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Abstract  

The Polymer Electrolyte Membrane (PEM) fuel cell is an ideal emerging alternative 

power source for transportation; however, before PEM fuel cells’ widespread use, a 

number of technical challenges need to be overcome, including durability which is 

mainly associated with three factors: mechanical, electrochemical, and thermal 

degradation. Among them, mechanical degradation is of paramount importance because it 

causes a gradual reduction of mechanical strength, toughness and, ultimately, cell 

performance decay. Yet, studies focusing on the mechanical degradation of MEAs and its 

impact on cell performance decay are relatively scarce. This thesis focuses on the early 

and late stages of mechanical degradation of an MEA in a PEM fuel cell. In the 

experimental phase, scanning electron microscope (SEM) tests detailed the initial 

microstructures and their changes in an MEA before and after accelerated durability 

testing. The possibility that large stresses, including clamping forces and hygro-thermal 

stresses, were the reason behind these structural changes, necessitated further studies of 

stress conditions in the MEA using a structure model. Techniques used to characterize the 

mechanical properties of gas diffusion layers (GDLs) and of catalyst layers included a 

microcompression tester and the nanoindentation technique. These mechanical properties 

guided the selection of constitutive relations in the modelling. In the modelling phase, a 

structure model clarified the stress and deformation of MEAs during common and cyclic 

operating conditions. A variety of constitutive models enabled the simulation of different 

materials in cells. A deformed MEA determined from the structure model enabled a more 

realistic method to study the cell performance under early and late stages of mechanical 

degradation. Results revealed that MEA’s early mechanical degradation, which is related 

with operating conditions, assembly methods and channel designs, had a complex effect 

on transport phenomenon. In addition, since an MEA’s early degradation is associated 

with durability, the selection of operating conditions, assembly methods and channel 

designs should balance both cell performance and durability. Under 2000 cyclic changes 

in operating conditions, the cell performance decreases about 8% merely with the 

mechanical degradation. Therefore, in order to increase the life span of a PEM fuel cell, it 

is important to find an effective approach to relief the mechanical degradation. 
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    Chapter  1 

1. Introduction 

 

 

 

1.1. Background 

Transportation is a paramount component of economic developments. This factor is even 

more noticeable in society when economic opportunities have been increasingly 

correlated with the mobility of people, goods and information. Over the past decades, the 

growing global economy and the significant population growth have escalated the 

demand for motorized transportation. Statistics report that from years 2008 to 2015, 

vehicle sales in China underwent a significant escalation, from 9.39 to 24.6 million [1]. 

However, this phenomenon also brings some issues surrounding the use of crude oil to 

power automobiles, including, environmental impacts, energy securities, and risks of 

demand outstripping supply [2]. The elevated levels of carbon dioxide and other 

greenhouse gases in the atmosphere, along with the increased energy demands in various 

sectors, compel nations to find alternative solutions.  

Various kinds of fuel cells have worked commercially as alternatives to the internal 

combustion engines, which dramatically relieves the dependence on crude oil [3]. 

General Motors produced the first fuel cell road vehicle, the Chevrolet Electrovan, in 
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1966. Equipped with a proton exchange membrane (PEM) fuel cell system, this two-seat 

road vehicle is very cost-prohibitive and only has a range of 120 miles and a maximum 

speed of 70 mph [4]. Only after several decades of development, PEM fuel cell powered 

vehicles established its commercial viability. Many automobile companies, such as 

General Motors, Toyota, Honda, Nissan and Ford, have invested significant amounts of 

money on fuel cell research and publicly committed to selling a fuel cell vehicle. 

Currently, fuel cell powered vehicles have obtained wide applications around the world. 

They have accumulated over 970,000 km of driving and 30%-141% higher fuel economy 

than diesel and natural gas vehicles [5].  

Fuel cells, generally using hydrogen gas as a fuel, are environmentally friendly energy 

conversion devices, which bear similarities both to batteries, with which they share the 

electrochemical nature of the power generation process, and to engines, which can work 

continuously if supplied with a fuel of some sort [6,7]. The categorization of fuel cells 

depends on electrolytes, operating temperatures, and fuel types [8]. According to the 

kinds of electrolytes, fuel cells can be classified into various types, including Proton 

Exchange Membrane (also named Polymer Electrolyte Membrane, PEM) Fuel Cells, 

Direct Methanol Fuel Cells (DMFCs), Alkaline Fuel Cells (AFCs), Phosphoric Acid Fuel 

Cells (PAFCs), Molten Carbonate Fuel Cells (MCFCs) and Solid Oxide Fuel Cells 

(SOFCs) [9]. In addition, based on their optimal operating temperatures and fuel types, 

these fuel cells are suitable for various applications. For example, PAFCs, MCFCs, and 

SOFCs win wide applications for stationary power generation, while PEM fuel cells, 

DMFCs, and AFCs are suitable for vehicular or portable applications.  

The PEM fuel cell is an ideal emerging alternative power source for transportation 

because of its low operating temperatures, solid electrolyte, zero/low emissions, and high 

power densities. PEM fuel cells operate at a low temperature (around 75
o
C -80

o
C), which 

enables a quick start-up time [10,11,12]. Since a cell converts chemical energy directly to 

electrical, it is not only more efficient and reliable than a traditional combustion engine, 

but also produces less noise. PEM fuel cells use a solid polymer membrane as the 

electrolyte, which is permeable to protons but insulated to electrons. This choice allows a 

simple, compact, and insensitive-to-orientation structure, which makes both the 
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manufacturing and the cell operation of a PEM fuel cell much easier than a fuel cell with 

a liquid electrolyte. In addition, a solid electrolyte brings benefits, such as less corrosion, 

low internal resistance, and high tolerance against large pressure differentials. Moreover, 

compared with internal combustion engines, research indicates that the use of PEM fuel 

cells in vehicles results in lower levels of emissions and energy consumption [13,14].  

The past several decades have witnessed compelling improvements in terms of cell 

performance, material utilizations, and fuel supplies; however, before PEM fuel cells’ 

widespread use, a number of technical challenges need to be overcome, including 

durability [15,16]. Durability is of particular importance since it determines the ultimate 

use of PEM fuel cells. Depending on various applications, the requirements for cell life 

span vary significantly. For instance, the current target for automotive applications is 

around 5000 to 20,000 hours, whereas for stationary applications the target is about 

40,000 hours [17,18]. Unfortunately, at present most PEM fuel cell stacks available on 

the market and research institutes can only achieve 80% of these goals. PEM fuel cell 

durability is mainly associated with three factors: mechanical, chemical/electrochemical, 

and thermal degradation [19,20,21]. Among them, mechanical degradation is of 

paramount importance because it causes a gradual reduction of mechanical strength and 

toughness of Membrane Electrode Assemblies (MEAs), in turn causing microstructural 

changes in MEAs, such as cracks, delamination, and thickness variations, which 

eventually lead to cell performance decay [22,23,24,25]. However, studies focusing on 

the mechanical degradation of MEAs and its impacts on cell performance reduction are 

relatively scarce.  

