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Abstract

Emotions are an essential part of human social interactions. By integrating an automatic
affect recognizer into an artificial system, the system can detect humans’ emotions and
provide personal responses. We aim to build a prompting system that uses a virtual hu-
man with emotional interaction capabilities to help persons with a cognitive disability
to complete daily activities independently. In this thesis, we work on automatic affect
recognition and compare three different types of feature descriptors with support vector
machine regression (SVR) and bidirectional long short-term memory (BLSTM) to pre-
dict users’ emotions in three-dimensional space. We demonstrate the feasibility of further
building artificial systems that track users’ real-time emotions through BayesACT simu-
lations, a probabilistic and decision-theoretic generalization of Affect Control Theory that
learns users’ fundamental sentiments during interactions. We would like to understand
given virtual humans with distinct emotion characteristics, how and to what extent the
user’s emotions are affected. In the end, we integrate the affect recognition module into an
iterated prisoner’s dilemma game, in which a user can play the game against a virtual hu-
man. We let a number of participants play the game and test if different facial expressions
change the virtual human’s strategies during the game.
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Chapter 1

Introduction

Emotion plays an important role in humans’ daily activities. Understanding human emo-
tion is a compelling capability for many types of artificial systems, especially for those that
rely on individuals’ emotional states. For example, assistive systems help individuals com-
plete simple tasks and they read emotions from persons to provide a more individualized
instruction; pain detection systems automatically recognize the pain intensity of patients;
tutoring systems provide individualized learning process; and game companions provide a
better entertainment experience for users by measuring their engagement.

These studies are in the affective computing field, a cross-discipline of computer science,
psychology, and cognitive science. In affective computing, researchers develop intelligent
interactive systems that can recognize, interpret, process, and simulate human affects [54].
To recognize emotions, three types of signals can be used: visual signals, audio signals, and
biosignals. Visual signals are the cues from users’ facial expressions, hand movements, and
body postures. Since facial expression is a main way for humans to express their emotions,
most studies use facial expressions as visual signals to recognize a person’s affective states.
Audio signals such as speech rate, pitch range, and vowel duration can also be used for
detecting user emotions . Biosignals refer to physiological data such as blood pressure, heart
rate, and skin conductance. These different signals provide a way for researchers to detect
and analyze user emotions, which is a main step of building automatic affect recognition.
Sometimes one of these signals is used (single-modal), and sometimes multiple ones are
combined (multimodal).

An automatic affect recognizer aims to detect, process, and analyze human emotions
in real-time. There are two streams of emotion recognition: categorical and dimensional
facial recognition. The categorical approach classifies human emotion to a limited number
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of labeled emotions. Dimensional recognition represents emotions in a multi-dimensional
space so more emotions and subtle changes can be detected. In previous studies, researchers
focused on basic emotion recognition (e.g. [53]). As the performance of recognizing basic
emotions improved and people gradually realized the limitation of categorical labels, more
researchers have started working on dimensional recognition, and a coding system to record
facial movements called action units [55].

To map facial expressions to multi-dimensional space, we need to extract facial features
and use different approaches to build models. Many feature representations exist including
low- and high-level features, and different machine learning techniques can be used to train
and build models. Since dimensional modeling is a supervised learning, obtaining enough
labeled data is crucial. However, rating data is a subjective and laborious task. Multiple
annotators can be involved to reduce bias, but combining their ratings to get a higher
agreement is still a challenge. Due to the difficulty of data labeling, many databases only
contain posed emotion expressions. However, more and more studies suggest that sponta-
neous facial expressions are different from posed behaviors [40] which moved researchers
focus to natural and spontaneous behavior detection. Some other studies also work on cod-
ing in action units called Facial Action Coding System (FACS), to capture the complexity
of facial expressions objectively.

In dimensional affect recognition, there are two-dimensional and three dimensional ap-
proaches. Valence-Arousal is a good example for two-dimensional space. Affect Control
Theory (ACT) [46] is a well-known sociological theory which represents behaviors and
identities in a three-dimensional space: Evaluation (positive/negative), Potency (power-
ful/powerless), Activity (active/calm). ACT proposes that people have fundamental sen-
timents about their identities and they will try to minimize the deflection of transient
impressions from fundamental sentiments during interactions. However, the identity is not
easy to obtain and sometimes the identities can be changed for people with illnesses [42].
BayesACT is a model [29] based on ACT to solve this problem using a Partially Observe
Markov Decision Process (POMDP). It learns interactants’ identity and emotions during
the interactions between an agent (e.g. a computer) and a client (e.g. a human). The
concept is demonstrated by integrating the model into a hand-washing system [33]. In the
hand-washing system, BayesACT generates prompts to assist persons with Alzheimer’s to
complete the hand-washing task. The system computes Power and Activity values based
on the expansiveness of the user’s hands and the velocity of the user’s hand movements,
and Evaluation value is set to neutral [33]. For example, if the user moves their hands
faster, they will get a high Activity value. When the user expands their hands widely, the
Power value will be large. The limitation of the current system is that the EPA measure-
ment of the user’s emotions is not accurate enough. A more accurate computation can be
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used by obtaining the user’s facial expressions and recognizing their current affect states.
Then the system will provide more personalized prompts based on patients’ performance
to assist them to complete tasks independently.

The goal of this thesis is to create a basic automatic affect recognizer that can be
integrated into various prompting systems so that a virtual assistant can provide more
accurate and individualized responses. This thesis will:

1. Compare three different types of feature representations and modeling approaches
for dimensional affect recognition.

2. Create an automatic affect recognizer that continuously predicts user emotions in the
Evaluation-Power-Activity (EPA) space. (Chapter 3)

3. Demonstrate the feasibility of using BayesACT to simulate interactions between a
user and an avatar. (Chapter 4)

4. Integrate the recognizer into a prompting system, in which a user can play the iterated
prisoner’s dilemma game with a virtual human. (Chapter 5)

The primary contribution of this thesis is in a demonstration of emotion recognition
from the face in EPA space (Chapter 3). The secondary contributions are showing that it
can be integrated into BayesACT (Chapter 4), and then into the prisoner’s dilemma game
(Chapter 5).

The thesis is structured as follows. Chapter 2 reviews related work regarding affect
recognition in the aspects of feature representations, feature extraction and selection, mod-
eling approaches, databases, and applications. It also includes basic concepts of ACT and
BayesACT. Chapter 3 introduces the work we do on automatic affect recognition. We com-
pare three different types of feature descriptors with support vector machine (SVM) [11]
and bidirectional long-short term memory (BLSTM) [23] to predict affect states in EPA
space. More information about these machine learning approaches, feature descriptors, and
the Semaine database [38] are introduced in this chapter. Chapter 4 of this thesis demon-
strates the feasibility of simulating conversations between a user and an avatar based on
BayesACT and determines how and to what extent the user’s emotions are affected. In
Chapter 5, we integrate our automatic affect recognizer into an iterated prisoner’s dilemma
game, in which the user can play the game with a virtual human. Discussion and future
work are in Chapter 6.
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Chapter 2

Related Work

Automatic analysis of human affect has attracted an increasing body of research. This
chapter reviews the related work regarding the process of affect recognition in the aspects of
feature representations, feature extraction and selection, modeling approaches, databases,
and applications. It also provides a brief background about Affect Control Theory and
BayesACT used in Chapter 4 and Chapter 5.

2.1 Affective Computing

Affective computing is an inter-disciplinary study for developing intelligent interactive
systems that can recognize, interpret, process, and simulate human affects or emotions [54]
Emotion is basic and central to human interactions, but most artificial systems are not
capable of leveraging this power to better understand human intentions. One of the goals
of affective computing is to integrate emotion detection into artificial systems to empower
them with the ability of providing more accurate and personalized interaction experience.

Emotional states can be represented using either categorical labels or dimensional mod-
els. Categorical labels are a set of discrete human emotions. For example, Ekman [16]
used six basic categories to represent human emotions: happiness, sadness, anger, sur-
prise, disgust, and fear. Categorical labels are commonly used for emotion classification,
but understandably this approach can only describe a limited number of emotions. In
contrast, dimensional models use a multidimensional vector to represent an emotion so
that it can capture more subtle and complex changes.
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Researchers have proposed many dimensional models to represent emotions. Rus-
sell [47] first proposed a two-dimensional model, valence and arousal, in which an emotion
is described as the extents along two dimensions: pleasant/unpleasant and arousal/sleep.
Mehrabian [39], based on the work of Osgood [43], further extended emotions to three
dimensions: Pleasure, Arousal, and Dominance (PAD), which is well-accepted in psycho-
logical studies. Fontaine et al. [20] also found that two-dimensional space is not sufficient
for capturing emotions after they analyzed statistical relations of 144 features like facial
expressions with emotion. Affect Control Theory (ACT) [46] uses a three-dimensional vec-
tor to represent Evaluation, Power, and Activity. We review more details about ACT in
section 2.3.

