

∑

α

φ2
x,α +

u

4!

(∑

α

φ2
x,α

)2

 , (1.7)

where the gradient terms in the continuum theory have been approximated by simple finite
differences.

1.1.2 Quantum field theories

The classical O(N) model of Equation (1.2) (with N ≥ 2) can be mapped to a quantum
rotor (QR) model, for which the Hamiltonian is given by [3]

HQR = −J


∑

〈ij〉
n̂i · n̂j −

g

2

∑

i

L̂2
i


 , (1.8)

where L̂i represents the angular momentum on site i. n̂i and L̂i are both quantum me-
chanical operators, and n̂i is still constrained such that n̂2

i = 1. Specifically, through
Suzuki-Trotter expansion, one can express the quantum partition function Zq correspond-
ing to the quantum rotor model of Equation (1.8) as [3]

Zq = Tr
[
e−HQR/T

]

=

∫
Dn(x, τ) δ

(
n2(x, τ)− 1

)
e−Sq[n],

(1.9)

with

Sq[n] ∼
∫

ddx

∫ 1/T

0

dτ
∑

α

[
(∂τnα)2 + (∇nα)2

]
, (1.10)

which resembles a continuum version of the classical O(N) model of Equation (1.2), but
with interactions along the d spatial dimensions as well as along an additional dimension
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τ (which is an imaginary time). For this reason, we say that a quantum rotor model in d
spatial dimensions can be mapped to a classical O(N) model in d+1 dimensions. Following
a similar coarse-graining procedure to the one used to arrive at the classical field theory of
Equation (1.6), one can express this model as [3]

Zq =

∫
Dφ(x, τ) e−Sq[φ], (1.11)

with

Sq[φ] =

∫
ddx

∫ 1/T

0

dτ





1

2

∑

α

[
(∂τφα)2 + (∇φα)2 + rφ2

α

]
+
u

4!

(∑

α

φ2
α

)2


 , (1.12)

which corresponds to the quantum Hamiltonian

Hq =

∫
ddx





1

2

∑

α

[
π2
α + (∇φα)2 + rφ2

α

]
+
u

4!

(∑

α

φ2
α

)2


 , (1.13)

where πα is the canonical momentum conjugate to φα such that

[φα(x), φβ(x′)] = [πα(x), πβ(x′)] = 0,

[φα(x), πβ(x′)] = iδαβ δ
d(x− x′).

(1.14)

Considering this theory on a lattice with spacing a as in Equation (1.7) then gives a
quantum lattice field theory described by

Hq =
ad−2

2

∑

〈xx′〉

∑

α

(φx,α − φx′,α)2 + ad
∑

x


1

2

∑

α

(
π2
x,α + rφ2

x,α

)
+
u

4!

(∑

α

φ2
x,α

)2

 ,

(1.15)
where the commutation relations for the lattice fields are given by

[φx,α, φx′,β] = [πx,α, πx′,β] = 0,

[φx,α, πx′,β] = iδαβ δxx′ .
(1.16)
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1.2 Correlation functions

Correlation functions provide a useful way of measuring statistical correlations between
degrees of freedom (such as ni or φ(x)) at different spatial locations x and x′. For transla-
tionally invariant systems in d spatial dimensions, two-point correlation functions G(x,x′)
are expected to scale with distance such that [4, 5, 3]

G(x,x′) = G(r) ∼





1

r(d−1)/2
e−r/ξ (for r � ξ)

1

rd−2+η
(for ξ →∞),

(1.17)

where r = |x− x′| is the separation between the lattices sites x and x′ and ξ is called
the correlation length, which measures the length scale over which fields on the lattice are
correlated. The quantity η is called the anomalous dimension, and it is discussed in more
detail in Section 1.3.

The case where the correlation length diverges (ξ →∞) corresponds to a critical point. In
such critical theories, the two-point correlators are expected to decay according to a power
law, in contrast to the exponential decay expected for non-critical systems. Note, however,
that away from a critical point, an exponential scaling is only predicted for r � ξ. In
practice, many non-critical gapped systems experience a power-law decay of correlation
functions on smaller length scales before crossing over to an exponential decay for length
scales beyond the correlation length. As a result, on finite lattices with length scale L < ξ,
the correlations for systems away from the thermodynamic critical point may resemble
those of critical systems. Finite size scaling procedures are required to locate the critical
point in such situations, as discussed in Section 1.4.

1.3 Critical exponents

Within the vicinity of a second-order phase transition, the behaviour of several observable
quantities can be parametrized in terms of the reduced temperature

t =
T − Tc
Tc

. (1.18)
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We study systems for which it is possible to define a local order parameter m. This order
parameter is zero in the high-temperature, disordered phase (T > Tc). For T < Tc, the
order depends on the distance to the critical point according to

m ∼ (−t)β (for T < Tc), (1.19)

where β is referred to as the critical exponent for m.

One can quantify the strength of fluctuations in the order parameter by measuring the
(zero-field) magnetic susceptibility per spin, χ. This quantity diverges at the critical point
with a critical exponent γ such that

χ =
∂m

∂B

∣∣∣∣
B=0

=
N

T

(〈
m2
〉
− 〈m〉2

)

∼ |t|−γ .

(1.20)

Similarly, the specific heat per spin, c, measures a system’s energy fluctuations and diverges
as t→ 0 according to a critical exponent α such that

c = − T
N

∂2F

∂T 2
=

1

N

∂ 〈E〉
∂T

=
〈E2〉 − 〈E〉2

NT 2

∼ |t|−α ,

(1.21)

where F = −T logZ is the free energy.

Recall from Section 1.2 that one can define the characteristic length scale of correlations
within a system in terms of the correlation length ξ. Similarly to χ and c, this correlation
length diverges when the system becomes critical such that

ξ ∼ |t|−ν , (1.22)

where ν is the critical exponent corresponding to ξ.

In the vicinity of the phase transition, all of the above observables Ox are expected to
decay to zero or diverge with a characteristic form given by

Ox ∼ |t|x

∼ ξ−x/ν ,
(1.23)
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where x is the critical exponent x governing the behaviour of Ox.

As seen in Section 1.2, there is another critical exponent known as the anomalous dimension
η, which governs the power-law scaling of correlation functions exactly at the critical point
such that

G(r, t = 0) ∼ 1

rd−2+η
. (1.24)

The values of the critical exponents in general depend upon the the dimension of the
system and upon the symmetries of the Hamiltonian and its order parameter. However,
the critical exponents have been shown to satisfy several universal scaling relations for any
field theory, such as [5]

α + 2β + γ = 2,

α = 2− dν,
γ = ν(2− η).

(1.25)

1.4 Finite size scaling

On a finite system with length scale L, correlations can never exceed L and one cannot
directly measure the thermodynamic correlation length ξ if L < ξ. We then expect Equa-
tion (1.23), which governs the behaviour of Ox in the vicinity of a phase transition, to be
modified for the case of observables Ox,L on finite lattices such that [5, 6]

Ox,L ∼
[

min(L, ξ)
]−x/ν

∼
{
ξ−x/ν (for L� ξ)

L−x/ν (for L� ξ).

(1.26)

One can alternatively express this expected behaviour as [5, 6]

Ox,L = ξ−x/ν fx

(
L

ξ

)
, (1.27)

where the function fx(z) must obey

fx(z) ∼
{

constant (for z � 1)

z−x/ν (for z � 1).
(1.28)
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Since the thermodynamic correlation length ξ is usually not straightforwardly accessible
on a finite lattice, it is useful to use Equation (1.22) to reexpress Ox,L in terms of L and
|t| as

Ox,L = L−x/ν
(
ξ

L

)−x/ν
fx

(
L

ξ

)

= L−x/ν (L |t|ν)x/ν fx(L |t|ν)

≡ L−x/ν f̃x
(
L1/ν |t|

)
,

(1.29)

where f̃x(z) ≡ zxfx(z
ν). We therefore expect that, in the vicinity of a phase transition,

plots of Lx/νOx,L versus L1/ν |t| for various system sizes L should all collapse onto the same
curve.

1.5 Entanglement scaling

Entanglement is a uniquely quantum feature whereby the states describing two regions
of space are inextricably linked. The correlations corresponding to quantum entangle-
ment can be used to accomplish classically impossible tasks within the realms of quantum
communication and quantum computation.

For a general quantum system on a lattice, a given region of space A is entangled with
its surroundings, with the length scale of these quantum correlations extending from the
lattice length scale up to the system’s correlation length ξ. At a critical point where ξ →∞,
one thus expects to find entanglement at all length scales. At such a critical point, the
behaviour of the ground-state entanglement between two complementary regions A and
A of a physical system in general depends upon the size and geometrical features of the
boundary ∂A that separates these regions [7, 8, 9]. An arbitrary choice for such a boundary
in two spatial dimensions is illustrated in Fig. 1.1. We will see that, by introducing a
means of quantifying entanglement for various boundaries ∂A and by exploiting the scale-
invariance that characterizes criticality, one can extract various universal numbers that
describe the underlying fixed point.
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A

A

Figure 1.1: Possible division of a system into complementary regions A and A in two
spatial dimensions. We consider methods for determining properties of the entangle-
ment between A and A for the case where the system is critical.

1.5.1 Entanglement entropy

Entanglement in general multipartite thermal systems is difficult to quantify, but for bi-
partite entanglement in a ground state, one can utilize the entanglement entropy, which is
defined in terms of the reduced density matrix ρA = TrA (ρAA) as

S1(A) = −Tr (ρA log ρA) . (1.30)

In addition, for such systems one can study the more general Rényi entanglement en-
tropies [10, 11], which are given by

Sα(A) =
1

1− α log (Tr ραA) , (1.31)

where α is called the Rényi index. Taking the limit α → 1 in Equation (1.31) recovers
the (von Neumann) entanglement entropy of Equation (1.30). Since the overall density
matrix ρAA is assumed to correspond to a pure ground state, we have Sα(A) = Sα(A) for
all possible bipartitions.

The entanglement entropies Sα(A) can exhibit interesting behaviour as the size and geo-
metrical features of the boundary of region A are varied. In d > 1, both gapped and critical
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systems obey a dominant area law, whereby the entanglement entropies are proportional
to the size of the boundary |∂A| [7, 8, 9]. The coefficient of such a term is non-universal,
but, for certain boundary geometries, the entanglement entropy of a critical theory can
include additional subleading corrections containing universal quantities. These universal
quantities can give insight into the underlying theories that describe the fixed point of the
critical theory’s renormalization group (RG) flow.

In order to make predictions about the scaling of entanglement entropy in the vicinity of
a critical point, we make two fundamental assumptions. First, we assume that the scale
invariance associated with critical points means that one must sum contributions to Sα
from all length scales rn along the RG flow. We take rn to be the renormalized microscopic
length scale after n RG steps, such that rn is given in terms of the lattice spacing a and
the spatial RG scaling factor b as

rn = bna. (1.32)

Our second assumption is motivated by the aforementioned area law and asserts that the
behaviour of the ground-state entanglement entropy Sα is dominated by contributions local
to the boundary. The entanglement contributions resulting from these two assumptions
are illustrated in Figure 1.2. Taken together, our assumptions imply that we expect to find
an area law at every length scale.

As a result of our first assumption, the entanglement entropy Sα(A) is given as a sum over
contributions Sα(A, rn) from each length scale rn as

Sα(A) =
∑

n

Sα(A, rn), (1.33)

where n is a non-negative integer that labels the RG steps. Taking the limit where this
sum can be converted to an integral and utilizing Equation (1.32) then gives

Sα(A) =

∫ rmax

rmin

d(log r)Sα(A, r), (1.34)

where we have absorbed a factor of log b into the function Sα(A, r). The minimum
contributing length scale rmin = rUV = a is the lattice spacing (the UV cutoff) and
rmax = min (LA, ξ). Here, LA is the characteristic length of the boundary and ξ is the
correlation length, which diverges for critical theories such that we take ξ → ∞ and thus
rmax = LA. In addition, in the following examples we consider geometries where LA ∝ L
such that rmax ∼ L, where L is the size of the system (the IR regulator). We ignore for
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r0 = a r1 = ba

Figure 1.2: Illustration of the contributions to the entanglement entropy from the
(left) zeroth and (right) first renormalization group steps. The dashed line corre-
sponds to the entanglement boundary and the green curves represent the entangle-
ment contributions at the characteristic length scale rn.

now the effects of the system boundaries on the entanglement scaling forms, although we
will examine the effects of such boundaries within Chapter 2.

From our second assumption, at a given length scale r we expect the contribution Sα(A, r)
to the entanglement entropy to be given by an integral of some local geometric quantity
gα(A, r) over the boundary ∂A such that [12, 13]

Sα(A, r) =

∫

∂A

dΣd−1 gα(A, r), (1.35)

where gα(A, r) has a functional form that depends on the local curvature of ∂A. The
quantity dΣd−1 is a dimensionless differential surface element parametrizing the (d − 1)-
dimensional boundary ∂A at length scale r, which can be written as

dΣd−1 =
dsd−1

rd−1
, (1.36)

where dsd−1 is a differential surface element with units of length to the power of (d− 1).
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Overall, we thus expect that the entanglement entropy for a critical theory is given by

Sα(A) =

∫ LA

a

d(log r)

[∫

∂A

dΣd−1 gα(A, r)

]
. (1.37)

1.5.2 Flat boundaries

The simplest case to consider is the one where the boundary of region A is a flat (d− 1)-
dimensional hyperplane extending across the entire system of length L. For example, such
a boundary is a straight line in 2+1 dimensions and a plane in 3+1 dimensions. In such a
case, the local geometric quantity gα(A, r) = gα,flat(r) is a constant across the boundary for
all RG length scales r such that gα,flat(r) = cα,0. From Equation (1.35), the contribution
to the entanglement entropy at length scale r is then given by

Sα,flat(r) =

∫

∂A

dsd−1

rd−1
cα,0

=
cα,0
rd−1

∫

∂A

dsd−1

= cα,0

(
L

r

)d−1

,

(1.38)

where, although not explicitly written, the constant cα,0 can also in general depend upon
the dimensionality d.

Integrating as in Equation (1.34), the entanglement entropy is thus given by

Sα,flat = cα,0

∫ L

a

dr

r

(
L

r

)d−1

= cα,0L
d−1

∫ L

a

dr
1

rd

=





cα,0 log

(
L

a

)
(for d = 1),

cα,0
d− 1

[(
L

a

)d−1

− 1

]
(for d > 1).

(1.39)

For d > 1, we see that we arrive at the above-mentioned area law, which has a non-universal
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(UV-cutoff-dependent) coefficient cα,0/[a
d−1(d−1)]. In these cases, there is also a universal

subleading constant given by −cα,0/(d− 1).

For a one-dimensional critical theory, in place of the area law we predict a logarithmic
scaling with a universal coefficient, which is in fact well-established in the literature [14,
15, 16, 17, 18, 19]. We explicitly study this one-dimensional logarithmic scaling for the
case of free bosonic systems in Section 2.5.1.

1.5.3 Hyperspherical boundaries

Let us now consider the case where region A has a smooth hyperspherical boundary in (d+
1)-dimensional space-time. Although hyperspherical boundaries cannot be realized exactly
on hypercubic lattices, such boundaries have been studied analytically and numerically in
the continuum limit [20, 21, 22, 23, 24]. In Section 2.4.2, we show numerically that the
universal coefficient associated with spherical boundary is in fact of similar form (as a
function of α) to the coefficient corresponding to a sharp corner in d = 3.

For hyperspherical boundaries, we expect the integrand gα(A, r) = gα,sphere(r) to have
corrections that depend upon the curvature κ = 1/R of region A, where R is the radius of
the hypersphere. In general, gα,sphere(r) can be some Taylor series expansion in powers of
κ. However, this expansion is constrained by the fact that we must have Sα(A) = Sα(A).
If region A has curvature 1/R, then the same boundary in region A has curvature −1/R.
We therefore find that we are limited to an expansion in even powers of the curvature such
that [25, 13]

gα,sphere(r) = cα,0 + cα,1

( r
L

)2

+ cα,2

( r
L

)4

+ . . . , (1.40)

where we have assumed that R ∼ L and thus that the (dimensionless) curvature at length
scale r is given by r/R ∼ r/L.

The contribution to the entanglement entropy at RG length scale r is thus given by

Sα,sphere(r) =

∫

∂A

dsd−1

rd−1

[
cα,0 + cα,1

( r
L

)2

+ cα,2

( r
L

)4

+ . . .

]

=
[ cα,0
rd−1

+
cα,1

L2rd−3
+

cα,2
L4rd−5

+ . . .
]
× Ld−1.

(1.41)
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Even spatial dimensions

When d is even, Equation (1.41) can be written as

Sα,sphere(r) =

[
cα,0
rd−1

+
cα,1

L2rd−3
+ . . .+

cα, d
2
−1

Ld−2r
+
cα, d

2
r

Ld
+
cα, d

2
+1r

3

Ld+2
+ . . .

]
× Ld−1, (1.42)

and the total entanglement entropy is then given by [26, 25]

Sα,sphere =

∫ L

a

dr

[
cα,0

Ld−1

rd
+ cα,1

Ld−3

rd−2
+ . . .+ cα, d

2
−1

L

r2
+ cα, d

2

1

L
+ cα, d

2
+1

r2

L3
+ . . .

]

=

[
− cα,0L

d−1

(d− 1)rd−1
− cα,1L

d−3

(d− 3)rd−3
− . . .−

cα, d
2
−1L

r
+
cα, d

2
r

L
+
cα, d

2
+1r

3

3L3
+ . . .

]∣∣∣∣∣

r=L

r=a

=
cα,0
d− 1

(
L

a

)d−1

+
cα,1
d− 3

(
L

a

)d−3

+ . . .+ cα, d
2
−1

L

a
− cα, d

2

a

L
− cα, d

2
+1

( a
L

)3

− . . .

− cα,0
d− 1

− cα,1
d− 3

− . . .− cα, d
2
−1 + cα, d

2
+
cα, d

2
+1

3
+ . . . .

(1.43)

We see that the entanglement entropy in this case consists of terms proportional to odd
powers of L/a or a/L as well a universal constant (the sum of the terms in the last line).
Note that there is no correction term proportional to log

(
L
a

)
.

Odd spatial dimensions

Following a similar procedure, when d is odd one can write

Sα,sphere(r) =

[
cα,0
rd−1

+
cα,1

L2rd−3
+ . . .+

cα, d−3
2

Ld−3r2
+
cα, d−1

2

Ld−1
+
cα, d+1

2
r2

Ld+1
+ . . .

]
× Ld−1. (1.44)
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Upon integrating over r, the entanglement entropy is given by [26, 25]

Sα,sphere =

∫ L

a

dr

[
cα,0

Ld−1

rd
+ cα,1

Ld−3

rd−2
+ . . .+ cα, d−3

2

L2

r3
+ cα, d−1

2

1

r
+ cα, d+1

2

r

L2
+ . . .

]

=

[
−cα,0Ld−1

(d− 1)rd−1
− cα,1L

d−3

(d− 3)rd−3
− . . .−

cα, d−3
2
L2

2r2
+ cα, d−1

2
log r +

cα, d+1
2
r2

2L2
+ . . .

]∣∣∣∣∣

r=L

r=a

=
cα,0
d− 1

(
L

a

)d−1

+
cα,1
d− 3

(
L

a

)d−3

+ . . .+
cα, d−3

2

2

(
L

a

)2

+ cα, d−1
2

log

(
L

a

)

−
cα, d+1

2

2

( a
L

)2
− . . .− cα,0

d− 1
− cα,1
d− 3

− . . .−
cα, d−3

2

2
+
cα, d+1

2

2
+ . . . .

(1.45)

The entanglement entropy here consists of terms proportional to even powers of L/a or
a/L as well as a term proportional to log (L/a) = logL − log a. The logarithmic term
logL has a universal coefficient and, in d = 3, this term is the leading correction to the
area law. We note that the constant contirbution here is non-universal since it includes
the term proportional to log a.

1.5.4 Boundaries with sharp vertices and wedges

In addition to flat and hyperspherical entanglement boundaries, we consider situations
where region A has one or more sharp corners. In particular, we consider regions in d spatial
dimensions that are formed from the intersection of d linearly independent hyperplanes.
For example, in Fig. 1.3 we show examples of such regions in d = 2 and d = 3. In two spatial
dimensions, we consider entanglement geometries with vertices having opening angles θ, as
illustrated in Fig. 1.3a. In three spatial dimensions, we similarly consider trihedral vertices
formed from three planes intersecting at various angles, as shown in Fig 1.3b.

In considering the entanglement entropy Sα,sharp from such regions, we expect to find area
law contributions from the flat hyperplanes as well as additional subleading corrections
due to the places where the hyperplanes meet. Let us denote by Sα,p the contribution to
Sα,sharp due to the location where p hyperplanes meet (where p = 1, 2, . . . , d). Then Sα,1 is
the area law contribution and we have

Sα,sharp =
d∑

p=1

Sα,p. (1.46)
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θ

A

A

(a)

θ1

θ3

θ2

(b)

Figure 1.3: Examples of entanglement boundaries with sharp corners. In (a), we
consider a boundary in d = 2 with an opening angle θ. In (b), we show a region A in
d = 3 formed from three planes that meet at a point with trihedral angle (θ1, θ2, θ3).

Since the boundary ∂Ap corresponding to the meeting of p hyperplanes is a flat (d − p)-
dimensional surface, it follows from Equation (1.35) that the contribution Sα,p(r) at length
scale r is given by [13]

Sα,p(r) =

∫

∂Ap

dsd−p
rd−p

cα,p−1

= cα,p−1

(
L

r

)d−p
,

(1.47)

where cα,p−1 is a constant that can in general depend upon the angles that parametrize the
intersection of the p hyperplanes. Integrating this expression according to Equation (1.34),
we find that

Sα,p = cα,p−1L
d−p
∫ L

a

dr

rd−p+1

=





cα,p−1

d− p

[(
L

a

)d−p
− 1

]
(for p = 1, 2, . . . d− 1),

cα,d−1 log

(
L

a

)
(for p = d).

(1.48)

Note that for p = 1, we recover the area law as in Equation (1.39).
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In Chapter 2, we examine sharp entanglement boundaries in d ≤ 3. As a result, we focus on
the contributions to Sα,sharp from a vertex (the intersection of d hyperplanes when d > 1)
and from a linear wedge (the intersection of d − 1 hyperplanes when d > 2). From the
above expression, these contributions are given by

Sα,vertex ≡ Sα,d = vα log

(
L

a

)
(for d > 1) (1.49)

and

Sα,wedge ≡ Sα,d−1 = wα

(
L

a
− 1

)
(for d > 2), (1.50)

where we have introduced the notation vα ≡ cα,d−1 and wα ≡ cα,d−2. We thus expect
vertices to contribute a logarithmic term with a universal coefficient to the entanglement
entropy Sα,sharp, while we expect wedges to contribute a linear term with a non-universal
coefficient.
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Chapter 2

Universal numbers in non-interacting
theories

This chapter includes results from References [27], [28], [29] and [30], as well as
original results not published elsewhere.