1.2. Fundamental Principles of Fuel Cells 

A typical single PEM fuel cell assembly is made up of several components, as shown in 

Figure 1-1, including endplates, current collector plates, flow channel distribution plates 

(bipolar plates), gas diffusion layers (GDLs), catalyst layers and a membrane (solid 

electrolyte). Industries usually connect single cell assemblies in series to produce higher 

voltages, as illustrated in Figure 1-2. Figure 1-3 illustrates a cross-sectional schematic of 

the primary components in a PEM fuel cell. On the anode side, H2 gas flows into the 

channels grooved into the bipolar plate. It then diffuses through the anode GDL into the 
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anode catalyst layer where it splits into protons and electrons. This half-cell reaction is 

called a hydrogen oxidation reaction (HOR). 

HOR:                 

The solid polymer membrane is permeable to protons but insulated to electrons. 

Therefore, the protons pass through the membrane and travel into the cathode side, while 

the electrons are forced to travel through an external circuit to the cathode side. Similar to 

the anode side, atmospheric air or pure oxygen flows into the cell and diffuses into the 

cathode catalyst layer through the cathode GDL and the bipolar plate. It reacts with the 

protons and electrons from the membrane and the external circuit, respectively, 

generating water and heat. Because of the low operating temperature, oxygen is reduced 

into liquid water in this reaction; therefore, it is called an oxygen reduction reaction 

(ORR).  

               ORR:       
 

 
               

The irreversibilities in converting chemical energy into electrical energy produce waste 

heat. The overall reaction is, therefore,  

   
 

 
                                    

 

Figure 1-1  A schematic drawing of a single PEM fuel cell 
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Figure 1-2  A schematic picture of a PEM fuel cell stack with three single cells [26] 

 

 

Figure 1-3  PEM fuel cell operating principle [27] 
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1.3. Main Components of PEM Fuel Cells 

A PEM fuel cell obtains its signature name because of the electrolyte it uses. This 

electrolyte rests between the GDLs and catalyst layers from the anode and cathode sides. 

The whole piece is just a few hundred microns in thickness, which is called membrane 

electrode assemblies (MEAs). MEAs have to be sufficiently durable to withstand 

mechanical stresses during assembly processes and regular or randomly changing 

operating conditions [28,29]. During the cell operations, the MEA undertakes several 

functions, namely providing a place for the electrochemical reaction, offering an ionic 

conductive path, serving as an electronic insulator, and acting as a gas barrier to prevent 

the mixing of anode and cathode gases.  

There are mainly two kinds of MEAs: GDL-based MEAs and CCM (catalyst-coated 

membrane)-based MEAs [30,31]. In a GDL-based MEA, a gas diffusion layer has 

catalysts coated on its surface, whereas the catalyst is directly applied onto the Nafion 

membrane in CCM-based MEAs. Compared to a GDL-based MEA, a CCM-based MEA 

provides a significantly higher performance in terms of lower contact resistances between 

the catalyst layers and the Nafion membrane, and lower catalyst loadings without 

sacrificing the performance; hence it is the choice of industries [32]. The material of 

different components of an MEA and their degradations during the cell operations affect 

the overall cell performance [33,34,35]. 

1.3.1. Membrane Electrolyte 

In a typical PEM fuel cell, a membrane (the electrolyte) rests between two catalyst layers 

to block electrons and reactant gases (hydrogen and oxygen), while at the same time 

allowing ionic currents to pass with low resistance from the anode to cathode electrodes. 

Therefore, the requirements for a qualified membrane are good protonic conductivity, 

high flow reactant gas permeability, and strong mechanical and chemical stability.  

Currently, the Nafion membrane produced by Dupont is the most widely used material 

for PEM fuel cells. It is a very thin material, ranging from 20 µm to 200 µm. Generally 

speaking, a thicker Nafion membrane offers better insulation and physical stability with 

higher proton transport resistance. On the other hand, a thinner membrane has low 
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insulation and stability but a higher proton transport ability [36,37]. The Nafion 

membrane is one kind of ionomer (synthetic polymers with ionic properties). It contains 

perfluorovinyl ethers terminated by sulfonic acids with hydrophobic tetrafluoroethylene 

(Teflon) backbones [38,39].  

The proton conductivity of a Nafion membrane is directly associated with the 

membrane’s hydration level because membranes rely on absorbed water to ionize their 

acid groups and to permit proton transport; thus, a suitable humidification of a Nafion 

membrane is essential [40,41,42]. For example, excess water content can lead to the 

flooding of the cathode side, whereas low water content dries out the membrane of the 

other side. Consequently, water management is crucial for PEM fuel cell operations. 

1.3.2. Gas Diffusion Layer (GDL) 

A GDL, a highly porous feature, promotes transitions due to its location between the 

bipolar plates and the catalyst layers. It offers a pathway for the mass transfer of reactants 

and products to and from the catalyst layers, ensures a structural stiffness in the MEA, 

promotes gas access to the catalysts under the landings between the flow fields, and 

serves as an electrically and thermally conductive pathway between the catalyst layer and 

the bipolar plate.  

Some researchers believe that creating a through-plane porosity gradient is the main task 

of GDLs [43,44,45]. On one hand, the catalyst layers contain extremely small pores so 

that the number of reaction sites can be maximized. However, this structure indicates that 

the catalyst layers require enormous pressure gradients, making PEM fuel cells 

uneconomical to operate. On the other hand, the bipolar plates aid to distribute reacting 

gases efficiently over the electrode area with a minimal pressure drop to the catalyst layer. 

The GDLs neutralize this pressure difference [46,47,48]. 