There have been several competitions gathering researchers to solve open issues on
affect recognition. The Audio/Visual Emotion Challenges (AVEC) [51][52][58][57][56] fo-
cus on comparing multimedia processing and machine learning approaches for automatic
depression detection and dimensional affect analysis. The Facial Expression Recognition
(FERA) [60][59][62] evaluates the detection of action unit occurrence and intensity to solve
the issue of subject-independent emotion recognition.

2.2 Affect Recognition

An individual’s emotional states can be presented in the forms of visual signals, audio
signals, and biosignals during human interaction. Visual signals often refer to as facial
expressions, but body and hand movements can also be cues for visual signals. Audio
signals include speech rate, pitch range, and vowel duration. Biosignals are physiological
data such as blood pressure, heart rate, and skin conductance. This thesis focuses mainly
on using facial expressions (visual signals) for affect recognition.

2.2.1 Feature Representations

We analyze a person’s affect by extracting facial features from videos. A feature repre-
sentation is encoded information generated from raw data that can be directly used in
machine learning tasks. A video can be seen as a frame-by-frame image sequence, and
these images are encoded to low or high-level information as feature representations.
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Appearance and Shape Representations

Depending on the spatial nature of a feature representation, it can be categorized into either
appearance or shape representations. Appearance representations analyzes pixel intensities
using textural information; shape representations describe shapes explicitly [49].

With respect to appearance representations, features can be either low- or high-level:

• Low-level features include histograms, edges, and bag of words (features). Histograms
such as Local Binary Patterns (LBP) [1] extract local features, represent them in
a transformed image, and pool local features of each block with local histograms.
Edges are commonly detected by applying a linear Gabor filter on an image with
different scales and orientations. Bag of words is originally applied in natural lan-
guage processing which uses a sparse vector counting the occurrence of words in a
text. In computer vision, we count the number of low-level features as “words”.
Scale-invariant feature transform (SIFT) [34] is a good example of bag of words that
uses a 128-dimensional vector to collect features.

• High-level features refer to those that are more interpretable compared to low-level
ones. Sparse representation is an example of high-level features, originally used for
face recognition. It represents a new signal as a sparse linear combination of the
training signals themselves. More recent studies used the same feature in classifying
basic emotions and action units [12][37].

Shape representations are less common compared to appearance ones. Researchers use
a 2D coordinate to represent landmarks on the face. They can also calculate the distance
or the angle between two facial points. The advantage of using shape representations is
that the dimensionality is relatively low compared to low-level features and it is crucial for
action unit detection.

Convolutional Neural Network

Low-level features are robust against lighting conditions and high-level features can handle
identity bias issues [49]. Deep learning such as convolutional neural network (CNN) uses
hierarchical representations combining the advantages of low- and high-level features and
it uses multiple layers to provide information from low level to high level. CNN chooses a
filter as a sliding window to learn the features during training. The first layer of CNN is
to detect low-level features such as edges from raw pixels as input and continue learning
high-level features such as shape. The pooling layer such as max pooling, is a key aspect
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of CNN that applies after getting convolution layers to subsample the previous output. In
addition, CNN also has a classifier to do classification after feature extraction.

Dimensionality Reduction

When extracting features, sometimes we obtain a vector with thousands of dimensions,
which may exceed the memory capacity in affect recognition. To solve the memory issue,
a preprocessing approach is to downsample input images. Moreover, dimensionality reduc-
tion can rapidly reduce the number of variables, but still keep the important features. In
addition to the pooling method that we have mentioned in CNN, there are two main ways
to reduce dimensions: feature selection and feature extraction:

• Feature selection aims to select a subset of features and it is a straightforward way
to reduce high dimensional data. It also reduces identity bias since more general
vectors are selected during the process. Boosting such as AdaBoost [21] is a widely
used technique in feature selection. It is originally designed for prediction on both
classification and regression problems, but many researchers use it as a selection
technique. Boosting is like a patient consulting multiple doctors and each doctor has
a weight based on their reputation. The final decision is determined by the votes
from each feature and the weight is based on the feature’s effect.

• Feature extraction generates new features to represent the original features. This
transformation maps the input variables onto a lower dimensional space to reduce
dimension, but retain most of the variation in the dataset. The most popular ap-
proach is Principal Component Analysis [64], in which the generated variables are
the linear combinations of the original variables.

2.2.2 Datasets

The labeled dataset is a crucial part for affect recognition. Recorded clips mainly have
two types: posed and natural. Due to the difficulty of data labeling, most of the studies
just ask participants to perform basic emotion expressions so that they do not need to
manually classify labels. However, more and more studies suggest that the spontaneous
facial expressions are different from posed behaviors [40]. For example, it has been shown
that temporal and spontaneous smiles have different time duration [10] and brow actions
have different action unit intensity and occurrence order [61]. Moreover, since most of the
emotion expressions that occur in daily life are not only basic emotions, only classifying
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basic emotions is not enough and the datasets about spontaneous or affective behavior are
needed.

Having enough labeled data gives a greater accuracy on affect prediction. However,
labeling or annotating data is a laborious and subjective task. Data labeling on basic
emotions is easy, but it becomes a challenge when we move to dimensional models. By
hiring multiple annotators and combining their annotations can reduce annotating errors,
but combining them properly to obtain a high agreement is still a difficult task. The
common way is to calculate an average value from all the raters. People can also calculate
the correlation coefficient among annotators and give each annotator a weight based on
their performance. For dimensional annotation, Feel-trace [13] is a widely used tool which
allows annotators to move their cursor to rate on two-dimensional space while watching
the recordings.

There are many datasets available from different aspects for research uses, and we will
only mention a few datasets here. The Cohn-Kanade [36] and the MMI [45] databases are
the most widely used databases for facial expression recognition. Both of them contain six
basic emotions and action unit annotations. The MMI also has posed and spontaneous
facial expressions. The GEMEP [6] collects ten actors portraying 18 emotional states and
its subset was used in the FERA challenge. The BU-3DFE database [67] is a 3D facial
expression database, which includes 100 subjects with 2500 3D facial expression models.

2.2.3 Visual-based Recognition

Researchers have different opinions about the importance of visual, audio, and physiologi-
cal signals, but some studies [2] showed facial expressions play the most crucial part in the
visual channel and correlate well with the body and voice [68]. Because of the importance of
facial expressions in emotion, most researchers use them as the data to work on automatic
affect recognition. Current research has two main streams on facial affect recognition:
dimensional affect recognition and action unit detection. In previous studies, researchers
focused on classifying basic emotions. As the accuracy on classification was high enough
and people realized using categorical labels was limited, attention shifted to dimensional
affect recognition. For the dimensional models, most of the studies train those dimensions
independently. However, since there are correlations between each dimension such as va-
lence and arousal [24], people also considered the relation between dimensions and used
different machine analysis like Continuous Conditional Random Fields (CCRF) [4] to train
models [49].

Since labeling data is subjective and laborious, action unit uses objective coding stan-
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dards to capture the complexity of facial expressions. These high-level features are more
interpretable and reliable too. However, trained experts are needed to label images. There-
fore, researchers want to use computers to automatically label action units, and they have
had some success in detecting both action unit occurrence and intensity. More information
about action units will be provided in Chapter 3.

Even though the accuracy of basic emotion classification is high, spontaneous behaviors
are also hard to measure with existing techniques. Since an increasing number of datasets
contain natural and spontaneous behaviors instead of posed facial expressions, researchers
are trying to analyze spontaneous behaviors using different machine learning approaches.

Machine Learning Approaches

Selecting a proper machine learning approach is crucial for automatic affect recognition.
Support Vector Machine (SVM) [11] is a widely used technique for classification and Sup-
port Vector Regression (SVR) is for regression problems. Structured SVM is a variant of
SVM that is used for interdependent and structured output space. The hidden Markov
Model (HMM) is a good example of modeling the temporal variation of facial expressions
with SVM or Boosting to improve prediction.

Researchers have also applied CNN for feature extraction and classification. Since
the recurrent Neural Network (RNN) can handle sequential information, it is a good fit for
video processing. With the special structure of RNN, long-short term memory (LSTM) [28]
is widely used in natural language processing and computer vision. It is also be compared
with SVM on both classification and regression [41]. Since we also use LSTM in our work,
we will provide more detailed discussions about RNN and LSTN in Chapter 3.

2.2.4 Single Modal and Multimodal

Most studies treat different signals separately, but an increasing number of studies such
as [5] suggested that grouping visual, audio, and biosignals together can reduce prediction
errors. The recent AVEC competition [56] also provides both visual and audio data and
encourages participants to use multiple modalities to build affect recognizers.