In this chapter, we consider the simplest, non-interacting limit of the quantum lattice
field theory introduced in Section 1.1.2. Techniques are readily available for computing
quantities such as correlations functions and Rényi entanglement entropies for such non-
interacting Gaussian field theories on finite lattices. By using these techniques along with
finite size scaling analysis, one can extract predictions for these quantities in the thermo-
dynamic limit. While many critical features such as the critical exponents are well known
in these theories, many of the universal numbers introduced through entanglement scaling
arguments in Section 1.5 remain unexplored. Such universal quantities can provide deeper
insight into the underlying critical theories characterizing Gaussian fixed points, and can
set the stage for future calculations of such universal quantities in interacting theories.

The non-interacting limit of the field theory in Equation (1.15) corresponds to the case
where the coefficient u of the (φ2

x,α)2 term is zero such that the theory becomes Gaussian.
We consider the additional simplification where N = 1 such that the field φ(x, τ) ≡ φx =
φx1,x2,...,xd is a scalar field, which corresponds to a non-interacting (free) bosonic degree of
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freedom. The lattice Hamiltonian in such a limit can be written as

H =
1

2

∑

x

(
π2
x +m2φ2

x

)
+

1

2

∑

〈xx′〉
(φx − φx′)

2 , (2.1)

where we have elected to work in units where the lattice spacing a is equal to one, and
we have replaced the coefficient r with m2 in order to emphasize its connection to the
boson’s mass. This Hamiltonian corresponds to a gapless critical theory when the boson
becomes massless such that m = 0. We study this model on hypercubic lattices in d spatial
dimensions, with linear lengths L1, L2, . . . , Ld along each respective lattice direction.

When the lattice Hamiltonian in Equation (2.1) has translationally-invariant boundary
conditions, the corresponding Fourier-space Hamiltonian is diagonal. We thus consider the
discrete decomposition of each real-space field φx and πx into N Fourier-space modes such
that

φx =
1√
N

∑

k

φke
ik·x,

πx =
1√
N

∑

k

πke
ik·x,

(2.2)

and, correspondingly,

φk =
1√
N

∑

x

φxe
−ik·x,

πk =
1√
N

∑

x

πxe
−ik·x.

(2.3)

Using these relations along with the commutation relations in Equation (1.16), the corre-
sponding commutation relations for the Fourier-space fields φk and momenta πk′ are given
by

[φk, φk′ ] = [πk, πk′ ] = 0,

[φk, π−k′ ] = iδkk′ ,
(2.4)

and the lattice Hamiltonian can then be written in diagonal form as

H =
1

2

∑

k

[
πkπ−k +

[
(2− 2 cos k1) + (2− 2 cos k2) + . . .+ (2− 2 cos kd) +m2

]
φkφ−k

]
,

=
1

2

∑

k

[
πkπ−k + ω2

kφkφ−k
]
,

(2.5)
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where we have defined

ω2
k = (2− 2 cos k1) + (2− 2 cos k2) + . . .+ (2− 2 cos kd) +m2

= 4 sin2

(
k1

2

)
+ 4 sin2

(
k2

2

)
+ . . .+ 4 sin2

(
kd
2

)
+m2.

(2.6)

2.1 Correlation functions

We now discuss methods for calculating two-point correlation functions 〈φxφx′〉 and 〈πxπx′〉
for non-interacting field theories. Since we will see that the Fourier-space lattice Hamil-
tonian of Equation (2.5) can be reexpressed as a model corresponding to N independent
harmonic oscillators, we start by reviewing the relevant theory for quantum oscillators
in the language of creation and annihilation operators. After establishing techniques for
calculating two-point correlations functions for free bosonic fields, we perform explicit cal-
culations of such correlators and compare with the expected scaling forms introduced in
Section 1.2.

2.1.1 Harmonic oscillator

The Hamiltonian corresponding to a quantum harmonic oscillator can be written in the
language of second quantization as

Hosc = ω

(
a†oscaosc +

1

2

)
, (2.7)

where ω is the (positive) oscillator frequency, a†osc is known as a creation operator and aosc

is an annihilation operator. These operators satisfy the commutation relation

[
aosc, a

†
osc

]
= 1. (2.8)

The eigenstates of Hosc are orthonormal Fock states |n〉, which can be constructed by acting
with the creation operator on the vacuum state |0〉 such that

|n〉 =
1√
n!

(
a†osc

)n |0〉 . (2.9)
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The creation and annihilation operators act on the state |n〉 such that

a†osc |n〉 =
√
n+ 1 |n+ 1〉 ,

aosc |n〉 =
√
n |n− 1〉 ,

a†oscaosc |n〉 = n |n〉 ,
(2.10)

where we note that a special case of the second equation is that aosc |0〉 = 0 such that the
annihilation operator destroys the vacuum state. The operator a†oscaosc is referred to as the
number operator since it acts on |n〉 to yield a non-negative integer n known as the boson
occupation number. The expectation value of this number operator is given by

〈
a†oscaosc

〉
= 〈n| a†oscaosc |n〉 = n. (2.11)

The eigenenergies of Hosc are given by ω
(
n+ 1

2

)
, so that the ground state corresponds to

n = 0.

2.1.2 Translationally invariant free bosonic fields

Consider again the diagonal free scalar Hamiltonian in Fourier space, as given in Equa-
tion (2.5). Let us define creation and annihilation operators corresponding to each of the
N Fourier modes such that

a†−k =
1√
2ωk

(ωkφk − iπk) ,

ak =
1√
2ωk

(ωkφk + iπk) ,
(2.12)

and, inversely,

φk =
1√
2ωk

(
a†−k + ak

)
,

πk = i

√
ωk

2

(
a†−k − ak

)
.

(2.13)

Using Equation (2.4), we see that these creation and annihilation operators commute
according to [

ak, ak′
]

=
[
a†k, a

†
k′

]
= 0,

[
ak, a

†
k′

]
= δkk′ ,

(2.14)
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which is in agreement with Equation (2.8). The free scalar Hamiltonian can be expressed
in terms of these new operators as

H =
∑

k

ωk

(
a†kak +

1

2

)
. (2.15)

Comparing with Section 2.1.1, we thus see that the free scalar Hamiltonian can be expressed
in Fourier space as a sum over N independent harmonic oscillators. The orthonormal
eigenstates |n〉 of H are labelled by the boson occupation numbers nk for each Fourier
mode k such that

|n〉 =
∏

k

[
1√
nk!

(
a†k

)nk

]
|0〉 =

⊗

k

|nk〉 , (2.16)

and the creation and annihilation operators act on |n〉 analogously to Equation (2.10) such
that

ak |n〉 =
√
nk |nk − 1〉 ⊗

[⊗

k′ 6=k

|nk′〉
]
,

a†k |n〉 =
√
nk + 1 |nk + 1〉 ⊗

[⊗

k′ 6=k

|nk′〉
]
,

a†kak |n〉 = nk |n〉 .

(2.17)

From here, one can then calculate the expectation values in the |n〉 basis as

〈
a†ka

†
k′

〉
=
〈
akak′

〉
= 0,

〈
a†kak′

〉
= nkδkk′ .

(2.18)

Using these expectation values along with the expressions for φk and πk from Equa-
tion (2.13), the two-point correlators for the Fourier-space fields are given by

〈φkφ−k′〉 =
1

2
√
ωkω−k

(1 + nk + n−k) δkk′ ,

〈πkπ−k′〉 =

√
ωkω−k

2
(1 + nk + n−k) δkk′ .

(2.19)

For all that follows, we are interested in properties corresponding to the system’s ground
state. In this case, there are no bosonic excitations and we can set nk = 0 for all k. The
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ground state two-point correlators thus given by

〈φkφ−k′〉0 =
1

2ωk

δkk′ ,

〈πkπ−k′〉0 =
ωk

2
δkk′ ,

(2.20)

where we have also used the fact that ωk = ω−k (see Equation (2.6)). If we now perform
an inverse Fourier transform, we find that the real-space ground-state correlators are given
by

〈φxφx′〉0 =
1

2N

∑

k

eik·(x−x
′)

ωk

,

〈πxπx′〉0 =
1

2N

∑

k

ωke
ik·(x−x′).

(2.21)

When performing numerical calculations, we consider lattices with finite lengths L1, L2, . . . , Ld
along each dimension. As a result, we must take into account possible effects at the lat-
tice edges and carefully choose boundary conditions. Here, we consider cases where the
boundary conditions impose some sort of translational invariance (which was assumed in
deriving Equation (2.21)).

A lattice system is periodic along a given real-space lattice direction xi if the fields φx and
momenta πx satisfy the periodic boundary conditions (PBC)

φx = φx+Lix̂i
,

πx = πx+Lix̂i
,

(2.22)

for every lattice site x. Similarly, a lattice system has antiperiodic boundary conditions
(APBC) along xi when

φx = −φx+Lix̂i
,

πx = −πx+Lix̂i
.

(2.23)

Using the Fourier series expansion in Equation (2.2), these conditions then imply that

∑

k

φke
ik·x = ±

∑

k

φke
ik·xeikiLi , (2.24)

and similarly for πx, where the plus sign corresponds to PBC and the negative sign to
APBC. In order to have this expression satisfied for every lattice site x, we must have
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eikiLi = ±1. The values for ki are thus quantized such that ki = 2niπ/Li (for PBC) or
ki = (2ni + 1)π/Li (for APBC), where ni can be any integer. However, since eik·x is
invariant when ki → ki+2niπ, we restrict sums over ki to the first Brillouin zone such that
−π ≤ ki < π or, equivalently, 0 ≤ ki < 2π. As a result, we restrict the integers ni to the
range ni = 0, 1, . . . , Li − 1. The Fourier modes are thus quantized such that

ki =





2niπ

Li
(PBC)

(2ni + 1)π

Li
(APBC)

with ni = 0, 1, . . . , Li − 1. (2.25)

When the lattice system has either PBC or APBC along each lattice direction, the ground-
state two-point correlators in Equations (2.21) then simplify to give [31]

〈φxφx′〉0 =
1

2L1L2 · · ·Ld
∑

k

cos [k1 (x1 − x′1)] cos [k2 (x2 − x′2)] · · · cos [kd (xd − x′d)]
ωk

,

〈πxπx′〉0 =
1

2L1L2 · · ·Ld
∑

k

ωk cos [k1 (x1 − x′1)] cos [k2 (x2 − x′2)] · · · cos [kd (xd − x′d)] ,

(2.26)

where we have made use of the fact that
∑

ki
eiki(xi−x

′
i)/ωk =

∑
ki

cos [ki (xi − x′i)] /ωk

since the contribution at ki from sin [ki (xi − x′i)] /ωk is cancelled by the corresponding
contribution at 2π − ki.

In cases where the lattice has PBC in all directions and the bosonic fields are massless
(m = 0), there exists a value of k known as a “zero mode” in the above sums such that
k1 = k2 = . . . = kd = 0 and thus ωk = 0. The correlator 〈φxφx′〉0 diverges for such
boundary conditions. In order to avoid this divergence, we consider systems with either a
finite mass or with non-periodic boundary conditions in at least one lattice direction.

2.1.3 Quadratic Hamiltonians

In the previous section, we derived the ground-state two-point correlation functions corre-
sponding to non-interacting scalar fields on lattices with translationally-invariant boundary
conditions (specifically, PBC or APBC along each lattice direction). However, we will en-
counter situations in the following sections where we wish to study non-interacting scalar
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fields on lattice without translational invariance. In particular, when we use the numerical
linked cluster expansion in Section 2.4.1, we will consider systems where the fields φ and
π are restricted to be zero outside of the lattice.

Here, we find that we can use another strategy [32, 33] to calculate such correlation func-
tions for more general Hamiltonians that are quadratic (Gaussian) in the fields φx and πx
such that

Hquad =
1

2

∑

x

π2
x +

1

2

∑

x,x′

φxKxx′φx′ , (2.27)

where K is a positive-definite matrix so that it can be diagonalized by an orthogonal matrix
Q. We can thus write K = QDQT , where D is a diagonal matrix made up of the (real,
positive) eigenvalues of K and QQT = QTQ = I. The above Hamiltonian can be written
in terms of Q and D as

Hquad =
1

2

∑

x,q,x′

(
πxQxqQ

T
qx′πx′ + φxQxqDqqQ

T
qx′φx′

)
. (2.28)

Let us now introduce new fields φ̃q =
∑

xQ
T
qxφx =

∑
xQxqφx and π̃q =

∑
xQxqπx. These

fields preserve the commutation relations in Equation (1.16) and diagonalize Hquad such
that

Hquad =
1

2

∑

q

(
π̃2
q +Dqqφ̃

2
q

)
. (2.29)

One can now use a procedure very similar to that used in Section 2.1.2 to find the correla-
tion functions. Specifically, if we introduce creation operators and annihilation operators
defined by

a†q =
1√

2D
1/4
q

(
D1/2

qq φ̃q − i π̃q
)
,

aq =
1√

2D
1/4
q

(
D1/2

qq φ̃q + i π̃q

)
,

(2.30)

then we can write Hquad as a sum of independent harmonic oscillators as in Equation (2.15),
but with ω replaced by D1/2. By analogy with Equation (2.20), the ground-state two-point
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correlation functions for the new fields φ̃q and π̃q can be expressed as

〈φqφq′〉0 =
1

2D
1/2
qq

δqq′ ,

〈πqπq′〉0 =
D

1/2
qq

2
δqq′ ,

(2.31)

and the corresponding correlation functions for the original fields on the real-space lattice
are given by

〈φxφx′〉0 =
1

2

∑

q

QxqD
−1/2
qq QT

qx′ =
1

2

(
K−1/2

)
xx′ ,

〈πxπx′〉0 =
1

2

(
K1/2

)
xx′ .

(2.32)

2.1.4 Scaling of correlation functions

Armed with the tools for calculating two-point correlation functions in Gaussian theories
from the previous sections, we now perform explicit calculations of the two-point correla-
tions functions for the free bosonic field theory of Equation (2.1). From Section 1.2, away
from criticality we expect such correlators to experience an exponential decay as a function
of the separation r = |x− x′| for r � ξ. As the system becomes critical such that ξ →∞
(which corresponds to the boson becoming massless in this case), we expect to instead
observe correlation functions that decay with r according to a power law.

In Figure 2.1, we plot the two-point correlation function 〈φxφx′〉0 for the case of a free boson
on a lattice in three spatial dimensions (d = 3) with PBC along all lattice directions. We
fix the separation to be r = L/4 and consider the correlation function as a function of the
lattice size L. As a result of having PBC along all directions, we cannot set m = 0 due to
the resulting divergences discussed in Section 2.1.2. While the free boson is only critical
when the boson is precisely massless, we observe a clear crossover to critical power-law
scaling behaviour for the finite lattice sizes studied as we take the limit m→ 0.
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Figure 2.1: The correlation function GL(x) ≡
〈
φ(0,0,0)φ(x,0,0)

〉
0

(L) as a function of
the lattice length scale L for non-interacting scalar fields in d = 3 and for x = L/4,
where the lattice has PBC in all lattice directions. Note the logarithmic scale on
both axes. The y-axis is normalized so that all of the curves coincide at L = 4. We
observe a crossover to power-law scaling as m→ 0 (which corresponds to the system
becoming critical).

2.2 Entanglement entropy

We now turn to calculations of the entanglement entropy and the more general Rényi
entropies of Equations (1.30) and (1.31), with the ultimate goal of using such entropies
to extract universal quantities from certain entanglement boundaries as discussed in Sec-
tion 1.5. As first introduced by Peschel in 2003, any reduced density matrix ρA for a
non-interacting Gaussian theory can be calculated from knowledge of the ground-state
two-point correlation functions 〈φxφx′〉0 and 〈πxπx′〉0 [34]. In fact, such a calculation only
requires knowledge of the correlation functions for pairs of sites (x,x′) that are both in re-
gion A, such that relatively few correlators are required to determine ρA for cases of lattice
systems where region A is small. After determining the density matrix, one can then use
its eigenvalues to determine the desired Rényi entropies for any Rényi index α [32].

In this section, we establish certain properties about density matrices in non-interacting
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theories, and then develop the general algorithm discussed above for calculating the Rényi
entropies corresponding to any entanglement boundary. We also present a more efficient
algorithm that is applicable to cases where the entanglement region A possesses some type
of translational symmetry.

2.2.1 Reduced density matrix and modular Hamiltonian

For non-interacting bosonic field theories, the ground-state density matrix ρAA = |0〉 〈0| is
some Gaussian function of the fields φx and momenta πx (where |0〉 represents the system’s
ground state). As a result, all correlators 〈O〉 = Tr (ρAAO) satisfy Wick’s theorem, where
the operator O can be any product of field and momentum variables.

Let us consider now an operator OA that is a product of fields φx and momenta πx, with
all sites x in the product constrained to region A. Then since ρAA = ρA ⊗ ρA, we can say
that 〈OA〉 = Tr (ρAAOA) = Tr (ρAOA). Since 〈OA〉 must satisfy Wick’s theorem, it then
follows that the reduced density matrix ρA must also be a Gaussian function.

The reduced density matrix can thus, in general, be expressed as [34, 32]

ρA = K exp

[
−
∑

x,x′∈A
πxMxx′πx′ + φxNxx′φx′

]
, (2.33)

or, after diagonalizing,

ρA = K exp

[
−
∑

`

ε`a
†
`a`

]
, (2.34)

where ε` is the eigenenergy of mode ` andK is a normalization constant. As in Sections 2.1.2
and 2.1.3, the creation operators a†` and annihilation operators a` are linear combinations
of the fields φx and the canonical momenta πx.

We can think of this reduced density matrix for region A as describing a mixed quantum
state at finite temperature. Considering units where this temperature and the Boltzmann
constant are equal to one, we can then express ρA as

ρA = Ke−HA , (2.35)

30



where HA is called the modular Hamiltonian, which acts only on sites in A. For a free
theory, we know from Equations (2.33) and (2.34) that HA is quadratic and given by

HA =
∑

x,x′∈A
πxMxx′πx′ + φxNxx′φx′

=
∑

`

ε`a
†
`a`,

(2.36)

where a†`a` is again a bosonic number operator, whose eigenvalues n` can be thought of
in the language of second quantization as the number of quasi-particles in state ` with
energy ε`. For bosons, there is no restriction on the occupation number n` from the Pauli
exclusion principle, and n` can be equal to any non-negative integer. The overall state of
subsystem A can be written in terms of these occupation numbers as

|n〉A =
⊗

`

|n`〉A . (2.37)

Recall that the global system is in its pure ground state so that we set nk = 0 for all
k in Section 2.1.2. Here, however, the modular Hamiltonian is not the physical lattice
Hamiltonian. ρA corresponds to a mixed state (as one would have at finite temperature)
and we have, in general, n` 6= 0 for all modes `.

Let us now consider how to use Equation (2.36) along with the constraint that Tr ρA = 1
in order solve for the normalization constant K in Equation (2.35) (which will prove to be
useful in Sections 2.2.2 and 2.2.3 when calculating the entanglement entropy). First, note
that the elements of ρA are given by

(ρA)nn′ = 〈n| Ke−
∑
` ε`a

†
`a` |n′〉 = K

(∏

`

e−ε`n`

)
δnn′ , (2.38)

so that the probability of being in state |n〉 is given by K (
∏

` e
−ε`n`).

The density matrix can then be written as

ρA =
∑

n

ρnn |n〉 〈n| = K
⊗

`

(∑

n`

e−ε`n` |n`〉 〈n`|
)
. (2.39)
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The trace of ρA is then

Tr ρA = K
∏

`

(∑

n`

e−ε`n`

)

= K
∏

`

(
1 + e−ε` + e−2ε` + . . .

)

= K
∏

`

(
1

1− e−ε`
)
,

(2.40)

where we have used the geometric series
∑∞

n=0 r
n = 1/(1− r) for r 6= 1.

Since we must have Tr ρA = 1, we thus find that the normalization constant is

K =
∏

`

(
1− e−ε`

)
. (2.41)

We also note that one can express n` in terms of the eigenvalues ε` as

n` =
〈
a†`a`

〉
= Tr

(
ρAa

†
`a`

)

= K
∏

m6=`

(∑

nm

e−εmnm

)
×
∑

n`

n`e
−ε`n`

= K
∏

m 6=`

(
1

1− e−εm
)
×
(
0 + e−ε` + 2e−2ε` + . . .

)

= K
(

1

K
(
1− e−ε`

))
× e−ε`

(1− e−ε`)2

=
1

eε` − 1
,

(2.42)

where we have differentiated the geometric sum
∑∞

n=0 e
−nε = 1/(1 − e−ε) with respect to

ε to get
∑∞

n=0 ne
−nε = e−ε/(1 − e−ε)2. Equation (2.42) corresponds to the Bose-Einstein

distribution.

2.2.2 Entanglement entropy from the modular Hamiltonian

We now express the von Neumann and Rényi entanglement entropies of Equations (1.30)
and (1.31) in terms of the eigenenergies ε` in Equation (2.36). First, the von Neumann
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entropy is

S1(A) = −Tr
[
ρA log

(
Ke−

∑
` ε`a

†
`a`
)]

= − logKTr ρA + Tr

(
ρA
∑

`

ε`a
†
`a`

)

= − logK +
∑

`

ε`

〈
a†`a`

〉

=
∑

`

[
− log

(
1− e−ε`

)
+

ε`
eε` − 1

]
.

(2.43)

Similarly, the Rényi entropies are given by

Sα(A) =
1

1− α log
[
Kα Tr e−α

∑
` ε`a

†
`a`
]

=
1

1− α

[
α logK + log

∏

`

(∑

n`

e−αε`n`

)]

=
1

1− α
∑

`

[
α log

(
1− e−ε`

)
− log

(
1− e−αε`

)]
.

(2.44)

2.2.3 Entanglement entropy from correlation functions

We now show how to determine the entanglement entropies corresponding to a region A
simply from knowledge of the ground-state correlation functions 〈φxφx′〉0 and 〈πxπx′〉0. We
start by introducing matrices XA and PA with elements given by

(XA)xx′ = 〈φxφx′〉0 ,
(PA)xx′ = 〈πxπx′〉0 .

