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Abstract

Let X(K) ⊂ Pn(K) be a projective algebraic variety over K, and let D be a

subset of Pn
OK such that the codimension of D with respect to X ⊂ Pn

OK is two.

We are interested in points P on X(K) with the property that P ∩ D = ∅ in

Pn
OK , we call such points D-integral points on X(K). First we prove that certain

algebraic varieties have infinitely many D-integral points. Then we find an explicit

description of the complete set of D-integral points in P2(Q) for several types of

D.
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Chapter 1

Introduction

The study of integral (integer) points on algebraic varieties is very old. Pythagoras

tried to find integral points on x2 + y2 = z2, Fermat tried to prove that there

are no non-trivial integral points on xn + yn = zn if n > 2, and there are more

examples to show that people were always interested in the study of integral points.

Unfortunately the number of people who worked on problems dealing with integral

points is too big to list them all in this thesis.

There are different ways to look at integral points on algebraic varieties that

lead to different definitions of integral points. The idea of defining integral points

through schemes (see Section 2.1 of [3] for a precise definition) is relatively new

(dated mid 20th century). Even though it might not be obvious, there is a certain

connection between that definition and the standard definition of integral points

(see Example 1 in Section 2.2).

Brendan Hassett and Yuri Tschinkel were the first who looked at D-integral
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points on algebraic varieties X where the codimension of D with respect to X is

bigger than one (see [3]). In this thesis we use a simplified version of the above

definition (see Definition 2 in Section 2.2) and we look at infinite sets of D-integral

points on projective algebraic varieties X where the codimension of D with respect

to X is two.

The thesis is organized as follows. In Chapter 2 (Background) we give back-

ground which will be essential for understanding and proving main theorems. In

particular, we will talk about projective n-space, D-integral points, Zariski dense

sets, and elliptic curves. We also include several lemmas that are used in the proofs

of the main theorems.

Chapter 3 (Main Theorems) contains eight main theorems, which are divided

in two sections.

In the first section of Chapter 3 the goal is to show that given a certain set

D ⊂ Pn
Z and a certain projective algebraic variety X, such that the codimension

of D with respect to X ⊆ Pn
Z is two, there exists a finite field extension K/Q such

that a set of D-integral points on X over K is infinite. In particular, in the first

theorem we take X = P1 and we let D be a finite set of closed points in P1
Z. In the

second theorem we let X be an elliptic curve and we let D be a finite set of closed

points in P2
Z. Next we take a set D that consists of finitely many “lines” in P2

Z (i.e.

the closures of finitely many points of Pn(Q) in P2
Z), say D = {P1, . . . , Pn} and we

let X be a line in P2 that does not go through any of the points P1, . . . , Pn. Since

in this case it is possible to find a finite set D′ of closed points in P2
Z, such that

P ∈ X(K) is D-integral if and only if P ∈ X(K) is D′-integral, the above problem
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is equivalent to letting D be a finite set of closed points in P2
Z and X a line in P2.

Finally, we show that given a finite set D of “lines” in P2
Z, we can find a Zariski

dense set in P2(K) of D-integral points.

In the second section of Chapter 3 we show that for four different types of D,

where D is a finite set of “lines” in P2
Z, we can find an explicit description of the

complete set of D-integral points in P2(Q). In particular, we start with the case

where the set D contains the closure of only one point. Then we take D that

contains the closures of two points that are not congruent to each other modulo

any prime p. Next we take two points that are congruent modulo p for only finitely

many primes p and not congruent modulo p2 for any prime p, and we let D consist

of the closures of the points. We conclude the section by taking the set D consisting

of the closures of three points, such that the points are not congruent to each other

at the same time modulo any prime p and the matrix, columns of which correspond

to the points, has a square-free determinant.

Chapter 4 contains the conclusion of the thesis.
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Chapter 2

Background

2.1 Projective n-space

Since throughout the thesis we are working in projective space, we start with defin-

ing projective n-space.

Definition 1. Let K be a field. We define projective n-space over K, denoted by

Pn or Pn(K), to be the set of equivalence classes of (n+ 1)-tuples (a1, . . . , an+1) of

elements of K, not all zero, under the equivalence relation given by (a1, . . . , an+1) ∼

(λa1, . . . , λan+1) for all λ ∈ K,λ 6= 0 (see Section I.2 of [2]).

An element of Pn(K) is called a point in Pn(K).

Since the introduction of schemes is not necessary for the contents of the thesis,

we adjust the definitions of Pn
Ok (see Section I.2.4 of [1] for the original definition)

and integral points (see Section 2.1 of [3] for the original definition) to meet the

needs of the thesis.

4



From now on, K is a number field.

First, let’s take K = Q, then the ring of integers of K denoted by OK is Z.

We define Pn
Z = (

∐
(p) Pn(Z/pZ))

∐
Pn(Q), where

∐
denotes a union and (p) runs

over all prime ideals of Z. An element of Pn
Z is called a closed point, if it is in

the form (P mod (p)) denoted by (P, (p)), where P ∈ Pn(Q) and (p) is a prime

ideal of Z. Given a point P ∈ Pn(Q), we define the closure of P in Pn
Z to be

P = (∪(p){(P, (p))})∪{P}, where (p) runs over all prime ideals of Z. The following

argument shows that P is well defined for all P ∈ Pn(Q).

Since points [a1 : . . . : an+1] and [λa1 : . . . : λan+1] are the same in Pn(K) for any

non-zero λ ∈ K, then in particular when K = Q, we take each point P ∈ Pn(Q)

and first multiply coordinates of P by the LCM of the denominators, then we divide

the new coordinates of P by the GCD of the coordinates and the representation

(also called reduced form) that we get for each point in Pn(Q) is [a1 : . . . : an+1],

where a1, . . . , an+1 ∈ Z and gcd(a1, . . . , an+1) = 1. Thus any point P ∈ Pn(Q) is

non-zero when we reduce it modulo any prime ideal (p) ⊂ Z, and the closure of P

in Pn
Z is well defined for each point P ∈ Pn(Q).

Note that throughout the thesis when we take a point in Pn(Q), we assume it

is in reduced form.

Similarly, for an arbitrary field K we define Pn
OK = (

∐
J Pn(OK/J))

∐
Pn(K),

where
∐

denotes a union and J runs over all prime ideals of OK . An element of

Pn
OK is called a closed point, if it is in the form (P mod J) denoted by (P, J), where

P ∈ Pn(K) and J is a prime ideal of OK . Given a point P ∈ Pn(K), we define the

closure of P in Pn
OK to be P = (∪J{(P, J)}) ∪ {P}, where J runs over all prime
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ideals of OK . The following argument shows that P is well defined for all points P

in Pn(K).

For a prime ideal J ⊂ OK and ai ∈ K let ordJ(ai) = max{m ∈ Z|ai ∈ Jm}. For

each prime ideal J ⊂ OK there exists a uniformizer tJ ∈ OK with ordJ(tJ) = 1,

such that every element of K can be written as ai = tmiJ ui, where ui is a unit

(i.e. ordJ(ui) = 0) and mi ∈ Z. Thus every point in Pn(K) can be written as

P = [u1t
m1
J : . . . : un+1t

mn+1

J ]. Since we work in projective space, P does not change

when we divide each coordinate by the smallest power of tJ . Thus at least one

coordinate of P is a unit, i.e. non-zero modulo J, and P mod J is well defined.

Since this is true for each prime ideal J ⊂ OK and each point P ∈ Pn(K), the

closure of P in Pn
OK is well defined for all points P in Pn(K).

Throughout the thesis when we say P ∈ Pn(K) is congruent to (Pi, J) ∈ Pn
OK ,

we mean that P ≡ Pi mod J.

2.2 D-integral Points on Algebraic Varieties

There are different ways to define integral points on algebraic varieties, the defini-

tion of integral points that is used in the thesis is the following:

Definition 2. Let X(K) ⊆ Pn(K) be a projective algebraic variety (see Definition

3 in Section 2.3) over a field K, and let D be a subset of Pn
OK . We say a point

P ∈ X(K) is D-integral if P
⋂
D = ∅ in Pn

OK .

Lemma 1. Let P be a point in Pn(Q) and Q be a point in Pn(K) where K/Q is

a finite field extension. Assume that P 6≡ Q mod (p) for some prime p in Z. Then
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for all prime ideals J ⊂ OK lying over (p), P 6≡ Q mod J.

Proof: Let L be the Galois closure of K/Q. Each prime ideal J ⊂ OK can be

written as J = I1 · · · Id where each Ii is a prime ideal of OL. Then (p) = I1 · · · Ih

for prime ideals I` of OL. Thus to show that P 6≡ Q mod J for all the prime ideals

J ⊂ OK lying over (p), it is enough to show that P 6≡ Q mod I` for any prime ideal

I` ⊂ OL lying over (p).

