Exploitation of Redundant Inverse Term
Frequency for Answer Extraction

Thomas Richard Lynam

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2002

(©Thomas Richard Lynam 2002

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronicaly available to the public

11

The University of Waterloo requires the signatures of all persons using or pho-

tocopying this thesis. Please sign below, and give address and date.

111

Abstract

An automatic question answering system must find, within a corpus, short factual
answers to questions posed in natural language. The process involves analyzing the
question, retrieving information related to the question, and extracting answers
from the retrieved information. This thesis presents a novel approach to answer

extraction in an automated question answering (QA) system.

The answer extraction approach is an extension of the MultiText QA system.
This system employs a question analysis component to examine the question and to
produce query terms for the retrieval component which extracts several document
fragments from the corpus. The answer extraction component selects a few short
answers from these fragments. This thesis describes the design and evaluation of

the Redundant Inverse Term Frequency (RITF) answer extraction component.

The RITF algorithm locates and evaluates words from the passages that are
likely to be associated with the answer. Answers are selected by finding short
fragments of text that contain the most likely words based on: the frequency of
the words in the corpus, the number of fragments in which the word occurs, the
rank of the passages as determined by the IR, the distance of the word from the
centre of the fragment, and category information found through question analysis.
RITF makes a substantial contribution in overall results, nearly doubling the Mean

Reciprocal Rank (MRR), a standard measure for evaluating QA systems.

v

Acknowledgements

I would like to thank everyone that has given their support and assistance to the

completion of the this thesis.

Special thanks must go to Gordon Cormack for his dedication and support as

well as Charlie Clarke and Nick Cercone for their contributions.

I would also like to express my gratitude to Kimberly Becken for her patience

and assistance.

Finally, thanks must be given to the University of Waterloo for its support.

Contents

1 Introduction 1
2 Foundation 4
2.1 Introduction to Question Answering 4
2.2 Question Analysis 5
2.3 Information Retrieval oL 6
2.4 Answer Extraction 0L 7
2.5 Text REtrieval Conference 8
2.6 TREC-8 QA 10
2.7 Mean Reciprocal Rank o000 11
2.8 TREC-8 QA Results 13
2.9 MultiText 15
2.10 MultiText TREC-8 QA Architecture 16

Vi

2.11 Need for Answer Extraction 17

2.12 Other QA Approaches for TREC-9 18
Redundant Inverse Term Frequency 21
3.1 RITF Overview e 28
3.2 Pattern Matching Lo L 30
3.3 Evaluating Candidate Answers, 32
3.4 Location and Question Category Heuristics 35
3.5 Answer substring Selection L oo 38
3.6 Finding Multiple Answers oo 38
3.7 Putting the Pieces Together, 39
Results 42
4.1 TREC-9 43
4.2 Overall Improvement 46
4.3 Question Category Performance 47
4.4 Answer Extraction Elements Evaluation 49
4.5 Location and Category Heuristic Evaluation 32
4.6 Cover Expansiono 57
4.7 Depth of Passages L o 38

Vil

4.8 Misclassification

4.9 Results Summary

5 Conclusion

6 Future Work

Bibliography

V1ii

62

66

68

List of Tables

2.1

2.2

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

TREC Participants per Track 9
Some TREC-8 Questions 10
Q330 Parser Input Lo 22
Q330 Parser Output 23
Q330 IR Output 24
Q330 RITF Output 24
Parser to Answer Extraction Category Conversion 26
Question Category Patterns 31
Q330 Term Weightso 37
Official TREC-9 Results 44
TREC-9 Evaluation Script Results 47
Question Category Results 48

X

Effect of Improving Patterns L0 49

Answer Extraction Elements Analysis 50
Different Term Evaluation Formulas 51
Misclassification Analysis oL 60

List of Figures

1.1

2.1

2.2

3.1

3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Standard QA Approach 2
TREC-8 50-byte Results 14
TREC-8 250-byte Results 14
QA System Architectureo 22
RITF Component Architecture 29
TREC-9 50-byte Results 45
TREC-9 250-byte Results 45
Redundancy Factor in RITF formula 52
Answer Position Relative to Passage Centre[4] 53
Position Heuristic Analysis oL 54
Rank Heuristic Analysis L. 56
Cover Expansion Analysis 58

x1

4.8 Depth of Passages Analysis

xi1

List of Algorithms

X111

Chapter 1

Introduction

This thesis describes a new approach to answer extraction in an automated question
answering (QA) system. The purpose of a QA system is to find, within a corpus,
short factual answers to questions posed in natural language. For example , “Alexei
Leonov” would be an appropriate answer to the question “Who was the first person

to walk in space?”

A typical QA system has three components: Question Analysis, Information
Retrieval, and Answer Extraction as shown in Figure: 1.1. The analysis compo-
nent examines the question and produces query terms for the retrieval component
which extracts several documents or fragments from the corpus that are likely to
be relevant to the question. The Answer Extraction component selects a few short

answers from these fragments.

This thesis describes the design and evaluation of the Redundant Inverse Term

CHAPTER 1. INTRODUCTION 2

Questions
Question Query | Information Passages‘ Answer
Analysis " | Retrieval "| Extration

Answers Sub-Strings

Figure 1.1: Standard QA Approach

Frequency (RITF) answer extraction component, deployed within the MultiText
QA system for participation in the Ninth Text REtrieval Conference (TREC-9).
Overall, the MultiText system’s results ranked among the best three participating
systems. The analysis presented in this thesis shows that RITF makes a substantial
contribution in overall results, nearly doubling! the performance of MultiText’s

TREC-8 system][8], which lacked RITF.

The crux of RITF is to discover words or short phrases likely to be associated
with the answer, and to select an answer that is associated with a large number
of these words. This likelihood is based on: the query frequency of the words in
the corpus, the number of fragments in which the word occurs, the rank of the
passages as determined by the information retrieval component, the distance of the
word from the centre of the fragment, and category information gleaned from the

question analysis component.

L As measured by Mean Reciprocal Rank (MRR), the standard TREC measure, on the TREC-9
QA task.

CHAPTER 1. INTRODUCTION 3

Chapter 2 describes Question Answering and question answering systems in
general. The chapter focuses specifically on the TREC QA tasks and MultiText
system which forms the foundation of this work. Chapter 3 details RITF, while
Chapter 4 evaluates the impact of RITF on QA performance. Chapter 5 presents

conclusions and Chapter 6 suggests avenues for further investigation.

Chapter 2

Foundation

2.1 Introduction to Question Answering

The object of question answering (QA) systems is to discover short factual answers
in a corpus for a posed question. This objective differs from that of traditional in-
formation retrieval systems, which is to discover documents or document fragments
relevant to a particular topic, but not necessarily answering a specific question.

Nevertheless, the techniques of IR find common use in QA systems.

A typical QA system will first analyze the question to determine the key ques-
tion words and concepts from which a query for the IR component is formulated.
Second, the query is given to the IR component to retrieve documents or docu-
ment fragments that contain possible answers to the question. Finally, the answer

extraction component searches for short answers in the retrieved information.

CHAPTER 2. FOUNDATION 3

Question answering systems use many different types of question analysis, infor-
mation retrieval and answer extraction components. The architecture of a general

question answering system is shown in Figure: 1.1.

2.2 Question Analysis

The analysis of the question serves two main purposes. First, question analysis
is used to determine the key terms in the question. These key terms are used to
produce queries for the information retrieval aspect of the system. Second, question
analysis is responsible for the classification of the question; for example, the question
may be classified into the traditional “who”, “what”, “where” and “why”, as the
question categories. There are several different methods used to determine key
terms and question classification. QA systems may perform other tasks such as
creating patterns that may identify answers or using a database to find possible

answers independent of the corpus during question analysis.

A wide range of approaches may be used to find the key question terms to
be used in information retrieval query. The most naive would be to use every
word in the question as a query terms. More sophisticated approaches might be to
exclude stop words or to stem suffixes or to add synonyms. These are all standard
IR preprocessing techniques. More advanced systems may use Natural Language
Processing (NLP)[25, 21, 15, 2] techniques to identify parts of speech, sentence

components, question category, or other semantic information.

CHAPTER 2. FOUNDATION 6

Question classification is an important part of question analysis. Searching for
a date or monetary value is very different from searching for a person’s name.
Question classification may be accomplished using a wide range of techniques. Pos-
sible methods are keyword analysis, pattern matching, and NLP parsing. Pattern
matching fits questions to predetermined classifications. Using this, the question

“What is/a[n] X?” would be classified as a definition question.

It is possible for question analysis to do early answering for some questions. For
the example question “What is leukemia?” it is possible to use an external database
such as WordNet[18] to find the answer to this question. WordNet’s short definition
of leukemia is “cancer of the blood”. Knowing this, the system has the option of

adding these terms to the query.

2.3 Information Retrieval

The role of the Information Retrieval (IR) component in QA is to retrieve relevant

documents or fragments for the given query derived from question analysis.

IR techniques are traditionally evaluated using precision and recall[33]. Preci-
sion is defined as the fraction of relevant documents a system returns. Recall is
defined as the fraction of all relevant documents returned by the system. Recall
has little relevance to QA - what is important is that at least one returned item
contains the answer. It may be assumed that if an IR system has high precision for

the items it returns, one of these items contains the answer.