(2.45)

As discussed earlier, the field operators φx and momentum operators πx are linear combi-
nations of the creation operators a` and annihilation operators a†` that were first introduced
in Equation (2.34). In general, one can write this linear combination in terms of matrices
β and γ such that

φx = β∗x`a
†
` + βx`a`,

πx = −iγ∗x`a†` + iγx`a`,
(2.46)
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where the spatial indices x must be in region A since the creation and annihilation operators
are only defined within this region.

In particular, it turns out that if β and γ are both real matrices and β = −1
2

(
γT
)−1

,
then the creation and annihilation operators satisfy the commutation relations in Equa-
tion (2.14) and the fields and momenta satisfy the commutation relations in Equation (1.16).
Using these commutation relations along with Equations (2.45) and (2.46), one can show
that [32]

β
1

4
(2n+ 1)2 β−1 = XAPA, (2.47)

where n is the diagonal matrix of occupation numbers as defined in Equation (2.42). From
Equation (2.47), we see that eigenvalues of XAPA are given by 1

4
(2n` + 1)2. If we define

the matrix CA =
√
XAPA, then we see that its eigenvalues ν` must be given by

ν` =
2n` + 1

2
. (2.48)

Then, using Equation (2.42), we find that the eigenvalues ν` of CA are given in terms of
the eigenvalues ε` of the modular Hamiltonian as

ν` =
1

2

(
eε` + 1

eε` − 1

)
=

1

2
coth

(ε`
2

)
, (2.49)

and, inversely,

ε` = 2 arccoth (2ν`) = log

(
ν` + 1

2

ν` − 1
2

)
. (2.50)

From here, one can use Equations (2.43) and (2.44) to express the entanglement entropies
as

S1(A) =
∑

`

[(
ν` +

1

2

)
log

(
ν` +

1

2

)
−
(
ν` −

1

2

)
log

(
ν` −

1

2

)]
,

Sα(A) =
1

α− 1

∑

`

log

[(
ν` +

1

2

)α
−
(
ν` −

1

2

)α]
.

(2.51)

A summary of the algorithm for calculating von Neumann and Rényi entanglement en-
tropies from two-point correlation functions is given in Algorithm 2.1.
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Algorithm 2.1: Method for calculating von Neumann and Rényi entanglement
entropies from the ground-state two-point correlation functions in Gaussian theo-
ries [34, 32].

1 define the boson mass m and the lattice lengths L1, L2, . . . , Ld;
select boundary conditions (PBC, APBC, OBC, ...);

define region A;

2 calculate the ground-state correlators 〈φxφx′〉0 and 〈πxπx′〉0 for all

pairs of sites {x,x′} in region A using Equation (2.26) or (2.32);

use these correlators to form the matrices XA and PA;

3 diagonalize the matrix XAPA in order to calculate CA =
√
XAPA;

4 use the eigenvalues ν` of CA to calculate the von Neumann and Rényi

entanglement entropies from Equation (2.51);

2.2.4 Entanglement entropy in the presence of translational sym-
metry

In cases where the entangled region A possesses translational symmetry in at least one
lattice direction, one can use a more efficient algorithm to compute the Rényi entanglement
entropies [35, 36, 37]. Examples of such regions include hypercylinders, which are studied
in more detail in Section 2.5. These cylindrical geometries possess translational symmetry
along d− 1 lattice directions (provided that the lattice imposes PBC or APBC along these
d− 1 directions).

Let us consider a more general situation in d spatial dimensions where region A possesses
translational invariance along lattice direction xd. The lattice must thus have either PBC
or APBC along this direction. One can then consider the decomposition of the fields φx

and πx along this lattice direction such that

φx =
1√
Ld

∑

kd

eikdxd φxd−1
(kd),

πx =
1√
Ld

∑

kd

eikdxd πxd−1
(kd),

(2.52)

where the values of kd are quantized as in Equation (2.25) and xd−1 = (x1, x2, . . . , xd−1)
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represents the remaining d− 1 spatial coordinates.

The Hamiltonian for non-interacting scalar fields in d spatial dimensions can then be
written as a sum over Ld decoupled Hamiltonians in d− 1 spatial dimensions as

H =
∑

kd

Hd−1(kd), (2.53)

where the lower-dimensional Hamiltonians Hd−1(kd) are given by

Hd−1(kd) =
1

2

∑

xd−1

[
πxd−1

(kd) πxd−1
(−kd) +

(
m2 + sin2 (kd/2)

)
φxd−1

(kd)φxd−1
(−kd)

]

+
1

2

∑

〈xd−1x′d−1〉

(
φxd−1

(kd)− φx′d−1
(kd)

)(
φxd−1

(−kd)− φx′d−1
(−kd)

)
.

(2.54)

By comparing with the free scalar lattice Hamiltonians of Equation (2.1), we see each
Hamiltonian Hd−1(kd) corresponds to non-interacting scalar fields in d− 1 spatial dimen-
sions, but with an effective mass meff given by m2

eff = m2 + sin2 (kd/2).

These lower-dimensional Hamiltonians are completely independent of each other, and re-
gion A is translationally invariant such that it does not depend on the spatial coordinate xd.
As a result, the Rényi entanglement entropies Sα(A) are given by a sum over Ld different
kd-dependent Rényi entropies Sα(Ad−1, kd), where Ad−1 is the projection of region A into
(d− 1)-dimensional space. Each entropy Sα(Ad−1, kd) is calculated from the corresponding
kd-dependent Hamiltonian Hd−1(kd). A summary of the procedure used to calculate the
entanglement entropy in the presence of such spatial translational symmetry is given in
Algorithm 2.2.

This algorithm is significantly more efficient than Algorithm 2.1 due to the reduced size of
the matrices that must be diagonalized. Specifically, in Algorithm 2.1 one must diagonalize
a matrix of size NA × NA, while in Algorithm 2.2 one must diagonalize Ld independent
matrices of size NAd−1

×NAd−1
, where NAd−1

= NA/Ld.

In the presence of translational symmetry along more than one lattice direction, this algo-
rithm can be modified for further efficiency. One can decompose the fields φx and πx into
Fourier modes along all lattice directions that possess such symmetries and follow steps
analogous to those above in order to take advantage of all symmetries.
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Algorithm 2.2: Method for calculating the von Neumann and Rényi entanglement
entropies from the ground-state two-point correlation functions in non-interacting
scalar theories for the case where the lattice and region A possess translational in-
variance along lattice direction xd [35, 36, 37]. Region A is thus independent of the
spatial coordinate xd and the lattice has either PBC or APBC along lattice direction
xd. Region A is thus fully specified by region Ad−1 in d− 1 spatial dimensions.

1 define the boson mass m and the lattice lengths L1, L2, . . . , Ld;
select boundary conditions along each lattice direction, with either

PBC or APBC along lattice direction xd;

quantize the values of kd as in Equation (2.25);

define region Ad−1 and the corresponding region A;

2 initialize Sα(A) = 0 for each desired value of α;

3 for each value of kd do

4 calculate Sα(Ad−1, kd) for non-interacting scalar fields with mass√
m2 + sin2 (kd/2) in d− 1 spatial dimensions using Algorithm 2.1;

5 increment Sα(A) = Sα(A) + Sα(Ad−1, kd);

6 end
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2.3 Infrared entanglement entropy scaling

In Section 1.5, we saw that the entanglement entropy for critical systems is expected to
scale with a leading area law with geometry-dependent subleading corrections. These
terms in general depend upon the ratio LA/a, where LA is the characteristic length scale
of the boundary and a is the lattice spacing (the UV regulator). However, on a finite
system of size L, there can also be corrections that depend upon the ratios L/a and L/LA,
where L acts as the infrared (IR) regulator. Such corrections are expected to become less
important on larger lattices such that we expect the IR-dependent terms to be of order
O(LA/L) and O(a/L), which can in principle be important when attempting to reliably
extract subleading universal terms in the entanglement entropy.

Here, we attempt to gain insight into the functional form of the IR-dependent scaling
terms. We consider the case where region A is a fixed size so that all contributions that
depend on LA/a are constant and we can isolate the contributions to the entanglement
entropy from the infrared regulator. In particular, we consider the case where region A is
a single site, for which the entanglement is expect to scale such that

Sα,single = dα +O
( a
L

)
, (2.55)

where dα is a constant.

In Figure 2.2, we plot S1,single as a function of the inverse IR regulator for the case of
non-interacting bosonic fields. We observe that, as the boson becomes massless so that the
system becomes critical, the entanglement entropy appears to scale linearly as a function of
a/L in the limit L→∞. More generally, in higher dimensions, one can show analytically
and numerically that this IR correction for the single-site entanglement entropy is of order
O(ad−1/Ld−1) [28].

2.4 Entanglement entropy for sharp vertices and wedges

Recall from Section 1.5.4 that in the presence of a sharp corner (corresponding to the meet-
ing point of d independent hyperplanes), we expect the entanglement entropy to contain a
logarithmic term subleading to the area law. The coefficients of such terms are universal
in the sense that they do not depend upon the system’s underlying lattice scale a, and
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Figure 2.2: The entanglement entropy corresponding to a single site for free bosonic
fields in two spatial dimensions. As the system becomes critical, we observe that the
leading IR-dependent scaling term appears to be proportional to 1/L. Note that we
have set the lattice spacing equal to one.

such universal numbers can give insight into the fundamental critical theories governing
the corresponding RG flows.

In three spatial dimensions on a lattice of length scale L, such a sharp corner is formed
from the intersection of three linearly-independent planes that meet at a point with tri-
hedral angle (θ1, θ2, θ3) as in Figure 1.3b. From Equations (1.46) and (1.48), the Rényi
entanglement entropies are then expected to scale such that

Sα,sharp = aα

(
L

a

)2

+ wα
L

a
+ vα log

(
L

a

)
+ . . . (for d = 3), (2.56)

where aα is the α-dependent coefficient of the dominant area law, wα parametrizes the
contribution to the entanglement entropy from the wedges, and vα is the coefficient of the
trihedral vertex. We note that the length scale LA of region A is taken to be proportional
to L. The coefficients wα and vα also depend upon the three angles θ1, θ2 and θ3 that
characterize the trihedral vertex.

We restrict our studies to the α-dependence of the entanglement entropy for the case
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where region A is formed from the intersection of three mutually perpendicular planes
with trihedral angle (π/2, π/2, π/2). However, it would be interesting to extend future
studies to examine the vertex contribution to the entanglement entropy for more general
trihedral angles. Such angular dependence has been studied in two spatial dimensions for
both free boson and free fermion systems [28].

We note immediately that, since the logarithmic vertex term is subleading to both the
area-law and wedge terms as a function of L, it can be difficult to extract such a coefficient
numerically through fits to Equation (2.56). As a means of addressing this difficulty, in the
next section we introduce a scheme known as the numerical linked cluster expansion, which
is capable of isolating contributions to the entanglement entropy from specific geometric
features. We utilize this expansion to study the vertex coefficient vα for non-interacting
bosonic fields in three spatial dimensions. We then comment on the non-universal wedge
coefficient wα and confirm the associated linear contribution to the entanglement entropy
that was predicted in Section 1.5.4.

2.4.1 Numerical linked cluster expansion

The numerical linked cluster expansion [38, 39, 40, 41] (NLCE) is a powerful method that
combines measurements of a property on various finite-sized lattice clusters to approach
the thermodynamic limit L→∞. At a given length scale (order), this numerical expansion
uses sums and differences of finite clusters to systematically cancel off lower-order finite-
size and boundary effects. As a result, at a given order this procedure is capable of
accessing larger-range correlations than direct calculations on finite toroidal (periodic or
antiperiodic) systems of the same size. This feature becomes especially advantageous when
studying behaviour at a critical point where the correlation length diverges.

For our present purposes, the NLCE offers the additional advantage that it can sum clusters
in such a way as to isolate the logarithmic vertex contribution to the Rényi entopies from
the leading area law and edge contributions in Equation (2.56) as well as the subleading IR
corrections discussed in Section 2.3. We discuss here general properties of the NLCE as well
as the techniques necessary to isolate the two- and three-dimensional vertex contribution
at each cluster order. Such isolation techniques have been used successfully to study the
vertex coefficient vα for both interacting and non-interacting (2 + 1)-dimensional critical
systems [42, 43, 44, 31, 28]. We extend these techniques to three dimensions in order to
examine the vertex coefficient for (3 + 1)-dimensional critical free scalar theories [30].
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In a translationally invariant system, the NLCE method calculates an extensive property
Pext of a lattice system L by summing contributions from individual clusters according to

Pext (L) /N =
∑

c

e(c)×W (c), (2.57)

where N characterizes the size of L and e(c) is the embedding factor of the cluster c, which
corresponds to the number of distinct reflections/rotations of c on the lattice. W (c) is a
weight, which is defined recursively such that

W (c) = Pext(c)−
∑

s∈c
W (s), (2.58)

where the sum is over all subclusters s contained in c in a graph-theoretic sense. In general,
the sums in Equations (2.57) and (2.58) are over all possible subcluster geometries embed-
dable on the chosen lattice. However, as first discussed in Reference [42] for calculations
in two spatial dimensions, these sums still converge when the geometries are restricted to
rectangular clusters. Since the goal of the NLCE is to include contributions from repre-
sentative clusters of maximal size, and since the number of possible clusters grows rapidly
with order, it is useful to restrict the types of clusters considered in such a way. In two
spatial dimensions, clusters and subclusters used within the NLCE can thus be restricted
to be ux× uy rectangles. Similarly, in three spatial dimensions we perform calculations on
regular ux × uy × uz cuboids (three-dimensional rectangles) with 6 faces, 8 vertices and
12 edges each, where ux, uy and uz are integer lengths measured in units of the lattice
spacing. We define the length scale (order) of a given cluster to be the maximum of these
linear dimensions such that L = max{ux, uy} in d = 2 and L = max{ux, uy, uz} in d = 3.
Each cluster imposes Dirichlet open boundary conditions, with the field φ constrained to
be zero for all lattice sites outside of the cluster.

In our calculations, we define the intensive property P to be the isolated vertex contri-
bution Svertex to the Rényi entanglement entropy Sα. In two (respectively, three) spatial
dimensions, we imagine a single vertex arising from a quadrant (octant) of the solid geom-
etry, and embed each rectangular (cuboidal) cluster in all possible ways around this vertex.
For a given rectangular cluster c, there are Nr possible locations r for this vertex within
the cluster, where Nr = (ux − 1)(uy − 1) when d = 2 and Nr = (ux − 1)(uy − 1)(uz − 1)
when d = 3. The overall extensive property Nr P(c) is obtained by summing over all of
these possible locations such that

Nr P(c) =
∑

r

Pr(c). (2.59)
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+ − −

Figure 2.3: The isolation procedure used in d = 2 for the 9× 6 cluster c for a given
vertex location r (labelled by ). We add the values of Sα(A) corresponding to the
first two (quadrant) bipartitions, subtract the values for the last two (half-plane)
bipartitions and divide the resulting sum by two in order to obtain the entanglement
property Pr(c) corresponding to a single vertex with opening angle θ = π/2.

In order to isolate the subleading logarithmic vertex contribution to the Rényi entropies,
we perform a cluster-by-cluster subtraction procedure. For each vertex location r within
the cluster c, we combine the values of Sα(A) corresponding to various bipartitions {A,A}
of the cluster. The combinations of Rényi entropies are selected so as to intrinsically
cancel the leading area-law and edge contributions such that Pr(c) (and, in turn, P(c))
corresponds to the vertex contribution to the entropy. In d = 2, a combination of 4
different cluster bipartitions is used so as to cancel the dominant area-law contribution, as
illustrated in Figure 2.3. In d = 3, a total of 13 bipartitions are used in order to cancel
both the leading area-law and 90-degree edge contributions, as illustrated in Figure 2.4.
The correlation function method described in Algorithm 2.1 acts as the so-called “cluster
solver” since it is used to calculate all needed Rényi entropies in the above sums for each
cluster.

2.4.2 Vertices in three spatial dimensions

We now use the methods outlined in previous sections to calculate the trihedral corner
coefficient corresponding to the Rényi entropies in three spatial dimensions. Using the
NLCE procedure described in Section 2.4.1, we isolate the corner contribution Pα(`) to
the Rényi entropy Sα by performing calculations on clusters up to order ` (the maximum
linear dimension of a given cluster). From Equation (2.56), we expect for a single vertex
that

Pα = vα log `+ dα + . . . , (2.60)
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Figure 2.4: The subtraction procedure used in d = 3 to calculate Pr(c) for the
3 × 4 × 5 cluster c for a given vertex location r (not labelled). We add the values
of Sα(A) corresponding to the four octants in the top row, subtract the values for
the six quadrants in the middle row, and add the values for the three half-planes in
the bottom row. We divide the resulting sum by four in order to obtain Pr(c). This
figure is taken from Reference [30].

where dα is a subleading constant and the ellipsis indicates additional (unknown) subleading
terms that should vanish as `→∞. ` is measured in units of the lattice spacing.

We examine the behavior of Pα(`) as a function of ` with the goal of studying the vertex
coefficient vα. We first investigate what happens if we perform fits of Pα to the two-
parameter function vα log ` + dα (ignoring, for the moment, additional subleading terms).
In Figure 2.5, we illustrate such fits for α = 1 and α = 5. We perform fits over various
ranges of the cluster order ` and find that for α = 1, the extracted value of v1 is quite
stable when this range of ` values is varied, indicating that the unknown subleading terms
in Equation (2.60) are already negligible for the cluster sizes used in our calculations.
However, for α > 1, the value of vα increases significantly as higher orders ` are included
in the fit and it is important to consider the effects of subleading terms. Such subleading
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finite-size corrections for α > 1 have been studied numerically in lower dimensions [31], but
the form of such corrections as a function of α is only known for d = 1 [45]. In Figure 2.6,
we show the results for vα/v1 versus α as extracted from these various fits.

In order to approximate vα in the thermodynamic limit `→∞, we study the behavior of
vα(`) versus `, as illustrated in the insets of Figure 2.5. Here ` is a characteristic length
scale corresponding to the orders ` used to extract vα from the two-parameter fits described
above. We choose to define ` as the average order such that, for instance, ` = 19 for the
case where orders ` = 18 to 20 are used in the initial fit of Pα to vα log ` + dα. We could,
however, use other definitions of ` such as the minimum or maximum cluster order. We
then extract the behavior of vα for `→∞ by fitting vα(`) to the three-parameter function
v∞α +pα/(`+ qα). Here v∞α , pα and qα are (fitted) constants, where v∞α corresponds to vα in
the thermodynamic limit and qα reflects the ambiguity in the definition of ` as described
above. This ` → ∞ extrapolation procedure is used for all α > 1. For α = 1, vα(`) is
well-converged as a function of ` and we estimate vα simply from the initial two-parameter
fit using the highest orders available.

Recall from Section 1.5.3 that a logarithmic term is also expected in the entanglement
entropy for the case where the boundary is hyperspherical in general odd spatial dimensions.
In fact, for a general smooth entanglement boundary with length scale L, it has been shown
that the entanglement entropy in three spatial dimensions includes a logarithmic correction
to the area law such that [20, 21, 22]

Sα,smooth = aα

(
L

a

)2

+ uα,smooth log

(
L

a

)
+ . . . (for d = 3), (2.61)

where the universal coefficient uα depends upon the structure of the entangling surface as
well as upon the Rényi index α.

For the case of non-interacting scalar fields, the coefficient uα corresponding to a sphere in
3 + 1 dimensions has been shown (through numerical [23] and analytical [24] studies) to
depend on α according to

uα,sphere = − (1 + α)(1 + α2)

360α3
. (2.62)

For general smooth entangling geometries, the curvature of the boundary changes the
coefficient of this logarithmic term. However, for free scalar fields, all smooth boundaries
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Figure 2.5: Fits of the corner contribution Pα to the equation vα log `+ dα for Rényi
indices (a) α = 1 and (b) α = 5. The insets illustrates how the coefficients vα
extracted from these fits depend on the range of values of `. For α > 1, we perform a
second fit to extrapolate to the thermodynamic limit, as explained in the main text.
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Figure 2.6: The normalized logarithmic corner coefficient vα/v1 as a function of
the Rényi index α. These results are based on the fitting procedure illustrated in
Figure 2.5. For smooth surfaces, this ratio of logarithmic coefficients is known to
behave as in Equation (2.63).

yield the same functional dependence on α such that [21, 22, 46]

uα,smooth

u1,smooth

=
(1 + α)(1 + α2)

4α3
. (2.63)

Figure 2.6 shows that as higher orders are used in our fits, the results for the normalized
corner coefficient vα/v1 as a function of α approaches the functional behavior of Equa-
tion (2.63). Extrapolating to the infinite-size limit as described above provide relatively
good agreement with this functional form, although we are not able to quantify the agree-
ment due to unknown finite-size errors within the NLCE procedure. We note that we
do not necessarily expect our data for the sharp vertex coefficient to converge to Equa-
tion (2.63) in the thermodynamic limit since this equation has only been proven valid for
locally smooth entangling geometries.

In addition to considering the ratio vα/v1, we also consider the unnormalized coefficients vα.
Reference [47] previously suggested that this logarithmic corner coefficient may be related
to the logarithmic coefficient uα,sphere for spherical surfaces in three spatial dimensions
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according to vα ≈ uα,sphere/8. Considering our results for α = 1 (where the unknown
finite-size effect are least significant), we find that

v1 ≈ 0.00286 = −2.06×
(u1,sphere

8

)
, (2.64)

such that our results differ both in magnitude and in sign from the predictions of Refer-
ence [47].

2.4.3 Wedges in three spatial dimensions

We now present numerical calculations of the contribution to the Rényi entropy from a
boundary with a 90-degree wedge. As discussed in Section 1.5.4 and Equation (2.56),
we expect this contribution to be of the form Sα,wedge = wα f(`) with f(`) = `, where
` is the length of the edge measured in units of the lattice length scale a. Here, we
investigate the validity of this prediction for linear scaling behaviour. We compare fits of
our numerical results with this linear functional dependence and also with f(`) = ` log `,
which is a functional dependence that results from other scaling arguments (for example,
from deriving the cuboid scaling from the sharp limit of a smoothed cube [30]).

In these calculations, we forego the NLCE and instead study directly the behavior of the
full entanglement entropy Sα(A) for various regions A. We use Algorithm 2.2 to calculate
Sα(A) for cases where the full system is an `× `× ` cubic lattice (i.e. Lx = Ly = Lz ≡ `)
and subregion A comprises an `/2 × `/2 × ` quadrant of the system (with ` even). We
expect the entropies to scale as in Eq. (2.56), but without the logarithmic term (since the
entangling surface ∂A does not contain any corners) such that

Sα,quadrant(`) = 2aα`
2 + 4Sα,wedge + dα + . . . , (2.65)

where 2` 2 is the area of ∂A, and Sα,wedge appears with a factor of 4 since the boundary ∂A
has 4 distinct edges. We perform calculations for various combinations of PBC and APBC
along each lattice direction of the full system.