Since P 6≡ Q mod (p), there exists at least one ` such that P 6≡ Q mod I`.

By Proposition I.11 of [4] we know that for any 1 ≤ m ≤ h, there exists an

automorphism σ ∈ Gal(L/Q) such that σ(I`) = Im. Then

P 6≡ Q mod I` =⇒ σ(P ) 6≡ σ(Q) mod σ(I`).

Since P ∈ Pn(Q) and Q is fixed by σ, then σ(P ) = P. Thus

P 6≡ σ(Q) mod Im.

If σ(Q) ≡ Q mod Im, we are done. If σ(Q) 6≡ Q mod Im, then Q is not fixed by the

action of Gal(L/Q) on Pn(OK/Im), but P is fixed, so P 6≡ Q mod Im.

This completes the proof.

Now, in all our theorems, D is a subset of Pn
Z. In particular in the first two theo-

rems D consists of finitely many closed points, i.e. D = {(P1, (p1)), . . . , (Pm, (pm))}.

Since we are interested in finding D-integral points on X over a finite extension

field K ⊂ Q/Q , we need to check if P intersects D in Pn
OK . Unfortunately, (p)
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does not have to be a prime ideal of OK and therefore D does not have to be a

subset of Pn
OK , so we need to change the set D, in particular we need to substitute

each (Pi, (pi)) with (Pi, Ji1), . . . , (Pi, Jik), where the Jij are prime ideals lying over

(pi) in OK . However, Lemma 1 shows that if P 6≡ Pi mod pi, then P 6≡ Pi mod Jij

for all the Jij. Thus to show that P ∈ X(K) is D-integral, it is enough to show

that P 6≡ Pi mod (pi), for all 1 ≤ i ≤ m.

In Theorems 3 and 4, D consists of finitely many “lines” in Pn
Z, i.e. given a finite

number of points P1, . . . Pm ∈ Pn(Q), we take the closure of each of the points in

Pn
Z. Since we are interested in finding D-integral points on X over a finite extension

field K ⊂ Q/Q , we want to find points such that P 6≡ Pi mod J for all 1 ≤ i ≤ m

and all prime ideals J ⊂ OK . Now, each prime ideal J of OK lies over some prime

ideal (p) in Z and since each Pi ∈ P2(Q), Lemma 1 proves that if P 6≡ Pi mod (p),

where (p) ⊂ Z, then P is not congruent to Pi modulo all prime ideals of OK lying

over (p) and in particular P 6≡ Pi mod J. Thus if P 6≡ Pi mod (p) for all 1 ≤ i ≤ m

and all prime ideals (p) ⊂ Z, then P 6≡ Pi mod J for all 1 ≤ i ≤ m and all prime

ideals J ⊂ OK , i.e. P is D-integral.

In Theorems 5, 6, 7 and 8, D consists of finitely many “lines” in Pn
Z, say

D = {P1, . . . , Pm}, and we are interested in finding D-integral points in Pn(Q).

Then P ∈ Pn(Q) is D-integral implies that P 6≡ Pi mod (p) for all 1 ≤ i ≤ m and

all primes p in Z.

Since saying P 6≡ Pi mod (p), is equivalent to saying P 6≡ Pi mod p, for all

primes p in Z, we will use the second notation in the second section of Chapter 3.

Also throughout the thesis when we say a prime we really mean a prime in Z.
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The following example shows a connection between the above definition and the

standard definition of integral points.

Example 1 Take a cubic curve C : y2 = x3 + 1. Then (x, y) is integral on C if

(x, y) ∈ Z2 satisfies y2 = x3 + 1.

In projective space C corresponds to homogeneous cubic curve Ch : y2z =

x3 + z3, and clearly,

(x, y) is integral on C

⇐⇒

[x : y : z] ∈ Ch(Q) (in reduced form) and z = 1

⇐⇒

[x : y : z] ∈ Ch(Q) and [x : y : z] 6≡ [a : b : 0] mod p

for any a, b ∈ Z and any prime p ∈ Z.

Since there is only one point at infinity on Ch modulo any prime p, the above

statement is equivalent to

(x, y) is integral on C

⇐⇒

[x : y : z] ∈ Ch(Q) and [x : y : z] 6≡ [0 : 1 : 0] mod p for any prime p.

Thus if we let D = {[0 : 1 : 0]}, then (x, y) is integral on C if and only if

[x : y : z] ∈ Ch(Q) is D-integral.

2.3 Zariski Dense Sets

First we will start with the definition of a Zariski closed subset of Pn.
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Definition 3. A set V is called a Zariski closed subset of Pn if V is the common

zero set of finitely many homogeneous polynomials in n + 1 variables. V is also

called a projective algebraic variety.

Let S be a subset of Pn. The smallest Zariski closed subset of Pn that contains

S is defined to be the Zariski closure of S, and we denote it by S.

Now we can define a Zariski dense set.

Definition 4. Let V be a Zariski closed subset of Pn, and let S be a subset of V.

Then the set S is called a Zariski dense set in V if the Zariski closure of S is V .

We will need the following lemma in the proof of Theorem 4. In this lemma we

show one of the conditions when a subset of P2 is Zariski dense in P2.

Lemma 2. Let S ⊂ P2 be any subset. Assume that there exists an infinite collection

C of curves such that for all C ∈ C, S ∩ C is infinite. Then S is Zariski dense in

P2.

Proof: Let Z = S. Assume that Z 6= P2; then there exists a finite set of

irreducible curves B1, B2, . . . , Bn (i.e. each Bi is defined by the zero set of a single

irreducible homogeneous polynomial in P2) such that S ⊂
⋃
iBi. Choose C ∈ C

such that C 6= Bi for all i. Then
⋃
i(C ∩ Bi) is finite. This follows from the

fact that if Bi is irreducible and C 6= Bi then C ∩ Bi is finite. On another hand,

(C∩S) ⊂
⋃
i(C∩Bi) and we know that (C∩S) is infinite. This gives us the desired

contradiction. Therefore Z = P2, which implies that the set S is Zariski dense in

P2.

This completes the proof.
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2.4 Elliptic Curves

An elliptic curve is a curve of genus 1 with a specified basepoint. By section III.3

of [6] every such curve can be written as a plane cubic, so we can define an elliptic

curve in the following way.

Definition 5. An elliptic curve over a field K, denoted by E(K) is the zero set of

a smooth cubic homogeneous polynomial in P2 with a K-rational point.

If char(K)6= 2, 3, then every elliptic curve E(K) can be written by a Weierstrass

Equation in the form y2z = f(x, z), where f(x, z) is a cubic homogeneous poly-

nomial with distinct roots (see Section III.1 of [6]). Since throughout the thesis

char(K)= 0, from now on when we talk about an elliptic curve E(K), we assume

it is expressed in the above form.

The Group Law on Elliptic Curves

Let E(K) be an elliptic curve given by a Weierstrass equation. Let L ⊂ P2 be a

line. Then since E(K) has degree three and L has degree one, using a special case

of Bezout’s Theorem we can conclude that L intersects E(K) at exactly 3 points

P,Q,R (if L is a tangent line to E(K), then P,Q,R may not be distinct). Define

a composition law on E(K) by the following rule:

Composition Law (Section III.2 of [6]): Let E(K) be an elliptic curve given by a

Weierstrass equation and let I be the point at infinity that satisfies the equation of

E(K). Given two points P,Q ∈ E(K), connect the points with line L ⊂ P2 to get

a point R which is the third point of intersection of L with E(K). Now, let L′ ∈ P2
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be the line connecting R and I. Then P + Q is the point such that L′ intersects

E(K) at R, I and P +Q.

The composition law makes E(K) into an abelian group with identity element

I (see Proposition 2.2 Section III.2 of [6] for the proof).

We will need the next lemma in the proof of Theorem 2.

Lemma 3. Let K be a number field, OK be the ring of integers and J ⊂ OK

be a nonzero prime ideal, which implies that J is maximal and OK/J is a field,

denoted by k(J). Let J be a bad prime ideal of an elliptic curve E(K), i.e. E(k(J))

is a singular curve. Then E(k(J)) has exactly one singular point S, and EJ =

E(k(J))− {S} is a group under the same group law as E(K) restricted modulo J.

Formally, we let Eo(K) = {P ∈ E(K)|P 6≡ S mod J}. Then Eo(K) is a subgroup

of E(K) and

Eo(K)× Eo(K)

EJ × EJ

Eo(K)

EJ

m

m′

-

-
? ?

commutes where m and m′ are the composition laws defined above.

Proof: First we show that if J is a bad prime ideal of E(K), then E(k(J)) has

exactly one singular point.

Bezout’s Theorem says that if we have two curves with no common factors

of degree m and n, then the curves intersect in at most mn points counted with
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multiplicities. Thus an elliptic curve and a line can intersect in at most 3 points

counted with multiplicities.

