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Abstract 

 A number of commercially employed polymers are refractory to surface modification and 

may require harsh conditions ranging from corona discharge to halogenation to assemble a 

functional surface. We are exploring combinatorial peptide screening using phage display to 

identify peptides capable of non-covalent binding to advanced polymeric materials to discover 

mild yet useful surface modification agents.  Through the application of phage display 

techniques, identification of polymer-binding peptides ("adhesons") are the focus of this research. 

Our studies in this area, including the ability to fabricate phage fibers and membranes, will be 

presented. Results in this area should contribute to our basic understanding of the interactions 

between polymeric surfaces and biomolecules, but also lead to potential applications in the area 

of advanced functional materials.  



iv 
 

Acknowledgements 

 I would like to personally acknowledge and thank Dr. John Honek for everything that he 

has done to further develop me as a student, and most importantly, as a biochemist along with 

the opportunity to take me on this project.  

I would also like to acknowledge and thank Nina Heinig from Watlab for the assistance 

and training me on the environmental scanning electron microscope. I would also like to 

acknowledge and thank Boyd Panton of the Department of Mechanical and Mechatronics 

Engineering for training me on the uniaxial tensile tester. I would also like to thank the members 

of the Honek laboratory for their general assistance in the lab.  

Of course, I would also like to thank the Natural Sciences and Engineering Research 

Council of Canada and Imperial Oil for their funding as this project would have been impossible 

without the two groups. 

 Last but not least, I would also like to thank my family for supporting me during my 

program all the way from South Korea.   



v 
 

Table of Contents 

Author’s Declaration ....................................................................................................................... ii 

Abstract .......................................................................................................................................... iii 

Acknowledgements ........................................................................................................................ iv 

List of Figures .............................................................................................................................. viii 

List of Tables ................................................................................................................................ xii 

List of Abbreviations ................................................................................................................... xiii 

Chapter 1: Introduction ................................................................................................................... 1 

1.1 Molecular Recognition ..................................................................................................... 1 

1.2 Biomolecules and Materials Science................................................................................ 2 

1.3 Noble Metal Binding Peptides ......................................................................................... 6 

1.4 Carbon-Based Nanostructure Binding Peptides ............................................................... 8 

1.5 Polymer Binding Peptides .............................................................................................. 18 

1.6 Polyethylene Polymers ................................................................................................... 20 

1.7 Industrial Synthesis of PE .............................................................................................. 22 

1.8 Surface Modification of PE ............................................................................................ 23 

Chapter 2: Phage Display.............................................................................................................. 26 

2.1 M13 Bacteriophage and Phage Display ......................................................................... 26 

2.2 Materials and Methods ................................................................................................... 31 

2.2.1 Identification of Phage Adhesons ........................................................................... 31 



vi 
 

2.2.2 Amplification of Eluted Phage ................................................................................ 33 

2.2.3 Determination of Phage Titer .................................................................................. 34 

2.2.4 Extraction of M13 DNA for Sequencing ................................................................ 35 

2.2.5 Preparation of Agarose Gels for Electrophoresis.................................................... 37 

2.3 Results of Biopanning / Amplification Experiments ..................................................... 38 

2.4 Adheson Sequences Obtained by Biopanning ............................................................... 39 

Chapter 3: Characterization of Phage Adhesons and PE .............................................................. 44 

3.1 Characterization of Phage Adhesons: Enzyme-linked Immunosorbent Assay .............. 44 

3.2 Characterization of the PE Structure and Surface: Environmental Scanning Electron 

Microscopy and Energy Dispersive X-ray Spectroscopy ......................................................... 45 

3.3 Characterization of the PE Structure and Surface: Computational Modeling ............... 46 

3.4 Phage-based Fibers and Thin Films ............................................................................... 47 

3.5 Materials and Methods ................................................................................................... 49 

3.5.1 Materials ................................................................................................................. 49 

3.5.2 Preparation of ELISA Phage Adhesons .................................................................. 49 

3.5.3 Direct ELISA .......................................................................................................... 50 

3.5.4 Environmental Scanning Electron Microscopy ...................................................... 51 

3.5.5 Computational Methods for PE Surface Modeling ................................................. 52 

3.5.6 Large-scale Amplification of Wild-type M13KE ................................................... 53 

3.5.7 Fabrication of M13 Phage Fiber and Thin Film ..................................................... 53 

3.5.8 Characterization of M13 Fiber: Uniaxial Tensile Testing ...................................... 54 

3.6 Results of ELISA Assays ............................................................................................... 55 

3.7 Results of Environmental Scanning Electron Microscopy and EDX ............................ 59 

3.8 Preliminary PE Structure Modeling ............................................................................... 65 

3.9 Result of M13 Phage Fibers and Thin Films ................................................................. 68 



vii 
 

Chapter 4: Summary and Future ................................................................................................... 72 

4.1 Summary of Project ........................................................................................................ 72 

4.2 Future Work ................................................................................................................... 74 

References ..................................................................................................................................... 76 

Appendix A: Primary Data of Adheson Sequences ...................................................................... 87 

 

 

 

  



viii 
 

List of Figures 

Figure 1: Examples of biological molecular recognition. A: antibody (light purple)-antigen 

(yellow) complex formation B: lipocalin protein (ribbon) that is complexed with an enterobactin 

molecule (spheres) PDB:3CBC2 ..................................................................................................... 1 

Figure 2: Overview of the process of systematic evolution of ligands by exponential enrichment 

(SELEX)144. .................................................................................................................................... 3 

Figure 3: All 20 amino acids showing the diversity of side chain groups. ..................................... 4 

Figure 4: Crystal structure of gold showing three layers of gold atoms. Drawn using 

CrystalMaker Inc. (version 9.2) software based on the crystal structure data from Swanson H E, 

Tatge E (1953) Standard X-ray diffraction powder patterns.  National Bureau of Standards (U.S.), 

Circular 359:1-1 .............................................................................................................................. 7 

Figure 5: Structure of carbon nanotube with chiral indices n = 6 and m = 6, and number of unit 

cells = 10. A and B are shown in different orientation and C is a space-filling model of CNT. .... 9 

Figure 6: Consensus sequence of single walled CNT binding peptide where X1 is G or H, X2 is H 

or A or null, X3 is null or R, and X4 is null or K.34 ....................................................................... 10 

Figure 7: Structure of graphite (Drawn using Spartan 16 (Wavefunction, Inc.) software.) ......... 11 

Figure 8: Structure of graphene. (Drawn using Spartan 16 (Wavefunction, Inc.) software.) ....... 13 

Figure 9: Antibody fragment of a C60 antifullerene antibody 52 (PDB: 1EMT). Residues believed 

to make stacking interactions with fullerene are shown in red on a Connolly surface 

representation of the antibody. ...................................................................................................... 15 

Figure 10: Structure of carbon atoms composing diamond. (Drawn using Spartan 16 

(Wavefunction, Inc.) software.) .................................................................................................... 16 

file:///F:/Final%20revision%20of%20thesis%20DK.docx%23_Toc482971613
file:///F:/Final%20revision%20of%20thesis%20DK.docx%23_Toc482971613


ix 
 

Figure 11: General chemical structure of PE. The structure at the bottom is the structure of PE 

with an α-olefin as the branching molecule. ................................................................................. 21 

Figure 12: Model representation of PE in two different orientations. (Drawn using Spartan 16 

(Wavefunction, Inc.) software.) .................................................................................................... 21 

Figure 13: Catalysts used in industrial PE synthesis. A: Ziegler-Natta system B: Chromium 

(Phillips) Catalyst on a silica support C: Metallocene-based catalyst with methyl aluminoxane as 

co-catalyst ..................................................................................................................................... 22 

Figure 14: Schematic of Corona Discharge .................................................................................. 24 

Figure 15: M13 bacteriophage structure labeled with five coat proteins and its dimensions ....... 26 

Figure 16: Different examples of displayed peptides on M13 where blue triangles represent 

peptides displayed on M13. (A) Peptides are displayed on pIII. (B) Peptides are displayed on 

pVIII (C) Peptide is displayed on pVI (D) Peptide is displayed on pVII (E) Peptides are 

displayed on pIX ........................................................................................................................... 28 

Figure 17: Ribbon structure of  (A) pIII (PDB: 1G3P111) and (B) pVIII (PDB:1IFJ112) coat 

proteins. ......................................................................................................................................... 29 

Figure 18: Representation of random peptides in phage display libraries. Only one of the five 

identical peptides are shown emanating from a single pIII protein. (PDB: 1G3P and 1IFJ) ....... 30 

Figure 19: General procedures in phage display ........................................................................... 31 

Figure 20: General procedures in amplifying M13 phage ............................................................ 34 

Figure 21: General description for RFDNA extraction ................................................................ 35 

Figure 22:Agarose gel electrophoresis of phage panned against (BA46) chromium catalyzed PE 

resin. DNA was prepared using Genscript Quickclean II plasmid miniprep kit. Leftmost lane is 

file:///F:/Final%20revision%20of%20thesis%20DK.docx%23_Toc482971624
file:///F:/Final%20revision%20of%20thesis%20DK.docx%23_Toc482971624
file:///F:/Final%20revision%20of%20thesis%20DK.docx%23_Toc482971624
file:///F:/Final%20revision%20of%20thesis%20DK.docx%23_Toc482971633
file:///F:/Final%20revision%20of%20thesis%20DK.docx%23_Toc482971633


x 
 

the DNA standard marker. The multiple bands shown in the gel represent different conformation 

of the DNA. ................................................................................................................................... 38 

Figure 23: Composition of amino acids in peptide sequences. A: linear 7-mer library B: 

disulfide-constrained 7-mer library, C: linear 12-mer library, D: 12-mer peptides determined 

from DuPont.................................................................................................................................. 42 

Figure 24: General scheme of direct (left) and indirect (right) ELISA-based assays122 ............... 44 

Figure 25: Transmission electron micrograph of M13 (The crystal structure (PDB: 1IFJ in 

subfigure shows the solvent exposed part of pVIII coat protein). T. Urquhart (Honek laboratory)

....................................................................................................................................................... 48 

Figure 26: “2-Butene” which was selected as a copolymer. R1 represents the head group, R2 

represents the tail group, and R3 represents the branch point of the PE chain. Note: R1, R2, and R3 

do not represent alkyl groups, but rather “carbons” to form 2-butane that is required by the 

software program in its building routine and double bond is assumed to be added by the software.

....................................................................................................................................................... 52 

Figure 27: ELISA plot of HSDK-1, where n = 3 for blank + PE and HSDK-1 and n=2 for 

M13KE and blank no PE. Detergent used in this experiment was 0.3 % Tween®-20 ................ 55 

Figure 28: ELISA plot for the 12-mer clones. The detergent was 0.5 % Tween®-20 and n = 2 for 

all samples in this plot................................................................................................................... 58 

Figure 29: Scanning electron micrograph of PE resin surfaces. A: Ziegler-Natta catalyzed high 

density PE B: Ziegler-Natta catalyzed linear low density PE C: AD60 D: BA46 E: Exceed 

1012KA F: Exceed 1018KA ......................................................................................................... 59 

Figure 30: Comparison of naked PE surface (on left) and gold-covered PE surface (on right) ... 60 

Figure 31: EDX spectra of metallocene 1018KA PE and Ziegler-Natta catalyzed LLDPE ........ 61 

file:///F:/Final%20revision%20of%20thesis%20DK.docx%23_Toc482971633
file:///F:/Final%20revision%20of%20thesis%20DK.docx%23_Toc482971633
file:///F:/Final%20revision%20of%20thesis%20DK.docx%23_Toc482971640
file:///F:/Final%20revision%20of%20thesis%20DK.docx%23_Toc482971640
file:///F:/Final%20revision%20of%20thesis%20DK.docx%23_Toc482971640


xi 
 

Figure 32: EDX spectra of Ziegler-Natta catalyzed HDPE and chromium catalyzed BA46 PE . 62 

Figure 33: EDX spectra of chromium catalyzed BA46 resin at 2 different regions. No metals are 

present ........................................................................................................................................... 63 

Figure 34: EDX spectra of Ziegler-Natta catalyzed HDPE resin at 2 different regions. No metals 

are present ..................................................................................................................................... 64 

Figure 35: Branchless PE model ................................................................................................... 65 

Figure 36: Branchless PE zoomed in to show the interweaved networks of PE chains ............... 66 

Figure 37: Branched PE model ..................................................................................................... 67 

Figure 38: Branched PE model to show the interweaved network of PE chains .......................... 67 

Figure 39: M13 phage fiber at the top and thin film at the bottom ............................................... 69 

Figure 40: Stress-strain curve of fishing line (top in blue) and M13 fiber (bottom in orange) .... 70 

 

  



xii 
 

List of Tables 

Table 1: Peptide sequences identified as having affinity to noble metal surfaces. ......................... 6 

Table 2: Peptide sequences and its corresponding polymers ........................................................ 18 

