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Abstract 

Numerical modelling of fluid flow and transport in reservoir engineering problems is a challenging task, 

given variability and uncertainty in the physical properties of rock, the complexities of multi-fluid 

interaction at elevated pressure and temperature and limited computational resources. Nonetheless, this 

thesis seeks to provide a basis for expansion of our modeling capabilities in the context of hydrocarbon 

mixtures at equilibrium conditions. We briefly describe the numerical simulator CompFlow Bio and 

propose a package, with the solid thermodynamics background required for dealing with highly non-

ideal mixture behavior, to amend this simulator. 

Herein we present the governing equations of phase equilibrium and key expressions for calculating 

equilibrium mole fractions and phase properties over a broad range of pressure and temperature. We 

employed the traditional flash calculations model used in the petroleum industry and redesigned its 

procedure in order to accommodate the special design of CompFlow Bio and verify this modified model 

against a well-known commercial simulator results. In this proposed model, we use a modified Peng-

Robinson equation of state improved by volume-translations for performing equilibrium flash 

calculations. Then, we describe three different case studies developed in order to investigate the 

accuracy of the proposed model, as well as describe the complexity of hydrocarbon mixture behavior at 

reservoir conditions. 

Our findings indicate that: our model’s performance is in close agreement with the commercial 

simulator software. Furthermore, these findings highlight various aspects of hydrocarbon behavior at 

high pressure and temperature, such as: decrease in non-aqueous phase mass density with increase in 

pressure while a gaseous phase is disappearing; a growing gas phase can dry out of the aqueous phase 

until it disappears; injection of carbon dioxide for enhanced oil recovery does not guarantee swelling of 

the non-aqueous phase and gas phase mass density increase with the injection of carbon dioxide, 

depending on the light hydrocarbon content of the gaseous phase.  
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Chapter 1 
Introduction 

1.1 Background and Motivation 

For most producing oil fields, a conventional approach to enhanced oil recovery (EOR) involves the 

injection of water or hydrocarbon gas. An attractive alternative to these methods which also addresses 

environmental considerations involves the injection of carbon dioxide (𝐶𝐶𝑂𝑂2), often as a supercritical 

fluid. The unique properties of supercritical carbon dioxide not only are able to improve the oil 

production in the final (tertiary) phase of reservoir life, but also result in considerable environmental 

benefits through minimization of greenhouse gas (GHG) emissions, since available carbon dioxide from 

a point source such as a fertilizer or cement plant, can be captured and used as injection fluid for 

increasing oil recovery. 

Understanding the physics associated with the injection of carbon dioxide into oil reservoirs requires 

laborious and expensive experiments. When the carbon dioxide is supercritical, the prevailing high 

pressure and temperature render experimentation at reservoir conditions very expensive, time-

consuming, and fraught with many challenges, such as saturating the matrix and fracture fluids with the 

reservoir fluids and monitoring saturations in situ. To compensate for the lack of exhaustive 

experimentation, numerical models may be used to predict the results of these experiments without 

doing them. When numerical models are validated against experiments and we are confident that we 

understand the underlying physics, then those numerical models can be used to explore different 

scenarios. In this way, considerable amount of money and time can be saved.  

One of these numerical models is CompFlow Bio, a simulator developed by Unger et al. (1995). 

CompFlow Bio is a multi-phase, multi-component, first-order accurate, finite-volume simulator and it 

is unique in a way that handles discrete fracture networks. The ability of CompFlow Bio to reproduce 

well-controlled laboratory experiments has been scrutinized in a number of previous works (Enouy et 

al., 2011; Unger et al., 1998; Unger et al., 1995; Walton et al., 2017; Yu et al., 2009). In all of these 

studies, however, ideal fluids and room conditions were used. To be able to use this simulator with 

confidence in high pressure and temperature situations, which is the case in carbon dioxide 

sequestration, CompFlow Bio needs functionality to compute species equilibrium ratios between 

equilibrated phases at high pressure and temperature. These correspond to species mole fraction ratios 

between phases at equilibrium and can be assumed independent of composition if mixtures can be 

considered ideal. This is the case for equilibrium between water, air and a low-solubility non-aqueous 

phase liquid (NAPL) at low pressures and temperatures, when equilibrium compositions are calculated 
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conveniently using Henry’s, Dalton’s and Raoult’s laws. For complex hydrocarbon liquids, at high 

pressures and temperatures, this assumption is no longer valid and other approaches should be used for 

attaining accurate and acceptable results. Two well-known approaches for calculating equilibrium ratios 

are the method of direct minimization of Gibbs free energy and the equal fugacity method. In this thesis, 

we use the equal fugacity method as it provides accurate results with fewer computations.  

Like any other numerical model and simulator, in CompFlow Bio there are some assumptions 

underlying the calculations. The most important assumptions are as follows: 

1) Phases are in chemical equilibrium in each node: This assumption will provide the required 

basis for using fugacity coefficients of the components for solving for distribution coefficients. 

2) Gas phase is always present: In CompFlow Bio, there is always a gaseous phase present, which 

means that the number of different combinations of phases that could be present at each node 

is four and we refer to each of these four combinations as a State. The states are as follows: 

State 1 (gaseous, aqueous, and non-aqueous phases present); State 2 (gaseous and aqueous 

phases are present); State 3 (only gaseous phase present); State 4 (gaseous and non-aqueous 

phases are present). 

1.2 Objectives and Scope 

The objective of this thesis is to provide CompFlow Bio with the required functionality to calculate 

equilibrium ratios accurately. This function should be adapted to CompFlow Bio’s terminology and of 

course inputs and outputs. By appending this function to CompFlow Bio, the simulator will expand its 

applicability into wider range of science and engineering problems, such as fractured reservoir 

engineering and carbon dioxide sequestration. As with every other model, the assumptions underlying 

the simulator and model restrict its applicability. The most important assumption is equilibrium of 

phases. This means phases are in equilibrium upon contact in every node. When appropriate, this 

assumption drastically reduces the computational load of CompFlow Bio. It should be noted, however, 

that even when this assumption is relaxed and rate-limited mass transfer is taken into account (e.g., 

Enouy et al. (2011), computation of equilibrium ratios is still needed to calculate the driving force for 

mass transfer. The result of this work is the foundation for building a sub-function in CompFlow Bio 

that would expand its capabilities into areas of application where rigorous thermodynamic account of 

mixture non-ideality is necessary. 

The main input to the computations carried out in this work is the current state from CompFlow Bio. 

After calculation of the equilibrium ratios based on the input given, we verify if the state assumed at 

first is indeed the correct one. If not, a set of tests is used to decide the correct state, which becomes an 
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output of the computations. This output is returned to CompFlow Bio alongside computed equilibrium 

ratios and phase properties. 

1.3 Organization of this Thesis 

This document is organized in five chapters and two appendices. Chapter 2 reviews the theoretical 

background required for finding equilibrium ratios as well as related published research. In Chapter 3, 

it is demonstrated how thermodynamic theory is applied to the problem at hand. Chapter 4 includes 

results of this work with reference to three case studies and compares the accuracy of the computations 

against the results of a well-known commercial simulator. Chapter 5 provides a summary of our major 

findings and suggests topics for future studies. Finally, the Appendices contain details on (i) improving 

the convergence of the flash calculations and (ii) the main parts of the computational codes used within 

this work. 

  



4 

 

Chapter 2 
Background Theory and Literature Review 

2.1 Description of CompFlow Bio 

CompFlow Bio is a three‐phase, multicomponent, deterministic numerical model for fluid flow and 

dissolved species transport that includes capillary pressure and equilibrium partitioning relationships in 

its calculations. It has been recently augmented (Walton et al., 2017) to include randomly generated, 

axis-aligned, discrete fracture networks (DFNs). The DFN is coupled with the porous medium (PM) to 

form a single continuum. The domain is discretized using a finite-volume scheme in an unstructured 

mesh of rectilinear control volumes (CV). 

CompFlow Bio is a numerical model that includes three mobile phases: aqueous, non-aqueous and 

gaseous; and multiple components: water (𝐻𝐻2𝑂𝑂), one or more oil species, nitrogen (𝑁𝑁2), and optionally 

additional gaseous species. Nitrogen is mentioned separately, as in CompFlow Bio it is required to have 

a gas phase always available (which is assumed to consist of, at least, 𝑁𝑁2). Presence of a gas phase, even 

in infinitesimally small quantity, helps with efficient and robust calculations (Forsyth, 1993). Nitrogen 

is assumed insoluble in other phases. Furthermore, currently in CompFlow Bio water is assumed to be 

insoluble in the non-aqueous phase. Both of these assumptions are relaxed in the present work.  

CompFlow Bio uses equilibrium partitioning to transfer components between phases. A first‐order 

accurate finite‐volume approach is used to discretize the governing three-phase flow equations. Phase 

pressures, saturations, and component mole fractions are solved using a fully implicit scheme. The 

simulator chooses time step size adaptively. CompFlow Bio uses a Newton‐Raphson linearization 

method with CGStab acceleration and a block‐sparse matrix data structure for the system of nonlinear 

differential equations (Walton, 2013). Complete sets of the governing equations for CompFlow Bio have 

been reported in the literature previously (Forsyth, 1993; Yu et al., 2009).  

Here we review equations for a three-phase system with a number of components equal to 𝑁𝑁𝑁𝑁. For 

cases with lower number of phases, similar equations are applicable. 

The equation for conservation of moles of component 𝑝𝑝 is 
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where: 

𝑛𝑛: Non-aqueous phase, 

𝑞𝑞: Aqueous phase, 

𝑔𝑔: Gaseous phase, 

𝜊𝜊: Non-methane hydrocarbon components, 

𝑚𝑚: Number of non-methane hydrocarbon components, 

𝑡𝑡: Time [𝑑𝑑], 

𝜙𝜙: Porosity [-], 

𝑆𝑆𝑙𝑙:    Saturation of phase 𝑙𝑙 [-], 

𝑀𝑀𝑙𝑙:   Molar density of phase 𝑙𝑙 [𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚3 ], 

𝑥𝑥𝑝𝑝,𝑙𝑙:  Mole fraction of component 𝑝𝑝 in phase 𝑙𝑙 [-], 

𝜌𝜌𝑏𝑏:   Balk density of the porous medium [𝑘𝑘𝑘𝑘
𝑚𝑚3], 

𝜅𝜅𝑑𝑑:   Sorption coefficient [𝑚𝑚
3

𝑘𝑘𝑘𝑘
], 

𝑄𝑄𝑝𝑝: Source/sink term for species [𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚3𝑑𝑑

], 

𝑫𝑫:     Hydrodynamic dispersion tensor [], 

The Darcy velocity of phase 𝑙𝑙, 𝑣⃗𝑣𝑙𝑙 , is given by the following equation 

 𝑣⃗𝑣𝑙𝑙 = −𝑲𝑲
𝑘𝑘𝑟𝑟𝑙𝑙
𝜇𝜇𝑙𝑙

(𝛻𝛻𝑃𝑃𝑙𝑙 − 𝜌𝜌𝑙𝑙𝑔𝑔𝑔𝑔𝑔𝑔) (2-2) 

in which: 

𝜌𝜌𝑙𝑙: Mass density of phase 𝑙𝑙 [𝑘𝑘𝑘𝑘
𝑚𝑚3], 
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𝑲𝑲: Intrinsic permeability tensor [𝑚𝑚2], 

𝑘𝑘𝑟𝑟𝑙𝑙: Relative permeability of phase [‐], 

𝜇𝜇𝑙𝑙: Coefficient of dynamic viscosity of phase 𝑙𝑙 [ 𝑘𝑘𝑘𝑘
𝑚𝑚.𝑠𝑠

], 

𝑃𝑃𝑙𝑙: Fluid pressure of phase 𝑙𝑙 [ 𝑘𝑘𝑘𝑘
𝑚𝑚𝑠𝑠2

], 

𝑔𝑔: Gravitational acceleration constant [𝑚𝑚
𝑠𝑠2

], 

d: Depth [𝑚𝑚], 

The dispersion tensor (Bear, 1972) has the following form 

 𝜙𝜙𝑆𝑆𝑙𝑙𝑫𝑫𝑙𝑙 = 𝛼𝛼𝐿𝐿𝑙𝑙 𝑣⃗𝑣𝑙𝑙𝛿𝛿𝐼𝐼𝐼𝐼 + �𝛼𝛼𝐿𝐿𝑙𝑙 − 𝛼𝛼𝑇𝑇𝑙𝑙 �
𝑣⃗𝑣𝑙𝑙𝑙𝑙𝑣⃗𝑣𝑙𝑙𝑙𝑙
|𝑣⃗𝑣𝑙𝑙|

+ 𝜙𝜙𝑆𝑆𝑙𝑙𝜏𝜏𝑫𝑫𝑙𝑙
∗𝛿𝛿𝐼𝐼𝐼𝐼 (2-3) 

where: 

𝛼𝛼𝐿𝐿𝑙𝑙 ,: Longitudinal and transversal dispersivities of phase 𝑙𝑙 [𝑚𝑚2], 

𝛼𝛼𝑇𝑇𝑙𝑙 : Transversal dispersivities of phase 𝑙𝑙 [𝑚𝑚2], 

𝛿𝛿𝐼𝐼𝐼𝐼: Kroneker delta function at matrix indices 𝐼𝐼 and 𝐽𝐽, 

𝜏𝜏:  Tortuosity [-], 

𝑫𝑫𝑙𝑙
∗: Molecular diffusion coefficient [𝑚𝑚

2

𝑠𝑠
], 

𝑣⃗𝑣𝑙𝑙𝑙𝑙 , 𝑣⃗𝑣𝑙𝑙𝑙𝑙: Covariant components of phase 𝑙𝑙 velocity in terms of considered coordinate system [𝑚𝑚
𝑠𝑠

]. 

Note that the intrinsic permeability tensor is assumed to be aligned with the principal spatial axes and 

thus, for the porous medium, it has the following form: 

 𝑲𝑲 = �
𝑘𝑘𝑥𝑥1𝑥𝑥1 0 0

0 𝑘𝑘𝑥𝑥2𝑥𝑥2 0
0 0 𝑘𝑘𝑥𝑥3𝑥𝑥3

� (2-4) 

For fractures with effective hydraulic aperture 2𝑏𝑏, planar directions 𝐼𝐼 and 𝐽𝐽, and with normal direction 

𝐾𝐾, the intrinsic permeability components are given by: 

 𝑘𝑘𝐼𝐼𝐼𝐼 = 𝑘𝑘𝐽𝐽𝐽𝐽 =
(2𝑏𝑏)2

12
 (2-5) 

The above formulation leaves 3 × 𝑁𝑁𝑁𝑁 + 6 unknowns per CV: three saturations, 𝑆𝑆𝑙𝑙; 3 × 𝑁𝑁𝑁𝑁 mole 

fractions, 𝑥𝑥𝑝𝑝,𝑙𝑙; and three pressures 𝑃𝑃𝑙𝑙. Various constraints (or simplifying assumptions) exist among the 
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unknowns that eventually reduce the number of unknowns to 𝑁𝑁𝑁𝑁 primary variables per control volume. 

Unknown values calculated via constraints are termed secondary variables. 

This way of calculations practically decouples governing equations from other equations such as 

those used for equilibrium ratios. This gives CompFlow Bio significant advantage over other simulators, 

because it renders the calculations more robust and time efficient. By separating governing equations 

such as conservation of moles equations, first CompFlow Bio breaks a huge system of equations to a 

Newton iteration loop, which instead converges more rapidly and is more robust. 

The following applies to a CV in which all three phases are present. If a phase is not present, the 

numerical model undergoes primary variable switching for the affected CVs. This, as well as a 

description of system closure in all primary variable configurations, is given in (Forsyth and Shao, 

1991). A first constraint concerns the summation of phase saturations: 

 � 𝑆𝑆𝑙𝑙
𝑙𝑙=𝑛𝑛,𝑞𝑞,𝑔𝑔

= 1 (2-6) 

After solving for two saturations, the third one is computed by this constraint and is thus a secondary 

variable. The above constraint reduces the number of unknowns in CompFlow Bio by one. 

The sum of mole fractions of all components in a phase must equal unity. The system is reduced by 

three primary variables (one per phase) by using the following additional constraints: 

 �𝑥𝑥𝑖𝑖,𝑙𝑙

𝑁𝑁𝑁𝑁

𝑖𝑖=1

= 1      𝑙𝑙 = 𝑛𝑛, 𝑞𝑞 𝑜𝑜𝑜𝑜 𝑔𝑔 (2-7) 

Equilibrium partitioning is employed to transfer components between phases. Partitioning 

relationships reduce the number of unknowns by 2 × 𝑁𝑁𝑁𝑁. The general forms of the partitioning 

relationships are 

 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔 =
𝑥𝑥𝑖𝑖,𝑔𝑔
𝑥𝑥𝑖𝑖,𝑛𝑛

𝑃𝑃𝑛𝑛
𝑃𝑃𝑔𝑔

 (2-8) 

 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔 =
𝑥𝑥𝑖𝑖,𝑔𝑔
𝑥𝑥𝑖𝑖,𝑞𝑞

𝑃𝑃𝑞𝑞
𝑃𝑃𝑔𝑔

 (2-9) 

where 𝐾𝐾𝑖𝑖,𝑝𝑝𝑝𝑝 is equilibrium ratio of component 𝑖𝑖 between phases 𝑝𝑝 and 𝑙𝑙. 

 Finally, pressures are related to each other via capillary pressure relationships. With experimentally 

determined data to parameterize the two‐phase capillary pressures, 𝑃𝑃𝑐𝑐𝑛𝑛𝑛𝑛 , 𝑃𝑃𝑐𝑐𝑛𝑛𝑛𝑛 and 𝑃𝑃𝑐𝑐𝑔𝑔𝑔𝑔 , the constraint 

equations are 
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𝑃𝑃𝑞𝑞 = 𝑃𝑃𝑛𝑛 − 𝛼𝛼�𝑃𝑃𝑐𝑐𝑛𝑛𝑛𝑛�𝑆𝑆𝑞𝑞� − (1 − 𝛼𝛼�)𝑃𝑃𝑐𝑐𝑛𝑛𝑛𝑛�𝑆𝑆𝑞𝑞 = 1� 

𝑃𝑃𝑔𝑔 = 𝑃𝑃𝑛𝑛 + 𝛼𝛼�𝑃𝑃𝑐𝑐𝑔𝑔𝑔𝑔�𝑆𝑆𝑔𝑔� − (1 − 𝛼𝛼�) �𝑃𝑃𝑐𝑐𝑔𝑔𝑔𝑔�𝑆𝑆𝑔𝑔� − 𝑃𝑃𝑐𝑐𝑛𝑛𝑛𝑛�𝑆𝑆𝑞𝑞 = 1�� 

𝛼𝛼� = 𝑚𝑚𝑚𝑚𝑚𝑚〈1,𝑆𝑆𝑛𝑛 𝑆𝑆𝑛𝑛∗⁄ 〉 

(2-10) 

where 𝑃𝑃𝑐𝑐,𝑝𝑝𝑝𝑝 is capillary pressure between phases 𝑝𝑝 and 𝑙𝑙, capillary pressures are functions of saturation 

and 𝑆𝑆𝑛𝑛∗ [-] is an empirical curve blending parameter. 

The blending function 𝛼𝛼� and parameter 𝑆𝑆𝑛𝑛∗ provide a linear transition from two-phase capillary 

pressure data to three phase system of gas, non-aqueous and aqueous (Forsyth, 1991). 

In conclusion, for the number of primary variables per CV we can write: 

 
(3 × 𝑁𝑁𝑁𝑁 + 6)���������
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

− 1⏞
 𝐸𝐸𝐸𝐸.(2-6)

− 3⏟
𝐸𝐸𝐸𝐸.(2-7)

− 2 × 𝑁𝑁𝑁𝑁�����
𝐸𝐸𝐸𝐸𝐸𝐸.(2-8)&(2-9)

− 2⏟
𝐸𝐸𝐸𝐸.(2-10)

= 𝑁𝑁𝑁𝑁�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 
(2-11) 

It should be noted that some physical quantities (phase molar and mass densities) are functions of 

temperature, pressure, and mole fraction of components. These add to the non-linearity of the problem. 

It is evident from the aforementioned discussion that relationships for viscosity, equilibrium ratios, 

capillary pressure, and relative permeability are required by the CompFlow Bio model. 

Phase densities are required for the calculation of viscosities. In addition, the saturation of each phase 

directly affects its capillary pressure and relative permeability. In return, the composition of each phase 

is required for obtaining its saturation and density. There is no need to emphasize that the composition 

of each phase in a multi-phase system is governed by equilibrium ratios. Therefore, equilibrium ratios 

are a critical piece of information, as they directly and indirectly affect viscosity, capillary pressure, and 

relative permeability. It should be noted these ratios vary significantly with pressure, temperature, and 

composition of the phases.  

Currently in CompFlow Bio, equilibrium ratios are calculated based on Henry’s law, Dalton’s law of 

partial pressures and Raoult’s law (Unger et al., 1995). Both Raoult’s and Dalton’s laws are based on 

ideal mixture behavior. This means that in cases of non-ideal phase behavior, application of these laws 

for calculating equilibrium ratios would result in considerable error. The same is true of Henry’s law, 

which is applicable to ideally dilute solutions for which there are exist no interactions between solution 

components. To broaden the range of applicability of CompFlow Bio, it is essential to improve the 

manner in which equilibrium ratios are calculated. In this thesis, we will present an improved and robust 



9 

 

package, which calculates equilibrium ratios across a broad range of pressure and temperature, from 

ambient conditions to the conditions prevailing in petroleum reservoirs. At high pressure and 

temperature, equilibrium ratios are strong functions of pressure, temperature and phase composition and 

ignoring these dependencies results in considerable error. The proposed package also corrects the 

current sub-functions in CompFlow Bio that calculate mass and molar densities as well as the sub-

function that determines phase appearance or disappearance. 

2.1.1 List of Primary and Secondary Variables in CompFlow Bio 

As mentioned previously, CompFlow Bio always considers a gas phase present. Therefore, four different 

combinations of phases are possible in each CompFlow Bio node. Each of these combinations is called 

a state. These states are as follows: 

State 1: Gaseous, aqueous, and non-aqueous phases are present, 

State 2: Gaseous and aqueous phases are present, 

State 3: Only gaseous phase is present, 

State 4: Gaseous and non-aqueous phases are present. 

Table 2-1 summarizes the primary variables chosen for each state. Unknowns not mentioned in Table 

2-1 are calculated by using constraints and thus are secondary variables. In this table, the number of 

non-methane hydrocarbons components, denoted by Greek letter Omicron, 𝜊𝜊, present in the system 

is 𝑚𝑚. Therefore, total number of hydrocarbon components is 𝑚𝑚 + 1 and total number of components 

available in the system is equal to 𝑚𝑚 + 4. In addition, subscript 𝑤𝑤 stands for water component. 

The first column in Table 2-1 indicates the governing equation, i.e., mole conservation equation (see 

Equation (2-1)), associated with each primary variable. In other words, in order to solve for a certain 

primary variable, CompFlow Bio differentiates the associated governing equation with respect to that 

primary variable and uses a Newton-Raphson iteration procedure to find the value of that primary 

variable. Since each governing equation is a function of the phase pressures, saturations and the 

components mole fractions, all governing equations are solved simultaneously using a Newton-Raphson 

iteration scheme. Note that based on the state, the primary variable associated with each equation may 

differ, but the order of the equations mentioned in the first column is always the same, as we can 

differentiate a function with respect to different independent variables. 

In each Newton-Raphson iteration, CompFlow Bio adopts associated primary variables based on the 

state and passes these primary variables as input to our package, which then calculates all secondary 

variables, as well as phase properties. It also signals to CompFlow Bio if a phase is about to appear or 
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disappear. Figure 2-1 describes a simplified and schematic logic diagram of the current configuration 

of CompFlow Bio. In this figure, a closed envelope named “Current Thesis” outlines sections of 

CompFlow Bio that this work intends to replace. 

Mole Conservation Equation State 1 State 2 State 3 State 4 

𝐻𝐻2𝑂𝑂 𝑃𝑃𝑛𝑛 𝑃𝑃𝑞𝑞 𝑃𝑃𝑔𝑔 𝑃𝑃𝑛𝑛 

𝑁𝑁2 𝑆𝑆𝑞𝑞 𝑆𝑆𝑞𝑞 𝑥𝑥𝑤𝑤,𝑔𝑔 𝑆𝑆𝑛𝑛 

𝜊𝜊1 𝑆𝑆𝑛𝑛 𝑥𝑥𝜊𝜊1,𝑔𝑔 𝑥𝑥𝜊𝜊1,𝑔𝑔 𝑥𝑥𝑤𝑤,𝑔𝑔 

𝜊𝜊2 𝑥𝑥𝜊𝜊1,𝑛𝑛 𝑥𝑥𝜊𝜊2,𝑔𝑔 𝑥𝑥𝜊𝜊2,𝑔𝑔 𝑥𝑥𝜊𝜊1,𝑛𝑛 

𝜊𝜊3 𝑥𝑥𝜊𝜊2,𝑛𝑛 ։ ։ 𝑥𝑥𝜊𝜊2,𝑛𝑛 

։ ։ 𝑥𝑥𝜊𝜊𝑚𝑚−1,𝑔𝑔 𝑥𝑥𝜊𝜊𝑚𝑚−1,𝑔𝑔 ։ 

𝜊𝜊𝑚𝑚 𝑥𝑥𝜊𝜊𝑚𝑚−1,𝑛𝑛 𝑥𝑥𝜊𝜊𝑚𝑚,𝑔𝑔 𝑥𝑥𝜊𝜊𝑚𝑚,𝑔𝑔 𝑥𝑥𝜊𝜊𝑚𝑚−1,𝑛𝑛 

𝐶𝐶𝐶𝐶2 𝑥𝑥𝐶𝐶𝑂𝑂2,𝑔𝑔 𝑥𝑥𝐶𝐶𝑂𝑂2,𝑔𝑔 𝑥𝑥𝐶𝐶𝑂𝑂2,𝑔𝑔 𝑥𝑥𝐶𝐶𝑂𝑂2,𝑔𝑔 

𝐶𝐶𝐶𝐶4 𝑥𝑥𝐶𝐶𝐻𝐻4,𝑔𝑔 𝑥𝑥𝐶𝐶𝐻𝐻4,𝑔𝑔 𝑥𝑥𝐶𝐶𝐻𝐻4,𝑔𝑔 𝑥𝑥𝐶𝐶𝐻𝐻4,𝑔𝑔 

Table 2-1: List of primary variables and their associated governing equation in each state. 

2.2 Quantitative Description of Phase Equilibrium 

In this section, we review the thermodynamic basis and general relationships governing a system in 

chemical equilibrium, as well as different approaches to calculate equilibrium ratios. Unless otherwise 

stated, the formulations presented in this section are adopted from Smith et al. (2001). 

For closed thermodynamic systems with constant composition, which can only exchange heat and 

work, we can write  

 𝑑𝑑𝑑𝑑 = 𝛿𝛿𝛿𝛿 + 𝛿𝛿𝛿𝛿 (2-12) 

in which, 𝑈𝑈 is the system internal energy, 𝑄𝑄 is heat and 𝑊𝑊 is work done by the system. This equation 

constitutes the first law of thermodynamics. 
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Figure 2-1: A schematic flowchart of CompFlow Bio including role of current thesis. 

Furthermore, we may write the following expressions for work and heat, considering reversible 

process and non-viscous fluid (ideal gas) 

 𝛿𝛿𝛿𝛿 = −𝑃𝑃𝑃𝑃𝑃𝑃 (2-13) 

 𝛿𝛿𝛿𝛿 = 𝑇𝑇𝑇𝑇𝑇𝑇 (2-14) 

where 𝑆𝑆 is the system entropy. The negative sign in work equation, defines 𝑊𝑊 to be energy flow from 

system to surroundings; while for heat, direction of 𝑄𝑄 is considered to be into the system. 