Now, if J is a bad prime ideal of E(K), it implies that E(k(J)) has at least one

singular point. Assume that E(k(J)) has two singular points. Then the multiplic-

ities of these points are greater or equal to 2 (as the dimension of E(k(J)) is 1).

When we join these points with a line, the intersection of the line and the ellip-

tic curve E(k(J)) has at least 4 points of intersection counted with multiplicities,

which is a contradiction to Bezout’s Theorem. Therefore E(k(J)) has exactly one

singular point.

It is left to show that EJ is a group under the same group law as E(K) restricted

modJ. The result follows from Proposition III.2.5 of [6].

This completes the proof.

2.5 Important Lemmas

The following lemma is required for the proof of Theorem 5, 6, 7 and 8. We will

prove that given a linear change of coordinates T defined by a 3x3 matrix that is

invertible modulo prime p, two points are congruent modulo p if and only if their

images under T are congruent modulo p.

Lemma 4. Let M be a 3 × 3 matrix with coordinates in Q, such that det(M) 6≡

0 mod p where p is a prime in Z. Let T : P2(Q) −→ P2(Q) be the linear change of
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coordinates defined by the matrix M. Then

[a : b : c] ≡ [x : y : z] mod p⇐⇒ T ([a : b : c]) ≡ T ([x : y : z]) mod p.

Proof: Since det(M) 6= 0, the linear change of coordinates T : P2(Q) −→

P2(Q) is an isomorphism and since det(M) 6≡ 0 mod p, the linear change of coor-

dinates Tp : P2(Z/pZ) −→ P2(Z/pZ) is an isomorphism as well. Then

[a : b : c] ≡ [x : y : z] mod p⇐⇒ Tp([a : b : c]) ≡ Tp([x : y : z]) mod p.

It is clear that Tp([a : b : c]) ≡ T ([a : b : c]) mod p, therefore

[a : b : c] ≡ [x : y : z] mod p⇐⇒ T ([a : b : c]) ≡ T ([x : y : z]) mod p.

This completes the proof.

We will use the next lemma in the proof of Theorem 7 and 8. The idea in this

lemma is the following. Consider a linear transformation T : Z3 −→ Z3 defined by

a 3x3 matrix M, and a point (x, y, z) with gcd(x, y, z) = 1. Then setting (a, b, c) =

T (x, y, z), gives that gcd(a, b, c) divides the determinant of M.

Lemma 5. Given a matrix M =


a1 a2 a3

b1 b2 b3

c1 c2 c3

 with coordinates in Z, and integers
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x, y, z such that gcd(x, y, z) = 1. Let

g = gcd(xa1 + ya2 + za3, xb1 + yb2 + zb3, xc1 + yc2 + zc3).

Then g divides the determinant of M.

Proof: Let T : Z3 −→ Z3 be the linear transformation defined by the matrix M.

Then T (x, y, z) = (xa1 + ya2 + za3, xb1 + yb2 + zb3, xc1 + yc2 + zc3) = (gx′, gy′, gz′).

Then


a1 a2 a3

b1 b2 b3

c1 c2 c3



x

y

z

 =


gx′

gy′

gz′


Using Cramer’s Rule we get

x =
gx′(b2c3 − c2b3)− gy′(a2c3 − c2a3) + gz′(a2b3 − b2a3)

det(M)

y =
−gx′(b1c3 − c1b3) + gy′(a1c3 − c1a3)− gz′(a1b3 − b1a3)

det(M)

z =
gx′(b1c2 − c1b2)− gy′(a1c2 − c1a2) + gz′(a1b2 − b1a2)

det(M)

=⇒
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x =
g(x′(b2c3 − c2b3)− y′(a2c3 − c2a3) + z′(a2b3 − b2a3))

det(M)

y =
g(−x′(b1c3 − c1b3) + y′(a1c3 − c1a3)− z′(a1b3 − b1a3))

det(M)

z =
g(x′(b1c2 − c1b2)− y′(a1c2 − c1a2) + z′(a1b2 − b1a2))

det(M)
.

Since gcd(x, y, z) = 1, then g has to divide det(M).

This completes the proof.

We will need the following lemma in the proof of Theorem 7. In this lemma we

prove the following fact. Let D consist of the closures of two points P1, P2 ∈ P2(Q)

that are only congruent to each other modulo finitely many primes, say p1, . . . , pn,

and not congruent modulo p2 for any prime p. Then we can always find a D-

integral point P ∈ P2(Q) such that the matrix, whose columns are P1, P2 and P

has determinant p1 · · · pn.

Lemma 6. Let P1 = [a1 : b1 : c1], P2 = [a2 : b2 : c2] ∈ P2(Q) be two points such that

P1 ≡ P2 mod pi only for finitely many primes, say p1, . . . , pn, and P1 6≡ P2 mod p2
i

for all 1 ≤ i ≤ n. Let D = {P1, P2}. It is always possible to find integers A,B,C

with gcd(A,B,C) = 1 such that

A(b1c2 − c1b2)−B(a1c2 − c1a2) + C(a1b2 − b1a2) = p1 · · · pn
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and [A : B : C] is D-integral in P2(Q).

Proof: Since [a1 : b1 : c1] ≡ [a2 : b2 : c2] mod pi for only 1 ≤ i ≤ n and

[a1 : b1 : c1] 6≡ [a2 : b2 : c2] mod p2
i for 1 ≤ i ≤ n, this implies that

gcd(a1b2 − b1a2, a1c2 − c1a2, b1c2 − c1b2) = p1 · · · pn.

Thus we can always find integers A,B,C such that

A(b1c2 − c1b2)−B(a1c2 − c1a2) + C(a1b2 − b1a2) = p1 · · · pn.

Moreover, for all such [A : B : C], we have gcd(A,B,C) = 1. Next we note that

p1 · · · pn = A(b1c2 − c1b2)−B(a1c2 − c1a2) + C(a1b2 − b1a2)

= −a2(b1C − c1B) + b2(a1C − c1A)− c2(a1B − b1A)

= a1(b2C − c2B)− b1(a2C − c2A) + c1(a2B − b2A)

=⇒

gcd(b1C − c1B, a1C − c1A, a1B − b1A)|p1 · · · pn

=⇒

[A : B : C] ≡ [a1 : b1 : c1] mod p is possible only for p|p1 · · · pn.
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Similarly,

[A : B : C] ≡ [a2 : b2 : c2] mod p is possible only for p|p1 · · · pn.

So we can conclude that all the integer triples A,B,C that satisfy the above

equation, have the property that [A : B : C] 6≡ [a1 : b1 : c1] mod p and [A : B :

C] 6≡ [a2 : b2 : c2] mod p for all primes p that do not divide p1 · · · pn.

Since P1 ≡ P2 mod pi for all 1 ≤ i ≤ n, we only need to show that we can find

[A : B : C] such that [A : B : C] 6≡ [a1 : b1 : c1] mod pi for all 1 ≤ i ≤ n.

First let’s fix i ∈ {1, . . . , n} and look at the case when P1 ≡ P2 ≡ [0 : 1 :

0] mod pi. This implies that

b1c2 − c1b2 = pik1

a1c2 − c1a2 = p2
i k2

a1b2 − b1a2 = pik3.

Then

A(b1c2 − c1b2)−B(a1c2 − c1a2) + C(a1b2 − b1a2) =

= Apik1 −Bp2
i k2 + Cpik3 = p1 · · · pn.

This implies that p2
i does not divide gcd(Apik1, Cpik3) and thus pi does not divide

gcd(A,C). Therefore, [A : B : C] 6≡ [a1 : b1 : c1] ≡ [0 : 1 : 0] mod pi for any integer
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triple that satisfies

A(b1c2 − c1b2)−B(a1c2 − c1a2) + C(a1b2 − b1a2) = p1 · · · pn.

We now consider the case when P1 ≡ P2 6≡ [0 : 1 : 0] mod pi. If (A,B,C) is a

solution to

A(b1c2 − c1b2)−B(a1c2 − c1a2) + C(a1b2 − b1a2) = p1 · · · pn

then (A+ k a1c2−c1a2

p1···pn , B+ k b1c2−c1b2
p1···pn + ha1b2−b1a2

p1···pn , C + ha1c2−c1a2

p1···pn ) is also a solution to

the equation for any integers k and h.