Table 3: Different types of PE, their applications, and density90.................................................. 22 

Table 4: Number of rounds of biopanning and amplification undertaken for each library .......... 32 

Table 5: Different containers used in biopanning ......................................................................... 32 

Table 6: Resulting phage adheson sequences from screening the linear 7-mer library ................ 39 

Table 7: Resulting phage adheson sequences from screening the disulfide constrained 7-mer 

library ............................................................................................................................................ 40 

Table 8: Resulting phage adheson sequences from screening the linear 12-mer library .............. 40 

Table 9: Linear 12-mer peptides isolated from DuPont117 ............................................................ 41 

  



xiii 
 

List of Abbreviations 

AFM Atomic force microscopy 

ATP Adenosine triphosphate 

ATR Attenuated total reflectance 

CNF Carbon nanofiber 

CNT Carbon nanotube 

DFT Density functional theory 

DNA  Deoxyribonucleic acid 

E. coli Escherichia coli 

EDX Energy dispersive x-ray spectroscopy 

ELISA Enzyme-linked immunosorbent assay 

ESEM Environmental scanning electron microscopy 

FT-IR Fourier transform infrared spectroscopy 

HDPE High density polyethylene 

HOPG Highly ordered pyrolytic graphite  

LLDPE Linear-low density polyethylene 

MoRE Molecular recognition elements 

PE Polyethylene 

PS Polystyrene 

RFDNA Replicative form DNA 

RNA Ribonucleic acid 

SELEX Systematic evolution of ligands by exponential enrichment 

TEM Transmission electron microscopy 

  

  

  

  

  

  



1 
 

Chapter 1: Introduction 

1.1 Molecular Recognition 

Molecular recognition plays a critical role in the fields of biochemistry and materials science 

as it allows for the design and assembly of novel materials from the combination of two or more 

different types of synthetic or biological materials. Molecular recognition is the specific 

interaction between two molecular systems through non-covalent interactions which occur at the 

specific interface of the two individual systems1. (Bio)materials can exhibit unique properties 

due to their formation from a complex resulting from the interaction of two or more molecular 

recognition elements (MoRE).  Biological complexes can also form from the combination of two 

or more MoREs after the individual components fold into a more ordered structure. Antibody-

antigen complexes can form from the combination of various non-covalent and covalent 

interactions such as hydrogen bonds, π − π interactions, metal coordination and van der Waals 

interactions at the interface of the paratopes and epitopes of the antibody and antigen 

respectively (Figure 1).  

 

Figure 1: Examples of biological molecular recognition. A: antibody (light purple)-antigen 

(yellow) complex formation B: lipocalin protein (ribbon) that is complexed with an enterobactin 

molecule (spheres) PDB:3CBC2  
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Lipocalins (shown in figure 1B) are a class of protein that transport small molecules as 

lipocalin-small molecule complexes. These complexes are formed through the molecular 

recognition of the β-barrel motif of the protein and the small molecule cargo3. The lipocalin 

structure offers an ideal platform for generating novel binding reagents and is found to have an 

application in biopharmaceuticals as antibody-like replacements3. With current knowledge and 

insights from the formation of biological complexes, biosynthetic materials can also be formed 

through molecular recognition strategies4. 

1.2 Biomolecules and Materials Science  

Current research in the area of bionanomaterials has led to an intense interest in finding 

biomolecules that exhibit affinity toward various molecular recognition elements ranging from 

noble metals to polymers. The practice of developing new biomaterials can often take a 

biomimetic approach and employ engineered biological molecules to discover novel MoRE 

interactions with non-biological materials5,6. Oligonucleotides have been investigated and 

utilized for selective interactions as they offer unique advantages in the molecular recognition 

process through their linear sequence and their ability to bind to their complementary sequence 

partner7. Short sequences of deoxyribonucleic acids and ribonucleic acids (DNA/RNA) that are 

engineered to have a molecular recognition motif are called aptamers8. Aptamers can be 

engineered through a technique called systematic evolution of ligands by exponential enrichment 

(SELEX) as shown in figure 29. SELEX allows for aptamer-material complexes to assemble 

which can lead to applications such as biosensing and imaging10.  It has been shown that DNA 

and gold nanoparticles can complex upon the introduction of the ligand adenosine triphosphate 

(ATP), which can lead to the release of the oligonucleotide-fluorophore molecule which was 

originally bound to its complementary aptamer11. The release of the oligonucleotide-fluorophore 
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molecule fluoresced upon treatment with UV light as soon as the ligand bound to the DNA 

aptamer. The DNA-gold complex allows it to be employed as a molecular probe for intracellular 

analytes of interest. This was attributed to the fact that aptamer-gold complex is stable at room 

temperature and that the stability of the aptamer increases when it is in the cell compared to the 

free aptamer10,11. Secondly, DNA-single-walled carbon nanotube (SWCNT) biosensors were 

constructed which greatly altered their conductance upon thrombin binding to their recognition 

DNA 8.  

 

 

 

  

While nucleic acids are very useful as the biological component in a functional material due 

to their increased stability compared to antibodies or large proteins8, they are limited in the 

Figure 2: Overview of the process of systematic evolution of ligands by exponential enrichment 

(SELEX)144. 
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number of functional groups present in their structure, which can reduce binding versatility. In 

addition to the limited number of functional groups, adding new functional groups onto 

DNA/RNA may pose additional challenges. Peptides on the other hand are versatile and 

considered more favourable for certain types of molecular recognition tasks due to the 

availability of diverse functional groups present in the side chains of the amino acids as shown in 

figure 3.  

 

Figure 3: All 20 amino acids showing the diversity of side chain groups. 

  

 Peptides also allow for the development of binding motifs to a range of materials, and these 

binding sequences are composed of sequential combinations of the twenty natural amino acids. 

The applications of peptides in the biological sciences were initially focused on the areas of 

therapeutics and biotechnology. For example, an analogue of the glucagon peptide has been 

developed that is employed for the emergency treatment of hypoglycemia12. It was also 
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discovered that peptides could be used to assemble a fusion protein of peptide-elastin-like 

protein to prolong the release time of the glucagon analogue. The elastin-like protein can form a 

drug depot, which allows for the deposition of the drug/peptide to occur at physiological 

temperature and which increases the half-life of the peptide drug13. Peptides have also been 

employed in the area of materials science. An example is that of their application to amyloid 

fiber –based biomaterials. Amyloid fiber is a highly ordered protein structure that is misfolded 

and is implicated in the physiology of prion disease and Alzheimer’s disease14. It was also 

determined that amyloid fibre is an excellent candidate for materials applications such as in 

liquid crystals, wires, and gels due to its mechanical properties and stability4. The designed 

amphiphilic nanofibre, composed of ten amino acids, was shown to exhibit high affinity towards 

a chemically synthesized heptameric peptide. The heptameric peptide was able to discriminate 

among various amino acid arrangements in the assembled nanofibre4. In order to isolate a 

peptide that exhibits affinity to a target of interest, rational design of peptides could be used if 

substantial information about the target of interest is known. However, it would be impractical to 

employ this approach to targets having little structural information. In addition, the design of a 

peptide that binds to a specific target based on first principles is a difficult challenge as our 

fundamental understanding of protein-folding and surface binding energies associated with the 

protein/peptide-target interactions is still in its infancy15. The preferred approach in these 

circumstances is to use a randomly generated library of peptides that are displayed on a surface 

of bacterial cells (also known as cell surface display) or bacteriophage (also known as phage 

display) to screen for peptides showing affinity to a specific molecular target 15. In the current 

work, intense interest is focused on the identification of peptides that exhibit affinity towards 

nanostructures and synthetic materials through application of phage display techniques. 
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1.3 Noble Metal Binding Peptides  

Noble metals, such as ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), osmium 

(Os), iridium (Ir), platinum (Pt), and gold (Au), are a group of metals that are resistant to 

oxidation by air, acid and corrosion. Noble metals are of high interest in materials science due to 

their unique optical and electronic properties that arise from the large enhancement of the surface 

electric field on the metal nanostructures16–18. At nanoscale dimensions, the physicochemical 

properties of noble metal based materials are dependent on their size and shape which can be 

used to tailor the functionalities of these noble metal-based nanostructures17. Peptides exhibiting 

affinity towards noble metal nanostructures have been identified and can be utilized to attach 

additional functionalities to their surfaces as well as control their syntheses. Additionally, these 

interactions can be employed to further understand the atomistic level nature of interactions 

between biomolecules and metal nanostructures. As shown in Table 1, various noble metal 

binding peptides have been identified 

Table 1: Peptide sequences identified as having affinity to noble metal surfaces. 

Metals Peptide Sequence Peptide Length 

Au19–22 MHGKTQATSGTIQS 14 

TGTSVLIATPYV 12 

AYSSGAPPMPPF 12 

WAGAKRLVLRRE 12 

WALRRSIRRQSY 12 

Ag23,24 NPSSLFRYLPSD 12 

KIEELKQKIEQLKQENQQLEEENSQLEYGC 30 

ENQSLESKISQLKRKNEELKQEISQLEYGC 30 

Pt15,25–27  PTSTGQA 7 

DRTSTWR 7 

QSVTSTK 7 

SSSHLNK 7 

TLTTLTN 7 

SSFPQPN 7 
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It has been determined by Brown and co-workers that dodecamer peptides having affinity 

to gold powder can be isolated utilizing phage display techniques and that these peptides can also 

mediate the growth of colloidal gold crystals (figure 4)19,28.  

 

Figure 4: Crystal structure of gold showing three layers of gold atoms. Drawn using 

CrystalMaker Inc. (version 9.2) software based on the crystal structure data from Swanson H E, 

Tatge E (1953) Standard X-ray diffraction powder patterns.  National Bureau of Standards (U.S.), 

Circular 359:1-1 

The identified gold-binding peptides were found to be able to recognize the six-fold 

symmetry of the gold surface. The researchers observed that the deposition of Au onto the gold 

surface was not stopped until the surface was covered, indicating the effectiveness of the 

interaction between the peptide and the gold surface28. The ability of peptides to control the 

morphology and the extent of metal deposition was further described by Kim and colleagues 

when they observed that Au surface morphology could be modulated by the choice of peptide 

employed29. Peptides can also direct the assembly of chiral nanoparticles in which the resulting 

superstructure (peptide + gold nanoparticle) could be engineered to produce a helical shape 

wherein the gold atoms are bound to the peptide at the exterior face30,31.  
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In addition to gold, silver is also of interest in materials science. Similar to gold 

nanostructures, assembly of silver nanostructures that are 60 nm to 150 nm in dimension can also 

be synthesized by various peptides that induce the nucleation and deposition of silver23. It has 

been reported that various silver-binding peptides are able to initiate the assembly of silver 

nanoparticles during the chemical reduction of AgNO3, a consequence of the presence of lysine 

and glutamate/glutamine residues found in the peptide sequence24. Peptide-controlled metal 

deposition has been considered to be a more ecofriendly and green approach to the control of 

metal surfaces32. The formation of silver nanoparticles by peptides can be applicable to the 

formation of Ag-based antibacterial coatings. Platinum is another key metal that is extensively 

employed in catalysis.  The surface morphology of a platinum catalyst is critical to its catalytic 

properties.  Several peptides have been identified that not only have affinities to specific facets of 

a platinum crystal, but are also capable of directing the growth of platinum cubic and tetrahedral 

crystals27.  

1.4 Carbon-Based Nanostructure Binding Peptides 

The carbon nanotube (CNT) is an allotrope of carbon that has potential applications in 

sensor design, drug delivery and energy storage33,34.  At an atomic level, CNTs can be viewed as 

a rolled-up sheet of graphene to form a single-walled CNT (figure 5) and it can also be multi-

walled when additional graphene sheets are rolled onto the single-walled CNT35.  
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Figure 5: Structure of carbon nanotube with chiral indices n = 6 and m = 6, and number of unit 

cells = 10. A and B are shown in different orientation and C is a space-filling model of CNT. 

 

The electrical properties of CNT are heavily dependent on its structure as it can either be 

semi-conductive or metallic35. The techniques of CNT production often lead to a mixture of 

CNTs that have heterogeneous dimensions35. The Honek laboratory has reported the isolation of 

peptides (Figure 6) exhibiting affinity towards single-walled CNT, which may lead to a potential 

solution to the problems of hydrophobicity of the nanotube that can pose problems for its future 

use in various applications34,35. 
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X1THX2X3PWTX4         consensus 

LLADTTHHRPWT             UW-1 

      CGIH--PWTKC            UW-4 

      CHTHN-PWT-C           UW-6 

      CHTH--PWTKC           UW-7 

 

Figure 6: Consensus sequence of single walled CNT binding peptide where X1 is G or H, X2 is H 

or A or null, X3 is null or R, and X4 is null or K.34   

 

Utilizing a combination of circular dichroism (CD), fluorescence and nuclear magnetic 

spectroscopy, the free peptide of UW-1 in Figure 4 was analyzed and exhibited a β-sheet-like 

structure at low pH. It was interesting to note that the conformation of the peptide in the absence 

of singled-walled CNTs was a random coil but upon the addition of single-walled CNTs, a β-

hairpin structure was formed whereas the addition of multi-walled CNTs or single-walled 

nanohorns did not change the conformation of the peptide34. Analysis of the results from 

molecular modeling of UW-1 and UW-4 indicated that the two peptides are in β-turn like 

structures that allow for the binding of the single-walled CNT to occur. Specifically, for both 

UW-1 and UW-4, each structure showed a special clustering of aromatic and hydrophobic 

residues that lead to the formation of the β-turn structure as that appears to promote both 
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hydrophobic and π − π stacking interactions at the interface between the single-walled CNT and 

the peptide.  