However, how to combine different channels is a problem. There are two common
ways to combine different data: feature-level and decision level. Feature-level combines
different features together and then puts them into a training set. However, different
modalities provide different formats of data. Grouping them together may also influence
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the performance since the dimension of features also increases. In the decision-level, every
modality is treated independently, and the results are combined in the end. Since different
modalities actually are correlated to each other but have different influence, a correlation
needs to be added. Even though many modalities show a better result than a single-modal,
how and when to combine different modalities gives a direction of future work.

2.2.5 Current Problems and Challenges

Although many researchers show that they have already achieved a high accuracy on affect
recognition, there are still many problems and challenges. There is a trend from studying
posed expressions to spontaneous behaviors and from using single-modal to multimodal.
However, a few conditions can still have a negative effect on affect recognition, such as
light conditions, head-pose variations, and annotation errors.

The current studies always assume the labeled data is correct. However, for dimensional
affect recognition, labeling data is subjective depending on the annotator’s opinion on the
emotion. Averaging the values among multiple annotators can reduce bias, but finding a
more proper way to combine those annotations is still a challenge. For visual signals, a main
issue is person-independent prediction – the training works well on the same participants
in the training set, but sometimes the model does not fit on a new person. At the same
time, the trained model is also sensitive to light conditions and head-pose variations.

2.3 Affect Control Theory

A sociology theory called Affect Control Theory (ACT) uses a three-dimensional vector to
describe emotions. The basis vectors of the affective space are called Evaluation (pleas-
ant/unpleasant), Potency (powerful/powerless), and Activity (exciting/calm) (EPA).

ACT represents social behaviors with an Actor-Behavior-Object model in which an
actor behaves towards an object. Each of these elements has an EPA score, ranged from
−4.3 to 4.3. EPA profiles can be measured with a survey where annotators rate identities
and behaviors on numerical scales [44]. People with similar cultures reach a high agreement
about EPA values of identities and behaviors, and averaged EPA ratings are extremely
stable over time even with a few dozen participants [27]. For example, the EPA value of a
student is [1.49, 0.31, 0.75] describes students as good, not really powerful, and a bit active.
A teacher is seen as [2.45, 1.75, 0.29], which is considered a bit better, powerful, and less
active compared with a student.
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ACT proposes that the interactions are always adhered to by a psychological need of
minimizing the deflection between the fundamental sentiment and the transient impression.
Fundamental sentiments are representations of social objects, such as interactants identities
and behaviors or environmental settings in EPA space. Transient impression, which is also
a three-dimensional vector in EPA space, results from the interaction in a social event which
may cause deviation in the identity or behavior of the interactants from their corresponding
fundamental sentiment. The Euclidean distance between the fundamental sentiment and
the transient impression is the deflection. A small deflection will let the interactions run
smoothly. For example, when a mother plays with a child, the behavior is described as
[3.4, 1.8, 0.9]. Since a mother has an EPA value of [2.9, 1.5, 0.6], the small deflection makes
both of them comfortable. However, if a mother beats a child, in which the action has
[−1.0, 3.5, 2.2], the behavior has a large deflection from the EPA of a mother, and the large
deflection is humans seek to avoid based on the ACT principle.

2.4 BayesACT

BayesACT [29] is a probabilistic and decision-theoretic generalization of ACT. It keeps
multiple hypotheses about both identities and behaviors as a probability distribution, and
uses an explicit utility function to make value-directed action choices. This allows the new
model to generate affectively intelligent interactions with people by learning about their
identity, predicting their behaviors according to the ACT principle, and taking actions
that are simultaneously goal-directed and affect-sensitive. Moreover, BayesACT allows
ACT to model more complex affective sentiments, including ones that are multimodal. It
has been used in the COACH system [30], a POMDP-based agent that can assist persons
with dementia by monitoring the person and providing audio-visual cues when the person
needs help. The concept is demonstrated by integrating the model into a hand-washing
system [33]. This combination creates an updated COACH system that can choose an
appropriate action with an EPA output that minimizes the deflection based on the ACT
principle.

2.5 Applications

Integrating affect recognizers into artificial systems are demonstrated to offer more enriched
interaction experience in various applications:
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• In clinical studies, the intensity of pain is reported by a patient or an observer, but
is often biased by its subjectivity. It is also limited due to the effort needed so that
the pain could not be monitored continuously over time. Lucey et al. [35] used facial
action units to automatically detect pain in videos.

• Emotions are also highly relevant to driving. For example, Healey and Picard [25]
used physiological signals to detect stress levels during driving tasks; Eyben et al. [18]
used LSTM to build an online driver distraction detector.

• Emotions can also be used for providing better gaming experience. Sanghvi et al. [48]
proposed iCat robot that acts as a game companion to play chess with children,
detecting postures and movements to analyze their engagement. Savva and Bianchi-
Berthouze [50] built a system to recognize emotional states from body movements
while participants playing a tennis video game.

• Tutoring systems can offer an appropriate strategies based on learners’ facial expres-
sions. For example, AutoTutor [15] is an intelligent tutoring system that can process
users’ emotional states and select tutor actions that maximize learning effect.

12



Chapter 3

Dimensional Affect Recognition

To enable emotional interaction between users and prompting systems, we first need to
predict users’ emotions in real-time. We use Evaluation, Potency, and Activity (EPA) to
quantify users’ emotions. In this chapter, we train EPA models using two machine learning
approaches: the support vector machine and the recurrent neural network to predict users’
emotions from their facial expressions. Three feature descriptors are extracted frame by
frame from videos of the Semaine database. We then compare the performance of these
feature descriptors.

3.1 Semaine Database

The Semaine database [38] is used in our studies as the source of data. This database
provides extensive annotated audio and visual recordings of a person interacting with an
emotionally limited agent, or sensitive artificial listener (SAL), to study natural social
behavior in human interaction. The Semaine database provides three SAL scenarios:

• Solid SALs are human operators playing the roles of the characters directly

• Semi-automatic SALs are systems, controlled by an unseen human operator, inter-
acting with a user

• Automatic SALs are systems selecting sentences and words automatically
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We extract all the annotated videos from the database, each of which is a conversation
between a user and an agent. The agent is asked to act in one of the four solid SAL
avatars in each video: Poppy is happy and tries to make the user happy; Spike acts
angry; Obadiah is sad and depressed; and Prudence is sensible and even-tempered. The
video recordings are transcribed and annotated frame by frame by 6 to 8 raters into five
affective dimensions: Valence, Power, Activation, Anticipation, and Intensity. The first
three dimensions constitute our EPA space in the studies. Since only a few videos of the
agent are annotated and the agent is acting in different characters, we only use user’s clips
instead, which gives us 93 clips with 20 persons involved. The video is recorded at 49.979
frames per second and all of emotions are annotated from -1 to 1.

The specific information of the collected clips is shown in Table 3.1. The data has a
60% female and a 40% male population in total, interacting with the agent (avatar). Each
video clip records the conversation between one participant and one agent enacting one
type of avatar. Most of the participants talk to one agent enacting four different avatars.
Therefore, there are four video clips for each participant, except for two participants (ID: 7,
16) talking to multiple agents. The data for participant 4, 9, 16, and 19 are not complete.
In Table 3.1, we report the 20 participants’ ID, gender, number of clips they interact with
avatars, and type of avatars they talk to.

3.2 Feature Descriptors

We first experiment with three commonly used visual feature descriptors extracted from
raw face images and compare their accuracy in predicting a person’s Evaluation, Potency,
and Activity (EPA) scores. These descriptors are the Action Unit [55], the Histogram
of Oriented Gradient [14], and Felzenszwalb’s HOG [19]. We select these descriptors be-
cause they are commonly used in computer vision and they characterize human faces from
different aspects.

3.2.1 Action Unit

The Action Unit (AU) is a high-level feature descriptor that detects facial movements.
The corresponding coding system, called the Facial Action Coding System (FACS), was
developed by Ekmen and Friesen [17] to encode movements of facial muscles. FACS defines
44 AUs, 30 AUs of which are related to specific facial muscles. FACS is a standard way
to describe facial expressions, since it is possible to code nearly any facial expression by
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Table 3.1: Participants’ information and the number of clips extracted from the dataset

Participant ID Gender # Clips Happy Angry Sensible Sad Video ID

2 M 4 1 1 1 1 46-49
3 M 8 2 2 2 2 19-22, 40-43
4 M 3 1 1 1 0 25-27
5 F 4 1 1 1 1 13-16
7 F 8 2 2 2 2 34-37, 76-79
8 F 4 1 1 1 1 52-55
9 F 2 1 0 1 0 58,60
10 M 4 1 1 1 1 70-73
11 M 4 1 1 1 1 64-67
12 F 4 1 1 1 1 82-85
13 M 4 1 1 1 1 88-91
14 F 4 1 1 1 1 94-97
15 F 4 1 1 1 1 100-103
16 F 11 3 2 3 3 2-5, 8-11, 29-31
17 M 4 1 1 1 1 106-109
18 F 4 1 1 1 1 112-115
19 M 5 2 1 1 1 118-122
20 F 4 1 1 1 1 125-128
21 F 4 1 1 1 1 131-134
22 F 4 1 1 1 1 137-140
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deconstructing a facial appearance into multiple AUs. Moreover, AUs can be annotated
by occurrence and intensity. Occurrence is a binary number to show if an AU is visible in
the face and intensity gives a real number to describe how intense an AU appears. Since
AUs can appear either singly or in combination, they can be used to classify emotions.
For example, the Emotional Facial Action Coding System (EFACS) [22] considers only
emotion-related facial expressions. If both AU 6 (cheek raiser) and AU 12 (lip corner
puller) appear on a user’s face, we can predict the user is happy.