CHAPTER 2. FOUNDATION 7

For the purpose of question answering, two different approaches to retrieval
should be considered. QA systems use either document or passage retrieval. Docu-
ment retrieval returns full documents whereas passage retrieval returns only parts
of documents. It is an advantage in QA to have a system that returns only passages,
provided that the passages have good precision, because passage retrieval narrows

the amount of information that needs to be processed during answer extraction.

2.4 Answer Extraction

Answer Extraction (AE) locates answers in the retrieved documents or passages.
First, extraction methods find candidate answers, which are then evaluated. Some
of the methods to discover candidate answers are pattern matching, Information
Extraction (IE)[3] and grammatically matching questions and retrieved text seg-

ments using NLP techniques.

Pattern matching is a simple form of Information Extraction that may, for
example, use upper case words where a proper name is required, or numbers where a
quantity is required. IE is particularly suitable for finding candidate answers when
the question has been correctly categorized. Answer Extraction may use the IE
technique of named entity tagging to locate candidate answers. This technique can
discover names of people, places, organizations, dates, times, amounts, etc., which
suits answer extraction provided that the question is correctly categorized by the

analysis component. Through the Message Understanding Conference (MUC)][3],

CHAPTER 2. FOUNDATION 8

techniques of information extraction have been researched and evaluated.

Once candidate answers have been discovered, the best ones must be identified.
A statistical approach could use the frequency of candidate answers in the corpus. A
voting scheme could use frequency of candidate answers in the retrieved passages.
An external database could be used to verify the answer or the category of the
answer information for some question classification. A question requiring a country

as an answer could use a database to verify that any candidate answer was a country.

2.5 Text REtrieval Conference

The Text REtrieval Conference (TREC) started in 1992[13], although the question
answering track was not added until 1999[31, 30]. The conference is co-sponsored
by the National Institute of Standards and Technology (NIST) and the Defense
Advanced Research Projects Agency (DARPA). The program committee is made

up of government, industry, and academia members.

The goal of the conference is to encourage research in information retrieval and
to create an open forum for communication to increase the sharing of research
ideas. However, the important element TREC provides is a standard and unbiased
manner to evaluate what techniques perform best. Knowing which techniques work

well for a given task allows for the sharing of ideas and techniques to improve.

The TREC conference is different from most conferences in that its participants

are required to create a system for one or more of its research tracks. A list of

CHAPTER 2. FOUNDATION 9

the tracks is in Table: 2.1 along with the number of participants[9]. While the

organization of all the tracks is similar, this thesis only involves the QA track.

TREC-8 | TREC-9
Ad Hoc 41 -
Cross-Language 12 16
Filtering 14 15
Interactive 7 6
Question Answering 20 28
Query 5 6
Spoken Document 10 3
Small Web 17 23
Large Web 8 -

Table 2.1: TREC Participants per Track

For each track, documents and questions are provided. Each participant runs
their system on the data to create a set of results that is given to NIST. A run
must be a fully automated process except for the interactive track, which is based
on manual interaction. NIST pools all the different systems’ results together and
judges them for correctness|28, 29]. This means that if two systems produce exactly

the same result for a question they will have the same evaluation.

NIST provides the TREC data sets and evaluation software for research in
information retrieval. These evaluation suites allow the ability to evaluate either a

new system or the differences that parts of a system provide.

CHAPTER 2. FOUNDATION 10

2.6 TREC-8 QA

The Question Answering track was introduced at TREC-8[28]. The new track
required the QA systems to find short answers to each of a set of 200 questions.
The process of finding short answers was to be fully automatic. Systems would
be evaluated on their ability to return short extracts containing a correct answer

justified by a document in the corpus.

TREC-8 required the system to find solutions to 200 questions. Each question
was guaranteed to have an answer that appeared in the corpus. Participants were
given 30 training questions in advance of the evaluated trial. A sample of TREC-8
questions can be found in Table: 2.2. TREC-8 questions were developed by NIST
manually, creating each question or deriving them from FAQFinder[29] log word

queries into questions.

Q # Question

9 How far is Yaroslavl from Moscow?

30 What are the Valdez Principles?
122 | Who i1s section manager for guidance and control systems at JPL?

145 What did John Hinckley do to impress Jodie Foster?

164 Who is the leading competitor of Trans Union Company?

Table 2.2: Some TREC-8 Questions

The QA corpus was fixed. All documents in the corpus were newspaper articles

from four newspapers. Participants were aware of the source of the data and could

CHAPTER 2. FOUNDATION 11

therefore infer that it had a fairly homogeneous format and the information was of

fairly high quality. The size of the corpus was 979,000 documents totaling 3GB.

Systems were judged over two different runs, one restricting answers to a max-
imum of 250-bytes; the other imposing a more restrictive maximum of 50-bytes.
Answer extracts were required to be strings from the corpus. For TREC-8 many

groups including MultiText submitted only the (easier) 250-byte run.

At the end of TREC-8 it was announced that the 50-byte run would be com-

pulsory for TREC-9; providing impetus for the work reported here.

2.7 Mean Reciprocal Rank

TREC’s standard measure for QA system performance is Mean Reciprocal Rank

(MRR). MRR is defined as follows:

Define Q@ = {q1,42,---,qn} to be a set of questions.

Define a = {docid, answersubtring} to be a result returned containing

an answer substring and the document in which it was found.

Define A = ay1,a12,...a15,a21,--.,0,5 to be a sequence of 5 ranked

results for each question.

A judgment for each question result is justified, not justified, or incorrect. A

justified result answer extract contains a correct answer and has a document

CHAPTER 2. FOUNDATION 12

identification that supports the answer. A result not justified contains a correct
answer but its document identification does not support the answer. An incorrect
result answer extract does not contain the answer. A correct answer is defined as
the part of the answer substring that satifies the question as determined by the

NIS—T judges.

Judge(qi, Aij) — {justified, not justified, incorrect}

RankStrict(q;) = of 3;Judge(qi, Ai ;) = justifiedthen
min;(Judge(q;, A; ;) = justified))

else 0o

MRRstrict(Q) = &7 Li2! !

1=1 RankStrict(q;)
RankLenient(q;) = of 3;Judge(q;, A; ;) # incorrect then
min;(Judge(q;, A; ;) # incorrect)

else 0o

MRRIlenient(Q) = |é_|Z|Q| 1

1=1 RankLenient(q;)

The justified and not justi fied judgments are used to compute strict and lenient
Mean Reciprocal Rank accordingly. Mean Reciprocal Rank is calculated by finding
the highest ranking correct answer extract. The sum of the inverse rank (or 0 when

no correct answer extract has been found) is divided by the number of questions.

MRR ranges from 0 to 1; higher values denote better performance.

CHAPTER 2. FOUNDATION 13

Evaluation Scripts

The TREC QA runs are evaluated manually by NIST staff using the pooling method
described in Section: 2.5. The set of all answers judged correct or incorrect is
archived and available as a test collection for future experiments. For IR experi-
ments this archive can be used directly for evaluation. It has been observed that the
pooling method identifies enough of the relevant documents; therefore, unjudged
documents can be assumed “not relevant”. This observation allows future experi-
ments to be evaluated automatically. Because QA requires an answer string rather
than a document, there are a very large number of correct answer substrings and
it 1s unlikely that the archive would contain exactly the same string as that yielded

by a future run.

To facilitate automatic judging, NIST examined the archive and manually pre-
pared a set of Perl patterns to recognize correct answer strings. These patterns

were found to approximate the MRR lenient measure when applied automatically

to the TREC run[32].

2.8 TREC-8 QA Results

The TREC-8 questions were non-complex, resulting in many systems performing
well[29]. The top 10 participants for the 50-byte run are shown in Figure: 2.1. The
unofficial 50-byte MultiText run judged by the evaluation script has been added

to show the need for an answer extraction component. The top 10 participants for

CHAPTER 2. FOUNDATION 14

0,700 e — |40
I M,O” 120
0600 —H o—g—* 120
- - 1o
o5 H H !
/‘ =
0400 H a0
MR R J 7
0,300 —Het1 B0
- =0
oEm H — 40
] 20 O HFR
oo H -] X
Lo @ #ingorraci
0000 T 1T T T T T T T T o
DW= DX Z = o=
“i z m =z 3 g 3dF % E
=1 = e =
= m I E n
=2 A g I =
B £ 8 i
a 5 w
[T
F OB
=

Top 10 Participants

Figure 2.1: TREC-8 50-byte Results

250-byte run are shown in Figure: 2.2. MultiText performed well in the 250-byte

0.7 100
0 510 ___ M—QD
' e a0
0.500 H {/,f— — 70
o400 A H B B
MRAR s
pao HHHHHHH HH i
HHHHHHHHH =30
0.200 I WFF
ogiooHHHHHHHHH = ¥ #inooract
10
0.000 T T T T T T T T o
W O PN = Z o C
= JomEzi35 3
ExCc 5 A5 5 ol
;:l 1] o5 m g
= & ar
= I}
E: 3

Top 10 Participants

Figure 2.2: TREC-8 250-byte Results

CHAPTER 2. FOUNDATION 15

run, proving that it is retrieving passages that contain the answers.

