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Abstract

Smart meters allow for hourly data collection related to customer’s power consumption.
However this results in thousands of data points, which hides broader trends in power
consumption and makes it difficult for energy suppliers to make decisions regards to a
specific customer or to large number of customers. Since data without analysis is useless,
various algorithms have been proposed to lower the dimensionality of data, discover trends
(eg. regression), study relationships between different types (eg. temperature and power
data) of collected data, summarise data (eg. histogram). This allows for easy consumption
by the end user.

The smart meter data is very compute intensive to process as there are a large number
of houses and each house has the data collected over a few years. To speed up the smart
meter data analysis, computer clusters have been used. Ironically, these clusters consume a
lot of power. Studies have shown that about 10 % of power is consumed by the computing
infrastructure. In this thesis a GPU will be used to perform analysis of smart meter data
and it will be compared to a baseline CPU implementation. It will also show that GPUs
are not only faster than the CPU, but they are also more power efficient.
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Chapter 1

Introduction

Global warming has caused changes in weather patterns, loss and destruction of habitat
[25] [20], loss in human productivity [11], and negative impacts on food production, as well
as spread of plant diseases and pests [34]. One of the main causes for the global warming
is the increased presence of CO2 and methane in the atmosphere, the two most important
green house gases. CO2 is generally caused by the use of fossil fuels. Major sources of the
CO2 production are electrical power generation [30] [2] and the combustion of vehicular
transport. Methane is generally produced by the agricultural industries [16].

To reduce usage of fossil fuels like coal, gas and oil in power stations, governments
have pursued other sources of power generation like nuclear power, solar, wind, hydro and
geothermal. Unfortunately each of the power sources has its own disadvantages. Solar
power suffers from poor efficiency. Wind power causes noise pollution [35]. Hydro-electric
power damages eco-system [10]. Nuclear power suffers from high cost [28].

Since it is difficult to generate electricity in a sustainable way, governments have tried
to both move away from fossil fuels and reduce energy consumption. The problem of
reducing electrical consumption has been approached in many ways, including reducing
peak load, which determines the scale and size of power generation infrastructure. It in-
volves improving electricity generation, transmission and distribution. At off-peak times
the electric grid is running underutilized to a large extent. The peak load on the industrial
side and consumer side can be different. Industrial peak load happens during business
hours like car manufacturing, manufacture of electronics etc. On the consumer side, in
the summer the peak load is during the afternoon when everyone has turned on their air
conditioner. The load also spikes in the evening as many people turn on their television,
or at lunch time due to the usage of electrical cooking appliances. But the peaks due to
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TV/electronics and cooking are generally smaller than A/C usage.

If peak load is reduced, the electricity providers can have a lighter and more efficient
grid. They can install batteries to deal with the peak load or they can use a variable pricing
structure which disincentivizes power usage during peak hours. The problem remains that
batteries are expensive and time of day pricing has not reduced peak power consumption
significantly [19]. Nevertheless, energy suppliers started investing in smart meters. Smart
meters can provide insight to the problem by providing fine grained electricity consump-
tion data. Smart meters collect time series data about the power consumption of each
individual customer. The data can be analyzed to provide deeper understanding on the
power consumption.

The analysis of smart meter data is computationally intensive, and therefore time con-
suming on general purpose hardware. To speed up the calculation, smart meter data
computation can be distributed over a cluster of computers and as a result a large amount
of energy will be used to power the cluster. It will be ironic if the analysis of the power
consumption data which will be used to reduce energy consumption incurs a high level of
power consumption. Previously this was not a problem as software inefficiencies would be
masked by newer and more efficient hardware due to the presence of Moore’s law. Unfor-
tunately creation of new process technologies has slowed down.Distributed data processing
frameworks like Spark and Hadoop are also inefficient compared to centralized ones for
data sets that fit inside a single computer. In this case one can try systems which scale up
instead of scaling out. In the quest for improving energy efficiency one can even go further
and use some form of fixed function special purpose hardware ASICs (application-specific
integrated circuit) and other types of silicon like FPGAs (field-programmable gate array).

The problem with such an extreme level of optimization is that the tool chain for such
systems (software and hardware ecosystems) are not well developed. It is also extremely
labour-intensive to program them. Also if some modification is needed then one has to
do significant reprogramming. Hence the goal of this thesis is to explore a programming
model which has a mature tool-chains and is purpose built for very high levels of par-
allelism. Therefore the graphics processing unit (GPU) natural choice. Also, GPUs are
commercially available and hence the barrier of entry is much lower in programming them.
As far as the software stack is concerned, CUDA is selected for use as it is specifically
built for general purpose graphics processing (GPGPU) usage. There are obviously other
platforms too like OpenCL and compute shaders in both OpenGL and Direct3D. OpenCL
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is an open standard counterpart of CUDA. Since OpenCL is newer than CUDA, parts of
the tool-chain are not yet very well supported. It is possible to get into technical problems
when using it. It seems that some parts of the features are not supported by the hardware
even when it is supposed to work.

So in this thesis CUDA will be used for programming the GPU (NVidia Tesla K40). The
performance of analytical computations of smart meter data with GPU will be compared
to a CPU implementation. The results will also validate the usage of GPU for smart
meter data analysis even though some of the benchmarks do not map well to the CUDA
programming model easily.

In the next chapter, GPUs will be explained and expanded upon in regards to the
hardware and software stack, and also the prior work related to energy analytics will be
discussed.
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Chapter 2

Background and Related Work

2.1 Graphics Processing Unit

Computer graphics, or more specifically 3D graphics, was pretty well-known in the com-
mercial and military circles before the advent of dedicated pieces of silicon (also known
as GPUs) to process 3D geometry. Derived from IrisGL is the very well-known and one
of the most important APIs, namely OpenGL. This allowed software developers to target
a single API instead of a multitude of different proprietary APIs. As far as dedicated
hardware for graphics is concerned there was no real disruption when GPUs actually came
into use. In its early days a large part of the 3D graphics work was done on a CPU
then the results of that were sent to the screen. The first true 3D graphics cards were
video display controllers. Later on they gained more functionality and were simple ‘Image
Processors’ with very little programming capability. At the turn of the 21st century the
GPU became more programmable. The two important programmable stages put there
were the vertex shader and the fragment shader (pixel shader in Direct3D). These were
written as assembly programs at first and later on in a variant of C. The vertex shader is
used to modify the vertices of the triangles that make up the 3D geometry to be projected
on the screen. The fragment shader is used to colour the triangles depending upon textures.

As far as the GPGPU (general purpose graphics processing unit) is concerned, the frag-
ment shader however can be re-purposed to read from some textures to do some calculation
and then write the result to an off-screen render target. A very early implementation of
this idea was with matrix multiplication [23] with bytes (color data only supported byte
operations at first). Later on matrix multiplication with floating point numbers [27] was
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implemented when the GPUs started supporting them. As matrix multiplication is a
very common operation in scientific community, various studies were performed [21] [13]
for better understanding of graphics hardware and for improving the performance of the
implementations.

These early implementations suffered from problems like low precision [18] [9] and non-
compliant hardware (i.e, operations on the GPUs were not IEEE compliant). As a result,
many of the implementations were not really direct replacements of the CPU version but
complemented it. The low cost of commodity GPUs and the speed at which the results were
obtained made the challenge of programming on GPUs worthwhile. The matrix operations
also suffered from poor memory utilization [13] as the caching on GPUs was not optimized
for the memory access patterns for multiplying matrices.

To solve performance problems related to memory access, an indirection texture is used.
A texture is a 2D array but is used to store image data on the GPU for displaying on the
screen. These indirection textures function like a hashtable. Let mat be a texture and
suppose that one needs to access the value of ith row and jth column. Normally what one
does is val = mat [i, j]. However when an indirection is used, what is being done here is
val = store[indirect1 [i, j], indirect2 [i, j]]. The texture store keeps the values of the matrix
and indirect1 and indirect2 are two textures that determines the row and column addresses
for store. This is used to keep the memory accesses cache friendly. Sparse matrix solving
[6] used it. Later other matrix operations also came into light like LU factorization [15]
which involved using the rasterizer and switched rows and columns to improve memory
performance. As a result, in their early days GPU programming techniques were esoteric
and time consuming.

These methods became outdated with the introduction of DirectX 9 and OpenGL 3.0
which had new requirements related to the programmability of shaders. nVidia, a GPU
vendor during this time, introduced a C dialect for easier programming called CUDA. This
allowed general purpose algorithms to take advantage of the graphics hardware without
doing all the difficult index manipulations in the algorithm implementations.

2.2 GPU Software

Nowadays there is a large number of APIs and programming languages which can interact
with the GPU. Graphics related APIs like OpenGL and Direct3D (D3D) contains ‘Compute
Shaders’ as a part of the graphics pipeline which can be used for doing purely computational
work. Unfortunately these are far too entwined with the graphics pipeline to be sufficiently
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useful for non graphical workloads. They are also limited in feature set as these APIs need
to work on a wide range of hardware. For example, Compute Shaders 5.0 (CS 5.0) of
D3D does not allow the number of threads to be set at runtime, but at compile time. CS
5.0 has not been updated from 2011 and as a result, it is feature incomplete compared to
CUDA. OpenGL is not well supported in either Windows 8.1 or Ubuntu Linux 16.04 by the
graphics drivers on which the benchmarks in this thesis are run. There is also OpenCL,
which is an open counterpart of CUDA, but since some parts of the tool chain remain
unpolished, CUDA is being used in this thesis.