Therefore, we can write: 
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 𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑃𝑃𝑃𝑃𝑃𝑃 (2-15) 

Now we recall definitions of three common thermodynamics potentials; Enthalpy (𝐻𝐻), Helmholtz 

Free Energy (𝐴𝐴) and Gibbs Free Energy (𝐺𝐺): 

 𝐻𝐻 ≡ 𝑈𝑈 + 𝑃𝑃𝑃𝑃 (2-16) 

 𝐴𝐴 ≡ 𝑈𝑈 − 𝑇𝑇𝑇𝑇 (2-17) 

 𝐺𝐺 ≡ 𝐻𝐻 − 𝑇𝑇𝑇𝑇 (2-18) 

Differentiating these three equations and substituting 𝑑𝑑𝑑𝑑 with using Equation (2-15), yields: 

 𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑉𝑉𝑉𝑉 (2-19) 

 𝑑𝑑𝑑𝑑 = −𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑃𝑃𝑃𝑃𝑃𝑃 (2-20) 

 𝑑𝑑𝑑𝑑 = −𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑉𝑉𝑉𝑉𝑉𝑉 (2-21) 

For mixtures, these thermodynamic potentials (𝑈𝑈,𝐻𝐻,𝐴𝐴,𝐺𝐺) are also function of composition. For 

systems of changing composition, we can write the total differential for enthalpy as follows: 

 𝑑𝑑𝑑𝑑 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑃𝑃,𝑛𝑛

𝑑𝑑𝑑𝑑 + �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝑆𝑆,𝑛𝑛

𝑑𝑑𝑑𝑑 +��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

�
𝑆𝑆,𝑃𝑃,𝑛𝑛𝑗𝑗≠𝑖𝑖

𝑑𝑑𝑛𝑛𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 (2-22) 

From Equation (2-19), we have: 

 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑃𝑃,𝑛𝑛

= 𝑇𝑇,   𝑎𝑎𝑎𝑎𝑎𝑎  �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝑆𝑆,𝑛𝑛

= 𝑉𝑉 (2-23) 

Substituting in Equation (2-22) gives: 

 𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑉𝑉𝑉𝑉 + ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

�
𝑆𝑆,𝑃𝑃,𝑛𝑛𝑗𝑗≠𝑖𝑖

𝑑𝑑𝑛𝑛𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 (2-24) 

Similarly, we can write: 

 𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑃𝑃𝑃𝑃𝑃𝑃 + ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

�
𝑆𝑆,𝑉𝑉,𝑛𝑛𝑗𝑗≠𝑖𝑖

𝑑𝑑𝑛𝑛𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 (2-25) 

 𝑑𝑑𝑑𝑑 = −𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑃𝑃𝑃𝑃𝑃𝑃 + ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

�
𝑇𝑇,𝑉𝑉,𝑛𝑛𝑗𝑗≠𝑖𝑖

𝑑𝑑𝑛𝑛𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 (2-26) 
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 𝑑𝑑𝑑𝑑 = −𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑉𝑉𝑉𝑉𝑉𝑉 + ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

�
𝑃𝑃,𝑇𝑇,𝑛𝑛𝑗𝑗≠𝑖𝑖

𝑑𝑑𝑛𝑛𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 (2-27) 

Next, we define: 

 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

�
𝑆𝑆,𝑃𝑃,𝑛𝑛𝑗𝑗≠𝑖𝑖

≡ 𝐻𝐻�𝑖𝑖 (2-28) 

 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

�
𝑆𝑆,𝑉𝑉,𝑛𝑛𝑗𝑗≠𝑖𝑖

≡ 𝑈𝑈�𝑖𝑖 (2-29) 

 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

�
𝑇𝑇,𝑉𝑉,𝑛𝑛𝑗𝑗≠𝑖𝑖

≡ 𝐴̅𝐴𝑖𝑖 (2-30) 

 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖

�
𝑃𝑃,𝑇𝑇,𝑛𝑛𝑗𝑗≠𝑖𝑖

≡ 𝐺̅𝐺𝑖𝑖 (2-31) 

From Equations (2-15) and (2-21), the following result is obtained: 

 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑉𝑉𝑉𝑉𝑉𝑉 (2-32) 

Substituting Equations (2-25) and (2-27) into Equation (2-32) results in  

 �𝐺̅𝐺𝑖𝑖𝑑𝑑𝑛𝑛𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

= �𝑈𝑈�𝑖𝑖𝑑𝑑𝑛𝑛𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 (2-33) 

From which it follows 

 𝐺̅𝐺𝑖𝑖 = 𝑈𝑈�𝑖𝑖 (2-34) 

Similarly, from Equations (2-19) and (2-21) one can write: 

 𝑑𝑑𝑑𝑑 + 𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑑𝑑𝑑𝑑 − 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑉𝑉𝑉𝑉𝑉𝑉 (2-35) 

Which in combination with Equations (2-24) and (2-27) results: 

 𝐺̅𝐺𝑖𝑖 = 𝐻𝐻�𝑖𝑖 (2-36) 

Similarly, an equation for 𝐴̅𝐴𝑖𝑖 can be derived. 

Therefore, we have: 

 𝐺̅𝐺𝑖𝑖 = 𝐻𝐻�𝑖𝑖 = 𝑈𝑈�𝑖𝑖 = 𝐴̅𝐴𝑖𝑖 (2-37) 

These quantities are defined as the chemical potential (Edmister, 1961): 
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 𝜇𝜇𝑐𝑐𝑖𝑖 ≡ 𝐺̅𝐺𝑖𝑖 = 𝐻𝐻�𝑖𝑖 = 𝑈𝑈�𝑖𝑖 = 𝐴̅𝐴𝑖𝑖 (2-38) 

In this thesis, we denote chemical potential with 𝜇𝜇𝑐𝑐 to avoid confusion with dynamic viscosity 

coefficient. 

The chemical potential of a species in a mixture is defined as the rate of change of free energy of 

the thermodynamic system with respect to change in the number of atoms or molecules of the species 

in the mixture. 

For a system at equilibrium, Gibbs free energy is minimum, so Equation (2-27) becomes: 

 𝑑𝑑𝑑𝑑 = −𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑉𝑉𝑉𝑉𝑉𝑉 + �𝜇𝜇𝑐𝑐𝑖𝑖𝑑𝑑𝑛𝑛𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

= 0 (2-39) 

Since at equilibrium temperature and pressure are constant, the previous equation leads to: 

 �𝜇𝜇𝑐𝑐𝑖𝑖𝑑𝑑𝑛𝑛𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

= 0 (2-40) 

Now we assume that the system consists of 𝑁𝑁𝑁𝑁 phases. Equation (2-40) becomes: 

 ��𝜇𝜇𝑐𝑐𝑖𝑖,𝑗𝑗𝑑𝑑𝑛𝑛𝑖𝑖,𝑗𝑗

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑁𝑁𝑁𝑁

𝑗𝑗=1

= 0 (2-41) 

Since at equilibrium a change in moles of each component is only due to mass transfer between phases 

and therefore obeys the conservation principle, we can write 

 𝑑𝑑𝑛𝑛𝑖𝑖,𝑗𝑗 = �𝑑𝑑𝑛𝑛𝑖𝑖,𝑗𝑗𝑗𝑗

𝑁𝑁𝑁𝑁

𝑙𝑙=1
𝑙𝑙≠𝑗𝑗

 (2-42) 

in which 𝑑𝑑𝑛𝑛𝑖𝑖,𝑗𝑗𝑗𝑗 denotes mole transfer of component 𝑖𝑖 from phase 𝑗𝑗 to 𝑙𝑙. 

In addition, at equilibrium for each two phases, we can write: 

 𝑑𝑑𝑛𝑛𝑖𝑖,𝑗𝑗𝑗𝑗 = 𝑑𝑑𝑛𝑛𝑖𝑖,𝑙𝑙𝑙𝑙 (2-43) 

Therefore, Equation (2-41), after factoring, becomes: 

 ����𝜇𝜇𝑐𝑐𝑖𝑖,𝑗𝑗 − 𝜇𝜇𝑐𝑐𝑖𝑖,𝑙𝑙� 𝑑𝑑𝑛𝑛𝑖𝑖,𝑗𝑗𝑗𝑗

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑁𝑁𝑁𝑁

𝑙𝑙=1
𝑙𝑙≠𝑗𝑗

𝑁𝑁𝑁𝑁

𝑗𝑗=1

= 0 (2-44) 
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As 𝑑𝑑𝑛𝑛𝑖𝑖,𝑗𝑗𝑗𝑗 are independent and arbitrary, the only way the left side of this equation can in general be 

zero is for each term in parentheses separately to be zero. Therefore, for each two phases: 

 𝜇𝜇𝑐𝑐𝑖𝑖,𝑗𝑗 = 𝜇𝜇𝑐𝑐𝑖𝑖,𝑙𝑙     𝑖𝑖 = 1, … ,𝑁𝑁𝑁𝑁;     𝑗𝑗, 𝑙𝑙 = 1, … ,𝑁𝑁𝑁𝑁 (2-45) 

While fundamental, chemical potential is not very convenient for use in solving problems. For this 

reason, fugacity is introduced.  

The fugacity of a real gas is an effective partial pressure, which replaces the mechanical partial 

pressure in computations related to chemical equilibrium. For an ideal gas, fugacity is exactly equal to 

gas partial pressure. The ratio of fugacity of a gas to its partial pressure is called the fugacity coefficient. 

A mathematical definition of fugacity is given next. 

From Equation (2-21), for an isothermal process, we can write: 

 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇

= 𝑉𝑉 (2-46) 

Integrating gives: 

 𝐺𝐺2 − 𝐺𝐺1 = � 𝑉𝑉
𝑃𝑃2

𝑃𝑃1
𝑑𝑑𝑑𝑑 (2-47) 

For an ideal gas, where 𝑉𝑉 = 𝑅𝑅𝑅𝑅/𝑃𝑃, we have: 

 𝐺𝐺2 − 𝐺𝐺1 = 𝑅𝑅𝑅𝑅 ln
𝑃𝑃2
𝑃𝑃1

 (2-48) 

Fugacity is defined as the replacement for pressure to make this expression applicable to real gases: 

 𝐺𝐺2 − 𝐺𝐺1 = 𝑅𝑅𝑅𝑅 ln
𝑓𝑓2
𝑓𝑓1

 (2-49) 

The fugacity of a component in a mixture is defined by a similar expression: 

 𝐺̅𝐺𝑖𝑖2 − 𝐺̅𝐺𝑖𝑖1 = 𝑅𝑅𝑅𝑅 ln
𝑓𝑓𝑖𝑖2
𝑓𝑓𝑖𝑖1

 (2-50) 

By using Equation (2-38), we have 

 𝜇𝜇𝑐𝑐𝑖𝑖2 − 𝜇𝜇𝑐𝑐𝑖𝑖1 = 𝑅𝑅𝑅𝑅 ln
𝑓𝑓𝑖𝑖2
𝑓𝑓𝑖𝑖1

 (2-51) 

in which, 𝑖𝑖 designates any component in the mixture and subscripts 1 and 2 indicate two points in an 

isotherm. 

https://en.wikipedia.org/wiki/Real_gas
https://en.wikipedia.org/wiki/Pressure
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At equilibrium we may choose points 1 and 2 to be phases 𝑗𝑗 and 𝑙𝑙, such that 

 𝜇𝜇𝑐𝑐𝑖𝑖,𝑗𝑗 − 𝜇𝜇𝑐𝑐𝑖𝑖,𝑙𝑙 = 𝑅𝑅𝑅𝑅 ln
𝑓𝑓𝑖𝑖,𝑗𝑗
𝑓𝑓𝑖𝑖,𝑙𝑙

 (2-52) 

From Equation (2-45), we readily obtain at equilibrium: 

 𝜇𝜇𝑐𝑐𝑖𝑖,𝑗𝑗 − 𝜇𝜇𝑐𝑐𝑖𝑖,𝑙𝑙 = 𝑅𝑅𝑅𝑅 ln
𝑓𝑓𝑖𝑖,𝑗𝑗
𝑓𝑓𝑖𝑖,𝑙𝑙

= 0 (2-53) 

Since neither the temperature nor the gas constant is zero: 

 ln
𝑓𝑓𝑖𝑖,𝑗𝑗
𝑓𝑓𝑖𝑖,𝑙𝑙

= 0 → 𝑓𝑓𝑖𝑖,𝑗𝑗 = 𝑓𝑓𝑖𝑖,𝑙𝑙 (2-54) 

If we repeat this procedure for each two phases in a system with 𝑁𝑁𝑁𝑁 phases, we can write: 

 𝑓𝑓𝑖𝑖,1 = 𝑓𝑓𝑖𝑖,2 = ⋯ = 𝑓𝑓𝑖𝑖,𝑁𝑁𝑁𝑁 (2-55) 

 This proves that at equilibrium the fugacities of each specific component are equal between any two 

phases. 

2.2.1 Fugacity Method in Calculating Equilibrium Ratios 

In this sub-section, we derive an equation for obtaining equilibrium ratios from fugacity coefficients. 

Then, we develop an expression for obtaining fugacity coefficients based on phase and components 

properties. 

If we write the definition of fugacity coefficients at equilibrium for component 𝑖𝑖 in phase 𝑗𝑗, we have 

 𝜙𝜙𝑖𝑖,𝑗𝑗 =
𝑓𝑓𝑖𝑖,𝑗𝑗
𝑥𝑥𝑖𝑖,𝑗𝑗𝑃𝑃𝑗𝑗

 (2-56) 

where 𝜙𝜙𝑖𝑖,𝑝𝑝 is the fugacity coefficient of component 𝑖𝑖 in phase 𝑝𝑝. 

Writing a similar equation for component 𝑖𝑖 in phase 𝑙𝑙 and dividing the two fugacity coefficients, 

yields: 

  
𝜙𝜙𝑖𝑖,𝑗𝑗
𝜙𝜙𝑖𝑖,𝑙𝑙

=
�
𝑓𝑓𝑖𝑖,𝑗𝑗
𝑥𝑥𝑖𝑖,𝑗𝑗𝑃𝑃𝑗𝑗

�

�
𝑓𝑓𝑖𝑖,𝑙𝑙
𝑥𝑥𝑖𝑖,𝑙𝑙𝑃𝑃𝑙𝑙

�
 (2-57) 

Since at equilibrium fugacities are equal, we obtain: 
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𝜙𝜙𝑖𝑖,𝑗𝑗
𝜙𝜙𝑖𝑖,𝑙𝑙

=
𝑥𝑥𝑖𝑖,𝑙𝑙
𝑥𝑥𝑖𝑖,𝑗𝑗

𝑃𝑃𝑙𝑙
𝑃𝑃𝑗𝑗

 (2-58) 

Now we can rearrange the above equation to obtain an expression for the equilibrium ratio: 

 𝐾𝐾𝑖𝑖,𝑗𝑗𝑗𝑗 =
𝑥𝑥𝑖𝑖,𝑗𝑗
𝑥𝑥𝑖𝑖,𝑙𝑙

=
𝜙𝜙𝑖𝑖,𝑙𝑙
𝜙𝜙𝑖𝑖,𝑗𝑗

𝑃𝑃𝑙𝑙
𝑃𝑃𝑗𝑗

  (2-59) 

Therefore, given knowledge of phase pressures and component fugacity coefficients, the distribution 

coefficients or equilibrium ratios can be found from Equation (2-59). Note that phase pressures are 

connected via capillary pressure relationships (Equation (2-10)). Note also that one phase pressure and 

one or two saturations, depending on state, are primary variables (see Table 2-1), available from 

CompFlow Bio as input. Therefore, to complete our calculations, we require only a means to calculate 

fugacity coefficients. 

For our purpose, we divide 𝐺𝐺 by 𝑅𝑅𝑅𝑅 and differentiate to obtain: 

 𝑑𝑑 �
𝐺𝐺
𝑅𝑅𝑅𝑅

� =
1
𝑅𝑅𝑅𝑅

𝑑𝑑𝑑𝑑 −
𝐺𝐺
𝑅𝑅𝑇𝑇2

𝑑𝑑𝑑𝑑 (2-60) 

In the above equation, we substitute 𝑑𝑑𝑑𝑑 from Equation (2-21) and 𝐺𝐺 from Equation (2-18), and after 

algebraic reduction; we arrive at the following equation for phase 𝑗𝑗: 

 𝑑𝑑 �
𝐺𝐺𝑗𝑗
𝑅𝑅𝑅𝑅

� =
𝑉𝑉𝑗𝑗
𝑅𝑅𝑅𝑅

𝑑𝑑𝑃𝑃𝑗𝑗 −
𝐻𝐻𝑗𝑗
𝑅𝑅𝑇𝑇2

𝑑𝑑𝑑𝑑 + �
𝐺̅𝐺𝑖𝑖,𝑗𝑗
𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑑𝑑𝑛𝑛𝑖𝑖,𝑗𝑗 (2-61) 

𝐺𝐺𝑗𝑗 is the Gibbs free energy of phase j and 𝐺̅𝐺𝑖𝑖,𝑗𝑗 is the molar Gibbs free energy of component 𝑖𝑖 in 

phase 𝑗𝑗. 

Before we continue our derivation, we need to define an important property in thermodynamics, 

namely the residual Gibbs free energy, by the following equation 

 𝐺𝐺𝑅𝑅 ≡ 𝐺𝐺 − 𝐺𝐺𝑖𝑖𝑖𝑖 (2-62) 

in which the superscripts 𝑅𝑅 and 𝑖𝑖𝑖𝑖 stand for residual and ideal gas, respectively.  

𝐺𝐺 and 𝐺𝐺𝑖𝑖𝑖𝑖 are the actual and the ideal-gas values of the Gibbs energy at the same temperature, 

pressure, and composition. 

Defining residual thermodynamic properties is very helpful in solving thermodynamic problems. In 

general, residual properties are defined as follows  

 𝑀𝑀𝑅𝑅 ≡ 𝑀𝑀 −𝑀𝑀𝑖𝑖𝑖𝑖 (2-63) 
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where M can be any thermodynamic property. 

As Equation (2-61) is general, it may be written for the special case of an ideal gas: 

 𝑑𝑑 �
𝐺𝐺𝑗𝑗
𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅
� =

𝑉𝑉𝑗𝑗
𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅
𝑑𝑑𝑃𝑃𝑗𝑗 −

𝐻𝐻𝑗𝑗𝑖𝑖𝑖𝑖

𝑅𝑅𝑇𝑇2
𝑑𝑑𝑑𝑑 +�

𝐺̅𝐺𝑖𝑖,𝑗𝑗
𝑖𝑖𝑖𝑖

𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑑𝑑𝑛𝑛𝑖𝑖,𝑗𝑗 (2-64) 

If we subtract this equation from Equation (2-61), we have: 

 𝑑𝑑 �
𝐺𝐺𝑗𝑗𝑅𝑅

𝑅𝑅𝑅𝑅�
=
𝑉𝑉𝑗𝑗𝑅𝑅

𝑅𝑅𝑅𝑅
𝑑𝑑𝑃𝑃𝑗𝑗 −

𝐻𝐻𝑗𝑗𝑅𝑅

𝑅𝑅𝑇𝑇2
𝑑𝑑𝑑𝑑 + �

𝐺̅𝐺𝑖𝑖,𝑗𝑗𝑅𝑅

𝑅𝑅𝑅𝑅

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑑𝑑𝑛𝑛𝑖𝑖,𝑗𝑗 (2-65) 

Equation (2-65) is the fundamental residual property relation. 

If we apply conditions of constant pressure and temperature to Equation (2-65), we can write: 

 �
𝜕𝜕�𝐺𝐺𝑗𝑗𝑅𝑅/𝑅𝑅𝑅𝑅�

𝜕𝜕𝑛𝑛𝑗𝑗
�
𝑃𝑃𝑗𝑗,𝑇𝑇,𝑛𝑛𝑙𝑙≠𝑖𝑖

=
𝐺𝐺𝑖𝑖,𝑗𝑗𝑅𝑅

𝑅𝑅𝑅𝑅
 (2-66) 

In Equation (2-65) for residual volume, we can write: 

 𝑉𝑉𝑗𝑗𝑅𝑅 = Vj − 𝑉𝑉𝑗𝑗
𝑖𝑖𝑖𝑖 (2-67) 

For an ideal gas, we can write the ideal gas law 

 𝑉𝑉𝑗𝑗
𝑖𝑖𝑖𝑖 =

𝑛𝑛𝑗𝑗𝑅𝑅𝑅𝑅
𝑃𝑃𝑗𝑗

 (2-68) 

whereas for a real gas 

 𝑉𝑉𝑗𝑗 =
𝑛𝑛𝑗𝑗𝑧𝑧𝑗𝑗𝑅𝑅𝑅𝑅
𝑃𝑃𝑗𝑗

 (2-69) 

where 𝑧𝑧 is the compressibility factor. For an ideal gas 𝑧𝑧 is equal to one. Furthermore, 𝑛𝑛𝑗𝑗 = ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗𝑁𝑁𝑁𝑁
𝑖𝑖=1 . 

Therefore, for residual volume, we have: 

 𝑉𝑉𝑗𝑗𝑅𝑅 =
𝑛𝑛𝑗𝑗𝑧𝑧𝑗𝑗𝑅𝑅𝑅𝑅
𝑃𝑃𝑗𝑗

−
𝑛𝑛𝑗𝑗𝑅𝑅𝑅𝑅
𝑃𝑃𝑗𝑗

 (2-70) 

If we substitute Equation (2-70) in Equation (2-65) and consider constant temperature and 

composition, we can write 

 d�
𝐺𝐺𝑗𝑗𝑅𝑅

𝑅𝑅𝑅𝑅�
= �𝑛𝑛𝑗𝑗𝑧𝑧𝑗𝑗 − 𝑛𝑛𝑗𝑗�

𝑑𝑑𝑃𝑃𝑗𝑗
𝑃𝑃𝑗𝑗

  (2-71) 
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from which we derive by integration: 

 
𝐺𝐺𝑗𝑗𝑅𝑅

𝑅𝑅𝑅𝑅
= � �𝑛𝑛𝑗𝑗𝑧𝑧𝑗𝑗 − 𝑛𝑛𝑗𝑗�

𝑑𝑑𝑃𝑃𝑗𝑗
𝑃𝑃𝑗𝑗

𝑃𝑃𝑗𝑗

0
 (2-72) 

Now we recall Equation (2-49): 

 𝐺𝐺2 − 𝐺𝐺1 = 𝑅𝑅𝑅𝑅 ln
𝑓𝑓2
𝑓𝑓1

  

If we choose point 1 to be an ideal gas and point 2 to be a real gas with same composition and 

temperature, for component 𝑖𝑖 in phase 𝑗𝑗, we have: 

 𝐺𝐺𝑖𝑖,𝑗𝑗 − 𝐺𝐺𝑖𝑖,𝑗𝑗
𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅 ln

𝑓𝑓𝑖𝑖,𝑗𝑗
𝑓𝑓𝑖𝑖,𝑗𝑗
𝑖𝑖𝑖𝑖 (2-73) 

Since for an ideal gas fugacity equals partial pressure, it follows that 

 𝐺𝐺𝑖𝑖,𝑗𝑗 − 𝐺𝐺𝑖𝑖,𝑗𝑗
𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅 ln

𝑓𝑓𝑖𝑖,𝑗𝑗
𝑥𝑥𝑖𝑖,𝑗𝑗𝑃𝑃𝑗𝑗

 (2-74) 

where 𝑥𝑥 is the mole fraction of component 𝑖𝑖 in phase 𝑗𝑗. The left hand side of the above equation is 

the definition of residual Gibbs free energy and the argument of the logarithm is the fugacity coefficient. 

Thus, we can write: 

 𝐺𝐺𝑖𝑖,𝑗𝑗𝑅𝑅

𝑅𝑅𝑅𝑅
= ln𝜙𝜙𝑖𝑖,𝑗𝑗 (2-75) 

In combination with Equation (2-66), we have: 

 �
𝜕𝜕�𝐺𝐺𝑗𝑗𝑅𝑅/𝑅𝑅𝑅𝑅�

𝜕𝜕𝑛𝑛𝑗𝑗
�
𝑃𝑃𝑗𝑗,𝑇𝑇,𝑛𝑛𝑙𝑙≠𝑖𝑖

= ln𝜙𝜙𝑖𝑖,𝑗𝑗 (2-76) 

If we differentiate Equation (2-72) with respect to 𝑛𝑛𝑖𝑖,𝑗𝑗: 

 �
𝜕𝜕�𝐺𝐺𝑗𝑗𝑅𝑅/𝑅𝑅𝑅𝑅�

𝜕𝜕𝑛𝑛𝑗𝑗
�
𝑃𝑃𝑗𝑗,𝑇𝑇,𝑛𝑛𝑙𝑙≠𝑖𝑖

= � �
𝜕𝜕�𝑛𝑛𝑗𝑗𝑧𝑧𝑗𝑗 − 𝑛𝑛𝑗𝑗�

𝜕𝜕𝑛𝑛𝑖𝑖,𝑗𝑗
�
𝑃𝑃𝑗𝑗,𝑇𝑇,𝑛𝑛𝑙𝑙≠𝑖𝑖

𝑑𝑑𝑃𝑃𝑗𝑗
𝑃𝑃𝑗𝑗

𝑃𝑃𝑗𝑗

0
 (2-77) 

If we define 𝑧𝑧𝑗𝑗 ≡ �𝜕𝜕�𝑛𝑛𝑗𝑗𝑧𝑧𝑗𝑗�
𝜕𝜕𝑛𝑛𝑖𝑖,𝑗𝑗

�
𝑃𝑃𝑗𝑗,𝑇𝑇,𝑛𝑛𝑙𝑙≠𝑖𝑖

, and use Equation (2-76), then we can write: 

 ln𝜙𝜙𝑖𝑖,𝑗𝑗 = � �𝑧𝑧𝑗𝑗 − 1�
𝑑𝑑𝑃𝑃𝑗𝑗
𝑃𝑃𝑗𝑗

𝑃𝑃𝑗𝑗

0
 (2-78) 
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Equation (2-78) is a key equation in our procedure. In this equation, 𝑧𝑧𝑗𝑗 is calculated from an equation 

of state (EOS) (McCain, 1990). As there are numerous equations of state (McCain, 1990), selecting a 

suitable equation can be application-specific. The Soave-Redlich-Kwong (Soave, 1972) and Peng-

Robinson (Peng and Robinson, 1976a) EOS, which are cubic equations with two empirical constants, 

are two popularly accepted equations of state in the petroleum industry. While these cubic equations 

have been used widely to calculate physical properties and vapor-liquid equilibria of hydrocarbon 

mixtures (McCain, 1990; Tarek, 2009) and both provide accurate equilibrium mole fractions, the Peng-

Robinson EOS provides better liquid phase density, particularly near the critical region (Danesh, 1998; 

Peng and Robinson, 1976a; Tarek, 2007). In this work, we adopted a modified Peng-Robinson equation 

of state, in which a third parameter is introduced for volumetric correction (Jhaveri and Youngren, 1988; 

Péneloux et al., 1982; Peng and Robinson, 1976a).  

With compressibility factor calculated from the selected equation of state, fugacity coefficients can 

be obtained from Equation (2-78). Then, equilibrium ratios are calculated by Equation (2-59).  

Once all equilibrium ratios are calculated, secondary mole fractions and subsequently phase densities 

can be obtained. 

In the next chapter, detailed description of the selected EOS along with related equations is provided. 

2.2.2 Free Gibbs Energy Minimization Method in Calculating Equilibrium Ratios 

In the previous sub-section, we discussed the fugacity method for obtain equilibrium ratios. The fugacity 

method is based on the thermodynamic fact that Gibbs free energy is minimized at equilibrium. This 

fact may be used directly, giving rise to a method which directly minimizes Gibbs free energy of a 

mixture to obtain equilibrium ratios, as explained below.  