There are two main types of GDLs: a raw GDL and a GDL with a hydrophobic binder 

(PTFE), as shown in Figure 1-4. All GDLs consist of graphitized carbon fibres. These 

carbon fibres held together in a random manner by a carbon binder, which resembles 

paper or cloth. A carbonized thermoset resin works as the binder. The GDL with PTFE 

coating typically has a dual-layer carbon-based porous structure, and includes a carbon 
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micro-porous layer (MPL) or a sub-layer consisting of carbon black particles and a 

hydrophobic agent. The sub-layer prevents the rough carbon fibre paper from puncturing 

the membrane. The application of the hydrophobic binder in the carbon fibre paper 

improves water management [49,50,51]. The GDLs’ thickness (normally between 100 

µm to 300 µm) and porosity vary significantly for different applications and operating 

conditions. For instance, a high-porosity GDL is suitable for PEM fuel cells operating at 

high current densities, since more water is produced [52]. This high porosity helps to 

transfer reactants and products to and from the catalyst layer. In contrast, a lower porosity 

is suitable for low current density fuel cells so that the membrane can keep a certain level 

of water content. 

 

Figure 1-4  SEM images of various GDLs at 100* magnification [53] 

1.3.3. Catalyst Layer 

Catalyst layers aim to significantly facilitate electrochemical reactions because PEM fuel 

cells work at a low temperature. A catalyst layer is a porous material, and mainly consists 

of void regions, platinum, carbon particles and ionomers. Meanwhile, Pt-transition metal 

alloys, such as PtCo, Pt-Cr-Ni, and Pt-Ru-Ir-Sn, have also worked as catalysts in PEM 

fuel cells in order to reduce the cost [54,55]. The void regions provide spaces for the 

gaseous reactant. The carbon particles are electrically and thermally conductive, whereas 

the ionomer is proton conducting. In comparison to a Nafion membrane, which only 

starts to dissolve when in water at 210
o
C and at a high pressure of 68 atm for more than 

two hours, the ionomer in the catalyst layer is in a more soluble state. It acts as a binder 

between the platinum/carbon particles, and offers a proton conductive path from the 
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membrane to the catalyst for a protonic current flow. The platinum loadings and carbon 

types have large implications for both cell performance and durability [56,57]. The 

carbon supported platinum powders must have a close contact with the ionomer of the 

membrane. The fact that the electrochemical reactions occur only at the three-phase 

contact interface necessitates a contact among reactant gases, catalysts, and ionomers, 

which also indicates that the catalyst microstructure and ionomer-catalyst interface 

significantly affect cell performance. Therefore, an optimized balance between these 

three phases enables an improvement in the electrochemical reaction rate [58,59,60,61]. 

1.4. Fuel Cell Performance 

Figure 1-5 illustrates a typical graph of a PEM fuel cell performance, the so-called 

polarization curve, which shows the voltage outputs, V, versus the drawn current density, 

i. A current density, where the current is normalized by the area of the PEM fuel cells (a 

standard unit of current density, A cm
-2

), is usually used in comparing the performance of 

PEM fuel cells with various stack sizes. The operating voltage of PEM fuel cells at 

different current densities can be determined through the following equation. 

             
   

  
   

  
    

 

In theory, if supplied with sufficient fuel, a PEM fuel cell can supply a certain amount of 

current, meanwhile maintaining a constant voltage determined by thermodynamics. 

However, the actual voltage output is always less than the thermodynamically determined 

value, due to some irreversible losses. Moreover, as shown in Figure 1-5, the greater the 

current, the lower the voltage output of the fuel cell, limiting the total power that can be 

delivered.  

The polarization curve is made up of three parts--activation, ohmic and concentration 

polarizations--respectively resulting from the resistance to electrochemical reactions, the 

transport of electrons and ions in the cell components, and the limitations in the mass 

transfer [62].  

The activation polarization represents the initial sharp drop of the cell voltage, which 

mainly results from the slowness of the reactions in the catalyst layers. It is primarily a 
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function of temperature, pressure, concentration and electrode properties, and dominates 

the low current density portion of the polarization curve. Transferring the electrons and 

protons to or from the electrode requires a certain proportion of voltage. However, 

electrons and protons have to accumulate to certain levels so that the reaction can take 

place continuously with sufficient gas supplies. Thus, a proportion of the voltage 

generated is inevitably lost, and is called the activation loss.  

 

Figure 1-5  A typical polarization curve of a single PEM fuel cell 

The ohmic polarization is expressed through Ohm’s Law. It dominates the linear portion 

of the I-V curve. Improving the ionic and electronic conductivity of the cell enables the 

reduction of the resistance, R, in turn, reducing ohmic losses.  

The concentration polarization, apparent at a very high current density, is associated with 

several factors, including the concentration changes and flow rate of the reactants in the 

catalyst layer along the flow channel from the inlet to the outlet, the cell temperature, and 

the structure of GDLs and catalyst layers. The concentration impacts voltage in terms of 

changes in the reactant’s differential pressures, which is why this type of irreversibility is 

called concentration loss.  

Another notable irreversible loss is the fuel crossover and internal current. Although a 

Nafion membrane acts as a barrier to electrons, small amounts of electrons and reactants 
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still pass through the Nafion membrane, which can reduce the open circuit voltage of 

PEM fuel cells. This type of loss becomes negligible when a meaningful amount of 

current is drawn from the cell.  

1.5. Fuel Cell Degradation 

1.5.1. Definition 

The major technical challenge for fuel cells’ commercialization as an alternative power 

source is the durability under various assembly methods, degradation of materials, 

operating conditions and impurities or contaminants. Although performance degradation 

is inevitable, the degradation rate could be minimized through a comprehensive 

understanding of degradation and failure mechanisms. The performance degradation has 

two aspects: the early stage degradation and the late stage degradation. The early stage 

degradation is associated with the assembly method and operating conditions. An 

appropriate assembly method ensures a reasonable interfacial conductivity between 

various cell components and prevents leaking. However, this assembly procedure also 

introduces deformation into the MEA. In addition, operating conditions result in 

expansions or shrinkages in catalyst layers and Nafion membranes, further intensifying 

MEAs’ deformation. This deformation affects the effective transport properties, in turn, 

causing cell performance decay. On the other hand, the late stage degradation caused by 

the operating conditions of dynamic load cycling, start-up/shut-down procedure, and 

freeze/thaw make the cell performance reduction more appreciable.  

1.5.2. Clarification  

Fuel cell degradation is mainly associated with three categories: electrochemical 

degradation, thermal degradation and mechanical degradation. Previous studies paid 

significant attention to the electrochemical degradation. This degradation affects catalyst 

layers and Nafion membranes through gradual corrosions. Studies show that highly 

exothermal combustion between H2 and O2 can possibly cause pinholes in the membrane, 

bringing catastrophic issues [63,64]. In addition, peroxide (HO) and hydroperoxide 

(HOO) radicals, generated in the anode and cathode catalysts, can chemically attack the 

membrane and catalysts. This chemical attack is accelerated when the fuel cell is 
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operated under open circuit voltage and low humidity conditions. Moreover, foreign 

cationic ions significantly decrease cell performance in terms of adsorbing on the 

membrane and catalysts [65].  