To compare the functional forms f(`) = ` and f(`) = ` log ` for Sα,wedge, we perform
least-squares fits of our numerical data for Sα,quadrant(`) to the three-parameter function
2aα`

2 + wαf(`) + dα. We quantify the goodness of the fit by calculating the error

∆α =

n∑̀

i=1

(
Sα,quadrant(`i)−

[
2aα`

2
i + wαf(`i) + dα

])2
, (2.66)
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Figure 2.7: The fitting errors ∆1 that result from fitting free boson data for
S1,quadrant(`) to the form a1`

2 +w1f(`) + d1 for f(`) = ` log ` and f(`) = `. Note the
logarithmic scale on the y-axis. We use n` = 4 consecutive even values of ` for each
fit, and define ` to be the average of these 4 values. Note that the noise at high ` is
due to numerical issues of floating-point precision.

where n` is the number of values of ` used in the fit.

Recall that in Section 2.4.2, we found that the unknown subleading corrections to the en-
tropies were least significant for the von Neumann entropy (α = 1). We thus initially focus
on our data for S1,quadrant. We perform fits over several ranges of the lattice length scale `,
with n` = 4. In Figure 2.7, we illustrate results for the error ∆1 as a function of the average
length ` used in the fit. This plot imposes PBC along the x and y lattice directions and
APBC along z, and we find similar results for other combinations of boundary conditions.
We conclude that, indeed, the linear function f(`) = ` provides a superior characterization
of the wedge contribution to the entropy since for large `, the corresponding errors ∆1 are
several orders of magnitude lower than those corresponding to f(`) = ` log `.

We also carry out this comparison for higher Rényi entropies up to α = 5. We consistently
find that ∆α is significantly lower for the fits with f(`) = ` for all of these other values of α.
As discussed above, such fits for α 6= 1 are more prone to effects from unknown finite-size
corrections, but such corrections should vanish in the thermodynamic limit.
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Unlike the logarithmic coefficient coming from the trihedral corner, the wedge coefficient wα
is non-universal since it depends upon the lattice spacing a. One expects this dependence
on the microscopic lattice structure to cancel out in the ratio wα/w1 such that this ratio
is universal. However, the limited resolution of length scales on a lattice (amounting to
errors in each length scale on the order of the lattice spacing) means that the area law
term in Equation (2.56) can “pollute” the edge contribution and generate order one errors
in the coefficient wα. As a result, the above lattice calculations do not produce reliable
estimates for the universal ratios wα/w1. Additional numerical methods are required in
order to circumvent these issues, and such calculations are an avenue for future work.

2.5 Entanglement entropy for cylinders

In this section, we extract universal quantities from the Rényi entanglement entropies for
cases where the lattice system is divided into two hypercylinders with PBC or APBC along
each lattice direction, as illustrated in Figure 2.8 for d = 1, 2 and 3. We consider lattices
with lengths Li = Lxi along each lattice direction xi, where 1 ≤ i ≤ d and we use the
convention x1 ≡ x, x2 ≡ y and x3 ≡ z. This hypercylindrical geometry is translationally
invariant along all but one lattice direction, which we choose to be the x direction in all
that follows. We define the variables bi = Lx/Li to correspond to the aspect ratios of the
lattice.

From Section 1.5.2 and, in particular, Equation (1.39) , we expect the Rényi entanglement
entropies corresponding to a flat entanglement boundary to scale with a dominant area law
in d > 1 (or a dominant logarithmic term when d = 1) along with a subleading universal
constant. Although this constant does not depend upon the UV cutoff a, it can in general
depend upon the Rényi index α, upon the aspect ratios bi of the lattice and upon the ratio
u ≡ LA/Lx. We thus expect to find that [27]

Sα,cylinder =





aα log

(
L

a

)
+ χα(u) + . . . (for d = 1),

aα
L2 × L3 × · · · × Ld

ad−1
+ χα(b2, b3, . . . , bd, u) + . . . (for d > 1),

(2.67)

where aα is a non-universal coefficient and χα is the universal constant described above.
The ellipsis corresponds to additional (unknown) subleading terms that vanish in the ther-
modynamic limit a/Li → ∞. Recall that this equation was derived without considering
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Figure 2.8: The entanglement boundaries used to study universal subleading correc-
tions to the area law due to cylindrical boundaries in (a) d = 1, (b) d = 2 and (c)
d = 3. We consider situations where the system has either PBC or APBC along each
lattice direction.
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any boundary effects due to the finite system. In what follows, we find that such finite-size
and boundary effects play a role in the functional form of χα.

Since we wish to study the entanglement entropy in the ground state, we can make use of
the reflective property that Sα(A) = Sα(A), and thus χα(u) = χα(1 − u). We therefore
restrict many of our plots to the regime where 0 ≤ u ≤ 1

2
. Further, since we do not expect

any singular behaviour in the limit where u → 1
2
, one can use this reflective property to

express χα(u) for u near 1
2

as

χα

(
b2, b3, . . . , bd, u ≈

1

2

)
=

∞∑

m=0

βm

(
u− 1

2

)2m

, (2.68)

where the coefficients βm in general depend upon the aspect ratios b2, b3, . . . , bd.

Let us now consider the thin-cylinder limit where LA � Li for all lattice directions i.
One expects that the entanglement entropy is limited to contributions from length scales
LA and below and, as a result, the finite system’s boundary has negligible effect on the
functional form of χα when LA → 0 [27]. One can then use the same techniques as in
Section 1.5.2 to predict the scaling of the entanglement entropy (and, in particular, the
subleading term χα), but with the length scale r limited to the range a to LA such that

Sα,thin = cα,0 L2 × L3 × · · · × Ld
∫ LA

a

dr
1

rd

=
cα,0
d− 1

L2 × L3 × · · · × Ld
[

1

ad−1
− 1

Ld−1
A

]
(for d > 1),

(2.69)

where we recall that cα,0 is a constant that depends upon both the Rényi index α and the
spatial dimension d.

The first term in this expression is just the area law, while the second term predicts that
χα behaves in the thin-cylinder limit according to [32]

χα(b2, b3, . . . , bd, u→ 0) = −κα
L2 × L3 × · · · × Ld

Ld−1
A

=
−κα

b2 × b3 × · · · × bd
× 1

ud−1





(for d > 1), (2.70)

where κα = cα,0/(d − 1) is a universal coefficient. This coefficient has been computed for
non-interacting scalar fields for 2 ≤ d ≤ 5 by numerically solving an integral equation
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corresponding to the continuum limit in Reference [32]. We examine this thin-cylinder
limit for d = 2 and d = 3, for which we expect

χd=2
α (by, u→ 0) =

−κd=2
α

by u
,

χd=3
α (by, bz, u→ 0) =

−κd=3
α

bybz u2
.

(2.71)

Recall from Section 1.5.4 that for a corner with opening angle θ in two spatial dimensions
(see Figure 1.3a), we expect the entanglement entropy to scale according to Sd=2

α,corner =
aαL/a+vα(θ) log(L/a)+. . ., where the ground state imposes the reflective property vα(θ) =
vα(π− θ). In fact, it was shown in Reference [32] that in the limit where θ → 0, the corner
coefficient for non-interacting theories behaves such that vα → −κd=2

α /θ, where κd=2
α is

the same universal coefficient as in Equation (2.71). In Figure 2.9, we consider whether
such a relationship between the universal numbers for the cylinder and the corner holds
away from the thin-cylinder limit. We set α = 1 and compare the universal functions
χd=2

1 (u) and v1(θ) after normalizing them so that they agree in the limit where u and θ
are close to zero. We find that these functions nearly overlap for the entire allowed range
0 < u ≤ 1

2
(or 0 < θ ≤ π) for various lattice aspect ratios by ≡ b ≤ 1, and that the overlap

becomes stronger as b decreases from 1. The agreement between these functions suggests
a connection between different geometries in the underlying theory describing the system’s
critical behaviour, although an analytical explanation for this agreement remains an open
question for future work.

2.5.1 Entanglement entropy in one spatial dimension

For a (1+1)-dimensional critical system with periodic boundary conditions and length Lx =
L, the Rényi entanglement entropies are known to scale such that [14, 15, 16, 17, 18, 19]

Sd=1
α =

c

6

(
1 +

1

α

)
ln

[
L

π
sin (πu)

]
+ c′, (2.72)

where c is the universal central charge of the underlying conformal field theory and c′ is
a non-universal constant. For non-interacting scalar fields in one spatial dimension, the
central charge is given by c = 1.

52



0.0 0.1 0.2 0.3 0.4 0.5

u, θ
2π

0

10

20

30

40
b(
χ

1
(

1 2
)−
χ

1
(u

))

κ
d
=

2
1

,
−

2
π
v 1

(θ
)

κ
d
=

2
1

(a) vd=2
1

χd=2
1 , b = 1

χd=2
1 , b = 1

2

χd=2
1 , b = 1

4

0.0 0.1 0.2 0.3 0.4 0.5

u

0.0

0.5

1.0

1.5

2.0

2.5

3.0

−
2
π
v 1

(θ
)−
b(
χ

1
(

1 2
)−
χ

1
(u

))

κ
d
=

2
1

(b) χd=2
1 , b = 1

χd=2
1 , b = 1

2

χd=2
1 , b = 1

4

Figure 2.9: The universal two-cylinder function χ1 compared with the universal
corner coefficient v1 in two spatial dimensions. For the cylinder, we consider various
lattice aspect ratios by ≡ b. In (a), we show that the (appropriately normalized)
two-cylinder function has a similar functional form to the corner coefficient for b ≤ 1.
In (b), we show that the difference between these two functions becomes smaller as
b decreases. The data for v1(θ) and the value for κd=2

α are from Reference [32].
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Comparing with Equation (2.67), we find that the corresponding correction χα is given by

χd=1
α (u) = cα ln [sin(πu)] + γd=1

α , (2.73)

where γd=1
α is a u-independent constant and cα ≡ c/6(1 + 1/α).

For the case of (1 + 1)-dimensional non-interacting scalar fields, we can use the techniques
outlined in Sections 2.1 and 2.2 to calculate the Rényi entanglement entropies Sd=1

α . In
Figure 2.10, we plot results for Sd=1

α as a function of the size of region A as well as fits to
Equation (2.72) for the case where the lattice has PBC and APBC. For PBC, we observe
that the Rényi entanglement entropies scale roughly linearly when plotted as a function of
log [L/π sin (πu)], as expected from Equation (2.72). However, for APBC, the form given
in Equation (2.72) provides a lower-quality fit to the data. Although these fits appear to
describe the data relatively well when plotted as a function of u, we observe significant
discrepancies when the results are plotted a function of log [L/π sin (πu)].

In order to reduce the number of fitting parameters from two to one, we now perform
least-squares fits of Sd=1

α (1/2) − Sd=1
α (u) to the form χd=1

α (1/2) − χd=1
α (u) such that cα

becomes the sole fitting parameter. In order to study more qualitatively the difference
between PBC and APBC in 1 + 1 dimensions, we also introduce a measure of the fitting
error similar to Equation (2.66) given by

∆α =
1

nu − np − 1

nu∑

i=1

(
[χα(1/2)− χα(ui)]− [Sα(1/2)− Sα(ui)]

)2

, (2.74)

where Sα(ui) are the values of the numerical data, χα is the function used in the fit
(Equation (2.73) in this case), nu is the number of data points used in the fit and np is
the number of fitting parameters. The integer nu − np − 1 corresponds to the number of
degrees of freedom. For simplicity, we have suppressed here the functional dependence on
the aspect ratios b2, b3, . . . , bd.

In doing many of the fitting procedures in this and upcoming sections, we find that the
errors are especially sensitive to the data points at small u. In particular, if the fitting
procedure uses all L/2 available unique data points, then the errors often appear to diverge
as the lattice size L increases. However, this divergence can be attributed to the fact that
the resolution of a lattice scales according to ∆u = 1/L, and thus larger lattices are
capable of probing smaller values of u. Since these small-u effects are not what we wish
to measure, we perform our fits using a resolution ∆u and corresponding number of data
points nu = 1/(2∆u) that remain fixed as the lattice size L increases. Such a constraint
limits the lattice sizes on which we perform our fits to multiples of 1/∆u.
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Figure 2.10: Rényi entanglement entropies in 1 + 1 dimensions as a function of the
length of region A for free scalar fields on a lattice with L = 2000. The points
correspond to numerical results for various Rényi indicies α and the solid curves are
two-parameter fits to Equation (2.72). In (a) and (b), we plot data for PBC, while
in (c) and (d) we consider APBC. In each case, we show results as a function of
u ≡ LA/L and also as a function of log [L/π sin (πu)]. For the periodic case, we set
m = 10−6 as explained in Section 2.1.2.
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We plot in Figure 2.11 the fitting errors from Equation (2.74) corresponding to the Rényi
entanglement entropies for various values of α. We find that, as expected, these errors trend
to zero as L→∞ for PBC. However, for APBC, the fitting errors do not approach zero in
the thermodynamic limit. A new analytic form for χd=1

α (u) in the presence of antiperiodic
or more general twisted boundary conditions was recently suggested in Reference [48].

2.5.2 Candidate functions for cylinders in two spatial dimensions

We consider now the case of the two-cylinder entropy for non-interacting bosonic fields
in two spatial dimensions, with the goal of gaining insight into the universal function
χd=2
α (b, u), where b ≡ by = Lx/Ly. Unlike the one-dimensional case, here there is no

known analytical expression for this function in the thermodynamic limit. However, below
we discuss several candidate functional forms for χd=2

α (b, u) based on various ansatzes
(although none of these are expected to be exact in the thermodynamic limit).

Previous work suggested that the known one-dimensional function χd=1
α (u) in Equation (2.72)

may also apply in two spatial dimensions [49]. However, in the results that follow, we show
that although this one-dimensional function has some of the same qualitative features as
χd=2
α (b, u), it fails to completely characterize our two-dimensional data in the thermody-

namic limit. In particular, this functional form does not obey the thin-cylinder limit of
Equation (2.71).

Another candidate functional form was proposed by Stéphen, Ju, Fendley and Melko in the
context of studying the Quantum Lifshitz model (QLM) [50]. In this case, the functional
form for the two-cylinder universal function is given by

χα,QLM(b, u) =
24κd=2

α

π
ln

[
η(2ibu) η(2ib(1− u))

θ3(ibλu) θ3(ibλ(1− u))

]
+ γα,QLM, (2.75)

where γα,QLM is a constant (independent of b and u), θ3(τ) ≡ θ3(0, τ) is the Jacobi theta
function, η(τ) = θ2(π/6, τ/6)/

√
3 is the Dedekind eta function and λ is a model-dependent

parameter. We fix λ = 2 in the following, although in principle this parameter can take
other values. This function has been normalized [35] so that it reduces to Equation (2.71)
in the thin-cylinder limit.

In Reference [35], Chen, Cho, Faulkner and Fradkin use the AdS/CFT correspondence to
derive another candidate functional form for χd=2

α (b, u). For lattice aspect ratios b ≤ 1,
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Figure 2.11: The fitting errors corresponding to one-parameter fits of the (1 + 1)-
dimensional Rényi entanglement entropies to the expression in Equation (2.73) for (a)
PBC and (b) APBC. We observe that this expression is exact in the thermodynamic
limit (i.e. the errors trend to zero) for PBC but not for APBC. These errors are
measured using resolution ∆u = 0.05 on lattices of size L = 40, 60, . . . , 2000. We set
m = 10−6 for PBC and m = 0 for APBC. Note the logarithmic scale on the y-axis
in (a).
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this derivation gives

χα,AdS(b, ω) =
κd=2
α Γ4

(
1
4

)

3π2b
ω−1/3

[∫ 1

0

dζ

ζ2

(
1√

P (ω, ζ)
− 1

)
− 1

]
+ γα,AdS (for b ≤ 1),

(2.76)
where γα,AdS is a constant, Γ(x) is the gamma function and P (ω, ζ) = 1− ωζ3− (1− ω)ζ4.
The parameter ω is related to u through the integral

u(ω) =
3ω1/3(1− ω)1/2

2π

∫ 1

0

dζζ2

(1− ωζ3)

1√
P (ω, ζ)

. (2.77)

A final candidate form for χd=2
α (b, u) comes from the extensive mutual information (EMI)

model [51, 52, 12], which has been used in previous works to gain insight into entanglement
scaling behaviour in various dimensions [53, 54]. Recently, it was shown for the case of two
cylinders on a torus that the EMI model predicts [27]

χα,EMI(b, u) =
−2κα
πb

[
arccot (2bu)

u
+

arccot (2b(1− u))

1− u

]
+ γα,EMI, (2.78)

where γα,EMI is a constant.

Here, we focus on studying the dependence of χd=2
α on u for lattice aspect ratio b = 1.

As in Section 2.5.1, we calculate Sd=2
α (1/2) − Sd=2

α (u) so as to cancel both the area-law
contribution to the entanglement entropy as well as the b- and u-independent universal
constant γα (which has been studied in Reference [37]). In Figure 2.12, we show the
results of these least-squares fits for α = 1 as well as the amount that each fit deviates
from the numerical data. It is immediately clear that the one-dimensional function of
Equation (2.72) provides a poor characterization of that data.

We proceed to study the quality of these fits for χd=2
α as a function of system size L,

with the goal of understanding the functional behaviour of the two-cylinder entanglement
entropy in the thermodynamic limit. We calculate the fitting errors as in Equation (2.74)
for each of the four candidate functional forms and display our results in Figure 2.13.

We find that the behaviour of the finite-size scaling trends depend both upon the cho-
sen resolution ∆u and upon the lattice boundary conditions. PBC along the x-direction
and APBC along the y-direction are used to generate the plots presented in Figures 2.12
and 2.11. Table 2.1 summarizes the fitting errors measured using resolution ∆u = 0.05 for
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Figure 2.12: Fits of the von Neumann entanglement entropy to the four candidate
functions for χα(b, u) discussed in Equations (2.73), (2.78), (2.75) and (2.76) (each
with b = 1 and resolution ∆u = 0.05). The data points come from an L = 3000
free scalar system with PBC along the x-direction and APBC along the y-direction.
In (a), we show the shape dependence of the data points and the fits. In (b), we
illustrate the amount that each fit deviates from each data point. The fit deviation
for χ1,d=1 is excluded since it is much larger in magnitude than the other three curves.

59



0.000 0.005 0.010 0.015 0.020 0.025

1/L

10−5

10−4

10−3

10−2
∆

1
(a)

χ1,d=1

χ1,AdS

χ1,QLM

χ1,EMI

0.000 0.005 0.010 0.015 0.020 0.025

1/L

10−6

10−5

10−4

10−3

∆
2

(b)

χ2,d=1

χ2,AdS

χ2,QLM

χ2,EMI

Figure 2.13: The fitting errors corresponding to the four candidate functions for
γα as a function of 1/L for the 2D free boson (a) von Neumann and (b) second
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Fitting
error

x-direction y-direction d = 1 QLM AdS EMI

PBC PBC 3.18× 10−3 4.13× 10−3 1.56× 10−3 2.25× 10−3

∆1 PBC APBC 4.63× 10−3 5.49× 10−5 8.90× 10−5 1.94× 10−5

APBC PBC 4.60× 10−3 4.24× 10−5 1.12× 10−4 3.27× 10−5

APBC APBC 5.05× 10−3 2.85× 10−5 3.10× 10−4 1.69× 10−4

PBC PBC 9.28× 10−4 2.61× 10−3 1.19× 10−3 1.59× 10−3

∆2 PBC APBC 1.56× 10−3 7.73× 10−6 5.12× 10−5 1.91× 10−5

APBC PBC 1.51× 10−3 9.94× 10−6 4.68× 10−5 1.70× 10−5

APBC APBC 1.67× 10−3 2.06× 10−5 1.35× 10−4 8.28× 10−5

Table 2.1: The fitting errors corresponding to the four candidate functions for the
two-cylinder correction χα to the area law in 2 + 1 dimensions [29]. Results are
displayed for the von Neumann and second Rényi entropies and for different boundary
conditions The errors in this table are measured using resolution ∆u = 0.05 on a
square lattice of size L = 3000. Calculations for the fully periodic system include a
small mass m = 10−6 as explained in Section 2.1.2.

various boundary conditions. For the von Neumann entropy S1, the functions χQLM and
χEMI consistently yield the lowest fitting errors out of the four candidate functions, once at
least one boundary is antiperiodic. For the case of periodic boundary conditions in both
directions, the fitting errors for χQLM, χEMI and χAdS all become much larger, while for χd=1

these errors change only slightly and no longer correspond to the worst fit. In the case of
the second Rényi entropy, the errors corresponding to γQLM are consistently lowest, except
(again) for the case of PBC in both directions.

In addition to exploring the most suitable functional form for χd=2
α (u) for α = 1 and 2, we

also examine the ability of our fits to extract the universal number κd=2
α , which was defined

from the thin-cylinder limit in Equation (2.71). For (2 + 1)-dimensional massless real free
bosons in the continuum, this coefficient κ1 has been calculated numerically for the von
Neumann entropy [32] to be κd=2

1 = 0.0397 as well as for the second Rényi entropy [54]
to be κd=2

2 = 0.0227998. On a lattice, one can calculate κd=2
α by fitting to χd=2

α (u → 0)
in Equation (2.71) for small u. Here we use a slightly different procedure than the fixed-
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resolution approach used to fit the four candidate functions: for a given lattice of size
L ≥ 80, we extract κd=2

α in the u → 0 limit from our free boson calculations by fitting
Sd=2
α (40/L) − Sd=2

α (u) to Equation (2.71) for u = 31/L, 32/L, . . . , 40/L (we ignore the
smallest 30 values of u due to numerical issues that arise when the cylinder becomes very
thin). Results are illustrated in Figure 2.14.

The QLM, AdS and EMI functions all obey the known thin-cylinder behaviour of Equa-
tion (2.71) in the small-u limit, allowing for predictions of the universal number κd=2

α from
each. In Figure 2.14 we illustrate the κd=2

1 and κd=2
2 coefficients as predicted from fits (for

the entire range of u values and with fitting resolution ∆u = 0.05) to χQLM, χAdS and χEMI.
Although we know from the fitting errors that none of these three candidate functions
are exact in the thermodynamic limit, they are all still capable of extracting estimates
for κd=2

α that agree relatively well with the previously-calculated continuum values [32, 54]
and the lattice values from fits to Equation (2.71). In particular, χQLM and χEMI both
yield estimates for κd=2

1 (κd=2
2 ) that are within less than 5% (9%) of the value calculated

in Reference [32] (Reference [54]).
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Figure 2.14: The universal number κd=2
α in two spatial dimensions for the (a) von

Neumann and (b) second Rényi entropies, as extracted from fits to γα(u→ 0), γQLM,
γAdS and γEMI. The dashed lines indicate the values calculated in the continuum in
the u→ 0 limit [32, 54].
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Chapter 3

Monte Carlo methods for classical
interacting theories

This chapter includes results from the computational project for PHYS 705, as well
as original results not published elsewhere.