CUDA compiler (CUDA version 7.5 at the time of writing) supports nearly all con-
structs of C++11 (except for standard library). Here CUDA will be expanded upon as
CUDA has some non-standard extensions for GPU-specific functionality. To execute any
form of operation on the GPU, the programmer will have to perform five operations:

• Allocate memory on the GPU.

• Copy data from the RAM to the VRAM (video RAM). In CUDA terminology copy
from host to device.

• Launch ‘kernel’ (the program which runs on the GPU).

• Copy data back from VRAM of the GPU to CPU.

• Free memory on the GPU.

In CUDA 6.0 and above one does not have to allocate and free memory explicitly but
the GPU driver will do so on its own if the programmer uses the CUDA-specific memory
allocation API. Unfortunately this results in unstable behaviour and does not play well
with the benchmarking process as required by the thesis. Therefore, it has not been used.

The GPU works on the principle of hierarchial parallelism. Threads on a GPU are not
launched individually, instead groups of threads called thread block (or blocks in short)
are launched. Each block will have the same number of threads. Each thread executes the
same program, called a ‘kernel’. The Figure 2.1 shows the relationship between blocks and
threads. The blocks and threads inside the block can be organized logically in 1D, 2D or
3D grid, though the figure shows only a 2D arrangement of blocks and threads.
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Figure 2.1: CUDA model showing 9 blocks of threads arranged in 2D grid and each block
with 12 threads arranged in 2D.

It may be noted that there is no requirement that blocks and threads have to have the
same dimensionality. For example blocks can have a 1D arrangement and the threads have
a 3D arrangement inside each block. These arrangements are only a software feature, and
everything is flattened out in a 1D arrangement when executing on the hardware.
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1 d e v i c e f loat square ( f loat num){ // d e v i c e f u n c t i o n
2 auto r e s = num∗num;
3 return r e s ;}
4 g l o b a l void computeSquareArrayGPU ( f loat ∗ source , f loat ∗ target , int s i z e ){

// k e r n e l
5 auto t i d = threadIdx . x ; // thread index i n s i d e the b l o c k
6 auto bid = blockIdx . x ; // b l o c k index
7 auto b l o ckS i z e = blockDim . x ; // Dimension o f the b l o c k
8 auto g l o b a l i d = b lo ckS i z e ∗bid+t i d ;
9 i f ( g l oba l i d>=s i z e ){ return ;}

10 t a r g e t [ g l o b a l i d ] = square ( source [ g l o b a l i d ] ) ; }
11 //CPU s i d e work
12 void cpusidecomputesquareArray ( f loat ∗ source , f loat ∗ target , int s i z e ){
13 auto b s i z e = 128 ; // s i z e o f b l o c k
14 auto numblocks = c e i l ( s i z e / b s i z e ) ; //number o f b l o c k s
15 f loat ∗ dsource ; f loat ∗ dtarge t ;
16 cudaMalloc(&dsource , s izeof ( f loat )∗ s i z e ) ; // A l l o c a t e memory
17 cudaMalloc(&dtarget , s izeof ( f loat )∗ s i z e ) ;
18 //Copy to GPU
19 cudaMemcpy( dsource , source , cudaMemcpyHostToDevice ) ;
20 computeSquareArrayGPU<<<numblocks , bs i z e >>>(dsource , dtarget , s i z e ) ; // run k e r n e l
21 cudaDeviceSynchronize ( ) ;
22 //Copy to CPU
23 cudaMemcpy( target , dtarget , cudaMemcpyDeviceToHost ) ;
24 cudaFree ( dsource ) ; cudaFree ( dtarge t ) ; } // Free memory

Figure 2.2: An example of CUDA program executed on the CPU.

The program in Figure 2.2 takes two arrays (source and target) and squares the values
of source and puts them in target. The function which will be executed on a GPU is called
a ‘kernel’ and is preceded by the ‘ global ’ keyword and always has the return type ‘void’.
Any function that needs to be called from the kernel (and executed inside the GPU) is
preceded by the ‘ device ’ keyword. The example kernel finds the square of the numbers
in an array and puts them in another array. On the CPU side, the values need to be copied
to the GPU and then back to get the results. The GPU kernel is run by specifying the
number of blocks and the number of threads in each block using angled brackets.
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There are some restrictions on the threads and blocks:

• A block can have maximum 1024 threads. This means blockDim.x × blockDim.y ×
blockDim.z ≤ 1024. Also the blockDim.x and blockDim.y can have range from 0-1023
but blockDim.z can only have range of 0-63.

• The thread index of a thread inside the block will uniquely identify each thread inside
a block and is always lesser than the block dimension.

• Similar to threads, the blocks can have block ID range 0 to 2 billion in X axis and
65535 in Y and Z axis.

• The threads in a block can communicate with each other with the use of shared
memory and there are mechanisms for them to synchronize the threads inside a
block. However there is no way of synchronizing threads between different blocks.

2.3 GPU Hardware

The GPU hardware contains a lot of different parts: some of them fixed function and others
are programmable. Here only the programmable parts and parts related to GPGPU will
be discussed.
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Figure 2.3: Diagram of Kepler hardware (K40) as seen on page 6 of [29].

The GPU hardware works on the principle of hierarchical parallelism. In Figure 2.3
one can see that the GPU is divided into multiple hardware blocks called SMX (Symmet-
ric Multi-processor) in nVidia’s Kepler architecture. The SMXs are tied to the memory
controllers and L2 cache by the means of a crossbar. There are also the PCIe controller,
and other fixed function hardware like the tessellator (not shown in diagram). The GPU
has its own VRAM (Video RAM) called GDDR5. Before any form of computation can
take place the data is streamed through the PCIe bus to the VRAM. There are 15 SMXs
in the K40 GPU.
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Figure 2.4: Diagram of a single SMX of K40 as seen on page 8 of [29]

Each SMX (Figure 2.4) of K40 contains 192 SIMD lanes (called CUDA cores by nVidia).
Each SMX has 48 KB of ‘shared’ memory (the memory is local to each SMX but is called
shared as it is shared by the threads running on the SMX). The SMX contains double
precision units and floating point units at a ratio of 1:3. It also contains special function
units (SFU). The SFUs are responsible for functions like log, inverse square root, minimum,
maximum etc. There are also some fixed function units like the texture units (not used in
the benchmarks). LD/ST are the load-store units responsible for address generation. The
generated loads are coalesced into blocks of 128B before they are sent to the L1 cache. An
important and interesting part of the SMX is the warp scheduler. In a CPU each thread
executes on its own and scheduled by the OS, but that is not how it executes on a GPU.
The GPU threads are executed in groups of 32 threads called ‘warps’ in lock-step and are
scheduled by the warp scheduler. They are executed in an inorder fashion, i.e., if one of
the threads gets stalled then all the threads get stalled. If a thread in a warp becomes
stalled then the warp scheduler will dispatch another wave of 32 threads in an effort to
hide the latency and improve performance.

One can see a massive register file in the picture of the SMX. Unlike a CPU core, the
warp scheduler does not save registers when switching out a thread. Instead, it uses an-
other part of the register file to execute the next wave of threads. If it runs out of register
space, then it stalls dispatching new threads. The hardware is limited to 2048 threads so
the warp scheduler will only have 64 waves of threads to execute. Any form of limit, be it
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register space, shared memory space or maximum number of threads in SMX, will result
in stalling of execution of the threads.

The SMX is the GPU’s closest analogue to a CPU core and has all the logic in execution
of the threads in the core. Unlike a CPU where an OS schedules the threads, the hardware
itself does the scheduling. The SMX is also subdivided into SIMT (single instruction
multiple thread) cores. Each SIMT core has got 32 ALU lanes, which is why the warp
scheduler executes threads in blocks of 32. Thus we have a 1:32 ratio of control logic to
the compute logic. Contrary to modern out of order CPUs where a large part of the silicon
budget is used for scheduling, register renaming and in re-order buffers, the silicon on
GPUs is mostly devoted to ALUs. Also unlike in a CPU, the latency of the operations is
long: a single FMA (fused multiply add) on GPU will take about 20 cycles but on a CPU it
is only 5 cycles. The memory operations are longer at 300-400 cycles compared to 100-200
of a CPU and also lower clocked at 745 MHz (K40’s base clock) core clock compared to 3.9
GHz for Haswell (i7-4770k). These are the reasons why given a simple parallel workload
the GPUs consume less power than CPUs when processing the same workload.

2.4 Execution of software on the hardware

A single block of the grid always maps to a single SMX (i.e., a single block cannot execute
some threads in one SMX and the other ones in a different SMX). The number of blocks
must be greater than the number of SMXs in order to keep the GPU busy. Each block
of threads no matter what size is broken down into groups of 32 and is dispatched to
the warp scheduler to the execution units. If the number of threads in a block is not a
multiple of 32, say 50 threads, then execution units will remain unused. If the number of
threads in a block is fewer than 32, there is no need to use any synchronization primitives
as the threads will be executed in lockstep. It also means that blocks with less than 32
threads will leave the GPU execution units under-utilized. In case of branch divergence
the program counters of the diverging threads are left unmodified and they are executed
later.

2.5 Branch and memory divergence

Branch divergence is an important issue in the context of GPUs. The kernel shown in
Figure 2.5 is an example of branch divergence. The kernel will run half as fast as a
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non-diverging kernel. The slowdown is caused by the fact that GPUs operate in warp
granularity as far control flow is concerned but branch divergence means that only a few
threads can be executed in a warp.