Some studies have addressed the issue of thermal degradation of membranes. PEM fuel 

cells normally operate at a temperature around 75
o
C to enhance electrochemical kinetics, 

simplify water management and improve system CO tolerance. However, membrane 

protonic conductivity drops significantly with the decrease in water content when the cell 

is working at high temperatures [66]. Moreover, membranes are subject to critical 

breakdown at high temperatures due to the glass transition temperatures of polymers at 

around 80
o
C [67]. Therefore, the thermal stability of membranes under rapid start-up, 

stable performance and easy operation in subfreezing temperatures are paramount 

important capabilities for fuel cell commercialization [68].  

Mechanical degradation is of paramount importance because it causes a gradual reduction 

of mechanical strength and toughness of Membrane Electrode Assemblies (MEAs), in 

turn causing microstructural changes in MEAs, such as cracks, delamination, and 

thickness variations, which eventually lead to cell performance decay [22,23,24,25]. 

However, currently there is few studies focusing on this filed.  

1.5.3. Practical Requirement  

Depending on various applications, the requirements for cell life span vary significantly. 

For instance, the current target for automotive applications is lower than that for 

stationary applications, which is about 40,000 hours [17,18]. However, at present most 

PEM fuel cell stacks available on the market and research institutes can only achieve 80% 

of these goals. Practical degradation targets require less than 10% loss in the efficiency of 

the fuel cell system at the end of application, and a degradation rate of 2-10 μVh
-1

 is 

commonly accepted for most applications [20]. 

1.6. Objective and Scope of the Thesis 

Mechanical degradation and thermal degradation are significant important in the study of 

PEM fuel cell durability. However, so far only limited research concentrates on this 
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region. Therefore, this thesis focused on the mechanical degradation of an MEA in a 

PEM fuel cell. The main objectives are the following:  

 To develop constitutive relation (stress-strain model) for each component in an 

MEA 

 measure mechanical properties (stress-strain relation) 

 develop constitutive relation 

 validation experiments 

 To develop a structure model for an entire fuel cell 

 To incorporate the cell structure model with the cell performance model, and 

study the effect of mechanical degradation on performance 

In order to achieve these objectives, in the experimental phase, a scanning electron 

microscope detailed and quantified the original microstructures of MEAs and their 

changes before and after cell degradation. Furthermore, various experimental tests 

provided a set of identified mechanical properties of MEAs and their changes with 

various cell operating conditions. These mechanical properties guided the selection of 

appropriate constitutive relations for different components in a PEM fuel cell structure 

model. In the modelling phase, this comprehensive structure model provided the stress 

and deformation conditions in MEAs, which involved all the major components of a 

PEM fuel cell, including GDLs, catalyst layers, Nafion membranes, and graphite flow 

channel plates. This model then quantified the deformations of a PEM fuel cell during 

regular and cyclic cell operations. Later, this deformed fuel cell structure supplied the 

physical problem for the cell performance modelling. This structure-performance coupled 

model, the last stage of modelling phase, enabled the study in the effects of early stage 

deformation and late stage deformation on cell performance.  

This thesis has 9 chapters. Chapter 2 reviews the relevant literature regarding the 

mechanical degradation of a PEM fuel cell. Chapter 3 describes different experimental 

approaches used in the thesis. Chapter 4 explains the PEM fuel cell structure model and 

the cell performance model. Chapter 5 discusses the original and deformed 

microstructures of an MEA before and after cell degradation. Chapter 6 provides the 

mechanical characterization of various components in an MEA. Chapter 7 and 8 discuss 
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the numerical results for PEM fuel cells’ mechanical and thermal degradation and cell 

performance. Chapter 9 summarizes the whole study and suggests some future work.  
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    Chapter  2 

2. Literature Review 

 

 

 

Durability is of particular importance since it determines the ultimate use of PEM fuel 

cells. The past several decades have witnessed many numerical and experimental studies 

on PEM fuel cells’ chemical performance decay and duration. The field has seen 

prominent achievements. However, studies focusing on the mechanical degradation of 

MEAs in PEM fuel cells and its impact on cell performance decay are relatively scarce. 

This scarcity is surprising because the knowledge of mechanical and degradation is one 

of the prerequisite steps of understanding cell performance reduction. Studies of cell 

mechanical degradation can be carried out from two perspectives: experiments and 

modelling. This chapter reviews and summarizes previous efforts and achievements in 

the study of mechanical degradation, generally classified according to each cell 

component of an MEA  
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2.1. Experimental Study 

2.1.1. Visualization (Qualitative) Study 

Recently, researchers have paid considerable attention to the relationship between 

microstructure changes and cell degradation. This research depended on an electron 

microscope, such as a scanning electron microscope (SEM) and a transmission electron 

microscope (TEM), to probe the original morphology and its changes in GDLs, catalyst 

layers and membranes. Regardless of the type of electron microscope tests, sample 

preparation remains a crucial step because inappropriate methods can ruin the original 

structures. Broka et al. used two different methods, the freeze-fracturing method and the 

glass-knife-cutting method, to prepare SEM samples [69]. They found that sample 

preparation methods can affect the Nafion structure’s appearance. Compared with that of 

a sample prepared by the freeze-fracturing method, the impregnated Nafion layer was 

clearer in the sample prepared by the glass-knife cutting method. Currently, both methods 

win wide recognition in fuel cell SEM sample preparations; however, some researchers 

believe that the freeze-fracturing method has minimal impacts on the tested surface [13]. 

On the other hand, in order to obtain higher resolutions, the study of microstructural 

changes of MEAs after cell degradation also involves a TEM test. Similar to a SEM test, 

the sample preparation in a TEM test is critical because it manages to maintain the spatial 

relationship among the various macro- and micro-components. Because an MEA has a 

complex structure and a number of components, traditional preparation approaches are 

ill-suited for a TEM test. In order to resolve this issue, Blom et al. proposed a new 

samples preparation method [70]. First, they embedded a small piece from an MEA into 

an epoxy resin to support a porous material. Then a Reichert OMU3 Ultramicrotome 

helped to microtome the samples at room temperature. This method can successfully 

produce cross sections of an entire MEA. 