For a system of 𝑁𝑁𝑁𝑁 phases with 𝑁𝑁𝑁𝑁 components at equilibrium (constant pressure and temperature), 

we have from Equation (2-27): 

 𝑑𝑑𝑑𝑑 = ���
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛𝑖𝑖,𝑗𝑗

�
𝑃𝑃,𝑇𝑇,𝑛𝑛𝑙𝑙≠𝑖𝑖

𝑑𝑑𝑛𝑛𝑖𝑖,𝑗𝑗

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑁𝑁𝑁𝑁

𝑗𝑗=1

 (2-79) 

Combining with Equations (2-31) and (2-38), results in the following equation 

 𝑑𝑑𝑑𝑑 = ��𝜇𝜇𝑐𝑐𝑖𝑖,𝑗𝑗𝑑𝑑𝑛𝑛𝑖𝑖,𝑗𝑗

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑁𝑁𝑁𝑁

𝑗𝑗=1

 (2-80) 

which after integration gives: 
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 𝐺𝐺 = ��𝜇𝜇𝑐𝑐𝑖𝑖,𝑗𝑗𝑛𝑛𝑖𝑖,𝑗𝑗

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑁𝑁𝑁𝑁

𝑗𝑗=1

 (2-81) 

In this equation, 𝐺𝐺 is the function to be minimized. 

Now we find an expression for 𝜇𝜇𝑐𝑐𝑖𝑖,𝑗𝑗 to be substituted in the above equation. If we rewrite the Equation 

(2-51) for component 𝑖𝑖 in phase 𝑗𝑗 for current and standard conditions, we have 

 𝜇𝜇𝑐𝑐𝑖𝑖 = 𝜇𝜇𝑐𝑐𝑖𝑖
0(𝑇𝑇) + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �

𝑓𝑓𝑖𝑖
𝑓𝑓𝑖𝑖0(𝑇𝑇)

� (2-82) 

where 𝜇𝜇𝑖𝑖0 and 𝑓𝑓𝑖𝑖0 are the chemical potential and fugacity at standard conditions, respectively. These 

standard properties are only functions of temperature. Therefore, the equation, which should be 

minimized, becomes 

 𝐺𝐺 = �𝑛𝑛𝑖𝑖�𝜇𝜇𝑐𝑐𝑖𝑖
0(𝑇𝑇) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑓𝑓𝑖𝑖0��

𝑁𝑁𝑁𝑁

𝑖𝑖=1

+ 𝑅𝑅𝑅𝑅��𝑛𝑛𝑖𝑖,𝑗𝑗ln (𝑓𝑓𝑖𝑖,𝑗𝑗)
𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑁𝑁𝑁𝑁

𝑗𝑗=1

 (2-83) 

in which 𝑛𝑛𝑖𝑖 is total mole number of component 𝑖𝑖 in the mixture. The first term on the right hand side 

of the above equation is a constant at equilibrium and the second term is a function of 𝑛𝑛𝑖𝑖,𝑗𝑗. Therefore, 

there are 𝑁𝑁𝑁𝑁 × 𝑁𝑁𝑁𝑁 variables. 

Minimizing Equation (2-83) is a constrained optimization problem with following constraints: 

 Γ𝑖𝑖 = 𝑛𝑛𝑖𝑖 −�𝑛𝑛𝑖𝑖,𝑗𝑗

𝑁𝑁𝑁𝑁

𝑗𝑗=1

= 0    𝑖𝑖 = 1,  … ,𝑁𝑁𝑁𝑁 (2-84) 

 0 ≤ 𝑛𝑛𝑖𝑖,𝑗𝑗 ≤ 𝑛𝑛𝑖𝑖       𝑖𝑖 = 1, … ,𝑁𝑁𝑁𝑁; 𝑗𝑗 = 1, … ,𝑁𝑁𝑁𝑁 (2-85) 

One method to solve this constrained optimization problem is to use a penalty function method 

(Izadpanah et al., 2006). The idea is to convert the constrained problem into a sequence of unconstrained 

problems. Therefore the new objective function is 

 

Ω�𝑛𝑛𝑖𝑖,𝑗𝑗, 𝑟𝑟� = 𝐺𝐺�𝑛𝑛𝑖𝑖,𝑗𝑗� +
1
√𝑟𝑟

�Γ𝑖𝑖2
𝑁𝑁𝑁𝑁

𝑖𝑖=1

= �𝑛𝑛𝑖𝑖�𝜇𝜇𝑐𝑐𝑖𝑖
0(𝑇𝑇) − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑓𝑓𝐼𝐼0)�

𝑁𝑁𝑁𝑁

𝑖𝑖=1

+ 𝑅𝑅𝑅𝑅��𝑛𝑛𝑖𝑖,𝑗𝑗 ln�𝑓𝑓𝑖𝑖,𝑗𝑗� +
1
√𝑟𝑟

�Γ𝑖𝑖2
𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝑁𝑁𝑁𝑁

𝑗𝑗=1

  

(2-86) 
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where 𝑟𝑟 is a positive real number, which forms a monotonically decreasing sequence during the 

process of minimization. It can be proven (Rao, 1996) that 

 lim
𝑟𝑟→0

𝑛𝑛(𝑟𝑟) = 𝑛𝑛∗ (2-87) 

in which 𝑛𝑛 is the minimum of the new function Ω for a given 𝑟𝑟 and 𝑛𝑛∗ is the solution of the initial 

problem (Equation (2-83)). 

Minimizing the Gibbs free energy is particularly useful when there is chemical reaction in the mixture, 

but in comparison to the fugacity method mentioned in the previous sub-section, is computationally 

more demanding. 

For the purposes of this research, performance is a key issue and since chemical reactions are absent, 

we choose the fugacity method for equilibrium ratios calculations. 

2.3 Three Phase Compositional Modeling of Oil Recovery using 𝑪𝑪𝑶𝑶𝟐𝟐 

Practical reservoir engineering problems are associated with high pressures and temperatures. Since it 

is common for oil reservoirs to be found at depths of one kilometer or more, dealing with pressures in 

excess of 100 𝑏𝑏𝑏𝑏𝑏𝑏 (or 10 𝑀𝑀𝑀𝑀𝑀𝑀) and temperatures greater than 100 ℃ cannot be avoided.  

A wide range of reservoir engineering problems involves using carbon dioxide for secondary or 

enhanced oil recovery. 𝐶𝐶𝑂𝑂2 can be injected as a supercritical fluid above minimum miscibility pressure 

to reduce water-flood residual oil saturation (enhanced oil recovery) (Lake, 1989) or injected dissolved 

in water to improve water-flood performance (secondary oil recovery) (Seyyedi and Sohrabi, 2017) or 

for enhanced oil recovery of water-flood residual (Alizadeh et al., 2014). 

In addition to dealing with high pressure and temperature, robust handling of fractures is often needed. 

CompFlow Bio is a unique simulator with regard to the handling of fractures, which distinguishes it 

from other well-known compositional simulators such as Eclipse® or WinProp®. By introducing a 

package, which improves compositional calculations of CompFlow Bio, this simulator will have all 

tools required for robust and accurate simulation of reservoir problems. The kind of reservoir 

engineering problems this research aims to ultimately address has already come under investigation by 

a number of authors in recent years. 

Darvish (2007) has performed three sets of experiments to investigate the role of initial water 

saturation and temperature in 𝐶𝐶𝑂𝑂2 injection, as well as to demonstrate key mechanisms in secondary 

and tertiary recovery processes in fractured rocks. In their research, they injected supercritical 𝐶𝐶𝑂𝑂2 into 

a North Sea chalk core. Chalk reservoirs are known for their high porosity and low permeability. They 



23 

 

used an annulus space surrounding the core as fracture and performed 𝐶𝐶𝑂𝑂2 injection with zero and 

26.3% initial water saturation at 130 ℃. They also performed a tertiary 𝐶𝐶𝑂𝑂2 injection at 60 ℃. As a 

result of their work, they suggested that strong compositional behavior of produced oil in all experiments 

must be considered in any EOR assessment that considers 𝐶𝐶𝑂𝑂2 as injection fluid. To consider strong 

compositional behavior of hydrocarbons in reservoir condition proper calculation of the equilibrium 

ratios is vital. Attempts by Darvish (2007) to model their experiments using commercial software 

(Eclipse®) were unsuccessful. 

Karimaie et al. (2007) investigated the effect of secondary and tertiary 𝐶𝐶𝑂𝑂2 injection at high pressure 

and temperature. They used an outcrop chalk as porous medium in a setup similar to the one used by 

Darvish (2007). Their results show high efficiency of 𝐶𝐶𝑂𝑂2 injection both in secondary and tertiary 

injection. In another work, Karimaie and Torsaeter (2010) investigated the effect of tertiary methane 

and 𝐶𝐶𝑂𝑂2 injection at two different porous media, an outcrop chalk and a limestone. They found 𝐶𝐶𝑂𝑂2 

injection to be more efficient. In addition, water injection prior to tertiary gas injection was found to be 

very efficient in water-wet systems, while in mixed-wet systems this sequence of injection is not an 

efficient recovery process. 

Moortgat et al. (2009) used an improved model to simulate results obtained by Darvish (2007). They 

simulated one of Darvish’s experiments, which has no initial water saturation and also did not include 

capillary pressure in their model. These limitations highlight the potential significance of our work: 

currently, in its current state CompFlow Bio includes capillary pressure in its calculations and can handle 

water presence as well, while efficiently handling discrete fracture networks. In its current state, 

however, CompFlow Bio lacks proper thermodynamics to deal with high pressure and high temperature 

problems. This thesis provides CompFlow Bio with means to handle such problems accurately. 

In a multi-scale three-phase study, Alizadeh et al. (2014) performed macro and micro scale 

experiments to investigate the effect of carbon dioxide exsolution during tertiary carbonated water 

injection. In macro scale setup, first a secondary water-flood injection was performed on a 25.4 𝑐𝑐𝑐𝑐 

length Berea sandstone at pressure of 90 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and ambient temperature. Then carbonated water injection 

was carried along with reduction of system pressure. System pressure was reduced in small increments 

until 88 𝑝𝑝𝑝𝑝𝑝𝑝 pressure drop across the core was observed. In micro scale experiments, a similar procedure 

was followed on smaller 9.5 𝑐𝑐𝑐𝑐 length Berea sandstone, as well as on a series of flow experiments in 

two-dimensional etched-glass micromodels. During both micro and macro scale experiments, the 

porosity and in situ fluid saturations were determined using X-ray techniques. Tertiary carbonated water 

injection, under described configuration, resulted in 34.6% and 40.7% additional oil recovery in macro 

and micro scale experiments, respectively. The increase in pressure drop led to exsolution of carbon 
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dioxide and internal gas drive, causing mobilization of oil ganglia, and reduction in water-flood residual 

oil saturation. In addition to improving oil recovery, Alizadeh et al. (2014) proposed entrapment of 

carbon dioxide as free gas as well as dissolved gas in the aqueous phase at the end of carbonated water 

injection process, as a potentially effective scheme for geological carbon dioxide sequestration in 

petroleum reservoirs. 

In a recent work, Seyyedi and Sohrabi (2017) used a glass micromodel setup to investigate the effect 

of carbonated water on oil recovery during secondary and tertiary injection at pressure of 2500 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

and temperature equal to 100 ℉. Using a high-resolution camera, authors visually monitored the flow 

of each phase as well as their appearance or disappearance. Based on their results, Seyyedi and Sohrabi 

(2017) concluded that carbonated water injection as a secondary process leads to better oil recovery in 

comparison to post water-flood injection of carbonated water. The main mechanisms for improving oil 

recovery by carbonated water injection suggested by the authors are: (i) reconnection of the trapped oil 

and oil displacement, (ii) creating a favorable three-phase flow region with less residual oil saturation, 

and (iii) restricting the flow path of carbonated water and diverting it toward un-swept areas of the 

porous medium. 

The above-mentioned studies highlight the importance of injecting carbon dioxide, as a pure phase 

or dissolved in water, at high pressures and temperatures for the purpose of secondary or tertiary oil 

recovery. In simulating these complex processes, a first step for any simulator is to have robust 

thermodynamics and efficient equilibrium calculations. Even in non-equilibrium processes with finite 

mass transfer rate, equilibrium calculations are required. In this work, we provide CompFlow Bio with 

a package that performs equilibrium calculations in a wide range of pressure and temperature.  
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Chapter 3 
Methodology 

3.1 Introduction 

CompFlow Bio is a multi-phase multi-component simulator implementing a control volume (CV) 

approach. To each CV, there corresponds a node, with which all the characteristics of the CV are 

associated. For each node, sets of governing conservation equations are solved iteratively. In each 

iteration, the mole fraction of each component in each phase is required. As mentioned earlier, 

CompFlow Bio divides the unknown variables to the primary and secondary variables. Primary variables 

are set at the beginning of each iteration based on state of the node, passed by previous iteration, and 

secondary variables are found based on the given primary variables throughout the iteration (see Figure 

2-1). In this thesis, our goal is to provide CompFlow Bio with a more precise function to calculate these 

secondary variables at conditions of chemical equilibrium condition over a wide range of pressures and 

temperatures. 

In this chapter, we first list primary variables in different cases and then expose in detail the equations 

and procedure for calculating secondary variables based on primary variables.  

In CompFlow Bio, it is given that the gas phase is always present even in very small quantity. 

Furthermore, the maximum number of phases present is three and all phases are fluids. These phases 

are called a gaseous phase, an aqueous phase, and a non-aqueous phase. Based on these assumptions, 

we can have four different combinations of phases. We call each case a State. These states are described 

below: 

State 1: Gaseous, Aqueous, and Non-Aqueous phases are present, 

State 2: Gaseous Aqueous phases are present, 

State 3: Only Gaseous is present, 

State 4: Gaseous and Non-Aqueous phases are present. 

Each state has its own set of primary variables as listed in Table 2-1. 

These primary variables are input to our code and all other unknowns, which are other mole fractions, 

pressures and saturations that are not mentioned in the Table 2-1 are secondary variables and should be 

calculated in our code. 

In each state, the number of given saturations is one less than the number of present phases. Thus, the 

unknown saturation, which is a secondary variable, could be calculated using Equation (2-6):  
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 � 𝑆𝑆𝑙𝑙
𝑙𝑙=𝑛𝑛,𝑞𝑞,𝑔𝑔

= 1  

Pressures that are secondary variables are calculated using capillary pressure functions from 

knowledge of phase saturations. 

The most important task concerns the calculation of unknown mole fractions, i.e. secondary mole 

fractions. 

In order to calculate secondary mole fractions, we should recall Equation (2-59): 

 𝐾𝐾𝑖𝑖,𝑗𝑗𝑗𝑗 =
𝑥𝑥𝑖𝑖,𝑗𝑗
𝑥𝑥𝑖𝑖,𝑙𝑙

=
𝜙𝜙𝑖𝑖,𝑙𝑙
𝜙𝜙𝑖𝑖,𝑗𝑗

𝑃𝑃𝑙𝑙
𝑃𝑃𝑗𝑗

   

We know the pressure and some of the mole fractions in each phase. Therefore, if we know the 

equilibrium ratios, we can calculate mole fraction of each component in other phases. In other words, 

knowing one mole fraction and the partition coefficients for each component, we can calculate the mole 

fraction of that component in other phases. 

For calculating equilibrium ratios, we implement a fixed-point iteration procedure. However, before 

that procedure is explained further, it is important to note the number of primary mole fractions we get 

as input from CompFlow Bio. 

The total number of components in each phase is 𝑚𝑚 + 4, with 𝑚𝑚 + 1 of them being hydrocarbons, 

the other three components being carbon dioxide, water and nitrogen. 

There are, however, components for which the mole fractions in any phase are not known as input 

from CompFlow Bio. These components are listed below: 

State 1: water, nitrogen and the heaviest non-methane hydrocarbon component (𝜊𝜊𝑚𝑚), 

State 2: water and nitrogen, 

State 3: nitrogen, 

State 4: nitrogen and the heaviest non-methane hydrocarbon component (𝜊𝜊𝑚𝑚). 

We note that the number of these unknowns in each case is equal to the number of phases. Also from 

Equation (2-7), we have: 

 �𝑥𝑥𝑖𝑖,𝑙𝑙

𝑁𝑁𝑁𝑁

𝑖𝑖=1

= 1      𝑙𝑙 = 𝑛𝑛, 𝑞𝑞 𝑜𝑜𝑜𝑜 𝑔𝑔  
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This means that, once all other mole fractions have been calculated using partition coefficients, by 

writing Equation (2-7) for each phase, we can find the other component mole fractions as well. 

Depending on the number of phases, we may solve a linear algebraic equation (state 3) or a system of 

linear algebraic equations (in other cases), as explained below. 

For the case of state 1, we can write the system of linear algebraic equations as follows: 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑥𝑥𝑤𝑤,𝑛𝑛

𝑥𝑥𝑁𝑁2,𝑛𝑛

𝑥𝑥𝜊𝜊𝑚𝑚,𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 1 1

𝐾𝐾𝑤𝑤,𝑛𝑛𝑛𝑛 𝐾𝐾𝑁𝑁2,𝑛𝑛𝑛𝑛 𝐾𝐾𝜊𝜊𝑚𝑚,𝑛𝑛𝑛𝑛

𝐾𝐾𝑤𝑤,𝑛𝑛𝑛𝑛

𝐾𝐾𝑤𝑤,𝑞𝑞𝑞𝑞

𝐾𝐾𝑁𝑁2,𝑛𝑛𝑛𝑛

𝐾𝐾𝑁𝑁2,𝑞𝑞𝑞𝑞

𝐾𝐾𝜊𝜊𝑚𝑚,𝑛𝑛𝑛𝑛

𝐾𝐾𝜊𝜊𝑚𝑚,𝑞𝑞𝑞𝑞⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 − � 𝑥𝑥𝑖𝑖,𝑛𝑛

𝑁𝑁𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑤𝑤,𝑁𝑁2,𝜊𝜊𝑚𝑚

1 − � 𝑥𝑥𝑖𝑖,𝑔𝑔

𝑁𝑁𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑤𝑤,𝑁𝑁2,𝜊𝜊𝑚𝑚

1 − � 𝑥𝑥𝑖𝑖,𝑞𝑞

𝑁𝑁𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑤𝑤,𝑁𝑁2,𝜊𝜊𝑚𝑚 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3-1) 

If only gaseous and aqueous phases are present (state 2), the following equations should be solved 

simultaneously 

 

⎣
⎢
⎢
⎢
⎡
𝑥𝑥𝑤𝑤,𝑞𝑞

𝑥𝑥𝑁𝑁2,𝑞𝑞⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡

1 1

𝐾𝐾𝑤𝑤,𝑞𝑞𝑞𝑞 𝐾𝐾𝑁𝑁2,𝑞𝑞𝑞𝑞⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 − � 𝑥𝑥𝑖𝑖,𝑞𝑞

𝑁𝑁𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑤𝑤,𝑁𝑁2

1 − � 𝑥𝑥𝑖𝑖,𝑔𝑔

𝑁𝑁𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑤𝑤,𝑁𝑁2 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3-2) 

If only the gaseous phase is present (state 3), solving the following linear equation gives the only 

unknown mole fraction. 

 𝑥𝑥𝑁𝑁2,𝑔𝑔 = 1 − � 𝑥𝑥𝑖𝑖,𝑔𝑔

𝑁𝑁𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑁𝑁2

 (3-3) 

Finally, for the state 4, the following system of equations should be solved: 
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⎣
⎢
⎢
⎢
⎡
𝑥𝑥𝑁𝑁2,𝑛𝑛

𝑥𝑥𝜊𝜊𝑚𝑚,𝑛𝑛⎦
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎡

1 1

𝐾𝐾𝑁𝑁2,𝑛𝑛𝑛𝑛 𝐾𝐾𝜊𝜊𝑚𝑚,𝑛𝑛𝑛𝑛⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 − � 𝑥𝑥𝑖𝑖,𝑛𝑛

𝑁𝑁𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑁𝑁2,𝜊𝜊𝑚𝑚

1 − � 𝑥𝑥𝑖𝑖,𝑔𝑔

𝑁𝑁𝑁𝑁

𝑖𝑖=1
𝑖𝑖≠𝑁𝑁2,𝜊𝜊𝑚𝑚 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (3-4) 

We are now in a position to describe the fixed-point iteration procedure used for calculating partition 

coefficients. 

3.2 Fixed-Point Iteration Procedure 

As a first step, we use appropriate initial guess for partition coefficients to start the iteration. 

In this work, we used Wilson equation (Wilson, 1969) for 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔 

 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔 =  
1
𝑃𝑃𝑟𝑟𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒 �5.37(1 + 𝜔𝜔𝑖𝑖)�1 −
1
𝑇𝑇𝑟𝑟𝑖𝑖
�� (3-5) 

where 𝑃𝑃𝑟𝑟𝑖𝑖  and 𝑇𝑇𝑟𝑟𝑖𝑖  are reduced pressure and temperature of component 𝑖𝑖, respectively and 𝜔𝜔𝑖𝑖 is the 

acentric factor of that component (dimensionless). Reduced parameters are defined as follows: 

 𝑃𝑃𝑟𝑟𝑖𝑖 ≡
𝑃𝑃
𝑃𝑃𝑐𝑐𝑖𝑖

 (3-6) 

 𝑇𝑇𝑟𝑟𝑖𝑖 ≡
𝑇𝑇
𝑇𝑇𝑐𝑐𝑖𝑖

 (3-7) 

To obtain initial values for 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔, the following equation from Peng and Robinson (1976b) is used: 

 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔 = 1 × 106 �
𝑃𝑃𝑟𝑟𝑖𝑖
𝑇𝑇𝑟𝑟𝑖𝑖
� (3-8) 

Once we have all the initial values of partition coefficients, we can calculate secondary mole fractions 

from Equations (2-59) and (2-7). 

Now with knowing all mole fractions for all components in all phases, we use modified Peng-

Robinson equation of state to calculate compressibility factors and thereafter fugacity coefficients using 

Equation (2-78). After obtaining the fugacity coefficients, we can calculate new sets of equilibrium 

ratios using Equation (2-59). Then we compare these new sets with old ones. If the difference is less 

than a pre-set tolerance, our secondary variables are considered accurate and are passed to CompFlow 

Bio. Otherwise, we replace the old set of equilibrium ratios with the new one and re-iterate the loop with 
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calculating new mole fractions based on new equilibrium ratios. This procedure is described in the 

flowchart of Figure 3-1. 

Set inputs
P, T & 
primary 
variables

Properties of 
all 

component

Estimate initial 
K’s using 

Equations (3-5) 
& (3-8)

Calculate Ф’s 
from Equation 

(3-19) 

Calculate new 
sets of K’s using 

Equation
 (2-59)

Phase Properties 
Calculations

State CheckPass outputs to 
CompFlow Bio

Substitute old 
K’s with new 

ones

Calculate all 
mole fractions 
using K’s and 
Equation (2-7)

Check for 
convergence

CompFlow Bio Databases

YesNo

 

Figure 3-1: Flowchart of different steps in flash calculations using Peng-Robinson EOS. 

In this thesis, the following equation is used for estimating error, 𝑒𝑒: 
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 𝑒𝑒 = 𝑚𝑚𝑚𝑚𝑚𝑚

⎣
⎢
⎢
⎢
⎢
⎢
⎡�𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔

𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔�
2

𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛 × 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔

�𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛 − 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔�
2

𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔𝑛𝑛𝑛𝑛𝑛𝑛 × 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

    𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁 (3-9) 

This error is then ensured to be less than a pre-set tolerance. Value of the tolerance used in this work 

is equal to 1 × 10−16. 

As mentioned before, a single point iteration procedure is employed to solve coupled nonlinear 

algebraic equations. In this method, convergence is not guaranteed and depends sensitively on initial 

guesses, which should be selected carefully. Equations (3-5) and (3-8), are appropriate guesses for 

hydrocarbon systems (Danesh, 1998) and help the iteration procedure converge quickly. 

3.3 Calculating Fugacity Coefficients using Peng-Robinson EOS 

In this section, the Peng-Robinson equation of state and its associated variables is explained. First, we 

review two-parameter Peng-Robinson EOS and then in subsequent sections, we introduce modifications 

suggested to improve the performance of this cubic equation. 

The Peng-Robinson equation of state (1976a) was developed at the University of Alberta by Ding-

Yu Peng and Donald Robinson in order to satisfy the following goals:  

• The parameters should be expressible in terms of the critical properties and the acentric factor. 

• The model should provide reasonable accuracy near the critical point, particularly for 

calculations of the compressibility factor and liquid density. 

• The mixing rules should not employ more than a single binary interaction parameter, which 

should be independent of temperature, pressure, and composition. 

• The equation should be applicable to all calculations of all fluid properties in natural gas 

processes. 

The original formulation of Peng-Robinson EOS was later modified by them (1976b; 1980; 1978) 

and others (Jhaveri and Youngren, 1988; Péneloux et al., 1982) to improve its prediction and range of 

applicability. 

The two-parameter Peng-Robinson equation of state (1976a) has the following formulation  
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 𝑃𝑃 =
𝑅𝑅𝑅𝑅

𝑉𝑉𝑀𝑀 − 𝑏𝑏
−

𝑎𝑎𝑎𝑎
𝑉𝑉𝑀𝑀2 + 2𝑏𝑏𝑉𝑉𝑀𝑀 − 𝑏𝑏2

 (3-10) 

in which 𝑉𝑉𝑀𝑀 is molar volume (SI unit: 𝑚𝑚
3

𝑚𝑚𝑚𝑚𝑚𝑚
) and: 

 𝑎𝑎 = 0.45724
𝑅𝑅2𝑇𝑇𝑐𝑐2

𝑃𝑃𝑐𝑐
 (3-11) 

 𝑏𝑏 = 0.07780
𝑅𝑅𝑇𝑇𝑐𝑐
𝑃𝑃𝑐𝑐

 (3-12) 

 𝛼𝛼 = �1 + 𝜅𝜅�1 −�𝑇𝑇𝑟𝑟��
2

  (3-13) 

 𝜅𝜅 = 0.37464 + 1.54226𝜔𝜔 − 0.26992𝜔𝜔2 (3-14) 

𝑎𝑎 and 𝑏𝑏 are two empirical constant of this equation of state, obtained from fluid properties. 

From real gas law we have (Smith et al., 2001): 

 𝑃𝑃 =
𝑧𝑧𝑧𝑧𝑧𝑧
𝑉𝑉𝑀𝑀

 (3-15) 

Combining this equation with Equation (3-10) and solving for compressibility factor yields 

 𝑧𝑧 =
1

1 − 𝑏𝑏
𝑉𝑉𝑀𝑀

+
𝑎𝑎′𝛼𝛼

𝑉𝑉𝑀𝑀 + 2𝑏𝑏 − 𝑏𝑏2
𝑉𝑉𝑀𝑀

 (3-16) 

in which we defined 

 𝑎𝑎′ =
𝑎𝑎
𝑅𝑅𝑅𝑅

 (3-17) 

Now we recall Equation (2-78): 

 ln𝜙𝜙𝑖𝑖,𝑗𝑗 = � �𝑧𝑧𝑗𝑗 − 1�
𝑑𝑑𝑃𝑃𝑗𝑗
𝑃𝑃𝑗𝑗

𝑃𝑃𝑗𝑗

0
  

If we substitute 𝑧𝑧𝑗𝑗 in this equation from Equation (3-16), we will have an expression for calculation 

of fugacity coefficient based on Peng-Robinson EOS. We note, however, that before this substitution 

we have to change the integration variable in Equation (2-78) from 𝑃𝑃𝑗𝑗 to 𝑉𝑉𝑗𝑗. For this purpose, we use 

Equation (3-15) to obtain: 

 ln𝜙𝜙𝑖𝑖,𝑗𝑗 = � �1 − 𝑧𝑧𝑗𝑗�
𝑑𝑑𝑉𝑉𝑗𝑗
𝑉𝑉𝑗𝑗

𝑉𝑉𝑗𝑗

∞
 (3-18) 
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Now if we rewrite Equation (3-16) for phase 𝑗𝑗 and combine the resulting equation with Equation 

(3-18), we obtain after algebraic manipulation an expression for the fugacity coefficient of component 

𝑖𝑖 in phase 𝑗𝑗 (McCain, 1990): 

 

ln�𝜙𝜙𝑖𝑖,𝑗𝑗� = − ln�𝑧𝑧𝑗𝑗 − 𝐵𝐵𝑗𝑗� + �𝑧𝑧𝑗𝑗 − 1�𝐵𝐵𝑖𝑖,𝑗𝑗′ −
𝐴𝐴𝑗𝑗

2√2𝐵𝐵𝑗𝑗
�𝐴𝐴𝑖𝑖,𝑗𝑗′ − 𝐵𝐵𝑖𝑖,𝑗𝑗′ �

∗ 𝑙𝑙𝑙𝑙 �
𝑧𝑧𝑗𝑗 + �√2 + 1�𝐵𝐵𝑗𝑗
𝑧𝑧𝑗𝑗 − �√2 − 1�𝐵𝐵𝑗𝑗

� 

(3-19) 

In Equation (3-19), phase-component variables, 𝐴𝐴𝑖𝑖,𝑗𝑗′  and 𝐵𝐵𝑖𝑖,𝑗𝑗′ , are defined as follows 

 𝐴𝐴𝑖𝑖,𝑗𝑗′ =
1
𝑎𝑎𝑗𝑗
�2�𝑎𝑎𝑖𝑖�𝑥𝑥𝑙𝑙,𝑗𝑗

𝑁𝑁𝑁𝑁

𝑙𝑙=1
�𝑎𝑎𝑙𝑙(1 − 𝛿𝛿𝑙𝑙𝑙𝑙)� (3-20) 

 𝐵𝐵𝑖𝑖,𝑗𝑗′ =
𝑏𝑏𝑖𝑖
𝑏𝑏𝑗𝑗

 (3-21) 

where the following mixing rules are used for phase 𝑗𝑗:  

 𝑎𝑎𝑗𝑗 = ��𝑥𝑥𝑖𝑖,𝑗𝑗𝑥𝑥𝑙𝑙,𝑗𝑗�𝑎𝑎𝑖𝑖𝑎𝑎𝑙𝑙(1−
𝑁𝑁𝑁𝑁

𝑙𝑙=1

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝛿𝛿𝑖𝑖𝑖𝑖) (3-22) 

 𝑏𝑏𝑗𝑗 = �𝑥𝑥𝑙𝑙,𝑗𝑗

𝑁𝑁𝑁𝑁

𝑙𝑙=1

𝑏𝑏𝑙𝑙 (3-23) 

𝛿𝛿𝑖𝑖𝑖𝑖 is the binary interaction coefficient between component 𝑖𝑖 and 𝑗𝑗. As a first approximation, it may 

be assumed constant for each two components and is calculated for each pair of components in their 

binary mixture in order to match experimental data. The databases that we used for critical properties, 

as well as acentric factors and binary interaction coefficients are given in Chapter 4. 

