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Abstract

Low-Density Parity-Check (LDPC) codes are very powerful linear error-correcting codes,

first introduced by Gallager in 1963. They are now used in many communication standards

due to their ability to achieve near Shannon-capacity performance. Stochastic decoding is

a hardware-efficient method of iterative decoding of LDPC codes. In this work, we investi-

gate the capability of stochastic decoding to tolerate circuit soft errors while maintaining

good bit error rate performance and low error floor. Soft errors can be intended faults as

a result of either supply voltage scaling to reduce power consumption or overclocking the

system to achieve a higher throughput. They can also be unintended faults as a result of

temperature or process variations.

We develop two models to emulate these circuit errors at the system level. We apply

our models to two standardized LDPC codes (10GBASE-T and WiMAX). Simulation

results show that stochastic decoding is very tolerant to faults and errors, where it can

tolerate a probability of setup time violation of 0.1 in the wires of the decoder. Hence,

stochastic decoding can be very useful in systems with very low power or high performance

requirements where we can push the limits of power or speed by lowering the supply voltage

or highly overclocking the system while maintaining good performance. In addition, a chip

has been designed and sent to fabrication to do post-silicon validation and verify our

models.

iii



Acknowledgements

I would like to express my sincere gratitude and appreciation to my supervisors, Professor

Vincent Gaudet and Professor Mohamed Elmasry for their continuous support and encour-

agement during my research and academic work. This work wouldn’t have been successful

without your advice and guidance.

I would also like to thank Professor Mark Aagaard and Professor Liang-Liang Xie for

reviewing my thesis and providing valuable feedback and notable comments. In addition,

I would like to thank Professor Adel Sedra for his invaluable discussions and for his help

and guidance.

I would like to express my gratitude to everyone who helped with the chip implementa-

tion and the CAD tools especially Professor Mark Aagaard, Professor Manoj Sachdev,

Govindakrishnan Radhakrishnan, Sakib Imtiaz, Yahya Beltagy and Mohamed Hassan.

Thanks so much for your valuable discussions during the chip Tape-Out. In addition,

I would like to express my thanks to my research group and lab mates, Rachna Srivastava

and Maurice Yang. It has been a great pleasure to work with you. Moreover, I would like

to thank my professors and teaching assistants at Cairo University for their efforts during

my undergraduate study, especially, Dr. Hassan Mostafa for his continuous advice and

guidance.

My deepest gratitude and appreciation goes to my mother, Asmaa El Hakim. No

words are enough to even describe how important and special you are in my life. I am

forever grateful for your endless support and guidance throughout my life. I would also

like to thank my father, Shoukry Hussein. Thanks for all the sacrifices you have made,

for everything you have given me and for always believing in my capabilities. Moreover,

a special thank you to my brother, Mohamed Hussein, for his continuous support, advice

and guidance. I couldn’t wish for a better family.

In addition, I would like to acknowledge the Natural Sciences and Engineering Re-

search Council (NSERC) as this research is supported in part by an NSERC grant to my

co-supervisor, Professor M. I. Elmasry. I would also like to thank the Canadian Microelec-

tronics Corporation (CMC) for their help and support with the chip tape-out.

iv



Finally, I would like to take this opportunity to thank everyone who ever taught me in

my life. I would have never reached anything without you.

v



Dedication

This is dedicated to my family with love.

vi



Table of Contents

List of Figures x

1 Introduction 1

2 Stochastic Computing 3

2.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Stochastic Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Stochastic Computing Circuits . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Binary-to-Stochastic Converter . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Arithmetic Operations . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Stochastic Computing Versus Traditional Digital Computing Methods . . . 10

2.4.1 Circuit Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.3 Progressive Precision . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.4 Tolerance to Skew in Input Streams . . . . . . . . . . . . . . . . . . 12

2.4.5 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.6 Possible Dependency Between Stochastic Streams . . . . . . . . . . 12

2.4.7 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vii



2.4.8 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.9 Random Number Generators . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Applications of Stochastic Computing . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Stochastic LDPC Decoding . . . . . . . . . . . . . . . . . . . . . . 15

2.5.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.3 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.4 General Arithmetic Functions . . . . . . . . . . . . . . . . . . . . . 16

3 Stochastic LDPC Decoding 17

3.1 Channel Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Channel Noise Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Error-Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Modulation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 LDPC Decoding Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6.1 Channel Probability . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6.2 The Sum-Product Algorithm . . . . . . . . . . . . . . . . . . . . . . 25

3.6.3 Stochastic LDPC Decoding Algorithm . . . . . . . . . . . . . . . . 28

3.7 Simulated Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Modeling of Soft Errors 39

4.1 First Error Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Second Error Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 First Error Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.2 Second Error Model . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



5 Chip Implementation 48

5.1 5.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Check Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Variable Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 Random Number Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5 Full Chip Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Conclusion and Future Work 59

6.1 Testing Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Full Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Channel Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Stochastic Decoding for Galois Field Greater Than Two . . . . . . . . . . . 60

References 62

ix



List of Figures

2.1 Probability density function of the average probability of 100,000 stochastic

streams for each of the three values of N= 100, 1000 and 10000 at P= “1000”. 6

2.2 Probability density function of the mean values of 100,000 stochastic streams

for N= 100 at P= “0111” and P= “1000”. . . . . . . . . . . . . . . . . . . 7

2.3 : Probability density function of the average probability of 100,000 stochas-

tic streams for N= 1000 for P= “0111” and P= “1000”. . . . . . . . . . . . 8

2.4 L-bit Binary-to-Stochastic Converter. . . . . . . . . . . . . . . . . . . . . . 9

2.5 Stochastic Multiplier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 Stochastic Multiplier with Dependant Inputs. . . . . . . . . . . . . . . . . 13

3.1 Basic Communication System. . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Communication System with Modulation and Channel Coding. . . . . . . . 18

3.3 Communication System with Modulation and Channel Coding Capable of

Correcting Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 AWGN Noise Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 A Factor Graph from an (n,k) LDPC Code with n Variable Nodes and n-k

Parity Check Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Message Propagation from VNs to CN. . . . . . . . . . . . . . . . . . . . . 26

3.7 Message Passing from CNs to VN. . . . . . . . . . . . . . . . . . . . . . . . 27

x



3.8 Architecture of a Degree-3 Check Node. . . . . . . . . . . . . . . . . . . . . 29

3.9 First Introduced Degree-2 VN. . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.10 Tracking Forecast Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 Degree-3 Sub-node of the Degree-3 Variable Node. (s) is the state bit and

(r) is the output bit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.12 Majority Tracking Forecast Memory. . . . . . . . . . . . . . . . . . . . . . 34

3.13 Variable Node of degree 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.14 BER of the (1056,704) WiMAX LDPC Code for the SPA and the Stochastic

LDPC Decoding Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.15 FER of the (1056,704) WiMAX LDPC Code for the SPA and the Stochastic

LDPC Decoding Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.16 BER of the (2048,1723) 10GBASE-T LDPC Code for the SPA and the

Stochastic LDPC Decoding algorithms. . . . . . . . . . . . . . . . . . . . . 37

3.17 FER of the (2048,1723) 10GBASE-T LDPC Code for the SPA and the

Stochastic LDPC Decoding algorithms. . . . . . . . . . . . . . . . . . . . . 38

4.1 A Factor Graph from an (n,k) LDPC Code with n Variable Nodes and n-k

Parity Check Nodes Showing the Faults. . . . . . . . . . . . . . . . . . . . 41

4.2 BER of the (1056,704) WiMAX LDPC code in Case No Errors Are Inserted

and in Case of Model 1 Errors (100% of VN edges). . . . . . . . . . . . . . 43

4.3 FER of the (1056,704) WiMAX LDPC code in Case No Errors Are Inserted

and in Case of Model 1 Errors (100% of VN edges). . . . . . . . . . . . . . 44

4.4 BER of the (2048,1723) 10GBASE-T LDPC code in Case No Errors Are

Inserted and in Case of Model 1 Errors (100% of VN edges). . . . . . . . . 44

4.5 FER of the (2048,1723) 10GBASE-T LDPC code in Case No Errors Are

Inserted and in Case of Model 1 Errors (100% of VN edges). . . . . . . . . 45

4.6 BER of the (1056,704) WiMAX LDPC code in Case No Errors Are Inserted

and in Case of Model 2 Errors (20% of VN Edges). . . . . . . . . . . . . . 45

xi



4.7 FER of the (1056,704) WiMAX LDPC code in Case No Errors Are Inserted

and in Case of Model 2 Errors (20% of VN edges). . . . . . . . . . . . . . . 46

4.8 BER of the (2048,1723) 10GBASE-T LDPC code in Case No Errors Are

Inserted and in Case of Model 2 Errors (20% of VN edges). . . . . . . . . . 46

4.9 FER of the (2048,1723) 10GBASE-T LDPC code in Case No Errors Are

Inserted and in Case of Model 2 Errors (20% of VN edges). . . . . . . . . . 47

5.1 Chip General Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Chip Implementation of the Stochastic LDPC Decoder to the (1056,704)