AU1

Inner Brow Raiser

AU2

Outer Brow Raiser

AU4

Brow Lowerer

AU5

Upper Lid Raiser

AU6

Cheek Raiser

AU7

Lid Tightener

AU9

Nose Wrinkler

AU10

Upper Lip Raiser

AU12

Lip Corner Puller

AU14

Dimpler

AU15

Lip Corner Depressor

AU17

Chin Raiser

AU20

Lip Stretcher

AU23

Lip Tightener

AU25

Lips Part

AU26

Jaw Drop

AU45

Blink

Figure 3.1: 17 Action Units used in OpenFace

In our studies, we leverage OpenFace [3], an open-source framework, to localize face
positions and extract AUs from aligned facial images. OpenFace is able to recognize 17
AUs and the description of each AU is shown in Figure 3.1. We use the intensity of AUs
to obtain more facial information and the range is from 0 to 5.
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3.2.2 Histogram of Oriented Gradient

Aligned Image HOG FeaturesCompute gradient in 
each cell

Accumulate weighted 
values for gradient 

orientation

Normalize each cell’s 
histogram within a 

block

Figure 3.2: An overview of the HOG process

The Histogram of Oriented Gradient (HOG) is a typical low-level feature descriptor
proposed by Dalal and Triggs [14] for human detection in 2005. HOG splits an image
into a number of non-overlapping cells. For each cell, it computes histograms of gradients
and discretizes them into nine orientation bins. After accumulating weighted values, HOG
normalizes each cell’s histogram with the total energy of the four 2×2 blocks containing this
cell. Then a 36-dimensional feature vector is generated from this image. Those parameters
including cell size, number of orientation bins, and block size, can be chosen empirically.
This feature descriptor is commonly used for localizing face positions paired with an SVM
classifier. Figure 3.2 shows an overview of the HOG process.

We use HOG descriptor from the OpenCV library [31] to extract HOG features from
aligned facial images. Initially, we use default parameters with cell size 8×8 and block
size 16×16, but soon we find the high dimensional descriptor is a problem when we reduce
dimensions and train models later. Therefore, we change the cell size to 16×16 and the
block size to 64×64 to obtain 5184 dimensions to balance the number of dimensions and
the amount of information from input images.

3.2.3 Felzenszwalb’s HOG

Felzenszwalb’s HOG (FHOG) is a variant of HOG proposed by Felzenszwalb et al [19]. It
has been shown to achieve superior performance to the original HOG features. Compared
to HOG, FHOG reduces the HOG feature space using principal component analysis. This
makes it possible to use fewer parameters in its models to speed up detections and learning
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processes. Overall, they derived a 13-dimensional alternative feature to replace the original
36-dimensional feature used with the same parameters shown above, but achieved the same
performance as the original result. In our work, we use the dlib library [32] to extract FHOG
features and the dimension of the feature descriptor is less than one thousand, using the
same cell size. Thus, we decrease the cell size to 8×8 for more information, which gives us
a 4464 dimensional descriptor instead.

3.3 Machine Learning Approaches

After extracting features from videos, we apply the machine learning models using two
different approaches to predict EPA values: the Support Vector Machine (SVM) and the
Recurrent Neural Network (RNN). Those approaches are selected because they are com-
monly employed in work reporting on continuous affect prediction. The results of compar-
ing different types of features will be more convincing by implementing different training
approaches.

3.3.1 Support Vector Machine

The Support Vector Machine (SVM) [11] is a common machine learning approach for
classification and regression analysis in emotion prediction. SVM uses labeled training
data to generate an optimal hyperplane that gives the minimum distance to datasets.
Since dimensional affect prediction is a regression problem, we use SVM-Regression (SVR)
in our work.

Linear Polynomial RBF

Figure 3.3: Kernel types: linear, polynomial and RBF

There are four parameters in SVR: kernel type, C, epsilon, and gamma:
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• The kernel type can be linear, polynomial, or radial basis function (RBF), which
represent different ways of interpreting the relations in datasets. A kernel is a function
that computes the similarity between two inputs and provides the result to a machine
learning algorithm. Figure 3.3 shows these three kernel types. A linear kernel type is
a linear function used to find a linear separation of the data. Since most of the data
are more complex and not linearly separable, a more complicated model is needed
here. RBF achieves a better result than other kernel types and it is widely used in
SVM.

• The parameter C trades off misclassification of training data against the simplicity
of the model surface. A large C aims to find more support vectors to predict every
input correctly, but the model surface will be complex and the variance will be high
as well.

• The gamma means how far the influence of a training data reaches. The model is
sensitive to the gamma. If the gamma is small, the model will be constrained and
cannot describe the model’s shape correctly.

• The epsilon in the error function specifies a bound to ignore errors in this range.
There is no penalty in the training loss function if the predicted value is within
a distance from the actual value. Otherwise, anything beyond the bound will be
penalized. If the epsilon is large, more errors will be ignored and the model will be
less accurate. However, a small epsilon will end up with a large number of support
vectors.

3.3.2 Recurrent Neural Network

In addition to SVR, we also use the recurrent neural network (RNN) to compare different
types of features. To define a neural network, Maureen Caudill in his work Neural Networks
Primer [7] gives a definition of a neural network as “a computing system made up of a
number of simple, highly interconnected processing elements, which process information
by their dynamic state response to external inputs”. A neural network is organized in
layers, and typically it has an input layer, a number of hidden layers, and an output layer.
Layers are grouped by a number of interconnected nodes and nodes contain activation
functions. A typical neural network is shown in Figure 3.4, which xi is the input value,
ol is the output, yj and zk are the hidden variables, and w shows the weight for each
connection.
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Figure 3.4: A typical neural network. The variable xi is the input value, ol is the output,
yj and zk are the hidden variables, and w shows the weight for each connection.

Compared to the traditional neural network where all inputs are independent of each
other, RNN addresses this issue that it predicts every next value based on the previous
information. In fact, RNN uses loops to capture information into its memory and passes
previous knowledge to predict the next value. In Figure 3.5, x is the input, o is the
output at each step, s denotes the hidden state, and w shows the weight. Figure 3.5a
shows the traditional RNN and it can be unrolled into a chain as shown in Figure 3.5b.
Based on its special structure, RNN has been applied to many areas: image captioning,
speech recognition, translation, image processing, etc. However, RNN is not capable of
learning long-term dependencies. Sometimes only recent information is needed to perform
the prediction. As the length of sequence grows, it will be more difficult for RNN to
learn to connect the information. To solve this problem, Hochreiter and Schmidhuber [28]
introduced LSTM which is a special kind of RNN, and now it is widely used in a variety
of problems.

Figure 3.6 shows the structure and function of LSTM. The variable xt denotes the input
vector at t time stamp and ht is the output of current block. LSTM uses a cell state ct to
denote the memory from current block and makes three gates: input, forget, and output
to control the cell state. There are two operations: ‘+’ denotes the concatenation and ‘∗’
is the element-wise multiplication.