Having established certain properties about the non-interacting limit of lattice field theories
in Chapter 2, we now turn to more complicated interacting models such as the lattice
models and field theories introduced in Section 1.1. We consider both the classical d-
dimensional O(N) model as well as closely-related symmetry-broken Hamiltonians. We
thus add to the Hamiltonian of Equation (1.2) more general on-site (non-interacting) terms
that depend on a set of site-dependent parameters {gi} such that

H = −J
∑

〈ij〉
ni · nj +

∑

i

f ({gi},ni)

H = HO(N) +Hon−site,

(3.1)

with
Hon−site =

∑

i

f ({gi},ni) , (3.2)

where the function f can in general be an expansion in powers of the components of ni. For
example, the parameters {gi} might represent a (site-dependent) applied magnetic field Bi

64



such that f ({gi},ni) = −Bi · ni. As in Chapter 2, we focus our studies on hypercubic
lattices with linear lengths L1, L2, . . . , Ld along each respective lattice direction.

3.1 Monte Carlo methods

The goal of a Monte Carlo simulation is to calculate the expectation value 〈O〉 of some
observable quantity O. In a classical system, such an expectation value depends upon the
Hamiltonian H according to

〈O〉 =
1

Z
∑

states µ

Oµe−Eµ/T , (3.3)

where the sum is over all possible system states µ. Oµ is the value of the observable in
state µ and Eµ is the energy of state µ as calculated from the Hamiltonian. The symbol
Z represents the partition function, which is given by

Z =
∑

states µ

e−Eµ/T . (3.4)

The probability of finding the system in a particular state µ can be expressed as

pµ =
1

Z e
−Eµ/T , (3.5)

such that the expectation value 〈O〉 can be written as a weighted sum over the observables
of each state µ as 〈O〉 =

∑
µOµ pµ.

An exact evaluation of the sums in Equations (3.3) and (3.4) is only feasible for very
small interacting systems due to the fact that the number of terms in these sums grows
exponentially with the size of the system. For the Ising model, for example, evaluating
such sums with an optimized algorithm for a system of 25 spins requires about a minute
of CPU time [55], but the time required for 80 spins is longer than the age of the universe.
Monte Carlo methods approximate these sums by considering the values of the observable
quantity O that correspond to only M different states of the system at M different Monte
Carlo “times” t. These M states are chosen at random but in a way that the probability
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of sampling a state µ is given by pµ. The expectation value 〈O〉 can then be approximated
from [6]

〈O〉 ≈ 1

M

M∑

t=1

Oµt . (3.6)

Every Monte Carlo algorithm should be designed such that this approximation becomes
exact in the limit M →∞.

Monte Carlo algorithms utilize Markovian processes to sample the M states µt in Equa-
tion (3.6). When in a sampled state µt, such processes randomly select the next state µt+1

in the Markov chain with a transition probability P (µt → µt+1) that depends only upon the
state µt (and not upon any earlier states µt−1, µt−2, . . .). Each Monte Carlo algorithm must
sample the states µt in such a way that the corresponding probabilities pµt of sampling a
state are given by Equation (3.5). Such a constraint on the probabilities pµt amounts to
enforcing two conditions known as ergodicity and detailed balance.

The condition of ergodicity states that the probability of sampling a given state µ within a
Monte Carlo algorithm must always be nonzero. Although many of the transition probabili-
ties P (µ→ ν) can be zero within a given algorithm, there must always exist a chain of states
µ→ µ′ → µ′′ → · · · → ν with nonzero transition probabilities P (µ→ µ′), P (µ′ → µ′′), . . .
for any pair of initial and final states µ and ν [6].

The detailed balance condition ensures that the overall probability of transitioning into a
state µt is the same as the probability of transitioning out of the state µt such that [6]

∑

µt+1

pµtP (µt → µt+1) =
∑

µt−1

pµt−1P (µt−1 → µt), (3.7)

which guarantees that the probability distribution pµ does not change over time. Detailed
balance is, in fact, a particular solution of Equation (3.7) given by

pµP (µ→ ν) = pνP (ν → µ), (3.8)

where µ and ν can be any two system states. Since we wish for the probability distribu-
tion pµ to satisfy Equation (3.5), detailed balance therefore requires that the transition
probabilities of a Monte Carlo sampling algorithm satisfy

P (µ→ ν)

P (ν → µ)
= e−(Eν−Eµ)/T . (3.9)
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In the sections that follow, we examine various Monte Carlo algorithms for sampling states
of classical interacting Hamiltonians. We show that, although every algorithm we study
satisfies the conditions of ergodicity and detailed balance, different algorithms may have
different sampling efficiencies such that the number of samples M required to obtain a
converged estimate of 〈O〉 may vary drastically.

3.1.1 Local updates

The first Monte Carlo sampling algorithm was proposed and studied by Metropolis, Rosen-
bluth, Rosenbluth, Teller and Teller in 1953 [56] and by Hastings in 1970 [57]. This algo-
rithm is based on local changes to a system’s state µ such that the difference between the
current state and the proposed state only differ at a single lattice site i, which is selected
at random.

For the Hamiltonian of Equation (3.1), this algorithm works by selecting a site i at random
and proposing the change ni → nnew, where the orientation of the vector nnew is selected at
random. (Methods for selecting such N -dimensional unit vectors at random are discussed
in Section 3.2.) The energy change corresponding to this move is given by [6]

∆E = −J
∑

n.n. j of i

(nnew · nj − ni · nj) +
[
f ({gi},nnew)− f ({gi},ni)

]

= J (ni − nnew) ·
∑

n.n. j of i

nj +
[
f ({gi},nnew)− f ({gi},ni)

]
.

(3.10)

There are various possible choices for the transition probabilities P (ni → nnew) that satisfy
the condition of detailed balance, but the optimal strategy is to set

P (ni → nnew) =

{
e−∆E/T if ∆E > 0

1 otherwise.
(3.11)

The procedure for performing a local Monte Carlo update is given in Algorithm 3.1. The
steps of this algorithm must be executed many times in order to obtain independent sample
configurations. The M different configurations used to calculate 〈O〉 in Equation (3.6)
should be sufficiently spaced in Monte Carlo time so that each state µt in the sum is
uncorrelated with the previous state µt−1.
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Algorithm 3.1: Metropolis-Hastings algorithm applied to the nearest-neighbour
interacting Hamiltonian with on-site energy terms of Equation (3.1) [56, 57, 6]. This
algorithm describes a local (single-spin) Monte Carlo update and must be executed
several times in order to obtain uncorrelated system configurations.

1 choose a site i from the lattice at random;

choose a random new orientation nnew for the spin at this location;

2 calculate the energy difference ∆E associated with changing the

current spin orientation ni to nnew using Equation (3.10);

3 if ∆E ≤ 0 then

4 accept the move ni → nnew;

5 else

6 accept the move ni → nnew with probability exp(−∆E/T );

7 end

In principle, this algorithm satisfies the condition of ergodicity at any finite temperature
since there is always a nonzero probability of selecting any site i and changing the vector
ni to any desired configuration. However, at temperatures near a critical point Tc, large
fluctuations in observables can lead to a feature known as critical slowing down, whereby
the Monte Carlo time required to obtain independent sample configurations diverges with
system size. At low temperatures, this algorithm can be get stuck in local energy min-
ima such that every path in configuration space to the global energy minimum requires
a temporary increase in energy, which becomes highly improbable at low temperatures.
Therefore, in practice this algorithm can be nonergodic for the timescales used in a typical
simulation.

3.1.2 Cluster updates

In order to combat the issues of practical nonergodicity that can result from using only
local Monte Carlo updates, new Monte Carlo algorithms were introduced by Swendsen and
Wang in 1987 [58] and by Wolff in 1989 [59]. Both of these algorithms probabilistically
generate clusters of spins and then collectively update the spins within the clusters. Here,
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ni
v

ni

v

Figure 3.1: Illustration of the spin update procedure within the Monte Carlo Wolff
cluster algorithm [59]. After a cluster has been generated, all spins within the cluster
are reflected about the hyperplane orthogonal to the vector v with a probability that
depends upon the cluster’s change in on-site energy.

we focus on the algorithm by Wolff since it is be utilized in the sections that follow as well
as in Chapter 4.

Within the Wolff algorithm, an N -dimensional unit vector v is chosen at random and
spins with the same sign of projection onto v are added to a cluster with a probability
that depends upon the nearest-neighbour coupling energy. The original Wolff algorithm
was designed for a Hamiltonian with no on-site energy term such that H = Hn.n.. In this
case, the group of spins that results from the iterative cluster-building procedure are all
reflected about the hyperplane orthogonal to the vector v, as illustrated in Figure 3.1.

In the presence of an on-site term Hon−site in the Hamiltonian, the Wolff cluster algorithm
can be modified slightly in order to incorporate a cluster acceptance probability given
by [6, 60]

Paccept = min {1, exp (−∆Eon−site/T )}

= min

{
1, exp

[
− 1

T

∑

i∈cluster

f ({gi}, R(v)ni)− f ({gi},ni)
]}

,
(3.12)

such that the cluster built within the original algorithm is only accepted and flipped with
probability Paccept. A summary of the steps corresponding to a Wolff update for a Hamil-
tonian of the general form in Equation (3.1) is given in Algorithm 3.2.
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Algorithm 3.2: Wolff cluster algorithm for non-local Monte Carlo updates for the
O(N) model of Equation (3.1) [59, 6]. A cluster of spins is generated probabilistically
based on the nearest-neighbour interaction energy and then the corresponding update
is either accepted or rejected with a probability that depends upon Hamiltonian’s on-
site energy.

1 choose a random N-dimensional unit vector v;

2 create an empty cluster and an empty buffer;

choose a site i from the lattice at random;

3 add site i to the cluster and to the buffer;

4 while buffer is not empty do

5 pop site i off the buffer;

6 for each n.n. j of i that is not already in the cluster do

7 add site j to the cluster and to the buffer with probability

1− exp {min [0,−2(J/T )(v · ni)(v · nj)]};
8 end

9 end

10 calculate Paccept from Equation (3.12);

11 with probability Paccept do

//reflect all spins in the cluster:

12 for each site i in the cluster do

13 reflect ni about the hyperplane orthogonal to v such that

ni → R(v)ni = ni − 2(v · ni)v;
14 end

15 end
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3.2 Random points on hyperspheres

The local and global Monte Carlo updates described in Sec. 3.1 all rely on an algorithm
capable of generating pseudorandom N -component unit vectors n. One can think of these
unit vectors as starting at the origin and ending on the surface of a unit hypersphere
embedded in N dimensions. Such a hypersphere is known as an (N − 1)-sphere.

One can parametrize the surface a hypersphere in terms of hyperspherical angular coor-
dinates θ1, θ2, . . . θN−1, where θi ∈ [0, π] for i = 1, 2, . . . N − 2 and θN−1 ∈ [0, 2π). The
Cartesian components are given in terms of these angular coordinates as

n1 = cos(θ1)

n2 = sin(θ1) cos(θ2)

n3 = sin(θ1) sin(θ2) cos(θ3)

...

nN−1 = sin(θ1) · · · sin(θN−2) cos(θN−1)

nN = sin(θ1) · · · sin(θN−2) sin(θN−1).

(3.13)

One might think that it is possible to generate random points that are uniformly distributed
on the surface of a hypersphere by choosing the angles θ1, θ2, . . . θN−1 from uniform distri-
butions. Such an approach works when N = 2, where choosing the angle θ1 from a uniform
distribution with θ1 ∈ [0, 2π) indeed produces points that are uniformly distributed on the
surface of a 2-sphere (circle). However, this approach fails for N ≥ 3. For N = 3, for
example, selecting the angles θ1 and θ2 from uniform distributions produces points on the
hypersphere that are more dense near the poles (where θ1 = 0 or π) and more sparse near
the equator (where θ1 = π

2
), as illustrated in Fig. 3.2a.

There are several methods available for choosing points uniformly from the surface of a
hypersphere [61, 62, 63, 64, 65, 66]. In N = 3, these methods generate a distribution such
as the one illustrated in Fig. 3.2b. Two common algorithms that work for all N ≥ 2 are
the rejection method and the Gaussian method.

The rejection method (Algorithm 3.3) repeatedly generates N independent Cartesian co-
ordinates from a uniform distribution until it finds a point inside the unit hypersphere. It
then projects such a point to the surface of the hypersphere. This method becomes infeasi-
ble as N increases because it must call a (uniform) random number generator an average of
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(a) (b)

Figure 3.2: Points chosen at random on the surface of a sphere (N = 3). In (a),
the spherical coordinates θ1 and θ2 are chosen from uniform distributions, which
results in non-uniform “clustering” near the poles. In (b), the points are chosen to
be uniformly distributed on the surface of the sphere by using an algorithm such as
Algorithm 3.3 or 3.4.

NVhypercube/Vhypersphere times, where Vhypercube = 2N is the volume of the hypercube inside
of which each generated point lies and Vhypersphere = πN/2/Γ

(
N
2

+ 1
)

is the volume of the
hypersphere inside of which accepted points must lie. This number of required random
numbers thus grows rapidly (faster than exponentially) as N increases.

Alternatively, the Gaussian method (Algorithm 3.4) requires that N numbers be selected
from a Gaussian (normal) distribution, which can be accomplished by using uniformly-
distributed random numbers in conjunction with an algorithm such as the Box-Muller
transformation [67]. Although the process of choosing from a Gaussian distribution is
significantly slower than choosing from a uniform distribution, the Gaussian method is
still most efficient for N ' 2 or 3 since it requires far fewer random numbers than the
rejection method.
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Algorithm 3.3: Rejection method for choosing points on the surface of a unit
hypersphere in N -dimensional space, where N ≥ 2 [65]. This method generates points
within a hypercube with linear length 2 until it finds a point inside the boundary of
the unit hypersphere. It then projects this point to the surface of the hypersphere.

1 initialize S to any value greater than 1;

2 while S < 1 do

3 choose n1, n2, . . . , nN from a uniform distribution with ni ∈ (−1, 1);

4 set S =
∑N

i=1 n
2
i ;

5 end

6 return (n1/
√
S, n2/

√
S, . . . , nN/

√
S);

Algorithm 3.4: Gaussian method for choosing points on the surface of a unit hy-
persphere in N -dimensional space, where N ≥ 2 [63, 65]. This method independently
generates N Cartesian coordinates from a (hyperspherically-symmetric) Gaussian dis-
tribution with mean 0 (and any finite variance). It then projects the resulting point
to the surface of the hypersphere.

1 choose n1, n2, . . . , nN from a Gaussian distribution with mean 0;

2 set S =
∑N

i=1 n
2
i ;

3 return (n1/
√
S, n2/

√
S, . . . , nN/

√
S);

3.3 Critical exponents for the O(4) model in three spa-

tial dimensions

We now put the methods introduced in the previous sections into practice by utilizing
Monte Carlo simulation in order to extract observables and critical exponents correspond-
ing to the O(4) model. Such critical exponents have been calculated previously [68], and
we thus use these calculations as a means of establishing the validity of the Monte Carlo
methods introduced in Sections 3.1 and 3.2. We then proceed to explore new, unstudied
models in Chapter 4.
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We consider the Hamiltonian of Equation (1.2) (with no on-site energy term) with N = 4
and in d = 3 spatial dimensions. This model is known to have a critical temperature given
by [69]

Tc/J = 1.06835(13). (3.14)

A conventional order parameter m for the O(N) model of Equation (1.2) is the magne-
tization per spin, which is defined in terms of the vectorial magnetization per spin m
as

m =
〈√

m ·m
〉
,

m =
1

Ld

∑

i

ni.
(3.15)

However, one can also study the critical exponents associated with a different order param-
eter mT which is expressed in terms of the tensorial magnetization per spin Mαβ as [68]

Mαβ =
1

L3

∑

i

[
niαniβ −

1

4
δαβ

]
,

mT =
〈√

Tr (M2)
〉
,

(3.16)

where niα are the components of ni, with α, β = 1, 2, 3, 4.

Recall the critical exponents as defined in Section 1.3. While the exponents α and ν can
be calculated without requiring definition of an order parameter, the exponents β, γ and
η in general depend upon how the order is defined [68]. We therefore adopt the notation
whereby we use a subscript T to denote the critical exponents that specifically correspond
to the tensorial magnetization. Based on the hyperscaling relations of Equation (1.25), we
note that in d = 3 the anomalous dimension ηT can be expressed in terms of other critical
exponents as

ηT =
2βT
ν
− 1, (3.17)

or
ηT = 2− γT

ν
. (3.18)

Exactly at the critical point Tc, we know from Equation (1.29) that the order parameter
on a finite size lattice with Lx = Ly = Lz ≡ L is expected to scale with the system size
such that

mT (t = 0) ∼ L−βT /ν . (3.19)

74



Therefore, when the system is critical, we expect that the slope of log(mT ) versus logL
should give an estimate for βT/ν, which can in turn be used to estimate ηT through
Equation (3.17).

Similarly, the tensorial susceptibility per spin at the critical point is expected to scale with
system size such that

χT (t = 0) ∼ LγT /ν , (3.20)

and one can therefore utilize the slope of log(χT ) versus logL in conjunction with Equa-
tion (3.18) in order to extract another estimate for ηT .

We utilize the Monte Carlo methods of Section 3.1 to measure the observables mT and
χT at the critical temperature given in Equation (3.14). We perform simulations on cubic
lattices with lengths L = 8, 10, 12, 16, 24 and 32 using a total of 107 Monte Carlo sweeps for
each lattice. One Monte Carlo sweep (MCS) consists of L3/2 local updates (Algorithm 3.1),
followed by one Wolff cluster step (Algorithm 3.2), followed by another L3/2 local updates.

In Figure 3.3, we plot the Monte Carlo results for mT and χT on a logarithmic scale as a
function of L for the case where the temperature is given by T/J = 1.06835, which is the the
median expected critical temperature calculated in Reference [69] (see Equation (3.14)).
Fits of the tensorial magnetization to Equation (3.17) in this case yield ηT = 1.362(1),
while fits of the tensorial susceptibility to Equation (3.18) predict ηT = 1.361(1). The
errors here are calculated by adding Gaussian noise to the Monte Carlo data and repeating
the fitting procedure.

Due to the error in the value of Tc in Equation (3.14), we repeat the simulation and
calculations at T/J = 1.06822 and T/J = 1.06848 (the upper and lower bounds for Tc/J).
The resulting predictions for the anomalous dimension ηT are given in Table 3.1.

In Reference [68], Ballesteros, Fernández, Mart́ın-Mayor and Muñoz Sudupe calculate ηT
using methods similar to those described above, but with infinite volume extrapolations
that account for additional finite size corrections in Equations (3.17) and (3.18) due to the
first irrelevant operator. The results of three such extrapolations yield estimates of 1.374(5),
1.375(5) and 1.376(2) for the tensorial anomalous dimension ηT [68]. At T/J = 1.06822
and T/J = 1.06835, our results do not agree with these published values. However, at
the upper-bound critical temperature T/J = 1.06848, our results are in partial agreement
with the results of Ballestero et al. In order to obtain a more reliable estimate for this
tensorial anomalous dimension, it would be best to first measure the critical temperature
Tc to higher precision since the estimates for ηT are quite sensitive to temperature. In
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Figure 3.3: Fits used to extract the tensorial anomalous dimension ηT for the O(4)
model in d = 3. Note the logarithmic scale on both axes. In (a), we plot Monte
Carlo results for mT as a function of L and perform a fit to Equation (3.17). In (b),
we plot χT versus L and fit to Equation (3.18). All data in this figure corresponds
to T/J = 1.06835, which is estimated to be the median critical temperature [69] (see
Equation (3.14)).
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Estimate for Estimate for ηT

Tc/J From mT From χT

1.06822 1.355(1) 1.354(1)

1.06835 1.362(1) 1.361(1)

1.06848 1.369(1) 1.368(1)

Table 3.1: Estimates for the tensorial anomalous dimension ηT for the O(4) model
in d = 3. We perform fits to Equations (3.17) and (3.18) using the lower-bound,
median and upper-bound estimates for the critical temperature in Equation (3.14).

addition, we could improve the quality of our estimates by accounting for additional finite
size corrections as in Reference [68]. Nonetheless, our results for ηT still give us confidence
in the validity of our Monte Carlo methods, are we proceed to apply these methods to
more exotic, previously unexplored models in the next chapter.
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Chapter 4

Effective theories of
high-temperature superconductivity

This chapter includes results from References [60], [70] and [71], as well as original
results not published elsewhere.

As introduced in Section 1.1, coarse-graining procedures provide useful approaches to ad-
dressing the issues of exponential complexity that are inherently present within interacting
many-body systems. In principle, all models within condensed matter physics employ some
degree of coarse-graining since the Hamiltonian rarely accounts for interactions at the sub-
atomic level. In some situations, the coarse-grained order parameter can be expressed in
terms of certain measurable microscopic variables while, for other models, this order pa-
rameter represents a more effective description of the system. For lattice models in the
latter case, the effective model describes interactions at a new characteristic lattice length
scale that, in general, has an unknown relationship to the system’s (smaller) underlying
physical lattice spacing.

In this chapter, we describe techniques for developing effective field theories in the con-
text of strongly-interacting systems by exploiting certain fundamental symmetries. We
specifically focus on building such an effective theory to describe exotic behaviours of
high-temperature superconductors within their mysterious pseudogap regime.
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4.1 The cuprate pseudogap

While a microscopic description of the mechanism responsible for low-temperature (con-
ventional) superconductivity was established in 1957 [72, 73], a corresponding microscopic
theory for high-temperature superconducting materials has eluded physicists since the dis-
covery of such materials in 1986 [74]. However, even though this microscopic mechanism
remains unknown, many characteristic features and symmetries of high-temperature su-
perconductors have been established over the past several decades, and effective theories
can yield valuable predictions and insight by exploiting such features. One distinguishing
characteristic of high-temperature superconductors is the existence of the so-called pseu-
dogap regime, which corresponds to temperatures above the superconducting (SC) critical
temperature Tc. Within this regime, the Fermi surface has a momentum-dependent energy
gap that disappears along certain momentum directions.