LDPC Code from the WiMAX Standards. . . . . . . . . . . . . . . . . . . 51

5.3 General Architecture of a Check Node. . . . . . . . . . . . . . . . . . . . . 52

5.4 Degree-2 Sub-node of the Degree-2 VN. . . . . . . . . . . . . . . . . . . . . 53

5.5 Degree-2 VN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.6 Degree-2 Sub-node with IM of the Degree-4 VN. . . . . . . . . . . . . . . . 55

5.7 Architecture of the IM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.8 Degree-4 VN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.9 Architecture of a 12-bit Linear Feedback Shift Register. . . . . . . . . . . . 57

5.10 Chip Layout from Cadence Encounter. . . . . . . . . . . . . . . . . . . . . 57

5.11 Final Chip Layout submitted to Fabrication. . . . . . . . . . . . . . . . . . 58

xii



Chapter 1

Introduction

In 2003, it was shown that stochastic computing [1] is a promising technique for iterative

decoding of capacity-approaching error-control codes [2], which were conventionally de-

coded using algorithms such as the sum-product algorithm (SPA) [3]. Subsequently, there

was a lot of work into getting stochastic decoding to work for codes such as low-density

parity-check (LDPC) codes [4,5], requiring novel approaches such as noise-dependent scal-

ing (NDS) [6], edge memories (EMs) [6], and tracking forecast memories (TFMs) [7–9].

Since then, there has been a lot of work done to design hardware-efficient stochastic LDPC

decoders (see, e.g., [9–19]). More recently, this has re-invigorated interest in stochastic

computing in general.

One of the notable features of stochastic computing is its robustness to errors and noise.

Stochastic computing systems perform calculations on streams of randomly generated bits

(Bernoulli sequences), and we are more interested in the statistical behaviour of the output

rather than on computing a certain specific value with arbitrarily large precision. Flipping

a few bits in the input stochastic stream should not affect the result in a significant way.

This can lead to compelling advantages when applied to error-control codes.

In this thesis, we explore the error tolerance of stochastic decoding. We develop two

models where we insert errors by flipping bits in messages exchanged between variable

nodes and check nodes in LDPC decoders. These models emulate soft errors that might

occur in hardware decoders (e.g., setup time violations).
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Two standardized codes are used in our studies. The first is the (2048,1723) LDPC

code from the 10GBASE-T standard [20]. The second is the (1056,704) LDPC code from

the IEEE 802.16e WiMAX standard [21]. We pick these two different LDPC codes as they

have different properties so that we can have a more general overview of the fault tolerance

of stochastic decoding. The (2048,1723) code is regular while the (1056,704) is irregular.

Simulation results show that stochastic decoding has a strong tolerance to soft er-

rors compared to other decoding algorithms. This is because messages are single bits for

stochastic decoders while they are n-bit likelihoods in other decoding algorithms; conse-

quently, a “most-significant bit” error in a conventional decoder can have a strong impact.

In addition, in stochastic decoding, probabilities converge over time with decoding cycles,

so flipping a single bit results in only a very small deviation in the probability at the worst

case. In other decoding algorithms, where the messages transferred between the nodes are

probabilities with n number of bits, flipping one bit is highly dependent on the magnitude

of the flipped bit. The worst case happens when flipping the most significant bit in a

propagating probability.

Our simulation results show that we can decrease the design constraints on stochastic

decoders and push the limits of power or speed by lowering VDD or by highly overclocking

the system while maintaining a good BER. They also show that stochastic decoders are

good solutions for applications with noisy environments (e.g., nanoscale technologies) or

low power requirements.

The rest of the thesis is organized as follows. Chapter 2 gives a brief review about

stochastic computing. Chapter 3 discusses the stochastic decoding of LDPC codes and

describes the general stochastic LDPC decoder architecture. Chapter 4 demonstrates the

model used to emulate the circuit faults. Then, Chapter 5 presents the simulation results

of the performance of the decoders for different case scenarios. Next, Chapter 6 shows the

detailed architecture of the implemented chip. Finally, Chapter 7 concludes our work.
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Chapter 2

Stochastic Computing

2.1 Historical Background

Stochastic computing was first introduced in the 1950s by Von Neumann [22]. During the

1960s and the 1970s, stochastic computing gained a lot of interest and much work has

been done in that area. In 1969, Esch introduced a programmable analog computer based

stochastic computing techniques [23]. During this time, research was directed towards de-

veloping stochastic computing processors [24]. An International Symposium on Stochastic

Computing was held in France in 1978. It was the first symposium on stochastic com-

puting and unfortunately, the last. Over the next years, conventional digital logic circuits

overpowered stochastic computing techniques for general computing purposes because of

the stochastic computing weaknesses that we will mention, later on.

Recently, stochastic computing has showed great promising results in specific applica-

tions. These applications include image processing applications [25], neural decoding [26]

and stochastic decoding of error correcting codes [27].
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2.2 Stochastic Representation

In stochastic computing, numbers are represented as stochastic streams of bits of length N.

A value can be represented by the number of ones in the stochastic stream. This is called

the unipolar format. It represents a number in the [0,1] interval which can be interpreted

as a probability. There are many other formats proposed in the literature like the bipolar,

inverted bipolar and the numbers represented by the ratio of ones to zeros [28,29]. In this

thesis, we will be working with the unipolar format as the LDPC decoder deals mainly with

probabilities as inputs to it. This will be explained in Chapter 3. Now, we will introduce

the notations that will be used later on:

• P is an L-bit binary number

• Pmax is an all-one L-bit binary number

• S is an N -bit stochastic stream, where S = {S0, S1, . . . , Si, . . . , SN−1},
0 ≤ i < N − 1.

• N is the length of stochastic stream

S is a Bernoulli sequence generated from a Bernoulli process. The probability of observing

a 1 at any bit of the stochastic stream is equal to:

E[S] = P (Si = 1) =
P

Pmax

= p =
N−1∑
i=0

Si × pi (2.1)

We use a big N , so that according to the law of large numbers (LLN), the average

(mean) value of the sequence S approaches p:

S̄ = p (2.2)

∵ S̄ ≡ 1

N
×

N−1∑
i=0

Si (2.3)

4



∴ p =
1

N
×

N−1∑
i=0

Si (2.4)

From equation 2.4, we conclude that the number of ones in a stochastic stream divided

by the total number of bits in this stream represent the number P .

Because sequences are generated using a stochastic process, different sequences S can

be generated for a given P . This is not a problem because we are more interested in

the statistics of the stochastic stream rather than the exact order of ones and zeros. The

accuracy of the stochastic representation S of a value P is dependent on the length N of

the stochastic stream. This is discussed in the example below.

Example 1: In this example, we show the impact of the length stochastic stream, N ,

on the accuracy of the stochastic stream representation, where:

• L = 4,

• P = (8)10 = (1000)2,

• Pmax = (15)10 = (1111)2.

• N is tested for 3 different values = 100, 1000 and 10000.

For every value of N we generate 100,000 stochastic streams. For each stochastic stream,

we are interested in the average value of the sequence S which is calculated from equa-

tion 2.1. Next, we collect these values for each N value and plot the probability density

function (PDF) shown in Figure 2.2. Since P=“1000”, then the expected value according

to equation 2.1 is equal to 0.5333.

Figure 2.1 shows that the PDF will be a normal (Gaussian) distribution with mean (µ)

equal to the expected value of 0.5333. As we increase the length of the stochastic stream

N , the standard deviation (σ) gets smaller and the stochastic representation becomes

more accurate. If N approaches infinity, the resultant PDF will approach the Dirac Delta

function.

5
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Figure 2.1: Probability density function of the average probability of 100,000 stochastic

streams for each of the three values of N= 100, 1000 and 10000 at P= “1000”.

Next, we want to investigate the possibility that the stochastic stream misrepresents the

underlying binary number. Consequently, we generate 100,000 stochastic streams of the

same length N = 100 for two consecutive binary numbers, P = (0111)2 and P = (1000)2.

Figure 2.2 shows the PDF of the mean values of the resultant stochastic stream for each

of the two binary numbers.