MEA 

Initially, research has mainly focused on the observations of structure defects on new 

MEAs and their associations with cell performance. Kundu et al. selected the freeze-

fracturing method for sample preparations and observed six major defects under SEM 
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tests on new CCMs, including cracks, orientation, delamination, electrolyte clusters, 

platinum clusters and thickness variations [22]. Unlike Kundu, Barron et al. concentrated 

on the microstructures of cross sections [30]. They carried out a SEM observation on the 

cross section of a new CCM-based MEA. This cross section exhibited a uniform layer of 

catalysts, and a close connection between catalyst layers and an electrolyte membrane, 

which enables the reduction of mass and proton transfer resistance, and the increase in 

the catalyst utilization.  

All the above studies involve only the original structure of MEAs. However, some 

researchers believe that the original microstructure changes during cell operations. These 

structural changes can, eventually, affect cell performance. Recently, other investigations 

have involved microstructural changes in MEAs after operations and their relationship 

with cell operating conditions and performance. In order to differentiate it from new 

MEAs, MEAs after operation are called used MEAs. 

Silva et al. ran durability testing on an eight-cell stack. A SEM test detailed the 

morphological changes when the cell performance reduced to 66% [71]. They concluded 

that structural changes, such as porosity loss, platinum aggregation, delamination, 

cracking, and GDL debris, were the reasons behind performance reduction. The cathode 

side of all cells experienced a thinning process, which was more pronounced when the 

cells were located away from the hydrogen inlet in the stack. The highest level of 

reduction was about 47%.  

Chemical additives, such as PTFE and Silicotungstic Acid (STA), in an MEA can affect 

its microstructure. In order to promote cell performance and relieve water flooding, 

additives receive wide applications in MEAs, which can affect the microstructures. Park 

et al. ran durability testing using an accelerated stress test (a wet/dry gas cycling method) 

[72]. The membrane was coated either with a treated PTFE or an untreated PTFE. A 

treated PTFE means that the PTFE layer was treated chemically to improve its 

hydrophilicity before incorporating it into the membrane. This chemical modification can 

enhance the compatibility and bonding between the Nafion resin and the PTFE matrix. 

The microstructure of a membrane cross section underwent investigations after cell 

failure using a SEM test. A highly porous structure with evenly distributed nodes and 
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pores existed on an untreated PTFE, whereas an uneven and roughened surface with an 

increased porosity and surface area prevailed in a treated PTFE. Around the break point 

after the tensile test, a PTFE coated membrane had a much denser thread-like structure. 

On the other hand, an untreated PTFE coated membrane had more micro-voids in the 

structure. Additionally, after 1800 wet/dry cycles, many pinholes occurred in the 

untreated PTFE coated membrane, which resulted from the separation between the 

Nafion polymer and the PTFE matrix.  

Membrane  

Tian et al. tested the feasibility of another additive, a Nafion/Silicotungstic Acid (STA) 

composite membrane [73]. From the SEM micrographs, the cast Nafion without a STA 

had no agglomerations; whereas a STA introduced agglomerations with a diameter 

around 0.1-0.2 microns into the membrane. These agglomerations were uniformly 

distributed within the cast Nafion. Also, many holes appeared when the composite 

Nafion/STA was immersed in boiling de-ionized water or in boiling 1M H2SO4, which 

can be attributed to the loss of STA particles.  

The material of the channel plate can also impact the microstructure of MEAs. Schneider 

et al investigated the effect of a silicon channel plate on a Nafion membrane [74]. The 

results showed that the microstructure and chemical composition of the bulk Nafion were 

different from those of the Nafion in contact with the silicon. This phenomenon indicated 

that a micro-structural rearrangement of the Nafion took place along with the macro-

structural deformation into the trenches. However, they didn’t investigate its association 

with cell performance.  

Catalyst Layer 

Park et al studied fabrication temperatures on the initial microstructure of catalysts [75]. 

They used a field emission scanning electron microscope (FE-SEM) to characterize the 

distribution of pore size in catalyst layers after fabrication. At different fabrication 

temperatures, the physical structures of a catalyst layer changed, resulting in a variation 

in cell performance. Russell et al also investigated the associations between the original 

pore size and cell performance [76]. Apart from characterizing the pore size distribution, 
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they found that the best-performing sample had more small pores, which offered a better 

ability for oxygen diffusion; in contrast, the worst-performing sample had larger 

agglomerates, indicating larger electron, proton and diffusion resistance.  

In probing more specifically into the microstructure changes of catalyst layers, Zhang et 

al conducted a quantitative analysis of catalyst layer degradations [77]. They proposed 

that the signature of an unused polymeric ionomer material was the island-like structures 

observed through a SEM test. However, in a used catalyst layer, more carbon particles 

resided on the membrane surface, which resulted from the dissolution or degradation of 

an ionomer at the surface during fuel cell operations. Hodnik et al studied platinum 

particle growth and platinum depletion after running the cell under severe simulated start-

stop conditions (50000 cycles from 0.2V to 1.4V) [78]. A newly developed identical 

location SEM (IL-SEM) was used in this study. A non-uniform distribution of platinum 

existed across the used catalyst cross-section. Although carbon corrosion was missing in 

the sample, a large particle growth occurred on the top of the catalyst film.  

TEM’s higher resolutions make it possible to observe microstructural changes, such as Pt 

migration, particle coarsening, and catalyst agglomerations. More et al. used Blom’s 

method to prepare TEM samples (cathode catalyst: 0.20±0.01 Pt3Cr/cm
2
; anode catalyst: 

0.2±0.01 Pt/cm
2
) [79]. They found that, if cathode catalyst layers contain different 

amounts of Nafion ionomer, the microstructural change could be different, and that these 

microstructural differences were also associated with cell performance. In addition, a 

significant particle coarsening took place on both anode and cathode catalyst layers. The 

anode catalyst layer witnessed the migration of Pt to the anode-membrane interface. 

Xian built upon Blom’s research and detected that catalyst particles in a new catalyst 

layer were detached from the carbon surfaces, indicating that a weak bonding to the 

carbon-support surfaces resulted in a lower catalyst utilization [80]. Compared with that 

in a cathode catalyst, the pure Pt in the anode catalyst layer had a smaller average particle 

size and a better dispersion on carbon surface. After 1000 hours of operations, both the 

anode and cathode catalyst clusters appeared. However, a more extensive agglomeration 

prevailed on the cathode side. Cathode catalyst agglomerations mainly occurred in the 

first 500 hours, which was the main reason behind the initial performance degradation. 
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Cell impedance trends showed that a degradation of the recast ionomer may be the major 

cause of performance decay after 500 hours. Another interesting phenomenon that 

occurred in the aging through experiments was the Pt migration. They suggested that the 

amount of anode Pt migrating into the membrane was a function of cell operating times. 