Almost all of the questions in TREC-8 could be answered with a standard
Named Entity (NE). The Cymfony QA system[27] was the best performing QA
system for the TREC-8 50-byte run. Cymfony’s heavy use of NE recognition allowed
it to perform well. Southern Methodist’s LASSO system[19] also made extensive
use of NE recognition as well as other NLP techniques earning it second best 50-byte
and best 250-byte results. The Xerox QA[16] system performed well by combining
NLP components(parser, sentence boundary identifier, and proper noun tagger).
AT&T[26] and University of Pennsylvania[20] QA systems use of passage retrieval
allow them to be among the top 250-byte systems. IBM QA[22] system use of

predictive annotation allowed it to also perform well.

2.9 MultiText

The MultiText group from the University of Waterloo have participated in many of
TREC’s tracks, starting in 1995. MultiText created an arbitrary passage retrieval
system that was first evaluated in TREC-5[7]. The retrieval system ranks a passage
based on its length and the query termsin it. To rank the passages, the cover density
algorithm is used. The cover density algorithm essentially considers the shortest
covers containing the best query terms as the most relevant. A cover is defined
as a document fragment that satisfies a subset of the query terms; that document

fragment does not contain a shorter cover that satisfies the same subset of query

CHAPTER 2. FOUNDATION 16

terms.

2.10 MultiText TREC-8 QA Architecture

Question Analysis

To produce the query terms, the system examines the question and eliminates stop
words. Some simple stemming is done on the question terms. With stop word
elimination, sometimes key words are eliminated. An example of this is found in
the TREC-8 question, “Who was the first American in space?” whose query is

“American”, “space”.

There was no categorization of the questions, meaning there was only one answer

extraction method to handle all the different types of questions.

Information Retrieval

The information retrieval component treated the query terms as a bag of words,
a standard IR method. Treating the query term as a bag of words means that all

terms are considered to have equal value to the question.

Passages were retrieved using the MultiText search engine. The MultiText
engine returns a portion of text that satisfies the query; this portion of text is
defined as a cover. A cover cannot contain a smaller cover that satisfies the query.

A passage 1s a cover with text added at both ends. Therefore the hot spot of a

CHAPTER 2. FOUNDATION 17

passage 1s its cover because 1t is the part of the passage that is most related to the

question.

Passages are ranked using cover density that incorporates the number of query
terms in the cover and the size of the cover. The more query terms in the cover

and the shorter it is, the higher the rank of the cover.

For TREC-8 five passages were found for each question.

Answer Extraction

The TREC-8 QA system used simplistic answer extraction. Covers shorter than
250-bytes were extended on both sides by adjacent words from the original source;
covers longer than 250-bytes were truncated. The 50-byte run was not submitted;
however, the performance that would have been achieved by this technique is shown
in figure 2.1. The answer substrings were kept in the same order that the IR system

ranked them.

Though the MultiText question answer system evaluated in TREC-8 is quite
simple, it was one of the better systems in the 250-byte run. This good result was

based entirely on the strength of the MultiText passage retrieval method.

2.11 Need for Answer Extraction

The requirements for TREC-8 allowed the MultiText QA system to perform well

on the 250-bye run but for TREC-9, the 50-byte run was required and stressed

CHAPTER 2. FOUNDATION 18

as the more important run[30]. NIST also wanted the system to be able to have
exact answers in the future. With the required changes, answer extraction became

a necessary component.

2.12 Other QA Approaches for TREC-9

Southern Methodist University’s Falcon System

The FALCONI[25] question answering system developed at Southern Methodist Uni-
versity outperformed all other systems when evaluated at TREC-9. Questions are
first grammatically parsed with the implementation of Collins parser[6]. From the
parse question categories, focus and query terms are generated. The Falcon system
then uses a modified version of the SMART IR system|[2] that is capable of com-
pleting Boolean retrieval. Only paragraphs containing query terms are used from
the retrieved documents. Named Entity recognizers are then used to find candidate
answers. Justification of candidate answers is completed by grammatically compar-
ing answers with the question in what is called an abductive proof[12]. FALCON
makes extensive use of the publicly available resource, WordNet[18], for question

classification and answer justification.

CHAPTER 2. FOUNDATION 19

IBM’s GuruQA

The GuruQA[23, 24] has many similarities to the MultiText QA system in its
method of answer extraction; GuruQA does not rely heavily on NLP in its answer
extraction component. The system’s use of predictive annotation allows it to per-
form well. The question is first analyzed to determine answer type. Next, a query
is created by replacing the interrogative word with system defined QA-Tokens. An
example of this is changing “when” to DATES$, TIMES, YEARSS$. The system uti-
lizes approximately 400 patterns to do this conversion. For a question that does not

match a pattern, WordNet is used to find hypernyms that relate to the QA-Tokens.

The system has its own passage retrieval engine that can exploit these QA-
Tokens that have been predictive annotated. GuruQA system utilizes a simple
version of IDF weighting though it applies it to lexical classes and terms to rank

the candidate passages.

Name Entity recognition is the core of the system used for both predictive an-
notation and for finding candidate answers in the passages. The candidate answers
are evaluated with rule based function that includes engine ranking, distance from
the beginning of a sentence, or the presence of a (QA-Token. The combination of

these techniques produces a solid question answer system.

CHAPTER 2. FOUNDATION 20

University of Southern California’s Webclopedia

The Webclopedia[15] is another system that relies heavily on natural language tech-
niques using an external parser, CONTEX][14], as the core of its system. To train
the parser, 250 manually parsed questions were created. The parser is first used
to analyze the questions and produce queries and question type. The system has
a standard information retrieval engine that returns documents. These documents
are broken into small segments which are then ranked. These segments are then
parsed so that a comparison evaluation between the segments and question can be

obtained.

The system relies heavily on manually built QA patterns and question category
targets. Over 500 QA patterns were created. For the amount of work needed, these
patterns had very little success. It would be possible to improve the system greatly
if a method for creating QA patterns was derived automatically. The system uses
a similar inverse log frequency as part of its candidate answer evaluation process

but does not take into account redundant answers.

Chapter 3

Redundant Inverse Term

Frequency

RITF is one of two new components developed in the course of MultiText’s par-
ticipation in the TREC-9 QA task. Also new was a question analysis component
based on a probabilistic context free parser, developed in-house. The parser supplies
query terms to the IR component and question category information to RITF. The
IR component was essentially unchanged from TREC 8. The TREC-9 architecture

1s detailed in Figure: 3.1

The primary input to RITF is a set of passages returned by the IR component.
From these passages, RITF constructs a ranked list of short substrings likely to
contain the answer. To accomplish this task, RITF uses the following additional

information:

21

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 22

Question Context Query
Free IR Corpus
Parsing

Passages

Category Information Answers Sub-strings

RITF

Figure 3.1: QA System Architecture

e the frequency of terms within the corpus

o the category of the question as determined by question analysis

o category-specific rules, patterns, and auxiliary corpora

For example, consider TREC-9 question 330 “When was the slinky invented?” The

input and output from the components is the following:

Parser Input

Input for the parser is the question as presented in Table: 3.1.

Number Question

330 ‘ When was the slinky invented?

Table 3.1: Q330 Parser Input

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 23

Parser Output

The Output from the parser for TREC-9 question 330 is in Table: 3.2. The parser

Parse Infomation Parser Output
Query terms slinky ”$invented”
Category date
Question Type what
Instance of NA
Subject slinky
Predicate invented

Table 3.2: Q330 Parser Output

creates question type, instance of, subject, and predicate information that is not

used by the other components.

IR Output

The IR component returns passages containing covers. In Table: 3.3 the output for
TREC-9 question 330 is shown. The italic bold text represents the cover identified

by the IR component and the underlined bold text is the answer, yet to be identified.

RITF Output

RITF finds the correct answer substring as its first response. The answer substrings

in Table: 3.4 are the output for the RITF component for TREC-9 question 330.

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY

Rank | Cover Length

Passages

1 2

10 318

Rank

...Betty James took control of the business in
1960, when her husband, who tnvented Slinky,
lost interest and left her and six children to join
what she called a religious cult in Bolivia ...

..It’s a fitfully interesting double album of dron-
ing guitar-based noodlings that echo '60s sounds
but don’t achieve their inventiveness. —
Slinky Jody Watley got her start as a dancer on
”Soul Train.”. ..

...Slinky’s Developer. By CASSANDRA
BURRELL. Associated Press Wrriter.
Children around the world have played
with springy Slinkies for 48 years, but the
70-year-old woman who helped invent...
came up with the idea of the toy in 1948 while
aboard a ship...

...tnvented Audrey Hepburn’s best gamine”

sequined checkerboard decor for the
evening wear in trapeze topped minis or
shinky. ..

Table 3.3: Q330 IR Output

Answer Substring

1 the idea of the toy in 1943 while aboard a ship.

rol of the business in 1960, when her husband, wh
, moved Oct. 6 as b0260 for Monday PMs, Oct. 10.
kies for 43 years, but the 70-year-old woman who

10-block area of 19th-century department stores a

Table 3.4: Q330 RITF Output

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 25

Question Analysis

The RITF requires the question analysis component directly as it creates question
categories and indirectly because the question analysis component creates queries
to retrieve the passages RITF needs. The MultiText QA system uses a context
free parser based on a probabilistic version of Earley’s Algorithm[10] to perform
question analysis. It determines all possible parses of the grammar and selects the
most probable. The grammar contains only 80 manually constructed production

rules[4].