Figure 2.2 shows that 2 numbers, once represented as stochastic streams with N = 100,

likely cannot be resolved. The probabilities lying under the common area between the

blue curve and the red curve cannot be distinguished. This is because of the large value
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Figure 2.2: Probability density function of the mean values of 100,000 stochastic streams

for N= 100 at P= “0111” and P= “1000”.

of the standard deviation of both of the two distributions. We don’t know whether they

represent P = (0111)2 or P = (1000)2. When increasing the length of the stochastic stream

to N = 1000, this common shared area under both curves significantly decreases and

standard deviation of each distribution becomes much smaller as in Figure 2.3. Hence, we

the stochastic streams become more accurate in representing the underlying binary number.

We conclude that the longer the stochastic stream, the more accurate it is representing the

binary number.
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Figure 2.3: : Probability density function of the average probability of 100,000 stochastic

streams for N= 1000 for P= “0111” and P= “1000”.

2.3 Stochastic Computing Circuits

In this section, we will introduce some of the stochastic computing circuits. We will start

with the binary to stochastic converter.

2.3.1 Binary-to-Stochastic Converter

Figure 2.4 shows a circuit that is often used to convert an L-bit binary number to a

stochastic stream S of length N bits, where R is an L-bit Pseudo Random Number. Ri is

8



P > R

P

O/P Stream of N Bits
R

L-bit Number

Sequence of N (L-bit) Pseudo 
Random Numbers

                   

S

Figure 2.4: L-bit Binary-to-Stochastic Converter.

changed each iteration using a uniform pseudo random number generator. In the circuit,

P is compared to Ri, where Ri is changed each iteration using a uniform pseudo random

number generator. The output is equal to 1 if P is greater than Ri.

Si =

0, if P ≤ Ri

1, if P > Ri

(2.5)

This results in an L-bit stream of ones and zeros. This conversion is a Bernoulli process.

Hence, S is Bernoulli sequence.

2.3.2 Arithmetic Operations

Researchers developed stochastic circuits that perform arithmetic operations such as ad-

dition, multiplication, division, etc [30]. We will only show the multiplication circuit as

an example that we will use in the next section to compare between stochastic computing

and conventional computing techniques. Figure 2.5 shows the circuit used to perform the

stochastic multiplication. The two input stochastic streams are X and Y . The output

stochastic stream is Z, where:

PX = P (Xi = 1) =
4

5
(2.6)

9



PY = P (Yi = 1) =
1

2
(2.7)

Z =                          N       

X =                          N   4/5

Y =                          N      

Figure 2.5: Stochastic Multiplier.

From Figure 2.5:

∵ Zi = 1 if
(
(Xi = 1) AND (Yi = 1)

)
(2.8)

∴ PZ = P (Zi = 1) = PX × PY =
2

5
(2.9)

Consequently, an AND gate can be used to implement a stochastic multiplier after

converting the binary numbers to stochastic streams. However, this is assuming that X

and Y are two independent stochastic streams.

2.4 Stochastic Computing Versus Traditional Digital

Computing Methods

Stochastic computing is an excellent option compared to traditional digital computing

methods in many applications due to its features and advantages. However, it dramatically

fails in other applications due to its critical drawbacks for these applications. In this section,

we will discuss the advantages and disadvantages of stochastic computing compared to

traditional digital circuits. This will then introduce us to the main topic of the thesis

which is stochastic decoding.
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2.4.1 Circuit Complexity

The first advantage of stochastic computing is the low complexity of its underlying circuits

in many arithmetic calculations. Low circuit complexity means lower number of gates. This

results in lower number of transistors and consequently, smaller die area and lower cost.

One example on this is the multiplication operation. Binary multiplication in hardware

usually requires using big circuits of full adders, etc [31]. In addition, the more we increase

the number of bits per input, the more complex the circuit becomes. However, in stochastic

computing we only need an AND gate to perform the multiplication operation, as shown

in Figure 2.5. Moreover, increasing the number of bits per input does not increase the

complexity of the circuit. So, it is considered low-cost and area-efficient solution.

2.4.2 Fault Tolerance

One more important advantage to stochastic computing is its robustness to noise. The

stochastic input is fed into the underlying stochastic circuit as a long stochastic stream of

bits. The value of the output is determined by the statistics of the output stream of bits

rather than the exact value of the bits. Consequently, having very few bits flipped in the

input should not significantly affect the output compared to conventional exact calculation

techniques. Taking the example in Figure 2.5 of the stochastic multiplier, assume that the

input stochastic streams are 1000 bits long (i.e. N = 1000). Consequently, flipping one bit

in one of the input streams, (X,Y ) might not significantly affect the output probability.

On the other hand, in conventional arithmetic multipliers, 1-bit flip is highly dependent

on the order of the bit. If the flipped bit is the most significant bit, the amount of error in

the output is large. However, in stochastic computing, the error is minimal.

2.4.3 Progressive Precision

In addition, stochastic computing provides a rapid rough estimate to the output. This

estimate then keeps getting accurate with more samples being exploited in the calculation.

Using the example in Figure 2.5 of a stochastic multiplier, we can get a fast estimate of the
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output with the first incoming bits. On the other hand, conventional multipliers usually

output the least significant bits before the most significant bits. As a result, we cannot

know an estimate of the output before getting the most significant bit in the last step

as this is most important bit in determining the estimate. This early rough estimate in

stochastic computing is known as progressive precision [27].

2.4.4 Tolerance to Skew in Input Streams

Finally, stochastic computing is tolerant to possible skew in the arrival times of the input

streams of bits to the stochastic circuit. This is because we are more concerned about the

statistics of the input stream of bits rather than the exact index or location of the bit. This

can decrease the complexity of the system as we don’t need to spend a lot of resources on

expensive clock synchronization techniques.

On the other hand, Stochastic computing has some weaknesses:

2.4.5 Accuracy

The first is the precision. For a confined stochastic stream of length N , where N is not

large enough, stochastic computing is not able to provide the same level of accuracy as

the exact conventional computational methods as shown in Figure 2.2. The accuracy of

the stochastic computations is highly dependent on the length of the generated stochastic

streams. The longer the stochastic streams, the better accuracy you will get. Increasing

accuracy requires an exponential increase in the length of the stochastic stream of bits.

This implies an exponential increase in the delay [27].

2.4.6 Possible Dependency Between Stochastic Streams

In addition, one disadvantage is the possible dependency between the stochastic streams

[27]. Ideally, we assumed that the input stochastic streams to the stochastic circuit are

independent. However, if they are dependent, stochastic computing can totally fail in
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giving the correct outputs. Figure 2.6 shows a stochastic multiplier with dependent input

stochastic streams to clarify this idea. Assume we are trying to get the square of a number,

if we used the same random number generator once to generate the same stochastic stream,

then the two input stochastic streams are identical and the AND gate will work as if its two

inputs are shorted. The output in this case will be equal to the input not its square. This

example is just to clarify the problem of the dependency between the stochastic streams.

The solution here is simple which is generating the stochastic streams by two independent

random number generators. However, in big complex systems with feedback structures,

the system becomes vulnerable to the correlation between the stochastic streams. Hence,

much effort has to be put to decorrelate the stochastic streams and ensure an acceptable

level of independence.

                                         

Figure 2.6: Stochastic Multiplier with Dependant Inputs.

2.4.7 Latency

One disadvantage that might show up is the latency of the stochastic computing circuits.

However, that is dependent on the application and the complexity of the circuit, as well.

The reason behind the possible long latency of the stochastic computations is the length

of the stochastic streams. As discussed in the Stochastic “Representation” section, the

accuracy of the stochastic computations is dependent on the length of the stochastic stream

N. Here comes the tradeoff between accuracy, circuit complexity and latency. However, in

some specific applications, where very high precision is not required, and due to the much-

improved circuit complexity, the latency in stochastic computing might still be better than
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traditional digital computing circuits. An L-bit multiplier can be an example on that in

case of a large L.

2.4.8 Power

Stochastic computing circuits in general exhibit high switching activity in its circuits. This

is due to the long stochastic streams that might have many bit-flips. However, that is also

dependent on the application where one is using stochastic computing. An example on

that is applications without a high-precision specification, and as a result, short stochastic

streams. Moreover, some applications exploiting stochastic computing might have much

lower gate count than traditional digital circuits and as a result, consume less power than

them. The multiplier circuit is an example on that, specially, if it is a 2 L-bit multiplier

where L is large. In addition, some applications like stochastic decoding, have low switching

activity and don’t have many bit flips during the computations. As a result, the power

consumption might be lower than traditional digital logic circuits.

2.4.9 Random Number Generators

Finally, we have to consider the cost of the random number generators (RNGs) used to

generate the stochastic streams. There are many ways to implement RNGs. One of the

famous simple methods of implementing a pseudo random number generator is the linear

feedback shift register.