We compute:

[A+ k
a1c2 − c1a2

p1 · · · pn
: B + k

b1c2 − c1b2

p1 · · · pn
+ h

a1b2 − b1a2

p1 · · · pn
: C + h

a1c2 − c1a2

p1 · · · pn
]

≡ [a1 : b1 : c1] mod pi

⇐⇒

(A+ k
a1c2 − c1a2

p1 · · · pn
)b1 − (B + k

b1c2 − c1b2

p1 · · · pn
+ h

a1b2 − b1a2

p1 · · · pn
)a1 ≡ 0 mod pi

(A+ k
a1c2 − c1a2

p1 · · · pn
)c1 − (C + h

a1c2 − c1a2

p1 · · · pn
)a1 ≡ 0 mod pi

(B + k
b1c2 − c1b2

p1 · · · pn
+ h

a1b2 − b1a2

p1 · · · pn
)c1 − (C + h

a1c2 − c1a2

p1 · · · pn
)b1 ≡ 0 mod pi

⇐⇒
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(Ab1 −Ba1) + (kc1 − ha1)
a1b2 − b1a2

p1 · · · pn
≡ 0 mod pi

(Ac1 − Ca1) + (kc1 − ha1)
a1c2 − c1a2

p1 · · · pn
≡ 0 mod pi

(Bc1 − Cb1) + (kc1 − ha1)
b1c2 − b1a2

p1 · · · pn
≡ 0 mod pi.

We need to look at two cases:

Case 1: [A : B : C] ≡ [a1 : b1 : c1] mod pi.

In this case the above system of congruences implies that

(kc1 − ha1)
a1b2 − b1a2

p1 · · · pn
≡ 0 mod pi

(kc1 − ha1)
a1c2 − c1a2

p1 · · · pn
≡ 0 mod pi

(kc1 − ha1)
b1c2 − b1a2

p1 · · · pn
≡ 0 mod pi

=⇒

(kc1 − ha1) ≡ 0 mod pi, since gcd(
a1b2 − b1a2

p1 · · · pn
,
a1c2 − c1a2

p1 · · · pn
,
b1c2 − b1a2

p1 · · · pn
) = 1.

Thus, if we can find integers k and h such that (kc1 − ha1) 6≡ 0 mod pi, then

[A + k a1c2−c1a2

p1···pn : B + k b1c2−c1b2
p1···pn + ha1b2−b1a2

p1···pn : C + ha1c2−c1a2

p1···pn ] 6≡ [a1 : b1 : c1] mod pi.
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This is always possible since P1 6≡ [0 : 1 : 0] mod pi which implies that a1 ≡ ci ≡

0 mod p1 does not happen.

Case 2: [A : B : C] 6≡ [a1 : b1 : c1] mod pi.

In this case we can choose integers k and h such that k ≡ h ≡ 0 mod pi, then

[A+ k a1c2−c1a2

p1···pn : B + k b1c2−c1b2
p1···pn + ha1b2−b1a2

p1···pn : C + ha1c2−c1a2

p1···pn ] 6≡ [a1 : b1 : c1] mod pi.

Now, we go back to the beginning and we find [A : B : C] such that

A(b1c2 − c1b2)−B(a1c2 − c1a2) + C(a1b2 − b1a2) = p1 · · · pn.

Next, we compute g = gcd(b1C − c1B, a1C − c1A, a1B − b1A). If g = 1 then

[A : B : C] is D-integral and we are done. If g 6= 1, then we divide primes pi into

two sets:

V = {pi|1 ≤ i ≤ n and pi divides g}

W = {pi|1 ≤ i ≤ n and pi does not divide g}.

Using the Chinese Remainder Theorem (CRT) we can find integers k and h such

that

(kc1 − ha1) 6≡ 0 mod pi for all the pi ∈ V

and

k ≡ h ≡ 0 mod pi for all the pi ∈ W.
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Then point [A+ k a1c2−c1a2

p1···pn : B + k b1c2−c1b2
p1···pn + ha1b2−b1a2

p1···pn : C + ha1c2−c1a2

p1···pn ] satisfies

A(b1c2 − c1b2)−B(a1c2 − c1a2) + C(a1b2 − b1a2) = p1 · · · pn

and is D-integral in P2(Q).

This completes the proof.
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Chapter 3

Main Theorems

3.1 Infinite Sets of D-integral Points on Alge-

braic Varieties over K

In this section we show that for certain types of D ⊂ Pn
Z and projective algebraic

varieties X ⊆ Pn, there is a finite field extension K/Q, such that X(K) contains

infinitely many D-integral points.

We start the section by showing that given a finite set D of closed points in P1
Z,

there is a finite field extension K/Q such that there are infinitely many D-integral

points on P1(K).

Theorem 1. Let D ⊂ P1
Z be a finite set of closed points; that is D = {([a1 :

b1], (p1)), ([a2 : b2], (p2)), . . . , ([an : bn], (pn))}. Then there is a finite field extension

K/Q such that there are infinitely many D-integral points on P1(K).
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Proof: It follows from Section 2.2 that to show that [A : B] is D-integral it is

enough to show that [A : B ] 6≡ [ai : bi] mod (pi) for all 1 ≤ i ≤ n.

A point [A : B] is not congruent to points ([ai : bi], (pi)) for all 1 ≤ i ≤ n implies

that

Abi −Bai 6≡ 0 mod (pi) for all 1 ≤ i ≤ n.

If such point exists, then there are infinitely many points in the form

[A+ lp1p2 · · · pn : B + kp1p2 · · · pn], where l, k ∈ Z

which are not congruent to any points in set D, as

(A+ lp1p2 · · · pn)bi − (B + kp1p2 · · · pn)ai ≡ Abi −Bai mod (pi), 1 ≤ i ≤ n.

Thus, if we can show that there exists at least one point with the above property,

we are done.

Let’s choose a point [C : 1]. Then [C : 1] 6≡ [ai : bi] mod pi if bi ≡ 0 mod pi, so

we can remove for now the points ([ai, bi], (pi)) with bi ≡ 0 mod pi from the set D.

Since b−1
i exists modulo pi for all the pi in our new set D, we want to find C such

that for all the pi

Cbi − ai 6≡ 0 mod pi

⇐⇒

C 6≡ aib
−1
i mod pi.
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Therefore, if we can find C in some finite field extension K/Q that is not an element

of Z/piZ for all the pi, we are done.

For each of the distinct odd pi we choose Ai ∈ Z/piZ such that Ai is not a

quadratic residue modulo pi. We are guaranteed to find such Ai, as there are at

most m−1
2

quadratic residues, where m = |Z/piZ|. By the CRT there exists h ∈ Z

such that h ≡ Ai mod (pi) for all the distinct odd pi and h ≡ 5 mod (8). If none

of the pi is equal to 2, we let C =
√
h. If pi = 2 for some i, then let C = 1+

√
h

2
.

Clearly C is not in Z/piZ for all the odd pi. The minimal polynomial for 1+
√
h

2
is

x2 − x+ 1− 2d (where h = 5 + 8d, d ∈ Z ), which reduces to x2 − x+ 1 modulo 2;

thus C is congruent to a root of x2 − x + 1 = 0 modulo (2), which is not in Z/2Z

and, therefore, C is not in Z/2Z. Then C is defined over Q(
√
h) and is not defined

over Z/piZ for all the pi.

Let K = Q(
√
h). Then [C : 1] ∈ P1(K) is D-integral.

This completes the proof.

In the following theorem we take a set D that consists of finitely many closed points

in P2
Z and an elliptic curve E. We show that there is a finite field extension K/Q

such that there are infinitely many D-integral points on E(K).

Theorem 2. Let D be a finite set of closed points in P2
Z . That is D = {([a1 :

b1 : c1], (p1)), ([a2 : b2 : c2]), (p2)), . . . , ([an : bn : cn], (pn))}. Let E : y2z = f(x, z)

be an elliptic curve, where f(x, z) is a cubic homogeneous polynomial with distinct

roots. Then there is a finite field extension K/Q such that there are infinitely many

D-integral points on E(K).
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Proof: First we will find a point P on E(K) such that P is D-integral, P mod pi

is not singular on E(k(Jij)) for all the prime ideals Jij ⊂ OK lying over (pi) and

all the pi, and P is not a torsion point of E(K), i.e. P has infinite order.

If we add some points to the set D and show that the theorem holds for the

enlarged set D, then this will imply that the theorem holds for the original set D.

Proposition VII.5.4(b) of [6] implies that if (pi) is a prime ideal of Z and a

prime ideal of OK lying over (pi) is a bad prime ideal of E(K), then (pi) is a bad

prime ideal of E(Q). Lemma 3 implies that if (pi) is a bad prime ideal then there is

exactly one singular point on E(k(pi)). Thus for each bad prime ideal (pi) of E(Q)

in our set, we add (S, (pi)) to the set D where S is a singular point of E(k(pi)).

Note that if for some element ([ai : bi : ci], (pi)) of D, we have ([ai : bi : ci], Jij) /∈

E(K) ⊂ P2
OK for all prime ideals Jij ⊂ OK lying over (pi), then we can remove

([ai : bi : ci], (pi)) from the set D.

The new set D contains n′ points.