The first step of LSTM is to decide which previous information needs to be erased by
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Figure 3.5: (a) is a traditional RNN. (b) is this RNN unrolled into a chain.

the forget gate. A gate is a filter to add or remove information to the cell state. It is a
sigmoid layer and the output is between zero and one. If the output value is zero, it means
no information passes, while a value of one means the gate keeps all the information. The
formula to update forget gate f at t time stamp is shown below, which Wxf

, Whf
, and Wcf

are the weights for input x, output h, and cell state c. The sigmoid function is represented
as σ.

ft = σ(Wxf
xt +Whf

ht−1 +Wcf ct−1 + bi) (3.1)

The second step is to choose which new information is added to the cell. LSTM combines
two values together to update the cell state. One value uses the input gate layer to decide
how much scale we need to update the state, and the other creates a tanh layer to generate
a new candidate value to be added to the cell state. The cell state is put through a tanh
layer so that only a final value between -1 to 1 will be generated.

it = σ(Wxi
xt +Whi

ht−1 +Wcict−1 + bi) (3.2)

ctemp = tanh(Wxcxt +Whcht−1 + bc) (3.3)

To calculate a new cell state, we multiply the previous state by the forget gate to remove
the memory that we decide to forget, and then add the candidate value, scaled by how
much we choose to update.

ct = ft ∗ ct−1 + it ∗ ctemp (3.4)

Simultaneously, the output gate layer chooses which part of cell state to output using a
sigmoid gate. Then we run a tanh layer on the cell state to push the range to be [-1, 1],
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Figure 3.6: A simple LSTM block

and multiply it by the output of the sigmoid layer.

ot = tanh(Wxoxt +Whoht−1 + bo) (3.5)

ht = ot ∗ tanh(ct) (3.6)

Bidirectional long short-term memory (BLSTM) is a special structure of LSTM in
which two hidden layers of two opposite directions are connected to the same output. As
a result, the output layer in BLSTM obtains both past and future information.

There are many parameters in BLSTM, and the main parameters are:

• The number of hidden units represents the learning capacity of a neural network. If
the number of hidden units is small, it will not capture a complex model well, and it
will lead to a high error rate. However, a large number of hidden units takes longer
to train and it also runs the risk of over-fitting.
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• The learning rate is the step size used to find the optimized value. If the learning
rate is large, the cost function converges quickly, but it will probably miss the best
model and never reach the minimum because of the large step size. When a small
learning rate is applied, the function takes a longer time to converge and it needs
more iterations to reach the minimum.

• The optimizer is an optimization algorithm used in BLSTM to optimize the loss
function. Many optimizers can be used in LSTM such as Stochastic Gradient Descent,
Adagrad, RMSProp, Adadelta, and Adam, and each of them has a different way to
treat the learning rate.

• The dropout rate is a technique in which a neural network randomly chooses some
neurons to ignore. Therefore, the information stored in the selected neurons are
removed and will not contribute any value during the training. The effect of the
dropout is that a trained model will be less sensitive to specific neurons, and it will
generalize better to avoid over-fitting.

• The batch size and the epoch size are also important during the training. The
sequences of training data are grouped into several batches and each batch is trained
at one time. The epoch is the number of iterations in the training process. A large
epoch is needed if the function takes longer to converge and reach the minimum, but
if the iteration is significantly large, it may miss the minimum point and the result
will worsen.

3.4 Training Process

For each feature descriptor, we employ the same workflow illustrated in Figure 3.7 for
training and testing models. At first, we randomly split 93 video clips into a training set
and a test set. The training set has 75 clips and the test set has 18 clips. The number of
clips for each participant in the training set and in the test set is listed in Table 3.2. For
each image in a video, we localize and align the face in the image, then extract the feature
using one of the three descriptors. Feature descriptors such as HOG and FHOG can have
thousands of variables in their feature space, therefore we reduce their feature dimensions
with dimension reduction. After dimension reduction, we apply the data in the training
set for tuning and in the test set for evaluating the model using SVR and BLSTM.

We initially employ all 93 annotated videos from the Semaine database for model
training and this translates to well over one million images. However, we soon find this
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Table 3.2: Number of clips in training set and test set for each participant

Participant ID
Number of
clips in the
training set

Number of
clips in the
test set

Total

2 4 0 4
3 6 2 8
4 3 0 3
5 3 1 4
7 5 3 8
8 4 0 4
9 2 0 2
10 2 2 4
11 4 0 4
12 3 1 4
13 4 0 4
14 4 0 4
15 4 0 4
16 9 2 11
17 3 1 4
18 3 1 4
19 3 1 4
20 2 2 4
21 3 1 4
22 3 1 4
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Figure 3.7: An overview of the training and continuous prediction process

large amount of data exceeds the memory capacity during the training of the models. We
therefore sample one frame every 0.4 seconds from the videos, resulting in 62,916 images
in total. To further optimize the time required for training, we use principal component
analysis (PCA) to reduce the feature space. The first k eigenvectors that contain at least
80% variance are selected. Table 3.3 shows the dimension number after feature extraction
and after applying PCA.

For each feature descriptor, three models that correspond to evaluation, potency, and
activity are trained. We use SVR and BLSTM for training all models. At first, we shuffle
all images before training to reduce bias to a single video for SVR. Since BLSTM takes
sequences of data to train models, we cannot shuffle the images in each video in this case.
Therefore, we choose to randomly pick clips instead. In this case, the training set has 75
clips and the test set has 18 clips. However, we also divide the data set into a training set
with 50,601 images (80%) and a test set with 12,315 images (20%) for another experiment
of SVR as shown in Figure 3.8.

We use LibSVM [8] as a library to implement SVR. The kernel type is RBF. Other
parameters: C, γ, and ε in loss-function, are optimized using grid search with five-fold cross
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Figure 3.8: An old version of the training process with all images shuffled

validation. For example, the complexity of the SVR is optimized by the best performance
in the five-fold cross validation among [0.001, 0.01, 0.1, 1, 10, 100]. The five-fold cross
validation is to split the training set to 5 sets and each contains 15 clips. Each time we use
four different sets (60 clips) to train the model and test on the left 15 clips. We continue
the same step for five rounds until all the five sets have been used to test performance.
To evaluate a performance for different parameters, we use the root-mean-square error
(RMSE) as our metric. √∑n

k=1(yk − y′k)
2

n
(3.7)

The ground truth for the kth value is yk, y
′
k is the predicted value, and n is the total

number of data we have. We choose the best parameter as the least RMSE from cross
validation. The other parameters γ and ε are also chosen similarly.

To implement BLSTM, we use Keras [9], a deep learning library for Tensorflow to train
models. We set BLSTM with one layer as our neural network structure and RMSProp
is used as the optimization function. The parameters used are: the number of hidden
units, learning rate, dropout rate, and batch size tuned using grid search. To improve
the efficiency of grid search, we only change one parameter to a range of numbers at each
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Table 3.3: Number of dimensions used for each feature descriptor before and after dimen-
sion reduction

Feature Descriptor Before PCA After PCA

AU 17 7
HOG 5184 49
FHOG 4464 153

time and check the performance for each parameter. Then during grid search, we select a
subset in this range to run fewer combinations of different parameters with five-fold cross
validation. For example, we set the number of hidden units among [32, 64, 128, 256, 512].
After identifying how it works, we set this parameter to [64, 128, 256] during grid search.
Moreover, we set the number of iterations to 50, but an early stopping is used in case the
function passes the best model before 50 iterations. In Keras, all the sequences should have
the same length for training, so we also add padding zeros and mask to the end of each
video. The mask is used here to ignore those paddings. After grid search, the parameters
with the best performance in five-fold cross validation are used to evaluate the test set.

3.5 Result

To evaluate a model’s prediction performance, we choose the parameters with the least
RMSE from cross validation to train the models. The fitted models are evaluated with
the test set. We also calculate the Pearson Correlation Coefficient (PCC) as a reference.
RMSE evaluates how much predicted values and the ground truth vary; PCC calculates
the covariance of the predicted values and the ground truth values.

3.5.1 Train and test on clips using SVR and BLSTM

Table 3.4 shows the prediction performance for applying SVR or BLSTM with the following
three feature descriptors: AU, HOG, and FHOG after applying PCA. Note that the AU
descriptor has only 17 dimensions, applying PCA is not necessary, but we still provide AU
with PCA as a condition for ease of comparison. This, as expected, results in a worse
prediction performance due to 20% loss of variance. To summarize the result:
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Table 3.4: EPA prediction with different feature descriptors

Dimension Feature Descriptor
SVR BLSTM

Training Set Test Set Training Set Test Set
RMSE COR RMSE COR RMSE COR RMSE COR

Evaluation

AU 0.251 0.127 0.272 0.235 0.236 0.351 0.258 0.278
AU+PCA 0.252 0.081 0.273 0.205 0.243 0.290 0.259 0.380
HOG+PCA 0.251 0.082 0.274 0.213 0.230 0.453 0.246 0.465
FHOG+PCA 0.251 0.161 0.277 0.121 0.235 0.472 0.251 0.444

Potency

AU 0.225 0.176 0.233 0.189 0.203 0.450 0.213 0.381
AU+PCA 0.227 0.024 0.234 0.081 0.215 0.335 0.224 0.304
HOG+PCA 0.228 0.040 0.235 0.122 0.223 0.371 0.218 0.401
FHOG+PCA 0.229 0.087 0.233 0.196 0.222 0.303 0.217 0.429

Activity

AU 0.220 0.303 0.221 0.352 0.213 0.371 0.207 0.431
AU+PCA 0.231 0.181 0.229 0.339 0.199 0.522 0.201 0.517
HOG+PCA 0.219 0.336 0.216 0.414 0.188 0.601 0.205 0.471
FHOG+PCA 0.217 0.350 0.214 0.444 0.192 0.550 0.201 0.493

(Average)

AU 0.232 0.202 0.242 0.259 0.217 0.391 0.226 0.363
AU+PCA 0.237 0.095 0.245 0.208 0.219 0.382 0.228 0.400
HOG+PCA 0.233 0.153 0.242 0.250 0.214 0.475 0.223 0.446
FHOG+PCA 0.232 0.199 0.241 0.254 0.216 0.442 0.222 0.455

• There is not much difference among all the three features’ results with three signifi-
cant digits. However, to compare the three feature descriptors, FHOG has the best
averaged accuracy of EPA. HOG is slightly better than AU on averaged RMSE in
EPA. A probable reason for this is that the AU recognition can be noisy as well.