Part of speech analysis is necessary because the parser uses a context free gram-
mar. WordNet is used to determine whether each word of the question is likely a
noun, verb, adjective, or adverb. A simple strategy suggested in WordNet docu-
mentation reference[1] is used: The assumption that the probability of a particular
part of speech was proportional to the number of senses listed for that part of
speech is made. For example, the word "head” has 30 noun senses, 6 verb senses,
2 adjective senses, and no adverb senses, producing probabilities of 0.79, 0.16, 0.95

and ¢ to these senses.

The information yielded by the parser that is relevant to RITF is the category
designation for each question. RITF and the parser were developed independently
so their category designations are not identical. Table: 3.5 maps the parser’s cat-
egories to the eight used by RITF; specifically: PROPER, PLACE, DATE/TIME,

MEASUREMENT, DISTANCE, NUMBER, MONEY, OTHER.

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY

Parser

Answer Extraction

Proper
Person
Place
Country
City
Date
Time
Duration
Age
Value
Length
Money

None

Table 3.5: Parser to Answer Extraction Category Conversion

PROPER
PROPER
PLACE
PLACE
PLACE
DATE
DATE
MEASUREMENT
MEASUREMENT
NUMBER
DISTANCE
MONEY

OTHER

26

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 27

IR Component

The IR component regards the corpus as sequence of terms(words). The sequences
of terms comprising documents in the corpus are considered to be concatenated in

some arbitrary order.

Given a set of query terms, the IR component finds substrings of the corpus that
contain several of the query terms but do not traverse a document boundary. These
substrings, denoted cover, are ranked according to an estimate of the likelihood that
they are relevant to the subject of the query terms. The likelihood of relevance is

estimated based on two factors.

1. The length of the cover. A shorter cover is considered more likely relevant

than a longer cover containing the same query terms.

2. The terms in the cover. A cover containing terms with lower frequency in the

corpus is considered more likely relevant.

The IR component finds the k most-likely-relevant covers, and returns them in
order of likelihood of relevance. RITF makes use of context - the terms immediately
adjacent to the cover in the corpus. Therefore the results of the IR system were
extended to 1000 words by fetching an equal number of terms to the left and the

right of each cover.

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 28

3.1 RITF Overview

The RITF component’s goal is to extract five different answer substrings from
the provided passages for each question. To accomplish this goal RITF uses five
functions as shown in Figure: 3.2. Candidate information includes a term’s position,
passage rank, score, weight, the number times it appear in the corpus and the

number of passages it appears in.

Find Candidates (Section: 3.2)

Candidate answer are extracted from the retrieved passages based on hand coded
patterns for each question category. Candidate information is pass to the RITF

Evaluation element.

RITF Evaluation (Section: 3.3)

Each candidate is evaluated based on the likelihood of the term being a correct

answer. This likelihood is computed using RITF (Formula: 3.1).

Heuristic Evaluation (Section: 3.4)

Each candidate is evaluated based on likelihood of the term’s passage position and
rank containing the correct answer. Candidates are also evaluated based on the

likelihood that the term is answer for the given question category.

CHAPTER 3.

REDUNDANT INVERSE TERM FREQUENCY

Retrieved Passages

Question Classification

Find
Candidates

Candidate
Information
Candidate
RIFT Information
Evaluation -
Candidate
Information
Answer Candida_te
Selection Information

N

Heuristic
Evaluation

Term Weight
Reduction

Candidate
Information

Answers Sub-Strings

Figure 3.2: RITF Component Architecture

29

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 30

Answer Selection (Section: 3.5)

The answer selected is the substring of chosen length containing the most likely(highest

weight) candidate terms.

Term Weight Reduction (Section: 3.6)

A candidate matching a term in the answer substring weights are reduced. The

next best substring is selected using the answer selection function.

3.2 Pattern Matching

The purpose of pattern matching is to extract candidate answer terms. Therefore a
candidate answer term is defined as any term in the passages that satisfies a pattern
for the given question category. All question category patterns only match single
terms. Thus no candidate answer will contain more than one word. Each word in

the passage either matches a pattern or not.

Candidate terms are located using standard pattern matching techniques:
mateh(qp, P) =< p,i,j5 > (p = passage,i = startpos, j = endpos)

where gp is the question pattern and P is the set of passages, match then returns
a passage and the start and end bytes of the match. Candidate terms are therefore
sequences of bytes from a passage. The function is used to find all matches to the

pattern.

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 31

RITF uses simple regular expression patterns that have been hand-coded[17].

The patterns for each question category are in Table: 3.6.

At least two characters

both

PROPER | [A-Z][A-Za-z]+ long, starts with a capi-
tal letter
PLACE (A-Zaz]{2} i?)Lgleast two characters
[12][0-9{3,0 Month, weekday, four
(January|...|December) dieit b be fol
DATE (Jan|Feb). . .|Dec) 11g1 éi“m “ ?aylggoo)'
(Monday|Tuesday|. . .|Sunday) owed by ati 5 e i
(Mon|Tue|...|Sun)
N TR o T
(Dollars|Euro|Peso. . .|Mark) ames ’
[1-9](.[0- 9]{3’3})* Written numbers, digits
[1-9][0-9]*(.[0-9])*
more than 999 must have
NUM written_number ={ comas
oneltwol. .. |nineteen)
(twenty|thirty|.. .| ninety)
(hundred|thousand]|. . .|trillion)
[1-9][0-9]* Written numbers, digits,
DIST written number distance units
(meters|miles|. . |yards)
9110-91*
! 9] [0-9] Written numbers, digits,
written number .
MEAS . measurement units
(meters|miles|. . |yards)
(Celsius|Fahrenheit|volts| . . .)
[AZe)(2) o combiation. of
OTHER [1-9](,[0-9]{3.3})*
[

1-9][0-9]*(.[0-9]*)?

Table 3.6: Question Category Patterns

Patterns do not contribute to the terms’ weight. Each word in the passages is

evaluated against the patterns for the question category type. If a word satisfies

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 32

a pattern it is added to a list of candidate terms. Stop words and terms in the
question are not added to the list of candidate terms. Information about a candidate
term’s location, length, rank, corpus frequency, weight, and the number of passages
containing it must be kept. The list will contain candidate terms more than once

if they are found in different places.

3.3 Evaluating Candidate Answers

Candidate answer evaluation is the core of the Redundant Inverse Term Frequency
component. It is used to estimate the likelihood of correctness for a candidate term.
The power of the answer extraction component is almost entirely derived from this

step.

Several different formulas were evaluated for determining term weights. The
different formulas range from voting scheme to term location base analysis. Tests
of the system using different formulas were done as reported in Chapter 4 (Table:
4.6). The RITF formula provided the best results. The rationale for the Redundant
Inverse Term Frequency formula is as follows. Less frequent terms in the corpus
that occur in more passages retrieved are more like to be associated with a correct

answer[].

The RITF formula requires the term frequency, the number of retrieved passages
it occurred in, and the size of the corpus to function. These are derived in the

following manner:

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 33

C==z1,22,...,%n
P =twturts. s te

P =P15P25---3Pm

Consider the corpus a sequence of documents; those documents contain a se-
quence of terms. Therefore, the corpus C can be considered a sequence of terms.
The passage p is a substring of the corpus and therefore also a sequence of terms.
The set of ranked passages is defined as P. To find the frequency of the term in

the corpus a count of the number of times the term appears is taken.

fe= it = =}

Similarly the number of passages that a term occurs in is found through the

following formula:

a = [{P3it = pi}]

The main assumption driving RITF is that rare terms occurring in the passages
are more likely to be important than common terms. The probability p(¢) that any

given term t is in the corpus can be estimated by t’s frequency:

p(t) = %

Terms with lower p(¢) are more important. The importance (or rareness) is

defined to be the logarithm of the reciprocal of the value:

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 34

s(t) = log(|C|/)

where t is the term and C' is the corpus.

The term’s rareness score is based on the chance that any given term is ¢t. The
formula must be modified to reflect the chance of finding a term in more than
one passage. Thus, the number of passages the term appears in is multiplied by
the term’s rareness score. Therefore, each term’s RITF value is calculated by the

following Formula: (3.1)
A = cdog(|Cl/ f) (3.1)

where ¢ is the term and C' is the corpus and ¢; i1s number passages term appears in,
fi 1s the frequency of the term in the corpus and A, is the overall estimate of the

importance of this term to question.

Table: 3.7 shows the most likely candidate terms found in the passages retrieved

for TREC-9 question 330.

The formula performs well on the boundary scenarios when a correct answer
is very rare or very common in the corpus. A very rare term may not appear
very many times in the passages retrieved but its natural rareness is very strong,
producing a high score. Also, a very common term will have a poor corpus rareness

but the term weight will improve as the number of passages it appears in increases.

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 35

3.4 Location and Question Category Heuristics

Term weights are modified depending on a term’s location and chance of being an
answer to the question category. Location heuristics consider position in a passage
and rank of the passage. Question category heuristics modify the term weight based

on the likelihood of the term being an answer of the chosen category.