To find a D-integral point on E(K) we need to find a point [A : B : C] ∈ E(K)

such that [A : B : C] 6≡ [ai : bi : ci] mod (pi) for all 1 ≤ i ≤ n′. This follows from

Section 2.2.

If a point [A : B : C] is not congruent to a point ([ai : bi : ci], (pi)), it implies

that

Abi −Bai 6≡ 0 mod (pi)

or

Aci − Cai 6≡ 0 mod (pi)
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or

Bci − Cbi 6≡ 0 mod (pi).

Thus, if we can find [A : B] ∈ P1(K) such that Abi−Bai 6≡ 0 mod (pi), where 1 ≤

i ≤ n′ and pi does not divide gcd(ai, bi), then [A : B : C] is D-integral point for any

C ∈ K. Note that since [A : B] is well defined, then [A : B : C] 6≡ [0 : 0 : 1] mod pi

for any pi.

By Theorem 1, we can find infinitely many points [A : B] ∈ P1(Q[
√
h]/Q) for

some large h ∈ Z, such that

Abi −Bai 6≡ 0 mod (pi) for all the pi that does not divide gcd(ai, bi).

We pick one of those points [A : B]. Now, we plug A,B in the given equation of the

elliptic curve to get C ∈ K = Q(
√
h, α1, α2, α3)/Q, where α1, α2, α3 are the roots

of the equation that we get by substituting x and y with A and B in the equation

of the elliptic curve E. The resulting point P = [A : B : C] is not congruent to any

point in the original set D and P mod (pi) is not singular on E(k(Jij)) for all the

prime ideals Jij ⊂ OK lying over (pi) and for all the pi.

By the famous theorem of Loic Merel [5] there are finitely many torsion points

on E(K) for all finite field extensions K/Q of degree less than or equal to d. In our

case the degree of K/Q is at most 6 no matter what [A : B] ∈ P1(Q[
√
h]/Q) we

pick.

Now, we check whether [A : B : C] is a torsion point on E(K). If it is not, then

we found a finite field extension K/Q and a point [A : B : C] on E(K) with the
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required properties.

If [A : B : C] is a torsion point, then we pick another [A : B] ∈ P1(Q[
√
h]/Q)

and follow the above steps to find another D-integral point [A : B : C] ∈ E(K) for

different K. Since there are infinitely many points [A : B] ∈ P1(Q[
√
h]/Q) with

the required property, then by repeating the above procedure we can find infinitely

many points [A : B : C] on E(K) for different field extensions K/Q with degree at

most 6. But there are only finitely many torsion points on E(K) for all finite field

extensions with degree less than or equal to 6. Thus, we are guaranteed to find a

finite field extension K/Q and a D-integral point [A : B : C] ∈ E(K) which is not

a torsion point and [A : B : C] mod (pi) is not singular on E(k(Jij)) for all the

prime ideals Jij ⊂ OK lying over (pi) and for all the pi.

Next, if (pi) is a prime ideal of OK , then let (pi) = Ji. If (pi) is not a prime

ideal of OK , then (pi) = Ji1Ji2 . . . Jir, where Jij for 1 ≤ j ≤ r are prime ideals in

OK . The CRT implies that if P is not congruent to [ai : bi : ci] modulo at least one

of the Jij, then P 6≡ [ai : bi : ci] mod (pi). We need to find one prime ideal Jij = Ji

such that P is not congruent to ([ai : bi : ci], Ji). Moreover, since [ai : bi : ci] is in

P2(Q), Lemma 1 implies that any of the Jij will satisfy the condition. Now, we

substitute the points ([ai : bi : ci], (pi)) in the set D with the points ([ai : bi : ci], Ji).

Let EJi denote E(k(Ji)) if Ji is not a bad prime ideal, and E(k(Ji)) − {S}

(where S is the singular point) if Ji is a bad prime ideal. Then P mod Ji ∈ EJi for

all 1 ≤ i ≤ n′. Lemma 3 proves that EJi is a group with the same group law as
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E(K). Let si = |EJi|. The following statement is true for all ` ∈ Z :

(`si + 1)P ≡ P mod Ji.

Let m =LCM(s1, . . . , sn′). Thus, for all 1 ≤ i ≤ n′ and ` ∈ Z

(`m+ 1)P ≡ P mod Ji.

Since P is not a torsion point on E(K), i.e. P has infinite order, the points

(`m + 1)P are all different in E(K) for different `. Therefore, there are infinitely

many D-integral points on E(K).

This completes the proof.

Next, we take a set D that consists of finitely many “lines” in P2
Z, say D =

{P1, . . . , Pn} and let L be a line that does not go through any of the points

P1, . . . , Pn. We show that there is a finite field extension K/Q such that there

are infinitely many D-integral points on L(K). Since L(Q) does not contain any of

the points P1, . . . , Pn, it is possible to find a finite set D′ of close points in P2
Z, such

that P is D-integral on L if and only if P is D′-integral on L. Then the original

problem reduces to the problem of finding a finite field extension K/Q such that a

set of D′-integral points on L(K) is infinite.

Theorem 3. Let P1 = [a1 : b1 : c1], . . . , Pn = [an : bn : cn] ∈ P2(Q) and let

D = {P1, . . . , Pn} ⊂ P2
Z. Let L : Ax + By + Cz = 0 (with A,B,C ∈ Z and

gcd(A,B,C) = 1) be a line such that L does not go through any of the points

P1, . . . , Pn. Then there is a finite field extension K/Q such that there are infinitely
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many D-integral points on L(K).

Proof: In Section 2.2 we showed that [X : Y : Z] is D-integral if [X : Y : Z] 6≡

[ai : bi : ci] mod (p) for all 1 ≤ i ≤ n and all prime ideals (p) ⊂ Z.

Let [X : Y : Z] ∈ L and assume that [X : Y : Z] ≡ [ai : bi : ci] mod (p). Then



aiY − biX ≡ 0 mod (p)

aiZ − ciX ≡ 0 mod (p)

biZ − ciY ≡ 0 mod (p)

AX +BY + CZ ≡ 0 mod (p).

We know that at least one of ai, bi, ci is not zero, and since the above system

of congruences is symmetric with respect to ai, bi, ci, without loss of generality we

assume that ai 6= 0. There are finitely many primes that divide ai.

First, let’s look at the primes that do not divide ai. For each such prime p we

have ai 6≡ 0 mod (p) and there exists an inverse a−1
i of ai. Thus, the following must

be true

Y ≡ a−1
i biX mod (p)

Z ≡ a−1
i ciX mod (p)

=⇒ AX +Ba−1
i biX + Ca−1

i ciX ≡ 0 mod (p)

=⇒ a−1
i X(Aai +Bbi + Cci) ≡ 0 mod (p).

We have that a−1
i 6≡ 0 mod (p) and if X ≡ 0 mod (p), then Y ≡ Z ≡ 0 mod (p),
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which is impossible. Therefore,

(Aai +Bbi + Cci) ≡ 0 mod (p).

Since [ai : bi : ci] 6∈ L, we have Aai +Bbi +Cci 6= 0, and this implies that the above

congruence is possible only for finitely many primes, namely the primes that divide

Aai +Bbi + Cci.

We are left to check the primes that divide ai. For each such prime p, we have

ai ≡ 0 mod (p). As gcd(ai, bi, ci) = 1, at least one of bi, ci is not congruent to zero

modulo (p), and at least one of bi, ci has an inverse. Using the same argument as

above, at least one of following congruences must be true.

b−1
i Y (Aai +Bbi + Cci) ≡ 0 mod (p)

c−1
i Z(Aai +Bbi + Cci) ≡ 0 mod (p).

This implies that p has to divide Aai +Bbi + Cci.

Therefore, a point [X : Y : Z] ∈ L can be congruent to [ai : bi : ci] modulo (p)

only for primes p that divide Aai +Bbi + Cci.

Let Aai+Bbi+Cci = p1p2 · · · pm; then to find a point on L that is not congruent

to [ai : bi : ci] modulo any prime, we need to find a point which is not congruent to

any point in the set {([ai : bi : ci], (p1)), ([ai : bi : ci], (p2)), . . . , ([ai : bi : ci], (pm))}.

Following the same procedure for each point P1, . . . , Pn, we get a finite set

D′ = {(P1, (p1)), (P2, (p2)), . . . , (Pn′ , (pn′))}. Now the original problem reduces to
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the problem of finding a finite field extension K/Q such that there are infinitely

many points on L(K) that are not congruent to any of the points in set D′.

By Theorem 1 we can find a finite field extension K/Q with X and Y in K, such

that [X : Y ] 6≡ [ai : bi] mod (pi) for all 1 ≤ i ≤ n′ and pi does not divide gcd(ai, bi).