1 g l o b a l void ( int∗ getarg ){
2 auto t i d = threadIdx . x ;
3 auto bid = blockIdx . x ;
4 auto b l o ckS i z e = blockDim . x ;
5 auto g l o b a l t i d = b lo ckS i z e ∗bid+t i d ;
6 auto gid = g l o b a l t i d ;
7 i f ( t i d % 2 == 0){
8 getarg [ g id ] = gid ;
9 } else {

10 getarg [ g id ] = t i d ;
11 }
12 }

Figure 2.5: An example of 2-way branch divergence.

1 g l o b a l void ( int∗ getarg , int∗ hashtable , int∗ source ){
2 auto t i d = threadIdx . x ;
3 auto bid = blockIdx . x ;
4 auto b l o ckS i z e = blockDim . x ;
5 auto g l o b a l t i d = b lo ckS i z e ∗bid+t i d ;
6 auto gid = g l o b a l t i d ;
7 getarg [ g id ]= source [ hashtab le [ g id ] ] ; // Memory d i v e r g e n c e
8 }

Figure 2.6: An example of memory divergence.

There are also other form of divergences like memory divergence as seen in figure 2.6.
Here consecutive threads access very different parts of memory (if the values of hashtable
are far apart) and thus the memory accesses cannot be coalesced together. This results in
poor utilization of the memory bus as the memory from the VRAM is accessed in blocks
of 128B.
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2.6 Related work

Green computing refers to methods that reduce the detrimental effects of electronic devices
on the environment. There are two parts to it, one related to disposal and production of
electronics and the other related to the power usage of the said electronics. This thesis
will focus on the latter. Most of the power reduction research was done with respect
to warehouse computing, cluster computing, server farms etc. [4] [3]. Increased power
consumption leads to larger amount of cooling required and the reliability of the server
also goes down with increased temperature [31] [12]. Most of the techniques are based on
scheduling and allocation of computing resources. Later on energy-efficient algorithms [33]
are looked at. These are software implementations of algorithms which produce the same
answer as conventional optimizations and are done to improve energy efficiency without
degrading QoS (quality of service).

Different algorithms have been proposed for analysis of power consumption data [32]
[1] [7] [36]. Some of them are related to finding out trends [14], summarising data (like
histogram) and prediction [37]. The power consumption data can be high frequency (one
data point every second) or at a more sedate rate (at about one data point per hour for
smart meter). In this thesis the hourly smart meter data will be analysed.

This thesis marries the two concepts of energy effficient computing and energy analytics.
The benchmarks chosen for the thesis are defined in the paper ‘Smart Meter Data Analytics:
Systems, Algorithms, and Benchmarking’ [24]. The four benchmarks introduced in that
paper are:

• Histogram: This benchmark calculates the minimum, the maximum and then the
histogram of power data for each customer.

• ParX: This benchmark performs periodic auto-regression of the power data. The
regression is performed on a per-hour basis. As there are 24 hours in a day the
algorithm is used 24 times for each house. To perform the regression a order of three
hours is used and the regression coefficients are calculated.

• Similarity search: This benchmark computes the cosine similarity of the time series
data of the power consumed in each house. Then for each house the top ten similar
houses are output.

• Energy dissaggregation model [5]: This performs disaggregation of power data de-
pending on the temperature. For a given temperature the 10th and the 90th percentile
power consumption is selected and regression is performed on them. In most of the
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houses what one sees is that both the 10th and 90th percentile values follow a U-shaped
curve. At lower temperatures the power consumption is high in the context of using
heaters and in higher temperatures the power consumption is also high on account
of using air-conditioners. These two gradients at the lower and higher temperatures
are called the cooling and heating gradients. The original benchmark performed seg-
mented linear regression (called 3-line). In this benchmark polynomial regression is
performed instead. The details are provided in the Energy disaggregation benchmark
chapter. To find the gradients the derivatives are taken at low and high temperature
regions.

The next chapter discuses the experimental setup and the test environment.
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Chapter 3

Experimental Setup

In this section specific hardware and the software configuration will be explained to enable
reproduction of the experimental results. The following configurations for benchmarks are
used:

System Configuration
CPU i7-4770K (Haswell) 3.5 Ghz, 8 MB L3
Motherboard Gigabyte Z87X-UD3H
RAM 2 × 8 GB (1600 Mhz)
OS Ubuntu Linux 16.04
GPU Nvidia Tesla K40
CUDA version 7.5
Power Meter Brand Electronics Model 20-1850C

Figure 3.1: Experimental setup.

The system is left in its default configuration. No changes related to power or perfor-
mance configuration are performed to the system (like disabling turbo-boost etc.).

3.1 Software implementation

For a given benchmark the data is uploaded (as shown in Figure 3.2) into RAM as a single
array. The data set is large (10 GB) as it contains 28165 houses with each house having less
than a week to year’s worth of data. There are also an array of offsets which provides the
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index for the starting point and ending point of the data for each house. The information
is kept in a packed binary format. Relevant field is extracted (here temperature data is
shown) before any form of benchmark is run. There is 1 to 1 mapping between binary data
and extracted data (i.e., temperature at array index 3 comes from extracting binary data
at array index 3). Thus the array offsets are reused to locate the data for each house when
the benchmark is run. All the CPU implementations use threads pinned to specific cores.
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3453 2566 642 646 … 4434

Offsets

0 32 235 7677 … 434655

Index 0 … 31 32 … 234 235 236 …
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Data

0xff233

2
…
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2ff
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0x3212

aa62

0x2233

3ab

0x121e

e45
…

21.3 … -2.5 32 … 2.2 2.1 -5.1 …

Temperature

Extraction of temperature

Figure 3.2: Data extraction.

In general GPU based implementation of the benchmark has the following parts:

1. Transfer data to GPU. (Not applicable in CPU implementation.)

2. Extract relevant data.

3. Execute benchmark workload.

4. Retrieve data from GPU. (Not applicable in CPU implementation.)

Similarly one can keep track of the execution times of these parts:
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1. Pure benchmark execution (part 3 only).

2. Pure computational execution time. This consists of extraction time + benchmark
execution time (2+3). This is not applicable for the CPU implementation.

3. Total execution time. Total execution time taken (i.e. 1+2+3+4). Since part 1
and 4 does not exist for the CPU, computational time and total time is equal in
CPU implementation. This makes computational execution time redundant for CPU
implementation.

Now GPU comparisons are made against the CPU implementations (single-threaded
and octa-threaded) of these parts. Since there is no transfer of data in the CPU implemen-
tation, both computational execution time and total execution time on GPU is compared
to that of total execution time of CPU.

The extraction performance is tested in Histogram and in Energy Disaggregation bench-
marks. This is due to the fact that Histogram, ParX and Similarity extract the same field
(power data) for the benchmarks. It is done again in Energy Disaggregation benchmark
as it needs two fields (temperature and power data) for its algorithm.

Some benchmarks have a single stage and others have multiple stages of computation.
Thus benchmarks like Histogram and ParX have a single kernel while Energy Disaggrega-
tion and Similarity have two kernels. Proper breakdowns of the kernels are provided in
each benchmark chapter.

3.2 Benchmark validation

To ensure that the benchmarks are providing the right results, the results of the bench-
marks are validated against Matlab implementations which was authored by Liu et al. [24].
Since results involving floating point numbers depend upon the order of the operations, the
results from the benchmarks and the original Matlab implementations did differ slightly.
The CPU and the GPU implementations compute similar results to the originals and are
discussed further in each benchmark chapter. The main difference is that Energy Disg-
gregation uses a different regression model for calculating the coefficients. In this case the
intermediate results of some of the houses are collected and then regression is performed
on Mathematica. This is used to validate the results of the Energy Disaggregation bench-
mark. Each benchmark is run five times and results are presented with errorbars when the
variation of data is large enough to warrant it.
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3.3 Power Measurement

The power meter provides a time series data of the power consumption. Thus in order
to measure the total energy used the area under the curve of the time series data is
calculated. The power meter samples the power consumption data by measuring power
data at an interval of 100 milliseconds. According to the manual of the power meter, the
error of the power meter is a maximum of:

1. 1 Watt

2. 1.5% of the reading

3. 2 units in the least significant digit (e.g., 0.2 Watts if the reading is 68.5 Watts)

However in the experiments the temporal resolution (100 milliseconds) is a bigger source
of error, especially for short benchmarks). The 1.5% error in the reading is the only error
affecting the power consumption results as most of the power consumption results are
greater than 66W.

3.4 Plots

There are three types of plots used in the thesis: one shows CPU performance, one shows
GPU performance and the last one shows power consumption.
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Figure 3.3: Sample ParX CPU plot.
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The plot in Figure 3.3 shows the speed up of the algorithm with increasing thread
count on a CPU implementation. The left y-axis shows the relative speed up with respect
to single threaded implementation and the right y axis shows the absolute speed. The
number of houses has been kept constant for all the CPU implementations.
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Figure 3.4: Sample GPU plot for Energy Disaggregation.

The plot in Figure 3.4 shows the speed up of the algorithm with increasing number
of threads/block with respect to an octa-threaded CPU implementation. The left y-axis
shows the relative speed up and the right y axis shows the absolute speed. The lines
represent relative speed up and the stars represent absolute speed up. The GPU results
are very stable with standard deviation less than 1.5%, so no error bars are shown.
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Figure 3.5: Sample power consumption plot for ParX CPU-based implementation.
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The plot in Figure 3.5 shows the variation of the power consumption with increasing
thread count for a fixed number of houses. The blue line corresponds to the left y-axis
and the orange dots correspond to the right y-axis. These are inversely related. The left
axis represent the energy consumed and the right y-axis represents the number of houses
processed per joule.
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Chapter 4

Histogram Benchmark

The histogram is the smallest benchmark of the set of benchmarks. It has been examined
many times before [17][22][8]. Here it provides the customer with the distribution of the
power consumption values obtained from smart meter data.