Many of the most widely-studied high-temperature superconductors belong to a class of
materials known as cuprates. One such cuprate material is YBa2Cu3O6+x (YBCO), for
which the underlying elemental structure is shown in Figure 4.1. Recent x-ray scattering
experiments on YBCO [75, 76, 77] have detected significant spatial fluctuations of charge
distribution, known as charge-density wave (CDW) order, which is now widely believed
to be a ubiquitous feature of the cuprate pseudogap regime. In order to detect such
fluctuations, these experiments first measure scattering intensities as a function of wave
vector q and then extract the peak value of this intensity as a function of temperature.

The resulting CDW order in these experiments increases gradually as one lowers the tem-
perature from T ≈ 200 K down to temperatures in the vicinity of Tc. As shown in Fig-
ure 4.2, the x-ray scattering intensity corresponding to CDW order has a concave-upward
shape as a function of temperature during this onset, which is different from the concave-
downward shape that is traditionally observed for an order parameter corresponding to a
broken symmetry. By analogy with previous work [78, 79, 80], this concave-upward shape
suggests that the underlying effective model leading to this behaviour may correspond to
angular fluctuations of an order parameter with at least three components, much like the
model of Equation (3.1) (with N ≥ 3). In the following section, we discuss in more detail
the specific symmetries that constrain the form of our effective model.
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Figure 4.1: The underlying physical lattice structure of YBa2Cu3O7 with lattice
parameters aphys, bphys and cphys. We compare our simulation data with experimental
results on related compounds YBa2Cu3O6+x, with 0.5 . x . 0.67.
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Figure 4.2: Peak CDW scattering intensities resulting from resonant soft x-ray scat-
tering experiments on YBa2Cu3O6.67 [81]. This material has superconducting crit-
ical temperature Tc = 65.5 K, and the plotted data corresponds to wave vector
q = (−0.31, 0, 1.48). The CDW order increases with a concave-up shape as the
temperature is lowered down to Tc.

4.2 Competing superconducting and charge-density

wave orders

Experimental observations of CDW order through x-ray scattering have led to the sugges-
tion that CDW order plays a significant role in the physics of the pseudogap regime of
the cuprate superconductors. In particular, it seems likely that the competition between
CDW order and SC order within the this regime can help to explain the destruction of SC
order as one raises the temperature above Tc. We now propose a model for the pseudogap
regime of the cuprate superconductors that incorporates this competition.

Our model is described by a six-dimensional order parameter n(r) [60]. This order param-
eter has components nα(r), with α = 1, 2, . . . , 6. The first two components of the order
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parameter represent the SC order, which is given by the complex field

Ψ(r) ∝ n1(r) + in2(r). (4.1)

The remaining four components of n(r) represent the charge-density wave order along the
x and y directions, which are given respectively by the fields

Φx(r) ∝ n3(r) + in4(r),

Φy(r) ∝ n5(r) + in6(r).
(4.2)

We consider these degrees of freedom to interact with each other in two-dimensional space
such that the vectors r have two components. In Section 4.6, we further extend our model
to consider interactions in three-dimensional space.

We assume that the system always prefers to acquire either SC or CDW order locally. As
a result, the magnitude of n(r) is non-negligible at every location r. The order parameter
is thus excluded from existing in the vicinity of the origin of the six-dimensional space
defined by the components of n(r). At low T , we expect the system to acquire SC order
such that the order parameter lives mainly within the two-dimensional plane corresponding
to Ψ. However, as the temperature increases, we expect the order parameter to explore
the entire six-dimensional space more completely. See Figure 4.3 for a visualization of
these expectations at low and high temperatures. At intermediate temperatures (within
the pseudogap regime), we expect the system to be characterized by a competition between
SC and CDW order. We note that, in the limit of very high temperatures, this assumption
is not valid since a thermal system no longer acquires any type of local order as T → ∞.
We therefore do not expect our model to agree with experimental observations in the limit
of high temperatures.

The above assumptions indicate that radial fluctuations of n(r) are restricted and less
significant to the underlying physics than angular fluctuations within the six-dimensional
space. In order to further simplify our model in the calculations that follow, we neglect
amplitude fluctuations completely and take the order parameter to be a unit vector n̂(r).
Our effective model accounts for the competition between SC and CDW order in the
pseudogap regime through angular fluctuations of these unit vectors.
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Figure 4.3: Expected behaviour of the order parameter n(r) at (a) high and (b) low
temperatures. The competition between SC and CDW order is accounted for by
angular fluctuations of n(r) within a six-dimensional space. At high temperatures,
the system explores both SC and CDW order. At low temperatures, we expect the
system to prefer SC order.

4.2.1 Effective classical Hamiltonian

The partition function we introduce to describe angular fluctuations of the unit vectors
n̂(r) is given by

Z =

∫
Dn δ

(
6∑

α=1

n2
α(r)− 1

)
e−βH , (4.3)

where
∫
Dn ≡ ∏r

∏
α

∫
nα(r) denotes a functional integral and the Hamiltonian is given

in the continuum by [60, 70]

H =
ρs
2

∫
d2r




2∑

α=1

(∇nα)2 + λ

6∑

α=3

(∇nα)2 + g

6∑

α=3

n2
α

+ g′
(

6∑

α=3

n2
α

)2

+ w
[(
n2

3 + n2
4

)2
+
(
n2

5 + n2
6

)2
]

 ,

(4.4)
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with the additional constraint that
∑6

α=1 n
2
α(r) = 1 such that n(r) is a unit vector at every

location r. The parameters ρs, λ, g, g′ and w are used to describe the material-dependent
features of hole-doped cuprate superconductors and are taken to be temperature-independent.
The parameter ρs corresponds to the zero-temperature helicity modulus, which controls
the overall temperature scale. The coupling λ represents the relative energy cost for spatial
variations of SC versus CDW order. The parameters g and g′ are coefficients of quadratic
and quartic energy anisotropy terms (respectively) and together they represent the relative
energy cost for ordering along the SC versus CDW directions. Finally, the parameter w
controls the relative energy cost for the chosen symmetry of the CDW order. When w < 0,
the energy is minimized when the system imposes stripe CDW order such that only one
of Φx or Φy is nonzero. On the other hand, when w > 0, the system prefers checkerboard
CDW order such that the CDW order is split equally along the x and y lattice directions.

We note that when λ = 1 and g = g′ = w = 0, this Hamiltonian respects an O(6) symmetry
(and, as discussed in Section 4.2, we also expect for general choices of parameters that the
Hamiltonian respects an approximate O(6) symmetry in the limit of high temperatures).
When w = 0, but λ 6= 1, g 6= 0 or g′ 6= 0, then this symmetry is broken down to
O(2) × O(4). The w term is responsible for breaking the O(4) symmetry corresponding
to the four CDW components of n̂(r) down to O(2)×O(2) oZ2, where the Z2 represents
the symmetry between x and y. For general choices of parameters, the resulting overall
symmetry is thus given by O(2)×O(2)×O(2) o Z2.

In order to perform Monte Carlo simulations corresponding to this Hamiltonian, we place
the system on a two-dimensional square lattice with L sites along both the x and y direc-
tions. We choose a lattice with periodic boundary conditions, lattice spacing a and sites
labelled by index i. The discretized version of the Hamiltonian is then given by

H = H1 +H2, (4.5)

where

H1 =
ρs
2

∑

〈ij〉

[
2∑

α=1

(niα − njα)2 + λ
6∑

α=3

(niα − njα)2

]
(4.6)

and

H2 =
ρsa

2

2

∑

i


g

6∑

α=3

n2
iα + g′

(
6∑

α=3

n2
iα

)2

+ w
[(
n2
i3 + n2

i4

)2
+
(
n2
i5 + n2

i6

)2
]

 . (4.7)

Here, as in Equations (2.1) and (1.2), 〈ij〉 denotes that the corresponding sum is over all
nearest-neighbouring pairs of sites on the lattice. The total number of sites on the lattice
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is Nsites = L2. We emphasize that, since the lattice Hamiltonian H represents an effective
theory, the lattice spacing a is not given by any of the lattice parameters aphys, bphys and
cphys for the physical underlying lattice illustrated in Figure 4.1.

By expanding the factors of (niα − njα)2 in the expression for H1, one can write the Hamil-
tonian as

H

ρs
=−

∑

〈ij〉

[
2∑

α=1

niαnjα + λ

6∑

α=3

niαnjα

]

+
1

2

∑

i


[ga2 + 4(λ− 1)

] 6∑

α=3

n2
iα + g′a2

(
6∑

α=3

n2
iα

)2

+ wa2
[(
n2
i3 + n2

i4

)2
+
(
n2
i5 + n2

i6

)2
]

 ,

(4.8)

which is of the same form as Equation (3.1) when λ = 1. As a result, one can use the Monte
Carlo method described in Algorithm 3.2 (as well as local updates and more sophisticated
methods that are discussed in Section 4.3.2) in order to compute observables corresponding
to this Hamiltonian in the case where the couplings are isotropic such that λ = 1.

In Figure 4.4, we show a sample configuration from a Monte Carlo simulation of Equa-
tion (4.8) for a given set of model parameters. This sample was taken at temperature
T/ρs = 0.18, which is below the SC critical temperature Tc, as will be discussed in Sec-
tion 4.4.2). This figure illustrates the competition between SC and CDW order within our
model. Specifically, it is known through the theory developed by Berezinskii, Kosterlitz
and Thouless that the loss of superconducting order as temperature increases is related to
an increased presence of SC vortex-antivortex pairs, which become unbound for temper-
atures above Tc [82, 83, 84, 85, 86]. Here, we see that the SC vortices and antivortices
observed in our sampling (which correspond to regions of weakened SC order) are indeed
correlated with spatial regions of enhanced CDW order.

4.2.2 Ground-state order

At zero temperature, the system exists in a state where its energy is minimized. From
Equations (4.4) and (4.5), we see such a state is thus spatially uniform such that the gradi-
ent terms in Equation (4.4) (or, equivalently, the finite difference terms in Equation (4.6))
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Figure 4.4: Two visualizations of a sample Monte Carlo configuration for the model
described by Equation (4.8) for parameters λ = 1, ga2 = 0.4, g′a2 = 0.0, wa2 = −0.2,
L = 64 and T/ρs = 0.18. In the upper plot, we use white arrows as well as colour
and shading to illustrate the magnitude and orientation of the degrees of freedom
in the SC plane. Darker shading corresponds to stronger CDW magnitude. In the
lower plot, the colour corresponds to the CDW magnitude while the black arrow are
the streamlines of the SC order.
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Favoured CDW order Ground state Constraints on g and g′

SC g > 0, g + g′ > −w
Stripe (w < 0) CDW g + g′ < −w, g + 2g′ < −2w

SC + CDW g < 0, g + 2g′ > −2w

SC g > 0, 2g + 2g′ > −w
Checkerboard (w > 0) CDW 2g + 2g′ < −w, g + 2g′ < −w

SC + CDW g < 0, g + 2g′ > −w

Table 4.1: Ground-state phases corresponding to the model in Equation (4.8). The
type of CDW order depends upon the sign of the model parameter w. The corre-
sponding phase diagrams are shown in Figure 4.5.

vanish and one can write niα = nα for all lattice sites i. Determining the ground state then
amounts to determining the components nα that minimize H2 in Equation (4.7).

As discussed in Section 4.2.1, when w < 0 our model prefers for the CDW to be stripe-like
such that only one of Φx or Φy is nonzero. In this case one can choose an orientation of
the CDW order such that the ground state satisfies

nα = (cos θ, 0, sin θ, 0, 0, 0) (4.9)

for some angle θ that depends on the parameters of our model. The ground state corre-
sponds to SC order when θ = 0 or π, while it corresponds to CDW order when θ = π/2 or
3π/2. For all other angles, the SC and CDW orders coexist and we label the ground state
as SC + CDW. From this expression for nα, the ground-state Hamiltonian is then given
by

Hg.s.(θ, w < 0) = H2(θ) =
ρsa

2L2

2

[
g sin2 θ + (g′ + w) sin4 θ

]
. (4.10)

Minimizing Hg.s.(θ, w < 0) then allows us to determine the ground-state order as a function
of our model parameters. The results are summarized in Table 4.1 and illustrated in
Figure 4.5a.

On the other hand, when w > 0 the system favours checkerboard CDW order such that
the magnitudes of Φx and Φy are equal. One can then specify the ground state according
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Figure 4.5: Ground-state phase diagrams for the model in Equation (4.8) when (a)
w < 0 and (b) w > 0. The dashed lines indicate first-order phase transitions, while
the solid lines mark second-order transitions.
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to

nα =

(
cos θ, 0,

sin θ√
2
, 0,

sin θ√
2
, 0

)
, (4.11)

where the value of θ corresponds to the nature of the ground state as before. In this case
the ground-state Hamiltonian is given by

Hg.s.(θ, w > 0) = H2(θ) =
ρsa

2L2

2

[
g sin2 θ +

(
g′ +

w

2

)
sin4 θ

]
. (4.12)

Comparing Equations (4.12) and (4.10) then shows that the parameters that minimize
Hg.s.(θ, w > 0) are the same as those for Hg.s.(θ, w < 0) except that one must replace w
with w/2. The resulting parameter-dependent ground states are listed in Table 4.1 and
the ground-state phase diagram is shown in Figure 4.5b.

Since we wish compare with experimental materials that are superconductors at low tem-
peratures, we restrict our choices of model parameters g, g′ and w such that the ground
state corresponds to SC order.

4.3 Analytical and numerical techniques

In this section, we examine various techniques for measuring the expectation value of
observable quantities O within the model given by Equation (4.8). Such expectation values
depend on the Hamiltonian H according to Equation (3.3). One observable that we will
be particularly interested in computing in the following sections is the CDW structure
factor SΦx , since it can be compared with the peak x-ray scattering intensities that are
plotted in Figure 4.2. We introduce an explicit expression for SΦx in Section 4.4.1. Here,
we start by describing an approximate analytical method for computing the expectation
values of certain observables. We then compare the results with exact numerical results
from Monte Carlo simulations. We show that although such analytical approximations
are valid at certain temperatures, numerical techniques are necessary in order to extract
the predictions of the effective theory of Equation (4.8) for temperatures in the vicinity of
the superconducting phase transition Tc. We then proceed to develop Monte Carlo cluster
updates in order to efficiently simulate this theory.
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4.3.1 Large-N expansion

While observables corresponding to the Hamiltonian in Equation (4.4) or (4.8) cannot
be calculated exactly, one can obtain an approximation for such observables by consid-
ering a more general model where the order parameter n̂(r) has N components rather
than 6 components. In such a model, the SC field Ψ corresponds to the components
n1(r), n2(r), . . . , nN/3(r) and the CDW fields Φx and Φy correspond to the components
n(N/3)+1(r), n(N/3)+2(r), . . . , n2N/3(r) and n(2N/3)+1(r), n(2N/3)+2(r), . . . , nN(r) (respectively).
The Hamiltonian for this generalized N -component order parameter is given by [60]

HN

ρs
=−

∑

〈ij〉



N/3∑

α=1

niαnjα + λ
N∑

α=(N/3)+1

niαnjα




+
1

2

∑

i


[ga2 + 4(λ− 1)

] N∑

α=(N/3)+1

n2
iα + g′a2




N∑

α=(N/3)+1

n2
iα




2

+ wa2






2N/3∑

α=(N/3)+1

n2
iα




2

+




N∑

α=(2N/3)+1

n2
iα




2


 .

(4.13)

Such a model can be solved analytically in the limit of large N [60]. In Figure 4.6a, we
compare results for the CDW structure factor (to be defined in Section 4.4.1) as extracted
from this large-N analytical expansion versus exact numerical calculations from Monte
Carlo simulations. Since experimental results yield scattering intensities in arbitrary units,
in the following sections we fit a parameter that rescales the y-axis of such structure factor
plots. Therefore, in Figure 4.6b we plot the same curves as in Figure 4.6a, but with the
Monte Carlo data rescaled such that the location of the peak structure factors match.
In both plots, we find that these methods yield significant differences for certain model
parameters and temperatures. We therefore turn to Monte Carlo methods in order to
extract exact estimates for observables from the model of Equation (4.8).

4.3.2 Monte Carlo methods

We use a combination of local and Wolff cluster updates as described in Section 3.1 in
order to simulate the effective Hamiltonian of Equation (4.8). However, since the Wolff
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Figure 4.6: Comparisons of results for the CDW structure factor SΦx using large-
N analytical methods versus exact Monte Carlo simulations. In (a), we compare
directly the results extracted from these two methods, while in (b) we rescale the
y-axis of the Monte Carlo data such that the locations of the peak structure factors
match. Note that all curves have the model parameter g′a2 set to zero.
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cluster update of Algorithm 3.2 can only be performed in the case where the nearest-
neighbour couplings are isotropic in the six-dimensional space of the order parameter, we
restrict most of our Monte Carlo studies to the parameter regime where λ = 1. In this
case, the Hamiltonian can be written (in the same form as Equation (3.1)) as a sum of a
nearest-neighbour interaction term (with isotropic interactions for all components α) and
an on-site energy term as

Hλ=1 = Hn.n. +Hon−site, (4.14)

where
Hn.n. = −ρs

∑

〈ij〉
n̂i · n̂j (4.15)

and

Hon−site =
ρsa

2

2

∑

i


g

6∑

α=3

n2
iα + g′

(
6∑

α=3

n2
iα

)2

+ w
[(
n2
i3 + n2

i4

)2
+
(
n2
i5 + n2

i6

)2
]

 . (4.16)

Recall that, in the Wolff method of Algorithm 3.2, a random vector v on the six-dimensional
unit sphere is generated and clusters of spins (with the same sign of projection onto v) are
then reflected about the hyperplane normal to v. Within this model, once a cluster is gen-
erated, it is accepted or rejected with probability given by Equation (3.12), which depends
upon the difference ∆Eon−site in the on-site energy (as calculated using Equation (4.16))
that would result from reflecting the cluster of spins built during the first stage of the
algorithm. Such cluster moves are most beneficial at low T , where the configurations
and observables corresponding to local updates can get stuck in local energy minima and
become non-ergodic for the typical time scales used for the simulations.

We note that this Wolff cluster algorithm considers all directions of the six-dimensional
order parameter space symmetrically. Many of the proposed cluster moves vainly attempt
to reflect spin clusters about random hyperplanes in the O(6) unit sphere, without making
use of all the information known about the Hamiltonian’s symmetry. As a result, many of
the proposed cluster moves correspond to large increases in energy that are rarely accepted,
especially at low temperatures where efficient cluster updates are most needed. In the left-
hand side of Figure 4.7, we show histograms of the typical cluster sizes that are generated
and accepted within this Wolff algorithm. At T/ρs = 0.1 less than 0.1% of the largest
clusters generated by the algorithm are accepted, which indicates that this algorithm is
quite inefficient at low temperatures. At the higher temperature T/ρs = 0.5 (which is above
the superconducting critical temperature, as will be discussed in Section 4.4.2), most of
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the generated clusters are accepted and we note that the typical cluster sizes are smaller
than in the low-temperature regime.

This original Wolff cluster algorithm would yield efficient updates for a Hamiltonian with
O(6) symmetry. However, since we know that the Hamiltonian in Equation (4.8) has
O(2) × O(2) × O(2) o Z2 symmetry, we now proposed a new cluster move that takes
advantage of the O(2) symmetry for each of the three complex fields Ψ, Φx and Φy. Within
this new cluster algorithm, the random vector v is constrained to one of the O(2) unit
circles corresponding to the n1 − n2 plane, the n3 − n4 or the n5 − n6 plane. Spins in
the resulting clusters are then only reflected about hyperplanes that are orthogonal to one
of the three O(2) unit circles, which corresponds to a rotation within the corresponding
two-dimensional plane. Such rotations never change the on-site energy of the system and,
as a result, the cluster moves generated within this new method are always accepted. The
steps of this O(2) method are summarized in Algorithm 4.1.

Algorithm 4.1: Cluster algorithm for non-local Monte Carlo updates for the model
in Equation (4.8). This algorithm explicitly exploits the Hamiltonian’s O(2)×O(2)×
O(2) o Z2 symmetry.

1 choose a random 6-dimensional unit vector v within either the n1 − n2

plane, the n3 − n4 or the n5 − n6 plane;

2 execute steps 2-9 of Algorithm 3.2 to build a cluster;

//reflect all spins in the cluster (with probability one):

3 for each site i in the cluster do

4 reflect ni about the hyperplane orthogonal to v such that

ni → R(v)ni = ni − 2(v · ni)v;
5 end

In the right-hand side of Figure 4.7, we examine histograms of the sizes of clusters that
are generated within this algorithm at both high and low temperature. We find that the
sizes of clusters generated are comparable to those of the original cluster method, and
therefore this new method offers a significant advantage since the proposed clusters are
always accepted.

In Figure 4.8, we show the runtime for each cluster algorithm as a function of temperature.
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Figure 4.7: Histograms of the sizes of the clusters that are built within two Monte
Carlo cluster algorithms. Note the logarithmic scale on the y-axis. These histograms
are normalized such that the frequencies sum to one. In (a) and (b), we study
the clusters sizes for the original Wolff method described in Algorithm 3.2. At low
temperatures, less than 0.1% of the largest clusters generated by the algorithm are
accepted. In (c) and (d), we show the cluster sizes for the improved method described
in Algorithm 4.1, which exploits the symmetries of the Hamiltonian. All cluster
updates are accepted within this algorithm. Note that plots (a) and (c) correspond
to T/ρs = 0.1, while (b) and (d) correspond to T/ρs = 0.5. All simulations for these
histograms are performed on lattices of size L = 12 and use model parameters λ = 1,
ga2 = 0.35, g′a2 = 0.00, wa2 = −0.20.
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We find that these algorithms require similar runtimes at high temperatures, but the O(2)
algorithm becomes much faster in at lower temperatures T/ρs . 0.35. The inset of this
figure shows that both algorithms yield a similar error bar for the CDW structure factor
(to be defined in Section 4.4.1) at all temperatures.

In the sections that follow, we utilize local Monte Carlo updates (Algorithm 3.1) as well
as both the original Wolff cluster updates (Algorithm 3.2) and the O(2) cluster updates.
When using the latter cluster algorithm, we always perform an equal number of updates
for each of the three O(2) unit circles corresponding to the fields Ψ, Φx and Φy.

4.4 Comparisons with experiment

In order to test the validity of the model corresponding to Equation (4.8), we use the
Monte Carlo algorithms presented in Section 4.3.2 to generate predictions for various
experimentally-measurable quantities. In particular, here we compare predictions cor-
responding to various sets of model parameters with experimental data obtained through
resonant soft x-ray scattering [81]. We start by comparing our simulation results with the
scattering intensities corresponding to CDW order, which experimentally have an intrigu-
ing concave-upward shape over a wide range of temperatures above Tc, as discussed in
Section 4.1. We also investigate the value of Tc within our model and compare with the
location of the peak in the CDW order. In later sections, we will introduce and explore
additional quantities, such as diamagnetic susceptibility and CDW correlation length.