• Between SVR and BLSTM, we can see BLSTM obtains a better evaluation than
SVR, among all the conditions.

• Among the three EPA dimensions, Activity is shown to have the best accuracy on the
test set. This is probably because Activity is easier to detect from facial expressions
than Evaluation and Potency.

3.5.2 Train and test on shuffled images using SVR

Table 3.5 and Figure 3.9 show the result when SVR is applied and all the images are shuf-
fled. The same four conditions are still applied here. The result shows a large improvement
compared with the evaluations above. Since all the images are shuffled before training, the
images in the same video appear both in the training set and the test set, which increases
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Table 3.5: EPA prediction on test set with all images shuffled using SVR

Evaluation Potency Activity
Feature Descriptor RMSE COR RMSE COR RMSE COR

AU 0.210 0.575 0.185 0.591 0.179 0.631
AU+PCA 0.242 0.322 0.215 0.424 0.209 0.424
HOG+PCA 0.146 0.822 0.142 0.785 0.120 0.854
FHOG+PCA 0.127 0.868 0.128 0.885 0.107 0.829

the performance. The poor prediction accuracy of the unshuffled models is not because
the images of the same participant appear only in the test set. We list the number of
clips in the training set and in the test set for each participant as shown in Table 3.2, and
all the participants appear in the training set. The result also provides a stronger proof
of the previous conclusion. It proves that FHOG obtains much better evaluations than
other three conditions. AU with PCA decreases the performance and HOG gives a better
result than AU. Moreover, Activity is still the easiest dimension to predict among all the
dimensions.

AU AU + PCA HOG + PCA FHOG + PCA

RM
SE

Evaluation Potency Activity

Figure 3.9: EPA prediction with all images shuffled using SVR (RMSE)
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Chapter 4

BayesACT Simulations

With facial features transformed into the EPA space that characterizes the users’ sen-
timents, we demonstrate the feasibility of further building artificial systems that track
users’ real-time emotions through BayesACT simulations. The goal of this chapter is to
use BayesACT model to simulate conversations between a user and an avatar, and see
whether the avatar can perceive the affective information of users.

4.1 Background

Chapter 2 of this thesis introduces basic information about ACT and BayesACT. In this
section, we will provide more background on BayesACT. ACT has a prerequisite that
the two interactants identities are known to each other. However, this prerequisite is a
challenge to achieve when users’ identities are unknown or dynamic. BayesACT [29] is
the model to tackle this problem that it keeps multiple hypotheses about both identities
and behaviors as a probability distribution using Bayesian reasoning, and uses an explicit
utility function to make value-directed action choices.

In this section, we use capital symbols (F , T ) to denote variables, small symbols (f ,
τ) to denote the values of these variables, boldface symbols (F , T ) to denote a set of
variables, and primes (X ′, x′) to denote the variable or the value of the variable after a
time step. F = {Fa, Fb, Fc} is a nine-dimensional vector that denotes a set of fundamental
sentiments for actor (agent), behavior, and object (client). Each fundamental sentiment is
a vector of EPA which represents social objects such as identities and behaviors in EPA
space. For example, if a tutor compromises with a student, f will be (1.506, 1.445, -0.18,

30



1.884, 1.208, -0.152, 1.487, 0.304, 0.759). The first three numbers denote the identity of the
tutor after this event; the middle three values are EPA of the action “compromise with”;
and last three are the identity of the student. Similarly, a set of transient impressions is
denoted as T = {Ta, Tb, Tc}. Therefore, the deflection D is the sum of squared Euclidean
distance between fundamental sentiments F and transient impressions T

D =
9∑

i=1

wi(fi − τ i)
2 (4.1)

where wi is the weight. A small deflection will let the interactions run smoothly. For
example, when a mother plays with a child, the behavior “play” is described as [3.4, 1.8, 0.9]
and a mother has an EPA value of [2.9, 1.5, 0.6]. The small deflection makes both of
them comfortable. However, if a mother beats a child, in which the action “beat” has
[−1.0, 3.5, 2.2], the behavior has a large deflection from the EPA of a mother, which is
humans seek to minimize the deflection based on the ACT principle. Therefore, both the
mother and the child may have negative emotions after the mother’s behavior. Other
than the F and T states, the BayesACT model also includes states X, actions A, and
observations Ω. X represents all the things that the system needs to know about users’
behaviors and the system state. Actions A are things the system does to change the state
or the human behaviors. Observations Ω are all the evidences that the system observes
for finding the state X. In ACT, the identities are an actor and an object. BayesACT
encodes the identities to “agent” (i.e. a machine) and “client” (i.e. a human) instead.
The action of the agent is extended to B = {A,Ba} to represent the action A and the
emotional content of the action Ba. For example, when the agent ignores the client, Ba

will be (-1.58, -0.75, -1.44). The client’s behavior is set in the fundamental sentiment Fb.

Here are the main formulas in BayesACT:

• ϕ(f ′, τ ′) ∝ e−(f ′−τ ′)T
∑−1(f ′−τ ′) denotes the deflection between fundamental senti-

ments F and transient impressions T.

• Pr(x′|x,f ′, τ ′, a) defines how the system progresses given the previous state, the
fundamental and transient sentiments, and the action of the agent.

• Pr(ωf |f) and Pr(ωx|x) denote observation functions for the client behavior senti-
ment and the system state respectively.

BayesACT is a recursive Bayesian estimation model that it estimates and updates
variables such as fundamental sentiments F and transient impressions T over time using
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incoming actions A and observations Ω. BayesACT also represents emotions as probability
distributions, and the emotion states can be calculated at each time based on the vector
difference between fundamentals and transients [26].

4.2 BayesACT Simulation

In this work, we use BayesACT to simulate interactions. BayesACT simulates the inter-
actions between a user and an avatar from the avatar’s perspective. In the simulation, the
user and the avatar take turns to give actions. In each turn, in addition to providing an
action, the user also needs to supply the current emotion state. The avatar perceives the
user’s transient impressions and gains an understanding of the user’s fundamental senti-
ment. In this experiment, we supply the same conversations in the video from Semaine
database as the input to BayesACT and analyze the learned users’ sentiment change for
four avatars with different emotional characteristics.

We set the user’s identity to ‘student’, since all participants in the experiment were
undergraduate or graduate students. In each turn, the user or the agent performs the
action ‘talk to’ to the other party. When it is the user’s turn, the current (sampled every
5 seconds) EPA values from the facial expression database are supplied as the emotional
signal. We present the simulations using the ground truth as input to more clearly show
the emotional prediction mechanism at work. The raw EPA values ranged [−1, 1] are
transformed using a tangent function

x′ = 2.77 ∗ tan(x) (4.2)

to range [−4.3, 4.3], which x is the original EPA and x′ is the updated value. After each
turn, the avatar generates two groups of EPA values: the avatar’s emotion and the user’s
emotion. The EPA value of an individual’s emotion is calculated mainly on their action,
but it is also updated by an observed value from their facial expressions. The portion based
on actions and observations can be changed. In addition, the avatar converts the user’s and
its own emotion states into labels. A label is an adjective chosen from a dictionary that
has the shortest Euclidean distance from the user’s current emotion EPA. However, we use
cosine distance as the distance measure when calculating labels. Compared to Euclidean
distance that the original BayesACT uses, this metric better preserves the vector direction,
when searching in a non-uniformly distributed label set.
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4.3 Emotion Change in BayesACT Simulation

Happy SadAngry Sensible

Va
lu

e

Evaluation Potency Activity

Round

Figure 4.1: Avatars posterior estimate of the user’s emotions.

Happy SadAngry Sensible
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lu

e

Evaluation Potency Activity

Round

Figure 4.2: Avatars posterior estimate of the user’s transient impressions.