The general method of the histogram generation is as follows:

1. The minimum and maximum of the power consumption value are found, which were
named minp and maxp.

2. The space between minp and maxp are divided into a number of bins Bins with each

bin has size binsize =
maxp −minp

Bins . Each bin is assigned zero at first.

3. Depending on the power consumption values the value in each bin is updated.

4.1 Implementation details

The core algorithm for both the CPU and GPU’s 1 thread per house implementation is
exactly the same. The only difference is that a single CPU thread loops through multiple
houses but a GPU thread works on a single house. The core algorithm operates on a single
house. As explained in Chapter 3, the offsets array is used to locate the position of power
data for a given house index. The histogram is calculated in two phases. In the first phase
all the values present in the power consumption data are looped over and the minimum
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and maximum values of the power data are obtained. The histogram calculation is done
in the next phase. In this phase the power consumption values are looped over again and
depending on the energy values, the histogram is generated. The histogram is put in an
array called powerhist .

The histogram block version (one block of threads operates on a single house) is dif-
ferent, each thread in a block calculates the partial minimum and the maximum values
which puts them in the shared memory. Then a parallel reduction (see Appendix A) is
performed to find out the maximum and minimum values of the power consumption data.
For generating the histogram, the threads of the block divide their workload and create
partial histograms. The partial histograms are then summed up using the shared memory
by looping through the partial histograms. The results are stored in an array.

4.2 Validation

For testing the correctness of the workload, the results are compared against the original
Matlab implementation [24]. Since floating point results depend on the order of operar-
tions as explained in Chapter 3, the results obtained are slightly different. To check for
differences, the histogram of each house is assumed to be a vector. For each house L∞

1

norm of the difference in the vectors of the benchmark and the Matlab implementations
were tested. The values of the L∞ never exceeded one for most of the houses. The L∞
norm of a few pathological cases did reach two. The discrepancies appear when power
consumption values falls on the boundary (or very close to the boundary) of two histogram
bins, and the Matlab implementation and the code generated by the CUDA compiler tend
to disagree in which bin to put them.

4.3 CPU benchmarks

At first one must touch upon extraction of data. The data extraction is done as all the
fields of the dataset is not required for a specific algorithm and hence only the relevant
field is extracted. The file where the data is stored is a csv file. To get the power data one
has to parse the power data from the text file. This is computationally expensive and is
not related to the efficiency of the algorithm. To avoid that issue the csv data is converted
into a binary format and then the relevant data is extracted from the binary data before

1L∞ is the maximum of the absolute value of all the components the vector
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execution of any algorithm. The extraction of data is orthogonal to the number of houses.
The binary data is divided into equal parts and is fed to each CPU thread. The offsets
array will be used to determine which data represents which house later in the benchmarks.
The figure 4.1 shows the extraction speed up for CPU as core count is increased for 28165
houses.
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Figure 4.1: Scalability of the extraction process with increasing thread count to a maximum
of 8 threads.

Histogram execution time is shown in figure 4.2. One can notice a near perfect scaling
from 1 to 4 threads and then sub-linear scaling from 5 to 8 threads. The speed up is shown
for 28165 houses.

24



1 2 3 4 5 6 7 8
Threads

0

1

2

3

4

5

Sp
ee

d 
up

0

5000

10000

15000

20000

25000

30000

Ho
us

es
/s

ec
on

d

Figure 4.2: Scalabilty of the process of generating a histogram with increasing thread count
to a maximum of 8 threads.

In the Figure 4.2 there is perfect scaling up to four cores and then there is a performance
regression as more threads are scheduled on the same physical CPU. The threads are pinned
to the cores in this benchmark. Unpinning the threads improves performance at higher
thread count but brings too much variation with variation up to 50% at times.
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Figure 4.3: Total speed up is shown with the increase of thread count to a maximum of 8
threads.
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The figure 4.3 shows the total speed up due to increasing core count. The histogram
generation is dominated (see figure 4.21) by the extraction times as the histogram genera-
tion is not computationally very heavy.

4.4 GPU benchmarks

There are multiple ways of doing a GPU implementation for Histogram. The algorithm
changes depending on the number of bins and the number of physical threads. In this
implementation, 1 thread of a GPU is used to calculate the histogram of a single house.

The extraction algorithm is however different from the main algorithm. The extraction
used 1 thread per data point.
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Figure 4.4: Speed up of GPU execution
of extraction compared to single threaded
CPU implementation.
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Figure 4.5: Speed up of GPU execution of
extraction compared to octa threaded CPU
implementation.

Figure 4.4 shows how increasing the thread count per block improves the performance
of the extraction and we have 1024 threads per block giving us the maximum performance.
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Figure 4.6: Speed up of GPU execution
of histogram compared to single threaded
CPU implementation.
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Figure 4.7: Speed up of GPU execution of
histogram compared to octa threaded CPU
implementation.

The histogram execution is being discussed here. Figure 4.6 shows that 32 threads per
block provides best performance. The benchmark is memory bound and decreasing thread
count for larger number of houses reduces cache misses. This improves the performance
considerably. The benchmark shows memory divergence as each warp of 32 threads accesses
memory regions which are far away from each other.
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Figure 4.8: Speed up of GPU execution
of computational time compared to single
threaded CPU implementation.
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Figure 4.9: Speed up of GPU execution
of computational time compared to octa
threaded CPU implementation.

Figure 4.8 shows that the extraction time dominates the computational work of the
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histogram generation (see figure 4.21). The plot shows that having 64 threads / block will
provide the maximum speed up for 28165 houses. However that would not be necessary
as one can have different number of threads per block for the different computations (like
1024 threads/block for extraction and 32 threads/block for histogram generation).
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Figure 4.10: Speed up of GPU execution
of total time compared to single threaded
CPU implementation.
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Figure 4.11: Speed up of GPU execution of
total time compared to octa threaded CPU
implementation.

Figure 4.10 shows the total speed up for performing the operation of the GPU. It is
interesting as neither 1024 threads/block nor 32 threads/block shows the maximum speed
up. The plot shows that 64 threads per block will provide the best performance.

4.5 GPU benchmark block version

This is another implementation of Histogram but uses the whole block of threads in gener-
ating the histogram. Each thread works in its own space of memory and generates a private
histogram. The private histograms are summed over at the end to get the final histogram.
Shared memory is used to store the private histograms as they need to be accessed in the
later stages. Due to increased parallelism, this version of histogram should be faster than
the 1 thread/house version.
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Figure 4.12: Speed up of GPU execution
of histogram (block) compared to single
threaded CPU implementation.
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Figure 4.13: Speed up of GPU execu-
tion of histogram (block) compared to octa
threaded CPU implementation.

Figure 4.12 show that one gets good speed ups at 64 threads per block. Unlike the
previous situation, where the 3× speed up was the norm, here one gets nearly 7× speed
up with the use of shared memory and increased parallelism. Yet this benchmark is still
memory bound and the ratio of the performance of the CPU and the GPU roughly mirrors
the ratio of their memory bandwidths.
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Figure 4.14: Speed up of GPU execu-
tion of compute (block) compared to single
threaded CPU implementation.
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Figure 4.15: Speed up of GPU execution of
compute (block) compared to octa threaded
CPU implementation.

The computational time as shown in Figure 4.14 has decreased a bit and one get
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improved speed for moving the operation of histogram generation on to the shared memory.
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Figure 4.16: Speed up of GPU execution of
total (block) compared to single threaded
CPU implementation.
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Figure 4.17: Speed up of GPU execution
of total (block) compared to octa threaded
CPU implementation.

Figure 4.16 shows that the increased usage of the shared memory works and instead of
2.5× speed up , one gets 3.5× speed up . The extraction times still dominate (see Figure
4.21) this benchmark. Making the histogram run faster will not help.
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4.6 Power consumption

The power consumption on executing the benchmarks are shown in the following plots.
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Figure 4.18: Power consumption of the CPU implementation of histogram benchmark.

The energy used in the CPU implementation of the benchmark as shown in Figure 4.18
decreases when increasing the thread count. A nearly 3× improvement in performance is
seen.
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Figure 4.19: Power consumption of the GPU implementation (1 thread/house) of histogram
benchmark.

The energy used up in 1 thread/house implementation of histogram is shown in figure
4.19. It shows improvement over the CPU implementation. The fastest implementation
(64 threads/block) is also the most power efficient.
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Figure 4.20: Power consumption of the GPU implementation (1 block/house) of histogram
benchmark.
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The energy used up in 1 block/house version of Histogram is shown in figure 4.20. It
decreases by a large amount at 64 threads/block. This is also the fastest version of this
benchmark. It does about 250 houses/Joule compared to 20 houses/Joule of the single
threaded CPU implementation.

4.7 Summary

Figure 4.21 shows all the different parts of the histogram benchmark.

CPU
Threads Transfer to GPU Extraction time Histogram Transfer to CPU

1 15.42 76% 4.93 24%
8 2.50 73% 0.92 27%

Threads
/ block

GPU (1 thread/house)

64 0.39 29% 0.47 35% 0.48 36% 0.00 0%
Threads
/ block

GPU (1 block/house)

64 0.39 40% 0.43 44% 0.15 15% 0.00 0%

Figure 4.21: Breakdown of histogram execution times of 28165 houses. Time in seconds.