Component-dependent variables used in the above formulations are given below, where each equation 

is written for component 𝑖𝑖: 

 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑐𝑐𝑖𝑖𝛼𝛼𝑖𝑖 (3-24) 

 𝑎𝑎𝑐𝑐𝑖𝑖 = 0.45724
𝑅𝑅2𝑇𝑇𝑐𝑐𝑖𝑖

2

𝑃𝑃𝑐𝑐𝑐𝑐
 (3-25) 

 𝛼𝛼𝑖𝑖 = �1 + 𝜅𝜅𝑖𝑖 �1 −�𝑇𝑇𝑟𝑟𝑖𝑖��
2

 (3-26) 
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 𝜅𝜅𝑖𝑖 = 0.37464 + 1.54226𝜔𝜔𝑖𝑖 − 0.26992𝜔𝜔𝑖𝑖2 (3-27) 

 𝑏𝑏𝑖𝑖 = 0.07780
𝑅𝑅𝑇𝑇𝑐𝑐𝑖𝑖
𝑃𝑃𝑐𝑐𝑖𝑖

 (3-28) 

The phase variables, 𝐴𝐴𝑗𝑗 and 𝐵𝐵𝑗𝑗, are calculated by: 

 𝐴𝐴𝑗𝑗 =
𝑎𝑎𝑗𝑗𝑃𝑃𝑗𝑗
𝑅𝑅2𝑇𝑇2

 (3-29) 

 𝐵𝐵𝑗𝑗 =
𝑏𝑏𝑗𝑗𝑃𝑃𝑗𝑗
𝑅𝑅𝑅𝑅

 (3-30) 

The compressibility factor required in Equation (3-19) is obtained as follows. First substitute 𝑉𝑉𝑀𝑀 in 

Equation (3-16) by real gas law and then solve the resulting equation for 𝑧𝑧. Applied to phase j, the 

equation to solve is (McCain, 1990): 

 𝑧𝑧𝑗𝑗3 − �1 − 𝐵𝐵𝑗𝑗�𝑧𝑧𝑗𝑗2 + �𝐴𝐴𝑗𝑗 − 2𝐵𝐵𝑗𝑗 − 3𝐵𝐵𝑗𝑗2�𝑧𝑧 − �𝐴𝐴𝑗𝑗𝐵𝐵𝑗𝑗 − 𝐵𝐵𝑗𝑗2 − 𝐵𝐵𝑗𝑗3� = 0 (3-31) 

Equation (3-31) is a cubic function and has exact analytical solutions (Abramowitz and Stegun, 1964), 

therefore for phase 𝑗𝑗 we can write 

 𝑟𝑟𝑚𝑚 = −
1
3
�𝐵𝐵𝑗𝑗 − 1 + 𝜁𝜁𝑚𝑚𝜂𝜂 +

Δ0
𝜁𝜁𝑚𝑚𝜂𝜂

� ,    𝑚𝑚𝑚𝑚{0,1,2}  (3-32) 

where 

 𝜁𝜁 = −
1
2

+
1
2√

3𝑖𝑖 (3-33) 

 
𝜂𝜂 =

�Δ1 ± �Δ12 − 4Δ03

2

3

 
(3-34) 

 Δ0=10𝐵𝐵𝑗𝑗2 + 4𝐵𝐵𝑗𝑗 − 3𝐴𝐴𝑗𝑗 + 1 (3-35) 

 Δ1 = 56𝐵𝐵𝑗𝑗3 + 12𝐵𝐵𝑗𝑗2 − 12𝐵𝐵𝑗𝑗 + 9𝐴𝐴𝑗𝑗 − 36𝐴𝐴𝑗𝑗𝐵𝐵𝑗𝑗 − 2 (3-36) 

In the above, 𝑟𝑟𝑚𝑚 denotes the m-th root of the cubic function. It should be noted that in Equation (3-33), 

𝑖𝑖 is the unit imaginary number which is equal to √−1. 

As Equation (3-31) is a third degree polynomial, it has three roots. Based on the value of the 

discriminant Δ, we can identify these roots (Abramowitz and Stegun, 1964): 
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 Δ =
4Δ03 − Δ12

27
 (3-37) 

If Δ > 0, then the polynomial has three distinct real roots, 

If Δ = 0, then the polynomial has real roots with following description: 

• If Δ0 = 0, then the polynomial has one triple root equal to 𝑟𝑟1: 

 𝑟𝑟1 =
1 −𝐵𝐵𝑗𝑗

3
 (3-38) 

• If Δ0 ≠ 0, then the polynomial has one double root equal to 𝑟𝑟2 and one simple root equal to 𝑟𝑟3: 

 𝑟𝑟2 =
10𝐴𝐴𝑗𝑗𝐵𝐵𝑗𝑗 − 𝐴𝐴𝑗𝑗 − 12𝐵𝐵𝑗𝑗3 − 8𝐵𝐵𝑗𝑗2 + 2𝐵𝐵𝑗𝑗

6𝐴𝐴𝑗𝑗 − 20𝐵𝐵𝑗𝑗2 − 8𝐵𝐵𝑗𝑗 − 2
 (3-39) 

 𝑟𝑟3 =
13𝐴𝐴𝑗𝑗𝐵𝐵𝑗𝑗 − 4𝐴𝐴𝑗𝑗 − 22𝐵𝐵𝑗𝑗3 − 2𝐵𝐵𝑗𝑗2 + 5𝐵𝐵𝑗𝑗 + 1

−3𝐴𝐴𝑗𝑗 + 10𝐵𝐵𝑗𝑗2 + 4𝐵𝐵𝑗𝑗 + 1
 (3-40) 

If Δ < 0, then the equation has one real root and two non-real complex conjugate roots. 

If in Equation (3-31) Δ = Δ0 = 0, we have one root and that root is the compressibility factor of the 

phase 𝑗𝑗. In all other cases, in which we have more than one roots, we need to decide which root is the 

compressibility factor. In order to obtain the correct compressibility factor, we apply these criteria:  

Since the compressibility factor is always a real number, in case of Δ < 0, we only calculate the real 

route and that is the compressibility factor, 

The compressibility factor is always positive. Therefore, we neglect zero or negative roots, 

Since logarithms cannot admit negative arguments (see Equation (3-19)), we neglect those 

compressibility factors that do not satisfy the inequality 𝑧𝑧𝑗𝑗 > 𝐵𝐵𝑗𝑗 

If after applying these criteria still more than one root remains, we select the compressibility factor 

based on the nature of the phase in question: If we are solving Equation (3-31) for a gaseous phase, we 

choose the highest value; if we are dealing with a liquid phase, we choose the lowest value. 

After obtaining compressibility factors, we can calculate fugacity coefficient using Equation (3-19). 

Subsequently, equilibrium ratios can be calculated from knowledge of the fugacity coefficients from 

Equation (2-59). Flowchart of the flash calculations proposed in this thesis is described in Figure 3-1. 
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3.4 Modifications of Peng-Robinson Equation of State 

In order to obtain better results using the Peng-Robinson equation of state for hydrocarbon mixtures 

containing water, three modifications have been proposed as follows. 

3.4.1 Modification for Heavy Hydrocarbon Components 

To improve predications for heavier hydrocarbons, for which 𝜔𝜔 > 0.49, Robinson and Peng (1980) 

suggested that the following equation be used instead of Equation (3-27): 

 𝜅𝜅𝑖𝑖 = 0.379642 + 1.4853𝜔𝜔𝑖𝑖 − 0.164423𝜔𝜔𝑖𝑖
2 + 0.01666𝜔𝜔𝑖𝑖3 (3-41) 

3.4.2 Modification for Water Component 

When developing the original correlations for 𝛼𝛼 and 𝜅𝜅, Equations (3-26) and (3-27), Peng and Robinson 

(1976a) did not include water as one of the components and consequently the predicted vapor pressures 

for water were not as good as expected. In a later publication (1980), they proposed that for �𝑇𝑇𝑟𝑟𝑤𝑤 <

0.85, the following equation should be used instead of Equation (3-26): 

 𝛼𝛼𝑤𝑤 = �1.0085677 + 0.82154 �1 −�𝑇𝑇𝑟𝑟𝑤𝑤��
2

 (3-42) 

At temperatures where �𝑇𝑇𝑟𝑟𝑤𝑤 ≥ 0.85, Equation (3-26) still applies. In the above notation, subscript 𝑤𝑤 

denotes water component. 

3.4.3 Modification for Aqueous Phase 

For the aqueous phase, Peng and Robinson (1980) also suggested that the following equations should 

be used instead of Equations (3-20) and (3-22): 

 𝐴𝐴𝑖𝑖,𝑞𝑞′ =
1
𝑎𝑎𝑞𝑞
�2�𝑎𝑎𝑖𝑖�𝑥𝑥𝑙𝑙,𝑞𝑞

𝑁𝑁𝑁𝑁

𝑙𝑙=1
�𝑎𝑎𝑙𝑙(1 − 𝜏𝜏𝑙𝑙𝑙𝑙)� (3-43) 

 𝑎𝑎𝑞𝑞 = ��𝑥𝑥𝑖𝑖,𝑞𝑞𝑥𝑥𝑙𝑙,𝑞𝑞�𝑎𝑎𝑖𝑖𝑎𝑎𝑙𝑙(1 −
𝑁𝑁𝑁𝑁

𝑙𝑙=1

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝜏𝜏𝑖𝑖𝑖𝑖) (3-44) 

In the above equation, 𝜏𝜏𝑖𝑖𝑖𝑖 is a temperature-dependent binary interaction parameter between 

components 𝑖𝑖 and 𝑙𝑙 in the aqueous phase. Introduction of this parameter for each aqueous binary pair 

means that the interaction between the water molecule and the non-water molecule is much different 

from that in the non-aqueous phases. Although this assumption lacks a solid theoretical basis, in practice 

provides more accurate results. Peng and Robinson (1980) investigated the temperature-dependent 
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binary interaction parameter for various binary mixtures, including hydrocarbons and non-hydrocarbons 

with water. Results of their work, which illustrates temperature-dependent binary interaction parameter 

as a function of experimental conditions and critical properties are given in  Figure 3-2 and Figure 3-3. 

 

Figure 3-2: Temperature-dependent binary interaction parameter for selected paraffin-water 

binary systems (Peng and Robinson, 1980). 
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Figure 3-3: Temperature-dependent binary interaction parameter for selected non-

hydrocarbon and water binary systems (Peng and Robinson, 1980). 
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3.5 Volume Translations 

Two parameter cubic equations of state, such as Soave-Redlich-Kwong and Peng-Robinson, provide 

accurate equilibrium mole fractions. However, their ability to estimate volumetric properties has room 

for improvement (Jhaveri and Youngren, 1988). Péneloux et al. (1982), introduced a third parameter in 

the Soave-Redlich-Kwong equation of state to improve its volumetric estimations. Their proposed 

correction is particularly attractive because this third parameter does not change equilibrium mole 

fractions obtained from two-parameter equation of state, but only modifies the phase volume by 

affecting certain translations along the volume axis. After Péneloux et al. (1982), Jhaveri and Youngren 

(1988) introduced a similar parameter into the Peng-Robinson equation of state. In the current work, we 

use the third parameter as proposed by Jhaveri and Youngren (1988). A description of this third 

parameter with associated equations is given in the following paragraphs. 

The third parameter, called shift parameter or volume shift or volume translation is denoted in 

literature by 𝑐𝑐, analogous to the first two parameters, 𝑎𝑎 and 𝑏𝑏. This parameter, like the two other 

parameters, is empirical and for each component, it is calculated by using experimental data and 

statistical approaches.  

Since the third parameter, 𝑐𝑐, has the same units as the second parameter, 𝑏𝑏, the dimensionless shift 

parameter, 𝑠𝑠, is defined as 

 𝑠𝑠 ≡
𝑐𝑐
𝑏𝑏

 (3-45) 

where 𝑐𝑐 is the volumetric shift parameter and 𝑏𝑏 is given by Equation (3-12). 

Given the dimensionless shift parameter, volumetric shift parameters are calculated for each 

component using Equations (3-45) and (3-28). Then the molar volume of phase 𝑗𝑗 is corrected by the 

following equation 

 𝑉𝑉�𝑀𝑀𝑗𝑗 = 𝑉𝑉𝑀𝑀𝑗𝑗 −�𝑥𝑥𝑖𝑖,𝑗𝑗 × 𝑐𝑐𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 (3-46) 

where 𝑉𝑉𝑀𝑀𝑗𝑗 is calculated by Equation (3-15) 

 𝑉𝑉𝑀𝑀𝑗𝑗 =
𝑧𝑧𝑗𝑗𝑅𝑅𝑅𝑅
𝑃𝑃𝑗𝑗

  

and 𝑉𝑉�𝑀𝑀𝑗𝑗 is the corrected molar volume of phase 𝑗𝑗 (SI unit: 𝑚𝑚
3

𝑚𝑚𝑚𝑚𝑚𝑚
).  
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3.6 Calculating Phase Properties 

In previous sections, we described the equations and procedure for calculating equilibrium ratios as well 

as proposed corrections for more accurate phase and components estimations. Now, we are in a position 

to calculate phase properties. 

Molar density of phase 𝑗𝑗 (SI unit: 𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚3 ) is obtained from the following equation: 

 𝑀𝑀𝑗𝑗 =
1
𝑉𝑉�𝑀𝑀𝑗𝑗

 (3-47) 

Phase fraction of phase 𝑗𝑗, denoted by Ψ𝑗𝑗, is given by: 

 Ψ𝑗𝑗 =
𝑀𝑀𝑗𝑗 × 𝑆𝑆𝑗𝑗

∑ 𝑀𝑀𝑗𝑗 × 𝑆𝑆𝑗𝑗𝑁𝑁𝑁𝑁
𝑗𝑗=1

 (3-48) 

Phase molecular weight (SI unit: 𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚

) can be calculated by the following equation 

 𝑀𝑀𝑀𝑀𝑗𝑗 = �𝑀𝑀𝑀𝑀𝑖𝑖 × 𝑥𝑥𝑖𝑖,𝑗𝑗

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 (3-49) 

where 𝑀𝑀𝑀𝑀𝑖𝑖 is the molecular weight of component 𝑖𝑖. 

Given molar density of the phase and phase molecular weight, phase mass density (SI unit: 𝑘𝑘𝑘𝑘
𝑚𝑚3) is 

obtained from the following equation: 

 𝜌𝜌𝑗𝑗 = 𝑀𝑀𝑗𝑗 × 𝑀𝑀𝑀𝑀𝑗𝑗 (3-50) 

3.7 State Change Signaling 

In addition to calculating equilibrium ratios and phase properties, this work intends to substitute another 

part of CompFlow Bio that detects phase appearance or disappearance. For this purpose, first we need 

to calculate the total mole fraction of each component: 

 𝑥𝑥𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝛹𝛹𝑗𝑗𝑥𝑥𝑖𝑖,𝑗𝑗

𝑁𝑁𝑁𝑁

𝑗𝑗=1

       𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁 (3-51) 

Once total mole fractions are calculated, we use tests introduced by Bünz et al. (1991) to determine 

which phases are present. Given that gas phase is always present as an assumption by default in 

CompFlow Bio, we need to check only three tests. 
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In order to minimize the calculations, the single-phase behavior is checked first and if not confirmed, 

two-phase tests are performed. If none of the single or two-phase tests is confirmed, three-phase 

behavior is assumed. 

In the calculations for verifying two-phase behavior, introducing the following functions is necessary: 

 

𝑄𝑄1�𝛹𝛹𝑛𝑛,𝛹𝛹𝑞𝑞� = �𝑥𝑥𝑖𝑖,𝑛𝑛

𝑁𝑁𝑁𝑁

𝑖𝑖=1

−�𝑥𝑥𝑖𝑖,𝑔𝑔

𝑁𝑁𝑁𝑁

𝑖𝑖=1

= �
𝑥𝑥𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔�1 − 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔�

𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔𝐾𝐾𝑖𝑖,𝑔𝑔𝑞𝑞 + 𝛹𝛹𝑛𝑛𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔�1 − 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔� +𝛹𝛹𝑞𝑞𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔�1− 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔�

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 

(3-52) 

 

𝑄𝑄2�𝛹𝛹𝑛𝑛,𝛹𝛹𝑞𝑞� = �𝑥𝑥𝑖𝑖,𝑞𝑞

𝑁𝑁𝑁𝑁

𝑖𝑖=1

−�𝑥𝑥𝑖𝑖,𝑔𝑔

𝑁𝑁𝑁𝑁

𝑖𝑖=1

= �
𝑥𝑥𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔�1 −𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔�

𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔 + 𝛹𝛹𝑛𝑛𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔�1 − 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔� +𝛹𝛹𝑞𝑞𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔�1− 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔�

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 

(3-53) 

The tests suggested by Bünz et al. (1991) may be presented in the following forms: 

Single gaseous phase (state 3): 

 �
𝑥𝑥𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔

𝑁𝑁𝑁𝑁

𝑖𝑖=1

< 1 (3-54) 

 �
𝑥𝑥𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔

𝑁𝑁𝑁𝑁

𝑖𝑖=1

< 1 (3-55) 

Gaseous phase and non-aqueous phase (state 4): 

 �
𝑥𝑥𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔

𝑁𝑁𝑁𝑁

𝑖𝑖=1

> 1 (3-56) 

 �𝑥𝑥𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔 > 1 (3-57) 

with 𝑄𝑄2(𝛹𝛹𝑛𝑛, 0) < 0 at the point 𝑄𝑄1(𝛹𝛹𝑛𝑛, 0) = 0. 

Gaseous phase and aqueous phase (state 2): 
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 �
𝑥𝑥𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔

𝑁𝑁𝑁𝑁

𝑖𝑖=1

> 1 (3-58) 

 �𝑥𝑥𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑁𝑁𝑁𝑁

𝑖𝑖=1

𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔 > 1 (3-59) 

with 𝑄𝑄1�0,𝛹𝛹𝑞𝑞� < 0 at the point 𝑄𝑄2�0,𝛹𝛹𝑞𝑞� = 0. 

If none of the sates 2, 3, or 4 is verified, then all three phases are present, i.e. state 1 is the correct 

state. 

For checking these tests, two sets of equilibrium ratios are required, even if fewer than three phase 

are present. In order to obtain equilibrium ratios between two phases when one of them is not present, 

we assume a hypothetical phase and equilibrate it with the present phase. Then, equilibrium ratios 

between those two phases are used in the above-mentioned procedure. Since in this work, gas phase 

presence is a principle assumption, we equilibrate the hypothetical phase with gas phase and therefore, 

the hypothetical phase could be either aqueous or non-aqueous phase. 

The results of the above procedure are output to CompFlow Bio. If the state that CompFlow Bio 

reported as input is different from what is obtained through Equations (3-54) to (3-59), CompFlow Bio 

adopts the new state, selects the appropriate set of primary variables (see Table 2-1) and starts over the 

Newton iteration. In the new iteration, our package finds associated secondary variables and this process 

is repeated until Newton iteration converges (see Figure 2-1). 
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Chapter 4 
Results and Discussion 

4.1 Introduction 

In this chapter, we demonstrate the results of our package under different scenarios. For validating our 

results, we compare this work’s results with a well-known commercial simulator’s results under the 

same conditions. However, before going through the detailed results, first we review the assumption 

under which our package’s calculations are valid and then describe the procedure of validating our 

results. 

4.2 Assumptions 

In this section, we describe the assumptions, by which our model is restricted. 

The most important basis on which our calculations are structured is chemical equilibrium. By 

chemical equilibrium, we mean all components available in the mixture are in same temperature; 

mixture pressure remains unchanged and total molar composition of each component is constant. 

Furthermore, there is no ongoing chemical reaction in the mixture.  

Presence of gas phase is a fundamental assumption of CompFlow Bio. In this work, we assume the 

gas phase is always present, even in infinitesimally small quantity. This assumption make calculations 

for CompFlow Bio more efficient and robust as well as with gas phase amount to be very small, it does 

not result in significant error since total mass balance equations are still valid. It means in case of 

aqueous and non-aqueous two-phase mixture, we consider it to be state 1 (three phase) with a threshold 

amount of gas phase. In case of single aqueous phase, we consider the mixture to be at state 2 containing 

threshold amount of gas phase and when there is only single non-aqueous phase, it is assumed that 

mixture is at state 4 with the threshold amount of gas phase. In each of the mentioned situations, 

composition of the gas phase is calculated based on equilibrium with other phases. In this study, we 

assume the fraction associated with threshold amount to be 1 × 10−5. It means we assume that always 

at least 1 × 10−5 of total moles of the mixture is in the gas phase. 

Peng-Robinson equation of state with volume translation is mostly designed for dealing with 

hydrocarbon-dominated problems, particularly in high pressures and temperatures. Although results of 

applying this package to other problems are expected to be within a reasonable margin of error, such 

conditions are not verified in this thesis. In addition, Peng-Robinson EOS requires several sets of 

physical properties as inputs. Although most of these inputs are constant and identical, such as critical 

properties and acentric factors, binary interaction parameters for aqueous phase are temperature-
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dependent. Binary interaction parameters used in this work are valid for the scope of demonstrated cases 

as well as for mixtures with lower pressure and temperature. Application of these interaction parameters 

to considerably higher temperature cases should be verified before attempting to perform flash 

calculations in those conditions. 

Fixed-point iteration procedure implemented in the current thesis uses initial guesses that are widely 

considered appropriate estimates for hydrocarbon mixtures (see Equations (3-5) and (3-8)). For other 

mixtures with significant difference in consisting components, other appropriate initial guesses should 

be considered. 

Furthermore, in CompFlow Bio, water is assumed insoluble in non-aqueous phase and nitrogen is 

only supposed to be in gas phase, these assumptions are not used in structuring calculations of this work. 

As a result, before assembling this package into CompFlow Bio, certain changes have to be made within 

the current version of CompFlow Bio to accommodate partitioning of water and nitrogen in all three 

phases. 

4.3 Results Verifying Procedure 

In order to demonstrate the accuracy of our results, we compare our results to a well-known commercial 

simulator, Eclipse®. To attain this goal, we used the PVTi module of Eclipse® to perform flash 

calculations under the same conditions as our package. PVTi is a module of Eclipse® designed to 

perform fluid characterizations and flash calculations. To this end, PVTi uses direct Gibbs free energy 

minimization method to obtain equilibrium mole fractions. Although the outputs of PVTi and our 

package include almost identical variables (the only exception is phase saturation, which is not 

calculated by PVTi), inputs required by them are different. As CompFlow Bio requires a specific and 

unique configuration in inputs, a special procedure should be used so we can compare the results of 

PVTi module and our package. A description of this procedure, which also clarifies its necessity, is 

detailed in following paragraphs. 

The PVTi module of Eclipse®, as well as other simulators, requires the total mole fraction of each 

component as well as pressure and temperature as inputs. Component properties such as critical 

temperature and pressure, acentric factor and binary interaction parameters can be provided by user as 

well. On the other hand, CompFlow Bio passes primary variables as well as pressure and temperature 

as inputs to our package. As a result of this particular configuration, our package requires primary 

variables as inputs while PVTi calculates them as part of outputs. 

To make PVTi results comparable to our results, first we set all of the components properties in PVTi 

to the same values we used in our package. These properties include critical pressures and temperatures 
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for components, pseudo-critical pressures and temperatures for pseudo-components, as well as acentric 

factors and binary interaction parameters (BIPs). It should be mentioned that within the PVTi, we are 

only able to set constant binary interaction parameters, i.e. 𝛿𝛿𝑖𝑖𝑖𝑖 in Equations (3-20) and (3-22), while 

temperature-dependent binary interaction parameters, i.e. 𝜏𝜏𝑖𝑖𝑖𝑖 in Equations (3-43) and (3-44), are 

embedded within the PVTi and are not adjustable by user. After setting properties of each component 

and temperature and pressure, an arbitrary mixture with certain total composition is adopted and entered 

in PVTi as input. Then flash calculations are performed by PVTi and the results are obtained. From PVTi 

outputs state of the problem is determined. Depending on the state of the problem, an associated set of 

primary variables are chosen from the PVTi results and with these primary variables, our package 

performs flash calculations. Afterward, we can compare our results to PVTi results and verify our 

calculations. Results of this verification procedure for different cases are given in following sections of 

this chapter. 

It should be mentioned that PVTi does not calculate phase saturation (𝑆𝑆). However, phase saturation 

is an input in CompFlow Bio. Therefore, we use the following equation to calculate the saturation of 

phase 𝑗𝑗 from PVTi results: 

 𝑆𝑆𝑗𝑗 =
Ψ𝑗𝑗 × 𝑀𝑀𝑊𝑊𝑗𝑗

𝜌𝜌𝑗𝑗
 (4-1) 

A schematic logic diagram, describing various steps of the verification procedure, is given in Figure 

4-1. 

4.4 Inputs and Data 

In previous sections, procedures for comparing the results of our work with a well-known commercial 

simulator (PVTi of Eclipse®) were described in general terms. In the current section, we go through the 

data and inputs that are adopted from databases and literature. For the sake of comparability, these data 

are set to be the same, both in our package and PVTi. These data include critical or pseudo-critical 

pressure, critical or pseudo-critical temperature, acentric factor, dimensionless shift parameter, and 

molecular weight for each component and binary interaction parameters for each pair of components. 

The data provided in this section are associated with composition of the mixture for which flash 

calculations were performed. To perform flash calculations for mixtures containing additional 

components or pseudo-components that are not part of the mixtures in our case studies, the properties 

of these components have to be provided to the package. 
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Figure 4-1: Flowchart of verifying procedure. 