We first analyze the change of EPA values during the conversation using BayesACT
simulations. The BayesACT simulations are expected to learn the user’s fundamental
sentiment. We want to know given avatars with distinct emotion characteristics, how
and to what extent avatars with distinct emotion characteristics affect the users emotional
states. We use the same 18 video clips in the test set from Semaine database and categorize
the clips to four types based on the avatar’s character. The number of simulations for
each character is listed in Table 4.1. When aggregating the conversation simulations, the
averaged value serves as a measurement of tendency towards greater valence, power, and
activation. Since the lengths of the videos are varied, we align our data to use only the
first 200 seconds of each conversation.

The experiment results are illustrated in Figure 4.1 and Figure 4.2, showing the avatars
posterior estimate of the users emotions and transient impressions of the users identity,
respectively. The figures illustrate the averaged values at each time stamp for Evaluation,
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Table 4.1: Number of simulations for each type of avatar

Happy Angry Sad Sensible

Number of simulations 5 5 3 5

Potency, and Activity across all 18 test videos. The user’s emotion will change significantly
when the avatar shows different characteristics to the user. This answers the question that
the avatar does have an important effect on the user’s emotions. Both the avatar’s and
the user’s emotions are proportional to the deflection which is the Euclidean distance
between fundamental sentiments and transient impressions. A small deflection ensures the
conversation running smoothly, but a large deflection makes humans feel uncomfortable
which is they try to avoid. Pr(e′|f , τ ,Ωe) ∝ Pr(Ωe′ |e′)Pr(e′|f , τ ) denotes the updated
emotion given the fundamental and transient sentiments, and observations on the emotion.
A student is seen as [1.49, 0.31, 0.75], which is positive, less powerful, and a bit active. Users
are confident and powerful when talking to a happy avatar, since EPA of the happy avatar’s
behaviors is similar to what a student should behave. Therefore, the deflection is small and
the conversation goes smoothly. However, when the avatar is angry, the avatar behaves
unpleasant, much powerful, and active, which makes the users feel negative and powerless.
Similarly, when the avatar is sad, the users maintain a positive attitude, but they are weak
and less active. Moreover, when the avatar change to be sensible, the users feel less positive
compared with talking to a happy avatar.

4.4 Sentiment Labels

To better visualize how different avatars affect the user’s emotion, we aggregate the senti-
ment labels generated from the BayesACT simulations, which approximate users’ emotion
states. The aggregated labels are used to create four word clouds as shown in Figure 4.31.
Each word cloud contains the top 15 words that describe the user’s emotions from the
avatar’s perspective when interacting with different avatars. The size of each word is
dictated by its frequency of appearance.

In the word clouds, the word ‘reverent’ appears the most number of times in all condi-
tions, understandably representing the mental state of a student interacting with a person

1We used http://www.wordclouds.com/ for generating our word clouds.
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(a) Happy (b) Angry (d) Sensible(c) Sad

Figure 4.3: Four word clouds created by the top 15 words that describe the user’s feeling
when talking to Poppy (Happy), Spike (Angry), Obadiah (Sad), and Prudence (Sensible).

who leads the conversation with more or less greater extents of power. Other than ‘rever-
ent’, the users show different emotions towards different types of avatars. From the avatar’s
perspective, the users feel ‘infatuated’, ‘intelligent’, ‘wise’, ‘touched’, and ‘confident’ when
talking to a happy person. They feel ‘strict’, ‘dogmatic’, and ‘authoritarian’, interacting
with an angry avatar. When talking to a sad avatar, the users feel ‘sorry’, ‘touched’,
‘remorseful’, ‘repentant’, and ‘middle-aged’. When talking to a sensible avatar, the users
feel ‘middle-aged’, ‘sly’, ‘intelligent’, and ‘touched’. The word cloud provides us with an
impression on how the agent processes users’ emotions given their facial expressions in the
BayesACT simulations.
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Chapter 5

Game Integration

After the affect prediction, the next step is to integrate the facial expression recognition
into a real prompting system and to see whether the system provides different prompts
based on users’ facial expressions. In this chapter, we implement our affect recognition
module into an iterated prisoner’s dilemma game, in which a user can play the prisoner’s
dilemma with a virtual human. The virtual human can change its facial expressions and
actions based on users’ choices and emotions. The iterated prisoner’s game is also based
on BayesACT and we use several test cases to ensure the affect recognition module works
in the system.

5.1 Prisoner’s Dilemma Game

The prisoner’s dilemma is a standard example in game theory. Two individuals are impris-
oned and each prisoner has only two options: betray the other or remain silent to cooperate
with the other prisoner. There is no way for them to communicate before making a move.

Table 5.1: Payoff matrix in prisoner’s dilemma

Feature Descriptor Cooperation Defection

Cooperation -1, -1 0, -3
Defection -3, 0 -2, -2
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Table 5.2: Payoff matrix in the new iterated prisoner’s dilemma game

Feature Descriptor Cooperation Defection

Cooperation 2, 2 0, 3
Defection 3, 0 1, 1

As a result, there are four combinations in total and the payoff matrix is shown in Table 5.1.
The results are:

• If both of them choose to cooperate, they will have to serve one year in prison, which
gives the best result for them

• If one betrays the other but the other chooses to cooperate, the betrayed one will
serve three years in prison

• If they both choose betray each other, they will have to serve two years in prison

For a single play, choosing cooperation gives the most benefit for both of them, but
the dominant strategy is to choose defect which is the Nash equilibrium in the game. The
iterated prisoner’s dilemma game has the same rule, but two players can continue playing
the game for multiple rounds, which makes the results more complicated. The iterated
game uses virtual coins as a motivation and the goal for each player is to collect as many
coins as possible. The special part of the game is that the user plays with a virtual human
and the virtual human shows its facial expressions and says its emotions in each round.

As the game begins, the virtual human introduces the rule at first. In each turn, both
the user and the virtual human can choose either “give 2” as a cooperative action or “take
1” as a defection. When the user clicks a button, the virtual human cannot see user’s
decision until it makes its decision. The virtual human’s move is selected by BayesACT.
After both of them have made the choice, the result will be shown and the players will
earn coins based on their move. The payoff matrix is updated in Table 5.2. After each
round, BayesACT calculates the virtual human’s next move and current EPA value based
on previous information. When the result is shown, the virtual human will show its action,
say a selected sentence to declare its emotion, and change its facial expression based on her
current EPA value. For example, if the user always chooses “take 1” to defect, the virtual
human will get a negative EPA value and it will choose to defect as well. At the same time,
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it will show an angry look and say “You are making me frustrated.” The sentence dictionary
contains about a hundred sentences such as “I am starting to get angry”, “Thanks for being
friendly”, and “I am a little uneasy”. The sentences and the emotional labels from the
modifier dictionary are embedded using word2vec in advance, and each emotion label is
mapped to the closest sentence using cosine similarity. Therefore, in each round, a sentence
is selected that has the maximum cosine similarity from the virtual human’s current EPA.
Both of players’ scores and the virtual human’s last move are shown on the screen. The
game interface is shown in Figure 5.2 and Figure 5.3. The virtual human is created from
the Interactive Assistance Lab at University of Colorado at Boulder [63].

5.2 System Design

Feature Extraction
(OpenFace, C++)

Affect Prediction 
(LSTM, Python)

Manager 
(NodeJS)

Camera
(Javascript)

Avatar
(Javascript)

BayesACT
(Python, C)

GameAffect 
Recognition

1

2 3 4 5

1

2
3 4

Figure 5.1: An overview of the integration system

The iterated prisoner’s dilemma game is a web game and it was implemented by an
undergraduate research assistant as a research project. The structure of the previous
project involves a front end virtual human with a game interface and a back end to process
and select the next move for the virtual human. For the front end interface, it is written
in JavaScript. The interface shows current scores for two players and it takes the user’s
next move to the back end. The back end is written in Python and C. It processes the
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user’s action and uses BayesACT to calculate the virtual human’s emotion and its next
action. After the decision is made, the back end sends the results back to the front end.
The results include the virtual human’s facial expressions, next move, and an emotion label
based on the calculated EPA value.

In our work, we integrate the affect recognition module into the system. An overview
of the integrated system is shown in Figure 5.1. At first, we turn on a camera to record
the user’s facial expressions and the real-time tracking is shown on the bottom right of the
game interface. We use an open source library JpegCamera [65] to take one picture of the
user every five seconds and upload the images. Then we use a short program in NodeJS to
manage the image process. The program saves the images received from the previous step
in a local folder with a time-stamp included. The program is also responsible for cleaning
old images which are created more than one minute before.