Graphite is an allotrope of carbon and has a layered, planar structure (figure 7). 

 

Figure 7: Structure of graphite (Drawn using Spartan 16 (Wavefunction, Inc.) software.) 

 

The individual layers are called graphene. Alpha (hexagonal) and beta (rhombohedral) 

graphite have very similar physical properties, except that the graphene layers stack somewhat 

differently36. Several reports have appeared that successfully identify peptide sequences having 

very good affinity to graphite surfaces, such as highly ordered pyrolytic graphite (HOPG), using 

the techniques of phage display. Phage display was utilized to identify a graphite binding peptide, 

termed GrBP5, having the sequence IMVTESSDYSSY37. Mutations of the two aromatic 

residues at the C-terminus significantly modified the binding characteristics of GrBP5. The 

tyrosine (Y) residues replaced by alanines (A) largely eliminated the ability for the peptide to 

bind to graphite, while replacing the tyrosines with phenylalanine (F), or tryptophan (W) 

modified GrBP5’s affinity to graphite from strong to moderate to weak binding, respectively. 
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Mutation of the N- terminus from hydrophobic to hydrophilic eliminated the amphiphilic 

character of the peptide, and disrupted intermolecular interactions with the graphite surface, and 

also prevented the peptides from forming defined nanoarchitectures37.  

A preliminary atomistic view of the molecular dynamics involved in the binding process 

of a high affinity binding peptide (graphite binding peptide 5, GrBP5; IMVTESSDYSSY) to a 

graphite surface was studied using the CHARMM27 force field38. This study provides an 

important overview of the initial diffusion, preliminary interaction and binding process that may 

occur between this peptide and the graphite surface. The peptide is composed of several domains: 

a hydrophobic domain (IMV); a hydrophilic domain (TESSD); and an aromatic domain (YSSY). 

The molecular dynamics studies indicate that the adsorption process is composed of the diffusion 

stage, followed by the anchoring and lockdown stages. The authors propose that the hydrophobic 

domain plays an important part in the diffusion and anchoring stages of the peptide to the 

graphite surface, and that the initial interaction is likely heavily reliant upon hydrophobic 

properties. In the adsorption process the aromatic residues of the peptide contribute critical 

interactions between the peptide and the graphite surface, with the hydrophilic central domain 

providing flexibility to optimize the aromatic and hydrophobic interactions. The importance of 

the interaction between the peptide and interfacial water molecules are noted in this molecular 

dynamics study. Previously reported computational studies on the interaction of benzene with 

multilayered graphenes using a density-functional tight-binding method have shed some light on 

the nature of aromatic-aromatic interactions that occur on graphite surfaces39. As well, 

predictions put forth based on molecular dynamics simulations40 of a peptide (sequence: 

GAMHLPWHMGTL) obtained by phage display41 against HOPG were found to be consistent 

with physical characterization of the peptide bound to HOPG as determined by atomic force 
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microscopy (AFM), Raman spectroscopy, Fourier-Transform Infrared (FTIR) spectroscopy and 

attenuated total reflectance (ATR)-FTIR measurements40. The 7-mer peptide, EPLQLKM, 

identified from phage-display biopanning against SLP30 graphite, has been determined to bind 

preferentially at the graphene edges42. Addition work on carbon nanotube, graphene and graphite 

binding peptide interactions can be reasonably studied by computational techniques employing 

polarizable force fields in molecular dynamics simulations. These studies indicated that 

aromatic-aromatic interactions as well as interfacial shape of the carbon allotrope are important 

factors in these interactions43. 

Graphene has been of increasing interest in terms of its fundamental structure as well as 

its potential applications in materials science (figure 8). 

 

Figure 8: Structure of graphene. (Drawn using Spartan 16 (Wavefunction, Inc.) software.) 

   

Phage display studies have been reported and have led to the identification of peptides, 

such as the peptide GAMHLPWHMGTL, exhibiting affinity interactions with this carbon 

allotrope41 and the study of its interactions with graphene40. This peptide sequence was 
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successfully utilized to immobilize gold nanoparticles onto graphene surfaces and also fabricate 

an ultrasensitive graphene-based trinitrotoluene (TNT) sensor41. Utilizing a bacterial surface 

display system rather than a phage display strategy, the peptide CGPRTYLPLPWMAALGPC 

was identified as having strong affinity to graphene44. Positively charged residues also play 

important roles in peptide/protein-graphene interactions. This is clearly the case in a recent study 

that determined that blood proteins having basic residues bind well to graphene, possibly due to 

pi-cation interactions45. Density functional theory (DFT) calculations at the M06-2X-6-

31+G(d,p)//M06-2X-6-31G(d) level of theory have provided additional insight into the 

interaction of aromatic residues in peptides, such as tryptophan, tyrosine, phenylalanine and 

histidine with graphene sheets as well as carbon nanotubes46. Other computational studies have 

been reported47, including molecular mechanics methods utilizing polarizable force fields48,49. 

Molecular dynamics simulations have been undertaken in regards peptide-graphene 

interactions50. Additional studies have further elaborated upon the factors involved in peptide-

graphene interactions51  

A report on the development of an antibody against another carbon allotrope, C60 

fullerene, has been reported (figure 9)52. With respect to phage display approaches, biopanning 

was reported using a cyclic 7-mer peptide library (constrained disulfide) against C60 films 

layered upon silicon surfaces53. The peptide having the sequence CNMSTVGRC was found to be 

selective to the bound C60 molecules. 
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Figure 9: Antibody fragment of a C60 antifullerene antibody 52 (PDB: 1EMT). Residues believed 

to make stacking interactions with fullerene are shown in red on a Connolly surface 

representation of the antibody. 

 

Carbon nanofibers (CNF), having diameters of 50-150 nm, are readily synthesized54.  

These materials have been employed in electrochemistry and as electrode materials54–56. As well, 

they have applications in the areas of energy conversion and storage devices57–59. Investigations 

utilizing M13-based phage display identified an M13 having a singe point mutation in its pVII 

protein compared to wild-type M13. The nearby region in pVII was found to be: 

….TIYRAM….., where the bold and underlined residue (Arginine) replaced the amino acid 

glutamine found in the wild-type pVII phage protein60. Analysis of binding affinities indicated 

that the mutant phage bound two orders of magnitude better to CNF than the wild-type phage.  A 

combination of atomic force microscopy (AFM), and transmission electron microscopy (TEM) 

was employed to confirm that the tips of the M13 phage were selectively bound to the CNF 

materials. No evidence for alternate binding modes to CNF was detected. The CNF-binding 

phage was also selective as little to no interactions were observed between this phage and other 
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carbon-based nanomaterials such as single-walled and multiwalled carbon nanotubes, graphite, 

or reduced graphene oxide. It was suggested by the authors, and based on further studies utilizing 

circular dichroism (CD), scanning electron microscopy (SEM) and FT-IR, that the presence of 

the arginine might have altered the conformation of the pVII protein on the phage, which might 

have led to more exposed hydrophobic or pi-pi interactions (possibly through the adjacent 

tyrosine side chain or through a nearby phenylalanine residue) between the CNF and the phage 

surface. The authors expect that phage having CNF affinities could be utilized to prepare new 

CNF biocomposites and expect to be able to construct unique nanoparticle scaffolds in the future. 

The carbon allotropes graphite and graphene are sp2-hybridized having carbon atoms 

arranged into planar hexagonal rings. On the other hand, the carbon atoms composing diamond 

are sp3-hybridized and organized as two interpenetrating face-centered cubic lattices (figure 10)44. 

 

Figure 10: Structure of carbon atoms composing diamond. (Drawn using Spartan 16 

(Wavefunction, Inc.) software.) 
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 Peptides such as CGPRTYLPLPWMAALGPC and CGPDSARGFKKPGKRGPC, 

identified as having the capability to interact with sp2 carbon frameworks such graphene and 

graphite, also have been found to exhibit some affinity to the sp3 framework of diamond44. 

Phage display screening identified several peptides having diamond-binding properties, and 

additional structure-activity studies have led to improved affinity interactions61,62. Surprisingly, 

biopanning screen using a 12-mer phage library resulted in the identification of an extremely 

long peptide,  

HFYPGANRSTTQGGGSANLHQTAASAKNSAPQKSENRKVPFYSHSRTRENNRSIYTA, 

and exhibited an affinity of approximately 63 nM to diamond-like surfaces61. Although an 

unusual entity present in phage display systems, it was interesting that such an unusual peptide 

was isolated and identified in such a biopanning screen. Linking several copies of this peptide 

improved affinity interactions62. A recent report has appeared that has identified several short 

peptides from phage display techniques, such as GVGGLTTVNYSR, NVVRNVFPALDH, 

ISYQTRHTFPTI, HKPPRQKPKAQQ, and NVDYNRKDRIDR, which exhibit diamond-

binding properties63. 
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1.5 Polymer Binding Peptides  

In addition to noble metal nanostructures and carbon nanostructures, polymers and 

biopolymers are of intense interest in materials science and have wide applicability. There have 

been several studies that have identified peptides having specific affinities toward many 

(bio)polymers. These peptides have been identified using techniques such as peptide display 

systems (described in chapter 2). Several of the most interesting examples in this area are 

presented in Table 264–75. 

Table 2: Peptide sequences and its corresponding polymers  

Target Peptide 
Peptide 
Length 

Silk75 
SYTFHWHQSWSS  12 

QSWSWHWTSHVT 12 

Lignin64 HFPSPIFQRHSH 12 

Cellulose68 WHWTYYW 7 

Chitin67,69 

SRTTRTR 7 

GEVGEQEKARVG  12 

EGKGVEAVGDGR  12 

poly (methyl 
methacrylate)70  

ELWRPTR 7 

HKPDANR 7 

Polystyrene65,71,72 

HWGMWSY 7 

WHWNAPWWNGVY 12 

FHWTWQFPYTST 12 

GAMHLPWHMGTL 12 

HWNIWWQHHPSP 12 

HFFKWHTRTNDQ 12 

HFFRWHPSAHLG 12 

HFAYWWNGVRGP 12 

GSFYDSILFYCMTCR  15 

GETRAPL 7 

FPGRPSP 7 

Polypyrrole66 THRTSTLDYFVI  12 

Poly (phenylene 
vinylene)74  

HTDWRLGTWHHS (linear) 12 

ELWSIDTSAHRK (hyperbranched) 12 
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Cellulose, a polysaccharide consisting of a linear chain of several hundred to many 

thousands of β(1→4) linked D-glucose units, has been investigated for its use in biomaterials 

science due to its high abundance in plant biomass and its potential source for biofuels 

production and for cellulose-based fibre synthesis 76–78. Enzymatic hydrolysis via the bacterial 

cellulase complex has been investigated as an alternative to chemical hydrolysis due to 

environmental pollution arising from the chemicals used in the degradation process and to the 

poor yields of the desired products from these chemical hydrolytic approaches79. In the 

cellulosome complex, cellulose-binding modules allow for cellulose binding and targeted 

enzymatic hydrolysis80. As the structural requirements of the binding modules are not completely 

understood, phage display (phage display will be explained in detail in chapter 2) has been 

utilized to identify peptides that exhibit cellulose affinity81. The identified peptides have been 

determined to be rich in tryptophan and tyrosine residues, showing that the cellulose binding 

modules require tryptophan and tyrosine for their interaction with the glucose residues of the 

cellulose polymer.  