Note that since [X : Y ] is well defined, then [X : Y : Z] 6≡ [0 : 0 : 1] mod pi for

any pi. Then [X : Y : −AX−BY
C

] 6≡ [ai : bi : ci] mod (pi) for all 1 ≤ i ≤ n′, and

[X : Y : Z] = [X : Y : −AX−BY
C

] ∈ L(K). Let N = LCM1≤i≤n′(Aai + Bbi + Cci).

Then clearly points in the form [X + CkN : Y + ChN : Z − (Ak + Bh)N ] for

k, h ∈ Z, are in L(K) and are not congruent to any of the points in D′. Therefore,

there are infinitely many points in L(K) which are not congruent to any point in

the set D′, and thus there are infinitely many D-integral points on L(K).

This completes the proof.

We conclude the section by showing that given a set D of finitely many “lines” in

P2
Z, we can find a Zariski dense set in P2(K) of D-integral points for some finite

field extension K/Q.

Theorem 4. Let P1 = [a1 : b1 : c1], . . . , Pn = [an : bn : cn] ∈ P2(Q) and let

D = {P1, . . . , Pn} ⊂ P2
Z. There is a Zariski dense set S in P2(K) for some finite

field extension K/Q such that [X : Y : Z] ∈ S implies that [X : Y : Z] is D-integral.

Proof: First we find a line L : Ax + By + Cz = 0 (with A,B,C ∈ Z and

gcd(A,B,C) = 1) that does not go through any of the points P1, . . . , Pn. We are

guaranteed to find such a line since there are infinitely many lines with this property.

By Theorem 3 we know that we can find a finite field extension K/Q with [X :
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Y : Z] ∈ L(K) being D-integral. Moreover, since [X : Y : Z] ∈ L(K) is D-

integral, then points of the form [X +CkN : Y +ChN : Z − (Ak +Bh)N ], where

N = LCM1≤i≤n(Aai + Bbi + Cci), are also D-integral on L(K) for any integers k

and h.

Next, a general equation for the lines over K that go through the point [X : Y :

Z] can be written in the form Lαβ : (αZ)x+(βZ)y− (αX+βY )z = 0 for α, β ∈ K.

There are at most n lines that go through the point [X : Y : Z] and at least one

of the points [a1 : b1 : c1], [a2 : b2 : c2], . . . , [an : bn : cn]. In particular, there are

infinitely many distinct lines Lα,β which do not go through any [ai : bi : ci].

Let G be the set of all the lines over K that go through [X : Y : Z] and at least

one of the points [a1 : b1 : c1], [a2 : b2 : c2], . . . , [an : bn : cn].

After clearing the denominators and renaming the coefficients we get

Lαβ : Aαβx+Bαβy + Cαβz = 0,

where Aαβ, Bαβ, Cαβ ∈ OK .

Now, for each pair (α, β) such that the line Lαβ /∈ G, we use the following

argument. Since Lαβ does not go through Pi, then using the idea from Theorem 3

we can say that for [a : b : c] ∈ Lαβ and a prime ideal J ⊂ OK

[a : b : c] ≡ [ai : bi : ci] mod J

=⇒

Aαβai +Bαβbi + Cαβci ≡ 0 mod J
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=⇒

Aαβai +Bαβbi + Cαβci ∈ J.

Now, OK is a Dedekind domain, i.e. every ideal of OK can be written uniquely (up

to order) as a product of prime ideals of OK . Thus,

(Aαβai +Bαβbi + Cαβci) = Ji1 · · · Jir

for a unique set of prime ideals Ji1, . . . , Jir ⊂ OK . Therefore, a point [a : b : c] ∈

Lαβ(K) can be congruent to Pi modulo only finitely many prime ideals Ji1, . . . , Jir ⊂

OK .

Now, each Jij (1 ≤ j ≤ r) lies over some prime ideal (pij) ⊂ Z and since each

Pi ∈ P2(Q), Lemma 1 proves that if [a : b : c] 6≡ Pi mod (pij), where (pij) ⊂ Z,

then [a : b : c] is not congruent to Pi modulo all prime ideals of OK lying over (pij)

and in particular P 6≡ Pi mod Jij.

Thus, a point [a : b : c] ∈ Lαβ(K) is not congruent to Pi modulo any prime ideal

of OK if and only if [a : b : c] ∈ Lαβ(K) is not congruent to any of the points in the

set {(Pi, pi1), . . . , (Pi, pir)}.

Using the same procedure for each of the Pi we can construct a set Dαβ of

finitely many closed points such that [a : b : c] ∈ Lαβ(K) is D-integral if and only

if [a : b : c] ∈ Lαβ(K) is Dαβ-integral.

Now, let Nαβ be the product of all the pij described above. Then

[X + CαβkNαβ : Y + CαβhNαβ : Z − (Aαβk +Bαβh)Nαβ] ≡ [X : Y : Z] mod (pij)
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for all the pij and all k, h ∈ Z.

Therefore, since [X : Y : Z] is D-integral and the above argument is true for

every Lαβ /∈ G, then the points in the form

[X + CαβkNαβ : Y + CαβhNαβ : Z − (Aαβk +Bαβh)Nαβ],

k, h ∈ Z;α, β ∈ K,Lα,β /∈ G

will form a set S of D-integral points.

Now, we are left to show that the set S is Zariski dense in P2. There are infinitely

many curves Lαβ : Aαβx+Bαβy+Cαβz = 0 (where Lα,β /∈ G) with infinitely many

points from set S on each of them. Thus, by Lemma 2, the set S is Zariski dense

in P2(K).

This completes the proof.

3.2 Complete Descriptions of D-integral points

in P2(Q)

In this section we show that for four different types of D, where D is a set of “lines”

in P2
Z, we can find an explicit description of the complete set of D-integral points

in P2(Q).

We start with the simplest case, i.e. the set D contains the closure of only one

point P . We will show that there exists a linear change of coordinates T such that
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the complete set S of all D-integral points in P2(Q) is

S = {T ([x : y : z])| gcd(y, z) = 1}.

Moreover, this T can be explicitly determined by P.

Theorem 5. Given a point P = [a : b : c] ∈ P2(Q). Let D = {P} ⊂ P2
Z. Then

there is an explicit description of the complete set S of all D-integral points in

P2(Q) (see Description 1).

Proof: If [a : b : c] = [1 : 0 : 0], then [x : y : z] ≡ [1 : 0 : 0] mod p if and only if

y ≡ 0 mod p and z ≡ 0 mod p. Thus [x : y : z] 6≡ [a : b : c] mod p for all primes p if

and only if gcd(y, z) = 1. Then the complete set S of all D integral points in P2(Q)

consists of [x : y : z] such that gcd(y, z) = 1. Similarly if [a : b : c] = [0 : 1 : 0]

or [0 : 0 : 1], then the complete set S of all D integral points in P2(Q) consists of

[x : y : z] such that gcd(x, z) = 1 or gcd(x, y) = 1 respectively.

Now, let’s look at the problem in general.

First, we want to show that we can always find a D-integral point [A : B : C] in

P2(Q). If [a : b : c] = [1 : 0 : 0] or [0 : 1 : 0] or [0 : 0 : 1], we take any [A : B : C] with

gcd(B,C) = 1 or gcd(A,C) = 1 or gcd(A,B) = 1 respectively. In all other cases

we choose a pair (a, b), (a, c) or (b, c) such that the pair has non-zero elements. Due

to the symmetry, without loss of generality we take (a, b). Then there are integers

A,B with gcd(A,B) = 1 such that Ab−Ba = gcd(a, b).

36



For all primes pi that do not divide gcd(a, b),

Ab−Ba 6≡ 0 mod pi.

=⇒

[A : B : 1] 6≡ [a : b : c] mod pi.

For all primes pi that do divide gcd(a, b), we have a ≡ b ≡ 0 mod pi and

c 6≡ 0 mod pi. Since gcd(A,B) = 1, then at least one of A or B is non-zero modulo

pi. Thus,

Ac− Ca ≡ Ac 6≡ 0 mod pi

or

Bc− Cb ≡ Bc 6≡ 0 mod pi

=⇒

[A : B : 1] 6≡ [a : b : c] mod pi.

Therefore,

[A : B : 1] 6≡ [a : b : c] mod p, for all primes p.

Thus, [A : B : 1] is D-integral in P2(Q).

Using the above argument we can easily find a D-integral point [A1 : B1 : C1]

in P2(Q). This implies that

aB1 − bA1 6≡ 0 mod p
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or

aC1 − cA1 6≡ 0 mod p

or

bC1 − cB1 6≡ 0 mod p

for all primes p. Thus, we have gcd(aB1−bA1, aC1−cA1, bC1−cB1) = 1. Therefore,

we can find integers A2, B2, C2 such that

A2(bC1 − cB1)−B2(aC1 − cA1) + C2(aB1 − bA1) = 1.