2.1.2. Quantitative Study (Mechanical Property Characterizations) 

Gas Diffusion Layer 

The stress-strain behaviour of GDLs provides perhaps the most significant prerequisite 

for a fuel cell degradation study. A GDL is a very thin layer (100~300 µm), composed of 

randomly oriented carbon fibres. Such a unique structure also makes it more vulnerable 

to compression, than other cell components. Under clamping and cyclic compressions, 

the GDL changes its physical structure as well as initial compressive behaviour, which 

deteriorates its functions and reduces cell performance [81,82]. In addition, most of the 

critical material parameters in terms of performance, such as electrical and thermal 

conductivities, gas permeability, and diffusivity, rely on the compressive behaviour of 

GDLs [83,84]. To date, some studies have concentrated on the mechanical degradation 

modeling of GDLs in PEM fuel cells. However, the reliability of the modeling largely 

depends on GDL’s compressive property.  

The compression experiment is the most convincing approach for GDL compressive 

behaviour measurements. Currently, numerical modeling and experimental measurements 

receive wide application in the determination of GDL’s compressive behaviour [85,86,46]. 

However, the reliability of modeling suffers from some inevitable modeling assumptions. 

The discrepancy in results between modeling and experiments sometimes can reach 20%. 

Therefore, experimental measurement provides more meaningful assistance. Nevertheless, 

the compressive behaviour of GDLs under fuel cell operating conditions cannot be easily 

characterized experimentally due to its small thickness, and highly porous and random 

structure. In addition, such a characterization becomes even more challenging because 

common fuel cell operating temperatures, relative humidity and its cyclic changes are 

hard to mimic. 
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So far, some studies are available regarding GDL’s thermal and electrical properties 

under different compressions. However, the compressive behaviour of the GDLs is often 

not a primary focus of these studies. Only few studies focus strictly on the compressive 

behaviour of GDLs. Based on these studies, a GDL shows a non-linear compressive 

behaviour, which is different from most assumptions in fuel cell modeling where a GDL 

has a linear compressive character. Yi et al. performed uniaxial tensile and compression 

tests in order to validate their numerical modeling [81]. Based on the observations from 

an optical microscope, they obtained thickness changes in GDLs as a function of 

compression loads, and found that stress-strain curves for both tension and compression 

tests were not linear.  

Regardless of the type of GDLs being tested, stress-strain curves always exhibit non-

linear correlations. Because of its micro-thickness, Radhakrishnan et al. stacked 10 

paper-based and cloth-based GDL samples together for a better accuracy [83]. The stress-

strain curve for a paper-based GDL had two distinct plateaus on the stress-strain curve. A 

similar phenomenon also existed in a cloth-based GDL. However, it was less rigid than a 

paper-based GDL. In addition, after its second plateau, the curve was non-linear which 

was different from that of the paper-based one. Sadeghi et al. draw a conclusion similar 

to Radhakrishnan’s, that the paper-based GDL deformed non-linearly with compression 

forces [85]. Ismail et al. probed the GDL’s mechanical properties using an INSTRON 

5566 universal testing machine with a 10 kN load cell for a better accuracy. Three 

distinctive regions existed in compressive stress-strain curves [87]. In the first region 

(compression 0-0.01 MPa), the strain increased linearly and rapidly with the compressive 

stress. When the compression increased from 0.01 MPa to 1 MPa, the curve became non-

linear and the slope decreased. After the compression levelled to more than 1 MPa, the 

stress-strain behaviour became linear again; however, its slope was much slower than that 

of the first region.  

Upon obtaining the stress and strain curve, researchers tried to use mathematical 

correlations to describe the non-linear compressive behaviour of GDLs, including 

piecewise linear expressions and exponential correlations. Most of them observed that the 

GDL behaved differently within different compression ranges; therefore the piecewise 
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linear curve could best describe such a phenomenon. Mishra et al. measured the 

compressive modulus of different types of paper-based and cloth-based GDLs using an 

INSTRON universal electromechanical testing system [46]. For paper-based GDLs, the 

compressive curves had three piecewise linear regions based on the best-fit slope of the 

line from the corresponding three regions, whereas the curves for the cloth-based GDLs 

showed four linear regions. Meanwhile, an exponential correlation was also used. Safeghi 

et al. described the non-linear compression curve through an exponential correlation 

which assisted their analytical model to estimate the thermal conductivities of the GDLs 

[85]. Ismail et al, unlike all the others, indicated that a fourth order polynomial curve 

fitted their data better [86].  

The compressive behaviour of GDLs with PTFE coatings is different from that of the raw 

GDLs. Escribano et al. mentioned that samples with PTFE coatings were less 

compressive than those without PTFE [43]. Sadeghifar et al. investigated the effect of 

PTFE contents on the compressive character of GDLs [88]. They measured the thickness 

changes of GDL samples with different PTFE contents as a function of compression 

pressures. Compared to the raw GDLs, samples with PTFE coatings had a similar non-

linear trend, but with less strain reduction under the same compression force. Ismail et al. 

indicated that higher PTFE contents made the GDL stiffer and less compressible [87].  

The common PEM fuel cell operation condition experiences inevitable condition changes 

in temperatures and relative humidity during start-up and shut-down processes, which 

leads to corresponding thermal-hygro stress changes. These changes in applied stresses 

can be treated as a cyclic compression. Escribano et al [43] found that a GDL presented a 

stable behaviour after the first compression, which was consistent with Mason’s 

conclusions [89]. In order to probe the impact of cyclic loadings, Safeghi et al. exerted 

loading and unloading compressions on GDL samples [85]. After five cycles, there were 

no significant hysteresis effects in the loading and unloading curves. Moreover, the strain 

reduction was more significant in the first cycle. Mathias et al. carried out a 10-repeated 

cyclic experiment on paper-based GDLs and acquired similar results [90]. 

Radhakarishnan et al. simulated repeated opening and closing of fuel cell hardware by 

subjecting Toray paper GDL samples to five cycles of compressions [83]. Based on the 
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results, the cyclic compression caused irreversible changes to the structures and 

properties of GDLs. Their results also indicated that the thickness reduction of samples 

increased after each compression cycle, which was different from what was found by 

others.  

Membrane 

In order to setup a structure model for a PEM fuel cell, the mechanical properties of 

Nafion membranes need to be characterized first. Kai et al investigated the mechanical 

properties of Nafion membranes under different environmental conditions [91]. The 

results indicated that the mechanical properties of Nafion membranes were associated 

with temperatures and relative humidity. Building upon Kai’s research, Patil et al 

explored the mechanical properties of Nafion membranes [92]. They found that its 

mechanical properties were associated with open circuit voltage conditions. Tang et al. 

studied the mechanical properties of a perfluorosulfonic acid (PFSA) membrane at 

different humidity and temperatures [93]. Tensile tests provided the Young’s modulus, 

yield strength, break stress and strain. The results showed that the Young’s modulus and 

yield strength decreased with humidity and temperatures. His research provided very 

meaningful data for the following modelling studies.  