Typically, the degradation of lignocellulose biomass to produce biofuels is found to be a 

challenging process due to the presence of lignin that is also present in plant cell walls82. Lignin 

is a complex heteroaromatic polymer that inhibits the enzymatic hydrolysis of lignocellulose and 

it is of intense interest to be able to selectively remove lignin during this process while keeping 

the integrity of the biomass source in biofuels production83–85. A series of 12-mer peptides 

having an affinity towards lignin was identified and determined to have an amino acid consensus 

sequence of HFPSP. It was observed that changing the phenylalanine residue in the peptide to 

isoleucine altered the lignin selectivity of these peptides64.  
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Synthetic polymers have also been investigated for their ability to bind peptides, which 

may provide attachments to the polymer for the assembly of novel functionalized polymeric 

materials. Synthetic polymers such as polystyrene (PS) have been investigated for its ability to 

non-covalently bind peptides to its surface65,71,86,87. It is important to note that the tacticity of the 

PS is important in the recognition event as peptides have been shown to be able to recognize the 

stereoregularity of PS. These findings show the capability of peptides to recognize the specific 

structure of a molecular target65. Interesting potential applications of these types of PS-binding 

peptides to the improvement of biochemical assays was investigated by Kogot and coworkers. It 

was shown that the affinity peptide, when fused to a second unrelated peptide, can acted as a 

capture agent to PS-coated microplate reader wells73. Through the use of enzyme-linked 

immunosorbent assays (details of this assay will be discussed in chapter 3), it was determined 

that the PS-fused peptide conjugates exhibited lower detection limits for horseradish peroxidase 

conjugated antigen based assays for the pathogen Bacillus anthracis than the free peptide, as the 

free peptide would not exhibit affinity to the PS coating and subsequently be washed out in the 

assay procedure73. PS-binding peptides were shown to be rich in aromatic side chains and it is 

thought that interactions such as the π − π interaction between aromatic side chains of the 

peptide and the aromatic groups of the styrene units of PS greatly contribute to the affinity 

interaction. 

1.6 Polyethylene Polymers 

 Polyethylene (PE) is a polymer that is derived from the polymerization of ethylene. One 

of the products, polyethylene resin, is a semicrystalline polymer that is found in plastic bottles 

and construction materials88. The general structure of PE is shown in figure 11 and a model 

representation of PE is shown in figure 12.  
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(CH2-CH2)n 

 

Figure 11: General chemical structure of PE. The structure at the bottom is the structure of PE 

with an α-olefin as the branching molecule. 

 

 

Figure 12: Model representation of PE in two different orientations. (Drawn using Spartan 16 

(Wavefunction, Inc.) software.) 

 

 

The branches on the PE resin in terms of its chemical structure are formed from alkyl 

substituents found on the α-olefin comonomer and the overall composition of PE can vary 

depending on the length of the α-olefin89. Branching of polyethylene occurs from the α-olefin or 
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Figure 13: Catalysts used in industrial PE synthesis. A: Ziegler-Natta system B: 

Chromium (Phillips) Catalyst on a silica support C: Metallocene-based catalyst with 

methyl aluminoxane as co-catalyst  

ethylene and the degree of branching depends on the mechanism of polymerization and the 

comonomer90. PE is classified into various types based on its density and its internal branching 

as shown in Table 3.  

 

Table 3: Different types of PE, their applications, and density90  

Polyethylene types Application Density (g/cm3) 

High Density PE Construction materials 0.941-0.965 

Medium Density PE Pipes 0.926-0.940 

Linear-low Density PE Food and retail packaging 0.915-0.930 

Low Density PE Food packaging 0.915-0.935 

Very low Density PE Food packaging 0.855-0.885 
 

1.7 Industrial Synthesis of PE 

 Industrial syntheses of PE resins involve the usage of catalysts such as Ziegler-Natta 

catalysts, single site catalysts and chromium catalysts as shown in figure 1390. 
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Ziegler-Natta catalysts are a combination of two individual catalysts that are composed of 

a transition metal compound (typically titanium tetrachloride) that serves as a main catalyst in 

the polymerization and an organometallic compound that serves as a co-catalyst/activator91. 

Support compounds such as MgCl2 are also added in the reaction to control particle size and 

morphology of the catalyst. Ziegler-Natta catalysts are typically used to produce linear-low 

density PE, medium density PE, high density PE, and very low density PE depending on the 

amount of pressure that is applied in the reactor90. High pressure leads to a heavily branched PE 

whereas low pressure leads to a linear PE90. The chromium catalyst system (also known as the 

Phillips catalyst) is composed of chromium oxide that is fixed to silica, which is the only active 

catalyst in the polymerization process in contrast to the Ziegler-Natta system90. Chromium 

catalysts can also be used to produce high density PE and linear-low density PE90. Single site 

catalysts are homogeneous catalysts that also use co-catalyst compounds such as 

methylaluminoxane (MAO) albeit it is not well characterized in contrast to the Ziegler-Natta 

system90,92. Metallocene-based catalyst systems such as zirconocene dichloride, ferrocene and 

dimethyl titanocenes are well known single site catalysts that are used in the commercial 

synthesis of PEs90. Single site catalysts differ from Ziegler-Natta catalysts as single site catalysts 

have one type of active center that produces PEs with very narrow molecular weight 

distributions90. Ziegler-Natta catalysts have multiple active sites that catalyze the polymerization 

of ethylenes, leading to the production of PEs with a broader molecular weight distribution90.   

1.8 Surface Modification of PE 

 Although PE polymers have excellent bulk physical and chemical properties, the polymer 

is very inert to further chemical reaction. Since the interaction of any polymer with its partner of 

choice occurs at the surface, modification and functionalization of the PE surface is being 
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studied as it will allow for an inexpensive polymer to gain novel functionalities that may increase 

the value and the applications of these polymers93. There are several approaches that have been 

reported to be successful in functionalizing the PE surface. PE can be treated with oxidising 

flame as this oxidizes the surface of PE which then generates various functional groups ranging 

from hydroxyl groups to carboxyl groups93. Flame treatment is used to treat bulk materials to 

enhance the ink permeability on the surface for purposes of dyeing. Another approach is to 

halogenate the PE surface through the irradiation of the surface with bromine vapour followed by 

irradiation of the surface for thirty second irradiation cycles using a mercury vapour lamp. 

Oxidation of the PE surface can also be done through a corona discharge treatment. The corona 

discharge treatment as shown in figure 14 at first generates a plasma (corona) through the 

ionization of the air as voltage is applied on the electrode. The PE film, after being reacted with 

the corona discharge, forms radicals which lead to the reaction of atmospheric oxygen with the 

PE radical to generate oxidized surface groups93. 

  

 

Figure 14: Schematic of Corona Discharge 
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Functionalization of PE through corona discharge treatment is dependent on the voltage 

of the corona discharge, the subsequent reaction time and temperature. The corona discharge 

treatment is mainly used in the plastics industry to improve the adhesion of polyolefin films and 

materials. While the synthetic methods are useful and are still used, it can damage the surface 

integrity of the PE itself due to the condition of the materials used in the modification. For 

example, very high corona discharge voltages can lead to surface degradation and induce the 

polymerization of the reactive group containing molecule93. It has also been observed that 

excessive bromination can damage the surface and undo the surface bromination itself 93. The 

motivation to find a biomolecule, specifically peptide-based, that exhibits affinity towards PE 

would arise from the fact that surface modification of PE through a mild molecular recognition 

of the peptide and PE could preserve the integrity of the PE surface in contrast to the synthetic 

methods described above. The hypothesis of the thesis is to determine and isolate peptides 

(herein defined as adhesons) that exhibit affinity towards advanced materials and as a starting 

point, polyethylene resins will be used as the target for screening phage libraries.  
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Chapter 2: Phage Display 

2.1 M13 Bacteriophage and Phage Display 

 Phage display is a combinatorial technique used in biochemistry and molecular biology 

and introduced by George P. Smith in 198594,95. Phage display is an in vitro selection and 

screening method in which a combinatorial library of random peptides is expressed as a fusion 

protein in a coat or tip protein of filamentous bacteriophages such as M13 as shown in figure 

1595.  

 

Figure 15: M13 bacteriophage structure labeled with five coat proteins and its dimensions 

 

The M13 bacteriophage is a filamentous phage that is 6 nm by 900 nm in dimensions and 

in contrast to the archetypal bacteriophage set of viruses can reproduce without killing the host 

cell to form plaques from the diminished growth of the host cell96. As M13 binds to the F-pilus 

complex found on the surface of the Escherichia coli host, M13 extrudes its single-stranded 

DNA (ssDNA) into the cytoplasm of the host cell. Following the entry of the DNA, a new strand 

of DNA that is a base complement to the ssDNA is replicated to form a replicative form (RF) 

DNA which is double-stranded. The RFDNA then serves as a template to synthesize phage 

proteins that are required to make up a whole particle and replicate more of the ssDNA genome. 
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Later in the life cycle of M13, dimers of DNA-binding protein pV bind to the ssDNA and 

transport the DNA to the phage-encoded transport complex where the assembly of the phage 

particle occurs. As pVIII coat proteins replace pV proteins, other minor coat proteins are 

attached to the phage unit and then the intact phage is released into the medium. Phage display 

allows for the detection of desired peptides from an extensive collection of phage variants.  Ever 

since its foundation94,97, phage display has led to a significant application in a wide range of 

scientific fields98–104. Upon the discovery of phage display, application to the areas of protein and 

antibody engineering along with its use in the study of protein-ligand interactions has resulted97. 

For example, phage display has been utilized to select for a recombinant antibody of interest that 

bound to antigens present on a surface of malignant cells96. Recent advances in both 

biochemistry and materials science have led to the use of phage display to screen for peptides 

exhibiting affinity towards non-biological targets105–109. Peptide libraries of phage are 

constructed through the insertion of randomized sequences of DNA into the appropriate site of a 

gene that encodes for one of the coat proteins of the phage. As shown in figure 15, five coat 

proteins make up one M13 phage unit, and while all coat proteins are a candidate for peptide 

display as illustrated in figure 1696,110, the tip coat protein pIII, and the major coat protein pVIII 

are most often used in phage display96. 
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Figure 16: Different examples of displayed peptides on M13 where blue triangles represent 

peptides displayed on M13. (A) Peptides are displayed on pIII. (B) Peptides are displayed on 

pVIII (C) Peptide is displayed on pVI (D) Peptide is displayed on pVII (E) Peptides are 

displayed on pIX   

 

 The tip protein pIII shown in figure 17 mediates the infection of the host cell Escherichia coli (E. 

coli) which starts the phage replication96. The coat protein pVIII surrounds the genome of M13 

as there are approximately 2700 copies per phage.  
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Figure 17: Ribbon structure of  (A) pIII (PDB: 1G3P111) and (B) pVIII (PDB:1IFJ112) coat 

proteins.  

 

The advantage of using peptides displayed on the pIII protein is that pIII can tolerate the 

insertion of larger random peptide sequences into its structure unlike the pVIII display system. 

The disadvantage of the pIII display system is that the infectivity of the phage clones may be 

reduced compared to the wild-type phage113. The advantage of pVIII is that it is possible to 

display more than five copies of a peptide per phage particle as there are approximately 2700 

copies present of the pVIII protein. The disadvantage of using the pVIII display system is that 

only small peptides can be present on pVIII as bigger peptides can prevent packaging of the 

phage particle during its life cycle, hence increasing the instability of M13. While it is possible to 

generate the library in-lab, three commercially available libraries are often used in phage display. 

Library of random peptide libraries are established by inserting randomized sequences of DNA 

into the appropriate site of a gene that encodes for one of the coat proteins of M13 phage. The 
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libraries of choice have linear 7-mer, linear 12-mer and the disulfide bond-constrained 7-mer 

peptides attached to the N-terminal of the pIII as shown in figure 18. 

 

 

Figure 18: Representation of random peptides in phage display libraries. Only one of the five 

identical peptides are shown emanating from a single pIII protein. (PDB: 1G3P and 1IFJ) 

 

It is important to note that all three libraries shown in figure 18 contain 109 independent 

phage units in which the linear 7-mer library will display 1.28 × 109 possible sequences from 20 

naturally occurring amino acids in each of the positions in the heptameric sequences (20n where 

n = 7)110. The linear 12-mer library will produce 4.096 × 1015
 possible sequences (2012) in which 

it can only represent 2.44 × 10-5 % of the sequence space given the amount of phage clones 

[(
1.0×109 𝑐𝑙𝑜𝑛𝑒𝑠

4.096 ×1015 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
) ×100 % = 2.44 × 10−5 % ]  in a phage panning experiment 
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compared to 78.0 % [(
1.0×109𝑐𝑙𝑜𝑛𝑒𝑠

1.28×109 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
) ×100 % = 78.0 % ] of sequence space for the 

linear 7-mer and disulfide constrained 7-mer library. Due to other limitations on the phage 

display process such as preferential amino acid sequence use, a somewhat reduced sequence 

space is available in these display techniques114–116. 

2.2  Materials and Methods 

2.2.1 Identification of Phage Adhesons  

 The general steps in a phage display experiment are shown in figure 19.  