4.4.1 Charge-density wave structure factor

In order to compare our model with resonant soft x-ray scattering experiments that probe
CDW order, we calculate the CDW structure factor. This structure factor is a Fourier
transform of the two-point CDW correlation function CΦx and is given by [3]

SΦx(q) =
∑

r

CΦx(r) eiq·r =
∑

r

CΦx(r) cos (q · r) , (4.17)
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Figure 4.8: Runtimes as a function of temperature for the original Wolff cluster
method (Algorithm 3.2) and the O(2) method (Algorithm 4.1). For each value of
temperature, we run 106×L3 local Monte carlo updates as well as 106×L×3 cluster
updates. For the original cluster method, all cluster updates are the same, while for
the O(2) method we run 106 × L updates for each of the three O(2) unit circles, as
described in the text. The inset has the same legend and shows the error bar on
the CDW structure factor (to be defined in Section 4.4.1). These simulations are
performed on lattices of size L = 12 and use model parameters λ = 1, ga2 = 0.35,
g′a2 = 0.00, wa2 = −0.20. These results also have a three-dimensional interlayer
coupling Vz = 0.1 (to be defined in Section 4.6), although we expect similar results
for the two-dimensional model of Equation (4.8).
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where the CΦx is calculated according to

CΦx(r− r′) =

〈
4∑

α=3

nα(r)nα(r′)

〉
. (4.18)

As discussed in Section 4.1, the experimental curve in Figure 4.2 is produced by scanning
in reciprocal space and extracting the peak scattering intensity for each value of T . Con-
sequently, we compare this experimental curve with the peak value of SΦx(q) as a function
of q. For the model of Equation (4.8), this peak occurs when q = 0. We thus define
SΦx ≡ SΦx(q = 0) for all that follows.

On a two-dimensional translationally-invariant square lattice, the structure factor can in
principle be calculated relative to any reference lattice site j as

SΦx,j = a2
∑

i

〈
4∑

α=3

niα njα

〉
. (4.19)

Averaging over all possible reference sites j then gives

SΦx =
1

Nsites

∑

j

SΦx,j

=
a2

Nsites

∑

i,j

〈
4∑

α=3

niα njα

〉
.

(4.20)

Since this formula involves a double sum
∑

i,j, measuring SΦx using this expression requires

a runtime that scales with Nsites as O(N2
sites). However, one can reduce the runtime to

O(Nsites) by noting that the above expression can be rewritten as

SΦx =
a2

Nsites

〈
4∑

α=3

(∑

i

niα

)2〉
. (4.21)

In Figure 4.9, we compare the CDW structure factors measured within our Monte Carlo
simulations for various model parameters with experimental resonant soft x-ray scattering
data for YBa2Cu3O6.67 [81]. For each set of parameters, we employ a fitting procedure with
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Figure 4.9: Comparison of experimental scattering intensities with the structure fac-
tors SΦx/a

2 calculated using Monte Carlo simulations of the model in Equation (4.8)
for (a) various values of g and (b) various values of w. Scattering intensities are
obtained through resonant soft x-ray scattering experiments on YBa2Cu3O6.67 [81].
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two free parameters whereby we rescale (but do not shift) the horizontal and vertical axes of
our Monte Carlo results such that the location of the peak CDW structure factor matches
with the location of the peak found in experimental. Rescaling the horizontal (temperature)
axis amounts to determining the model parameter ρs. Such a fitting procedure does not
have the freedom to modify peak shape nor the ratio of the peak width to the peak height.

The fits in Figure 4.9 show that our model is capable of reproducing the experimental
scattering intensities corresponding to CDW order within the vicinity of the peak in SΦx .
While there are discrepancies between our Monte Carlo results and the experimental data
both at high and at low temperatures, we emphasize that our model was designed with a
focus on describing the pseudogap regime, and such discrepancies are expected. Specifically,
at high T , our model’s assumption that one can ignore amplitude fluctuations of the order
parameter n̂i becomes invalid. Such amplitude fluctuations would lead to a lower expected
magnitude of ni at high temperatures (corresponding to a lack of local order), and are thus
expected to reduce SΦx , as required to achieve better agreement with experiment. In the
limit of low temperatures, on the other hand, our model predicts that SΦx → 0 as T → 0.
However, the experimental results indicate a finite value of SΦx in this limit, which can
likely be attributed to charge-order pinning due to impurities. As we will see in Section 4.6,
incorporating random-field disorder into our model can help to resolve this discrepancy.

4.4.2 Superconducting phase transition

Within the model described by Equation (4.8), the superconducting order Ψi undergoes
a Berezinskii-Kosterlitz-Thouless (BKT) transition [82, 83, 84, 85, 86] with critical tem-
perature Tc. Such a transition is attributed to the binding of vortex-antivortex pairs for
temperatures below Tc and is known to satisfy the Nelson-Kosterlitz criterion [87] in the
thermodynamic limit such that

γµ(Tc) =
2Tc
π
, (4.22)

where γµ(T ) is the helicity modulus along lattice direction µ and µ = x or y.

On a periodic square lattice, the helicity modulus along the lattice direction µ is measured
within a Monte Carlo simulation according to [88, 89, 90]

γMC
µ (T, L) = − 1

L2

[
〈Hµ〉+

1

T

〈
I2
µ

〉]
, (4.23)
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where Hµ is the order’s contribution to the Hamiltonian from nearest neighbours along
the lattice direction µ and Iµ is the order’s current along lattice direction µ. In SC order
undergoes the BKT transition and we thus define γMC

µ in terms of the components ni1 and
ni2. The expressions for Hµ and Iµ are given by [88, 89, 90]

Hµ = −ρs
∑

〈ij〉µ

(ni1nj1 + ni2nj2) ,

Iµ = −ρs
∑

〈ij〉µ

(ni1nj2 − ni2nj1) ,
(4.24)

where the notation 〈ij〉µ indicates that the corresponding sum is over nearest neighbours
along the µ lattice direction.

It turns out that the quantity γMC
µ (T, L) measured using Equation (4.23) within Monte

Carlo simulation on finite lattices with PBC is not quite the same as the helicity modulus
γµ(T ) within Equation (4.22) [91]. This phenomenon is known as stiffness renormalization
and it is present even when one uses finite-size scaling analysis to approach the thermody-
namic limit L → ∞. On an Lx × Ly lattice with aspect ratio b = Lx/Ly, the quantities
γMC
µ and γµ are related such that

γMC
µ (Tc, Lx →∞, Ly →∞) = fµ(b) γµ(Tc), (4.25)

where fx 6= fy except in the case where b = 1. The quantities fx and fy were calculated for
various aspect ratios in Reference [92]. Our present calculations are performed on lattices
with b = 1, for which fx = fy = f ≈ 0.9998247 [91]. The Nelson-Kosterlitz criterion
corresponding to our calculations is therefore modified for finite-lattice calculations such
that

γMC
µ (Tc, L→∞) =

2f Tc
π

. (4.26)

In Figure 4.10, we plot γMC
µ (Tc, L) as a function of temperature for various lattice lengths

L and a given set of model parameters. We also plot the line 2fT/ρs since, according to
Equation (4.26), this line should intersect with γMC

µ at T = Tc in the thermodynamic limit
L→∞.

In order to properly approach the thermodynamic limit from our finite lattice calculation,
we utilize the relationship

γMC
µ (Tc, L) = γMC

µ (Tc, L→∞)F (L), (4.27)
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Figure 4.10: The helicity modulus γMC
x corresponding to the superconducting order as

a function of temperature for various lattice sizes. The helicity modulus is calculated
along the x lattice direction using Equation (4.23). The solid line corresponds to the
Nelson-Kosterlitz criterion in Equation (4.26).

where the function F (L) is given to leading order in L by [93, 94]

F (L) = 1 +
g

2 ln(L) + C
(4.28)

with g ≈ 1.00202783. Following the procedure outlined in Reference [95], we then extract
the critical temperature Tc by solving for the parameters T ∗ and C in the set of equations

γMC
µ (T ∗, L1)

F (L1)
=
γMC
µ (T ∗, L2)

F (L2)
= f

2T ∗

π
, (4.29)

where the relationship between the lattices sizes L1 and L2 can be chosen arbitrarily. In our
analysis, we use L1 = L and L2 = 2L1 as in Reference [95]. Since F (L) → 1 as L → ∞,
the value of T ∗(L) extracted from Equation (4.29) is expected to approach the critical
temperature Tc in the thermodynamic limit. As illustrated in Figure 4.11, the values of
T ∗(L) corresponding to our Monte Carlo data show no clear trend as a function of L, and
we conclude that finite-size scaling behaviour of T ∗(L) is obscured due to the relatively
large error bars on our Monte Carlo data. We therefore estimate Tc and its error bar ∆Tc
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Figure 4.11: The value for T ∗ extracted from solving Equation (4.29) for various
lattice sizes L. In order to solve this equation, we first interpolate the Monte Carlo
results for γx(T, L)/ρs as a function of T . We show results for T ∗ corresponding to
both linear and quadratic interpolation.

from the extrema T ∗min = min {T ∗(L)−∆T ∗(L)} and T ∗max = max {T ∗(L) + ∆T ∗(L)} such
that

Tc =
T ∗min + T ∗max

2

∆Tc =
T ∗max − T ∗min

2
.

(4.30)

These equations predict that Tc/ρs = 0.3451(8) for the case where the model parameters
are given by ga2 = 0.30, g′a2 = 0.00, wa2 = 0.00 and λ = 1.

We now compare this extracted value for Tc/ρs with the location Tpeak of the peak in
the CDW structure factor. As shown in Figure 4.12, we find that the superconducting
transition occurs at a lower temperature than Tpeak. This observation is consistent the
theory presented in Reference [96], which predicted that the charge order increases within
the cuprate superconductors as one increases T through Tc. However, this observation
contradicts x-ray experiments [75, 76, 77, 97, 98], which find that the superconducting
transition occurs very close to the peak CDW structure factor such that Tc ≈ Tpeak. While
the numerical results in this section are for a strictly two-dimensional model, we will see
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Figure 4.12: Comparison of the SC transition temperature Tc with the location Tpeak

of the peak in the CDW structure factor SΦx/a
2 for various lattice sizes L. The

vertical dashed line corresponds to Tc with the gray shading corresponding to the
approximate error ∆Tc. Our Monte Carlo simulations find that Tc < Tpeak.

in Section 4.6 that adding an interlayer coupling (such that the model becomes three-
dimensional) causes Tc to approach Tpeak, as required to achieve better agreement with
experiments.

4.5 Diamagnetism and charge-density wave order

As discussed in Section 4.2, the competition between SC and CDW orders plays a significant
role in controlling the behaviour observed in the pseudogap. As a result, the pseudogap
can be characterized in terms of experiments that probe either SC or CDW fluctuations. In
particular, strong SC fluctuations lead to a large diamagnetic susceptibility χd above the
superconducting critical temperature [99, 100, 101, 102], while strong CDW correlations
with correlation length ξCDW have been measured through x-ray scattering experiments [75,
76, 77, 103, 104, 81, 105]. As shown in Section 4.4.1, the model in Equation (4.8) produces
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good agreement with such experimental CDW correlations.

With the goal of reconciling the distinct experimental probes χd and ξCDW, we now introduce
a new, experimentally-accessible dimensionless quantity, given by

R(T ) = 12πs
12πsχd

T ξ2
CDW

, (4.31)

where s is the interlayer lattice spacing. The susceptibility can be written as χd = M/B,
where M is the magnetization per unit volume in the case where a magnetic field B is
applied perpendicular to the two-dimensional copper-oxygen planes. Since this quantity
incorporates the effects of both SC and CDW fluctuations, it is in principle capable of
characterizing the pseudogap more completely than experiments that probe only one type
of these two competing orders.

4.5.1 Diamagnetic susceptibility measurement

In order to calculate the diamagnetic response of our model in Equation (4.8) to an applied
magnetic field B, we introduce an external vector potential that couples to the supercon-
ducting order Ψi = ni1 + ini2 ≡ |Ψi| eiθi . We let HΨ correspond to the portion of the
nearest-neighbour coupling term H1 in Equation (4.6) that depends on the superconduct-
ing order such that

HΨ =
ρs
2

∑

〈ij〉

2∑

α=1

(niα − njα)2

=
ρs
2

∑

〈ij〉
|Ψi −Ψj|2

=
ρs
2

∑

〈ij〉

[
|Ψi|2 + |Ψj|2 − 2 |Ψi| |Ψj| cos (θi − θj)

]
.

(4.32)

Adding a vector potential then amounts to adding a phase factor (or bond flux) Aij = −Aji
to every nearest-neighbour bond such that [106, 107, 108]

HΨ → HΨ(A) =
ρs
2

∑

〈ij〉

[
|Ψi|2 + |Ψj|2 − 2 |Ψi| |Ψj| cos (θi − θj + Aij)

]

=
ρs
2

∑

〈ij〉

[
|Ψi|2 + |Ψj|2 −Ψ∗iΨje

iAij −Ψ∗jΨie
−iAij] .

(4.33)
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Now, instead of labelling by the two site indices i and j in the above equation, it is con-
venient to label by one site index i along with a lattice direction u. On a two-dimensional
lattice, u can in general extend over ±x̂a and ±ŷa (although it maybe extend over a more
restricted range for sites on the boundary of a lattice with open boundary conditions).
With this new notation, we can express HΨ(A) as

HΨ(A) =
ρs
2

[∑

i

Zi |Ψi|2 −
∑

i,u

Ψ∗iΨi+ue
iAiu

]

=
ρs
2

[∑

i

Zi |Ψi|2 −
∑

i,u

Ψ∗i+uΨie
−iAiu

], (4.34)

where Zi is the called the coordination number of site i, which is the number of nearest
neighbours that site i has. In this new notation, the elements Aiu are restricted such that
Ai+u,−u = −Aiu. The current along link iu corresponding to this external vector potential
is then given by

Jiu =
ρs
2

(
iΨ∗iΨi+ue

iAiu − iΨiΨ
∗
i+ue

−iAiu)u. (4.35)

From this expression for the current, one can calculate the total magnetic moment per unit
volume according to [106]

M =
1

4L2a2s

∣∣∣∣∣
∑

i,u

ri × 〈Jiu〉
∣∣∣∣∣

=
ρs

4L2a2s

∑

i,u

εαβriαuβ
〈
iΨ∗iΨi+ue

iAiu
〉
,

(4.36)

where εαβ is the two-dimensional Levi-Civita symbol and we have employed the Einstein
summation convention over the indices α and β. We assume that the lattice length L is
even and define the site coordinates ri relative to an origin at the centre of the lattice’s
middle plaquette such that

ri ≡ (xi, yi) =

(
ix −

L+ 1

2
, iy −

L+ 1

2

)
a, (4.37)

where ix,y ∈ {1, 2, . . . , L} are indices that label the x and y coordinates (respectively) in
units of the lattice spacing a. We assume that the external magnetic field B is applied
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perpendicular to the two-dimensional lattice plane and specify the relationship between
this field and the vector potential in the circular gauge such that

Aiu =
B

2
εαβriαuβ. (4.38)

Previous works have performed calculations of the diamagnetic response on a lattice with
cylindrical boundary conditions, which results in a quantized magnetic flux through the
lattice. [107, 108]. In the calculations that follow, we consider lattices with open boundary
conditions (OBC) such that we can take the limit where B → 0. In this limit, one can
calculate the linear diamagnetic susceptibility χd = M/B by expanding the expression for
the magnetic moment M in Equation (4.36) to first order in B, which gives

χd = M/B =− ρs
8L2a2s

∑

i,u

(εαβriαuβ)2 〈Ψ∗iΨi+u〉0

+
ρ2
s

16TL2a2s

∑

i,u

∑

j,u′

(εαβriαuβ) (εγδrjγu
′
δ)
〈
Ψ∗iΨi+uΨ∗j+u′Ψj

〉
0
,

(4.39)

where the subscript 0 means that these expectation values are calculated in a model with
zero field B. Alternatively, this expression can be written in terms of the components ni1
and ni2 as [70]

χd ≡
M

B
=− ρs

4L2a2s

∑

i

∑

u=+x̂a,+ŷa

(εαβriαuβ)2 〈ni1ni+u,1 + ni2ni+u,2〉0

+
ρ2
s

4TL2a2s

〈[∑

i

∑

u=+x̂a,+ŷa

(εαβriαuβ) (ni1ni+u,2 − ni2ni+u,1)

]2〉

0

,

(4.40)

where we set ni+u,α = 0 in all cases where site i has no nearest neighbour in along the u
direction due to the open boundary conditions. Note that the expression in Equation (4.40)
involves only single sums over the lattice sites i such that the measurement runtime scales
linearly with Nsites as O(Nsites), as opposed to the quadratic runtime O(N2

sites) that would
result from naively evaluating Equation (4.39).

In order to verify that that the expression in Equation (4.40) provides a valid way of
accessing the diamagnetic susceptibility for a system with OBC in the limit of arbitrarily
small fields B, we first measure this expression in a simple Gaussian model, for which
exact analytical results are known in the thermodynamic limit L→∞. After establishing
agreement, we then proceed to measure this observable within simulations corresponding
to the more complicated model of Equation (4.8).
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4.5.2 Diamagnetic susceptibility in a Gaussian theory

We consider here simple a Gaussian theory that ignores all four CDW components of the
order parameter ni and neglects any constraints on the magnitude of ni. Such a simple
theory considers only the SC order parameter Ψi such that the partition function is given
by

ZGauss. =

∫
DΨ exp (−βHGauss.) , (4.41)

with Hamiltonian [70]

HGauss. =
ρs
2


∑

〈ij〉
|Ψi −Ψj|2 +

∑

i

σa2 |Ψi|2



=
ρs
2

[∑

i

(
Zi + σa2

)
|Ψi|2 −

∑

i,u

Ψ∗iΨi+u

]

≡ ρs
2

∑

i,j

Ψ∗iMijΨj,

(4.42)

where σ is a constant and M is a symmetric matrix that is defined by the terms in the
Hamiltonian. The inverse of this matrix can be used to calculate the two-point correlation
functions according to

〈
ΨiΨ

∗
j

〉
= (2T/ρs)M−1

ij . We consider a lattice with OBC such that
the coordination number Zi has a value of 4 within the bulk, 3 along the edges of the
lattice, and 2 at the lattice’s four corners.

By exploiting Wick’s theorem, it is then possible to calculate χd from Equation (4.39)
using the elements of M−1 such that

χd

T
=

1

4L2a2s

[
−
∑

i,u

(εαβriαuβ)2M−1
i,i+u +

∑

i,u

∑

j,u′

(εαβriαuβ) (εγδrjγu
′
δ)M−1

ij M−1
j+u′,i+u

]
,

(4.43)
where we note that the right-hand side of this expression is independent of both ρs and T .

In the thermodynamic limit L→∞, this expression can be written as [60]

χd(L→∞)

T
= − 1

a6s

∫
d2k

4π2

8 sin2(kxa) sin2(kya)

[(4− 2 cos(kxa)− 2 cos(kya)) /a2 + σ]4
, (4.44)
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which reduces to −1/(12πσa2s) in the limit where σ → 0.

We now consider Monte Carlo measurements of χd on systems with OBC with the goal of
comparing such numerical results with the expressions in Equations (4.43) and (4.44). In
order to more directly utilize Monte Carlo methods from Chapter 3 and Section 4.3.2, we
first write the Gaussian Hamiltonian in terms of ni ≡ (ni1, ni2) as

HGauss. = ρs


1

2

∑

i

(
Zi + σa2

)
|ni|2 −

∑

〈ij〉
ni · nj


 . (4.45)

We note that the second term is the Hamiltonian for the O(2) model of Equation (1.2).
One can sample this Hamiltonian by using local updates that are similar to those in Algo-
rithm 3.1 but with the new orientations for the components of ni selected from a normal
distribution with standard deviation

√
T/ [ρs(Zi + σa2)] so as to respect the detailed bal-

ance condition corresponding to the first term in Equation (4.45). The complete sampling
method is given in Algorithm 4.2.

Algorithm 4.2: Local sampling algorithm for the Gaussian Hamiltonian in Equa-
tion (4.45).

1 choose a site i from the lattice at random;

choose a random new orientation nnew = (nnew,1, nnew,2) for the spin at

this location by generating nnew,1 and nnew,2 from a normal distribution

with mean 0 and standard deviation
√
T/ [ρs(Zi + σa2)];

2 calculate the energy difference ∆En.n. associated with changing the

current spin orientation ni to nnew, where En.n. = −∑〈ij〉 ni · nj is the

energy corresponding to the nearest-neighbour coupling;

3 if ∆En.n. ≤ 0 then

4 accept the move ni → nnew;

5 else

6 accept the move ni → nnew with probability exp(−β∆En.n.);

7 end

In Table 4.2, we compare the exact results of Equations (4.43) and (4.44) with measure-
ments of the diamagnetic susceptibility χd from Monte Carlo simulations on finite lattices
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of length L. We achieve agreement with the exact results for L→∞, which indicates that
these Monte Carlo methods are capable of successfully accessing χd in the thermodynamic
limit.

4.5.3 Diamagnetic susceptibility for the effective classical Hamil-
tonian

We now consider Monte Carlo measurements of the diamagnetic susceptibility χd as given in
Equation (4.40) for the effective theory of Equation (4.8). Results are shown in Figure 4.13
for various lattices lengths L for a given set of model parameters. In the inset of this figure,
we study the convergence of χd as L increases. We find that, for temperatures above Tc,
the diamagnetic susceptibility converges to a constant value as L → ∞ (or, equivalently,
as 1/L→ 0). However, for temperatures below the superconducting critical temperature,
there is no such convergence to a finite value.

In fact, a simple model of the superconducting phase [70] predicts that

sχd(T < Tc)

γPBC
x L2

= −0.03514425, (4.46)

where γPBC
x is the helicity modulus, as defined in Equation (4.23). This helicity modulus

must be measured on a lattice with PBC since it will be zero for the lattices with OBC
that are used to calculate the diamagnetic susceptibility. We therefore must measure χd

and γPBC
x in separate Monte Carlo simulations. In Figure 4.14, we plot the left-hand side of

Equation (4.46) as a function of temperature. In its inset, we perform fits of sχd/(γ
PBC
x L2)

to a quadratic polynomial in 1/L. These fits show that Equation (4.46) is satisfied for
temperatures below Tc in the thermodynamic limit L→∞.