Depending on the number of inputs and the size of the conventional non-stochastic

circuit, stochastic computing may lose the merit of being a low-cost solution because of

the overhead cost of the pseudo random number generators. However, the size of the RNGs

in many stochastic computing applications is negligible compared to the circuit size. One

example on that is the chip fabricated in [15]. The RNGs consume 1% of the total gate

count of the circuit and only 0.3% of the power consumption.
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2.5 Applications of Stochastic Computing

Stochastic Computing is being exploited in many applications. The most important of

these are:

2.5.1 Stochastic LDPC Decoding

In 2003, stochastic computing arose as a promising technique to implement the iterative

decoding algorithm of the LDPC codes [2]. A lot of work has been done, since then, to

implement high throughput, low power and high performance LDPC decoders [8, 9, 9–19].

The stochastic LDPC decoder will be described in detail through the next chapters in the

thesis.

2.5.2 Neural Networks

Recently stochastic computing has been exploited in the efficient implementation of Neural

networks and deep learning systems [26,32–34].

2.5.3 Image Processing

Image processing is a promising field for stochastic computation. Many applications in

image processing require performing operations on every input pixel of an image. For ex-

ample, the functional transformation on the image input pixels [27]. These operations are

usually simple, but because they are performed on a large number of pixels, the amount

of computations becomes significantly high. Consequently, if we can perform these calcu-

lations using a low-cost computing method like stochastic computing, we will be able to

build efficient highly parallel circuits that can perform the image processing tasks [25,35].
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2.5.4 General Arithmetic Functions

The research community was interested in exploiting stochastic computing to implement

general purpose circuits since stochastic computing first appeared in the 1960s till late

1970s. One example on that is in [23]. However, later on, conventional digital logic over-

powered stochastic computing for the reasons outlined in the disadvantages. Recently

stochastic computing was revived to compute some general arithmetic functions and poly-

nomials in [36–38]. Some of this work was later used in image processing applications.
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Chapter 3

Stochastic LDPC Decoding

Source Noisy Channel Destination
X Y=    

                           x,1,0,1

Figure 3.1: Basic Communication System.

In communication systems, the main objective is to transfer data from a source to a

destination over an imperfect channel with minimal loss of data. The theoretical maximum

capacity of a channel is described by the ShannonHartley theorem [39]. If data is directly

transmitted over the channel without encoding and decoding as shown in Figure 3.1, any

data lost during the transmission cannot be recovered. As a result, we encode the data

before sending it over the channel and decode them after being received. This is done by

adding redundant bits so that we can recover bits lost due to the noise. The full system

is shown in Figure 3.2. The modulator and demodulator blocks convert the data bits into

symbols that can be transferred over the channel.
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Source
Channel 
Encoder

Noisy Channel

X

Channel 
Decoder

Destination

YC=  C  

Modulator
XC

Y=    
Demodulator

Figure 3.2: Communication System with Modulation and Channel Coding.

3.1 Channel Coding

Channel encoding and decoding has two inter-related tasks:

1. Error detection: to detect if the received message is correct or some bits are corrupted

by noise.

2. Error correction: to correct any corrupted bits received in the message.

The idea behind channel coding is to add redundant bits to the message that can be

used to detect and possibly correct errors.

An example is shown in Figure 3.1 and Figure 3.3. In the system shown in Figure 3.1,

suppose we want to transmit 8 data bits X = {x1, x2, . . . , x8} = {1, 0, 0, 1, 0, 1, 0, 1}. If

the data bits are transmitted without encoding and the 5th bit x5 was corrupted and

received as y5 = x̃5 = 1 rather than a zero, Yc = X̃c = {1, 0, 0, 1, 1, 1, 0, 1}, we will never

be able to detect that there is an error in one of the bits. However, in Figure 3.3, we

use one simple form of encoding by generating an even parity check bit to the data bits,
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X = {1, 0, 0, 1, 0, 1, 0, 1} and adding it to the message. So that Xc = {1, 0, 0, 1, 0, 1, 0, 1, 0}.
Next, the message is modulated and transmitted over the channel to the receiver side, then

demodulated. Assume that the noise in the channel had a significant effect on the 5th bit

of the message, x5. If we applied the even parity check equation on the message bits, we

can then deduce that there is one corrupted bit. With this simple encoding method, we

certainly know that there is at least one corrupted bit but we can not detect which bit is

wrong. Moreover, of course, we can not correct it. Now, assume we know the order of the

bit x̃c5 that has a possible error. If we again apply the parity check equation, we can infer

that the original correct bit was 0 not 1.

Source
Channel 
Encoder

Noisy Channel

X

Channel 
Decoder

Destination

YC=  C  

Modulator
XC

Y=    
Demodulator

1,0,0,1,0,1,0,1 1,0,0,1,0,1,0,1,0

1,0,0,1,x,1,0,1,01,0,0,1,0,1,0,1

Figure 3.3: Communication System with Modulation and Channel Coding Capable of

Correcting Errors.

3.2 Channel Noise Model

For simplicity, the model we use in this thesis for the noise in the channel is the Additive

White Gaussian Noise. The input message, X is affected by the noise signals Z and the

received message is Y . Then as shown in Figure 3.4:
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Yi = Xi + Zi, where Z ∼ N (0, σ2
N) (3.1)

Zi represents a noise sample drawn from a normal Gaussian distribution with zero mean

and variance σ2
N , dependent on the noise power. The model also assumes that the noise

samples are independent.

X
Input Message

Y
Received Message

AWGN Noise

Z

Figure 3.4: AWGN Noise Model.

3.3 Error-Correcting Codes

Generally, in Error-Correcting Codes (ECC), we add redundant bits to the original mes-

sage, X, so that we can detect and correct possible corrupted bits. Two of the major types

of error correcting codes are:

1. Convolutional Codes

In convolutional codes, data are processed bit by bit. Convolutional codes are usually

soft decoded using the Viterbi decoder.
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2. Block Codes

Block codes are processed block by block, where each block has a fixed size.

Error-correcting codes are capable of correcting errors up to a certain limit. This limit

is known as Shannon-capacity limit. Shannon’s theorem proposes a maximum efficiency for

a code by describing a maximum data rate for the code at a certain Signal-to-Noise ratio

(SNR) such that the message is transmitted with a significant low bit-error rate (BER).

Turbo codes and LDPC codes are examples on ECC. They are very efficient codes capable

of approaching the theoretical Shannon-capacity limit.

3.4 LDPC Codes

Low-Density Parity-Check (LDPC) codes are some types of linear error correcting codes.

LDPC codes are very efficient codes that can approach the theoretical Shannon-capacity

limit. They are currently being exploited in many applications and communication stan-

dards due to their very good performance compared to other codes.

Generally, a (n, k) LDPC code can be represented by bi-partite graph of n variable

nodes (VN) and (n-k) parity check nodes (CN) [3] as shown in Figure 3.5. Connections

between variable nodes and check nodes are described by a parity check matrix H like the

one shown in Figure 3.5 where:

HX>c = 0 (3.2)

A degree of a VN, dv, is the number of connections form this VN to different CNs in the

factor graph. Same for the degree of a CN, dc, which is equal to the number of connections

form this CN to different VNs.

The H-matrix shown in equation 3.3 describes the connections between the VNs and the

CNs. Each column represents a VN and each row represents a CN. For a certain element

hij in the H-matrix, if hij = 1, this means that the VN, j is connected to the CN, i. If
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V1 V2 V3 V4 V5 VnVn-1Vn-2Vn-3Vn-4

Cn-k-1Cn-k-2 Cn-kC1 C2 C3

n variable nodes

n-k parity check nodes

= = = = = = = = = =

Figure 3.5: A Factor Graph from an (n,k) LDPC Code with n Variable Nodes and n-k

Parity Check Nodes.

hij = 0 then there is no connection between VN, j and CN, i. The number of ones in a row

is equal to dc and the number of ones in a column is equal to dv.

H =


h1,1 h1,2 · · · h1,n

h2,1 h2,2 · · · h2,n
...

...
. . .

...

hn−k,1 hn−k,2 · · · hn−k,n

 (3.3)

For regular codes, all the variable nodes have the same degree, dv and all the check

nodes have the same degree, dc. While for irregular codes, VNs can have different degrees

and CNs can also have different degrees.

3.5 Modulation Scheme

The modulation scheme used throughout the thesis is the Binary Phase-shift keying (BPSK).

The zero bit is modulated as 1 and the one bit is modulated as −1. Other modulation
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schemes can be used. The only difference will only be in the method of calculation of the

probabilities fed into the decoder.