 

Figure 19: General procedures in phage display 

 

Six resins from Imperial Oil (Sarnia, ON) in the form of pellets of average diameter of 5 mm 

were washed with Milli-Q™ (MQ) H2O in a glass vial/plastic Eppendorf tube twice to remove 

dust particles. The resins as mentioned earlier are the following: Ziegler-Natta catalyzed 
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HD/LLDPE, chromium catalyzed AD60 and BA46, and metallocene catalyzed 1012KA and 

1018KA. The stock library solution (for all three libraries) were diluted to 1011 phage forming 

units (pfu)/mL and incubated in an empty glass vial/Eppendorf tube for 1 hour to remove any 

potential glass/polypropylene-binding peptides that may interfere with any downstream 

experiments. After the incubation, 200 μL of the diluted phage solution was transferred to the PE 

sample contained in a glass vial/Eppendorf tube and incubated for one hour. After incubation, the 

solution that contained unbound phage was removed and washed five times with Tris-buffered 

saline (50 mM Tris and 150 mM NaCl pH 7.5) that also contained 0.1 % Tween-20Ⓡ  (Sigma-

Aldrich, Oakville, ON.) to remove any nonspecifically bound phage. The resins then were 

transferred to a new glass vial/Eppendorf tube to reduce any unwanted elution of residual 

glass/plastic binding phage. Elution of the bound phage was done by adding 200 μL of 2 M 

glycine-HCl that also contains 1 mg/mL bovine serum albumin (BSA) which was incubated for 

10 minutes. From here, the eluted phage solution was transferred to an Eppendorf tube and 

neutralized with 30 μL of 1 M Tris-HCl pH 9.1. Table 4 and 5 shows some of the differences in 

the experiment for each resin and the three corresponding libraries used in the biopanning 

experiment.  

Table 4: Number of rounds of biopanning and amplification undertaken for each library 

PE resin Linear 7-mer 
Disulfide 

constrained 7-mer Linear 12-mer 

HDPE-ZN 5th round 4th round 4th round 

LLDPE-ZN 5th round 3rd round NA 

AD60 5th round NA NA 

BA46 5th round NA NA 

1012HA 5th round NA NA 

1018KA 5th round NA NA 

 

Table 5: Different containers used in biopanning 



33 
 

PE resin linear 7-mer 
Disulfide 

constrained 7-mer linear 12-mer 

HDPE-ZN Eppendorf Tube Glass vial Glass vial 

LLDPE-ZN Eppendorf Tube Glass vial NA 

AD60 Eppendorf Tube NA NA 

BA46 Eppendorf Tube NA NA 

1012HA Eppendorf Tube NA NA 

 

2.2.2 Amplification of Eluted Phage 

 To increase the titer of the phage solution, the phage were amplified as followed: With a 

5 mL solution of E. coli K12 ER2738 culture grown overnight, the culture solution was diluted 

100-fold in 20 mL of lysogenic broth (LB) (10 g/L tryptone, 5 g/L NaCl, and 5 g/L yeast extract) 

and 230 μL of 107
 plaque forming unit/mL (pfu/mL) phage solution was added to infect the cells 

and initiate amplification. The phage containing solution then was incubated in a shaker (at 200 

rpm) for 4.5 hours at 37 °C. The solution was centrifuged at 12000xg for 10 minutes at 4 °C to 

sediment the infected cells, and the phage containing supernatant was collected. A 4 mL of 20 % 

polyethylene glycol 8000 (PEG) / 2.5 M NaCl was used to precipitate the phage containing 

supernatant, and it was incubated overnight at 4 °C. The phage precipitated solution was 

centrifuged at 13500xg for 20 minutes at 4 °C, and the sedimented phage was resuspended in 1 

mL of TBS. The solution was transferred to an Eppendorf tube and the solution was centrifuged 

with a benchtop centrifuge for 5 minutes at 3834xg to remove any residual cells. After collecting 

1 mL of the supernatant, the solution was precipitated with 200 μL of PEG/NaCl solution and 

incubated on ice for 1 hour. The precipitated phage solution was centrifuged with a benchtop 

centrifuge at 13225xg for 20 minutes at 4 °C, and then as the supernatant is removed, the phage 

pellet was resuspended with 200 μL TBS. From this point the first round of phage display is 

complete. Biopanning and amplification were repeated until the final rounds as mentioned on 

table 4 and with each succession round of biopanning, the concentration of TweenⓇ-20 was 
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increased by 0.1 % except for the linear 12-mer library in which the TweenⓇ-20 was raised to 0.5 % 

in the fourth round of biopanning/amplification.  The general steps for amplifying the eluted 

phage are shown in figure 20. 

 

 

Figure 20: General procedures in amplifying M13 phage 

 

2.2.3 Determination of Phage Titer 

 To quantify the amount of phage that has been either amplified or eluted and for the 

extraction of replicative form DNA, a colony of E. coli K12 ER2738 was inoculated in 5 mL of 

LB media, and it was incubated in a shaker (200 rpm) for approximately 6 hours at 37 °C. While 

growing, eluted/amplified phage stock solution was diluted 10-4 to 10-5-fold for eluted phage and 

10-9 to 10-10-fold for amplified phage. A Soft LB agar solution (3 mL) was added to 200 μL E. 

coli culture. Right away the soft agar solution (3 mL) was added to an LB agar plate containing 

210 μmol of isopropyl-β-D-thiogalactoside or IPTG (BioShop Canada, ON) and 98.0 μmol of  

5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside or X-Gal (BioShop Canada, ON). A diluted 

phage solution (10 uL) was spotted on the plate and was let dried in a 37 °C incubator overnight. 

The blue phage plaques formed from a diminished growth of E. coli were then counted. There 
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should be on average 15 to 70 plaques at 10-9th dilution of the amplified phage stock and 20 to 80 

plaques at 10-3rd dilution of the eluted phage solution from the biopanning step of the experiment.  

2.2.4 Extraction of M13 DNA for Sequencing 

With an overnight culture of E. coli K12 ER2738, 20 μL was added to 2 mL LB solution. 

A single blue plaque of the latest round of the amplified phage was randomly picked and added 

to the corresponding culture tubes to be grown for 4.5 hours at 37 °C as shown in figure 21. 

 

Figure 21: General description for RFDNA extraction 

 

 The infected culture was briefly centrifuged at 13225xg to sediment the infected cells that carry 

the replicative form DNA (RFDNA) of M13. As the RFDNA is double stranded, a plasmid DNA 

extraction kit (Sigma-Aldrich, Oakville, ON.) was used to extract the RFDNA through the 

following: The sedimented cells were resuspended with 200 μL of resuspension solution. The 

solution was vortexed thoroughly until it was homogeneous. The cells are lysed with 200 μL of 
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lysis solution and then gently inverted 6 to 8 times which leads to the solution becoming clear. 

The lysed cells were neutralized with 350 μL of neutralization solution which precipitates 

chromosomal DNA, cell debris, proteins and lipids and keeps the RFDNA in solution. The 

solution was inverted 5 to 7 times to ensure gentle mixing. The solution was centrifuged with a 

benchtop centrifuge at 13225xg for 10 minutes at room temperature. A miniprep binding column 

which washes out everything but the RFDNA were prepared by adding 500 μL of column 

preparation solution which increases the binding affinity between the RFDNA and membrane on 

the miniprep binding column. The column was centrifuged at 13225xg for 1 minute at room 

temperature and discarded the flow-through liquid. The cleared lysate solution (700 μL) was 

transferred to the column and centrifuged at 13225xg for 1 minute at room temperature and 

discarded the flow-through solution. The wash solution (750 μL) was added to the column and 

centrifuged at 13225xg for 1 minute at room temperature. After discarding the flow-through 

solution, the column was centrifuged at 13225xg for 1 minute at room temperature to remove 

excess ethanol in the column. The column was transferred to a new collection tube and added 50 

μL of MQ H2O. It was centrifuged at 13225xg for 1 minute to elute the bound RFDNA.  

Absorbance at 260 nm, 280 nm, and 230 nm was measured using an UV-visible spectrometer to 

check for the purity of the RFDNA. Agarose gel electrophoresis (Method is described in 2.2.5) 

was run on the DNA sample to check for the purity of the extracted DNA sample. As the gene 

for the adheson is encoded in the genome of M13, the DNA samples were sent to Mobix 

laboratory of McMaster University for sequencing. The resulting sequences (circled in appendix 

A) are then converted to their reverse complement sequences and then they are translated to their 

corresponding amino acids. 
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2.2.5 Preparation of Agarose Gels for Electrophoresis 

 To prepare a 0.8 % agarose gel, 0.32 g of agarose (BioShop Canada, Burlington, ON.) 

was weighed out and dissolved in 40 mL of TBE buffer (90 mM Tris, 90 mM boric acid, and 2 

mM ethylenediaminetetraacetic acid (EDTA) at pH 8) by microwaving the solution until it 

became transparent. SYBR Safe DNA gel stain (1.5 μL) (ThermoFisher Scientific catalog 

number S33102, lot 1105019), solution was added when it was cool enough to touch and the 

solution was poured into a casting chamber to solidify it into a gel with a well comb (well comb 

creates the wells in which the DNA solution can be added to) as it cools down further. The gel 

was transferred to an electrophoresis chamber and the TBE buffer solution was poured until it 

filled about 80% of the chamber. A DNA standard marker (5 μL) which shows the 

corresponding DNA and its absolute number of base-pair along with the RFDNA (10 μL) which 

contained 2 μL of 6X loading dye was added to the wells made from the well comb and ran it for 

60 to 90 minutes at 50 V. Figure 22 shows a general result of RFDNAs that were electrophoresed.  
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2.3 Results of Biopanning / Amplification Experiments 

The panning and amplification steps with the linear 7-mer libraries on four different type 

of polyethylene resins have been accomplished up to the 4th
 round of panning for HDPE and 

LLDPE. 5th round of panning for chromium catalyzed BA46 and metallocene catalyzed 1018KA 

was accomplished. For the disulfide constrained 7-mer library, the experiment was done against 

HDPE and LLDPE up to the 4th and 3rd round respectively. The linear 12-mer library was panned 

and amplified against just HDPE up to the 4th round. The concentration in the final rounds of 

1000 bp 

6000 bp 

10000 bp 

~7000 bp size Genomic DNA individual phage clones (all 7 

lanes) 

 

3000 bp 

Figure 22:Agarose gel electrophoresis of phage panned against (BA46) chromium catalyzed PE 

resin. DNA was prepared using Genscript Quickclean II plasmid miniprep kit. Leftmost lane is 

the DNA standard marker. The multiple bands shown in the gel represent different conformation 

of the DNA. 
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eluted phage was on average 105 to 106 
pfu

mL
, and the amplified phage was on average 1013 to 1014 

pfu

mL
.  

2.4 Adheson Sequences Obtained by Biopanning 

Table 6: Resulting phage adheson sequences from screening the linear 7-mer library  

 

 

 

 

 

 

 

Type of PE Sequence 
Frequency of appearing 

sequences 

Ziegler-Natta catalyzed 

HDPE 

TDVALQQ 

YLRVGGH 

WRFDIYH 

YLKFNVT 

1/7 

1/7 

1/7 

4/7 

Ziegler-Natta catalyzed 

LLDPE 

RYWSSDS 

KPTLFIN 

DLHAYFK 

FNISVQH 

YLKFNVT 

1/5 

1/5 

1/5 

1/5  

1/5 

Chromium catalyzed BA46 

PKHGEVG 

HMGLNYN 

DRTNATV 

2/6 

1/6 

3/6 

Exceed 1018KA 

PPSSMMG 

KTEGPVL 

PGSGIEW 

SNTNTWS 

1/4 

1/4 

1/4 

1/4 
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Table 7: Resulting phage adheson sequences from screening the disulfide constrained 7-mer 

library 

 

Type of PE Sequence 
Frequency of appearing 

sequences 

Ziegler-Natta catalyzed 

HDPE 

EKNIMWD 

QKNHRGN 

AHHWGTP 

2/4 

1/4 

1/4 

Ziegler-Natta catalyzed 

LLDPE 

YPEVRAT 

WPVVINK 

1/2 

1/2 

 

Table 8: Resulting phage adheson sequences from screening the linear 12-mer library 

 

Type of PE Sequence 
Frequency of appearing 

sequences 

Ziegler-Natta catalyzed 

HDPE 

NSIQVSSWSPSV 

HTDNAPRMYDFQ 

RLVPQYLPASPS 

HLYIPLHPSHPS 

ENWWRSPAVALA 

YTPSHLSASIT 

1/16 

6/16 

1/16 

2/16 

1/16 

5/16 

  

 Tables 6, 7, and 8 show the determined sequences for the phage adhesons. While 

sequences such as HTDNAPRMYDFQ and PKHGEVG showed up more than once from the 16 

set of 12-mer phage clone DNA samples, there were no visible residues or sequence motifs in the 

phage adhesons. It was found that series of linear 12-mer peptides that were isolated from using 

ultra high molecular weight PE tape was determined from DuPont and found the sequences 

shown in table 9, but there are no sequences that are identical to our screen against the Imperial 

Oil PE samples using the 12-mer phage library despite both the tape and the resins being 

composed of PE. It is likely that the forms of PE are different. It was interesting to note that an 

11-mer adheson (YTPSHLSASIT) was determined from the panning of HDPE with the 12-mer 
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library. This could mean that during the phage amplification, there may have been a deletion that 

led to the isolation of the 11-mer. It is also possible that a complication from New England 

Biolabs during the production of the library clones may have led to the 11-mer peptides being 

displayed on the pIII.  