Location Heuristics

The cover is a sequence of terms that satisfies the query derived from the question.
Therefore terms closer to the cover are more likely to be related to the question.
Thus candidate answer terms closer to the cover are more likely to be answers
than terms farther away. To exploit this information the term weight is modified
to account for its distance from the centre of the passage. The farther from the
centre, the more a candidate term weight is decreased. Based on testing different

position heuristics the following calculation was adopted:

1

POSHGUTt =1- m

where d; is the term’s distance in bytes from the centre of the passage in which the

candidate term was found.

It can also be seen that as the ranks of passages decrease, so does the likelihood
of a passage being relevant. Therefore candidate term weight is modified according
to the rank of the passage in which it was found; the lower the ranking, the more

the term weight is decreased. The term weight is modified by the following formula:

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 36

1

RankHeurt =1- m

where r; is the rank of the passages in which the candidate term was found.

Question Category Heuristics

The question category heuristic change the term weights depending on the likeli-
hood of the term to be an answer for the question category. If a term has been
determined likely to be an answer, its weight is multiplied by a number that is
greater than one. Similarly if a term has been determined to be of low value, it is

multiplied by a number less than one.
CatHeury = EvalHeuristic(t, gc)

where ¢ is the term and gc is the question category. The category heuristics had
little impacted on the system performance due to over training. Though there
is evidence that category heuristic can improve the system. The PLACE cate-
gory heuristic made an improvement by using a external database of places. This

database contained countries, major world cities, and US states.

A term’s weight is assigned as the product of the RITF score and the position,

rank and category heuristics scores as follows:
wy = A ¥ PosHeur; * RankHeury x CatHeur

The RITF component successfully identifies the correct answer as seen in Table:

3.4 based on the the terms’ weight as seen in Table: 3.7.

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY

(Q330: When was the slinky invented?

Term fi c o~ Wy
1943 2107 2 500000
1960 9216 1 26400
2107 62464 1 51100
monday | 171008 2 41000
old 240640 3 8340
years | 553984 7 7020
century | 46080 1 1420
days 179200 1 305
late 140288 3 38

Table 3.7: Q330 Term Weights

37

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 38

3.5 Answer substring Selection

For TREC-9, the system was required to produce 50- and 250-byte substrings. The
answer substring score is based only on the candidate terms appearing in it. The
order in which the terms appear does not matter. Each substring is assigned a

score equal to the sum of the cube of the terms’ weight within it as follows:

v

3

scoreq = Y wy,
i=u

where a is the answer substring and u and v are the first and last candidate term

in that substring.

Using a sliding text window of the required size, the best answer is the sub-
string with the highest score,. Term weight is cubed to eliminate the problem
of a substring containing many small low scoring terms out scoring one extremely
good term. This provides the one best answer substring; however, for TREC-9 five
answer substrings are required. A goal of the MultiText QA system is to provide

five different answers for each question.

3.6 Finding Multiple Answers

To accomplish the goal of having five different answers, the weight of any term
matching a term in the answer substring selected is reduced. Terms’ weight in the

answer substrings are reduced to zero. Terms vital to answering the question are

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 39

reduced by half; monetary units (dollar, pound, etc.) for the MONEY category and
distance units (miles, feet, meters, etc) for the DISTANCE category. Otherwise,

any term matching a term in the answer substring has its weight reduced to zero.

Answer substring selection continues until the number of desired substrings is
fulfilled. Reducing the terms’ weight to zero allows for distinction between each of

the answers, eliminating answers that are almost the same.

3.7 Putting the Pieces Together

The algorithm performs a linear number of calls to the database to lookup corpus
term frequency. It also requires a linear number of dictionary lookups to find the
number of passages that a term is in. Finally the algorithm’s sliding window for

answer selection is done in linear time for each answer required.

The full algorithm proceeds as follows:

Inputs:

P =py,ps,...,pm - a set of passages of size m and p; = t1,t3,...1,
Q =q,q9...q, - the question terms

C =2z1,29,...,2, - the corpus

gc - the question category

M - the number of answers required

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY 40

len - the length of the answer substrings

L=1,l;...1, - alist of common words.

Output:

A =A{ay,ay,...ap} - the ranked answer substrings

D ={dy,d,,...dy} - the document identifiers containing the answer substrings
Functions:

fo=Hilt = =i}
¢ = [{P[3it = pi}|
PosHeur; = (1 — —+—)

1000—d;

RankHeur; = (1 — —+—)

1000—r¢

CatHeury = EvalHeuristic(t, gc)
pij = {tlpi = p=det; = 1y}
start(p; ;) is the starting character of the term p; ; in p;

end(p; ;) is the ending character of the term p, ; in p;

CHAPTER 3. REDUNDANT INVERSE TERM FREQUENCY

41

Algorithm 1 RITF

Select(P,m,qe, M,len,Q,L) =
for r < 1 to M do
bestScore < 0
for : + 1 to m do
for j < 1 to |p;| do
k<«
while k < |p;| and end(p;, j) — start(p;,j) +1 <len do
E+—FkE+1
end while
if j < k then
score < ()
for z < jtok—1do
let ¢ be p; .
if t ¢ usedTermsU QU L then

score < score+(clog(N/ f)* Pos Heuryx Rank Heur,xCat Heur,)?

end if
end for
if score > bestScore then
1 1
J <7
k'« k
end if
end if
end for
end for
for z < jtok—1do
usedTerms < usedTerms U (py)
end for
for z « 1 to len do
a,[z] = pu[K' + z] as the r-ranked answer snippet
end for
d, = 1" as the document identifier
end for

Chapter 4

Results

In the TREC-9[9] experiments the system was one of the top performers, achieving
second and third best MRR results in the 50-byte and 250-byte tasks, respectively.
The experiments described in this chapter illustrate the contributions of RITF to
these results. It is also important to examine the contribution of various elements
of this component. The elements analyzed include the Redundant Inverse Term
Frequency formula and the location and category heuristics. Different answer cat-
egories are easier to answer than others so an analysis has been done on a category
basis. The system’s performance is also affected by the size to which passages were
expanded about the cover. For TREC-9 the algorithm used very simple patterns.

Small changes to these patterns can have an effect on the overall system.

42

CHAPTER 4. RESULTS 43

4.1 TREC-9

TREC-9 QA track required the systems to find solutions to 682 questions. Ques-
tions were guaranteed to have an answer that could be found in the 3 GB corpus
comprised of newspaper articles. The systems were evaluated using TREC’s stan-
dard measure of mean reciprocal answer rank (MRR). Each participant ran their
system against the questions, and returned a ranked list of five answer substrings
for each question. NIST judges used two types of judging: strict and lenient. For
a strict judgment the document had to support the answer substring. The lenient
judgment only had to have the correct answer substring. Post-hoc analysis were

completed using the answer patterns and judging scripts supplied by NIST.

Official TREC-9 Result

The MultiText question answering system was submitted to TREC-9 for evaluation;
in the 50-byte task the system achieved the second best results among the systems
evaluated. The TREC-9 judges evaluated two runs per answer length per group as
seen in Table: 4.1. The only difference in MultiText’s runs with the same answer
length was the answer extraction component. Runs uwwmt9qasl and wwmt9qall
are the runs using the RITF. Runs wwmt9qas! and wwmit9gall use an enhanced
version of the answer extraction method employed at TREC-8. Table: 4.1 shows

the MultiText QA TREC-9 runs.

To evaluate the accuracy of judging script, MultiText performed manual and

CHAPTER 4. RESULTS 44

NIST NIST MultiText NIST
length strict lenient manual script
run id (bytes) | judgements judgements judgements judgements
uwmt9qas0 50 0.321 0.339
uwmt9qasl 50 0.257 0.264
uwmt9qall 250 0.456 0.475 0.486 0.506
uwmt9qall 250 0.460 0.465 0.456 0.470

Table 4.1: Official TREC-9 Results

scripted judgments on the results for comparison also seen in Table: 4.1. The
evaluation script produces MRR values that are comparable to those produced
manually. It should be noted that the TREC-9 script does produce slightly higher

MRR than a judge.

Figure: 4.1 demonstrates how the system performed among the top ten TREC-9
question answering systems for the 50-byte run and Figure: 4.2 shows the results
for the 250-byte run. The bars represent MRR and the dots are the number of

questions with no correct answer.

Though MultiText performed well, there are many systems with similar results.
This is fairly common with retrieval systems in that the next best system is only
slightly better than a lower performing system. It is important to note that Multi-

Text was well above the average MRR of 0.218 and 0.350 for the 50- and 250- bytes

respectively.

CHAPTER 4. RESULTS

MR R

MER

0600 —— Lo
,o«—cr“'/o - 450
0300 N o o O 9O L 400
0400 H L - 33l
300
0.300 —‘d 250
200
0200 H =1 150
0.100 H L { 100
- &0
0.000 T T T T T T T T o
o m m m w=
=225 %
= =i 4 g T 5
= 2 2 FF £ 5 k&
o ,g TN g ar 5 &
Coa 3 2 o B
R g ®
S =

Top 10 Participants

O mrR
@ #incorect

Figure 4.1: TREC-9 50-byte Results

0,500 o 350
] IO/-L“WO—325
0.700 —H oo | 300
0500 H e—e—g m2ra
: f - L 250
0.500 —H 223
= o - 200
0.400 H - E— 175
- 150
0.300 ——é— — —H H Lok
- 100
o200 HE A H O e
0100 H H H H — H H - 50
o5
0.000 T T T T T T T 1 n
P EZF@C Z LT C
z c £ 5 =
c35Z:238238%8
=) — o T T
; % ‘:.,E*t 3 oq g = X
- T a = Q=
=} 2 L 3 o & £
o E a N o] Q o w
g = = g =

v
[

Top 10 participants

O tRR

@ #incorect

Figure 4.2: TREC-9 250-byte Results

45

CHAPTER 4. RESULTS 46

Southern Methodist University outperformed all of the other systems by a sig-

nificant margin.