2.2. Modelling Study 

2.2.1. Deformation Model 

Recently, some mechanical degradation studies show that MEAs must be sufficiently 

durable to withstand mechanical stresses so that the cell can sustain its performance 

under various operating conditions and their cyclic changes [80,94,95,96,97]. Studying 

the stress and deformation distributions in an MEA during a cell assembly process and 

regular cell operations is therefore essential for understanding the mechanical degradation. 

In the past several years, due to the limitations in experimental techniques, many studies 

relied on the finite element method (FEM) to setup a structure model and probe the stress 

and deformation conditions.  

Membrane 
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A reliable and comprehensive structure model requires an appropriate stress-strain model 

for different cell components in an MEA. Previous studies mainly focused on the stress-

strain model for Nafion membrane because it has both elastic and plastic behaviour. 

Moreover, the hygro-stress is an essential factor in cell stress analysis because 

membranes tend to swell in a constrained space during cell operations.  

Maher et al. built a full three-dimensional, multi-phase computational fluid dynamics 

model of a PEM fuel cell with straight flow channels, in order to investigate the 

displacement, deformation and stress inside the whole cell [98]. The model considered 

the effects of hygro- and thermal stresses. All the materials were assumed to be in the 

elastic region. Unlike other results, the membrane humidity swelling expansion in their 

simulation was constant. The results indicated that the temperature gradient and moisture 

change in the fuel cell when being operated induced a non-uniform distribution of 

stresses. This non-uniformity eventually resulted in bending stresses. These bending 

stresses might be the reasons behind the delamination between a membrane and catalyst 

layers.  

In addition, cyclic loading is another significant factor in membranes’ deformation 

because fuel cells experience inevitable start-up and shut-down processes. Kusoglu et al. 

developed a two-dimensional fuel cell assembly to reveal the stress evolutions of a PEM 

fuel cell subjected to a single hygro-thermal duty cycle [99]. They used two traditional 

methods (a constant displacement or a constant pressure) to simulate clamping forces. In 

order to study plastic deformations of the membrane during cycles, the membrane was 

assumed to be a linear-elastic, perfectly plastic material, whose material properties 

changed with temperatures and relative humidity. They found that hygro-thermal loading 

led to plastic deformations, and consequently the tensile residual stresses after the 

unloading. The in-plane stress was the largest stress component during the loading 

sequence, indicating that it controlled yielding behaviour. From their perspective, the 

residual in-plane stress in the membrane was the main reason for the occurrence of cracks 

and pinholes.  

Some people have used material anisotropy in order to improve the reliability of 

membrane modelling. Kusoglu et al. improved their own model through two aspects 
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[100]. First, they did not assume that the membrane was a perfectly plastic material; 

instead, they considered that yield strength changes with plastic strains. Second, the 

impact of swelling anisotropy was investigated. They found that membranes with low in-

plane swelling strains might have better performance during hydration-dehydration 

cycles. 

Gas Diffusion Layer 

A GDL has a highly porous structure, which makes its compressive behaviour very 

unique. In the experiments, people found that it have a non-linear stress-strain 

relationship. However, previous studies generally assumed that it has a linear stress-strain 

relationship. Serincan et al. developed a two-dimensional hydration modeling framework 

to investigate transport phenomena, electrochemistry and mechanical stresses in a PEM 

fuel cell [101]. They studied the mechanical stresses in a GDL due to thermal expansions 

and cell assemblies. A GDL was assumed to be elastic materials whose Young’s modulus 

changes with a normal strain; hence, this model can predict only the elastic region of the 

stress-strain curve. Moreover, anisotropy in the mechanical properties of GDLs was 

accounted for in stress calculations.  

MEA 

Initially, many studies focused on the impact of assembly procedures and common 

operating conditions on MEAs. Firat et al. analyzed a fuel cell stack with an active area 

of 50 cm
2
 from a mechanical point of view, using COMSOL Multiphysics [102]. Without 

considering the impact of humidity, they studied stress and strain conditions on the whole 

MEA. Despite relatively small temperature profiles for PEM fuel cells, high thermal 

expansion coefficient values of some components, such as the Nafion 112 membrane, 

caused noticeable changes in MEAs’ deformation. Bograchev et al. developed a linear 

elastic-plastic two-dimensional model of a fuel cell, in order to investigate the 

mechanical stresses in MEAs during cell assembly procedures [103]. Contrary to the 

traditional way where relative displacement or a simple given pressure modeled the 

clamping force, this study used bolt torques. They analyzed both the stress distributions 

on the local and global scales. The corresponding experimental data were in an agreement 
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with numerical predictions. For the local scale analysis, the stress distribution in the 

membrane was non-uniform, reflecting a periodic character. When the torque reached 

15.8 Nm, the MEA underwent plastic deformations.  

2.2.2. Mechanical Degradation on Cell Performance 

Very recently, some researchers began to employ the combination of a FEM method and 

a computational fluid dynamic (CFD) method [104,98] to study the cell performance with 

mechanical degradation. This coupled modelling method is superior because on one hand, 

it considers the effects of a degraded cell structure and its associated transport parameters 

on cell performance. On the other hand, it also takes into account the transport 

phenomena related to fuel cell operations, for example, non-uniform temperature 

distributions in a cell, providing a more detailed insight into the deformation conditions 

in a MEA. Consequently, structure-performance coupled model provides a more realistic 

approach to probe the mechanical imparts on cell performance. However, related research 

is very scarce.  

2.3. Summary  

Some studies have highlighted the mechanical degradation of PEM fuel cells; yet, the 

understanding of mechanical degradation in MEAs and their impacts on cell performance 

requires more significant efforts. For example, although SEM and TEM tests detailed 

structure changes, the mechanism behind degradation in MEAs still needs further 

clarification. In addition, since the mechanical properties of GDLs and catalyst layers 

were not the main focus in previous research, these properties are very scarce. This 

scarcity impairs the reliability of a structure model. Moreover, in the structure model, 

some assumptions might not be appropriate. For example, the GDL was assumed to have 

a linear stress-strain relation, which is not consistent with the experimental data. 