 

Table 9: Linear 12-mer peptides isolated from DuPont117 

Type of PE Sequence 

Ultra-high molecular weight PE tape HNKSSPLTAALP 

LPPWKHKTSGVA 

LPWWLRDSYLLP 

VPWWKHPPLPVP 

HHKQWHNHPHHA 

HIFSSWHQMWHR 

WPAWKTHPILRM 

 

 The sequences reported in the patent from DuPont did not have an apparent consensus sequence 

either. The amino acid sequences obtained from our phage display experiments were analyzed to 

determine if there are specific amino acids that occur more frequently in comparison to other 

amino acids. This analysis could aid in the elucidation of the chemical interactions involved in 

the peptide-PE binding. Figure 23 indicates the composition of amino acid residues in the 

sequenced peptides from all three libraries.  
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Figure 23: Composition of amino acids in peptide sequences. A: linear 7-mer library B: 

disulfide-constrained 7-mer library, C: linear 12-mer library, D: 12-mer peptides determined 

from DuPont 

 

One would expect that the resulting adheson should be enriched in hydrophobic amino acids as 

PE is solely composed of hydrocarbons. From Tables 2, 3, and Figure 23, that appears not to be 

the case as there are various types of amino acids ranging from charged amino acids to 

hydrophobic amino acids. It is interesting to note in the linear 7-mer and 12-mer peptides, serine 

was present more frequently. Peptides isolated by DuPont also show variations in the amino 

acids residues in a similar manner to the isolated adhesons we obtained. The resulting sequences 

show that adhesons may interact with residual metals that are on the surface of PE, if metals/ 

metal ions are present due to the application of metal catalyzed polymerization techniques. It is 

also possible that the nature of the phage adheson-PE interaction is not purely sequence based, 

but a mixture of peptide sequence and geometric effects on the surface of PE. The PE surface is 
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not expected to be a smooth planar surface but likely contains pores that may allow for the 

binding of phage adhesons to occur. It was reported very recently that 100 wax moths Galleria 

mellonella were able to degrade plastic bags with 92 mg loss that were composed of PE118. 

While the mechanism of PE breakdown by the wax moth is currently unknown, it is possible that 

wax moths may have exterior structures that consist of sequences from the determined adhesons 

to bind to PE.  

In conclusion, the isolation and determination of the sequences of peptides that exhibit 

affinity towards PE were successfully accomplished. It was shown that it is indeed possible to 

isolate bound phage to PE surfaces. While peptide consensus sequence motifs were not found, 

the isolated phage adhesons can provide some insight into the nature of the non-covalent 

interactions between the phage adheson and the PE surface and further characterization of the 

phage adheson and the PE resins themselves are presented in Chapter 3.  

  



44 
 

Chapter 3: Characterization of Phage Adhesons and PE 

3.1 Characterization of Phage Adhesons: Enzyme-linked Immunosorbent Assay  

While there are different approaches to the detection of phage binding to a molecule or 

surface, the enzyme-linked immunosorbent assay (ELISA) is utilized very often in phage display 

related experiments110. ELISA is a technique that allows for the detection and quantification of 

antigens such as small molecules bound to phage with an enzyme-conjugated antibody that 

produces a chromogenic product as the attached enzyme reacts with an enzyme substrate. ELISA 

as a method has found applications in many fields ranging from medical diagnostics to food 

science119,120. ELISA takes advantage of an antibody’s specific affinity for its antigen. The 

method can detect picomolar to femtomolar concentrations of the antigen of interest in a mixture 

as the absorbance of the chromogenic product is proportional to the amount of the antibody-

antigen complex121. 

 

Figure 24: General scheme of direct (left) and indirect (right) ELISA-based assays122  
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 In phage-based ELISAs, direct and indirect methods (shown in figure 24) are often 

done61,69. Direct ELISA involves the detection of the antigen (usually a phage coat protein) with 

an enzyme-conjugated antibody, whereas indirect ELISA involves the detection of a primary 

antibody that is bound to the antigen (phage coat protein) with an enzyme-conjugated secondary 

antibody122. In addition to the binding studies of the phage adhesons using the ELISA 

methodology, PE resins themselves were analyzed employing electron microscopy and energy 

dispersive X-ray spectroscopy. 

 

3.2 Characterization of the PE Structure and Surface: Environmental Scanning 

Electron Microscopy and Energy Dispersive X-ray Spectroscopy 

From the results of the phage biopanning experiments against the various PE samples that 

were presented in Chapter 2, there were no obvious repeated peptide sequence motifs to be found 

among the displayed peptides that could lead one to conclude the existence of a common 

sequence specific for PE binding. The first approach to analyzing the PE surfaces was made by 

using the technique of scanning electron microscopy (SEM). SEM allows for the visualization of 

the surface of the material and its topography123. Similar to transmission electron microscopy, 

SEM uses a source of electrons that is scanned across the sample in a raster scan pattern. The 

images are generated by the detection of secondary electrons, backscattered electrons and Auger 

electrons produced from the incident electron beam124. As PE resins are not conductive, 

environmental scanning electron microscopy (ESEM) can be used in place of conventional SEM. 

ESEM differs from conventional SEM in that samples in ESEM can be put under a gaseous 

environment which dissipates the charge generated from the incident beam on the surface of the 
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insulating materials.  From the resulting phage adheson sequences, it was suspected that residual 

metals might be present on the surface of some of the PE resins due to the presence of charged 

amino acids in the adheson sequences which might interact with these surface metals, resulting 

in a contribution to binding. The technique of energy dispersive X-ray spectroscopy (EDX) was 

used to detect the presence of metals on the surface of the PE resins. EDX is first done through 

the generation of x-rays upon colliding with the sample of interest from the beam of electrons or 

x-rays125. As the detected x-rays’ energy is directly proportional to the atomic number, it allows 

for the detection of elements in a sample126. The advantage of using EDX is that it allows for 

both quantitative and qualitative analysis along with the fact that EDX instruments are often 

coupled to SEMs126. The disadvantage comes from the fact that the resolution of the EDX 

spectrum is dependent on the sample thickness as there are more interactions that lead to a 

change in the direction of electron path which then broadens the average diameter of the electron 

beam126. EDX is still of interest for surface metal analysis as the signal for carbon should be 

much lower than any metals that may be present on the surface. Hence a metal should still be 

detectable despite the thickness of the PE resin. Even though SEM is a powerful technique for 

visualization of the surface, it does not give any information at the molecular level. For example, 

it is impossible to determine the effect of α-olefin branches on the PE resin with SEM. Modeling 

the structure of a theoretical PE surface was investigated using computer molecular modeling to 

contribute to increasing our understanding of PE surfaces. 

3.3 Characterization of the PE Structure and Surface: Computational Modeling 

 With computers and software becoming more efficient and powerful, computational 

techniques can serve as valuable assets in the investigation of materials science as they allow for 

the detailed analysis of systems which can be theoretically assembled and which may be 
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impossible to investigate in a traditional laboratory setting or through existing instrumentation127. 

The motivation for modeling a material comes from the ability to link theoretical results to the 

experimental results and to improve current existing materials127. Computer modeling has found 

application in the study of polymers ranging from modeling the crystallization of polymers to the 

complexities of gold-polymer composite materials128,129. A preliminary attempt to model PE 

structure at a molecular scale was undertaken by modeling a PE cell employing just ethylene 

homopolymers. Another PE cell was modeled which contained heteropolymers created by 

computationally polymerizing a α-olefin and ethylene. Previous work on modeling PE to predict 

melt dynamics and phase transitions have been reported, however we wished to build an 

amorphous PE cell in order to obtain a simplistic model of a PE surface for our own review 

which could be manipulated in three dimensions.130–132  

 

3.4 Phage-based Fibers and Thin Films 

 Fibers are utilized in various fields of industry: from the textile industry, with the 

fabrication of everyday clothing, to the military industry with the fabrication of Kevlar™ for 

bulletproof vests that are composed of synthetic and natural sources133. There has been an intense 

interest in the fabrication and modification of fibers that possess multiple functionalities from 

improving the flame retardancy of a textile to incorporating anti-microbial properties onto a 

textile134,135  Fibers are composed of synthetic or natural polymers; however, the synthetic and 

natural polymers often lack reactive functional groups for the modification or fabrication of 

functional fibers to occur. The fibers are often grafted or reacted with harsh chemicals to 

incorporate functional groups. The limitations of aforementioned methods could come from the 

fact that the base synthetic polymer could have trouble reacting upon the introduction of the 
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chemicals due to its limited reaction selectivity134. The motivation for a functional fiber leads to 

the fabrication of fibers that are entirely composed of M13 units134,136,137. Biofibers made from 

M13 can be advantageous as they have various functional groups that arise from the solvent-

exposed region (figure 25) of the major coat protein pVIII.  

 

Figure 25: Transmission electron micrograph of M13 (The crystal structure (PDB: 1IFJ in 

subfigure shows the solvent exposed part of pVIII coat protein). T. Urquhart (Honek laboratory) 

  

M13 phage are also advantageous in that chemical functional groups can be genetically 

programmed to be expressed on pVIII coat proteins, and they are readily accessible through 

commercially available chemical reagents134,137. The M13 phage fibers were reproduced from the 

methods of Belcher and her co-workers134 as a starting point and then we attempted to fabricate 

M13 phage-based thin films.     
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3.5 Materials and Methods  

3.5.1 Materials 

 Escherichia coli K12 ER 2738 (New England Biolabs, Ipswich, MA., USA) was used in 

the preparation of ELISA phage adhesons and large-scale amplification of wild-type M13KE. 96 

microplate wells (Greiner Bio-One-VWR, Mississauga, ON., Canada), bovine serum albumin 

(BioShop Canada, Burlington, ON., Canada), anti-M13 antibody-hrp (Abcam, Cambridge, UK), 

2,2’-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) (Sigma-

Aldrich, Oakville, ON., Canada), H2O2 (Sigma-Aldrich, Oakville, ON.), sodium citrate 

(Spectrum Chemical Mfg. Corp., Gardena, CA.) were used in the direct ELISA. SEM pin stub 

(Soqulec Ltd., Montreal, QC., Canada) was used in the ESEM.  

 

3.5.2 Preparation of ELISA Phage Adhesons  

An overnight culture (5 mL) of E. coli K12 ER2738 (New England Biolabs, MA., USA), 

which had been grown in LB media (10 g/L tryptone,5 g/L NaCl and 5 g/L yeast extract) 

solution, was diluted to a ratio of 1:100 with LB media solution. Phage supernatant from the 

replicative form DNA preparation (5 μL)  was added to the 20 mL of diluted E. coli culture, and 

the resulting solution was incubated with shaking (200 rpm) for 4.5 hours at 37 °C. The solution 

was then centrifuged at 12000xg for 10 minutes at 4 °C. The supernatant was precipitated with a 

solution of 20 % PEG-8000/2.5 M NaCl (4 mL) followed by incubation of the solution overnight 

at 4 °C. The cloudy solution was centrifuged at 13500xg for 20 minutes 4 °C and the sedimented 

phage was resuspended in 1 mL of phosphate-buffered saline (PBS) (137 mM NaCl, 2.7 mM 

KCl, 100 mM Na2HPO4, and 1.8 mM KH2PO4). The resuspended solution (1 mL) was 

centrifuged in a benchtop centrifuge at 3834xg for 5 minutes at 4 °C to sediment any residual 
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cells. The supernatant was transferred to a new Eppendorf tube, and the supernatant was 

precipitated by the addition of 200 μL of a 20 % PEG-8000 / 2.5 M NaCl solution and the 

resulting solution was placed on ice and let to stand for one hour. The solution was then 

centrifuged at 13225xg for 20 minutes at 4 °C. The phage sediment was resuspended in 50 μL of 

PBS (137 mM NaCl, 2.7 mM KCl, 100 mM Na2HPO4, and 1.8 mM KH2PO4). The concentrated 

phage solution was titered as described in Chapter 2 of the thesis. An average of between 5 to 40 

plaques at 10-12th dilution were usually observed. 