The histogram being computationally simple caused the execution times to be domi-
nated by other parts (like extraction) of the execution. Extraction of data dominate the
execution times on both the CPU and GPU block versions. 32 threads per block shows
the maximum speed up in the thread/house version but if the same block size is used for
extraction and generating histogram, then 64 threads per block is the sweet spot for fastest
results. The block version of the benchmark at 64 threads/block is the fastest implemen-
tation. It is 22 times as fast and 12.5 times as energy-efficient compared to the single
threaded CPU implementation. However the actual benchmark takes up only 15% of the
execution time. It is also the most power efficient implementation of the algorithm. Since
the extraction times and data transfer to the GPU are dominating this benchmark, it is
better to perform asynchronous transfers so that the memory transfer and the execution
of the algorithm are overlapped.
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Chapter 5

Similarity Search Benchmark

In this benchmark, one looks for similarities of the time series data of two different cus-
tomers. The ten most similar customers are then picked out. The following steps are
performed for similarity search.

1. As with every benchmark, the power consumption values are extracted from the
packed format.

2. Then a dot product is taken with the time series power consumption data of one
customer with that of another customer. Then the results are normalized and stored
in an array. In this case if two customers have data of different lengths, the smaller
length is chosen.

3. The closest 10 matches for each house are then selected out from the calculated cosine
similarity.

The similarity benchmark is different from all other benchmarks as its execution times
have a quadratic relationship with the number of houses. Assuming N houses, in order to
calculate similarity, each house has to find out similarity with (N-1) other houses. That
is also true for similarity search as each house has to look through the all the (N-1) other
houses for calculation of similarity.

5.1 Implementation details

In this section four different arrays will be considered:
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• offsets : Stores the offsets of the power consumption data of each of the houses

• powerconsum: Stores the power consumption data of each data

• simval : Stores the cosine similarity values. This array can be compared to a matrix
with each row and each column storing representing a house. The cells of the matrix
contains the cosine similarity values for a pair of matrices. Though a matrix is a 2D
array, this implementation uses it in a flattened out fashion, a 1D array. This is a
temporary array.

• tenclosest : This is an array of structs with each struct containing an array capable
of storing ten elements.

The core algorithm for calculating cosine similarity for the CPU’s version and GPU’s
1 thread/(house pair) is exactly same. The core algorithm is a function which takes two
house indexes hid1 and hid2 . Since the cosine similarity for a pair of houses is symmetric,
the cosine calculation proceeds only when hid1 < hid2 to avoid redundant work. As
explained in Chapter 3, the offset array is used to find the location of the starting point
and the ending point of the power consumption data of the pair of houses. As explained
before, if the lengths of the power consumption data of the two houses are different, then
the smaller value is chosen. Using a loop the dot product and the squares of the norms
of the two vectors are simultaneously calculated. In the end the cosine similarity of the
pair of houses is calculated and stored in the array simval . The main difference in the
implementation is that in the CPU version a single thread operates on multiple house
pairs but in the GPU a single thread operate on a pair of houses.

The core algorithm of the block version in the GPU implementation is however different.
Here one block of threads operates on a pair of houses. In this implementation each thread
of the block does a partial dot product and partial squares of the norms of the two vectors.
These partial values are stored in the shared memory and then a parallel reduction, as
shown in Appendix A, is done to get the dot product and the squares of the vector norms.
Finally the calculated cosine similarity is calculated and stored in simval.

The core algorithm for calculating the closest 10 matches has been left unchanged in
all the implementations. The actual function operates on a per hid basis. The algorithm
loops through all the results stored in simval corresponding to a given hid and stores the
result in tenclosest .
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5.2 Validation

This benchmark finds the top ten matches and the order of the matches is not significant.
However the algorithms used in both the Matlab implementation and in this benchmark will
cause the houses to be put in a sorted fashion. Samples of the benchmark implementation
results were tested against the Matlab implementation. Since the floating point operations
provide slightly different results, the order of the sorted values tended to swap at times.
This happened whenever the two calculated similarity values are very close to each other.

5.3 Similarity CPU Benchmarks

Since the similarity has a quadratic relation to the number of houses the secondary y-axis
has Houses2/second instead of the usual Houses/second. The following CPU benchmarks
also show some noticeable dips when the thread count is increased after four threads. The
threads are pinned to the cores but the performance regressed when thread count has been
above four. This phenomena does not happen with 1 thread or 8 threads (all logical cores
are used up). The number of houses used is 880.
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Figure 5.1: Similarity calculation speed up on a CPU with increasing thread count.

The similarity calculation proved (figure 5.1) to be computationally intensive and four
threads are enough to saturate the CPU. Increasing thread count does not help and leads
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to regression in performance.
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Figure 5.2: Similarity matching speed up on the CPU with increasing thread count.

The similarity matching (Figure 5.2) proved to be rather unstable as it runs really
fast (see Figure 5.21) and has very short running times. Thus the overhead of thread
scheduling and thread creation dominate the benchmark. The instability does not affect
the total execution times as it barely makes a dent in running times.
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Figure 5.3: Total matching speed up with CPU with increasing thread count.
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Figure 5.3 shows the the total speed up. The similarity times as seen in figure 5.21
dominate the execution times. Thus the plots looks similar. This benchmark prefers the
four threads pinned to the cores for maximum performance.

5.4 Similarity GPU Benchmarks

In this implementation of the benchmark each GPU thread operates on a pair of houses.
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Figure 5.4: Speed up of GPU execution
of cosine similarity calculation compared to
single threaded CPU implementation.
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Figure 5.5: Speed up of GPU execution
of cosine similarity calculation compared to
octa threaded CPU implementation.

The figure 5.5 shows speed up of about 4.5× compared to the CPU version when using
32 threads per block. This is a memory bound benchmark and shows signs of memory
divergence as each warp of threads will generate 64 different address locations and they
are far away.
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Figure 5.6: Speed up of GPU execution
of similarity search compared to single
threaded CPU implementation.
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Figure 5.7: Speed up of GPU execution of
similarity search compared to octa threaded
CPU implementation.

The similarity matching workload as seen in Figure 5.6 is not computationally heavy.
Neither is it memory bound. The performance is nearly independent of the number of
threads launched.
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Figure 5.8: Speed up of GPU execution of
the computational workload compared to
single threaded CPU implementation.
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Figure 5.9: Speed up of GPU execution of
the computational workload compared to
octa threaded CPU implementation.
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Figure 5.10: Speed up of GPU execution of
total workload compared to single threaded
CPU implementation.
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Figure 5.11: Speed up of GPU execution of
total workload compared to octa threaded
CPU implementation.

Both the computational times (Figure 5.8) and the total times (Figure 5.10) looks the
same as the benchmark is dominated by calculating the cosine similarity.

5.5 Similarity Block GPU Benchmarks

Here a whole block is used to compute the cosine similarity of the customers as it is the
part with the maximum execution time. In this case parallel reduction is used to speed up
the dot product operation. All other parts of the benchmark are left untouched.
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Figure 5.12: Speed up of GPU execution of
block version of the similarity compared to
single threaded CPU implementation.
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Figure 5.13: Speed up of GPU execution of
block version of the similarity compared to
octa threaded CPU implementation.

Maximum speed up (figure 5.12) can be observed at 128 threads per block. This is
even more than of the previous implementation. The increased parallelism is due to larger
thread count and lower memory divergence in this version. All the threads in a warp are
working on two houses.
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Figure 5.14: Speed up of GPU execution
of block version of the computational work-
load compared to single threaded CPU im-
plementation.
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Figure 5.15: Speed up of GPU execution
of block version of the computational work-
load compared to octa threaded CPU im-
plementation.
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Figure 5.16: Speed up of GPU execution of
block version of the total compared to single
threaded CPU implementation.
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Figure 5.17: Speed up of GPU execution of
block version of the total compared to octa
threaded CPU implementation.

It can be immediately seen that the speed up obtained in this program is higher, as it is
possible to have better utilization of the memory bandwidth. Reality is that this program
is memory bound and the higher VRAM bandwidth and its proper utilization is the reason
for the speed ups. The similarity calculation is O(N2) benchmark so the running times for
large number of houses will eclipse the running times of all other parts of the computation
be it extraction, matching or the time it takes to move data in and out of GPU VRAM.

5.6 Power consumption

The power consumption of the similarity algorithm are provided below. 880 houses are
used to measure the power consumption values.
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Figure 5.18: Power consumption when executing CPU implementation of similarity algo-
rithm.

The total power consumption of the CPU implementation as seen in Figure 5.18 does
not decrease significantly with increased thread count.
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Figure 5.19: Power consumption when executing GPU implementation (1 thread per pair
of houses) of similarity algorithm.

The case of 32 threads/block as seen in Figure 5.19 is the most energy efficient and also
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the fastest in the implementation with 1 thread/pair of houses.
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Figure 5.20: Power consumption when executing GPU implementation (1 block per pair
of houses) of similarity algorithm.

The case of 128 threads/block as seen in Figure 5.20 is the most energy efficient and
also fastest in the implementation of 1 block per pair of houses.
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5.7 Summary

CPU

Threads
Transfer
to GPU

Extraction Similarity
Similarity
match

Transfer
to CPU

1 0.47 1% 45.05 99% 0.02 0%
8 0.10 1% 12.12 99% 0.01 0%
Threads
/ block

GPU (1 thread/house)

64 0.10 0% 0.11 0% 156.89 100% 0.09 0% 0.00 0%
Threads
/ block

GPU (1 block/house)

64 0.10 0% 0.11 0% 144.50 100% 0.08 0% 0.00 0%

Figure 5.21: Breakdown of similarity execution times of 880 houses. Time in seconds.