3.6 LDPC Decoding Algorithms

Many iterative decoding algorithms are capable of decoding LDPC codes based on the

iterative belief propagation of messages like the Sum-Product Algorithm (SPA) [3], the

Min-Sum Algorithm (MSA) [40] and the stochastic decoding algorithm. These decoding

algorithms use the probabilities of the received messages to start decoding. Hence, getting

the probabilities of the received bits is a common step among the decoding algorithms.

It is introduced in the next section. Next, we will discuss the SPA. The MSA is just an

approximation to the SPA but with a less-complex implementation. After that, we will

discuss the stochastic decoding algorithm.

3.6.1 Channel Probability

Once a signal is received from a communication channel, log-likelihood ratio (LLR) values

are calculated for each symbol. Next, LLR values are converted into probabilities. Suppose

for a code of length n, X is a set of the transmitted data, Y represents the received data,

LLR is the log-likelihood ratios and V is the probability of the received bits where:

X = {xi}, ∀ 0 ≤ i < n− 1 (3.4)

Y = {yi}, ∀ 0 ≤ i < n− 1 (3.5)

LLR = {LLRi}, ∀ 0 ≤ i < n− 1 (3.6)

V = {Vi}, ∀ 0 ≤ i < n− 1 (3.7)
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LLRs are computed as follows:

For every 0 ≤ i < n− 1:

LLRi = ln
P (xi = 0 | yi)
P (xi = 1 | yi)

(3.8)

LLRi = ln
P (yi |xi = 0)× P (xi = 0)× P (yi)

P (yi |xi = 1)× P (xi = 1)× P (yi)
(3.9)

Assume that:

P (xi = 0) = P (xi = 1) (3.10)

∴ LLRi = ln
P (yi |xi = 0)

P (yi |xi = 1)
(3.11)

LLRi = ln
e
− (yci−1)2

N0

e
− (yci+1)2

N0

(3.12)

LLRi = ln e
− (yci−1)2−(yci+1)2

N0 (3.13)

LLRi = ln e
4yci
N0 (3.14)

LLRi =
4yci
N0

(3.15)

The probability of a bit received from the channel, Vi is:

probability = Vi = P (xi = 1 | yi) (3.16)

Vi =
P (yi |xi = 1)

P (yi |xi = 1) + P (yi |xi = 0)
(3.17)
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Vi =
e
− (yci+1)2

N0

e
− (yci+1)2

N0 + e
− (yci−1)2

N0

(3.18)

Vi =
1

e
(yci+1)2

N0
− (yci−1)2

N0 + 1
(3.19)

Vi =
1

e
4yci
N0 + 1

(3.20)

Vi =
1

eLLRi + 1
(3.21)

3.6.2 The Sum-Product Algorithm

Sum-Product Algorithm (SPA) is a soft iterative decoding algorithm based on the iterative

belief propagation of messages [3]. SPA uses the probabilities of the received bits calcu-

lated in the previous section to start decoding on the factor graph on the LDPC code by

propagating the message between the VN and the CN. Finally, a hard decision is made

on the final probabilities when decoding ends. In this section, we will show how the SPA

works, but first, we will introduce some mathematical notations to be used later on in the

equations:

• Let Dd is the d-th decoding cycles out of D decoding cycles.

Decoding cycles D = {Dd}, where 0 ≤ Dd < D

• Let V Nij be the probability message transmitted from the V N , i to the CN , j.

• Let CNcm be the probability message from CN , c to V N , m in the d-th decoding

cycle.

Figures 3.6 and 3.7 show the message propagation between the Variable nodes and the

check nodes.
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CNc
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V
N
xc

Figure 3.6: Message Propagation from VNs to CN.

The following equations describe the operation of the SPA: For every CN, c of the (n-k)

CNs and for every CN edge m of the dc edges of the CN

CNcm =
1

2
−
(1

2
×

∏
q∈Ec\m

(1− 2VNqc)
)

(3.22)

Where Ec is a set of all the VNs connected to the CN, c.

For every edge attached to a CN, the CN performs the above equation to calculate the

message that will be passed to the corresponding VN based of the factor graph and the

H-matrix. When the messages are received at the VNs, the VNs perform the equations

below for every VN, i of the n VNs and for every VN edge, j of the dv edges of the VN.
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Figure 3.7: Message Passing from CNs to VN.

VNij =

(
Vi ×

∏
q∈Ev\j

CNqi

)
(
Vi ×

∏
q∈Ev\j

CNqi

)
+
(

(1− Vi)×
∏

q∈Ev\j

(1− CNqi)
) (3.23)

Where Ev is a set of all CNs connected to the VN, i.

The probability of the received bit, computed after every decoding cycle is:

VNi =

(
Vi ×

∏
q∈Ev

CNqi

)
(
Vi ×

∏
q∈Ev

CNqi

)
+
(

(1− Vi)×
∏
q∈Ev

(1− CNqi)
) (3.24)

A hard decision is then made on these probabilities (V Ni) to give the estimated bits:
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Yc = X̃ = {x̃i}, where 0 ≤ i < n (3.25)

If:

HX̃> = 0 (3.26)

Then decoding ends and the estimated information bits X̃ can then be extracted.

Otherwise, decoding continues and the messages keep propagating between the CNs and

the VNs until HX̃> = 0 is satisfied (early termination) or until the algorithm reaches a

pre-defined maximum value for the decoding cycles.

3.6.3 Stochastic LDPC Decoding Algorithm

In this section, we will discuss the stochastic decoding algorithm. As mentioned in the

channel probability section, we calculate the channel probabilities based on the LLRs.

Each probability is then used to generate a stochastic stream of bits (Bernoulli sequence).

The fraction of ‘1’s in the Bernoulli sequence represents the probability that the received

bit equals to one. This process is often done by feeding the input probability to a com-

parator along with numbers from a pseudo random number generator (RNG) as shown in

Figure 2.4. After that, the stochastic stream of bits is fed into the variable nodes which

are connected to the check nodes based on the parity check matrix.

Assume thatD is the length of the stochastic stream which is also equal to the maximum

number of decoding cycles. Moreover, The stochastic stream representing the probability

of bit i is denoted by Vstch i, where:

Vstch i = {Vstch i j}, where 0 ≤ j < D (3.27)

Decoding Operation

Similar to the SPA, in stochastic decoding algorithm the CNs and the VNs exchange

the messages based on the message belief propagation technique. However, in stochastic
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decoding the messages are single bits rather than several bits representing the probabilities

in the SPA.

Parity-check nodes in stochastic decoding represent the parity check equations of the

H-matrix of the LDPC code. CNs can be implemented using networks of XOR gates.

Figure 3.8 shows a degree-3 CN as an example. CNin0, CNin1 and CNin2 are the outputs

of the corresponding VNs connected to the CN based on the H-matrix and the factor graph.

Parity Check 
Output

CNou t0

CNou t1

CNou t2

CNin 0

CNin 1

CNin 2

Figure 3.8: Architecture of a Degree-3 Check Node.

The VNs calculate a value for each outgoing edge based the values of the other cor-

responding incoming edges from the CNs. The first primitive degree degree-2 VN was

introduced in [2]. Figure 3.9 shows this circuit for one of the two edges of the VN, i where:

• Vin1 = Vstchij.

• Vin2 = CNmi, where CNmi represents the output of the corresponding CN, m con-

nected to the VN, i based on the H-matrix and the factor graph.

• r = VNiq, where VNiq represents the output of the VN, i connected to the corre-

sponding CN, q based on the H-matrix and the factor graph.
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VNiq =

Vstch i j = CNmi, if Vstch i j = CNmi

hold state, if Vstch i j 6= CNmi

(3.28)

The circuit in Figure 3.9 shows that if the incoming edge along with the input bit from

the stochastic stream are equal, then the output edge has a regenerative bit of the same

value as the other input edge and the stochastic stream. If they are not equal, then the

edge is in a “hold state”. The output in this case will hold its previous value.

Decoding stops when all the parity check equations of the H-matrix are satisfied (early

termination) at one decoding cycles. Otherwise, the VNs and the CNs keep exchanging

the bits until the decoder reaches a pre-defined maximum number of cycles.

The final error corrected bits, X̃, are calculated based on a majority function of the

incoming messages from the check nodes into a certain VN.

x̃i =


0, if

∑
q∈Ev

CNqi ≤
dv
2

1, if
∑
q∈Ev

CNqi >
dv
2

(3.29)

Latching Problem

This primitive VN circuit is not very efficient for practical long codes with cycles. In

LDPC codes with cycles in the factor graph, a latching problem occurs with stochastic

decoding [41,42].