Let M =


a A1 A2

b B1 B2

c C1 C2

 . The determinant of M is equal to 1, which implies

that det(M) is non-zero modulo any prime p. Let T : P2(Q) −→ P2(Q) be the

linear change of coordinates defined by the matrix M. Then using Lemma 4 we

conclude that for all primes p

[x : y : z] 6≡ [a′ : b′ : c′] mod p⇐⇒ T ([x : y : z]) 6≡ T ([a′ : b′ : c′]) mod p.

Now, consider the point [1 : 0 : 0]. Then [x : y : z] 6≡ [1 : 0 : 0] mod p for all

primes p if and only if gcd(y, z) = 1. We have T ([1 : 0 : 0]) = [a : b : c]. Thus,

T ([x : y : z]) 6≡ [a : b : c] mod p for all primes p⇐⇒ gcd(y, z) = 1.
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Description 1 Define

S = {T ([x : y : z])| gcd(y, z) = 1}.

Then S forms a complete set of all D-integral points in P2(Q).

This completes the proof.

In the following theorem we let D contain the closures of two points P1, P2 that are

not congruent to each other modulo any prime p. We will show that there exists a

linear change of coordinates T such that the complete set S of all D-integral points

in P2(Q) is

S = {T ([x : y : z])| gcd(y, z) = 1, gcd(x, z) = 1}.

Moreover, this T can be explicitly determined by P1 and P2.

Theorem 6. Let P1 = [a1 : b1 : c1], P2 = [a2 : b2 : c2] ∈ P2(Q) be two points

such that P1 6≡ P2 mod p for all primes p. Let D = {P1, P2} ⊂ P2
Z. Then there is

an explicit description of the complete set S of all D-integral points in P2(Q) (see

Description 2).

Proof: Since [a1 : b1 : c1] 6≡ [a2 : b2 : c2] mod p for all primes p, this implies that

a1b2 − b1a2 6≡ 0 mod p

or

a1c2 − c1a2 6≡ 0 mod p
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or

b1c2 − c1b2 6≡ 0 mod p

for all primes p. Thus, we have gcd(a1b2−b1a2, a1c2−c1a2, b1c2−c1b2) = 1. Therefore,

we can find integers A,B,C such that

A(b1c2 − c1b2)−B(a1c2 − c1a2) + C(a1b2 − b1a2) = 1.

Let M =


a1 a2 A

b1 b2 B

c1 c2 C

 . The determinant of M is equal to 1, which implies

that det(M) is non-zero modulo any prime p. Let T : P2(Q) −→ P2(Q) be the

linear change of coordinates defined by the matrix M. Then using Lemma 4 we

conclude that for all primes p

[x : y : z] 6≡ [a′ : b′ : c′] mod p⇐⇒ T ([x : y : z]) 6≡ T ([a′ : b′ : c′]) mod p.

Now, consider the points [1 : 0 : 0] and [0 : 1 : 0]. Then [x : y : z] 6≡ [1 : 0 :

0] mod p for all primes p if and only if gcd(y, z) = 1, and [x : y : z] 6≡ [0 : 1 : 0] mod p

for all primes p if and only if gcd(x, z) = 1. We have T ([1 : 0 : 0]) = [a1 : b1 : c1]

and T ([0 : 1 : 0]) = [a2 : b2 : c2]. Thus,

T ([x : y : z]) 6≡ [a1 : b1 : c1] mod p for all primes p⇐⇒ gcd(y, z) = 1
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and

T ([x : y : z]) 6≡ [a2 : b2 : c2] mod p for all primes p⇐⇒ gcd(x, z) = 1.

Description 2 Define

S = {T ([x : y : z])| gcd(y, z) = 1 and gcd(x, z) = 1}.

Then S forms a complete set of all D-integral points in P2(Q).

This completes the proof.

Next, we take two points P1, P2 that are congruent modulo pi for only finitely many

primes p1, . . . pn, but not congruent modulo p2
i for all the pi. We let D consist of

the closures of the two points. We will show that there exists a linear change of

coordinates T such that the complete set S of all D-integral points in P2(Q) is

S = {T ([x : y : z])| gcd(y, z) = 1, gcd(x, z) = 1,

[x : y : z] /∈ Epi for all 1 ≤ i ≤ n}.

Moreover, this T and the sets Epi can be explicitly determined by P1 and P2.

Theorem 7. Let P1 = [a1 : b1 : c1], P2 = [a2 : b2 : c2] ∈ P2(Q) be two points such

that P1 ≡ P2 mod pi for only finitely many primes p1, . . . , pn, and P1 6≡ P2 mod p2
i

for 1 ≤ i ≤ n. Let D = {P1, P2} ⊂ P2
Z. Then there is an explicit description of the

complete set S of all D-integral points in P2(Q) (see Description 3).

Proof: Since [a1 : b1 : c1] ≡ [a2 : b2 : c2] mod pi for only 1 ≤ i ≤ n and
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[a1 : b1 : c1] 6≡ [a2 : b2 : c2] mod pi for 1 ≤ i ≤ n, this implies that

gcd(a1b2 − b1a2, a1c2 − c1a2, b1c2 − c1b2) = p1 · · · pn.

Using Lemma 6 we can find integers A,B,C such that

A(b1c2 − c1b2)−B(a1c2 − c1a2) + C(a1b2 − b1a2) = p1 · · · pn

and [A : B : C] is D-integral.

Let M =


a1 a2 A

b1 b2 B

c1 c2 C

 . The determinant of M is equal to p1 · · · pn and it is

square-free. Let T : P2(Q) −→ P2(Q) be the linear change of coordinates defined

by the matrix M. We construct the set

S ′ = {T ([x : y : z])| gcd(y, z) = 1 and gcd(x, z) = 1}.

For all primes p except p1, . . . , pn, the determinant of M is non-zero modulo p,

thus using Lemma 4 and the ideas from Theorem 5 we can conclude that the set

S ′ contains all the points in P2(Q), which are not congruent to points P1 and P2

modulo all primes except maybe p1, . . . , pn. So, let’s check the points in the set S ′

modulo pi for 1 ≤ i ≤ n.

For each prime pi we have to check two cases:

Case 1: pi divides gxyz where gxyz = gcd(xa1 + ya2 + zA, xb1 + yb2 + zB, xc1 +

yc2 + zC). If
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T ([x : y : z]) ≡ [a1 : b1 : c1] mod pi

=⇒

[
xa1 + ya2 + zA

gxyz
:
xb1 + yb2 + zB

gxyz
:
xc1 + yc2 + zC

gxyz

]
≡ [a1 : b1 : c1] mod pi

=⇒

(
xa1 + ya2 + zA

gxyz
− αa1,

xb1 + yb2 + zB

gxyz
− αb1,

xc1 + yc2 + zC

gxyz
− αc1

)

≡ (0, 0, 0) mod pi for some α 6≡ 0 mod pi

=⇒

(
(x− αgxyz)a1 + ya2 + zA

gxyz
,
(x− αgxyz)b1 + yb2 + zB

gxyz
,
(x− αgxyz)c1 + yc2 + zC

gxyz

)

≡ (0, 0, 0) mod pi

=⇒

((x− αgxyz)a1 + ya2 + zA, (x− αgxyz)b1 + yb2 + zB, (x− αgxyz)c1 + yc2 + zC)
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≡ (0, 0, 0) mod p2
i

=⇒

p2
i | gcd((x−αgxyz)a1 + ya2 + zA, (x−αgxyz)b1 + yb2 + zB, (x−αgxyz)c1 + yc2 + zC)

= g(x−αgxyz)yz.

Since gcd(y, z) = 1, it follows that gcd((x− αgxyz), y, z) = 1. Thus, we can use

Lemma 5 to see that g(x−αgxyz)yz| det(M). This implies that p2
i | det(M), which is a

contradiction as det(M) is square-free. Therefore, if pi|gxyz, then T ([x : y : z]) 6≡

P1 mod pi and T ([x : y : z]) 6≡ P2 mod pi.

Case 2: pi does not divides gxyz.

T ([x : y : z]) ≡ [a1 : b1 : c1] mod pi

⇐⇒

[xa1 + ya2 + zA : xb1 + yb2 + zB : xc1 + yc2 + zC] ≡ [a1 : b1 : c1] mod pi

⇐⇒

((x− α)a1 + ya2 + zA, (x− α)b1 + yb2 + zB, (x− α)c1 + yc2 + zC)

≡ (0, 0, 0) mod pi for some α 6≡ 0 mod pi

⇐⇒
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(x− α)(a1, b1, c1) + y(a2, b2, c2) + z(A,B,C) ≡ (0, 0, 0) mod pi.

Since [a1 : b1 : c1], [a2 : b2 : c2] and [A : B : C] are not congruent to each other

at the same time modulo pi, there exist a unique triple of integers U, V,W up to

scalars such that

U(a1, b1, c1) + V (a2, b2, c2) +W (A,B,C) ≡ (0, 0, 0) mod pi.