Figure 5.21 shows the various parts of the benchmark. The cosine similarity calculation
takes the maximum amount of time irrespective of the type of hardware or implementation.
The case of the similarity calculation which has 128 threads/block is the fastest (11×) and
the most power efficient (8.2×). The similarity benchmark are memory bound and thus
the speed ups shown against the 8 threaded CPU implementation is roughly a ratio of
VRAM to RAM bandwidth. Further improvements to this benchmarks do not seem to be
possible due to the VRAM bottleneck.
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Chapter 6

ParX Benchmark

The Parx model stands for periodic auto regression with exogenous variables. In the
benchmark however only the energy consumption has been used for regression. This model
has 24 ‘seasons’ corresponding to 24 hours in a day. All the benchmarks below have the
order P=3 for the auto-regressive model. This means that the value of the current hour is
determined based on the last 3 hours.

Both the CPU and GPU reuses the same code but the granularity of parallelization is
different. The core algorithm is implemented as follows. For example let us asssume that
there are 12000 data points for a given house. Now there are 24 hours and hence for each
hour there will be 500 data points. Since the current value of the power data is dependent
on last three hours we end up with a matrix equation of the form A500×3x3×1 = b500×1.
Multiplying both sides with AT gives us the following matrix equation (ATA)3×3x3×1 =
AT b3×1. Now the value of x is determined using the conjugate gradient method. For each
house one then gets 72 coefficients.

6.1 Implementation details

The CPU and the GPU implementations uses the same algorithm. The core function
which executes the algorithm works tat the granularity of a single hour of each house.
The only difference is that a single CPU thread loops through multiple houses but a
GPU thread works on a single house. As with other algorithms, offsets is used to lo-
cate the power consumption data from the array powerconsump for a given house. The
matrix (ATA) and vector AT b are calculated directly with a loop going over the the
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power consumption data with a stride length of 24. Let us assume it is calculating
for a given hour h and the offset is of . For the A matrix the loop tries to access
powerconsump[of + h − 1], powerconsump[of + h − 2], powerconsump[of + h − 3] in one
cycle and in the next cycle accesses powerconsump[of + h − 1 + 24], powerconsump[of +
h − 2 + 24], powerconsump[of + h − 3 + 24] etc. For the b vector the values accessed are
powerconsump[of +h], powerconsump[of +h+24] and so on. Once both the matrix and the
vector have been calculated then the regression is performed with the help of the conju-
gate gradient. Since this is only a 3× 3 matrix, a very simple implementation of conjugate
gradient is used to get the regression values.

The GPU version of the benchmark has a parameter which controls the looping strategy
for each house. This allows the GPU version to vary the number of threads that can operate
on a given house. Thus, one thread can operate on all the 24 hours, only one hour for a
given house, or anywhere in between.

6.2 Validation

For testing the correctness of the implementations, the results of the workload is compared
against the original Matlab implementations. Since there are differences in the floating
point results as explained in Chapter 3, the results obtained are slightly different. To
determine the magnitude, the coefficients generated by the regression for the sampled
house are flattened out as a vector. Then the L∞ norm of the relative differences of the
results generated of the two implementations is looked into. The results differ less than
0.01% for the sampled houses. Sometimes the results difference is large at about 4%. This
is caused by the fact that for some houses the matrix (ATA) is singular. Thus finding
the solution to the given matrix is numerically unstable operation. These are not show
stopper problems as the power consumption values themselves are very coarse grained
(small values with precision up to a single decimal digit) and so any prediction is not going
to differ significantly from the Matlab implementation.

6.3 CPU Performance

The following charts will show the speed up one gets when the thread count is increased
for the ParX algorithm running on the CPUs. The number of houses used is 28165. The
threads are pinned to the cores. The next two charts will show the speed up only when
using ParX and also the total (ParX+extraction) speed up.
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In the CPU implementation if there are say N houses and T threads then each thread
performs the execution on K = ceiling(N/T) houses. Each thread has a loops over K houses
and an inner loop iterates over the 24 seasons for each house.
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Figure 6.1: ParX speed up with increasing thread count.

The ParX plot in Figure 6.1 shows that the speed up is not consistent. The threads
are pinned to the cores but as the thread count is increased over four, small irregularities
seem to pop up.
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Figure 6.2: Total speed up with increasing thread count.

The total speed up plot in Figure 6.2 shows a higher speed up than just the ParX speed
up when core count is increased. This is due to the fact that extraction of power data
exhibits a greater speed up and benifits from more effective parallelization than the ParX
algorithm. The table shows the breakdown of the various components of the execution.
The fact that the extraction times go from 24% to 15% as seen in Figure 6.30 when thread
count is increased is why the speed up is higher.

6.4 GPU Performance

The GPU performance relative to the CPU is analyzed in six things

1. ParX algorithm speed up compared to 1 CPU thread doing only ParX.

2. ParX algorithm speed up compared to 8 CPU threads doing only ParX.

3. Total compute (ParX+extraction) speed up compared to 1 CPU thread.

4. Total compute (ParX+extraction) speed up compared to 8 CPU threads.

5. Total (ParX+extraction+memory transfer) speed up compared to 1 CPU thread.

6. Total (ParX+extraction+memory transfer) speed up compared to 8 CPU threads.
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6.4.1 1 thread per house

Here only 1 GPU thread per house will be used to compute the regression coefficients of
that house. Thus the number of threads equal to the number of houses.
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Figure 6.3: Speed up of ParX (1 thread
per house) compared to the single threaded
CPU implementation.
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Figure 6.4: Speed up of ParX (1 thread per
house) compared to the octa threaded CPU
implementation.

The ParX plot as seen in Figure 6.3 shows that the maximum speed up is obtained by
using 32 threads per block. Whenever smaller number of threads per block shows higher
speed up on a GPU it means that the algorithm is memory bound. This algorithm also
shows the effects of memory divergence as each thread will access different parts of the
memory for each house.
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Figure 6.5: Speed up of compute (1 thread
per house) compared to the single threaded
CPU implementation.
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Figure 6.6: Speed up of compute (1 thread
per house) compared to the octa threaded
CPU implementation.

The pure computational plot as seen in Figure 6.5 shows higher speed up at about 10x.
This is caused by the fact that extraction of the data undergoes a significant speed up
when executed on the GPU.
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Figure 6.7: Speed up of total execution time
(1 thread per house) compared to the single
threaded CPU implementation.
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Figure 6.8: Speed up of total execution time
(1 thread per house) compared to the octa
threaded CPU implementation.

The total execution time Figure 6.7 follows similar trend but the speed up is obviously
smaller as the transfer of data to and from the GPU has been taken into account. The
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Figure 6.30 shows that the 20% of the time is spend on extraction and transferring data
to the GPU. However the slowest part is still the ParX algorithm.

6.4.2 24 threads per house

Unlike Histogram or Similarity, the ParX algorithm does not have an implementation
that uses block per house. The ParX algorithm does not map well to such style of GPU
parallelism. Here only 24 GPU threads per house will be used to compute the regression
coefficients of that house. Each thread will correspond to each hour of a day for each house.
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Figure 6.9: Speed up of ParX (24 threads
per house) compared to the single threaded
CPU implementation.
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Figure 6.10: Speed up of ParX (24 threads
per house) compared to the octa threaded
CPU implementation.

The ParX plot in Figure 6.9 shows the improved speed up due to the 24× increase in
parallelism. Also since groups of 24 threads access contiguous parts of the memory, the
effects of memory divergence have decreased. The improved memory utilization meant
that the new sweet spot for maximum speed up is 128 threads per block and 42× faster
than the single threaded CPU implementation.
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Figure 6.11: Speed up of compute (24
threads per house) compared to the single
threaded CPU implementation.
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Figure 6.12: Speed up of compute (24
threads per house) compared to the octa
threaded CPU implementation.

The compute plot in Figure 6.11 shows a similar speed up as the pure ParX plot. Even
though the ParX computation has improved, the other parts of the execution like transfer
of data to the GPU and extraction of the data taking up major amount (41%) (see Figure
6.30) of execution time.
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Figure 6.13: Speed up of total execution
time (24 threads per house) compared to
the single threaded CPU implementation.
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Figure 6.14: Speed up of total execution
time (24 threads per house) compared to
the octa threaded CPU implementation.

The total execution time plot in Figure 6.13 follows a similar trend but the speed up is
obviously smaller as the transfer of data to and from the GPU has been taken into account.
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The table shows that the 59% of the time is spend on ParX algorithm on the GPU. Thus
the slowest part is still the ParX algorithm.

6.4.3 Different threads per house

Here only n GPU threads per house will be used to compute the regression coefficients
of that house, where n is a number from 1 to 24. The threads will compute in a strided
fashion. Say if n=7 then thread 0 will compute hour 0,7,21 and thread 6 will compute
6 and 13. In this section two different number of houses will tried out: 28165 houses in
larger case and and 3520 houses in the smaller case. The smaller number of houses will
show lower scalability as the smaller number of threads meant poor GPU utilization.

Small number of houses

The legends in the plots in this section show the number of threads per block.
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Figure 6.15: Speed up of ParX (3520
houses, multiple threads per house) com-
pared to the single threaded CPU imple-
mentation.
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Figure 6.16: Speed up of ParX (3520
houses, multiple threads per house) com-
pared to the octa threaded CPU implemen-
tation.
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Figure 6.17: Speed up of compute (3520
houses, multiple threads per house) com-
pared to the single threaded CPU imple-
mentation.
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Figure 6.18: Speed up of compute (3520
houses, multiple threads per house) com-
pared to the octa threaded CPU implemen-
tation.
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Figure 6.19: Speed up of total execution
time (3520 houses, multiple threads per
house) compared to the single threaded
CPU implementation.
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Figure 6.20: Speed up of total execution
time (3520 houses, multiple threads per
house) compared to the octa threaded CPU
implementation.