4.2 Overall Improvement

While the TREC-9 results indicate the overall performance of the system, they do
not directly indicate the contribution of RITF and its components. To evaluate
these contributions several more experiments were conducted; the TREC-8 system
was used as a baseline. It was not possible for the NIST judges to evaluate the
baseline; therefore, to measure the improvement of the system the TREC-9 evalua-
tion script was utilized. With the combination of the parser-generated queries and
the answer extraction components, there is a total improvement in MRR from .189
to .377 (99%) and from .407 to .504 (24%) for 50- and 250-byte runs respectively. It
is not surprising that the answer extraction component has a greater impact when
the answer substring requirement is shorter. Table: 4.2 reveals the improvements

that each component makes to the system.

RITF without parser assisted IR! improves 50-byte MRR from .189 to .357
(89%). The combination of the two new components is greater than either individ-

ually.

'Note that RITF takes question categories from the parser, but the parser generated IR query
terms were discarded.

CHAPTER 4. RESULTS 47

50-byte answer 250-byte answer

Improvements MRR MRR
Baseline (none) 0.189 0.407
Parse-generated QQueries 0.191 (+1%) 0.464 (+14%)
Baseline + RIFT 0.338 (4+78%) 0.462 (+13%)
Baseline + RITF + parser categories | 0.357 (4+89%) 0.467 (+15%)
TREC-9 system 0.377 (+99%) 0.504 (+24%)

Table 4.2: TREC-9 Evaluation Script Results

4.3 Question Category Performance

The MultiText question answering system has relatively few question categories.
Each category has to include a broad range of questions, and there are many ques-
tions the system cannot classify. Table: 4.3 shows the number of TREC-9 questions

for each category and the mean reciprocal rank of that category.

The MRR was produced by the TREC-9 script. The number of incorrect results
for the different question categories varies tremendously. The system performs
very well on the PROPER and PLACE categories. The PLACE category achieved
the highest result because it is the only category to use an external source for
information. As mentioned, it has a database of world cities and countries as well
as U.S. states. Answer quality improves for answers that are more likely to occur
in the corpus such as PROPER, PLACES and DATE. Analysis shows that there

may be many answers for a MEASUREMENT or NUMBER classification but there

CHAPTER 4. RESULTS 48

Category # of question MRR # incorrect
Proper 202 0.492 82
Place 96 0.535 33
Date 67 0.357 39

Measurement 16 0.198 11

Number 36 0.273 21

Distance 0 0.000 0
Money 2 0.250 1
Other 263 0.259 155
Total 682 0.377 342

Table 4.3: Question Category Results

are usually very few that are exactly the same. Therefore the redundancy factor

cannot be exploited, producing poor results for those categories.

Improving Patterns

The question patterns employed in the TREC-9 system did not handle punctuation.
A slight modification was made to the patterns so that excess punctuation would be
stripped away when finding candidate terms. This unsophisticated change resulted

in a noticeable improvement.

With such minor changes in patterns leading to improvements it should be

possible for high quality patterns to produce even better results. Also, as more

CHAPTER 4. RESULTS 49

Old Patterns New Patterns
Category | # of questions MRR MRR Improvement
Proper 202 0.492 0.502 2.03%
Place 96 0.535 0.547 2.24%
Other 263 0.259 0.286 10.42%
Total 682 0.377 0.391 3.711%

Table 4.4: Effect of Improving Patterns

categories are added, it will be easier to create a more specialized pattern. As a
result, the quality of patterns will also be improved. The change to these categories

results in an advancement to the MRR from 0.377 to 0.391 for a gain of 3.7%. For

all other analysis tests these new patterns are used.

4.4 Answer Extraction Elements Evaluation

There are several different parts to the answer extraction component. Each of these
parts improves the system by varying degrees. Through the process of removing
each element from the system the effect that the different elements has on the
overall system can be seen. Table: 4.5 shows the MRR and the number of incorrect

answers for the system without the various elements of:

wy = ¢log(|C|/ fi) * PosHeury * RankHeur, * Cat Heury

From examining this Table: 4.5 it is apparent that the RITF formula is almost

CHAPTER 4. RESULTS 30

Missing Element w; Element | MRR #incorrect Effect
RITF clog(|C/ f) | 0.195 475 -50.2%
Term Rareness Score log(|C|/fe) | 0.345 368 -11.8%
Term Redundancy Score Ct 0.241 434 -38.4%
Position Heuristic PosHeur; | 0.379 354 -3.07%
Rank Heuristic RankHeur, | 0.384 341 -1.79%
Category Heuristics CatHeur, | 0.390 339 -0.25%
Complete Formula 0.391 338 0%

Table 4.5: Answer Extraction Elements Analysis

fully responsible for extracting the answers. Redundancy makes the most significant
difference but the combination of the two produces a greater mean reciprocal rank.

The heuristic makes very little contribution; however, it does assist in the process.

Redundant Inverse Term Frequency Analysis

In a large corpus there is duplicate or supporting information for almost any given
question. The RITF formula utilizes this knowledge, through two simple premises:
the more a term is repeated, the more likely it is the correct answer, and the lower

the probability that a term appears by chance, the more likely it is correct.

Several formulas were used to evaluate a term’s value. Here are the effects of

variants of the term evaluation formulas tested:

In Table: 4.6 the f; is the number of times the term is in the corpus, ¢; is the

CHAPTER 4. RESULTS 51

Term Evaulation Formula Description MRR #incorrect
Ar = cllog(|C|/ fr) RITF 0.391 338
Wy = ¢ Voting Scheme 0.345 368
M\ = log(|C|/ f.) ITF 0.241 434
A= a(|C] fr) non logarithic RITF 0.138 505
Ao = $-log(|C/ fr) Modified Redudancy Factor | 0.286 425
A= |Cl/ fi non logarithic ITF 0.121 528

Table 4.6: Different Term Evaluation Formulas

number of times the term is in the set of passages, and |C] is the total number of

terms in the corpus.

Analysis of the duplication component in the RITF formula is done by modifying
its level of importance to the formula. This is accomplished by adjusting the size

of « in this modified RITF formula:

wy = ¢log(N/ fi) x PosHeur, * RankHeur, x CatHeury

Figure: 4.3 helps determine how the RITF formula can be improved. By setting
the formula (o = 0) no redundancy will be taken into account in the calculation.
When this occurs, the system only achieves a mean reciprocal rank of 0.241, demon-
strating the importance of redundancy. The question that has to be examined is
the exact significance of redundancy. If the duplication element is too much or not

enough of a factor in the calculation, system performance will suffer.

The graph reveals that o should be in the range of 1 to 2. As expected, the

CHAPTER 4. RESULTS 32

0.400 -w\\\D 450
0.375 - - 400
oo oo %
0.350
300
0.325
250
hREE 0300 S
=200 | ™ MMFA
0275 L 150 @ #incorrect
0.250 — - 100
0225 =50
0.200 T T T T T T T T — 0

000 025 050 075 1.00 125 1.50 175 200 3.00

o

Figure 4.3: Redundancy Factor in RITF formula

graph demonstrates that the value of this part of the formula reaches a maximum
before decreasing the system’s overall accuracy. There is not enough evidence that
the system would be improved if the RITF formula should use a different value

then a = 1 because the performance is very similar to the best value for a .

4.5 Location and Category Heuristic Evaluation

The addition of heuristics made a small improvement to the performance of the
system. Notably, the position and rank heuristic did not have a significant impact
on the system given the results in Figure: 4.4. The figure shows answer position
relation to the passage; it can be seen that most answer locations are in the centre

of the passages. Figure: 4.4 shows answer placement from all the first ranking

CHAPTER 4. RESULTS

passages for the TREC-8 question.

33

There is a distinct spike of answers in the

centre of the passages which suggest answers are much more likely to be found near

the cover. Heuristics were hand coded based on TREC-8 question.

50 T T T T
B0 byte windows, top level passages
45 —
40 - —
-
@ G ol
-
&
45 o i .
L
k] &4
o e s
T a0 F & -
% S
2 b4 hS
B o
5 25 o o
é ¢
3 20 k) @ —
= L] L]
& &
z "
15 | L]] —
@ @
& & G @ -
- o -, &
& o S G ® @
10 |+ s e e . LEL] E
& R L ™ S0 Ol o -
A A L & ek & B Lol
-0 o WO & 0000 & % 0 an * &80
- - L3 - & o . . .
5F & e 9% | I - . BoE e
B & L . X:] A - L] L)
* SO G ¢ -
© —— -e - -
0) . [. , , [
400 -200 0 200 400

byte offset from passage center

Figure 4.4: Answer Position Relative to Passage Centre[4]

Position Heuristic

It has been shown that far more answers come from the centre of passages then

the ends. This can be seen in Figure: 4.4 where answer location makes a standard

CHAPTER 4. RESULTS 54

distribution around the centre of the passages. The evaluation of position heuristic

is done by modifying 3 in the following formula.