The latching problem is caused by a cycle in the factor graph where some CNs and

VNs lock into a “hold state” of the propagating messages between the nodes. However,

this cycle can be broken by switching of the inner messages of the nodes. This can be done

by the random switching activity of the stochastic streams. At high Signal-to-Noise Ratios

(SNR), this problem can be worse as the probabilities of the bits are converging towards a

strong 1 or 0 making the random switching activity of the stochastic stream rare. Several
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Figure 3.9: First Introduced Degree-2 VN.

solutions have been introduced in [6, 41, 42]. The most important and practical of those

are the noise dependent scaling (NDS) and the edge memories (EM).

Noise Dependent Scaling (NDS)

NDS is scaling down the LLR values by a factor dependent on the noise spectral density

N0 to ensure a near-same level of switching activity in the stochastic stream at different

SNRs. This decreases the effect of the switching activity at high SNRs.

Assume LLRNDS are the noise-dependent scaled LLRs.

LLRNDS = (α×N0)× LLR (3.30)

α is a constant factor chosen by the designer for a good performance. We picked a

value of half in our simulations later on, which is also reported in the literature [6].
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Edge Memories

One other solution reported in [6] is instead of using the flip-flop in Figure 3.9, we use a

big register attached to each VN edge, for example, a 32 or a 64-bit shift register. In case

of a regenerative bit, the output is the regenerative bit and the edge memory is updated

with the value of the regenerative bit. In case of a hold state, the output bit is randomly

chosen from a memory built up using only the regenerative bits of the previous decoding

cycles. That solution gives a good performance as reported in [6,7]. However, it is not area

efficient. One example on that is the 10GBASE-T LDPC code which has 2048 variable

nodes each of dv = 6. If we are using a 64-bit memory attached to each edge, the total

number of flip-flops becomes 2048 × 6 × 64 = 786, 432 flip-flops. To solve this problem,

tracking forecast memory and majority tracking forecast memory have been introduced.

Tracking Forecast Memory

There are different types of that memory reported in the literature [6–9]. TFM can be

interpreted as a state machine where the states are only updated in case of a regenerative

bit. Otherwise, the states are not updated. In this case the output, is chosen based on the

current state of the state machine. Figure 3.10 shows a circuit for the TFM used instead

of the flip-flop in Figure 3.9 Figure 3.9 where:

• P (t) represents the probability of the underlying bit while decoding. It is initialized

to the probability received from the channel.

• R(t) is a pseudo random number.

• r(t) is the output bit from the AND gate in Figure 3.9.

• β is a constant predefined value by the designer.

Then:

P (t+ 1) =

P (t)− β P (t), if r(t) = 0

P (t) + β P (t), if r(t) = 1
(3.31)
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The TFM achieves a good performance but we can still do better. Instead of attaching

this TFM to each VN edge, we can use one majority TFM for the whole VN while still

getting a good decoding performance.

Majority Tracking Forecast Memory (MTFM)

The memory used in our simulations is the majority tracking forecast memory (MTFM)

[9,10]. A full degree-3 VN structure with the MTFM is shown in Figures 3.11, 3.12 and 3.13

as an example. Figure 3.11 shows a degree-3 sub-node. Figure 3.12 shows the MTFM

block which is composed of the TFM in Figure 3.10. Figure 3.13 shows the complete

corresponding degree-3 variable node.
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3.7 Simulated Codes

Two standardized LDPC codes were chosen to be simulated, the (1056,704) LDPC code

from the WiMAX standard and the (2048,1723) LDPC code from the 10GBASE-T stan-

dard. We implemented both the SPA algorithm and the stochastic decoding algorithm

and simulated them using Monte-Carlo simulation. To test the performance of a decoder,

we simulate an all-zero codeword and plot the Frame-Error Rate (FER) and the Bit-Error

Rate (BER) of the error-corrected bits versus the SNR per bit, (Eb/N0). (Eb/N0) is the

ratio between the energy per bit to the noise power spectral density. It is the normalized

SNR. The FER represents the probability of error for certain transmitted block, calculated

by simulating the algorithm for a large number of blocks at a certain SNR and dividing

the number of wrongly decoded blocks by the total number of blocks. The BER on the
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other hand is the probability of error in the received bit, calculated by simulating the algo-

rithm for a large number of blocks at a certain SNR and dividing the number of wrongly

decoded bits by the total number of bits. Figure 3.14 and Figure 3.15 show the BER and

the FER curves of the (1056,704) WiMAX LDPC code. Figure 3.16 and Figure 3.17 show

the BER and the FER curves of the 10GBASE-T LDPC code We are simulating the sum

product algorithm to compare its results with the stochastic decoding algorithm. The sum

product algorithm runs for 6 decoding cycles (DCs) for both the WiMAX LDPC code and

the 10GBASE-T LDPC code. For stochastic decoding algorithm, the number of decoding

cycles is 400 for the 10GBASE-T LDPC code, while it is 700 for the WiMAX LDPC code.

The number of decoding cycles is chosen by the designer for a good decoding performance.

The more the decoding cycles used, the better the decoding performance gets. In addi-

tion, we are using the early termination technique described earlier. Hence, in most of the

cases, decoding ends much earlier than the maximum number of decoding cycles. At each

simulated SNR value, we stop decoding after reaching 10 block errors for both of the two

codes.

Figure 3.14: BER of the (1056,704) WiMAX LDPC Code for the SPA and the Stochastic

LDPC Decoding Algorithms.
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Figure 3.15: FER of the (1056,704) WiMAX LDPC Code for the SPA and the Stochastic

LDPC Decoding Algorithms.

Figure 3.16: BER of the (2048,1723) 10GBASE-T LDPC Code for the SPA and the

Stochastic LDPC Decoding algorithms.
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Figure 3.17: FER of the (2048,1723) 10GBASE-T LDPC Code for the SPA and the

Stochastic LDPC Decoding algorithms.
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Chapter 4

Modeling of Soft Errors

In this Chapter, we intend to demonstrate two models that we developed to emulate the

effects of soft errors on the performance of stochastic LDPC decoders.

As shown in Chapter 3, different logic structures can be used to build stochastic LDPC

decoders. This may have direct impact to the source of errors and how we model them.

When lowering VDD or increasing the clock speed beyond a certain limit, errors may occur.

This means that we have a violation in the critical path and that we are consequently,

violating the setup time of the flip-flop placed at the incoming edge of a VN node. We are

thus interested in the critical path (and near-critical paths) in a decoder. To develop an

accurate model, we should know how the critical (and near-critical) paths are distributed

in a system. Based on the implementation mentioned in Chapter 3, the longest paths of a

stochastic LDPC decoder are the paths from the output of flip-flops of the VN nodes back

to the input of flip-flops of other VN nodes as shown in Figure 4.1, assuming that the system

has no pipelining stages inside the VN nodes or the CN nodes. It is important to know how

the longest paths are distributed in the decoder. We may have a few very long critical paths

while the other paths are much shorter. On the other hand, the longest paths might be

distributed evenly among the nodes, meaning that, the path delays are close to each other.

There are many factors that may affect the number of the critical paths and how they are

distributed in the system. The most important of these are the type of the LDPC code

(regular or irregular), the structure of the code, the wiring circuitry, and the structure of the
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sub-blocks. The type of LDPC code is very important because having regular codes means

that all the sub-blocks have the same circuitry and hence, the same inner propagation

delays. Thus, the wiring will have an important impact on the delay based on the code

structure specially in the deep submicron technologies, where wiring capacitance has an

important effect. Nodes connected using long wires will exhibit higher capacitance and

longer delays. The 10GBASE-T code is an example on that. The 10GBASE-T code is a

regular code with 2048 degree-6 variable nodes and 384 degree-32 parity check nodes. This

is considered a highly-congested code as we need 2048× 6× 2 = 24, 576 connections from

variable nodes to check nodes and from check nodes back to variable nodes. Consequently,

the structure of the code and the wiring, here, has a direct impact on the critical path,

assuming no buffers were used to support long wires. On the other hand, the (1056,704)

WiMAX code has variable nodes with degrees of 2, 3 and 4. The check nodes are of

degrees 10 and 11. The longest paths here occur in the variable nodes of degree 4 because

the degree-4 variable nodes themselves exhibit longer propagation delays than the degree-3

and the degree-2 nodes. This is because of the combinational delay inside the block. Next,

the wiring capacitance and the code structure come into effect on the propagation delay

among the degree-4 variable nodes.

Moreover, the error model depends on the placement and routing (P&R) of the circuit.