All the plots in Figures 6.15, 6.17 and 6.19 show how increasing the thread count
increases the performance but there is a large dip when using 21 threads per house. Also
if 6, 12 or 24 threads per house is used, one sees the greatest speedup. Unfortunately the
profiler was crashing so the exact reason for the dip is unknown.

55



Larger number of houses

The legends in the plots in this section show the number of threads per block.
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Figure 6.21: Speed up of ParX (28165
houses, multiple threads per house) com-
pared to the single threaded CPU imple-
mentation.
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Figure 6.22: Speed up of ParX (28165
houses, multiple threads per house) com-
pared to the octa threaded CPU implemen-
tation.
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Figure 6.23: Speed up of compute (28165
houses, multiple threads per house) com-
pared to the single threaded CPU imple-
mentation.
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Figure 6.24: Speed up of compute (28165
houses, multiple threads per house) com-
pared to the octa threaded CPU implemen-
tation.
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Figure 6.25: Speed up of total execution
time (28165 houses, multiple threads per
house) compared to the single threaded
CPU implementation.
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Figure 6.26: Speed up of total execution
time (28165 houses, multiple threads per
house) compared to the octa threaded CPU
implementation.

All the plots in Figures 6.21 6.23 6.25 show how an increasing the thread count increases
the performance but there is large dip when using 21 threads per house. Also if 6, 12 or 24
threads per house is used, one sees the greatest speedup. Unfortunately the profiler was
crashing so the exact reason for the dip is unknown. Compared to lower number of houses
however an increase in speed up as larger portion of the GPU is utilized. Compared to the
smaller number of houses, the speed ups seen here have increased.

6.5 Power consumption

The power consumption in Figure 6.27 follows a predictable pattern where increasing the
thread count improves the power consumption. As far as GPU is concerned both the
Figures 6.28 and 6.29 the variations in the power implementation closely mirror the speed
ups. The faster the operation, the more power efficient it is. This is tested for 28165
houses.
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Figure 6.27: ParX CPU power consumption with increasing thread count.
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Figure 6.28: ParX GPU power consumption (1 thread/house) with increasing thread count.
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Figure 6.29: ParX GPU power consumption (24 thread/house) with increasing thread
count.

6.6 Summary

CPU
Threads Transfer to

GPU
Extraction time ParX Transfer to

CPU
1 15.27 24% 49.51 76% 0.00 0%
8 2.35 15% 12.86 85% 0.00 0%
Threads / block GPU (1 thread/house)
32 0.38 6% 0.80 14% 4.75 80% 0.00 0%
Threads / block GPU (24 threads/house)
128 0.38 19% 0.43 22% 1.16 59% 0.00 0%

Figure 6.30: Breakdown of ParX execution times of 28165 houses. Time in seconds.

ParX, unlike histogram or similarity, does not have a sufficient amount of intrinsic paral-
lelism that allow us to map a whole block of threads to a given house. Thus, one is stuck
with 24 threads per house for maximum parallelism on a GPU. This implementation is
both faster and more efficient from an energy point of view compared to CPU or GPU
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(1 thread per house) implementation. There is some parallelism left over in solving the
matrices when performing regression, however the matrix size is only 3× 3, meaning that
its parallelism is wasted. GPUs need a lot more parallelism with matrix sizes of 128× 128
or above to be useful. According to Figure 6.30, extraction and transfer of data takes up a
significant amount of execution time, so an asynchronous memory transfer can be helpful.
Asynchronous memory transfer will however make the benchmark difficult to reproduce
and instrument as the GPU driver will do some of the heavy lifting behind the scenes.

The plot in Figure 6.21 and others shows a drop in performance at 21 threads/house.
The reason for such behaviour is unknown as the profiler crashed. A potential source
of bad performance may be cache evictions as the GPUs uses a direct mapped cache
and performance falls off a cliff if there is poor memory uitlization. Still, the best GPU
implementation of ParX is 7× as fast and 5.2× more energy efficicient compared to the
octa-threaded CPU implementation.
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Chapter 7

Energy Disaggregation Model
Benchmark

The energy disaggregation model [5] performs regression of the smart meter power data
against the temperature for a given household. Unfortunately at any temperature one will
get 10s to 100s of different power consumption data with large variations. This is caused
by the fact that a given temperature can be present at different times of year (or different
times in the same day) resulting in a widely fluctuating power consumption. Thus to re-
move any large variations, the 10th and the 90th percentile power consumption readings
for a given temperature are used for regression. The 10th percentile represents the base
load and the 90th percentile is the activity load.

Most of the households show a very common U-curve in power consumption. People
use heaters at low temperatures and ACs at high temperatures which causes the increased
power consumption at both ends of the spectrum. The slope of the two ends of the U-
curve are heating and cooling gradient. Previously cubic spline [26] is used with manually
defined boundaries. In this benchmark regression is done assuming that the power data
has a cubic dependence on the temperature . The derivatives of the cubic polynomial (at
the minimum and maximum temperatures) so obtained will provide the necessary cooling
and heating gradients. The benchmark algorithm has two parts, sorting and regression.

This implementation differs from the original implementation as the original imple-
mentation uses segmented linear regression but here a polynomial (cubic) regression is
performed. The segmented regression is a brute force approach to find the correct fit.
However, if one is interested only in the heating and cooling gradient then polynomial
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regression can be used as it is faster and easier to implement than segmented regression.

7.1 Implementation details

The core function of both sorting and the regression phase operates on a per house basis.
These functions are common to both the CPU and GPU implementations. The only differ-
ence is that a single CPU thread loops through multiple houses but a GPU thread works
on a single house. Similarly to all the previous algorithms, the array offsets will be used
to locate both the temperature and power consumption data for a given house. The tem-
perature range used in this implementation ranges from -10◦C to 35◦C. This temperature
range is divided into 40 bins.

The sorting phase goes in two steps. The first step is the actual reallocating of power
consumption data according to the corresponding temperature and adding it to the right
bin. Now in the next step the energy data in each temperature bin is sorted. In this
benchmark, a non-recursive version of merge sort is used for sorting. Once the sorting is
complete, the 10th and the 90th percentile values for each bin are collected and put into
another array named tennine. The tennine array is an array of structs that itself contains
the index of the house hid and two arrays tenvalues and ninevalues . The 10th and the
90th percentile values are put in tenvalues and ninevalues arrays respectively.

The regression phase performs cubic regression of the energy data stored in the tenvalues
and ninevalues arrays for each house with the temperature corresponding to each bin. The
regression is done with the help of conjugate gradient. There is no extra parallelism
used for this part of the benchmark as the matrices used are small (4 × 4). A standard
implementation of the conjugate gradient algorithm is being used for solving and finding
the polynomial coefficients.

7.2 Validation

This benchmark uses a different regression model than the the original benchmark. Hence
the values generated by this workload will not match up with the Matlab implementation.
In this case a few houses were sampled and regression was performed in Mathematica to
ensure that the implementation is producing correct results. As usual, since Mathematica
uses a different precision internally (defined by a parameter called ‘Machine Precision’)
than the one used in this benchmark (single precision float), the values generated are
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slightly different. Relative differences in the values are less than 0.01%. This validates the
functional correctness of the benchmark.

7.3 CPU benchmarks

The benchmarks show the speed up with increasing thread count for 28165 houses. It
contains the benchmark results of the different phases as explained before. It also in-
cludes the total speed up, which has the speed up of all the phases put together (extrac-
tion+sorting+coefficient generation). The threads are pinned to the CPU cores.
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Figure 7.1: Extraction speed up.

Extraction as seen in Figure 7.1 has low ILP (instruction level parallelism) and thus
shows increased speed up with more threads than physical cores. It shows near linear
speeds up to three threads with the maximum speed up of 6 with 8 threads.
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Figure 7.2: Sorting speed up.

This benchmark as seen in Figure 7.2 shows small variations even when the threads are
pinned. Sorting has low ILP and is a very branchy workload as it uses comparison based
sort. Hence increased thread count shows increased performance.
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Figure 7.3: Coefficient generation speed up.

This benchmark as seen in Figure 7.3 high has variability in spite of pinned threads
as the benchmark times are very short. The overhead of launching threads shows up in
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larger thread counts and thus prevents enough speed up from occurring. This part of the
benchmark takes up little time (Figure 7.17) and hence has little effect on the final results.
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Figure 7.4: Total speed up, labels indicate the number of threads.

The total speed up as seen in Figure 7.4 closely mirrors the sorting plot as the sorting
takes up majority of the benchmark time.

7.4 GPU benchmarks

The GPU implementation uses one GPU thread per house. The compute times and total
times of the GPU are compared to the total time of the CPU’s 1 and 8 threaded cases.
The GPU benchmarks, like the CPU benchmarks, are done with 28165 houses.
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Figure 7.5: Speed up of GPU execution
of extraction compared to single threaded
CPU implementation.

25 26 27 28 29 210

Threads/Block

0

1

2

3

4

5

Sp
ee

d 
up

0

10000

20000

30000

40000

50000

Ho
us

es
/s

ec
on

d

Figure 7.6: Speed up of GPU execution of
extraction compared to octa threaded CPU
implementation.