1

PosH =1-
osHeur; =4,

Figure 4.5 shows the results for the determination of the best value of 5. In
the system evaluated for TREC-9 g = 1000. The system improves slightly when /3

0.405
0.400
0.395
0390
0.335
MRR 0330
0375
0.370
05365
0360
0355

0.330 ! ! ! ! ! ! ! ! ! !
50 100 200 250 300 400 500 750 1000 1500 2000

p

Figure 4.5: Position Heuristic Analysis

ranges from 100 to 300. Though there is only a small improvement, it is enough

that 3 should be set to 250 for future use.

Rank Heuristic

All information retrieval systems use some method of ranking the retrieved in-

formation. Ranking the information is important because it allows a system to

CHAPTER 4. RESULTS 35

determine what information is more valuable. It follows the principle that, in gen-
eral, the higher the rank the better the information. Under this simple premise, one
would presume that during the answer extraction process the rank of the passages
a candidate answer comes from would make a substantial difference. This does not
seem to be true based on the fact that the rank heuristic only improves the system

1.8%. The rank heuristic is the following formula:

1

RankHeur, =1 —
6 — T

where for TREC-9 evaluation # = 1000.

It is possible that heuristic does not have enough effect on the term’s weight.
An analysis can be done by modifying 8. One would assume that a small value of

£ would improve the system

The Figure: 4.6 was created by evaluating the system using different values of

Notably, the more effect the rank heuristic had on the system the lower the
overall performance. However, the performance hardly changed demonstrating that
the rank a candidate answer is taken from is not important. There are a few reasons
for a candidate term’s passages rank not making a major difference. Many of the
passages will have the same rank for a question. A lower ranked passage might
contain two candidate terms that are needed to answer the question but the rank
heuristic decreases the term weight too much. The answer extraction component is

better at finding answers to the question then an information retrieval component.

CHAPTER 4. RESULTS 36

0.395 -

0.390

0.385 - /w—
0380 -
0.375 -

tR R
0.370 -
0.365 -
0.360
0355 -

0.350 ! I ! ! ! I ! !
20 50 100 250 500 750 1000 1500 2000

B

Figure 4.6: Rank Heuristic Analysis

The rank heuristic makes a very small contribution to the system but it is unclear

that any changes to it would improve the system.

Category Heuristics

The category heuristics made no significant improvement to the system. These
heuristics were derived from training on the TREC-8 question. The heuristics did
make a fair amount of improvement on the training questions. For TREC-9, to-
gether, they made no difference. It is likely that the heuristics were over-trained
to the TREC-8 questions. The only category heuristic that contributed a notice-
able difference was the PLACE heuristic improving question of that type by 9.6%.
This heuristic worked on a different principle than the others. It used an external

database to determine if the term was a known place. The database contained

CHAPTER 4. RESULTS 37

major world cities, countries, and US states. The other category heuristics were
based on writing practices (i.e. places are more likely capitalized). Future heuris-
tics should be based further on exploiting information from external sources. Many
systems use WordNet[18] to improve their performance. Due to the little effect that
category heuristics had, all but the one applying to PLACE should be eliminated

or improved.

4.6 Cover Expansion

It has been determined that answers tend to fall closer to the centre of a passage.
This means that information further from the passage’s centre is of less importance
than information closer to it. A passage is a cover that has been expanded by
adding text to either side. The cover expansion experiment is used to determine
the effect of adding different lengths of text to either size of the cover. Figure: 4.7

shows the system’s performance using different cover expansion lengths.

The information just outside the cover is very important. Extending the cover
by 25-bytes changes the MRR from 0.183 to 0.372. Larger cover expansion does
not make as great an improvement. The graph reveals that for TREC-9 questions
the best cover expansion is between 150 and 200 bytes. Extending the cover by a

large value does not significantly reduce performance.

CHAPTER 4. RESULTS 38

0.400 1 550
0375 L con
0.350 s
0,325 - .
0.300 o
p——ﬁ___n,__n_g_——ﬁ——ﬂ——lir 350
0275 o
300
FER 0250 S s
0.225 ™., MRR
0.200 - 200 @ #incorrect
0175 o 150
0150 ~ 100
0125 1 - B0
0.100 T T T T T T T T ——0
] 25 5O 100 180 200 250 3F¥L LOO 1000

p

Figure 4.7: Cover Expansion Analysis

4.7 Depth of Passages

Tests were also complete to determine if the number of passages used to find the
answer effected the system. Figure: 4.8 shows the effect of using 1 to 1000 passages,
these passages are not exactly the same as the ones used for TREC-9 though the
process of retrieval was similar. When only a small number of passages were used,
system performance decreased. This is expected because there would be fewer
redundant terms. The use of too many passages also decreases system performance.

For future purposes, between 10 and 20 passages should be used.

CHAPTER 4. RESULTS 39

0400 1\ o 500
0.350 5 o 40
400
0.300 H
n“———o_,—ba—""'_'- 350
0.250 L =300
fARF 0200 S - 280
| P MRR
0.150 @ #incorrect
150
0100
100
0.050 — L o
0.000 T T T T T T T T T]

1 2 5 10 20 50 100 200 500 1000
passages

Figure 4.8: Depth of Passages Analysis

4.8 Misclassification

Classification of a question can have a largely impact on the system. Table: 4.7
shows the effect of misclassification. Each row is the classification given by the
parser for TREC-9. The number of question for each classification depends on
the parser. There was no questions classified as DISTANCE make misclassification
not applicable NA. Columns show the effect of reclassification from the row to the
column classification. The system performs well with no classification achieving
an overall MRR of 0.344 by defining all questions as OTHER. However, when
questions are misclassified the system can perform as poorly as a MRR of 0.065.
Misclassification has the largest impact when the correct answer is a word but the

system 1s looking for candidates that are numbers.

CHAPTER 4. RESULTS 60
TREC-9 MRR

PROP 0.502 0.463 0.116 0.047 0.048 0.060 0.061 0.501
PLACE | 0.479 0.547 0.085 0.096 0.099 0.087 0.100 0.494
DATE 0.093 0.073 0.357 0.050 0.072 0.110 0.134 0.081
MEAS 0.000 0.000 0.028 0.198 0.210 0.174 0.214 0.125
DIST NA NA NA NA 0.000 NA NA NA
MON 0.000 0.000 0.250 0.125 0.250 0.250 0.000 0.000
NUM 0.049 0.047 0.028 0.238 0.257 0.219 0.273 0.090
OTHER | 0.205 0.195 0.031 0.040 0.052 0.055 0.061 0.286
ALL 0.307 0.299 0.096 0.065 0.075 0.078 0.088 0.344

Classified | PROP PLACE DATE MEAS DIST MON NUM OTHER

Table 4.7: Misclassification Analysis

CHAPTER 4. RESULTS 61

4.9 Results Summary

Extensive analysis was done to determine what each element contributed to the
overall system. Testing showed that the key improvement to the system was the
Redundant Inverse Term Frequency formula. Though many different term evalu-
ation formulas were examined, RITF formula significantly outperformed them all.
The location and category heuristics also contributed to the performance of the sys-
tem. Cover expansion tests show that the quality of information obviously makes a
difference in how the answer extraction component performs. The addition of poor
quality information can negatively impact the system. Results reveal that the Re-
dundant Inverse Term Frequency formula creates an excellent basis for a question

answering system.

Chapter 5

Conclusion

Overall, the addition of the answer extraction component improves the question
answering system. Not only does the AE component achieve solid results, it is also

a good basis for a more advanced question answering system.

The QA system is similar to other top performing systems in its approach
to solving the question answering problem. First the questions are analyzed to
determine question type and focus. This information is then used to generate
queries for a passage retrieval component. Passages returned from the retrieval
engine are passed to a answer extraction component. Next, candidate answers are
extracted from the passages and are then evaluated using the RITF formula and

other heuristics. Finally, a string containing the best candidate answer is outputted.

A major difference that the MultiText QA system has from other question

answering systems is in its answer extraction methods. MultiText QA uses only

62

CHAPTER 5. CONCLUSION 63

statistical approaches for answer extraction.

The idea behind the RITF component is to find and evaluate potential answers
in the passages retrieved using the RITF Formula: 3.1. The RITF formula’s use of

corpus term frequency in conjunction with a voting scheme allows it perform well.

The RITF component still performs well without question analysis.The RITF
algorithm does not need a question classification because it can treat all questions as
OTHER. Without question classification the system can achieve a mean reciprocal
rank of 3.38, which would out perform all but a few QA systems at TREC-9. This
creates a very robust method to extract answers; though having question categories
does improve the system’s mean reciprocal rank considerably. With the addition of
question classification, the system can apply specialized candidate finding patterns.

Also, category based heuristics can be exploited. The overall system can achieve

MRR of 3.91.

Notably, because the RITF algorithm does not require information regarding
the structure or grammar of a natural language, the algorithm should prove useful
in many natural languages. The RITF algorithm can even extract answers when
the question’s meaning is completely unknown. Having an elementary and reliable
way to evaluate each term in a set of passages is the key to the answer extraction

component.