In this study, our focus is on hydrocarbon mixtures; therefore, in our case studies we considered 

typical reservoir oil samples as mixtures. Reservoir oil samples consist of numerous hydrocarbon 

fractions, but for simulation purposes, it is not practical to include all fractions in calculations. Thus, 

regrouping individual components in pseudo-components is considered as an alternative. For replicating 

experimental data, it is vital to precisely regroup the experimental sample fractions. Since, however, in 

our study we are interested in validating our results against another simulator, the definition of pseudo-

components is not essential, as long it is consistent in both simulators. Therefore, we chose a primary 

sample of reservoir oil, which is close to our case study mixtures and estimated pseudo-components 

properties for that sample and the estimated properties are used for all case studies in this thesis. 
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4.4.1 Sample Oil Composition 

The primary oil composition is adopted from work done by Darvish (2007). Table 4-1 shows the 

composition of their reservoir sample before regrouping. This oil may be described as volatile oil and 

originally the sample is taken from a North Sea chalk reservoir. 

In the Table 4-1, other forms of each paraffin are lumped with the normal one. For example, iso-

butane is lumped with n-butane.  

𝒊𝒊 𝒙𝒙𝒊𝒊,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(%) 𝑴𝑴𝑾𝑾𝒊𝒊 (𝒈𝒈/𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎) 

𝑁𝑁2 0.12 28.0 

𝐶𝐶𝑂𝑂2 0.83 44.0 

𝐶𝐶𝐻𝐻4 44.15 16.0 

𝐶𝐶2𝐻𝐻6 7.56 30.1 

𝐶𝐶3𝐻𝐻8 4.21 44.1 

𝐶𝐶4𝐻𝐻10 3.15 58.1 

𝐶𝐶5𝐻𝐻12 2.19 72.2 

𝐶𝐶6𝐻𝐻14 2.07 86.2 

𝐶𝐶7𝐻𝐻16 − 𝐶𝐶9𝐻𝐻20 8.21 108.3 

𝐶𝐶10𝐻𝐻22 − 𝐶𝐶15𝐻𝐻32 11.58 166.0 

𝐶𝐶16𝐻𝐻34 − 𝐶𝐶22𝐻𝐻46 5.51 247.1 

𝐶𝐶23𝐻𝐻48 − 𝐶𝐶34𝐻𝐻70 4.65 336.2 

𝐶𝐶35𝐻𝐻72 − 𝐶𝐶41𝐻𝐻84 3.34 484.0 

𝐶𝐶42𝐻𝐻86 − 𝐶𝐶80𝐻𝐻162 2.43 659.2 

Table 4-1: Oil sample composition chosen for estimating pseudo-

components properties. 

For the sake of brevity, from now on, we denote paraffin groups by their carbon number only; e.g. 𝐶𝐶1 

instead of 𝐶𝐶𝐻𝐻4. 

Moortgat et al. (2009) used the same oil composition for performing their simulations. We adopted 

their hydrocarbon pseudo-components; however, they regrouped nitrogen with methane, whereas 

CompFlow Bio requires nitrogen to be a separate component. The regrouped composition, which we 

used for estimating properties of each pseudo-component, is given in Table 4-2. 

For estimating pseudo-component properties, a weighted average approach is used. For example, 

pseudo-critical pressure of pseudo-component 𝐶𝐶2 − 𝐶𝐶3 is weighted average of ethane and propane 
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critical pressure. Weights of this average are relative mole percentage of ethane and propane to each 

other in the initial mixture. 

𝒊𝒊 𝒙𝒙𝒊𝒊,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(%) 

𝑁𝑁2 0.12 

𝐶𝐶𝑂𝑂2 0.83 

𝐶𝐶1 44.15 

𝐶𝐶2 − 𝐶𝐶3 7.56 

𝐶𝐶4 − 𝐶𝐶6 4.21 

𝐶𝐶7 − 𝐶𝐶9 3.15 

𝐶𝐶10 − 𝐶𝐶15 2.19 

𝐶𝐶16+ 2.07 

Table 4-2: Regrouped oil composition used for 

estimating pseudo-components properties. 

4.4.2 Properties of Components 

In the following table, critical (or pseudo-critical) pressure and temperature along with acentric factor, 

molecular weight and dimensionless volume-translation, for each component (or pseudo-component), 

which we used as input to our package as well as PVTi, is given: 

𝒊𝒊 𝑻𝑻𝒄𝒄𝒄𝒄 (𝑲𝑲) 𝑷𝑷𝒄𝒄𝒄𝒄 (𝒃𝒃𝒃𝒃𝒃𝒃) 𝝎𝝎𝒊𝒊 
𝑴𝑴𝑾𝑾𝒊𝒊 

(𝒈𝒈/𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎) 
𝒔𝒔𝒊𝒊 

𝑁𝑁2 126.1 33.94 0.0403 28.0 -0.1927 

𝐶𝐶𝐶𝐶2 304.2 73.76 0.239 44.0 0.02 

𝐻𝐻2𝑂𝑂 647.1 220.55 0.345 18.0 0.0147 

𝐶𝐶1 190.6 45.99 0.0115 16.0 -0.1595 

𝐶𝐶2 − 𝐶𝐶3 328.5 46.56 0.118 35.0 -0.095 

𝐶𝐶4 − 𝐶𝐶6 458.1 34.24 0.234 70.1 -0.047 

𝐶𝐶7 − 𝐶𝐶9 566.0 25.80 0.370 108.3 0.038 

𝐶𝐶10 − 𝐶𝐶15 651.0 18.60 0.595 166.0 0.155 

𝐶𝐶16+ 824.1 9.61 1.427 385.6 0.277 

Table 4-3: Physical properties of regrouped oil sample, taken from Moortgat et al. (2009), 

Danesh (1998) and Søreide (1989). 
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In the composition of the mixture used for simulations by Darvish (2007) and adopted by Moortgat 

et al. (2009), a water component is absent; however, in real reservoir engineering problems, water 

presence is inevitable. As such, in this study we added water component to our case studies in order to 

simulate problems that are more realistic. 

In the above table, all properties for all pseudo-components and carbon dioxide are taken from 

Moortgat et al. (2009). Pseudo-component properties are calculated from constituent component 

properties using a weighted-average formula. Nitrogen, methane and water properties, except 

dimensionless volume-translation parameters, are adopted from Danesh (1998). Dimensionless volume-

translation parameters for nitrogen and methane are taken from Søreide (1989). For water, the following 

correlation proposed by Søreide (1989) is used to calculate the dimensionless volume-translation 

parameters. 

 𝑠𝑠 = |𝑇𝑇𝑟𝑟 − 𝑎𝑎1|𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4𝜔𝜔 + 𝑎𝑎5 𝑒𝑒𝑒𝑒𝑒𝑒[𝑎𝑎6(𝑇𝑇𝑟𝑟 − 1)] (4-2) 

In Equation (4-2), constants 𝑎𝑎1 to 𝑎𝑎6 for the Peng-Robinson equation of state are given in the table 

below: 

Constant Value for PR EOS 

𝑎𝑎1 0.74145 

𝑎𝑎2 1.35489 

𝑎𝑎3 -0.16410 

𝑎𝑎4 0.47894 

𝑎𝑎5 0.42829 

𝑎𝑎6 25.3301 

Table 4-4: Constants used in 

Equation (4-2), proposed by 

Søreide (1989). 

Equation (4-2) is a temperature-dependent correlation, which can be used in case of using 

temperature-dependent dimensionless volume-translation parameter. In case of using temperature-

independent dimensionless volume translation parameter, 𝑇𝑇𝑟𝑟 = 0.7 should be used. In this work, we 

adopted a temperature-independent dimensionless volume translation parameter and the value of water 

dimensionless volume-translation in Table 4-3 is calculated by setting 𝑇𝑇𝑟𝑟 = 0.7.  

It should be noted that Equation (4-2) is primarily proposed for light hydrocarbon components, but 

in the absence of work on evaluating the volume-translation parameter for water, the above-mentioned 
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equation is used for water as well. Note that other commercial simulators, like PVTi, are using the same 

correlation for water. 

4.4.3 Binary Interaction Parameters 

The only input parameter, which is not covered in the previous sub-section, is the binary interaction 

coefficient (BIP). As mentioned in Chapter 3, Peng and Robinson (1980) in modification of their 

original equation of state, proposed two different sets of binary interaction parameters for aqueous phase 

and non-aqueous liquid and gaseous phases. Binary interaction parameters for non-aqueous liquid and 

gaseous phase are constants while aqueous phase BIPs are temperature-dependent. This temperature-

dependency improves the equilibrium molar distribution estimates in compare to experiments (Peng and 

Robinson, 1980). In the following paragraphs, values, which in this work we used for these two different 

sets of parameters, are provided. 

4.4.3.1 BIP for Gaseous and Non-Aqueous Phases 

Binary interaction parameters for components in non-aqueous liquid and gaseous phases are divided to 

two parts: BIP between pair of hydrocarbon components and BIP between non-hydrocarbon and 

hydrocarbon components. In simple models using Peng-Robinson equation of state, as well as other 

equations of state, it was assumed that BIP between hydrocarbons are zero (Moortgat et al., 2009; Peng 

and Robinson, 1976b). Nevertheless, precise investigations suggested that BIP between light 

hydrocarbons and heavy ones are not zero. Specifically, it was found that non-zero BIPs between 

methane and heptane-plus fractions results in more accurate outputs (Peng and Robinson, 1976a). In 

this work, the binary interaction parameters between hydrocarbons are non-zero. Values of BIPs used 

in his work for different pairs of components, except water, are given in Table 4-5. 

In the above mentioned table, data for binary interaction parameters for pure components are taken 

from (Danesh, 1998) and pseudo-components BIPs are calculated as the average of constituent 

component BIPs. 

Binary interaction parameters between water and other components are given in the Table 4-6. 

Binary interaction parameters between water and hydrocarbons are taken from Peng and Robinson 

(1976b) and BIP between water and nitrogen and carbon dioxide are adopted from Søreide and Whitson 

(1992). Similar to other properties of pseudo-components, BIPs between pseudo-components and water 

are the average of BIPs between their constituent components and water. For heptane-plus and water 

binaries, the value of BIP between n-octane and water is used. 
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Component 𝑵𝑵𝟐𝟐 𝑪𝑪𝑶𝑶𝟐𝟐 𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐 − 𝑪𝑪𝟑𝟑 𝑪𝑪𝟒𝟒 − 𝑪𝑪𝟔𝟔 𝑪𝑪𝟒𝟒 − 𝑪𝑪𝟔𝟔 𝑪𝑪𝟏𝟏𝟏𝟏 − 𝑪𝑪𝟏𝟏𝟏𝟏 𝑪𝑪𝟏𝟏𝟏𝟏+ 

𝑁𝑁2 0 0 0.031 0.068 0.335 0.150 0.155 0.155 

𝐶𝐶𝐶𝐶2 0 0 0.107 0.128 0.422 0.100 0.015 0.015 

𝐶𝐶1 0.031 0.107 0 0.008 0.066 0.043 0.052 0.066 

𝐶𝐶2 − 𝐶𝐶3 0.068 0.128 0.008 0 0.030 0.029 0.026 0.037 

𝐶𝐶4 − 𝐶𝐶6 0.335 0.422 0.066 0.030 0 0.016 0.006 0.010 

𝐶𝐶7 − 𝐶𝐶9 0.150 0.100 0.043 0.029 0.016 0 0 0 

𝐶𝐶10 − 𝐶𝐶15 0.155 0.015 0.052 0.026 0.006 0 0 0 

𝐶𝐶16+ 0.155 0.015 0.066 0.037 0.010 0 0 0 

Table 4-5: Binary interaction parameters between components, except water, in non-aqueous 

liquid and gaseous phases. Original data are taken from Danesh (1998). 

Binary Components BIP 

𝐻𝐻2𝑂𝑂 − 𝑁𝑁2 0.478 

𝐻𝐻2𝑂𝑂 − 𝐶𝐶𝐶𝐶2 0.190 

𝐻𝐻2𝑂𝑂 − 𝐶𝐶1 0.500 

𝐻𝐻2𝑂𝑂 − (𝐶𝐶2 − 𝐶𝐶3) 0.490 

𝐻𝐻2𝑂𝑂 − (𝐶𝐶4 − 𝐶𝐶6) 0.480 

𝐻𝐻2𝑂𝑂 − (𝐶𝐶7 − 𝐶𝐶9) 0.480 

𝐻𝐻2𝑂𝑂 − (𝐶𝐶10 − 𝐶𝐶15) 0.480 

𝐻𝐻2𝑂𝑂 − 𝐶𝐶16+ 0.480 

Table 4-6: Value of BIPs between 

water and other components. 

Original data are taken from 

Peng and Robinson (1976b) and 

Søreide and Whitson (1992). 

4.4.3.2 BIP for Aqueous Phase 

Peng and Robinson (1980) suggested that a different mixing rule should be used for the aqueous phase 

for better estimations of equilibrium mole fractions in mixtures consisting a water-rich phase. The 

suggested mixing rule for aqueous phase is given in Equations (3-43) and (3-44). In these modified 

mixing rules, they suggested for the aqueous phase that a temperature-dependent binary interaction 

coefficient, 𝜏𝜏, replace the constant binary interaction coefficient, 𝜎𝜎. In their modification, Peng and 
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Robinson (1980) demonstrated the temperature-dependent binary interaction coefficient, 𝜏𝜏, as function 

of the mixture temperature and components critical properties. Figure 3-2 and Figure 3-3 are adopted 

from their paper and contain plots of 𝜏𝜏 for different hydrocarbons and non-hydrocarbons. In order to 

use values plotted in these two figures, we used linear regression approach to quantify their results. 

Least square method was used to fit the linear equation to each set of data. 

A general form of fitted linear equation for hydrocarbon components (Figure 3-1) is given below: 

 𝜏𝜏𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑟𝑟𝑖𝑖 �
𝑃𝑃𝑐𝑐𝑖𝑖
𝑃𝑃𝑐𝑐𝑤𝑤

�+ 𝑏𝑏𝑖𝑖𝑖𝑖     𝑖𝑖 ∈ {𝐻𝐻𝐻𝐻} (4-3) 

The following is a general form of fitted linear equation for non-hydrocarbon components (Figure 

3-2) 

 𝜏𝜏𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 × 𝑇𝑇𝑟𝑟𝑖𝑖 + 𝑏𝑏𝑖𝑖𝑖𝑖    𝑖𝑖 ∈ {𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛} (4-4) 

where 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑏𝑏𝑖𝑖𝑖𝑖 are slope and intercept of fitted linear equation to BIP data between component 𝑖𝑖 

and water. 

Slope and intercept of each fitted equation as well as its coefficient of determination (R-Squared) is 

given in Table 4-7. 

Peng and Robinson (1980) did not provide data for n-pentane or hydrocarbons heavier than hexane. 

In this study, we generalized and extended the fitted equation for n-hexane to all hydrocarbons heavier 

than butane. The generalized equation for BIP between water and 𝐶𝐶𝑛𝑛(𝑛𝑛 > 4) has the form of: 

 𝜏𝜏𝐶𝐶𝑛𝑛𝑤𝑤 = 0.333�
𝑇𝑇𝑐𝑐𝐶𝐶𝑛𝑛
𝑃𝑃𝑐𝑐𝐶𝐶𝑛𝑛

�× 𝑇𝑇𝑟𝑟𝐶𝐶𝑛𝑛 �
𝑃𝑃𝑐𝑐𝐶𝐶𝑛𝑛
𝑃𝑃𝑐𝑐𝑤𝑤

� − 0.812    𝑛𝑛 > 4 (4-5) 

Critical temperature and pressure in Equation (4-5) should be entered in 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and 𝑏𝑏𝑏𝑏𝑏𝑏, 

respectively. 

From Figure 3-2, it can be observed that with increasing number of the hydrocarbon, the slope of the 

linear equation increases. Therefore, in Equation (4-5), the slope of the fitted equation is correlated to 

the ratio of hydrocarbon critical (pseudo-critical) temperature to pressure, as this ratio increases 

monotonically with increasing hydrocarbon carbon number. 
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𝒊𝒊 𝒂𝒂𝒊𝒊𝒊𝒊 𝒃𝒃𝒊𝒊𝒊𝒊 𝑹𝑹𝟐𝟐 

Methane 1.66 -0.759 0.9931 

Ethane 1.991 -0.576 0.9955 

Propane 3.124 -0.687 0.9962 

n-Butane 3.537 -0.655 0.9997 

n-Hexane 5.608 -0.812 0.9884 

Carbon Dioxide 0.273 -0.371 0.9955 

Nitrogen 0.417 -1.631 0.9988 

Table 4-7: Results of linear regression models  

applied to data of Peng and Robinson (1980). 

If we substitute the definition of reduced temperature in Equation (4-5) and cancel the same terms 

from enumerator and denominator, we obtain the following result 

 𝜏𝜏𝐶𝐶𝑛𝑛𝑤𝑤 = �
0.333
𝑃𝑃𝑐𝑐𝑤𝑤

�𝑇𝑇 − 0.812 (4-6) 

in which 𝑇𝑇 is the mixture temperature and has the unit of 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 and unit of 𝑃𝑃𝑐𝑐𝑤𝑤 is 𝑏𝑏𝑏𝑏𝑏𝑏. As 𝑃𝑃𝑐𝑐𝑤𝑤 is a 

constant value, the binary interaction parameters between water and hydrocarbons heavier than butane 

are practically correlated to the mixture temperature and are independent of hydrocarbon critical 

properties. This can be confirmed by comparing values of BIP for non-aqueous phases in Table 4-6. In 

Table 4-6, it can be seen that for pseudo-components heavier than propane, values of BIP between water 

and hydrocarbon are the same. 

4.5 Results 

In this study, we designed three different case studies, to both validate our package and to demonstrate 

thermodynamic aspects of multiphase hydrocarbon mixtures at elevated pressure and temperature. In 

performing calculations for these case studies, the methodology described in Chapter 3 along with inputs 

provided previously in this chapter is used. Results of these calculations along with description of each 

scenario are given in the next three sub-sections.  

In the following figures, 𝑁𝑁, 𝐴𝐴 and 𝐺𝐺 stand for non-aqueous, aqueous and gaseous phases, respectively. 

Since primary variables are input to our package, they are exactly the same in our package and PVTi 

results. Therefore, in most of the charts, only secondary variables are plotted when comparing our 

package to PVTi. In few cases demonstrating the phase behavior of the mixture, primary variables are 

plotted as well. While PVTi results are shown using solid lines in the following charts, results of our 
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package are represented with dots to provide readable charts. The solid lines in these figures are only 

connecting PVTi results and have no other physical meaning. 

4.5.1 Case Study 1 

In the first case study, we selected a volatile oil sample. This sample is composed by adding about 10 

percent of 𝐶𝐶𝑂𝑂2 to the primary oil sample, used for estimating pseudo-components and described in sub-

section 4.4.1 of this chapter (see Table 4-2). In this case study, which concerns a mixture of constant 

total composition (see Table 4-8), we increase the pressure of the mixture from 1 to 300 𝑏𝑏𝑏𝑏𝑏𝑏 at constant 

temperature of 180 ℃. Increasing mixture pressure from ambient condition to high value of 300 𝑏𝑏𝑏𝑏𝑏𝑏 

covers a wide range of problems, from groundwater flow to real reservoir problems. Pressures higher 

than 300 𝑏𝑏𝑏𝑏𝑏𝑏 are rare in natural systems. 

Figure 4-2 to Figure 4-7 compare the results of our package for Case Study 1 to PVTi results. Flash 

calculations are performed for whole range of 1 to 300 𝑏𝑏𝑏𝑏𝑏𝑏, however equilibrium mole fractions in each 

phase are plotted within the range of phase presence. 

𝒊𝒊 𝒙𝒙𝒊𝒊,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(%) 

𝐶𝐶𝐶𝐶2 11.13 

𝐻𝐻2𝑂𝑂 9.70 

𝑁𝑁2 0.12 

𝐶𝐶1 34.15 

𝐶𝐶2 − 𝐶𝐶3 11.77 

𝐶𝐶4 − 𝐶𝐶6 7.41 

𝐶𝐶7 − 𝐶𝐶9 8.21 

𝐶𝐶10 − 𝐶𝐶15 6.58 

𝐶𝐶16+ 10.93 

Table 4-8: Composition of 

mixture used in Case Study 1. 

 



54 

 

 

Figure 4-2: Equilibrium phase fractions vs. pressure in Case Study 1. 

 

Figure 4-3: Equilibrium mole percent of 𝑪𝑪𝟏𝟏 and 𝑪𝑪𝑶𝑶𝟐𝟐 in aqueous phase vs. pressure in Case 

Study 1. 
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Figure 4-4: Equilibrium mole percent of 𝑪𝑪𝑶𝑶𝟐𝟐 and 𝑪𝑪𝟏𝟏𝟏𝟏+ in non-aqueous phase vs. pressure in 

Case Study 1.  

 

Figure 4-5: Equilibrium mass density of non-aqueous phase and 𝑪𝑪𝟏𝟏 mole percent in that 

phase vs. pressure in Case Study 1. 
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Figure 4-6: Equilibrium composition and mass density of gaseous phase vs. pressure in Case 

Study 1. 

 

Figure 4-7: Equilibrium composition of non-aqueous phase vs. pressure in Case Study 1. 
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4.5.2 Case Study 2 

In the second case study, we investigated the effect of increasing the 𝐶𝐶𝑂𝑂2 content of a mixture at constant 

temperature and pressure. This scenario represents injecting 𝐶𝐶𝑂𝑂2 into a high pressure and temperature 

reservoir for enhanced oil recovery or as a part of a 𝐶𝐶𝑂𝑂2 sequestration project. The mixture pressure 

during the process is set to be 280 𝑏𝑏𝑏𝑏𝑏𝑏 and mixture temperature, as before, is 180 ℃. The initial 

composition of the mixture is similar to the initial oil composition described in sub-section 4.4.1. The 

difference here is that in the initial mixture composition no 𝐶𝐶𝑂𝑂2 is present. The composition of the initial 

mixture used in this case study is given in Table 4-9. 

Figure 4-8 to Figure 4-11 demonstrate results of flash calculations for Case Study 2. Calculations 

were performed until the total mole percent of 𝐶𝐶𝑂𝑂2 was about 54%. Beyond that point, no further phase 

appearance or disappearance is expected. It should be noted that, same as results of Case Study 1, phase 

mole fractions are plotted in the range of phase presence. 

𝒊𝒊 𝒙𝒙𝒊𝒊,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(%) 

𝐶𝐶𝐶𝐶2 0 

𝐻𝐻2𝑂𝑂 10.91 

𝑁𝑁2 0.14 

𝐶𝐶1 38.43 

𝐶𝐶2 − 𝐶𝐶3 13.24 

𝐶𝐶4 − 𝐶𝐶6 8.34 

𝐶𝐶7 − 𝐶𝐶9 9.24 

𝐶𝐶10 − 𝐶𝐶15 7.40 

𝐶𝐶16+ 12.30 

Table 4-9: Initial oil composition 

used in Case Study 2. 
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Figure 4-8: Equilibrium phase fractions vs. injected 𝑪𝑪𝑶𝑶𝟐𝟐 mole percent in Case Study 2. 

Case Study 2. 

 

Figure 4-9: Equilibrium mole percent of 𝑪𝑪𝟏𝟏 and 𝑪𝑪𝑶𝑶𝟐𝟐 in the aqueous phase vs. injected mole 

percent of 𝑪𝑪𝑶𝑶𝟐𝟐 in Case Study 2. 
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Figure 4-10: Equilibrium composition and mass density of non-aqueous phase vs. injected 

mole percent of 𝑪𝑪𝑶𝑶𝟐𝟐 in Case Study 2. 

 

Figure 4-11: Equilibrium composition and mass density of gaseous phase vs. injected mole 

percent of 𝑪𝑪𝑶𝑶𝟐𝟐 in Case Study 2. 
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4.5.3 Case Study 3 

In the last case study of this thesis, we investigated the effect of 𝐶𝐶𝑂𝑂2 injection on swelling of an oil 

sample. For this purpose, we selected a black oil sample and performed the calculation at same pressure 

as in Case Study 2. Initial composition of the selected oil is given in Table 4-10. In order to observe the 

effect of 𝐶𝐶𝑂𝑂2 injection into the oil sample separate from the effect of 𝐶𝐶𝑂𝑂2 solution into the aqueous 

phase, we assumed there is no water in the mixture. The pressure and temperature of the mixture are 

constant and equal to 280 𝑏𝑏𝑏𝑏𝑏𝑏 and 180 ℃, respectively. The high pressure in this case study, results in 

delayed formation of a gaseous phase, which would strip the liquid phase out its volatile components, 

resulting in denser non-aqueous phase. 

𝒊𝒊 𝒙𝒙𝒊𝒊,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕(%) 

𝑪𝑪𝑪𝑪𝟐𝟐 0.02 

𝑵𝑵𝟐𝟐 0.34 

𝑪𝑪𝟏𝟏 34.62 

𝑪𝑪𝟐𝟐 − 𝑪𝑪𝟑𝟑 5.12 

𝑪𝑪𝟒𝟒 − 𝑪𝑪𝟔𝟔 3.50 

𝑪𝑪𝟕𝟕 − 𝑪𝑪𝟗𝟗 12.00 

𝑪𝑪𝟏𝟏𝟏𝟏 − 𝑪𝑪𝟏𝟏𝟏𝟏 17.00 

𝑪𝑪𝟏𝟏𝟏𝟏+ 27.40 

Table 4-10: Initial 

composition of black oil 

sample used in Case Study 3. 

Results of flash calculations for this case study are given in Figure 4-12 to Figure 4-14. Similar to 

previous sets of charts, equilibrium mole fractions of each phase plotted in the range of phase presence. 
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Figure 4-12: Equilibrium phase fractions vs. injected mole percent of 𝑪𝑪𝑶𝑶𝟐𝟐 in Case Study 3. 

 

Figure 4-13: Equilibrium composition and mass density of non-aqueous phase vs. injected 

mole percent of 𝑪𝑪𝑶𝑶𝟐𝟐 in Case Study 3. 
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Figure 4-14: Equilibrium composition and mass density of gaseous phase vs. injected mole 

percent of 𝑪𝑪𝑶𝑶𝟐𝟐 in Case Study 3. 

4.6 Discussion 
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with the results from a well-known commercial simulator. Considering the wide range of conditions 
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aspects of reservoir engineering problems.  
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or the number of digits used for each constant, used in these calculations in PVTi, are not known to the 

writer. While we set the properties for each component the same in PVTi as we set in our model, some 

of these constants are not adjustable in PVTi. 

Special treatments used for special cases are an important source of difference in the results. 

Particularly for the aqueous phase as described in sub-section 3.4.3, treatments in our model are adopted 

from a modification proposed by Peng and Robinson (1980). The treatment used in PVTi is not exactly 

the same. Original data used for this case are taken from the same source but fitted equations (detailed 

in sub-section 4.4.3) are different. Therefore, the main reason for differences between our package’s 

and PVTi’s aqueous phase composition and properties is this difference in treating water-rich phase. 

Another source of difference in the results is due to the special structure of our verification procedure. 

Since input variables for both models are not the same (total mole fraction for each component in PVTi 

vs. primary variables in our model) and we have to use part of the PVTi results as inputs to our model, 

error propagation in these two models is not the same and therefore difference in results is inevitable. 

Now that various sources of difference between this thesis’ and PVTi’s results are described, we move 

on to discuss the results presented in each case study.  

In Case Study 1, equilibrium phase fractions are given in Figure 4-2. This figure shows that the gas 

phase fraction decreases with increase of pressure, as one may expected. In the beginning of the Case 

Study 1, when pressure is low and temperature is above the normal boiling point of water, there is no 

aqueous phase. With increasing pressure, an increasing amount of light hydrocarbons partition into the 

non-aqueous phase. When pressure is about 100 𝑏𝑏𝑏𝑏𝑏𝑏, an aqueous phase appears, as mixture pressure is 

high enough for water condensation. With further increase of mixture pressure, more carbon dioxide 

and light hydrocarbons partition into the non-aqueous and aqueous phases. At about 280 𝑏𝑏𝑏𝑏𝑏𝑏, 

disappearance of the gas phase occurs and after that, the aqueous phase fraction slightly increases due 

to solution of more carbon dioxide and light hydrocarbons in water (Figure 4-3). As the mole fraction 

of carbon dioxide and light hydrocarbons in the non-aqueous phase monotonically increases prior to the 

disappearance of gas phase, the mole fraction of heavy hydrocarbons decreases until the gas phase 

disappears. After that, the mole fraction of heavy hydrocarbons reaches a plateau state (Figure 4-4). 