Immediately we see that in Figure 7.5 the difference due to increased memory pressure
of the extraction. The new sweet spot is now 64 threads per block compared to extraction
in previous benchmarks (Figure 4.4 of Histogram) where sweet spot was 1024 threads per
block. The previous extraction times only extracted the power consumption data but here
the data retrieved is both power consumption and temperature. Increase in the thread
count causes more cache evictions and thus counter-intuitively means that lowering the
thread count increases the performance.
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Figure 7.7: Speed up of GPU execution of
sorting compared to single threaded CPU
implementation.
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Figure 7.8: Speed up of GPU execution of
sorting compared to octa threaded CPU im-
plementation.

This Figure 7.7 shows that 64 threads per block gives maximum performance when
there is a large number of houses. Branch divergence is the main reason for the small
speed ups. The branch divergence is caused by sorting (merge sort), which is comparison
based.
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Figure 7.9: Speed up of GPU execution
of coefficient generation compared to single
threaded CPU implementation.
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Figure 7.10: Speed up of GPU execution
of coefficient generation compared to octa
threaded CPU implementation.

Coefficient generation as seen in Figure 7.9 is compute heavy rather than memory
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bound so increasing the thread count helps here as it allows us to do more computation.
64 threads per block is the sweet spot for this operation.
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Figure 7.11: Speed up of GPU execution of
compute compared to single threaded CPU
implementation.
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Figure 7.12: Speed up of GPU execution of
compute compared to octa threaded CPU
implementation.
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Figure 7.13: Speed up of GPU execution of
total execution compared to single threaded
CPU implementation.
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Figure 7.14: Speed up of GPU execution of
total execution compared to octa threaded
CPU implementation.

Both the compute (Figure 7.11) and total speed up (Figure 7.13) rather closely mirror
the speed up of sorting as sorting takes up a large proportion (Figure 7.17) of execution
time.
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7.5 Power consumption

The CPU as seen in Figure 7.15 shows increased energy efficiency with larger thread count
(3.5× efficient). All the different threads per block in the GPU as seen in Figure 7.16 show
higher efficiency than any CPU implementation but the 64 threads/block shows maximum
efficiency.
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Figure 7.15: Power consumption of CPU in energy dissagregation.
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Figure 7.16: Power consumption of GPU in energy dissagregation.

7.6 Summary and discussion

CPU

Threads
Transfer
to GPU

Extraction
time

Sorting Coefficient
Transfer
to CPU

1 15.46 9% 162.70 91% 0.15 0%
8 2.53 7% 32.37 93% 0.05 0%
Threads
/ block

GPU (1 thread/house)

64 0.38 5% 0.53 7% 7.21 93% 0.01 0% 0.00 0%

Figure 7.17: Breakdown of Energy Dissagregation execution times of 28165 houses.Time
in seconds.

A breakdown of the various parts of the benchmark in table 7.17 is shown. The benchmark
is dominated by sorting the data. This benchmark is not very GPU friendly as the branch
divergence of the sorting dominates the execution times. The interesting part is that
the individual parts of the sorting phase like allocating the power data to the correct
bin according to temperature and performing non-recursive merge sort are very much
parallelizable. Unfortunately the parallelization is rather irregular with each operating
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on different sizes of data which makes it very hard to map to the GPU programming
model. Still one gets improved speed (4.25×) and power efficiency (2.25×) against the octa-
threaded CPU version, which makes using the GPU-based implementations worthwhile.
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Chapter 8

Discussion

This chapter completes the thesis. In broad strokes it can be seen that the chosen en-
ergy analytics benchmarks are mostly memory bound. Some of them show high memory
divergence. Here some of the important observations are summerized as follows.

• Histogram: The histogram benchmark is very short and large parts of the execution
times are dominated by transferring data and extraction of data. The GPU imple-
mentation which maps 1 block to a house improves the running time but other parts
of the benchmark drag it down as far as speed ups are concerned. Since this is a
very short and simple benchmark, I believe that no substantial improvements can be
made. This benchmark is a memory bound benchmark.

• Similarity Search: The simple version of the GPU implementation which operates on
1 thread per house is very memory divergent and hence suffers from poor performance
(though it is improved compared to CPU implementation). The GPU version which
operates at 1 block/house shows large improvement due to better cache utilization as
memory divergence is lowered. The similarity calculation takes up a large proportion
of running times and hence the block version of the GPU is a viable choice for doing
fast calculations. The other parts of the benchmark process like sending data to
the GPU, extraction and finding the closest 10 matches take up negligible time.
Substantial improvements to this benchmark are likely infeasible as it is completely
memory bound.

• ParX: The previous two benchmarks had two variants of GPU implementation, 1
thread/house and 1 block/house. The latter type of implementation is not feasible
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in ParX as this benchmark shows limited parallelism and is proved to be difficult
to implement. The 1 thread/house implementation shows memory divergence like
previous benchmarks. The maximum performance is obtained by using a 24 thread-
s/house with each thread performing regression on each hour of the day. Changing
the number of threads per house initially shows better performance due to improved
parallelism and memory utilization, reaching a peak at 12 threads /house. Then it
drops performance if the number of threads do not divide 24 evenly with performance
reaching lowest values at 21 threads/house and goes back up again at 24 threads per
house. This phenomenon needs to be investigated further as the profiler crashed
when using large data sets. Improvement in this benchmark is possible especially in
solving the 3 × 3 matrix and it may be possible to get a 3× parallelism (as the ele-
ments of the solution vector can be computed in parallel), but extracting the possible
parallelism seems very hard.

• Energy disaggregation: On a GPU this benchmark shows very different behavior
compared to the previous benchmarks. It is not fully memory bound but suffers
from branch divergence due to comparison based sort. This benchmark unlike the
previous benchmarks depends on both temperature and power consumption data.
Definite improvements may be possible in this benchmark by using a non-comparison
based sort like radix sort but since the power data are floating point numbers some
non-trivial changes needed to be made. This benchmark has parts which can be
subjected to parallelism but on a whole, the parallelism is too irregular and it seems
difficult to map it to the CUDA programming model. Improvements are also possible
if specific parts of parallelism are targeted but it would be difficult. The sorting uses
non-recursive merge sort which behaves in a top down fashion. Using an inplace
version of quicksort was tried out earlier but the GPU suffered from stack overflow
errors. Increasing the stack size stopped the problem but in that case the GPU ran
slower than the CPU version!

All the GPU implementations discussed in the thesis followed a general rule of having
1 block/house faster than 1 thread/house which itself is faster than the 8 threaded CPU
implementation. The power consumption data followed the same pattern. The single-
threaded version performed poorest in all the benchmarks. Thus, increasing parallelism
improved performance and energy efficiency of the benchmark but one has to carefully
fine tune the number of threads per given block to get the best results. Determining the
optimal value of the parameter is difficult and has to be found out in a trial and error
basis.The need to tune such parameters can be considered a disadvantage in GPU com-
puting. Another issue encountered when performing benchmarks has been compiler bugs,
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which caused incorrect GPU assembly code to be produced. Profiler bugs are also present
as using large data sets or using kernels which are a bit complicated (ParX and Energy
disaggregation) will cause the profiler to crash.

In the end the energy analysis benchmarks ended up being sufficiently GPU friendly in
spite of all the hitches mentioned. In the best case scenario, the GPU version of Histogram,
Similarity, ParX and Energy disaggregation are 2.5×, 10×, 6× and 3.25× times faster than
the octa-threaded CPU version. The power consumption of the GPU version of Histogram,
Similarity, ParX and Energy disaggregaton are 3.6×, 8.2×, 5.2×, 2.75× smaller compared
to the octa-threaded CPU version. Hence the work done in this thesis validates the usage
of GPU for analysis of smart meter data.
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Appendix A

Parallel Reduction

This is a very common technique to get the sum (or any binary operation which is associa-
tive and commutative) of all the array elements in a GPU with the use of shared memory.
The table below shows the various stages of a summing up the elements of an array arr[]
= 1,2,3,4,5,6,7,8. Since the array has 8 elements it takes log2(8) = 3 stages in completing
the sum.

1 2 3 4 5 6 7 8
Cycle 1 arr[a]=arr[a]+arr[a+4] when a < 4

6 8 10 12 5 6 7 8
Cycle 2 arr[a]=arr[a]+arr[a+2] when a < 2

16 20 10 12 5 6 7 8
Cycle 3 arr[a]=arr[a]+arr[a+1] when a < 1

36 20 10 12 5 6 7 8

Figure A.1: Parallel reduction stages

Now the 0th location of array arr[] will contain the sum of all the elements. Though
this operation is shown with addition as it is the operation which has been used in these
algorithms, any binary operator which is associative and commutative can be used for
performing reduction. A few things to take note of:

• The first cycle needs 4 operations, the next cycle 2 operations and the last cycle
1 operation which makes a total of 7 operations. So it is very work efficient and
performs the same number of operations as the sequential sibling.
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• If we consider a single thread performing each operation, then after every cycle the
threads need to synchronize. This means that the given algorithm may not map
really well to CPU threads as the cost of synchronization is very high. It also means
that for a GPU all the threads should be inside a block as only threads in a block
can synchronize amongst themselves and inter block synchronization is not available.

• Since there can be a maximum 1024 threads for a given block, the maximum number
of elements can be operated on in a GPU is 2048. However one can actually do
reduction on larger number of elements by performing a sequential partial reduction
(i.e. If there are 4096 elements then each thread can do sequential reduction of 2
elements at a time and then do parallel reduction on the 2048 elements).

• If the number of elements is not a power of 2, like an array with 27 elements then one
can do the parallel reduction assuming the array has 32 elements (i.e. the next power
of 2) and perform the required reduction carefully taking into account the boundary
conditions.
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