We use another program in NodeJS as a manager to control the whole recognition
process. It first sends images to a server to extract feature descriptors. Three feature
descriptors (AU, HOG, FHOG) are extracted in Chapter 3, but we only consider FHOG in
the system, since FHOG gives the best prediction result. We modify one of the OpenFace
programs so that the program can process an HTTP request to extract FHOG features
from any received image and return the feature descriptor to the manager. After the
feature extraction, the program also uses PCA to reduce the feature dimension from 4464
to 153. After the FHOG feature is returned, the manager sends another request to affect
prediction, which is another server to predict EPA values using LSTM. LSTM is selected
because of its lower RMSE compared with SVR. Since the EPA values from Semaine
database are all measured from [-1, 1] but the range of EPA in ACT is from [-4.3, 4.3], we
use a tangent function

x′ = 2.77 ∗ tan(x) (5.1)

to update the range, which x is the original EPA and x′ is the updated value. The reason
we use a tangent instead of a linear scale is to avoid increasing the predicted error after
transformation. After the affect prediction server gets the EPA score, it will send back the
results to the manager after the process finishes and all the EPA values will be stored in
the manager.

When the user clicks on “give 2” or “take 1” as a next move, the front end in the game
will immediately send a request to the manager to retrieve EPA values of the user’s facial
expressions. Then the manager will calculate the most recent EPA and clear all the values
after it delivers the result. We can also change the program to calculate the averaged EPA
values from the previous move to the current move, but it requires the user to keep an facial
expression for a few seconds. Therefore, we think using the most recent value is better.

39



After retrieving the EPA of the user’s facial expressions, the front end virtual human sends
both its next action and current emotion to the back end. BayesACT calculates the virtual
human’s information based on the user’s move, facial expressions, and previous records.
In the end, BayesACT sends the virtual human’s move and facial expressions to the front
end. The interface updates the players’ actions, current coins, and the virtual human’s
emotions in order. Then the game continues to the next round. The game is extended
to a new version in case the user does not want to enable emotion detection during the
game. Three options show up in the beginning of the game: no emotion, emoji emotions,
and facial emotion recognition. When the first option is chosen, the camera is hidden and
[0, 0, 0] is sent as EPA values to the virtual human after each move. If the user only
wants to send basic emotions, the emoji option will list six emojis to represent the six
basic emotions (happy, sad, surprised, angry, disgusted, and fearful). Users can choose
one emoji to represent their emotions and the selected emoji will be converted to an EPA
value. The third option enables the affect recognition and analyses the participant’s facial
expressions as emotions. Since it is hard to measure and compare those three conditions
quantitatively, we will only test the third option in our studies.

5.3 Tests and Discussions

We invite four students in the Computational Health Informatics Lab to test the game
informally on the updated system. During the game, we record the game interface and
participants’ facial expressions for later review. We introduce the game first and then start
recording their performance. Participants can use different strategies to play and they can
stop whenever they want. The four students play 83 rounds in total, and each of them
plays about 20 rounds. We only test the system informally in this thesis to ensure users
feel entertained to play the game with facial recognition installed.

The new system with enabled emotion detection provides a different gaming experience
in which the virtual human shows different responses from its strategies, facial expressions,
and responding sentences based on users’ moves and emotions. The virtual human has
different strategies to play the game with users’ different emotions. We surprisingly find
the virtual human defects more if the user shows an angry face (50% of the time) than a
happy facial expression (36%). Because an angry player has more probability to defect,
the virtual human chooses to defect as well. The change of the virtual human’s facial
expressions is also noticeable. If the user defects and is angry, the virtual human will show
sad or angry facial expressions most of the time (83%); when the user defects but is happy,
the virtual human will have less possibilities to provide negative emotions (70%). However,
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the virtual human’s facial expressions will gradually appear angry when the user continues
defecting. In addition, the virtual human says different sentences to reflect its emotions
based on the user’s moves and emotions. We list a few examples we find interesting during
tests. The screenshots of these examples are shown in Figure 5.4:

(a) When a participant showed a smiling face but chose “take 1”, the system recognized
the facial expression as “playful” and the virtual human chose to cooperate. The
virtual human said “I feel like a fool” when the virtual human knew the user’s move
since it did not expect the user was going to defect.

(b) The virtual human said “You are making me upset” even though the participant
chose to cooperate but with a disgusted face, which demonstrates the user’s facial
expressions also affect the game.

(c) When the user chose “give 2” with a smiling face, the virtual human said “That was
cute” with a happy facial expression.

(d) When the user cooperated with a happy face but the virtual human said “I am
starting to get angry” and showed a neutral facial expression, which is a bit strange
here.

We find that users obtain more personal responses by integrating affect recognition
into the system and both users’ moves and facial expressions have an effect on the virtual
human’s side. Some responses from the virtual human are smart and entertaining, but a
few responses are awkward and not accurate. For example, the virtual human feels sad
even though the user cooperates with a smiling face. In this study, we only invite a few
participants to test the game informally. A more comprehensive user study could be further
conducted to reveal the efficacy of intelligent agents and elicit user feedback.
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(b) start a new game(a) game loading

(c) game log in (d) the avatar introduces the 
prisoner’s dilemma game

Figure 5.2: The game interface of the iterated prisoner’s dilemma game with camera en-
abled
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(a) a prompt indicates the avatar is 
still thinking for the next move

(b) the avatar is happy when the user 
chooses to cooperate

(c) the avatar is sad when it loses 
coins

(d) the avatar moves its face to 
wait for the user’s next action

Figure 5.3: An overview of the game interface and the facial expressions on the virtual
human

43



(a) The virtual human said “I feel 
like a fool”

(b) The virtual human said “You are 
making me upset”

(c) The virtual human said “That was 
cute”

(d) The virtual human said “I am 
starting to get angry”

Figure 5.4: Examples of participants playing the game
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Chapter 6

Conclusion

In this thesis, we build an automatic affect recognizer to predict user emotions in the
Evaluation-Potency-Activity (EPA) space. We compare three different feature descrip-
tors (AU, HOG, FHOG) and build models with two machine learning approaches (SVM-
Regression and RNN-BLSTM). We test the models with the Semaine database that pro-
vides annotated EPA values of human natural expressions when interacting with avatars.

This thesis further demonstrates that affective information of users can be perceived
and thus can be used to build affective prompting systems. In the simulations, we assume
the identity of user to be student and action as talk to in all the cases. However, this might
not always hold true. Despite these assumptions we see some distinctive words generated
in the word cloud based on the behaviour of different avatars. We present BayesACT
simulation results using the database labels as input, but clearly it will be preferable to
use the automated facial expression recognition. Our analysis shows that improvements
will be needed in continuous facial expression recognition in order to make this feasible.

Finally, we integrate our recognizer into a prisoner’s dilemma game in which a user
can play with a virtual human. The virtual human replies with different facial expressions
and emotions based on the user’s moves and facial emotions. The game provides a more
enriched play experience to users. The realistic responses from the virtual human make
users feel they are not playing with a machine. The work also demonstrates the potential
of further integrating emotion recognition into other prompting systems.

However, integrating affect recognition into game systems may have less effect than
integrating into tutoring systems or assistive systems. Users can choose to show faked
facial expressions to the virtual human among the game as a strategy. For example, users
can show an angry face even though they are happy to push the virtual human to be
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more cooperative. The faked expressions may give them more possibilities to win, so the
virtual human cannot trust the EPA values from users. In a tutoring system or an assistive
system, the EPA values of the user’s facial expressions are more reliable. Therefore, the
systems that help people to learn or to complete a task have more advantages when facial
expression detection is enabled.

We should note that this thesis is only a small step towards building emotionally intelli-
gent prompting systems. The accuracy on affect recognition still can be improved from two
aspects: the dataset as the ground truth values and the feature descriptors with modeling
approaches. In our studies, we only calculate the averaged values among all the raters as
the ground truth. However, the variance of the raters in the dataset would cause noise
in the baseline measurements. Therefore, doing an analysis on the rating variance may
help to quantify the noise and provide a better way to combine annotators’ ratings. On
the other hand, we investigate a number of feature descriptors and machine learning ap-
proaches, but the space for finding the optimal approach is huge. For example, in addition
to SVM-Regression and RNN-BLSTM that we have tested in the thesis, we might also ex-
plore building a high-performance Convolutional Neural Network (CNN) to extract feature
descriptors with a recurrent neural network to build models. Also, we could leverage other
visual cues such as hand movement and audio signals like voice frequency to improve the
robustness of our recognition technique. Improving the performance on affect recognition
provides a fundamental step to further validate the models on applications such as the
BayesACT simulations and the integrated game we used in our studies.

In this thesis, we only informally test the prisoner’s dilemma game. A more compre-
hensive user study could be further conducted to reveal the efficacy of intelligent agents
and elicit user feedback. Moreover, other prompting systems can be tested by integrating
the affect recognizer into them. For example, a hand-washing system with an integrated
BayesACT model, uses a virtual assistant to provide instructions to help people with
Alzheimer’s independently finish a hand-washing task [33]. The automatic affect recogni-
tion can also be integrated into the hand-washing system so that the virtual assistant can
provide more tailored prompts based on users’ behaviors and emotional states.
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