Preliminary testing indicated that a correct answer location tends to be close to
or within the query cover. Preliminary testing also showed that candidate answers

from higher ranking passages are usually more likely to contain an answer than

CHAPTER 5. CONCLUSION 64

lower ranking passages. For this reason, rank and position heuristics were created.
These heuristics made less of an impact on the system then expected. There was
enough performance gain to justify the use of term location heuristics; though more

research should be done to increase the performance of these heuristics.

Candidate term evaluation using question category specialized heuristics made
only a small contribution. Over-training is the main reason these category heuristics
do not perform better. Category heuristics based on external knowledge did improve
the system. Performance improvements can be seen with the addition of a known
place database. The PLACE category heuristic is based on knowledge and out
performs those base on simple writing style based rules. Therefore these writing

based rules should be replaced with heuristics that are more knowledge based.

The MultiText QA system achieved second place overall at TREC-9. Although
the RITF statistical approach we employed did not perform as well as Southern
Methodist University the top performing system which combined knowledge based
and NLP techniques, it is still very useful. When no information about the question
is known, a statistical approach can perform well; it can be language independent.
Combining statistical, knowledge based and NLP techniques should greatly enhance

the question answering process.

The RITF algorithm is also scaleable because in theory, as the corpus size
expands, the performance of the system should increase as more duplicate informa-
tion will become available. Finally, the initial value of the redundant inverse term

frequency algorithm is beneficial to the overall system and future applications of

CHAPTER 5. CONCLUSION

question answering.

65

Chapter 6

Future Work

This system creates a strong basis on which question answering can continue to
develop. It is the basis for the system submitted to TREC-10 where, once again,

it was one of the top performing systems.

A major addition to the system includes finding answers in web data; this was
the most prevalent improvement to the overall system. Currently, researchers in

the group are examining the use of a tera-byte of data for question answering.

Next, the exploitation of WordNet to assist in finding definition answers in the
corpus was added. It is also used for knowledge based category heuristics. Once

again, better patterns were developed which also improved the system.

Another feature that was implemented was a feedback loop that included adding
highly weighted terms to the original query. This was not successful because the

system returned lists of possible answers as its output substrings; this made it

66

CHAPTER 6. FUTURE WORK 67

impossible to recognize the correct answer. However, it did prove promising for

many of the questions but further research in this area is required.

There are a number of areas in which the system can still be expanded to
improve performance. Name Entity tagging must be incorporated further into the
system[11]; this is a major goal of future work. Also, a process to relate question
parses with candidate passage parsing is needed in the system. The use of more

external knowledge sources could also prove beneficial.

A research goal is to develop a standard question answering platform available

to the public that is derived from the MultiText QA system.

Bibliography

1]

Richard Beckwith, George Miller, and Randee Tengi. Design and implemen-
tation of the WordNet lexical database and searching software. Included in

WordNet software distribution. See http://www.cogsci.princeton.edu/ wn.

Chris Buckley, Mandar Mitra, Janet A. Walz, and Claire Cardie. SMART high
precision: TREC 7. In Text RFEtrieval Conference, pages 230-243, Gaithers-

burg, MD, 1998.

Nancy A. Chinchor. Overview of MUC-7. In Seventh Message Understanding

Conference (MUC-7), 1996.

C. L. A. Clarke, G. V. Cormack, D. I. E. Kisman, and T. R. Lynam. Question
answering by passage selection. In 9th Text RFEtrieval Conference, Gaithers-

burg, MD, 2000.

Charles L. A. Clarke, Gordon V. Cormack, and Thomas R. Lynam. Exploiting
redundancy in question answering. In SIGIR Conference 2001, New Oreans,

Louisiana, 2001.

68

BIBLIOGRAPHY 69

(6]

[10]

[11]

[12]

Micheal Collins. A new statistical parser based on bigram lexical dependen-
cies. In 34th Annual Meeting of the Association for Computational Linguistics,

pages 184-191, San Francisco, 1996.

C.L.A. Clarke G.V. Cormack. Interactive substring retrieval (MultiText Ex-
periments for TREC-5). In 5th Text REtrieval Conference, Gaithersburg, MD,

1996.

G. V. Cormack, C. L. A. Clarke, C. R. Palmer, and D. I. E. Kisman. Fast
automatic passage ranking. In 8th Text REtrieval Conference, Gaithersburg,

MD, November 1999.

D. Harman E. Voorhees. Overview of the Ninth Text REtrieval Conference

(trec-9). In 9th Text REtrieval Conference, Gaithersburg, MD, 2000.

J. Earley. An efficient context-free parsing algorithm. Communications of the

ACM, 13(2):94-102, 1970.

M. Fuller, M. Kaszkiel, S. Kimberley, J. Zobel (RMIT), C. Ng (RMIT,
Sharp Laboratories of Europe Ltd.), R. Wilkinson (CSIRO), M. Wu (RMIT,
and CSIRO). The RMIT/CSIRO ad hoc, q&a, web, interactive, and speech
experiments at TREC 8. In 8th Text REtrieval Conference, Gaithersburg, MD,

1999.

Sanda M. Harabagiu and Steven J. Maiorano. Finding answers in large collec-

tions of texts: Paragraph indexing + abductive inference. In 1999 AAAI Full

BIBLIOGRAPHY 70

[13]

[14]

[15]

18]

Symposium on Question Answering Systems, pages 63—71, North Falmouth,

MA, 1999.

D. Harman. Overview of the First Text REtrieval Conference (TREC-1). In

First Text REtrieval Conference (TREC-1), Gaithersburg, MD, 1992.

Ulf Hermjakob and Raymond J. Mooney. Learning parse and translation de-
cisions from examples with rich context. In Philip R. Cohen and Wolfgang
Wahlster, editors, Proceedings of the Thirty-Fifth Annual Meeting of the Asso-
ciation for Computational Linguistics and Eighth Conference of the European
Chapter of the Association for Computational Linguistics, pages 482-489, Som-

erset, New Jersey, 1997. Association for Computational Linguistics.

Eduard Hovy, Ulf Hermjakob, Chin-Yew Lin, Mike Junk, and Laurie Ger-
ber. Question answering in Webclopedia. In 9th Text REtrieval Conference,

Gaithersburg, MD, 2000.

D. Hull. Xerox TREC-8 question answering track report. In 8th Text RFEtrieval

Conference, Gaithersburg, MD, 1999.

T. R. Lynam, C. L. A. Clarke, and G. V. Cormack. Information extraction
with term frequencies. In Human Language Technology Conference 2001, San

Diego, Ca, 2001.

G.A. Miller. WordNet: A lexical database. In Comunication of the ACM, vol

38: Noll, pages 39-41, 1995.

BIBLIOGRAPHY 71

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Dan Moldovan, Sanda Harabagiu, Marius Pasca, Rada Mihalcea, Richard
Goodrum, Roxana Girju, and Vasile Rus. Lasso: A tool for surfing the answer

net. In 8th Text RFEtrieval Conference, Gaithersburg, MD, 1999.

T. Morton. Using coreference in question answering. In 8th Text RFEtrieval

Conference, Gaithersburg, MD, 1999.

Marius Pasca and Sanda Harabagiu. High-performance question/answering.

In SIGIR Conference 2001, New Oreans, Louisiana, 2001.

J. Prager, D. Radev, E. Brown, and A. Coden. The use of predictive anno-
tation for question answering in TRECS. In 8th Text REtrieval Conference,

Gaithersburg, MD, 1999.

John Prager and Eric Brown. One search engine or two for question-answering.

In 9th Text REtrieval Conference, Gaithersburg, MD, 2000.

Dragomir R Radev, John Prager, and Valerie Samn. Ranking suspected an-
swers to natural language questions using predictive annotation. In 6th Con-

ference on Applied Natural Language Processing, Seattle, May 2000.

P. Morarescu S. Harabagiu D. Moldovan M. Pasca R. Mihalcea M. Surdeanu
R. Bunescu R. Grju V. Rus. Falcon: Boosting knowledge for answer engines.

In 9th Text REtrieval Conference, Gaithersburg, MD, 2000.

A. Singhal, S. Abney, M. Bacchiani, M. Collins, D. Hindle, and F. Pereira.

BIBLIOGRAPHY 72

[27]

28]

[29]

[30]

[31]

32]

[33]

AT&T at TREC-8. In 8th Text REtrieval Conference, Gaithersburg, MD,

1999.

R. Srihari and W. Li. Information extraction supported question answering.

In 8th Text REtrieval Conference, Gaithersburg, MD, November 1999.

E. Voorhees. The TREC-8 question answering track evaluation. In 8th Text

RFEtrieval Conference, Gaithersburg, MD, 1999.

E. Voorhees. The TREC-8 question answering track report. In 8th Text RE-

trieval Conference, Gaithersburg, MD, 1999.

E. Voorhees. Overview of the TREC-9 question answering track. In 9th Text

RFEtrieval Conference, Gaithersburg, MD, 2000.

E. Voorhees and D. Harman. Overview of the Eighth Text REtrieval Confer-

ence (TREC-8). In 8th Text REtrieval Conference, Gaithersburg, MD, 1999.

E. Voorhees and D. Tice. Building a question answering test collection. Tech-
nical report, National Institute of Standards and Technology, Gaithersburg,

MD, 2000.

lan H. Witten, Alisair Moffat, and Timothy C. Bell. Managing Gigabytes

Compressin and Indexing Documents and Images. Morgan Kaufmann, 1999.