In other words, we can have a certain few long critical paths than other paths in a regular

code as a result of the P&R. In addition, violating the longest path doesn’t always imply the

occurrence of errors. The reason is that error only occurs when we have a flip-flop changing

its state from 1 to 0 or vice versa depending on the switching activity [43]. However, if

the flip-flop holds its old state, we do not expect an error. Moreover, we may have a

flipped bit while the setup time is not violated. This happens because the propagation

delay depends on several previous states of the internal memories (IMs), TFMs, random

numbers generated from the RNG, etc. Consequently, lowering VDD or overclocking the

system to violate a certain path delay doesn’t always mean that we will have an error,

especially at high SNRs where flipped bits are less likely to happen.

As a result, two different models are used in our paper to represent the violation of the

critical paths. In both models, errors are being added intentionally at the outputs of the

flip-flops of the variable nodes. These errors model the setup time violation due to VDD
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Figure 4.1: A Factor Graph from an (n,k) LDPC Code with n Variable Nodes and n-k

Parity Check Nodes Showing the Faults.

scaling or system overclocking.

4.1 First Error Model

For the first model, we assume that all variable nodes are vulnerable to setup time vio-

lations. Hence, errors are inserted at each variable node edge with a certain probability.

In other words, every decoding cycle, each variable node has a probability of setup time

violation. Consequently, errors are inserted in 100% of the variable nodes with a certain

probability in case of a flipping bit. The tested probabilities are 0.001, 0.005, 0.05 and 0.1.

4.2 Second Error Model

The second model is similar to the first model, but we only insert errors in a certain

percentage of the variable node flip-flops. We assume that there is a certain percentage
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of the variable nodes that has much longer propagation delay than other variable nodes.

Hence, scaling down VDD or overclocking the system will result in errors in these nodes

only. Each of these variable nodes has a probability of setup time violation in case there

is a flipping bit. The model we test is that we assume 20% of the variable nodes have

the longest paths and are vulnerable to errors. We then test four possible probabilities for

each variable node: 0.005, 0.025, 0.25 and 0.5.

4.3 Simulation Results

We carried out several experiments to validate and prove the tolerance of stochastic de-

coding to errors for both the (2048,1723) LDPC code of the 10GBASE-T standard and

the (1056,704) of the WiMAX standard. The first is running the decoding algorithms with

no errors inserted. Next, we test the decoder with the first error model where errors are

inserted at all variable node edges. We try four different probabilities of error to occur

at each variable node edge: 0.001, 0.005, 0.05 and 0.1. Then we test the second error

model where errors are inserted at only 20% of the variable node edges with four different

probabilities to be inserted at the chosen 20% of variable node edges: 0.005, 0.025, 0.25

and 0.5. One important note to consider is that for the second model, all the 20% affected

nodes are random chosen only within the high degree nodes (degree= 4) of the WiMAX

LDPC code. While for the 10GBASE-T LDPC code they were chosen randomly from all

the nodes as all of them have the same degree. These results have been published in [44].

4.3.1 First Error Model

Figure 4.2 and Figure 4.3 show the BER and the FER of the WiMAX LDPC code in the

ideal case where no errors are inserted and in the case of the 1st model errors. The figures

show that the decoder achieves a near ideal performance when applying error model 1 on

the WiMAX LDPC code.

Figure 4.4 and Figure 4.5 show the BER and the FER of the 10GBASE-T LDPC code

in the ideal case where no errors are inserted and in the case of the 1st model errors. The
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Figure 4.2: BER of the (1056,704) WiMAX LDPC code in Case No Errors Are Inserted

and in Case of Model 1 Errors (100% of VN edges).

figures show that the decoder achieves a near ideal performance when applying error model

1 on the 10GBASE-T LDPC code, as well.

4.3.2 Second Error Model

Figure 4.6 and Figure 4.7 show the BER and the FER of the WiMAX LDPC code in the

ideal case where no errors are inserted and in the case of the 2nd model errors. The figures

show that the decoder achieves a near ideal performance when applying error model 2 on

the WiMAX LDPC code.

Figure 4.8 and Figure 4.9 show the BER and the FER of the 10GBASE-T LDPC code

in the ideal case where no errors are inserted and in the case of the 2nd model errors. The

figures show that the decoder achieves a near ideal performance when applying error model

2 on the 10GBASE-T LDPC code, as well.

The graphs clearly show the strong fault tolerance of stochastic LDPC decoders. Ac-
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Figure 4.3: FER of the (1056,704) WiMAX LDPC code in Case No Errors Are Inserted

and in Case of Model 1 Errors (100% of VN edges).

Figure 4.4: BER of the (2048,1723) 10GBASE-T LDPC code in Case No Errors Are

Inserted and in Case of Model 1 Errors (100% of VN edges).
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Figure 4.5: FER of the (2048,1723) 10GBASE-T LDPC code in Case No Errors Are

Inserted and in Case of Model 1 Errors (100% of VN edges).

Figure 4.6: BER of the (1056,704) WiMAX LDPC code in Case No Errors Are Inserted

and in Case of Model 2 Errors (20% of VN Edges).
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Figure 4.7: FER of the (1056,704) WiMAX LDPC code in Case No Errors Are Inserted

and in Case of Model 2 Errors (20% of VN edges).

Figure 4.8: BER of the (2048,1723) 10GBASE-T LDPC code in Case No Errors Are

Inserted and in Case of Model 2 Errors (20% of VN edges).
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Figure 4.9: FER of the (2048,1723) 10GBASE-T LDPC code in Case No Errors Are

Inserted and in Case of Model 2 Errors (20% of VN edges).

cording to the simulation results, the performance under both error models nearly achieve

the same performance as the ideal case. This proves that stochastic decoding can be very

useful in systems with high performance or very low power requirements where we can

speed up the clock or lower VDD while maintaining good bit error rate performance.
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Chapter 5

Chip Implementation

5.1 5.1 General Overview

In this chapter, we will discuss the implementation details of the chip we designed to test

the tolerance of stochastic LDPC decoding algorithm to soft errors and verify the results

presented in Chapter 5. The implemented LDPC decoder decodes the (1056,704) LDPC

code from the WiMAX standard. The chip is still in fabrication so we don’t have the

post-layout results yet. Here are the code characteristics:

• Irregular Code.

• Block code length = number of variable nodes (VNs) = 1056.

• Number of Parity Checks (CNs) = 352.

• Degrees of Variable nodes = 2,3,4

• Degrees of parity check nodes = 10,11

In Chapter 3, we discussed the general architecture of stochastic LDPC decoders. In this

chapter, we will present the specific architecture that we implemented and the structure

of each block in more detail. Figure 5.1 shows the general structure of the chip. It is
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composed of the input buffers, the main decoding structure and the output buffers. The

decoding part is composed of several blocks. These blocks include the variable nodes, check

nodes, random number generators and input output buffers.
In
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Figure 5.1: Chip General Structure

The inputs to the chip are the probabilities of the bits in a received codeword from the

channel, where each probability is represented in 6 bits. These probabilities are fed into the

input buffers in series until the full codeword is saved in the buffers. Next the probabilities

are passed to the decoder. Using comparators, stochastic streams are generated for each

probability. These stochastic streams are fed into the variable nodes. After that, decoding

starts, where messages are exchanged between the variable nodes and the check nodes as

discussed in Chapter 3. Decoding ends when a maximum number of decoding cycles is met

or when all the parity check equations are satisfied. Finally, the error corrected codeword

is saved in the output buffers and outputted in series for processing off-chip.

As shown in Figure 5.1, we have 3 main pipelined stages, the input buffers, the decoder

and the output buffers. A state machine controls the data manipulation between the stages.

The input buffers need Tload clock cycles to load one block of message probabilities. The

output buffers need Tout to output the decoded bits off-chip. The decoder needs Tdec to

finish decoding, where:

Tload =
1056× 6

6× 6
= 176 clock cycles (5.1)
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Tout =
1056

6
= 176 clock cycles (5.2)

0 < Tdec ≤ 700 clock cycles (5.3)

Since we are using the early termination technique, explained in Chapter 3, Tout can

take any value from zero to the maximum pre-defined value of 700 clock cycles. Hence,

the decoder can finish decoding much earlier than the time it takes the buffers to load

and output the data bits, especially at high SNRs. On the other hand, the decoder might

continue decoding till the 700th clock cycle when it can’t converge to a correct codeword

or generally at low SNRs. In these two cases, the state machine is designed to halt the

operation of the blocks which finished their job earlier than the others. If the decoder

finishes decoding in less than 176 clock cycles, it waits till the 176th clock cycle to start

decoding the new data. On the other hand, if the decoder continues decoding after the

176 clock cycles, the input buffers stop taking new input data bits or outputting any error

corrected bits. The chip rises a flag to indicate this situation to other chips communicating

with it.