We note that Equation (4.46) states that the diamagnetic susceptibility diverges to −∞
as L→∞. This divergence corresponds to the phenomenon known as the Meissner effect
whereby magnetic fields are expelled from materials that are in a superconducting state.
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σ L sχd/T sχd/T Monte

Equation (4.43) Equation (4.44) Carlo

1 5 -0.011490 -0.01149(2)

1 10 -0.011206 -0.01124(5)

1 20 -0.011108 -0.0110(2)

1 40 -0.011064 -0.0113(6)

1 80 -0.011043 -0.010(2)

1 ∞ -0.011028(3) -0.011024 -0.0108(4)

0.5 5 -0.038279 -0.03826(2)

0.5 10 -0.034226 -0.03426(5)

0.5 20 -0.032718 -0.0326(4)

0.5 40 -0.032004 -0.031(1)

0.5 80 -0.031656 -0.026(4)

0.5 ∞ -0.03139(4) -0.031315 -0.0308(9)

0.1 5 -0.420271 -0.404(4)

0.1 10 -0.322547 -0.320(2)

0.1 20 -0.268920 -0.275(6)

0.1 40 -0.247611 -0.24(1)

0.1 80 -0.237534 -0.18(3)

0.1 ∞ -0.224(3) -0.227827 -0.22(1)

Table 4.2: Linear diamagnetic susceptibility corresponding to the Gaussian Hamilto-
nian in Equation (4.42). The extrapolation to L =∞ in the third and fifth columns
is performed by a least-squares fit to a quadratic polynomial of 1/L, and the error
bars for L =∞ come from the covariance matrix of the least-squares fit. The Monte
Carlo data in the fifth column was taken at T/ρs = 0.6, although we also checked
that the Monte Carlo results for M/(BT ) are independent of temperature. This
Table is taken from Reference [70].
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Figure 4.13: Diamagnetic susceptibility for the effective theory of Equation (4.8)
as a function of temperature for various lattice sizes L. In the inset, we study the
convergence of this susceptibility as a function of L for temperatures both above and
below the superconducting critical temperature Tc.

4.5.4 Charge-density wave correlation length

We now consider methods for measuring the range of CDW correlations within our Monte
Carlo simulations, with the ultimate goal of calculating the dimensionless ratio in Equa-
tion (4.31). As stated in Equation (1.17), we expect two-point correlation functions to
experience an exponential decay with a characteristic length scale given by a correlation
length ξ. Here, we focus specifically on correlations related to the CDW order and we exam-
ine the correlation length ξCDW corresponding to the CDW correlation function CΦx(r− r′)
as given in Equation (4.18).

We examine the CDW structure factor SΦx(q) as given in Equation (4.17) and take q = qxx̂.
Such a structure is expected to behave according to a Lorentzian distribution. However,
we find that such a function does not describe our data well unless we incorporate a shift
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Figure 4.14: Convergence of the diamagnetic susceptibility for temperatures within
the superconducting phase. We plot the quantity on the left-hand side of Equa-
tion (4.46) as a function of temperature and compare with the expected value from
the right-hand side of this equation (which is indicated by a dashed black line). In
the inset (which has the same y-axis as the main plot), we study this quantity as a
function of 1/L for two different temperatures below Tc. We perform least-squares
fits (indicated by the dotted lines) to a quadratic polynomial of 1/L and show that
we achieve approximate agreement with Equation (4.46) as 1/L→ 0.
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c such that we fit to the shifted Lorentzian function

f(qx) =
A

(q2
x + 1/ξ2

CDW)
+ c, (4.47)

where the amplitude A, the shift c and the correlation length ξCDW are all free parameters
within the least-squares fitting procedure.

We compare the results for ξCDW from this procedure with data obtained by following
another method as described in Reference [90]. Specifically, this method calculates the
correlation length from the structure factor evaluated at qx = 0 and qx = 2πa/L according
to

ξCDW =
La

2π

√(
8d

(1 + d)(3 + d)

)(
SΦx(0)

SΦx(
2πa
L

x̂)
− 1

)
. (4.48)

In Figure 4.15, we show results for ξCDW as extracted from our Monte Carlo data using these
two methods. These methods give comparable results for a wide range of temperatures
on a lattice of size L = 24. The error bars corresponding to the shifted Lorentzian fit
come from the covariance matrix of the least-squares fitting procedure, while the error
bars corresponding to the second method come from statistical Monte Carlo errors.

We also show in this figure the CDW correlation length as extracted from x-ray scattering
experiments on YBa2Cu3O6.67 with Tc = 65.5 K [81]. The experimental predictions for
ξx−ray
CDW are extracted by first subtracting off the fluorescence background (from measure-

ments at T = 160 K) and then performing a fit of the scattering intensity to an (unshifted)
Lorentzian function. The error bars in this case reflect uncertainties in the background
subtraction as well as uncertainties in the fitting procedure.

We note that our Monte Carlo data corresponds to a CDW correlation length on the
order of 1 to 2.5 lattice spacings a, while the experiments detect correlation lengths of
approximately 5 to 50 Å. These measurements give us a rough idea of the ratio between
the lattice spacing a corresponding to the square lattice in the effective theory and the
physical lattice parameters aphys, bphys and cphys corresponding to YBCO materials (see
Figure 4.1). We find that a is approximately 3 to 5 times the size of the physical lattice
parameter aphys.
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Figure 4.15: The charge-density wave correlation length as extracted from (a) Monte
Carlo simulations [70] and (b) x-ray scattering experiments [81]. The inset in each
case illustrates the fitting procedure for a given temperature. The quantity H in the
inset of (b) corresponds to q = (H 0 1.48).
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4.5.5 Comparisons with experimental dimensionless ratios

With the results for the diamagnetic susceptibility χd from Section 4.5.3 along with the
results for the CDW correlation length ξCDW from Section 4.5.4, we can now compute the
dimensionless ratio R(T ) in Equation (4.31). The Monte Carlo simulations for measuring
χd are performed on lattices with OBC, while the ξCDW is calculated on lattices with OBC.

Experimentally, CDW correlation length is measured through x-ray scattering experiments
as discussed in Section 4.5.4. The diamagnetic susceptibility is extracted through torque
magnetometry experiments on YBa2Cu3O6.5 with Tc = 57 K [102]. Such experiments
measure a torque density as a function of the angle between an applied magnetic field
and the sample’s copper-oxygen planes. The resulting diamagnetic susceptibility can be
expressed as

χtorque
d = −T

(
ξtorque

d

)2

12πs
, (4.49)

where ξtorque
d is a coherence length corresponding to fluctuations parallel to the copper-

oxygen planes. The dimensionless ratio R(T ) can then be expressed experimentally in
terms of a ratio between the length scales ξx−ray

CDW and ξtorque
d as

R(T ) = −
(
ξtorque

d

ξx−ray
CDW

)2

. (4.50)

In order to compare our Monte Carlo results for R(T ) with such experimental data, we
must first determine the value of ρs (corresponding to the overall temperature scale) for
each set of model parameters λ, ga2, g′a2 and wa2 in Equation (4.8). To do so, we examine
the peak CDW structure factor SΦx = SΦx(q = 0) as a function of T and perform fits to
x-ray scattering data as we did in Figure 4.9. This fitting procedure is illustrated on the
left-hand side of Figure 4.16 for various choices of model parameters. We then compute
and plot R(T ) as a function of T with no additional fitting parameters on the right-hand
side of this figure and compare with experimental results [81, 102, 109].

These plots show good qualitative agreement with the experimental data for a wide range
of temperatures above the superconducting critical temperature Tc. However, the Monte
Carlo predictions corresponding to the effective theory in Equation (4.8) are consistently
larger in magnitude than the observed experimental values. One significant source of
possible errors is that the two experiments were performed on different samples of YBCO
with different dopings and different critical temperatures. In addition, our effective theory
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Figure 4.16: CDW structure factors and the dimensionless ratio R(T ) defined in
Equation (4.31). In (a)-(c), we illustrate the fits used to determine the parameter ρs
for various sets of model parameters. In (d)-(f), we show R(T ) versus T (with the
shading incorporating statistical Monte Carlo errors as well as the uncertainty in the
method for extracting ξCDW) for the same choices of parameters and compare with
data from x-ray scattering [81] and torque magnetometry experiments [102, 109]. All
Monte Carlo results correspond to L = 24 and λ = 1. The dashed lines in (d)-(f)
correspond to an extrapolation to L → ∞ for the model parameters ga2 = 0.4,
g′a2 = 0.0, wa2 = −0.2.
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has certain limitations, as discussed in Section 4.4.1. In particular, the present model is
two-dimensional such that it does not consider the interlayer coupling between copper-
oxygen planes. Incorporating such an interlayer coupling (such that our model becomes
three-dimensional) would help to reduce the strength of SC fluctuations above the critical
temperature, which could help to lower the magnitude of R(T ) as required. We consider
the effects of adding such an interlayer coupling in Section 4.6.

4.6 Improvements to the effective classical Hamilto-

nian

As seen from the comparisons with experimental data in Sections 4.4 and 4.5.5, the ef-
fective theory in Equation (4.8) suffers from certain limitations. In particular, we observe
discrepancies in the value of Tc relative to the location Tpeak of the peak in the CDW
structure factor, as well as overly enhanced SC fluctuations that cause the magnitude of
the dimensionless ratio R(T ) to be too large. In an attempt to combat these issues, here
we consider the effects of a three-dimensional interlayer coupling. In addition, this model
omits random-field disorder, and here we incorporate such disorder with the goal of yielding
a finite value in the CDW structure factor SΦx in the limit of low temperatures.

To this end, we now consider a new effective Hamiltonian on a three-dimensional square
lattice given by [71]

H

ρs
=−

∑

〈ij〉xy

[
2∑

α=1

niαnjα + λ
6∑

α=3

niαnjα

]
−
∑

〈ij〉z

[
Vz

2∑

α=1

niαnjα + V ′z

6∑

α=3

niαnjα

]

+
1

2

∑

i


[ga2 + 4(λ− 1)

] 6∑

α=3

n2
iα + g′a2

(
6∑

α=3

n2
iα

)2

+ wa2
[(
n2
i3 + n2

i4

)2
+
(
n2
i5 + n2

i6

)2
]

+
a2

2

6∑

α=3

hiαniα


 ,

(4.51)

where the parameters ρs, λ, g, g′, w and a are defined in the same way as in Equations (4.4)
and (4.8). The notation 〈ij〉xy and 〈ij〉z indicates that the corresponding sums are over
nearest-neighbours along the xy and z directions (respectively). The parameters Vz and V ′z
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represent interlayer coupling strengths between between the xy planes, with Vz coupling
the SC components of n̂i and V ′z coupling the CDW components. hiα is a random field that
is chosen independently for each site i and for each CDW component α = 3, 4, 5 and 6.
Specifically we choose each value hiα from a Gaussian distribution with mean 0 and stan-
dard deviation σ such that

hiα = 0,

hiαhjβ = σ2δijδαβ.
(4.52)

Recall that the non-local Monte Carlo cluster updates of Algorithms 3.2 and 4.1 can only be
applied to the two-dimensional effective Hamiltonian of Equation (4.8) when all coupling
within the six-dimensional order parameter space were isotropic such that λ = 1. Similarly,
for the Hamiltonian of Equation (4.51) we must fix λ = 1 and Vz = V ′z in order to use
similar cluster algorithms. In the presence of the interlayer coupling Vz and no disorder
(σ = 0), one can still use Algorithms 3.2 and 4.1, but with the small adjustment that
the probability of adding a nearest-neighbour spin j to the cluster must be changed to
1− exp {min [0,−2βVz(r · ni)(r · nj)]} for the cases where this site j is a neighbour along
the z-direction. In order to use these algorithms in the presence of disorder, one must adjust
the cluster acceptance probability to account for the on-site energy due to the disorder.
In the case of Algorithm 4.1, this disorder term means that the generated clusters are no
longer accepted with probability one.

In the calculations that following, we vary the parameters Vz, g, g′, w and hiα, and we fix
λ = 1 and Vz = V ′z . We consider Monte Carlo calculations on lattices with Lx = Ly ≡ Lxy
sites along each of the x and y directions and Lz sites along the z direction. In situations
where we take the interlayer coupling Vz to be weaker than the in-plane coupling ρs, we
find that we can achieve well-converged data by taking Lz smaller than Lxy. For example,
in many of the calculations that follow, we perform simulations on lattices with Lxy = 32
and Lz = 8.

4.6.1 Interlayer coupling

We consider first the effects of the interlayer coupling Vz on the model of Equation (4.51).
To this end, we set σ = 0 for now such that there is no disorder present in the model and
we can isolate more clearly the effects of the parameter Vz. In Figure 4.17, we plot the
CDW structure factor SΦx as a function of temperature for various values of the interlayer
coupling. We plot results from both Monte Carlo simulations as well as from large-N
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Figure 4.17: The effects of the interlayer coupling Vz on the CDW structure factors
SΦx and on the SC critical temperature Tc. In the main plot, we show Monte Carlo
(MC) results for SΦx as a function of T for various values of Vz. We compare with
analytical large-N (LN) calculations. The short vertical lines mark Tc. In the inset,
we demonstrate that Tc approaches the location Tpeak of the peak in the CDW struc-
ture factor as the interlayer coupling is increased. The MC and LN calculations give
the same estimates for Tpeak within error.

expansions (see Section 4.3.1). The Monte Carlo calculations for Vz = 0, 0.01 and 0.1 are
performed on lattices with sizes Lx ×Ly ×Lz = 64× 64× 1, 32× 32× 8 and 24× 24× 14
(respectively). We find that, as Vz increases (or, in other words, as the system becomes
more 3D-like), the maximum value of SΦx increases.

In addition, we consider the effects of the interlayer coupling strength on the SC tran-
sition temperature Tc. Within Figure 4.17, we use short vertical lines to indicate the
locations of Tc for each curve. In the Monte Carlo simulations, we measure Tc by using
the method described in Section 4.4.2. Within the large-N expansions, we note that there
is no phase transition in the case where Vz = 0 (or, in other words, when the system is
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two-dimensional). In the inset, we compare these values of Tc with the location Tpeak of
the peak in the CDW structure factor. We find that Tc approaches Tpeak from below as
the interlayer coupling becomes stronger.

4.6.2 Random-field disorder

In the presence of random-field disorder (σ 6= 0), Monte Carlo calculations of the CDW
structure factor SΦx require averaging over many independent realizations of disorder
(ROD), {hiα}. Even though each random field hiα is generated from a symmetric dis-
tribution (about a mean value of 0), the corresponding distribution of SΦx is in general
asymmetric since SΦx is a complicated, nonlinear function of hαi. In fact, our numerical
studies reveal that, as σ is increased, the distribution of SΦx over various ROD becomes
increasingly asymmetric due to the fact that SΦx is a complicated, nonlinear function of
the disorder fields hαi. As a result, the average value, [〈SΦx〉]ROD, of this distribution be-
comes different from its typical value, exp [ln 〈SΦx〉]ROD, where 〈. . .〉 and [. . .]ROD denote
thermal and disorder averages, respectively [110]. However, in order to allow comparison
with large-N results (for which calculations of the typical value are extremely difficult), all
of the following Monte Carlo results correspond to average values of the disorder distribu-
tions. The qualitative behaviour of the structure factors is similar if one instead examines
the typical values.

The Monte Carlo simulations are performed on lattices of size Lx×Ly ×Lz = 32× 32× 8.
In cases where no disorder is present (σ = 0), the error bars in our Monte Carlo results
correspond to thermal averaging. In the presence of disorder, error bars instead correspond
to the standard deviation of the mean over independent ROD. Our results average over
between 102 and 103 ROD. We find that both when we increase σ and when we study
temperatures near the structure factor peak, more ROD are required in order to obtain
converged numerical results.

In Figure 4.18, we plot the CDW structure factors SΦx as a function of temperature for
various disorder strengths σ. We find that adding disorder leads to a finite value of SΦx

in the limit T → 0, in contrast to the structure factors corresponding to no disorder in
Figures 4.9, 4.16 and 4.17. Depending on the choices of the other model parameters,
sometimes we find that SΦx decreases monotonically as T is lowered from Tpeak to T = 0,
while in other cases we observe a local minimum in SΦx at a finite value of T below Tpeak

such that the CDW structure factor increases as T → 0.
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4.6.3 Comparisons with x-ray scattering experiments

Unlike the Monte Carlo and large-N results presented in earlier sections, here we do not
explicitly performs fits of our data to experimental measurements. The reason for omitting
such comparisons in Figures 4.17 and 4.18 is that the parameter space corresponding to
Equation (4.51) is quite large, and each Monte Carlo simulation becomes increasingly
computationally expensive as either the interlayer coupling Vz or the disorder strength σ
increases. However, one can still draw important conclusions about how well the model of
Equation (4.51) agrees with data from x-ray scattering experiments.

In Section 4.6.1, we saw that the superconducting critical temperature Tc approaches Tpeak

from below as the interlayer coupling Vz becomes stronger. This approach corresponds
to a better agreement with x-ray experiments [75, 76, 77, 97, 98], where Tc ≈ Tpeak (as
discussed in Section 4.4.2).

The calculations in Section 4.6.2 reveal that adding disorder leads to a finite value of SΦx

in the limit of low temperatures (with the rest of curve remaining qualitatively similar to
the zero-disorder case). As a result, we conclude that the incorporation of the random
disorder field hiα in Equation (4.51) extends agreement with x-ray scattering intensities to
a wider range of temperatures such that, in particular, this model can potentially describe
such experimental data in the limit of low temperatures.
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Chapter 5

Conclusions and future directions

Throughout this thesis, we have seen that computational studies of lattice field theories
can reveal new exotic features of both non-interacting and interacting quantum systems.
Theories related to the classical O(N) model are capable of describing various types of
classical and quantum phase transitions and critical behaviour. We have specifically seen
that various lattice models are capable of yielding universal numbers that characterize
criticality, and that certain effective models can reproduce experimental features of the
pseudogap regime within high-temperature cuprate superconductors.

From entanglement entropy scaling arguments, we have seen that in the vicinity of a crit-
ical point, one can extract an abundant collection of universal quantities from various
entangling geometries. In particular, we have extracted such quantities from both sharp
vertices and smooth two-cylinder geometries for non-interacting bosonic field theories. Es-
pecially in higher spatial dimensions, universal corrections are often subleading to several
higher-order entanglement scaling terms, and one must use numerical schemes such as the
numerical linked cluster expansion in order to isolate these subleading universal features.
In addition to revealing new fundamental characterizations of Gaussian fixed points, our
resulting universal coefficients lay the groundwork for future studies of corresponding co-
efficients in interacting systems [111]. Comparisons between specific universal quantities
at different fixed points have the potential to reveal new information about the underlying
theories governing a system’s renormalization group flows, akin to the c-theorem in one
spatial dimension [112], the F -theorem in two spatial dimensions [113, 114, 115, 116, 117]
and the a-theorem in three spatial dimensions [118, 119, 120]. Extracting universal num-
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bers from both new entangling geometries and from other lattice models will lead to a more
complete understanding of the connections and relationships between different quantum
systems.

For strongly-interacting models, we have seen that numerical simulations offer analytically-
unattainable insight into the system’s emergent phases and critical behaviour. We have
focussed on applications of such simulations to effective models of high-temperature su-
perconductivity. By using symmetry constraints related to superconducting and charge-
density wave order, we have introduced an effective classical field theory for modelling
the behaviour of cuprate materials within the vicinity of their pseudogap regime. We
have utilized traditional Monte Carlo methods along with new symmetry-based cluster
updates in order to simulate the charge-density wave structure factor, correlation length,
superconducting critical temperature and diamagnetic susceptibility associated with this
effective lattice model. After establishing agreement with recent x-ray scattering experi-
ments for a wide range of temperatures, we incorporated into our model effects of interlayer
coupling and random-field disorder and performed new disorder-averaged simulations in
order to further extend agreement with such experiments. Certain aspects of our effective
model are yet to be explored, such as the effect of disorder strength on CDW correlation
length. The underlying mechanism governing high-temperature superconductivity remains
unknown, and a promising avenue for future research is to explore new effective models
that incorporate the effects of other experimentally-observed features such as spin-density
wave order [121]. O(N)-like models with higher-dimensional degrees of freedom are capa-
ble of incorporating more of these physical features and may lead to a more robust model
of high-temperature superconductivity. Such future models will be based and built upon
the simulation outcomes of our current effective model, which indicate that the compe-
tition between superconducting and charge-density wave order near the superconducting
phase transition plays a fundamental role in describing the pseudogap physics of cuprate
materials.

Strongly-interacting quantum systems are fundamentally characterized by their deep-rooted
complexity, with analytical methods incapable of fully linking atomic-scale variables to
thermodynamic observables. Computational methods are therefore indispensable for ad-
vancing studies of emergent phases and critical behaviour in quantum matter due to their
unique ability to act as a bridge between microscopic lattice theories and macroscopic
phenomena.
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R. G. Melko, “Unusual Corrections to Scaling and Convergence of Universal Renyi
Properties at Quantum Critical Points”, Phys. Rev. B 93, 085120 (2016), arXiv:
1509.00468.

[32] H. Casini and M. Huerta, “Entanglement entropy in free quantum field theory”, J.
Phys. A 42, 504007 (2009), arXiv:0905.2562.

[33] A. Chandran, private communication (2016).

[34] I. Peschel, “Calculation of reduced density matrices from correlation functions”, J.
Phys. A: Math. Gen. 36, L205 (2003).

[35] X. Chen, G. Y. Cho, T. Faulkner and E. Fradkin, “Scaling of entanglement in 2 +
1-dimensional scale-invariant field theories”, J. Stat. Mech. 1502, P02010 (2015),
arXiv:1412.3546.

[36] X. Chen, private communication (2016).

127

arXiv:1202.2070
arXiv:1008.4314
arXiv:1603.02684
arXiv:1606.03096
arXiv:1607.05311
arXiv:1607.05311
arXiv:1703.03413
arXiv:1509.00468
arXiv:1509.00468
arXiv:0905.2562
arXiv:1412.3546


[37] X. Chen, W. Witczak-Krempa, T. Faulkner and E. Fradkin, “Two-cylinder en-
tanglement entropy under a twist”, J. Stat. Mech. 1704, 043104 (2017), arXiv:

1611.01847.

[38] M. Rigol, T. Bryant and R. R. P. Singh, “Numerical linked-cluster approach to
quantum lattice models”, Phys. Rev. Lett. 97, 187202 (2006), arXiv:cond-mat/

0611102.

[39] M. Rigol, T. Bryant and R. R. P. Singh, “Numerical linked-cluster algorithms. I.
Spin systems on square, triangular, and kagomé lattices”, Phys. Rev. E 75, 061118
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