One of the most notable aspects of Case Study 1 is shown in Figure 4-5. The mass density of the non-

aqueous phase decreases with increasing pressure until gas phase disappears; then it starts to increase 

slightly. The reason for significant decrease in non-aqueous phase mass density is dissolution of 

increasing amounts of carbon dioxide and light hydrocarbons in the non-aqueous phase due to pressure 

increase. Following the disappearance of the gas phase, when no more carbon dioxide or light 
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hydrocarbons are available to dissolve in the non-aqueous phase, the mass density shows a small linear 

increase with pressure due to the small, but finite compressibility of the oil phase. 

The mass density of the gas phase in Case Study 1, increases with pressure as expected (Figure 4-6). 

Since components heavier than methane and carbon dioxide preferentially partition out of the gaseous 

phase with increasing pressure, the mole fractions of methane and carbon dioxide in the gaseous phase 

increase, as the volume fraction of the entire gaseous phase decreases. 

In Figure 4-7, we observe two different trends for medium and heavy hydrocarbon constituents of the 

non-aqueous phase, depending on their initial amount in the gaseous phase. First, for lighter 

hydrocarbons such as 𝐶𝐶2 − 𝐶𝐶3, we see a monotonically increasing mole fraction, which is due to 

dissolution of more 𝐶𝐶2 − 𝐶𝐶3 into non-aqueous phase from gaseous phase. For medium range 

hydrocarbons, 𝐶𝐶4 − 𝐶𝐶6 and 𝐶𝐶7 − 𝐶𝐶9, an initial increase in mole fraction is due to dissolution of these 

hydrocarbons in non-aqueous phase; but as the amount of these components in the gaseous phase is 

depleted, with further increase of pressure and solution of more carbon dioxide and methane in non-

aqueous phase, their mole fraction decreases. For heavy hydrocarbons, a monotonic decrease of mole 

fraction is seen, as their amount in the gas phase, even in the initial conditions of the case study, is 

negligible. 

In Case Study 2, the initial composition involves no carbon dioxide and no aqueous phase is present 

in the mixture. With the injection of even a tiny amount of carbon dioxide, most of the water in non-

aqueous phase partitions out of the non-aqueous phase and forms a separate aqueous phase. In reality, 

carbon dioxide is always present in a hydrocarbon system, and for this reason, an aqueous phase should 

be expected to exist in real reservoirs. With additional injection of carbon dioxide (Figure 4-8), 

increasing amounts of carbon dioxide is dissolved at equilibrium in both phases, until the amount of 

injected carbon dioxide becomes sufficient to sustain a gaseous phase with other light hydrocarbons 

(this occurs when about 20 mole percent of the mixture is carbon dioxide). Prior to the appearance of 

the gaseous phase, a decrease in aqueous phase fraction is due to the fact that most of the injected carbon 

dioxide partitions into the non-aqueous phase and increases its total mole fraction. After appearance of 

the gaseous phase, the main reason for decreasing fraction of water-rich phase is being dried out by the 

gaseous phase. This dry out continues until the aqueous phase disappears (when about of 45 mole 

percent of the mixture is carbon dioxide). As more carbon dioxide is injected, most of it partitions into 

the gaseous phase, the phase fraction of the gaseous phase increases and that of the non-aqueous phase 

decreases. 
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In the range where an aqueous phase is present, its carbon dioxide content increases (Figure 4-9) as 

more carbon dioxide is added to the mixture, whereas the mole fractions of methane and other 

components concomitantly decrease. 

Figure 4-10 plots the mass density and composition of the non-aqueous phase for Case Study 2. 

Injection of carbon dioxide at first step causes increase in the mass density of non-aqueous phase along 

with separation of the aqueous phase from non-aqueous phase. Formation of the aqueous phase strips 

non-aqueous phase out of most of its dissolved water and therefore, considerable decrease in the water 

mole fraction results in increase in other components mole fractions including heavy fractions. The 

effect of increase in the heavy pseudo-components mole fractions outweighs effect of increase in the 

light hydrocarbons mole fractions, such as methane, and as a result, mass density of the non-aqueous 

phase increases. Further injection of more carbon dioxide, decreases mass density of the non-aqueous 

phase very slightly due to dissolution of this light component, but immediately after formation of the 

gaseous phase it begins to increase significantly. This increase is due to the gas phase stripping light 

hydrocarbons out of the non-aqueous phase. As expected, during injection of the carbon dioxide to the 

mixture its mole fraction in the non-aqueous phase, as well as other phases, increases and the mole 

fraction of methane decreases due to addition of carbon dioxide and partitioning into the gaseous phase, 

as soon as this phase is formed. Prior to the formation of a gaseous phase, the mole fractions of all 

components, expect carbon dioxide, decrease due to the addition of carbon dioxide. After formation of 

a gaseous phase, however, an increase in carbon dioxide content of the non-aqueous phase is almost 

compensated by a decrease in methane mole fraction. Thus, mole fractions of other hydrocarbons remain 

constant. 

As in Case Study 1, the mass density of the gaseous phase increases monotonically during Case Study 

2 (Figure 4-11). The reason, however, is quite different. In Case Study 2 mole fraction of carbon dioxide 

increases and as such other component mole fractions decrease. Increasing carbon dioxide mole fraction 

causes mass density decline, whereas decreasing methane mole fraction causes increase of the mass 

density. As methane is lighter than carbon dioxide, its mole fraction reduction has a stronger effect in 

increasing gaseous phase density than increase of carbon dioxide mole fraction has on decreasing 

density. 

Case Study 3 is designed to further illustrate the effect of carbon dioxide injection on non-aqueous 

phase. Here, the pressure is chosen high enough to prevent formation of a gaseous phase until a large 

portion of the mixture consists of carbon dioxide. Furthermore, no water is assumed present in the 

mixture to remove the dry-out effect and thus magnify the effect of carbon dioxide on non-aqueous 

phase. Lastly, the oil sample chosen for this case study is black oil, whilst the oil chosen for the first 
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two case studies was a volatile oil. The effect of carbon dioxide on black oil is more considerable than 

other lighter type of the oil. A mixture, like the one chosen for Case Study 3, remains in a single-phase 

region until about 63 mole percent of the mixture is carbon dioxide (Figure 4-12). 

The most important result of the Case Study 3 is indicated in Figure 4-13. The equilibrium mass 

density of oil declines by 8.1% before emergence of gas phase, due to the injection of carbon dioxide. 

After gaseous phase appearance, the non-aqueous phase mass density starts to increase as its light 

components are being stripped out by gaseous phase. These results illustrate that the addition of carbon 

dioxide to an oil phase does not always result in swelling of the oil phase.  

While the mole fraction of carbon dioxide in the non-aqueous phase increase consistently, following 

the emergence of the gaseous phase the rate of its increase declines. This is due to competition from the 

newly formed gaseous phase for partitioning of the injected carbon dioxide. The mole fractions of other 

components in the non-aqueous phase decrease prior to the formation of a gas phase because of carbon 

dioxide addition. After the appearance of the gas phase, as the mole fraction of methane decreases 

further due to non-aqueous phase being stripped out of its light hydrocarbons by gaseous phase, the 

mole fraction of 𝐶𝐶16+ increases. 

The behavior of the gaseous phase in the third case (Figure 4-14) is the same as in Case Study 2. The 

mole fraction of carbon dioxide increases, while methane and other components mole fractions 

decrease. The mass density of the oil phase increases, as a decline in the mole fraction of methane has 

a more significant effect than the increasing mole fraction of carbon dioxide mole fraction.  
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Chapter 5 
Conclusions and Recommendations 

5.1 Summary 

In support of numerical modelling of multiphase flow in complex hydrocarbon systems, this thesis 

covered background thermodynamics and three testing scenarios of enhancements proposed for the 

simulator CompFlow Bio. Chapter 2 briefly reviewed CompFlow Bio structure and principal equations, 

then provided the reader with basic thermodynamic rules leading to governing phase equilibria 

equations, along with past research highlighting the need for robust and efficient account of both the 

physics of flow in discretely fractured networks and the physics of three-phase equilibria involving 

complex hydrocarbon mixtures, water and carbon dioxide. Chapter 3 of the thesis explained the specific 

methodology used to calculate equilibrium mole fractions based on a Peng-Robinson EOS, in a manner 

that accommodates CompFlow Bio’s underlying assumptions and special requirements. Then, three 

different case studies were developed in order to investigate the results of this thesis against the phase 

characterization module of a well-known simulator in the petroleum industry. The case study results 

presented in Chapter 4 are the culmination of this thesis. In Chapter 4, along with the results, a procedure 

designed for investigating the accuracy of the results and the data used in models was given. The three 

cases confirmed the accuracy of our results and demonstrated the complex behavior that should be 

expected of hydrocarbon mixtures under high pressure and temperature. This complex behavior 

reaffirms the need for a robust and efficient package to calculate equilibrium partitioning of mixtures 

components between phases. The current version of CompFlow Bio lacked a sophisticated model for 

non-ideal mixtures and this thesis provides it with a much-needed tool. Integration of the proposed 

package in this thesis with the current version of CompFlow Bio, is expected to form a sophisticated 

simulator which can model fractured reservoirs more efficiently and precisely than other well-known 

simulators available in the petroleum industry. 

We conclude this document by summarizing some specific findings and making recommendations 

about how this package may be further improved. 

5.2 Conclusions 

Main conclusions of this research may be listed as follows: 

• Reservoir problems include highly non-ideal hydrocarbon mixtures, and for modelling such 

systems effectively and accurately, a robust model with solid thermodynamic background is in 

need. 



68 

 

• CompFlow Bio is a unique simulator with regard to its ability to handle the physics of flow in 

fractured porous media (Walton et al., 2017), but has simplistic thermodynamics which limits 

its ability to handle realistic problems in petroleum reservoir engineering. This thesis provides 

CompFlow Bio with essential thermodynamics needed for solving highly non-ideal equilibrium 

problems. 

• Peng and Robinson (1976a) and Soave-Redlich-Kwong (1972) equations of state are widely 

accepted for modelling hydrocarbon mixtures (McCain, 1990; Tarek, 2009). While both 

equations of state provide accurate equilibrium mole fractions, Peng-Robinson EOS provides 

better liquid phase density, particularly near the critical region (Danesh, 1998; Peng and 

Robinson, 1976a; Tarek, 2007). In this thesis, a modified Peng-Robinson EOS has been adopted 

for performing equilibrium flash calculations. 

• Results of case scenarios developed for verifying the proposed model of this thesis are in close 

agreement with results of a well-known commercial simulator. These results also provide 

important insights into phase behavior of the hydrocarbon mixtures. 

• The mass density of the non-aqueous phase can be decreased by increasing pressure, provided 

a gaseous phase with light hydrocarbons is available. 

• An expanding gaseous phase can dry out the existing aqueous phase until the water-rich phase 

completely disappears, even in a highly pressurized mixture. 

• Injection of carbon dioxide at constant pressure and temperature does not guarantee swelling 

and consequent decrease in non-aqueous phase density. Swelling phenomenon is a strong 

function of pressure, temperature, and mixture composition. Injection of carbon dioxide without 

sufficient knowledge of the mixture may not result in the desired outcome and even increase 

non-aqueous phase density. 

• In order to have accurate estimates for the swelling effect of carbon dioxide in high-pressure 

mixtures, it is highly recommended to include non-equilibrium mass transfer in the model. Since 

all of the calculations done in this research are restricted to equilibrium conditions, no 

generalized comment has been made about the magnitude of carbon dioxide swelling effect on 

black oil mass density. 

• Injection of carbon dioxide at constant pressure and temperature does not guarantee reducing 

gas phase density as well. It strongly depends on light hydrocarbon content of the gaseous phase, 

particularly methane. 
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5.3 Recommendations for Future Research 

Recommendations for future researches fall into two categories: enhancements in CompFlow Bio code, 

and improvements for the proposed model in this thesis. 

At this point following enhancements are recommended for CompFlow Bio code to enable calculating 

accurate results for highly non-ideal situations: 

• Eliminating restriction on partitioning water in three phases. Currently, water component is not 

allowed to partition in the non-aqueous phase, which imposes a significant barrier on integration 

of this work to CompFlow Bio code. 

• Improving models used for predicting phase viscosity. Currently, CompFlow Bio uses simplistic 

relationships for the phase viscosity estimations that are only functions of temperature (Forsyth, 

1993). In order to predict phase viscosity in highly non-ideal hydrocarbon mixtures at high 

pressure and temperature accurately, these relationships need to be replaced with more 

sophisticated viscosity models, such as models proposed by Pedersen et al. (1984); Lohrenz et 

al. (1964); or Aasberg-Petersen et al. (1991). 

• Addition of non-equilibrium calculation to the CompFlow Bio code. With amendment of the 

proposed package in this thesis to CompFlow Bio, this simulator would be able to perform 

equilibrium conditions calculations. While equilibrium calculations are important in estimating 

mixtures properties, they are the first step to perform non-equilibrium calculations. The most 

important non-equilibrium calculations in hydrocarbon mixtures are finite-rate mass transfers 

between different phases. Addition of such calculations to the CompFlow Bio is a substantial 

and significant step toward accurate modelling of reservoir engineering problems. 

The following improvements are recommended for the proposed model in this thesis: 

• Replacing fixed-point iteration method with other iterative methods, like Newton-Raphson that 

guarantee convergence of the iteration. 

• Using stability analysis and phase-split calculations for determination of number of available 

phases instead of using tests proposed by Bünz et al. (1991). Stability analysis and subsequent 

phase-split calculations proposed by Michelsen (1982a; 1982b) are highly recommended for 

the hydrocarbon mixtures.  
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Appendices 

Appendix A Modifications for Better Convergence of Fixed-Point 
Iteration 

Fixed-point iteration scheme does not guarantee convergence of the iterations procedure. Starting the 

iteration scheme with good initial guesses is a key step in using this iteration scheme, which significantly 

improves convergence of the iteration. For the case of hydrocarbon mixture, Equations (2-5) and (2-8) 

are suggested to provide good initial guesses. However, considering the highly non-ideal behavior of 

hydrocarbon mixtures in elevated pressure and temperature, even with using these initial guesses, 

negative mole fractions can be seen during early stages of iteration. These anomalies in first steps of 

iteration procedure, could lead to non-convergent iteration or delay the convergence of the iteration 

scheme. In order to prevent such conditions, in each step of the iteration after evaluating the components 

mole fractions in all phases, additional conditions applied to the code to check and replace any possible 

negative value for mole fractions. Since primary variables are always positive and so are equilibrium 

ratios, negative mole fractions could only be a results of imposing unity for summation of phase mole 

fractions (see Equations (3-1) to (3-4)). Therefore, in each iteration after solving those equations for 

obtaining associated mole fractions, values of those mole fractions should be checked and replaced, if 

needed.  

Nevertheless, substitution of any of the above-mentioned mole fractions leads to non-unity of 

summation of mole fractions. As a treatment for these situations, in the case of required mole fraction 

substitution, the mole fractions of that phase are normalized to ensure their summation remains equal 

to one. It should be noted that, to prevent any unwanted change to primary variables, primary variables 

of the phases are excluded from the normalization. 
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Appendix B Main MATLAB® Codes used for Performing Flash 
Calculations 

In this work, four sets of MATLAB® functions developed in order to perform flash calculations in four 

different states of CompFlow Bio, using the formulations presented in Chapter 3. Inputs and components 

properties used in these functions are listed in section 4.4 of the current document. 

Four functions are presented in this appendix, each of which is associated with one state of CompFlow 

Bio. In each function, temperature is first input and the second input is an array of 𝑚𝑚 + 1 rows (see Table 

2-1). Sequence of inputs for each state in that array is the same as mentioned in Table 2-1. 

Outputs of each function includes: (i) equilibrium phase properties: fractions, compressibility factors, 

mass densities and molecular weights; and (ii) equilibrium mole percent for each component in each phase. 

In addition to the four main functions, two auxiliary functions are provided as well. These auxiliary 

functions are used to equilibrate the hypothetical non-aqueous and aqueous phases with the present gas 

phase in order to obtain equilibrium ratios needed for state change signaling (see section 3.7). 
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function [ output ] = 
Flash_PR_State1( T_C, input ) 
%State 1 
%   Gaseous, Non-Aqueous and 
Aqueous phases are present. 
% Inputs: T_C: temperature in 
Centrigrade 
%         input: 1st row: Non-
aqueous phase pressure 
%                2nd row: Non-
aqueous phase saturation 
%     3rd row: 
aqueous phase saturation 
%     4th row to 
end: primary mole percents 
% Outputs: 1st row: phase 
fractions 
%          2nd row: phases' 
compresibility factors 
%          3rd row: phases' mass 
density (kg/m^3) 
%          4th row: molecular 
weight of phases 
%          5th row to end: 
equilibrium mole fractions of 
components 
%          Columns: 1st column: 
gaseous 
%                   2nd column: 
non-aqueous 
%                   3rd column: 
aqueous 
 
format long; 
 
%% Input form CompFlow 
 
% pressure for aqueous, non-
aqueous and gaseous phases (bar) 
global p_q; global p_n; global 
p_g; 
% no capillary pressure data 
currently availbale 
p_n = input(1); p_q = p_n; p_g = 
p_n; 
p_q = p_q*14.5037738; p_n = 
p_n*14.5037738; p_g = 
p_g*14.5037738; 
 
% saturations (volume fractions) 
of each phase 

global S_q; global S_n; global 
S_g; 
S_n = input(2); S_q = input(3); 
S_g = 1 - S_n - S_q; 
 
N_row = 9; 
N_phase = 3; 
 
% converting mole percents to 
fractions 
input(4:N_row) = 
input(4:N_row)/100; 
 
% known molar fractions in 
gaseous phaseh 
global X_CH4_g; global X_CO2_g; 
X_CO2_g = input(8); X_CH4_g = 
input(9); 
 
% known molar fractions in non-
aqueous phase 
global X_C2C3_n; global X_C4C6_n; 
global X_C7C9_n; global 
X_C10C15_n; 
X_C2C3_n = input(4); X_C4C6_n = 
input(5); X_C7C9_n = input(6); 
X_C10C15_n = input(7); 
 
%% Setting physical properties & 
calculating dependent variables 
 
T = 1.8*T_C + 491.67; 
%temperature conversion to Rankin 
T_SI = T_C + 273.15; %temperature 
conversion to Kelvin 
 
% critical pressures 
% component  CO2    H2O     N2      
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
Pc =        [73.76  220.55  33.94   
45.99   46.56  34.24  25.80  18.60   
9.61]; 
Pc = Pc*14.5037738; % conversion 
of Pc from bar to psi 
 
% critical temperatures 
% component  CO2     H2O    N2     
CH4    C2C3   C4C6   C7C9   C10C15  
C16+ 
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Tc =         [304.2  647.1  126.2  
190.6  328.5  458.1  566.0  651     
824.1]; 
Tc = Tc*1.8; % conversoion of 
critical temperatures from Kelvin 
to Rankin 
 
% acentric factors 
% component  CO2    H2O     N2     
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
w =         [0.239  0.345   0.0403 
0.0115  0.118  0.234  0.370  0.595   
1.427]; 
 
% molecular weight 
% component  CO2    H2O     N2      
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
MW =        [44.0   18.0    28.0    
16.0    35.0   70.1   108.3  166.0   
385.6]; 
 
% dimensionless volume shifts 
% component  CO2     H2O    N2       
CH4      C2C3     C4C6     C7C9   
C10C15  C16+ 
s =       [  0.02   .0147   -.1927   
-.1595   -.095    -.047    .038   
.155    .277]; 
 
% calculating reduced parameters 
Pr = p_n./Pc; 
Tr = T./Tc; 
 
% binary interaction coefficients 
for non-aueous and gaseous phases 
% component    CO2       H2O     N2      
CH4     C2C3     C4C6    C7C9    
C10C15   C16+ 
sigma =       [0         .19     0       
.107    .128     .422    .1      
.015     .015 
    .19       0       .478    .5      
.49      .48     .48     .48      
.48 
    0         .478    0       .031    
.068     .335    .15     .155     
.155 

    .107      .5      .031    0       
.008     .066    .043    .052     
.066 
    .128      .49     .068    .008    
0        .03     .029    .026     
.037 
    .422      .48     .335    .066    
.03      0       .016    .006     
.01 
    .1        .48     .15     .043    
.029     .016    0       0        0 
    .015      .48     .155    .052    
.026     .006    0       0        0 
    .015      .48     .155    .066    
.037     .01     0       0        0]; 
 
% binary interaction coefficients 
for aqueous phase 
tau = sigma; 
% slope and intercepts of linear 
regression 
slint = [0.273 -0.371 
    0       0 
    0.417 -1.631 
    1.66 -0.759 
    1.991 -0.576 
    3.124 -0.687 
    .00151  -.812]; 
% water-CO2 
tau(2,1) = slint(1,1)*Tr(1) + 
slint(1,2); 
% water-N2 
tau(2,3) = slint(3,1)*Tr(3) + 
slint(3,2); 
% water-methane 
tau(2,4) = 
slint(4,1)*Tr(4)*Pc(4)/Pc(2) + 
slint(4,2); 
% water-C2C3 
tau(2,5) = ( 
.5*slint(5,1)+.5*slint(6,1) 
)*Tr(5)*Pc(5)/Pc(2) + ... 
    ( 
.5*slint(5,2)+.5*slint(6,2) ); 
% water-C4C6 
tau(2,6) = slint(7,1)*T_SI + 
slint(7,2); 
% water-C7C9 
tau(2,7) = tau(6,1); 
% water-C10C15 
tau(2,8) = tau(6,1); 
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% water-C16+ 
tau(2,9) = tau(6,1); 
 
tau(:,2) = tau(2,:); 
 
alpha = ( 1 + ( .37464 + 1.54226*w 
- .26992*w.^2 ).*( 1 - sqrt(Tr) ) 
).^2; 
% adjusment for big accentric 
factors bigger thatn 0.49 
alpha(w>.49) = ( 1 + ( .379642 + 
1.48503*w(w>.49) - 
.164423*w(w>.49).^2 + ... 
    .016666*w(w>.49).^3 ).*( 1 - 
sqrt(Tr(w>.49) ) ) ).^2; 
% adjustment for water component 
if ( Tr(2) < 0.7225 ) 
    alpha(2) = ( 1.0085677 + 
0.82154*( 1 - sqrt(Tr(2)) ) )^2; 
end 
 
R = 10.732159; % gas cosntants in 
Field units 
R_SI = 8.3144598; % gas cosntants 
in SI units 
 
a = 0.457235529*R^2*Tc.^2./Pc; 
a_Ti = a.*alpha; 
b_i = 0.07796074*R*Tc./Pc; 
c = s.*b_i; % volume shifts 
n = size(sigma,2); 
 
% molar fraction in phases 
(primary variables) 
% component  CO2        H2O     N2     
CH4      C2C3      C4C6      C7C9       
C10C15       C16+ 
x_n =       [0          0       0      
0        X_C2C3_n  X_C4C6_n  
X_C7C9_n   X_C10C15_n   0]; 
x_q =       [0          0       0      
0        0         0         0          
0            0]; 
x_g =       [X_CO2_g    0       0      
X_CH4_g  0         0         0          
0            0]; 
 
%% Solving for secondary 
variables 
 

K_n = (1./Pr).*exp(5.37.*( 1 + w 
).*( 1 - 1./Tr )); 
K_q = 10^6*(Pr./Tr); 
precision = 1e-16; 
e = [1 1]; 
 
while ( max(e) > precision ) 
    x_n(1) = x_g(1)/K_n(1); 
    x_q(1) = x_g(1)/K_q(1); 
    x_n(4) = x_g(4)/K_n(4); 
    x_q(4) = x_g(4)/K_q(4); 
    x_g(5:8) = 
x_n(5:8).*K_n(5:8); 
    x_q(5:8) = 
x_g(5:8)./K_q(5:8); 
    A = [1 1 1; K_n(2) K_n(3) 
K_n(9); K_n(2)/K_q(2) 
K_n(3)/K_q(3) K_n(9)/K_q(9)]; 
    B = [1-x_n(1)-sum(x_n(4:8)); 
1-x_g(1)-sum(x_g(4:8)); 1-
x_q(1)-sum(x_q(4:8))]; 
    result = (A\B)'; 
    if ( result(1)/K_q(2)*K_n(2) 
< .9 ) 
        result(1) = 
0.98*K_q(2)/K_n(2); 
    end 
    if ( result(2) < 0 ) 
        result(2) = 
0.001/100/K_n(3); 
    end 
    if ( result(3) < 0) 
        result(3) = 0.2; 
    end 
    x_n(2:3) = result(1:2); 
    x_n(9) = result(3); 
    x_g(2:3) = 
K_n(2:3).*x_n(2:3); 
    x_g(9) =  K_n(9)*x_n(9); 
    x_q(2:3) = 
x_g(2:3)./K_q(2:3); 
    x_q(9) =  x_g(9)/K_q(9); 
    % normalizing gaseous phase 
    excess = sum(x_g)-1; 
    exc_app = 
excess/(sum(x_g(2:3))+sum(x_g(5:
9))); 
    x_g(2:3) = x_g(2:3)*(1-
exc_app); 
    x_g(5:9) = x_g(5:9)*(1-
exc_app); 



78 

 

    % normalizing non-aqueous 
phase 
    excess = sum(x_n)-1; 
    exc_app = 
excess/(sum(x_n(1:4))+x_n(9)); 
    x_n(1:4) = x_n(1:4)*(1-
exc_app); 
    x_n(9) = x_n(9)*(1-exc_app); 
    % normalizing aqueous phase 
    x_q = x_q./sum(x_q); 
     
    a_T_g = sum( sum( 
(x_g'*x_g).*sqrt(a_Ti'*a_Ti).*(1
-sigma) ) ); 
    b_g = sum(x_g.*b_i); 
    a_T_n = sum( sum( 
(x_n'*x_n).*sqrt(a_Ti'*a_Ti).*(1
-sigma) ) ); 
    b_n = sum(x_n.*b_i); 
    a_T_q = sum( sum( 
(x_q'*x_q).*sqrt(a_Ti'*a_Ti).*(1
-tau) ) ); 
    b_q = sum(x_q.*b_i); 
    A_g = a_T_g*p_g/(R^2*T^2); 
    B_g = b_g*p_g/(R*T); 
    A_n = a_T_n*p_n/(R^2*T^2); 
    B_n = b_n*p_n/(R*T); 
    A_q = a_T_q*p_q/(R^2*T^2); 
    B_q = b_q*p_q/(R*T); 
    r = roots([1 B_g-1 (A_g - 
2*B_g - 3*B_g^2) (B_g^3 + B_g^2 - 
A_g*B_g)]); 
    u = roots([1 B_n-1 (A_n - 
2*B_n - 3*B_n^2) (B_n^3 + B_n^2 - 
A_n*B_n)]); 
    t = roots([1 B_q-1 (A_q - 
2*B_q - 3*B_q^2) (B_q^3 + B_q^2 - 
A_q*B_q)]); 
    r1 = r(imag(r)==0); u1 = 
u(imag(u)==0); t1 = 
t(imag(t)==0); 
    u2 = u1(u1>B_n); t2 = 
t1(t1>B_q); 
    Z_g = max(r1); 
    Z_n = min(u2); 
    Z_q = min(t2); 
    A_prime_g = 2*sum( 
(ones(n,1)*x_g).*sqrt(a_Ti'*a_Ti
).*(1-sigma), 2)'/a_T_g; 