Moreover, since [a1 : b1 : c1] ≡ [a2 : b2 : c2] mod pi, we know that

[U : V : W ] ≡ [1 : −1 : 0] mod pi.

Thus, we can see that

T ([x : y : z]) ≡ [a1 : b1 : c1] mod pi

⇐⇒

[x− α : y : z] ≡ [1 : −1 : 0] mod pi for some α 6≡ 0 mod pi.

Let Epi = {[x : y : z]|[x : y : z] 6≡ [1 : −1 : 0] mod pi and z ≡ 0 mod pi}.

Then

T ([x : y : z]) ≡ [a1 : b1 : c1] ≡ [a2 : b2 : c2] mod pi ⇐⇒ [x : y : z] ∈ Epi .
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Description 3 Define

S = {T ([x : y : z])| gcd(y, z) = 1, gcd(x, z) = 1,

[x : y : z] /∈ Epi for all 1 ≤ i ≤ n}.

Then S is the complete set of all D-integral points in P2(Q).

This completes the proof.

Finally, we take a set D that consists of the closures of three points P1, P2 and P3

such that P1, P2 and P3 are not congruent to each other at the same time modulo

any prime p, and the matrix M, whose columns are P1, P2 and P3, has a square-free

determinant. There exists a linear change of coordinates T such that the complete

set S of all D-integral points in P2(Q) is

S = {T ([x : y : z])| gcd(y, z) = 1, gcd(x, z) = 1, gcd(x, z) = 1,

[x : y : z] /∈ Ep for all the p| det(M)}.

Moreover, this T and the sets Ep can be explicitly determined by P1, P2 and P3.

Theorem 8. Let P1 = [a1 : b1 : c1], P2 = [a2 : b2 : c2], P3 = [a3 : b3 : c3] ∈ P2(Q)

be three points such that P1, P2, P3 are not congruent to each other at the same

time modulo any prime. Let D = {P1, P2, P3} ⊂ P2
Z. Let M =


a1 a2 a3

b1 b2 b3

c1 c2 c3


with the property that the determinant of M is square-free, say det(M) = p1 · · · pn.

Then there is an explicit description of the complete set S of all D-integral points

in P2(Q) (see Description 4).

Proof: Let T : P2(Q) −→ P2(Q) be the linear change of coordinates defined by
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the matrix M. We construct the set

S ′ = {T ([x : y : z])| gcd(y, z) = 1, gcd(x, z) = 1 and gcd(z, y) = 1}.

For all primes p except p1, . . . , pn, we have det(M) is non-zero modulo p, so using

Lemma 4 and the ideas from Theorem 5, we can conclude that the set S ′ contains

all the points in P2(Q), which are not congruent to points P1, P2 and P3 modulo

all primes except maybe p1, . . . , pn. So, let’s check the points in the set S ′ modulo

pi for 1 ≤ i ≤ n.

For each prime pi we have to check two cases:

Case 1: pi divides gxyz where gxyz = gcd(xa1 + ya2 + za3, xb1 + yb2 + zb3, xc1 +

yc2 + zc3). If

T ([x : y : z]) ≡ [a1 : b1 : c1] mod pi

=⇒

[
xa1 + ya2 + za3

gxyz
:
xb1 + yb2 + zb3

gxyz
:
xc1 + yc2 + zc3

gxyz

]
≡ [a1 : b1 : c1] mod pi

=⇒

(
xa1 + ya2 + za3

gxyz
− αa1,

xb1 + yb2 + zb3

gxyz
− αb1,

xc1 + yc2 + zc3

gxyz
− αc1

)
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≡ (0, 0, 0) mod pi for some α 6≡ 0 mod pi

=⇒

(
(x− αgxyz)a1 + ya2 + za3

gxyz
,
(x− αgxyz)b1 + yb2 + zb3

gxyz
,
(x− αgxyz)c1 + yc2 + zc3

gxyz

)

≡ (0, 0, 0) mod pi

=⇒

((x− αgxyz)a1 + ya2 + za3, (x− αgxyz)b1 + yb2 + zb3, (x− αgxyz)c1 + yc2 + zc3)

≡ (0, 0, 0) mod p2
i

=⇒

p2
i | gcd((x−αgxyz)a1 +ya2 + za3, (x−αgxyz)b1 +yb2 + zb3, (x−αgxyz)c1 +yc2 + zc3)

= g(x−αgxyz)yz.

Since gcd(y, z) = 1, it follows that gcd((x− αgxyz), y, z) = 1. Thus, we can use

Lemma 5 to see that g(x−αgxyz)yz| det(M). This implies that p2
i | det(M), which is a

contradiction as det(M) is square-free. Therefore, if pi|gxyz, then T ([x : y : z]) 6≡
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P1 mod pi. Similarly, we can show that if pi|gxyz, then T ([x : y : z]) 6≡ P2 mod pi

and T ([x : y : z]) 6≡ P3 mod pi.

Case 2: pi does not divides gxyz.

T ([x : y : z]) ≡ [a1 : b1 : c1] mod pi

⇐⇒

[xa1 + ya2 + za3 : xb1 + yb2 + zb3 : xc1 + yc2 + zc3] ≡ [a1 : b1 : c1] mod pi

⇐⇒

((x− α)a1 + ya2 + za3, (x− α)b1 + yb2 + zb3, (x− α)c1 + yc2 + zc3)

≡ (0, 0, 0) mod pi for some α 6≡ 0 mod pi

⇐⇒

(x− α)(a1, b1, c1) + y(a2, b2, c2) + z(a3, b3, c3) ≡ (0, 0, 0) mod pi.

Since [a1 : b1 : c1], [a2 : b2 : c2] and [a3 : b3 : c3] are not congruent to each other

at the same time modulo pi, there exists a unique triple of integers U, V,W up to

scalars such that

U(a1, b1, c1) + V (a2, b2, c2) +W (a3, b3, c3) ≡ (0, 0, 0) mod pi.
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Thus, we can see that

T ([x : y : z]) ≡ [a1 : b1 : c1] mod pi

⇐⇒

[x− α : y : z] ≡ [U : V : W ] mod pi for some α 6≡ 0 mod pi.

Therefore,

T ([x : y : z]) ≡ [a1 : b1 : c1] mod pi

⇐⇒

[x : y : z] 6≡ [U : V : W ] and yW ≡ V z mod pi.

Similarly, we can show that

T ([x : y : z]) ≡ [a2 : b2 : c2] mod pi

⇐⇒

[x : y : z] 6≡ [U : V : W ] and xW ≡ Uz mod pi

and

T ([x : y : z]) ≡ [a3 : b3 : c3] mod pi

⇐⇒
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[x : y : z] 6≡ [U : V : W ] and xV ≡ Uy mod pi.

Let

Epi = {[x : y : z]|[x : y : z] 6≡ [U : V : W ] mod pi and

(yW − V z)(xW − Uz)(xV − Uy) ≡ 0 mod pi}.

Then T ([x : y : z]) is congruent to at least one of the points P1, P2 or P3 modulo

pi if and only if [x : y : z] ∈ Epi .

Description 4 Define

S = {T ([x : y : z])| gcd(y, z) = 1, gcd(x, z) = 1, gcd(x, z) = 1,

[x : y : z] /∈ Epi for all 1 ≤ i ≤ n}.

Then S is the complete set of all D-integral points in P2(Q).

This completes the proof.

It is a logical place to stop at three points, since we work in P2 and the linear

change of coordinates T is defined by a 3x3 matrix.
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Chapter 4

Conclusion

In the thesis we looked at two types of problems.

First, we showed that for four different types of D ⊂ Pn
Z and projective algebraic

varieties X ⊆ Pn, where the codimension of D with respect to X is two, we can find

a finite field extension K/Q such that there are infinitely many D-integral points

on X(K). In the future, we plan to discover more properties of D-integral points

on algebraic varieties X, perhaps, taking X and D with higher codimension of D

with respect to X.

Secondly, we showed that if D ⊂ P2
Z consists of the closure of one, two or three

points of P2(Q) (with certain restrictions), we can find an explicit description of

the complete set of all D-integral points in P2(Q). In the future, we want to look

at sets D ⊂ Pn
Z that consist of the closure of more than three points of Pn(Q), and

see if we can find an explicit description of all D-integral points in Pn(Q).

52



Bibliography

[1] D. Eisenbud, and J. Harris. The Geometry of Schemes. Graduate Texts in

Mathematics, 197, Springer-Verlag, New York, 2000.

[2] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics, 52,

Springer-Verlag, New York, 1977.

[3] B. Hassett, and Yu. Tschinkel “Density of integral points on algebraic va-

rieties.” Rational points on algebraic varieties, 169–197, Progr. Math., 199,
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