This is not the optimal setting of the chip to achieve the highest possible output.

However, we are designing the chip to test the capability of stochastic decoders to tolerate

soft errors. We are not trying to design the fastest possible chip. In addition, this is a

test chip, not a practical chip. In a practical chip, to achieve a high throughput, inputs

are usually fed on-chip from other preceding blocks. In our chip, we feed the probabilities

directly to the input pins to have an off-chip control on other blocks preceding the decoder

that don’t affect the main objective of the chip which is testing the fault tolerance of the

stochastic decoder to soft errors.

Figure 5.2 shows the decoder block with more details. We will discuss the inside blocks

of the decoder for this specific (1056,704) LDPC code from the WiMAX standard in the

next sections.
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Figure 5.2: Chip Implementation of the Stochastic LDPC Decoder to the (1056,704)

LDPC Code from the WiMAX Standards.

5.2 Check Nodes

As discussed in Chapter 3, the check nodes are implemented using XOR gates. The

(1056,704) LDPC code from the WiMAX standard has check nodes of degrees 10 and

11. Figure 5.3 shows the general circuit used to implement the CN for each of the two

degrees.
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Figure 5.3: General Architecture of a Check Node.

5.3 Variable Nodes

The variable nodes are implemented using the Majority Tracking Forecast Memory (MTFM)

presented in Chapter 3 in Figures 3.10 and 3.12. Some of the VNs of the (1056,704) WiMAX

LDPC code are of degree 2, some are of degree 3 and some are of degree 4. Degree-3 VNs

are shown in Figure 3.13. A degree-2 VN has the same structure as a degree-3 VN but

with only 2 inputs instead of 3. Figure 5.4 shows a degree-2 sub-node of a degree-2 VN.

The full circuit for the degree-2 VN is shown in Figure 5.5.

The degree-4 VN is a bit different than the degree-2 and degree-3 VNs. The reason is

that for nodes of degrees higher than 3, it becomes hard for the VN to output a regenerative

bit because it requires that 3 VN edges entering the VN along with the bit from the

stochastic stream to have the same value, otherwise the VN goes into the “hold state”. So,

to increase the possibility of outputting a regenerative bit, we divide the degree-4 sub-node

into 2 degree-2 sub-nodes. So, for 4 inputs entering the VN, each two inputs are compared

to each other, if they are equal, a regenerative bit is generated, otherwise the sub-node

uses a small internal memory (IM) composed of a 2-bit shift register to get a previous
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Figure 5.4: Degree-2 Sub-node of the Degree-2 VN.

regenerative bit. The IM is only updated in case the sub-node has a regenerative bit. In

case of a “hold state” a bit is randomly drawn from the IM. The circuit for the degree-2

sub-node with IM is shown in Figure 5.6. The architecture of the IM is shown in Figure 5.7.

Next, we check if the outputs of the two degree-2 sub-nodes have the same value using a

circuit similar to the circuit in Figure 5.4. If so, we have a regenerative bit for this VN

edge. Otherwise, this edge is in a hold state and we use the MTFM to give the output.

Figure 5.8 shows the full degree-4 VN.

5.4 Random Number Generator

In our chip, we need many random numbers in several blocks. We need random numbers

for the stochastic stream generation. In addition, we need random numbers inside the VNs

in the MTFM and IMs.

In theory, we want the stochastic streams to be independent, as well as the VNs.

Hence, we should use a RNG for every input probability from the channel to generate the
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stochastic stream. However, this will result in at least, 1056 RNGs and hence, the total

area consumed by the RNGs will be large. As a result, we want to find a way to use less

number of RNGs without introducing dependency among the stochastic streams and the

VN nodes. To achieve independent VN nodes, every two VNs sharing the same CN should

have different RNG. By investigating the H-matrix and the factor graph of the code, we

found that the minimum distance for 2 VNs to be sharing the same CN is 25. For example,

the first 25 variable nodes don’t share any CNs. This means that we can use the same

RNG for them. As a result, we divided the VN nodes into groups of 25 VN nodes sharing

the same RNG. However, this was true for the whole H matrix except for 2 consecutive

nodes sharing the first CN node, the 747th and the 748th VNs (counting of VNs starts from

0). To solve this problem, we decreased the size of each group from 25 to 22. This makes

the two VN nodes lie in different groups and have different RNGs. So the final number of

RNGs used is equal to 1056/22 = 48 RNGs.

There are many techniques to implement a random number generator in hardware. In

our chip, we use linear feedback shift register shown in Figure 5.9. Since, the maximum
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Figure 5.6: Degree-2 Sub-node with IM of the Degree-4 VN.

number of decoding cycles is 700, therefore, the number of the flip-flops in the shift register

has to be greater than log2 700 , (i.e., greater than 10). We use 12-bit and 13-bit shift

registers, then, we XOR their outputs. 6 bits out of the 12 are used to generate the

stochastic streams as the input probability is represented in 6 bits. The comparator used

in the stochastic stream generation is shown in Figure 2.4. The rest of the bits are used

inside the VN nodes for the IM and MTFM.

5.5 Full Chip Layout

Figure 5.10 shows the circuit layout after place and route from Cadence Encounter software.

Figure 5.11 shows the final layout sent to fabrication after connecting the bondpads and

after design rule checking (DRC) using Calibre tool.
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Figure 5.8: Degree-4 VN.
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FB_Bit <= LFSR(0) xor LFSR(1) xor LFSR(2) xor LFSR(5)

FB_Bit <= LFSR(0) xor LFSR(1) xor LFSR(2) xor LFSR(8)
ccc

FB_bit
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Figure 5.9: Architecture of a 12-bit Linear Feedback Shift Register.

Figure 5.10: Chip Layout from Cadence Encounter.

57



Figure 5.11: Final Chip Layout submitted to Fabrication.
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Chapter 6

Conclusion and Future Work

In this thesis, we show that stochastic decoding is very tolerant to soft errors and has high

capability of correcting them while giving a good performance near to the ideal one without

errors. We started by introducing stochastic computing in Chapter 2. We discussed its

strengths and weaknesses. We also introduced some of its promising applications. In

Chapter 3, we discussed the stochastic LDPC decoding. We also introduced the general

architecture used to build stochastic LDPC decoders. In Chapter 4, we introduce two

models to emulate the soft errors that result from VDD scaling or from overclocking the

system. We also present the simulations results for these error models and proved that

these results nearly give the same performance as the ideal case without errors. These

results show that the stochastic decoding algorithm is very tolerant to soft errors. This

can allow us to loosen the design constraints on stochastic decoders and push the limits

of power or speed while achieving a good performance. We designed and implemented a

stochastic LPDC decoder for the WiMAX (1056,704) LDPC code to test this on silicon.

Stochastic computing in general is a very promising research area and it is becoming

a hot topic nowadays. Moreover, a lot of research can be done on the topic of stochastic

decoding of LDPC codes and its tolerance to errors. Future work includes:
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6.1 Testing Chip

The chip we implemented is still in fabrication. We plan to test it once it is back and

verify our simulation results. An FPGA will be used to setup the testing environment for

the chip.

6.2 Full Chip

As discussed in Chapter 6, the implemented chip is designed to test the tolerance of stochas-

tic decoding to soft errors. Hence, designing a full working chip with a very high throughput

or a scaled down VDD utilizing the tolerance of the stochastic LDPC decoders to soft errors

would be a valuable research work and is expected to give very good results compared to

fabricated chips in the literature. It will also help meet the new communication standards

with high speed low power LDPC decoders.

6.3 Channel Noise

The model we use for the channel noise is the AWGN channel. It would be great of we

can study other different channel models and their effects on stochastic LDPC decoders.

Moreover, it would be interesting to study the effect of the phase noise on stochastic LDPC

decoders. In addition, we need to study how we can minimize those noise effects utilizing

the strengths of stochastic LDPC decoding.

6.4 Stochastic Decoding for Galois Field Greater Than

Two

In this thesis we have been working with stochastic decoding of LDPC codes with binary

Galois field (GF-(2)). We think, it would good if we can apply stochastic decoding on
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Galois field greater than 2. This can also open the door to applying quantum computing

techniques on stochastic computing algorithms in general and stochastic decoding in par-

ticular [28]. In quantum computations, a qubit or a quantum bit can represent a 1 or a 0 or

both at the same time. As a result, Quantum bits can replace the stochastic stream of bits

and hence, quantum computations can replace the normal stochastic decoding operations.
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