    A_prime_n = 2*sum( 
(ones(n,1)*x_n).*sqrt(a_Ti'*a_Ti
).*(1-sigma), 2)'/a_T_n; 
    A_prime_q = 2*sum( 
(ones(n,1)*x_q).*sqrt(a_Ti'*a_Ti
).*(1-tau), 2)'/a_T_q; 
    B_prime_g = b_i/b_g; 
    B_prime_n = b_i/b_n; 
    B_prime_q = b_i/b_q; 
    phi_g = exp( -log( Z_g - B_g 
) + ( Z_g - 1 )*B_prime_g - 
A_g/B_g/... 
        2^1.5*( A_prime_g - 
B_prime_g )*log( ( Z_g + 
B_g*(sqrt(2)+1) )/... 
        ( Z_g - B_g*(sqrt(2)-1) ) 
) ); 
    phi_n = exp( -log( Z_n - B_n 
) + ( Z_n - 1 )*B_prime_n - 
A_n/B_n/... 
        2^1.5*( A_prime_n - 
B_prime_n )*log( ( Z_n + 
B_n*(sqrt(2)+1) )/... 
        ( Z_n - B_n*(sqrt(2)-1) ) 
) ); 
    phi_q = exp( -log( Z_q - B_q 
) + ( Z_q - 1 )*B_prime_q - 
A_q/B_q/... 
        2^1.5*( A_prime_q - 
B_prime_q )*log( ( Z_q + 
B_q*(sqrt(2)+1) )/... 
        ( Z_q - B_q*(sqrt(2)-1) ) 
) ); 
    K_n_new = 
(p_n/p_g)*phi_n./phi_g; 
    K_q_new = 
(p_q/p_g)*phi_q./phi_g; 
    e = [ max( ( K_n_new - K_n 
).^2 ./ ( K_n.*K_n_new ) ) 
        max( ( K_q_new - K_q ).^2 
./ ( K_q.*K_q_new ) )]; 
    K_n = K_n_new; 
    K_q = K_q_new; 
end 
 
Z_n_corr = Z_n - 
p_n*sum(x_n.*c)/(R*T); 
Z_q_corr = Z_q - 
p_q*sum(x_q.*c)/(R*T); 
Z_g_corr = Z_g - 
p_g*sum(x_g.*c)/(R*T); 
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%% Calculating outputs 
 
output = zeros(N_row+4, N_phase); 
 
% calculating total molar 
concentration for each phase 
(mole/m^3) 
MC_n = 
p_n*6894.76/(Z_n_corr*R_SI*T_SI)
; 
MC_q = 
p_q*6894.76/(Z_q_corr*R_SI*T_SI)
; 
MC_g = 
p_g*6894.76/(Z_g_corr*R_SI*T_SI)
; 
 
% phase fractions 
denom = MC_n*S_n + MC_q*S_q + 
MC_g*S_g; 
psi_n = MC_n*S_n/denom; 
psi_q = MC_q*S_q/denom; 
psi_g = MC_g*S_g/denom; 
output(1,:) = [psi_n, psi_q, 
psi_g]; 
 
% calculating molecular weight of 
phases 
MW_n = sum( MW.*x_n ); 
MW_q = sum( MW.*x_q ); 
MW_g = sum( MW.*x_g ); 
output(2,:) = [MW_n, MW_q, MW_g]; 
 
% compresibility factors 
output(3,:) = [Z_n_corr, 
Z_q_corr, Z_g_corr]; 
 
% calculating mass density for 
each phase (kg/m^3) 
rho_g = MC_g * MW_g/1000; 
rho_n = MC_n * MW_n/1000; 
rho_q = MC_q * MW_q/1000; 
output(4,:) = [rho_n, rho_q, 
rho_g]; 
 
% mole percents 
output(5:N_row+4,:) = [x_n' x_q' 
x_g']*100; 
 
%% State change signaling 

 
% calculating total mole 
fractions 
x_t = psi_n.*x_n + psi_q.*x_q + 
psi_g.*x_g; 
 
% forming Q-functions 
Q1 = @(psi_n, psi_q)sum( 
x_t.*K_q.*(1-K_n)./( K_n.*K_q + 
... 
    psi_n*K_q.*(1-K_n) + 
psi_q*K_n.*(1-K_q) ) ); 
Q2 = @(psi_n, psi_q)sum( 
x_t.*K_n.*(1-K_q)./( K_n.*K_q + 
... 
    psi_n*K_q.*(1-K_n) + 
psi_q*K_n.*(1-K_q) ) ); 
 
current_state = 1; 
correct_state = 1; 
 
% single-phase test 
% checking for single gaseous 
phase 
if ( sum(x_t./K_n) < 1 ) && ( 
sum(x_t./K_q) < 1 ) 
    correct_state = 3; 
     
% two-phase tests 
% checking for gaseous phase and 
non-aqueous phase 
else 
    auxfunc = @(psi_n) Q1(psi_n, 
0); 
    psi_1 = fzero(auxfunc, 0.5); 
    if ( Q2(psi_1, 0) < 1e-5 ) && 
( sum(x_t./K_n) > 1 ) && ( 
sum(x_t.*K_n) > 1 ) 
        if ( psi_1 > 1e-5 ) 
            correct_state = 4; 
        else 
            correct_state = 3; 
        end 
                 
    % checking for gaseous phase 
and aqueous phase 
    else 
        auxfunc = @(psi_q) Q2(0, 
psi_q); 
        psi_2 = fzero(auxfunc, 
0.5); 
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        if ( Q1(0, psi_2) < 1e-5 
) && ( sum(x_t./K_q) > 1 ) && ( 
sum(x_t.*K_q) > 1 ) 
            if ( psi_2 > 1e-5 ) 
                correct_state = 
2; 
            else 
                correct_state = 
3; 
            end 
        end 
    end 
end 
            
if ( correct_state == 
current_state ) 
    fprintf('\nCurrent state is 
confirmed\n'); 
else 
    fprintf('\nCurrent state is 
not correct\n'); 
    fprintf('Switch to state 
%d\n', correct_state); 
end 
 
end 
 
********************************
*** 
 
function [ output ] = 
Flash_PR_State2( T_C, input ) 
%State 2 
%   Gaseous and Aqueous phases are 
present. 
% Inputs: T_C: temperature in 
Centrigrade 
%         input: 1st row: Aqueous 
phase pressure  
%     2nd: 
Aqueous phase saturation 
%                3rd row to end: 
primary mole percents 
% Outputs: 1st row: phase 
fractions 
%          2nd row: phases' 
compresibility factors 
%          3rd row: phases' mass 
density (kg/m^3) 
%          4th row: molecular 
weight of phases 

%          5th row to end: 
equilibrium mole fractions of 
components 
%          Columns: 1st column: 
gaseous 
%                   2nd column: 
aqueous 
 
format long; 
 
%% Input form CompFlow 
 
% pressure for aqueous, non-
aqueous and gaseous phases (bar) 
global p_q; global p_g; 
p_q = input(1); p_g = p_q; % no 
capillary pressure data currently 
available 
p_q = p_q*14.5037738; p_g = 
p_g*14.5037738; % converting bar 
to psi 
 
% saturations (volume fractions) 
of each phase 
global S_q; global S_g; 
S_q = input(2); S_g = 1 - S_q; 
 
N_row = 9; 
N_phase = 2; 
 
% converting mole percents to 
fractions 
input(3:N_row) = 
input(3:N_row)/100; 
 
% known molar fractions in 
gaseous phase 
global X_CH4_g; global X_CO2_g; 
global X_C2C3_g; global X_C4C6_g; 
global X_C7C9_g; global 
X_C10C15_g; global X_C16p_g; 
X_CO2_g = input(8); X_CH4_g = 
input(9); X_C2C3_g = input(3); 
X_C4C6_g = input(4); 
X_C7C9_g = input(5); X_C10C15_g = 
input(6); X_C16p_g = input(7); 
 
%% Setting physical properties & 
calculating dependent variables 
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T = 1.8*T_C + 491.67; % 
temperature conversion to Rankin 
T_SI = T_C + 273.15; % temperature 
conversion to Kelvin 
 
% critical pressures 
% component  CO2    H2O     N2      
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
Pc =        [73.76  220.55  33.94   
45.99   46.56  34.24  25.80  18.60   
9.61]; 
Pc = Pc*14.5037738; % conversion 
of Pc from bar to psi 
 
% critical temperatures 
% component  CO2     H2O    N2     
CH4    C2C3   C4C6   C7C9   C10C15  
C16+ 
Tc =         [304.2  647.1  126.2  
190.6  328.5  458.1  566.0  651     
824.1]; 
Tc = Tc*1.8; % conversoion of 
critical temperatures from Kelvin 
to Rankin 
 
% acentric factors 
% component  CO2    H2O     N2     
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
w =         [0.239  0.345   0.0403 
0.0115  0.118  0.234  0.370  0.595   
1.427]; 
 
% molecular weight 
% component  CO2    H2O     N2      
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
MW =        [44.0   18.0    28.0    
16.0    35.0   70.1   108.3  166.0   
385.6]; 
 
% dimensionless volume shifts 
% component  CO2     H2O    N2       
CH4      C2C3     C4C6     C7C9   
C10C15  C16+ 
s =       [  0.02   .0147   -.1927   
-.1595   -.095    -.047    .038   
.155    .277]; 
 
% calculating reduced parameters 

Pr = p_q./Pc; 
Tr = T./Tc; 
 
% binary interaction coefficients 
for non-aueous and gaseous phases 
% component    CO2       H2O     N2      
CH4     C2C3     C4C6    C7C9    
C10C15   C16+ 
sigma =       [0         .19     0       
.107    .128     .422    .1      
.015     .015 
               .19       0       
.478    .5      .49      .48     
.48     .48      .48 
               0         .478    0       
.031    .068     .335    .15     
.155     .155 
               .107      .5      
.031    0       .008     .066    
.043    .052     .066 
               .128      .49     
.068    .008    0        .03     
.029    .026     .037 
               .422      .48     
.335    .066    .03      0       .016    
.006     .01 
               .1        .48     
.15     .043    .029     .016    0       
0        0 
               .015      .48     
.155    .052    .026     .006    0       
0        0 
               .015      .48     
.155    .066    .037     .01     0       
0        0]; 
 
% binary interaction coefficients 
for aqueous phase 
tau = sigma; 
% slope and intercepts of linear 
regression 
slint = [0.273 -0.371 
         0      0 
         0.417 -1.631 
         1.66 -0.759 
         1.991 -0.576 
         3.124 -0.687 
         .00151 -.812]; 
% water-CO2 
tau(2,1) = slint(1,1)*Tr(1) + 
slint(1,2); 
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% water-N2 
tau(2,3) = slint(3,1)*Tr(3) + 
slint(3,2); 
% water-methane 
tau(2,4) = 
slint(4,1)*Tr(4)*Pc(4)/Pc(2) + 
slint(4,2); 
% water-C2C3 
tau(2,5) = ( 
.5*slint(5,1)+.5*slint(6,1) 
)*Tr(5)*Pc(5)/Pc(2) + ... 
    ( 
.5*slint(5,2)+.5*slint(6,2) ); 
% water-C4C6 
tau(2,6) = slint(7,1)*T_SI + 
slint(7,2); 
% water-C7C9 
tau(2,7) = tau(6,1); 
% water-C10C15 
tau(2,8) = tau(6,1); 
% water-C16+ 
tau(2,9) = tau(6,1); 
 
tau(:,2) = tau(2,:); 
 
alpha = ( 1 + ( .37464 + 1.54226*w 
- .26992*w.^2 ).*( 1 - sqrt(Tr) ) 
).^2; 
% adjusment for big accentric 
factors bigger thatn 0.49 
alpha(w>.49) = ( 1 + ( .379642 + 
1.48503*w(w>.49) - 
.164423*w(w>.49).^2 + ... 
    .016666*w(w>.49).^3 ).*( 1 - 
sqrt(Tr(w>.49) ) ) ).^2; 
% adjustment for water component 
if ( Tr(2) < 0.7225 ) 
    alpha(2) = ( 1.0085677 + 
0.82154*( 1 - sqrt(Tr(2)) ) )^2; 
end 
 
R = 10.732159; % gas cosntants in 
Field units 
R_SI = 8.3144598; % gas cosntants 
in SI units 
 
a = 0.457235529*R^2*Tc.^2./Pc; 
a_Ti = a.*alpha; 
b_i = 0.07796074*R*Tc./Pc; 
c = s.*b_i; % volume shifts 
n = size(sigma,2); 

number = 0; 
 
% molar fraction in phases 
% component  CO2        H2O     N2     
CH4      C2C3      C4C6      C7C9       
C10C15       C16+ 
x_q =       [0          0       0      
0        0         0         0          
0            0]; 
x_g =       [X_CO2_g    0       0      
X_CH4_g  X_C2C3_g  X_C4C6_g  
X_C7C9_g   X_C10C15_g   X_C16p_g]; 
 
%% Solving for secondary 
variables 
 
K_q = 10^6*(Pr./Tr); 
precision = 1e-16; 
e = 1; 
 
while ( e > precision ) 
    number = number + 1; 
    x_q = x_g./K_q; 
    A = [1 1; K_q(2) K_q(3)]; 
    B = [1-sum(x_q(4:9))-x_q(1); 
1-sum(x_g(4:9))-x_g(1)]; 
    result = (A\B)'; 
    if ( result(1) < 0 ) 
        result(1) = 0.98; 
    end 
    if ( result(2) < 0 ) 
        result(2) = 
0.15/100/K_q(3); 
    end 
    x_q(2:3) = result; 
    x_g(2:3) = 
x_q(2:3).*K_q(2:3); 
    % normalizing gaseous phase 
    excess = sum(x_g)-1; 
    exc_app = 
excess/sum(x_g(2:3)); 
    x_g(2:3) = x_g(2:3)*(1-
exc_app); 
    % normalizing aqueous phase 
    x_q = x_q./sum(x_q); 
     
    a_T_g = sum( sum( 
(x_g'*x_g).*sqrt(a_Ti'*a_Ti).*(1
-sigma) ) ); 
    b_g = sum(x_g.*b_i); 
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    a_T_q = sum( sum( 
(x_q'*x_q).*sqrt(a_Ti'*a_Ti).*(1
-tau) ) ); 
    b_q = sum(x_q.*b_i); 
    A_g = a_T_g*p_g/(R^2*T^2); 
    B_g = b_g*p_g/(R*T); 
    A_q = a_T_q*p_q/(R^2*T^2); 
    B_q = b_q*p_q/(R*T); 
    r = roots([1 B_g-1 (A_g - 
2*B_g - 3*B_g^2) (B_g^3 + B_g^2 - 
A_g*B_g)]); 
    t = roots([1 B_q-1 (A_q - 
2*B_q - 3*B_q^2) (B_q^3 + B_q^2 - 
A_q*B_q)]); 
    r1 = r(imag(r)==0); t1 = 
t(imag(t)==0); 
    t2 = t1(t1>B_q); 
    Z_g = max(r1); 
    Z_q = min(t2); 
    A_prime_g = 2*sum( 
(ones(n,1)*x_g).*sqrt(a_Ti'*a_Ti
).*(1-sigma), 2)'/a_T_g; 
    A_prime_q = 2*sum( 
(ones(n,1)*x_q).*sqrt(a_Ti'*a_Ti
).*(1-tau), 2)'/a_T_q; 
    B_prime_g = b_i/b_g; 
    B_prime_q = b_i/b_q; 
    phi_g = exp( -log( Z_g - B_g 
) + ( Z_g - 1 )*B_prime_g - 
A_g/B_g/... 
        2^1.5*( A_prime_g - 
B_prime_g )*log( ( Z_g + 
B_g*(sqrt(2)+1) )/... 
        ( Z_g - B_g*(sqrt(2)-1) ) 
) ); 
    phi_q = exp( -log( Z_q - B_q 
) + ( Z_q - 1 )*B_prime_q - 
A_q/B_q/... 
        2^1.5*( A_prime_q - 
B_prime_q )*log( ( Z_q + 
B_q*(sqrt(2)+1) )/... 
        ( Z_q - B_q*(sqrt(2)-1) ) 
) ); 
    K_q_new = 
(p_q/p_g)*phi_q./phi_g; 
    e = max( ( K_q_new - K_q ).^2 
./ ( K_q.*K_q_new ) ); 
    K_q = K_q_new; 
end 
 

Z_q_corr = Z_q - 
p_q*sum(x_q.*c)/(R*T); 
Z_g_corr = Z_g - 
p_g*sum(x_g.*c)/(R*T); 
 
%% Calculating outputs 
 
output = zeros(N_row+4, N_phase); 
 
% calculating total molar 
concentration for each phase 
(mole/m^3) 
MC_q = 
p_q*6894.76/(Z_q_corr*R_SI*T_SI)
; 
MC_g = 
p_g*6894.76/(Z_g_corr*R_SI*T_SI)
; 
 
% phase fractions 
denom = MC_q*S_q + MC_g*S_g; 
psi_q = MC_q*S_q/denom; 
psi_g = MC_g*S_g/denom; 
output(1,:) = [psi_q, psi_g]; 
 
% calculating molecular weight of 
phases 
MW_q = sum( MW.*x_q ); 
MW_g = sum( MW.*x_g ); 
output(2,:) = [MW_q, MW_g]; 
 
% compresibility factors 
output(3,:) = [Z_q_corr, 
Z_g_corr]; 
 
% calculating mass density for 
each phase (kg/m^3) 
rho_q = MC_q * MW_q/1000; 
rho_g = MC_g * MW_g/1000; 
output(4,:) = [rho_q, rho_g]; 
 
% mole percents 
output(5:N_row+4,:) = [x_q' 
x_g']*100; 
 
%% State change signaling 
 
% calculating total mole 
fractions 
x_t = psi_q.*x_q + psi_g.*x_g; 
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% using AuxiliaryN.m function to 
calculate equilibrium ratios 
between 
% hypothetical non-aqeuous phase 
and available gaseous phase 
K_n = AuxiliaryN(p_g, T_C, x_g); 
 
% forming Q-functions 
Q1 = @(psi_n, psi_q)sum( 
x_t.*K_q.*(1-K_n)./( K_n.*K_q + 
... 
    psi_n*K_q.*(1-K_n) + 
psi_q*K_n.*(1-K_q) ) ); 
Q2 = @(psi_n, psi_q)sum( 
x_t.*K_n.*(1-K_q)./( K_n.*K_q + 
... 
    psi_n*K_q.*(1-K_n) + 
psi_q*K_n.*(1-K_q) ) ); 
 
current_state = 2; 
correct_state = 1; 
 
% single-phase test 
% checking for single gaseous 
phase 
if ( sum(x_t./K_n) < 1 ) && ( 
sum(x_t./K_q) < 1 ) 
    correct_state = 3; 
     
% two-phase tests 
% checking for gaseous phase and 
non-aqueous phase 
else 
    auxfunc = @(psi_n) Q1(psi_n, 
0); 
    psi_1 = fzero(auxfunc, 0.5); 
    if ( Q2(psi_1, 0) < 1e-5 ) && 
( sum(x_t./K_n) > 1 ) && ( 
sum(x_t.*K_n) > 1 ) 
        if ( psi_1 > 1e-5 ) 
            correct_state = 4; 
        else 
            correct_state = 3; 
        end 
                 
    % checking for gaseous phase 
and aqueous phase 
    else 
        auxfunc = @(psi_q) Q2(0, 
psi_q); 

        psi_2 = fzero(auxfunc, 
0.5); 
        if ( Q1(0, psi_2) < 1e-5 
) && ( sum(x_t./K_q) > 1 ) && ( 
sum(x_t.*K_q) > 1 ) 
            if ( psi_2 > 1e-5 ) 
                correct_state = 
2; 
            else 
                correct_state = 
3; 
            end 
        end 
    end 
end 
            
if ( correct_state == 
current_state ) 
    fprintf('\nCurrent state is 
confirmed\n'); 
else 
    fprintf('\nCurrent state is 
not correct\n'); 
    fprintf('Switch to state 
%d\n', correct_state); 
end 
 
end 
 
********************************
*** 
 
function [ output ] = 
Flash_PR_State3( T_C, input ) 
%State 4 
%   Only Gaseous phase is present. 
% Inputs: T_C: temperature in 
Centrigrade 
%         input: Rows: 1st row: 
gaseous phase pressure 
%        
2nd row to end: primary mole 
percents 
% Outputs: 1st row: phase 
fraction 
%          2nd row: phase 
compresibility factor 
%          3rd row: phase mass 
density (kg/m^3) 
%          4th row: molecular 
weight of phases 
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%          5th row to end: 
equilibrium mole fractions of 
components 
 
format long; 
 
%% Input form CompFlow 
 
% pressure for non-aqueous and 
gaseous phases (bar) 
global p_g; 
p_g = input(1); 
p_g = p_g*14.5037738; % 
converting bar to psi 
 
N_row = 9; 
N_phase = 1; 
 
% converting mole percents to 
fractions 
input(2:N_row) = 
input(2:N_row)/100; 
 
% known molar fractions in 
gaseous phase 
global X_CO2_g; global X_H2O_g; 
global X_CH4_g; global X_C2C3_g; 
global X_C4C6_g; global X_C7C9_g; 
global X_C10C15_g; global 
X_C16p_g; 
X_CO2_g = input(8); X_H2O_g = 
input(2); X_CH4_g = input(9); 
X_C2C3_g = input(3); X_C4C6_g = 
input(4); X_C7C9_g = input(5); 
X_C10C15_g = input(6); X_C16p_g = 
input(7); 
 
%% Setting physical properties & 
calculating dependent variables 
 
T = 1.8*T_C + 491.67; 
%temperature conversion to Rankin 
T_SI = T_C + 273.15; %temperature 
conversion to Kelvin 
 
% critical pressures 
% component  CO2    H2O     N2      
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 

Pc =        [73.76  220.55  33.94   
45.99   46.56  34.24  25.80  18.60   
9.61]; 
Pc = Pc*14.5037738; % conversion 
of Pc from bar to psi 
 
% critical temperatures 
% component  CO2     H2O    N2     
CH4    C2C3   C4C6   C7C9   C10C15  
C16+ 
Tc =         [304.2  647.1  126.2  
190.6  328.5  458.1  566.0  651     
824.1]; 
Tc = Tc*1.8; % conversoion of 
critical temperatures from Kelvin 
to Rankin 
 
% acentric factors 
% component  CO2    H2O     N2     
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
w =         [0.239  0.345   0.0403 
0.0115  0.118  0.234  0.370  0.595   
1.427]; 
 
% molecular weight 
% component  CO2    H2O     N2      
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
MW =        [44.0   18.0    28.0    
16.0    35.0   70.1   108.3  166.0   
385.6]; 
 
% dimensionless volume shifts 
% component  CO2     H2O    N2       
CH4      C2C3     C4C6     C7C9   
C10C15  C16+ 
s =       [  0.02   .0147   -.1927   
-.1595   -.095    -.047    .038   
.155    .277]; 
 
% calculating reduced parameters 
Tr = T./Tc; 
 
% binary interaction coefficients 
for non-aueous and gaseous phases 
% component    CO2       H2O     N2      
CH4     C2C3     C4C6    C7C9    
C10C15   C16+ 
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sigma =       [0         .19     0       
.107    .128     .422    .1      
.015     .015 
               .19       0       
.478    .5      .49      .48     
.48     .48      .48 
               0         .478    0       
.031    .068     .335    .15     
.155     .155 
               .107      .5      
.031    0       .008     .066    
.043    .052     .066 
               .128      .49     
.068    .008    0        .03     
.029    .026     .037 
               .422      .48     
.335    .066    .03      0       .016    
.006     .01 
               .1        .48     
.15     .043    .029     .016    0       
0        0 
               .015      .48     
.155    .052    .026     .006    0       
0        0 
               .015      .48     
.155    .066    .037     .01     0       
0        0]; 
         
alpha = ( 1 + ( .37464 + 1.54226*w 
- .26992*w.^2 ).*( 1 - sqrt(Tr) ) 
).^2; 
% adjusment for big accentric 
factors bigger thatn 0.49 
alpha(w>.49) = ( 1 + ( .379642 + 
1.48503*w(w>.49) - 
.164423*w(w>.49).^2 + ... 
    .016666*w(w>.49).^3 ).*( 1 - 
sqrt(Tr(w>.49) ) ) ).^2; 
% adjustment for water component 
if ( Tr(2) < 0.7225 ) 
    alpha(2) = ( 1.0085677 + 
0.82154*( 1 - sqrt(Tr(2)) ) )^2; 
end 
 
R = 10.732159; % gas cosntants in 
Field units 
R_SI = 8.3144598; % gas cosntants 
in SI units 
 
a = 0.457235529*R^2*Tc.^2./Pc; 
a_Ti = a.*alpha; 

b_i = 0.07796074*R*Tc./Pc; 
c = s.*b_i; % volume shifts 
 
% molar fraction in phases 
(primary variables) 
% component  CO2        H2O      N2     
CH4      C2C3      C4C6      C7C9       
C10C15       C16+ 
x_g =       [X_CO2_g    X_H2O_g  
0      X_CH4_g  X_C2C3_g  X_C4C6_g  
X_C7C9_g   X_C10C15_g   X_C16p_g]; 
 
x_g(3) = 1 - sum(x_g); 
a_T_g = sum( sum( 
(x_g'*x_g).*sqrt(a_Ti'*a_Ti).*(1
-sigma) ) ); 
b_g = sum(x_g.*b_i); 
A_g = a_T_g*p_g/(R^2*T^2); 
B_g = b_g*p_g/(R*T); 
r = roots([1 B_g-1 (A_g - 2*B_g - 
3*B_g^2) (B_g^3 + B_g^2 - 
A_g*B_g)]); 
r1 = r(imag(r)==0); 
Z_g = max(r1); 
Z_g_corr = Z_g - 
p_g*sum(x_g.*c)/(R*T); 
 
%% Calculating outputs 
 
output = zeros(N_row+4, N_phase); 
 
% calculating total molar 
concentration (mole/m^3) 
MC_g = 
p_g*6894.76/(Z_g_corr*R_SI*T_SI)
; 
 
psi_g = 1; %setting phase 
fraction 
output(1,:) = psi_g; 
 
% calculating phase molecular 
weight 
MW_g = sum( MW.*x_g ); 
output(2,:) = MW_g; 
 
% compresibility factors 
output(3,:) = Z_g_corr; 
 
% calculating phase mass density 
(kg/m^3) 
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rho_g = MC_g * MW_g/1000; 
output(4,:) = rho_g; 
 
% mole percents 
output(5:N_row+4,:) = x_g'*100; 
 
%% State change signaling 
 
% calculating total mole 
fractions 
x_t = psi_g.*x_g; 
 
% using auxiliary functions to 
calculate equilibrium ratios 
between 
% hypothetical non-aqeuous and 
aqueous phases and available 
gaseous phase 
K_n = AuxiliaryN(p_g, T_C, x_g); 
K_q = AuxiliaryQ(p_g, T_C, x_g); 
 
% forming Q-functions 
Q1 = @(psi_n, psi_q)sum( 
x_t.*K_q.*(1-K_n)./( K_n.*K_q + 
... 
    psi_n*K_q.*(1-K_n) + 
psi_q*K_n.*(1-K_q) ) ); 
Q2 = @(psi_n, psi_q)sum( 
x_t.*K_n.*(1-K_q)./( K_n.*K_q + 
... 
    psi_n*K_q.*(1-K_n) + 
psi_q*K_n.*(1-K_q) ) ); 
 
current_state = 3; 
correct_state = 1; 
 
% single-phase test 
% checking for single gaseous 
phase 
if ( sum(x_t./K_n) < 1 ) && ( 
sum(x_t./K_q) < 1 ) 
    correct_state = 3; 
     
% two-phase tests 
% checking for gaseous phase and 
non-aqueous phase 
else 
    auxfunc = @(psi_n) Q1(psi_n, 
0); 
    psi_1 = fzero(auxfunc, 0.5); 

    if ( Q2(psi_1, 0) < 1e-5 ) && 
( sum(x_t./K_n) > 1 ) && ( 
sum(x_t.*K_n) > 1 ) 
        if ( psi_1 > 1e-5 ) 
            correct_state = 4; 
        else 
            correct_state = 3; 
        end 
                 