  

3.5.3 Direct ELISA   

To describe the method of the experiment, 96-well microwell plate wells  were coated by 

incubating 320 μL of 5 % bovine serum albumin (BSA) solution in 0.1 M NaHCO3 pH 8.6 into 

each well used in the assay overnight at 4 °C. The following day, the wells were washed three 

times with PBS (137 mM NaCl, 2.7 mM KCl, 100 mM Na2HPO4, and 1.8 mM KH2PO4) with 

0.3 % Tween®-20 for the disulfide-constrained phage adhesons and 0.5 % Tween®-20 for linear 

12-mer phage adhesons. The wash step in ELISA is done by incubating the wash buffer filled 

microplate wells for 10 minutes on a benchtop rotator (100 rpm). The phage solutions (initial 

concentration of [HSDK-1] = 1.6 ×1014 pfu/mL and biopanned and amplified up to 3rd round, 

[HSDK-2] = 5.0 ×1015 pfu/mL, [HSDK-3] = 5.0 ×1014 pfu/mL and biopanned and amplified 

up to the 4th round, and [M13KE wild-type] = 4.0 ×1015 pfu/mL) were diluted to 1.0 × 1013 
pfu

mL
 

in 1 mL and two pellets of polyethylene resins were added into the BSA coated wells. Seven 

droplets of phage solution were added to the corresponding microplate wells by glass Pasteur 

pipettes. For the blank solution, 200 μL of PBS were dispensed by a micropipette. The phage 
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solution was removed with glass Pasteur pipettes after incubating the solution for 1 hour, and the 

wells were washed with 200 μL of PBS and PBST 5 times by incubating the wash solution for 10 

minutes on a benchtop rotator for each round of wash. Anti-M13-horseradish peroxidase (HRP) 

(Abcam, Toronto, ON.) solution (200 μL of 2 μg/mL working solution) was added to each well 

and incubated for 1 hour at room temperature with shaking in a bench top rotator (100 rpm). The 

unbound anti-M13-HRP was removed with glass Pasteur pipettes, and each well was washed 

with 200  μL of PBS and PBST to its corresponding wells five times by incubating the wash 

solution for 10 minutes on a benchtop rotator (100 rpm) for each round. The substrate solution 

containing 0.4 mM 2,2’-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt 

(ABTS) and 0.05 % in 50 mM sodium citrate pH 4.0 (200 μL) was added to the microplate wells 

and incubated for 20 minutes at room temperature with shaking (100 rpm). The PE pellets were 

removed, and the absorbance at A405 was measured using a spectrophotometer (SpectraMax M5, 

Molecular Devices, Sunnyvale, CA.).  

3.5.4 Environmental Scanning Electron Microscopy  

 PE resins were put onto a carbon tape on an aluminum stand. As a comparison, PE resins 

were also sputter coated with gold. The environmental SEM (ESEM) (FEI Quanta FEG 250 

ESEM, Watlab, Waterloo, ON.) was used in all SEM experiments. The EDX detector (10 mm2 

SDD detector X-act) (Oxford Instruments, U.K.) is coupled to the ESEM instrument. The 

electron gun was set to 10 kV for visualization and 20 kV for EDX analyses. The scanning 

electron micrographs were taken at a low vacuum condition, and the EDX analyses were done at 

a high vacuum condition. 
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3.5.5 Computational Methods for PE Surface Modeling 

The program that was used to model a hypothetical surface of PE was Maestro Materials 

Science Suite (Schrödinger, New York City, NY.). To model the high-density PE surface 

without branches, ethylene was used as a monomer, and 200 ethylenes were used to create one 

chain of polyethylene. One hundred chains of PE were used to construct an amorphous cell of PE 

at a density of 0.9 g/cm3. To model a PE resin containing a branched structure, the co-monomer 

2-butene (figure 26) was chosen with 5 % probability of branching for every ten units of ethylene 

monomer that were used to create a chain of branched PE for the surface. The number of 

generation of chains was set to a value of 10.  

 

Figure 26: “2-Butene” which was selected as a copolymer. R1 represents the head group, R2 

represents the tail group, and R3 represents the branch point of the PE chain. Note: R1, R2, and R3 

do not represent alkyl groups, but rather “carbons” to form 2-butane that is required by the 

software program in its building routine and double bond is assumed to be added by the software. 

 

 The amorphous cell for the branched PE was then assembled in a similar manner to the 

unbranched PE amorphous cell where 100 chains of branched PE were used to form the cell. All 

other values in the program were set at their default values. 
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3.5.6 Large-scale Amplification of Wild-type M13KE 

 An overnight culture of E. coli K12 ER 2738 (10 mL) was grown in 1 L of LB media 

solution containing 45 μmol of tetracycline. It was incubated in a shaker (200 rpm) at 37 °C for 2 

hours. After 2 hours, M13KE solution (1 mL of 1 ×1011 pfu/mL) was used to infect the culture, 

and the infected culture was incubated in a shaker (200 rpm) at 37 °C overnight. The culture 

solution was centrifuged at 3000xg for 20 minutes at 10 °C and collected 800 mL of the phage-

containing supernatant to a sterile flask ensure no residual cell pellets are transferred to the flask. 

The supernatant was precipitated with 200 mL of 20 % PEG-8000 / 2.5 M NaCl (PEG/NaCl) and 

let to stand overnight in a fridge. The precipitated solution was centrifuged at 13500xg for 20 

minutes at 10 °C, and the sedimented phage was resuspended in 2.83 mL of PBS (137 mM NaCl, 

2.7 mM KCl, 100 mM Na2HPO4, and 1.8 mM KH2PO4) for each centrifuge bottle used (for 1 L 

of infected culture, total volume of PBS to use should be 17 mL). The resuspended phage was 

transferred to a new centrifuge bottle, and it was centrifuged at 12074xg for 15 minutes at 10 °C 

to sediment any residual cells. After collecting the supernatant (17 mL), the solution was 

precipitated with 4.4 mL PEG/NaCl, and it was left to stand overnight in the fridge. The cloudy 

solution was centrifuged at 13500xg for 20 minutes at 10 °C, and the sedimented phage was 

resuspended with 500 μL PBS (137 mM NaCl, 2.7 mM KCl, 100 mM Na2HPO4, and 1.8 mM 

KH2PO4).    

3.5.7 Fabrication of M13 Phage Fiber and Thin Film 

 The concentrated phage solution (500 μL) from the large-scale amplification was 

centrifuged at 13225xg for 20 minutes at 4 °C. After removing the supernatant, 10 μL of bis-Tris 

Propane buffer (10 mM bis-Tris Propane and 137 mM NaCl at pH 9) was added to aid the 

transfer of the concentrated phage solution into the syringe. Phage solution was transferred to the 
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syringe by slowly pipetting into the bottom of 100 μL syringe 20 μL at a  time. As it is pipetted, 

the plunger of the syringe is concurrently pulled back slowly to receive the phage. The syringe 

equipped with a 33 gauge sized needle is submerged into a crosslinking reagent (8 % aqueous 

glutaraldehyde in 10 mM bis-Tris propane and 137 mM NaCl pH 9), and the plunger is pressed 

gently. At this point strings of phage should be seen extruding out of the needle to form a fiber. 

After the extrusion step, the fiber is incubated in the crosslinking reagent for 1 hour to let it fully 

crosslink. The fibers are transferred to MQ-H2O for storage. For the fabrication of M13 phage 

thin film, the syringe filled with the phage solution is extruded dropwise into a droplet of the 

crosslinking reagent (8 % aqueous glutaraldehyde in 10 mM bis-Tris propane and 137 mM NaCl 

pH 9). Same sets of the experiment were done, but instead of 8 % aqueous glutaraldehyde, 1 %, 

and 30 % aqueous glutaraldehyde was also used. The droplet of phage solution is incubated in 

the droplet of the crosslinking reagent for one hour to have it fully reacted. The thin film was 

transferred to MQ H2O for storage. 

3.5.8 Characterization of M13 Fiber: Uniaxial Tensile Testing 

 The fabricated fibers were removed from MQ H2O to let them dry. The fiber is dry when 

it shrivels and becomes slightly smaller compared to fibers in solution. The ends of the fiber 

were glued onto an aluminum alloy plate that was 1 inch in width and 0.5 inches in height with 

cyanoacrylate glue. Two aluminum alloy plates (Al6061) were glued at the same top and bottom 

of the fiber to sandwich the ends of the fiber. This allows for the fibers to be held by the grips in 

the tensile tester (Instron 5548 micro tester, Norwood, MA., USA). The fibers + plates were 

equipped with the vice grips of the tensile tester, and the sample was run until failure (sample 

should break in half at failure) with 10 N load cell. As a control, a strand of fishing line (with 

break strength of 10 lbs) was used.  
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3.6 Results of ELISA Assays 

First, the disulfide-constrained clone of HSDK-1 was analyzed using the ELISA method 

along with the wild-type M13 phage clones as a control and as a comparison. Several 

optimizations were made to the assay and included varying the input titer of the phage clones, 

and changing the use of micropipettes to glass Pasteur pipettes due to problems that ranged from 

non-specific binding of antibodies/phage to wells in the microplate. The chosen concentration of 

0.3 % for HSDK-1 and 0.5 % for linear 12-mer phage adhesons (data not shown) for the 

Tween®-20 are from the last rounds of biopanning as indicated in chapter 2. The results of these 

ELISA assays are shown in Figure 27.  

 

Figure 27: ELISA plot of HSDK-1, where n = 3 for blank + PE and HSDK-1 and n=2 for 

M13KE and blank no PE. Detergent used in this experiment was 0.3 % Tween®-20 
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As shown in figure 27, the disulfide-constrained clone exhibits a higher absorbance in the 

ELISA-based assays when compared to the wild-type and the blank sample, although wild-type 

M13 does appear to exhibit some non-specific interactions with the PE sample. It is possible that 

in addition to the adheson-PE interaction, some pVIII coat proteins may show some interaction 

to PE resins as phage solution is introduced to the PE. This may lead to wild-type M13 

exhibiting interaction to PE resins, as evident from figure 27. There were two blank wells in 

which one well did not contain PE resins and the other well did contain PE. The two blank wells 

were negative control experiments confirm that the absorbances generated were only from 

enzyme-conjugated antibody-phage complex formation and not from free antibodies that were 

non-specifically bound to the PE resins. The wild-type M13 (M13KE) was also run in parallel to 

the HSDK-1 assays to compare the relative binding affinity between the two phage clones. The 

assay was done in the absence and the presence of Tween®-20 in the wash buffer. This was the 

case as previous studies by Hakami and coworkers showed that the use or absence of Tween®-

20 could lead to complications138. When Tween®-20 is used in the ELISA assay, non-specific 

background binding was shown when compared to samples lacking Tween®-20. In the absence 

of Tween®-20 in the ELISA assays, increases in signal-to-noise ratios were observed. The assay 

was run in the presence and in the absence of Tween®-20 in the wash buffer during the wash 

step to determine if similar effects were observed in our experiments. Analysis of the results 

presented in figure 27 indicated that samples washed with Tween®-20 in the wash buffer have 

lower absorbance signals compared to the samples that were washed with just PBS. The results 

employing Tween®-20 were expected as Tween®-20 removes phage clones with low-affinity 

binding from the target of interest. Mean signal-to-noise ratios for Tweenless samples were 

approximately 10.5. Mean signal-to-noise ratios were calculated as shown in equation 1139. 
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Equation 1: Mean signal-to-noise ratio139  

mean SNR (HSDK − 1) =  
𝑀𝑒𝑎𝑛𝐴405

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴405 𝑜𝑓 𝐻𝑆𝐷𝐾 − 1
 

  

 When compared to the samples that had Tween®-20   in the wash buffer, the mean 

signal-to-noise ratio was 15.8. This result is consistent with the thought that the HSDK-1 

adheson is binding to PE with little non-specific binding to the microplate well. It is important to 

note that phage clones that have undergone PEG precipitation can bind to Tween®-20 in the 

wash buffer which can remove the phage units that are bound to the target138. As PEG is 

hydrophobic, it would be feasible for phage binding to occur with residual PEG in the 

amplification step. The effect from the PEG precipitation may explain the result shown in figure 

27 as samples in the absence of Tween®-20 had a much higher signal compared to the samples 

that were washed with PBST.  

 ELISA assays were also undertaken for the isolated 12-mer M13 clones. As shown in 

figure 28, the results were less clear compared to the data for the HSDK-1 clones. The 

concentrations in HSDK-1, 2, and 3 were kept constant, although the antibody solution used in 

HSDK-2 and 3 is from a different supplier (Santa Cruz Biotechnology, Dallas, TX.). Controlling 

for the different antibody concentrations from different suppliers, abnormal results are seen in 

figure 28. The abnormal result most likely originated from an excessive nonspecific binding of 

the antibody as evident from the blank lacking the PE resin well.  
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Figure 28: ELISA plot for the 12-mer clones. The detergent was 0.5 % Tween®-20 and n = 2 for 

all samples in this plot 
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C 

3.7 Results of Environmental Scanning Electron Microscopy and EDX 

The scanning electron micrographs are shown on figure 29. It is noted that at high 

vacuum it was very difficult to record an image due to the charge build-up effect that arises from 

a non-conductive sample such as the PE resin as shown in the electron micrograph in EDX 

spectra (figure 32)140 
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Figure 29: Scanning electron micrograph of PE resin surfaces. A: Ziegler-Natta catalyzed 

high density PE B: Ziegler-Natta catalyzed linear low density PE C: AD60 D: BA46 E: 

Exceed 1012KA F: Exceed 1018KA 
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 The surfaces detected for the array of PE samples (figure 29) utilized in this research, are 

not smooth, but rather have pores, crevices and surface defects. These surface defects may be 

structures that are important or at least contribute to phage-PE binding affinity interactions. The 

approximate diameter of the pores in the six PE resins that were studied varied from 56 nm to 

194 nm. Even though the depths of the pores are currently unknown, the pores and defects on the 

surface could still contribute to the binding of the phage adheson as the diameter of the pores is 

large enough to fit the phage adheson vertically. PE resins that were sputter coated with gold 

showed that the surface did not show any pores but cracks that could have formed from the gold 

covering the crevices. A comparison of naked PE surface and the gold-covered surface is shown 

in figure 30.  