    % checking for gaseous phase 
and aqueous phase 
    else 
        auxfunc = @(psi_q) Q2(0, 
psi_q); 
        psi_2 = fzero(auxfunc, 
0.5); 
        if ( Q1(0, psi_2) < 1e-5 
) && ( sum(x_t./K_q) > 1 ) && ( 
sum(x_t.*K_q) > 1 ) 
            if ( psi_2 > 1e-5 ) 
                correct_state = 
2; 
            else 
                correct_state = 
3; 
            end 
        end 
    end 
end 
            
if ( correct_state == 
current_state ) 
    fprintf('\nCurrent state is 
confirmed\n'); 
else 
    fprintf('\nCurrent state is 
not correct\n'); 
    fprintf('Switch to state 
%d\n', correct_state); 
end 
 
end 
 
********************************
*** 
 
function [ output ] = 
Flash_PR_State4( T_C, input ) 
%State 4 
%   Gaseous and Non-Aqueous phases 
are present. 
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% Inputs: T_C: temperature in 
Centrigrade 
%         input: 1st row: Non-
aqueous phase pressure 
%                2nd row: Non-
aqueous saturation 
%     3rd row to 
end: primary mole percents 
% Outputs: 1st row: phase 
fractions 
%          2nd row: phases' 
compresibility factors 
%          3rd row: phases' mass 
density (kg/m^3) 
%          4th row: molecular 
weight of phases 
%          5th row to end: 
equilibrium mole fractions of 
components 
%          Columns: 1st column: 
non-aqueous 
%                   2nd column: 
gaseous 
 
format long; 
 
%% Input form CompFlow 
 
% pressure for non-aqueous and 
gaseous phases (bar) 
global p_n; global p_g; 
p_n = input(1); p_g = p_n; % no 
capillary pressure data currently 
available 
p_n = p_n*14.5037738; p_g = 
p_g*14.5037738; % converting bar 
to psi 
 
% saturations (volume fractions) 
of each phase 
global S_n; global S_g; 
S_n = input(2); S_g = 1 - S_n; 
 
N_row = 9; 
N_phase = 2; 
 
% converting mole percents to 
fractions 
input(3:N_row) = 
input(3:N_row)/100; 
 

% known molar fractions in 
gaseous phase 
global X_CH4_g; global X_CO2_g; 
global X_H2O_g; 
X_CO2_g = input(8); X_H2O_g = 
input(3); X_CH4_g = input(9);  
 
% known molar fractions in non-
aqueous phaseh 
global X_C2C3_n; global X_C4C6_n; 
global X_C7C9_n; global 
X_C10C15_n; 
X_C2C3_n = input(4); X_C4C6_n = 
input(5); X_C7C9_n = input(6);  
X_C10C15_n = input(7); 
 
%% Setting physical properties & 
calculating dependent variables 
 
T = 1.8*T_C + 491.67; 
%temperature conversion to Rankin 
T_SI = T_C + 273.15; %temperature 
conversion to Kelvin 
 
% critical pressures 
% component  CO2    H2O     N2      
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
Pc =        [73.76  220.55  33.94   
45.99   46.56  34.24  25.80  18.60   
9.61]; 
Pc = Pc*14.5037738; % conversion 
of Pc from bar to psi 
 
% critical temperatures 
% component  CO2     H2O    N2     
CH4    C2C3   C4C6   C7C9   C10C15  
C16+ 
Tc =         [304.2  647.1  126.2  
190.6  328.5  458.1  566.0  651     
824.1]; 
Tc = Tc*1.8; % conversoion of 
critical temperatures from Kelvin 
to Rankin 
 
% acentric factors 
% component  CO2    H2O     N2     
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
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w =         [0.239  0.345   0.0403 
0.0115  0.118  0.234  0.370  0.595   
1.427]; 
 
% molecular weight 
% component  CO2    H2O     N2      
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
MW =        [44.0   18.0    28.0    
16.0    35.0   70.1   108.3  166.0   
385.6]; 
 
% dimensionless volume shifts 
% component  CO2     H2O    N2       
CH4      C2C3     C4C6     C7C9   
C10C15  C16+ 
s =       [  0.02   .0147   -.1927   
-.1595   -.095    -.047    .038   
.155    .277]; 
 
% calculating reduced parameters 
Pr = p_n./Pc; 
Tr = T./Tc; 
 
% binary interaction coefficients 
for non-aueous and gaseous phases 
% component    CO2       H2O     N2      
CH4     C2C3     C4C6    C7C9    
C10C15   C16+ 
sigma =       [0         .19     0       
.107    .128     .422    .1      
.015     .015 
               .19       0       
.478    .5      .49      .48     
.48     .48      .48 
               0         .478    0       
.031    .068     .335    .15     
.155     .155 
               .107      .5      
.031    0       .008     .066    
.043    .052     .066 
               .128      .49     
.068    .008    0        .03     
.029    .026     .037 
               .422      .48     
.335    .066    .03      0       .016    
.006     .01 
               .1        .48     
.15     .043    .029     .016    0       
0        0 

               .015      .48     
.155    .052    .026     .006    0       
0        0 
               .015      .48     
.155    .066    .037     .01     0       
0        0]; 
        
alpha = ( 1 + ( .37464 + 1.54226*w 
- .26992*w.^2 ).*( 1 - sqrt(Tr) ) 
).^2; 
% adjusment for big accentric 
factors bigger thatn 0.49 
alpha(w>.49) = ( 1 + ( .379642 + 
1.48503*w(w>.49) - 
.164423*w(w>.49).^2 + ... 
    .016666*w(w>.49).^3 ).*( 1 - 
sqrt(Tr(w>.49) ) ) ).^2; 
% adjustment for water component 
if ( Tr(2) < 0.7225 ) 
    alpha(2) = ( 1.0085677 + 
0.82154*( 1 - sqrt(Tr(2)) ) )^2; 
end 
 
R = 10.732159; % gas cosntants in 
Field units 
R_SI = 8.3144598; % gas cosntants 
in SI units 
 
a = 0.457235529*R^2*Tc.^2./Pc; 
a_Ti = a.*alpha; 
b_i = 0.07796074*R*Tc./Pc; 
c = s.*b_i; % volume shifts 
n = size(sigma,2); 
number = 0; 
 
% molar fraction in phases 
(primary variables) 
% component  CO2        H2O     N2     
CH4      C2C3      C4C6      C7C9       
C10C15       C16+ 
x_n =       [0          0       0      
0        X_C2C3_n  X_C4C6_n  
X_C7C9_n   X_C10C15_n   0]; 
x_g =       [X_CO2_g    X_H2O_g 0      
X_CH4_g  0         0         0          
0            0]; 
 
%% Solving for secondary 
variables 
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K_n = (1./Pr).*exp(5.37.*( 1 + w 
).*( 1 - 1./Tr )); 
precision = 1e-16; 
e = 1; 
 
while ( e > precision ) 
    number = number + 1; 
    x_n(1:2) = 
x_g(1:2)./K_n(1:2); 
    x_n(4) = x_g(4)/K_n(4); 
    x_g(5:8) = 
x_n(5:8).*K_n(5:8); 
    A = [1 1; K_n(3) K_n(9)]; 
    B = [1-sum(x_n(1:2))-
sum(x_n(4:8)); 1-sum(x_g(1:2))-
sum(x_g(4:8))]; 
    result = (A\B)'; 
    if ( result(1) < 0 ) 
        result(1) = 0.05/100; 
    end 
    if ( result(2) < 0 ) 
        result(2) = 0.1; 
    end 
    x_n(3) = result(1); 
    x_n(9) = result(2); 
    x_g(3) = K_n(3)*x_n(3); 
    x_g(9) =  K_n(9)*x_n(9); 
    % normalizing gaseous phase 
    excess = sum(x_g)-1; 
    exc_app = 
excess/(x_g(3)+sum(x_g(5:9))); 
    x_g(3) = x_g(3)*(1-exc_app); 
    x_g(5:9) = x_g(5:9)*(1-
exc_app); 
    % normalizing non-aqueous 
phase 
    excess = sum(x_n)-1; 
    exc_app = 
excess/(sum(x_n(1:4))+x_n(9)); 
    x_n(1:4) = x_n(1:4)*(1-
exc_app); 
    x_n(9) = x_n(9)*(1-exc_app); 
     
    a_T_g = sum( sum( 
(x_g'*x_g).*sqrt(a_Ti'*a_Ti).*(1
-sigma) ) ); 
    b_g = sum(x_g.*b_i); 
    a_T_n = sum( sum( 
(x_n'*x_n).*sqrt(a_Ti'*a_Ti).*(1
-sigma) ) ); 
    b_n = sum(x_n.*b_i); 

    A_g = a_T_g*p_g/(R^2*T^2); 
    B_g = b_g*p_g/(R*T); 
    A_n = a_T_n*p_n/(R^2*T^2); 
    B_n = b_n*p_n/(R*T); 
    r = roots([1 B_g-1 (A_g - 
2*B_g - 3*B_g^2) (B_g^3 + B_g^2 - 
A_g*B_g)]); 
    u = roots([1 B_n-1 (A_n - 
2*B_n - 3*B_n^2) (B_n^3 + B_n^2 - 
A_n*B_n)]); 
    r1 = r(imag(r)==0); u1 = 
u(imag(u)==0); 
    u2 = u1(u1>B_n); 
    Z_g = max(r1); 
    Z_n = min(u2); 
    A_prime_g = 2*sum( 
(ones(n,1)*x_g).*sqrt(a_Ti'*a_Ti
).*(1-sigma), 2)'/a_T_g; 
    A_prime_n = 2*sum( 
(ones(n,1)*x_n).*sqrt(a_Ti'*a_Ti
).*(1-sigma), 2)'/a_T_n; 
    B_prime_g = b_i/b_g; 
    B_prime_n = b_i/b_n; 
    phi_g = exp( -log( Z_g - B_g 
) + ( Z_g - 1 )*B_prime_g - 
A_g/B_g/... 
        2^1.5*( A_prime_g - 
B_prime_g )*log( ( Z_g + 
B_g*(sqrt(2)+1) )/... 
        ( Z_g - B_g*(sqrt(2)-1) ) 
) ); 
    phi_n = exp( -log( Z_n - B_n 
) + ( Z_n - 1 )*B_prime_n - 
A_n/B_n/... 
        2^1.5*( A_prime_n - 
B_prime_n )*log( ( Z_n + 
B_n*(sqrt(2)+1) )/... 
        ( Z_n - B_n*(sqrt(2)-1) ) 
) ); 
    K_n_new = 
(p_n/p_g)*phi_n./phi_g; 
    e = max( ( K_n_new - K_n ).^2 
./ ( K_n.*K_n_new ) ); 
    K_n = K_n_new; 
end 
 
Z_n_corr = Z_n - 
p_n*sum(x_n.*c)/(R*T); 
Z_g_corr = Z_g - 
p_g*sum(x_g.*c)/(R*T); 
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%% Calculating outputs 
 
output = zeros(N_row+4, N_phase); 
 
% calculating total molar 
concentration for each phase 
(mole/m^3) 
MC_n = 
p_n*6894.76/(Z_n_corr*R_SI*T_SI)
; 
MC_g = 
p_g*6894.76/(Z_g_corr*R_SI*T_SI)
; 
 
% phase fractions 
denom = MC_n*S_n + MC_g*S_g; 
psi_n = MC_n*S_n/denom; 
psi_g = MC_g*S_g/denom; 
output(1,:) = [psi_n, psi_g]; 
 
% calculating molecular weight of 
phases 
MW_n = sum( MW.*x_n ); 
MW_g = sum( MW.*x_g ); 
output(2,:) = [MW_n, MW_g]; 
 
% compresibility factors 
output(3,:) = [Z_n_corr, 
Z_g_corr]; 
 
% calculating mass density for 
each phase (kg/m^3) 
rho_n = MC_n * MW_n/1000; 
rho_g = MC_g * MW_g/1000; 
output(4,:) = [rho_n, rho_g]; 
 
% mole percents 
output(5:N_row+4,:) = [x_n' 
x_g']*100; 
 
%% State change signaling 
 
% calculating total mole 
fractions 
x_t = psi_n.*x_n + psi_g.*x_g; 
 
% using auxiliary functions to 
calculate equilibrium ratios 
between 
% hypothetical aqueous phase and 
available gaseous phase 

K_q = AuxiliaryQ(p_g, T_C, x_g); 
 
% forming Q-functions 
Q1 = @(psi_n, psi_q)sum( 
x_t.*K_q.*(1-K_n)./( K_n.*K_q + 
... 
    psi_n*K_q.*(1-K_n) + 
psi_q*K_n.*(1-K_q) ) ); 
Q2 = @(psi_n, psi_q)sum( 
x_t.*K_n.*(1-K_q)./( K_n.*K_q + 
... 
    psi_n*K_q.*(1-K_n) + 
psi_q*K_n.*(1-K_q) ) ); 
 
current_state = 4; 
correct_state = 1; 
 
% single-phase test 
% checking for single gaseous 
phase 
if ( sum(x_t./K_n) < 1 ) && ( 
sum(x_t./K_q) < 1 ) 
    correct_state = 3; 
     
% two-phase tests 
% checking for gaseous phase and 
non-aqueous phase 
else 
    auxfunc = @(psi_n) Q1(psi_n, 
0); 
    psi_1 = fzero(auxfunc, 0.5); 
    if ( Q2(psi_1, 0) < 1e-5 ) && 
( sum(x_t./K_n) > 1 ) && ( 
sum(x_t.*K_n) > 1 ) 
        if ( psi_1 > 1e-5 ) 
            correct_state = 4; 
        else 
            correct_state = 3; 
        end 
                 
    % checking for gaseous phase 
and aqueous phase 
    else 
        auxfunc = @(psi_q) Q2(0, 
psi_q); 
        psi_2 = fzero(auxfunc, 
0.5); 
        if ( Q1(0, psi_2) < 1e-5 
) && ( sum(x_t./K_q) > 1 ) && ( 
sum(x_t.*K_q) > 1 ) 
            if ( psi_2 > 1e-5 ) 
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                correct_state = 
2; 
            else 
                correct_state = 
3; 
            end 
        end 
    end 
end 
            
if ( correct_state == 
current_state ) 
    fprintf('\nCurrent state is 
confirmed\n'); 
else 
    fprintf('\nCurrent state is 
not correct\n'); 
    fprintf('Switch to state 
%d\n', correct_state); 
end 
 
end 
 
********************************
*** 
 
function [ K_n ] = AuxiliaryN( 
pressure, T_C, x_g  ) 
%AuxiliaryN 
%   Equilibrate present gaseous 
phase with hypothetical non-
aqueous phase 
% Inputs: pressure: pressure in 
bar 
%         T_C: temperature in 
Centrigrade 
%         input: composition of 
present gaseous phase (mole 
fraction) 
% Outputs: equilibrium ratios 
between present gaseous phase 
with  
%          hypothetical non-aqueous 
phase 
 
format long; 
 
%% Inputs 
 
% pressure for non-aqueous and 
gaseous phases (bar) 

global p_n; global p_g; 
p_g = pressure; p_n = p_g;  
p_n = p_n*14.5037738; p_g = 
p_g*14.5037738; % converting bar 
to psi 
 
T = 1.8*T_C + 491.67; 
%temperature conversion to Rankin 
 
%% Setting physical properties & 
calculating dependent variables 
 
% critical pressures 
% component  CO2    H2O     N2      
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
Pc =        [73.76  220.55  33.94   
45.99   46.56  34.24  25.80  18.60   
9.61]; 
Pc = Pc*14.5037738; % conversion 
of Pc from bar to psi 
 
% critical temperatures 
% component  CO2     H2O    N2     
CH4    C2C3   C4C6   C7C9   C10C15  
C16+ 
Tc =         [304.2  647.1  126.2  
190.6  328.5  458.1  566.0  651     
824.1]; 
Tc = Tc*1.8; % conversoion of 
critical temperatures from Kelvin 
to Rankin 
 
% acentric factors 
% component  CO2    H2O     N2     
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
w =         [0.239  0.345   0.0403 
0.0115  0.118  0.234  0.370  0.595   
1.427]; 
 
% calculating reduced parameters 
Pr = p_n./Pc; 
Tr = T./Tc; 
 
% binary interaction coefficients 
for non-aueous and gaseous phases 
% component    CO2       H2O     N2      
CH4     C2C3     C4C6    C7C9    
C10C15   C16+ 
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sigma =       [0         .19     0       
.107    .128     .422    .1      
.015     .015 
               .19       0       
.478    .5      .49      .48     
.48     .48      .48 
               0         .478    0       
.031    .068     .335    .15     
.155     .155 
               .107      .5      
.031    0       .008     .066    
.043    .052     .066 
               .128      .49     
.068    .008    0        .03     
.029    .026     .037 
               .422      .48     
.335    .066    .03      0       .016    
.006     .01 
               .1        .48     
.15     .043    .029     .016    0       
0        0 
               .015      .48     
.155    .052    .026     .006    0       
0        0 
               .015      .48     
.155    .066    .037     .01     0       
0        0]; 
        
alpha = ( 1 + ( .37464 + 1.54226*w 
- .26992*w.^2 ).*( 1 - sqrt(Tr) ) 
).^2; 
% adjusment for big accentric 
factors bigger thatn 0.49 
alpha(w>.49) = ( 1 + ( .379642 + 
1.48503*w(w>.49) - 
.164423*w(w>.49).^2 + ... 
    .016666*w(w>.49).^3 ).*( 1 - 
sqrt(Tr(w>.49) ) ) ).^2; 
% adjustment for water component 
if ( Tr(2) < 0.7225 ) 
    alpha(2) = ( 1.0085677 + 
0.82154*( 1 - sqrt(Tr(2)) ) )^2; 
end 
 
R = 10.732159; % gas cosntants in 
Field units 
 
a = 0.457235529*R^2*Tc.^2./Pc; 
a_Ti = a.*alpha; 
b_i = 0.07796074*R*Tc./Pc; 
n = size(sigma,2); 

number = 0; 
 
%% Solving for secondary 
variables 
 
K_n = (1./Pr).*exp(5.37.*( 1 + w 
).*( 1 - 1./Tr )); 
precision = 1e-16; 
e = 1; 
 
while ( e > precision ) 
    number = number + 1; 
    x_n = x_g./K_n; 
    % normalizing non-aqueous 
phase 
    x_n = x_n/sum(x_n); 
    a_T_g = sum( sum( 
(x_g'*x_g).*sqrt(a_Ti'*a_Ti).*(1
-sigma) ) ); 
    b_g = sum(x_g.*b_i); 
    a_T_n = sum( sum( 
(x_n'*x_n).*sqrt(a_Ti'*a_Ti).*(1
-sigma) ) ); 
    b_n = sum(x_n.*b_i); 
    A_g = a_T_g*p_g/(R^2*T^2); 
    B_g = b_g*p_g/(R*T); 
    A_n = a_T_n*p_n/(R^2*T^2); 
    B_n = b_n*p_n/(R*T); 
    r = roots([1 B_g-1 (A_g - 
2*B_g - 3*B_g^2) (B_g^3 + B_g^2 - 
A_g*B_g)]); 
    u = roots([1 B_n-1 (A_n - 
2*B_n - 3*B_n^2) (B_n^3 + B_n^2 - 
A_n*B_n)]); 
    r1 = r(imag(r)==0); u1 = 
u(imag(u)==0); 
    u2 = u1(u1>B_n); 
    Z_g = max(r1); 
    Z_n = min(u2); 
    A_prime_g = 2*sum( 
(ones(n,1)*x_g).*sqrt(a_Ti'*a_Ti
).*(1-sigma), 2)'/a_T_g; 
    A_prime_n = 2*sum( 
(ones(n,1)*x_n).*sqrt(a_Ti'*a_Ti
).*(1-sigma), 2)'/a_T_n; 
    B_prime_g = b_i/b_g; 
    B_prime_n = b_i/b_n; 
    phi_g = exp( -log( Z_g - B_g 
) + ( Z_g - 1 )*B_prime_g - 
A_g/B_g/... 
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        2^1.5*( A_prime_g - 
B_prime_g )*log( ( Z_g + 
B_g*(sqrt(2)+1) )/... 
        ( Z_g - B_g*(sqrt(2)-1) ) 
) ); 
    phi_n = exp( -log( Z_n - B_n 
) + ( Z_n - 1 )*B_prime_n - 
A_n/B_n/... 
        2^1.5*( A_prime_n - 
B_prime_n )*log( ( Z_n + 
B_n*(sqrt(2)+1) )/... 
        ( Z_n - B_n*(sqrt(2)-1) ) 
) ); 
    K_n_new = 
(p_n/p_g)*phi_n./phi_g; 
    e = max( ( K_n_new - K_n ).^2 
./ ( K_n.*K_n_new ) ); 
    K_n = K_n_new; 
end 
 
end 
 
********************************
*** 
 
function [ K_q ] = AuxiliaryQ( 
pressure, T_C, x_g  ) 
%AuxiliaryQ 
%   Equilibrate present gaseous 
phase with hypothetical aqueous 
phase 
% Inputs: pressure: pressure in 
bar 
%         T_C: temperature in 
Centrigrade 
%         input: composition of 
present gaseous phase (mole 
fraction) 
% Outputs: equilibrium ratios 
between present gaseous phase 
with  
%          hypothetical aqueous 
phase 
 
format long; 
 
%% Inputs 
 
% pressure for non-aqueous and 
gaseous phases (bar) 
global p_q; global p_g; 

p_g = pressure; p_q = p_g;  
p_q = p_q*14.5037738; p_g = 
p_g*14.5037738; % converting bar 
to psi 
 
T = 1.8*T_C + 491.67; 
%temperature conversion to Rankin 
T_SI = T_C + 273.15; % temperature 
conversion to Kelvin 
 
%% Setting physical properties & 
calculating dependent variables 
 
% critical pressures 
% component  CO2    H2O     N2      
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
Pc =        [73.76  220.55  33.94   
45.99   46.56  34.24  25.80  18.60   
9.61]; 
Pc = Pc*14.5037738; % conversion 
of Pc from bar to psi 
 
% critical temperatures 
% component  CO2     H2O    N2     
CH4    C2C3   C4C6   C7C9   C10C15  
C16+ 
Tc =         [304.2  647.1  126.2  
190.6  328.5  458.1  566.0  651     
824.1]; 
Tc = Tc*1.8; % conversoion of 
critical temperatures from Kelvin 
to Rankin 
 
% acentric factors 
% component  CO2    H2O     N2     
CH4     C2C3   C4C6   C7C9   C10C15  
C16+ 
w =         [0.239  0.345   0.0403 
0.0115  0.118  0.234  0.370  0.595   
1.427]; 
 
% calculating reduced parameters 
Pr = p_q./Pc; 
Tr = T./Tc; 
 
% binary interaction coefficients 
for non-aueous and gaseous phases 
% component    CO2       H2O     N2      
CH4     C2C3     C4C6    C7C9    
C10C15   C16+ 
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sigma =       [0         .19     0       
.107    .128     .422    .1      
.015     .015 
               .19       0       
.478    .5      .49      .48     
.48     .48      .48 
               0         .478    0       
.031    .068     .335    .15     
.155     .155 
               .107      .5      
.031    0       .008     .066    
.043    .052     .066 
               .128      .49     
.068    .008    0        .03     
.029    .026     .037 
               .422      .48     
.335    .066    .03      0       .016    
.006     .01 
               .1        .48     
.15     .043    .029     .016    0       
0        0 
               .015      .48     
.155    .052    .026     .006    0       
0        0 
               .015      .48     
.155    .066    .037     .01     0       
0        0]; 
 
% binary interaction coefficients 
for aqueous phase 
tau = sigma; 
% slope and intercepts of linear 
regression 
slint = [0.273 -0.371 
    0       0 
    0.417 -1.631 
    1.66 -0.759 
    1.991 -0.576 
    3.124 -0.687 
    .00151  -.812]; 
% water-CO2 
tau(2,1) = slint(1,1)*Tr(1) + 
slint(1,2); 
% water-N2 
tau(2,3) = slint(3,1)*Tr(3) + 
slint(3,2); 
% water-methane 
tau(2,4) = 
slint(4,1)*Tr(4)*Pc(4)/Pc(2) + 
slint(4,2); 
% water-C2C3 

tau(2,5) = ( 
.5*slint(5,1)+.5*slint(6,1) 
)*Tr(5)*Pc(5)/Pc(2) + ... 
    ( 
.5*slint(5,2)+.5*slint(6,2) ); 
% water-C4C6 
tau(2,6) = slint(7,1)*T_SI + 
slint(7,2); 
% water-C7C9 
tau(2,7) = tau(6,1); 
% water-C10C15 
tau(2,8) = tau(6,1); 
% water-C16+ 
tau(2,9) = tau(6,1); 
 
tau(:,2) = tau(2,:);            
            
alpha = ( 1 + ( .37464 + 1.54226*w 
- .26992*w.^2 ).*( 1 - sqrt(Tr) ) 
).^2; 
% adjusment for big accentric 
factors bigger thatn 0.49 
alpha(w>.49) = ( 1 + ( .379642 + 
1.48503*w(w>.49) - 
.164423*w(w>.49).^2 + ... 
    .016666*w(w>.49).^3 ).*( 1 - 
sqrt(Tr(w>.49) ) ) ).^2; 
% adjustment for water component 
if ( Tr(2) < 0.7225 ) 
    alpha(2) = ( 1.0085677 + 
0.82154*( 1 - sqrt(Tr(2)) ) )^2; 
end 
 
R = 10.732159; % gas cosntants in 
Field units 
 
a = 0.457235529*R^2*Tc.^2./Pc; 
a_Ti = a.*alpha; 
b_i = 0.07796074*R*Tc./Pc; 
n = size(sigma,2); 
number = 0; 
 
%% Solving for secondary 
variables 
 
K_q = 10^6*(Pr./Tr); 
precision = 1e-16; 
e = 1; 
 
while ( e > precision ) 
    number = number + 1; 
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    x_q = x_g./K_q; 
    % normalizing non-aqueous 
phase 
    x_q = x_q/sum(x_q); 
    a_T_g = sum( sum( 
(x_g'*x_g).*sqrt(a_Ti'*a_Ti).*(1
-sigma) ) ); 
    b_g = sum(x_g.*b_i); 
    a_T_q = sum( sum( 
(x_q'*x_q).*sqrt(a_Ti'*a_Ti).*(1
-tau) ) ); 
    b_q = sum(x_q.*b_i); 
    A_g = a_T_g*p_g/(R^2*T^2); 
    B_g = b_g*p_g/(R*T); 
    A_q = a_T_q*p_q/(R^2*T^2); 
    B_q = b_q*p_q/(R*T); 
    r = roots([1 B_g-1 (A_g - 
2*B_g - 3*B_g^2) (B_g^3 + B_g^2 - 
A_g*B_g)]); 
    t = roots([1 B_q-1 (A_q - 
2*B_q - 3*B_q^2) (B_q^3 + B_q^2 - 
A_q*B_q)]); 
    r1 = r(imag(r)==0); t1 = 
t(imag(t)==0); 
    t2 = t1(t1>B_q); 
    Z_g = max(r1); 
    Z_q = min(t2); 
    A_prime_g = 2*sum( 
(ones(n,1)*x_g).*sqrt(a_Ti'*a_Ti
).*(1-sigma), 2)'/a_T_g; 
    A_prime_q = 2*sum( 
(ones(n,1)*x_q).*sqrt(a_Ti'*a_Ti
).*(1-tau), 2)'/a_T_q; 
    B_prime_g = b_i/b_g; 
    B_prime_q = b_i/b_q; 
    phi_g = exp( -log( Z_g - B_g 
) + ( Z_g - 1 )*B_prime_g - 
A_g/B_g/... 
        2^1.5*( A_prime_g - 
B_prime_g )*log( ( Z_g + 
B_g*(sqrt(2)+1) )/... 
        ( Z_g - B_g*(sqrt(2)-1) ) 
) ); 
    phi_q = exp( -log( Z_q - B_q 
) + ( Z_q - 1 )*B_prime_q - 
A_q/B_q/... 
        2^1.5*( A_prime_q - 
B_prime_q )*log( ( Z_q + 
B_q*(sqrt(2)+1) )/... 
        ( Z_q - B_q*(sqrt(2)-1) ) 
) ); 

    K_q_new = 
(p_q/p_g)*phi_q./phi_g; 
    e = max( ( K_q_new - K_q ).^2 
./ ( K_q.*K_q_new ) ); 
    K_q = K_q_new; 
end 
 
end 
 
********************************
*** 
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