 

Figure 30: Comparison of naked PE surface (on left) and gold-covered PE surface (on right) 
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A comparison was made to ensure the pores and crevices are indeed from the production 

of the PE resin, not from the electron gun of the SEM. From the EDX results shown in figure 31, 

trace amounts of zinc were shown in a Ziegler-Natta catalyzed HDPE and aluminum is shown in 

Ziegler-Natta catalyzed LLDPE, BA46, and 1018KA resins.  

 

 

Figure 31: EDX spectra of metallocene 1018KA PE and Ziegler-Natta catalyzed LLDPE 
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Figure 32: EDX spectra of Ziegler-Natta catalyzed HDPE and chromium catalyzed BA46 PE 

 

After running additional EDX experiments on a different set of PE resins, it was 

concluded that metals were absent on the surfaces, which may indicate that only one or two 

resins out of a batch of PEs contain a meager amount of metals that is insignificant to the binding 

of phage adhesons as shown in figure 32, 33, and 34.  
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Figure 33: EDX spectra of chromium catalyzed BA46 resin at 2 different regions. No metals are 

present 
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Figure 34: EDX spectra of Ziegler-Natta catalyzed HDPE resin at 2 different regions. No metals 

are present 

 

It is also possible that PE resins that had an apparent metal present are a contaminant 

from the SEM stand and the signal for metal did not come from the resins. From the SEM results, 

insufficient information was given to the effect of branching on the geometric shape of the 

surface as both Ziegler-Natta catalyzed LLDPE and Ziegler-Natta catalyzed HDPE were 

structurally similar to each other. To further elucidate the effect of branching at the atomic and 

molecular level, computational modeling of the PE surface was attempted.  
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3.8 Preliminary PE Structure Modeling  

 An amorphous PE cell without any branches was successfully generated using the 

Schrödinger software alogrithms. Two hundred ethylene monomers were used to construct a 

chain that led to the assembly of a cell containing 100 chains, each chain containing 200 ethylene 

units as shown in figure 35 and 36. The PE resins from Imperial Oil are a copolymer of ethylene 

and hexene, which led to investigating the effect of branching on the PE structure. 

 

Figure 35: Branchless PE model   
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Figure 36: Branchless PE zoomed in to show the interweaved networks of PE chains 

  

 It is interesting to compare the results of molecular modeling with the model 

representation of the PE (figure 12) as the structure of the PE amorphous cell is not ordered in a 

specific arrangement. Branched PE cell was also successfully modeled using the Schrödinger 

software algorithms (figure 37). Similar to the branchless PE, interweaved networks of PE chains 

were shown (figure 37 and 38). The results from the molecular modeling of PE show that 

molecular representation of PE is a very complex process and that representation of PE such as 

the model shown in figure 12 is not the most likely representative of PE at a molecular level.  
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Figure 37: Branched PE model 

 

Figure 38: Branched PE model to show the interweaved network of PE chains 
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3.9 Result of M13 Phage Fibers and Thin Films 

 M13 phage fibers were successfully reproduced as shown in the top two images in figure 

37. To see if varying the concentration of the crosslinking reagent led to a change in fiber 

strength, fibers were fabricated in three different concentrations as mentioned in materials and 

methods. The fibers at 1 %, 8 %, and 30 % aqueous glutaraldehyde behaved similar in which 

upon drying, all three fibers became smaller. They were also susceptible to fragmentation as they 

were being handled, showing that the concentration of the crosslinking reagent was not critical. 

The buffer of choice in making the crosslinking reagent was determined to be Bis-Tris propane 

(pH 9) to produce a solution pH which would increase the nucleophilicity of the lysine side chain 

on the M13.  M13 phage is stable at pH 9 as the pH stability range for M13 is from pH 6 to 9141.  

An important aspect of the crosslinking success is that at high concentrations, phage particles 

form an ordered configuration142 which likely assists in the reaction between the phage and the 

crosslinking reagent.  
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Figure 39: M13 phage fiber at the top and thin film at the bottom 

  

3.9 Preliminary Result of the Tensile Strength Test 

 M13 phage thin films also behaved similar in which the concentration of the crosslinking 

was not critical in their behaviour. Uniaxial tensile testing was investigated for M13 phage fibers 

to measure the elastic modulus. There were some complications which arose from the 

preparation of the phage samples. The phage fibers have the tendency to fragment even upon 

handling with gentle care. This led to the fiber being shortened to the point where it was very 

difficult to equip the fiber + plate onto the tensile tester. The stress-strain curve for the fishing 

line and M13 fiber are shown in figure 38.  



70 
 

 

 

Figure 40: Stress-strain curve of fishing line (top in blue) and M13 fiber (bottom in orange) 

  

 As shown in figure 38, both fishing line and M13 fiber showed a similar result in which 

the estimate elastic modulus from the stress-strain curve was 2.51 GPa for M13 fiber and 2.07 

GPa for the fishing line. While the elastic modulus comparables favourably to previously made 

M13 fibers137, it was difficult to estimate the elastic modulus due to the unexpected non-linear-
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like plot. The mechanical strength of M13 fiber has been determined in preliminary published 

studies to be similar to the mechanical strength of synthetic polymers such as Nylon137. 
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Chapter 4: Summary and Future  

4.1 Summary of Project 

 The objective of this project has been to determine if peptides exist that exhibit affinity 

towards the important industrial polymer polyethylene (PE). This work was to utilize 

commercially important PE types produced by a variety of catalytic methods. To date, the 

current thesis research has identified, through phage display techniques, various peptide 

sequences that exhibit affinity towards a variety of PE resins. The sequences of adhesons from 

the linear 7-mer library, while having some consensus sequences, were spread out on the amino 

acid residues that make up the adhesons. The sequences were a mixture of hydrophobic and polar 

amino acids. Similar results were seen with disulfide-constrained 7-mer and linear 12-mer 

libraries on the composition of the amino acids in the adhesion sequences. DuPont has 

previously reported the identification of a series of peptides that exhibit affinity towards ultra-

high molecular weight PE tape117. No consensus sequences were identified within their own 

study nor were any of the DuPont sequences isolated in this current thesis research. This may be 

due to the different types of PE that were employed in these two studies. 

 The isolated phage adhesons, disulfide-constrained clone, HSDK-1, and linear 12-mer 

clones HSDK-2 and 3, were analyzed by enzyme-linked immunosorbent assays (ELISA) to 

determine their binding affinity to the targeted PE. It was determined by Hakami and coworkers 

that the use of Tween®-20 may alter the binding interactions as measured by ELISA, at least in 

their studies138. After accounting for the presence of Tween®-20 in our own experiments by 

running the experiments in the absence and presence of Tween®-20 in the wash buffer during 

the wash step, its presence was shown to have the opposite effect on affinity binding in our own 
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research compared to the work reported by Hakami and coworkers. Samples in the presence of 

Tween®-20 led to a lower signal than samples that were washed with PBS (no Tween®-20). It 

was also reported138 that PEG might bind to M13 phage during the amplification step which 

could then lead to the phage being washed off their target when Tween®-20 is added to the wash 

buffer. While it is possible that some of the phage adhesons that bind with high affinity have 

washed off, the signals for HSDK-1 were higher than the wild-type M13 phage (M13KE), 

indicating that the adheson attached to the phage are truly bound tighter than the wild-type M13. 

HSDK-2 and 3 had some anomaly likely due to a combination of nonspecific binding of 

antibodies in both blank wells (with and without PE resins) and the same Tween®-20 effects that 

may have affected the HSDK-1 clone. 

 The surfaces of some of the PE samples were first investigated utilizing SEM-EDX to 

visualize the surface of the resins, which could aid in our understanding of PE surfaces, the target 

of our peptide binders. Analysis of the data indicated that the surfaces were covered with holes 

and pores along with the presence of a few crevices, which could trap the phage adhesons within 

them. EDX was also employed to analyze the PE surfaces to check for any residual metals on the 

surfaces which might interact with charged or metal chelating amino acids in the adhesons. A 

trace amount of zinc and aluminum were detected; however, most PE resins did not have any 

detectable surface metal(s), which would be consistent with the idea that these trace metals were 

likely present due to low level environmental contamination.  

 Computer modeling of a theoretical surface of PE was attempted to analyze the structure 

of PE at an atomistic scale. Analyses of the unbranched and branched PE models showed the 

presence of empty spaces and zones that possibly contribute to the macroscopic pores in the 

electron micrographs in chapter 3.  
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 While there is preliminary evidence that some peptides exhibit affinity towards polymeric 

materials such as PE, there are some experiments that should either be investigated or optimized 

in the case of the ELISA assays.  

 A very high concentration of phage (1015 to 1016 pfu/mL) solution is used to prepare M13 

fibers by extruding the phage solution into an aqueous crosslinking reagent with a syringe134.  

Phage thin films were also prepared with a very high concentration of phage at the same 

concentration as the fiber by introducing small drops of the phage solution to droplets of 

crosslinking reagent. The concentration of the crosslinking agent was not as critical as expected 

as crosslinking with 1%, 8 %, and 30 % glutaraldehyde all resulted in fiber fabrication. The 

mechanical properties of M13 fibers were characterized by employing a uniaxial tensile tester. 

The stress-strain curve, while it did not exhibit a proper linear region for determination of elastic 

modulus, was still estimated to have a similar value as reported in literature137.  

4.2 Future Work 

 With regard the ELISA assays utilized to quantitate the phage binding, it is important that 

the antibody concentration is optimized to properly analyze the remaining 12-mer phage 

adhesons isolated from our experiments which would allow for the ranking of the phage 

adhesons with respect to their relative binding affinities. Subsequently, the use of atomic force 

microscope (AFM) should be investigated to visualize the surface of the PE resins and determine 

the depth of the pores found in the resin. If possible, visualizing phage adheson binding to PE 

could be investigated through a combination of SEM as there are reports on the visualization of 

phage through the use of environmental SEM143. Sample preparation for tensile testing should be 

optimized to ensure the results are more reliable and reproducible. 
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Another future experiment would be to investigate the production of phage fibers and 

thin films that are displaying the identified PE adhesons to provide PE affinity fibers and thin 

films as a potential modifier of the PE surface. It is also possible that these composites could act 

as new types of PE adhesives, allowing for the attachment of other types of molecules to the PE 

surface. 
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Appendix A: Primary Data of Adheson Sequences 

 
 

Appendix A 1: HSDK-1 (YPEVRAT) DNA sequence (circled) 

 
 
 
 

 
 

Appendix A 2: HSDK-2 (NSIQVSSWSPSV) DNA sequence (circled) 



88 
 

 

 
 

Appendix A 3: HSDK-3 (HTDNAPRMYDFQ) DNA sequence (circled) 

 

 
Appendix A 4: TDVLQQS DNA sequence circled 
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Appendix A 5: WRFDIYH DNA sequence circled 

 

 

Appendix A 6:DLHAYFK DNA sequence circled 
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Appendix A 7:DRTNATV DNA sequence circled 

 

 

 
Appendix A 8: FNISVQH DNA sequence circled 
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Appendix A 9: KPTLFIN DNA sequence circled 

 
 

 
Appendix A 10: RYWSSDS DNA sequence circled 
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Appendix A 11: YLKFNVT DNA sequence circled (for both HDPE and LLDPE linear 7-mer) 

 

 
Appendix A 12: YLRVGGH DNA sequence circled 
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Appendix A 13: HMGLNYN DNA sequence circled 

 

 

Appendix A 14: AHHWGTP DNA sequence circled 
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Appendix A 15: EKNIMWD DNA sequence circled 

 

 

Appendix A 16: KTEGPVL DNA sequence circled 
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Appendix A 17: PGSGIEW DNA sequence circled 

 

 
Appendix A 18: PKHGEVG DNA sequence circled 
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Appendix A 19: PPSSMMG DNA sequence circled 

 

 

Appendix A 20: QKNHRGN DNA sequence circled 
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Appendix A 21: SNTNTWS DNA sequence circled 

 
 

 
Appendix A 22: WPVVINK DNA sequence circled 
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Appendix A 23: ENWWRSPAVALA DNA sequence circled 

 

 

Appendix A 24: HLYIPLHPSHPS DNA sequence circled 
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Appendix A 25: YTPSHLSASIT DNA sequence circled 

 

 

Appendix A 26: RLVPQYLPASPS DNA sequence circled 

 