Additionally, the catalyst layer was ignored. In this case, previous structure model left a 

lot for improvement. Furthermore, some research started to couple the structure and 

performance model together to study the early stage of mechanical deformation on cell 

performance. However, related research is very scarce. In addition, to the best knowledge 
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of the author, currently there are few studies focusing on the late stage of mechanical 

degradation.  

Therefore, this research, focusing on the mechanical degradation on cell performance, 

relies on four levels of processes to clarify this mechanism. First, experimental methods 

provided the characterization of the microstructures and their changes in MEAs after 

degradation. Then, various experimental tests provided a set of identified mechanical 

properties of MEAs and their degradations with various cell operating conditions, which 

guided the selection of appropriate material models. Next, a structure model and then a 

structure-performance coupled model enabled the study of the early and late stage of 

mechanical degradation on cell performance.  
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    Chapter  3 

3. Experimental Development 

 

 

 

Experimental studies of mechanical degradation in PEM fuel cells mainly concentrated 

on four fields: I) morphological defects in new and degraded MEAs, II) Mechanical 

property characterizations of different components in PEM fuel cells, III) mechanical 

deformation and stress distributions of PEM fuel cells during operations, and IV) fuel cell 

performance characterizations. Among these four projects, Projects III and IV were 

validation experiments for their corresponding numerical modelling. This chapter 

describes the experimental design for these four studies.  

3.1. Original Microstructures in MEAs and Their Changes 

3.1.1. Fuel Cell Test Setup and Conditions 

A commercial Nafion 117 based CCM with an active area of 42 cm
2
 and two 230µm-

thick GDLs (coated with 30% PTFE by weight) sat in a single fuel cell assembly 

equipped with a parallel three-pass serpentine flow channel plate, as illustrated in Figure 

3-1 and Figure 3-2. Table 3-1 shows all the cell properties. This fuel cell assembly rested 

in an environmental chamber and ran through an accelerated durability test. All the 
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experiments used the Fuel Cell Automated Test Station (FCATS-G20) manufactured by 

the Green-light Innovation Corp. This work station controlled all the cell operating 

conditions, including inlet temperatures, pressures, relative humidity, and stoichiometry 

of the reactant gases on both sides of a fuel cell. Table 3-2 presents the measurement 

accuracy. An onboard computer-based control and data acquisition system controlled and 

monitored the entire test process, as shown in Figure 3-3. Table 3-3 describes the 

operating conditions. These selections followed Xian’s work [80], which shows that 

operating conditions with a high temperature of 90
o
C, a high relative humidity of 100%, 

and a high stoichiometric air of 3.6 can intensify the degradation of MEAs. The cell 

current density had a constant value of 100 mA/cm
2
; whereas the cell voltage was 

recorded every ten seconds. Figure 3-4 shows a typical test result. The cell voltage 

degraded from 0.7943 to 0.6788 V during the accelerated durability test within 250 hours.  

 

 

Figure 3-1  A schematic drawing of a single fuel cell assembly used in the durability testing 
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Figure 3-2  Flow distribution plate (all lengths are in the unit mm) 

 

 

 

Figure 3-3  A schematic picture of the accelerated durability test setup 
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Figure 3-4  Voltage-time curve during the accelerated durability test subjected to a fixed current 

density (100 mA/cm
2
) 

 

Table 3-1  Fuel cell properties 

Cell components Properties Value 

CCM Membrane type Nafion 117 

GDL  

(uncompressed, anode & cathode) 

Thickness 230 µm 

Porosity 0.75 

PTFE loading by weight 30% 

Gasket 
Material Silicon rubber 

Thickness 254 µm 

Flow channel layout 

Type Parallel serpentine 

Number of flow channels in parallel 3 

Channel width 1 mm 

Channel depth 1 mm 

Channel width 1 mm 

Cathode flow field plate 

Material Graphite 

Thickness 4 mm 

In-plane area 110.25 cm
2
 

End plates 

Material Aluminum 

Thickness 13 mm 

In-plane area 210.25 cm
2
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Table 3-2  Measurement accuracy 

Measurement Accuracy 

Temperature (supplied gases and deionized water) ±1
o
C 

Volume flow rate (supplied gases) ±0.4 mL min
-1

 

Gauge pressure (at inlet and outlet of flow channel layout) ±1 kPa 

Load box-constant current ±0.25% 

Load box-constant voltage ±0.25% 

Relative humidity  ±5% 

 

Table 3-3  Operating conditions 

Operating temperature 90 
o
C 

Gas flow rates 
Anode:    1.2 stoichiometric ratio 

Cathode:  3.6 stoichiometric ratio 

Humidified gases 
100%   90

o
C   H2 

 100%   90
o
C   Air 

Anode & cathode pressure 50 kPa 

 

3.1.2. General Fuel Cell Assembly and Experimental Procedures 

A proper cell assembly procedure is significant for cell performance as well as for 

avoiding the morphological defects that might be unduly introduced during assembly 

processes. Therefore, this study followed an established standardized cell assembly 

procedure. A room temperature of 25
o
C with a relative humidity of 30% provided a 

typical assembly working condition. Figure 3-1 illustrates the assembly procedures.  

In order to obtain precise dimensions, a shape template and a sharp knife provided correct 

cutting sizes to a GDL and a silicon gasket. A GDL’s real area should be slightly larger 

than its designed active area, so that it can fully cover the flow channels. An endplate sat 

on a horizontal and stable desk. Then a current collector plate lay on top of it, with an 

insulation layer in between the endplate and the collector plate. A sheet of raw GDL 

without PTFE coating rested between the current collector plate and the flow distribution 

plate, to ensure an ideal electrical conductivity. A PTFE-coated GDL lay directly on top 

of the flow field plate. Normally, only one side of a GDL had PTFE coating. The 

uncoated side faced towards the flow channels. A silicon gasket sat around the GDL 

edges. A CCM rested on top of the GDL. The application of four stainless steel pins 
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ensured an acceptable alignment between different fuel cell components. The assembly of 

the second half of a cell followed a similar method. A GDL, followed by a silicon gasket, 

a flow distribution plate, a current collector plate and, finally, an endplate, was stacked on 

a CCM. All the components needed to be aligned with each other to prevent leaking.  

Bolts and nuts finally tightened the single fuel cell. Normally, an even force applied on 

each bolt is realized using a torque wrench; however, this technique suffers from 

inconsistent or uncalibrated friction between the fastener and its mating hole. The 

combination of a shim stock and a torque wrench provided a solution to this issue. The 

shim stock rested around the edge of the flow channel plate, with a thickness of 0.63 

mm±10%. The fuel cell assembly underwent a leakage test. Nitrogen was used to test for 

leaking from the fuel cell at both the anode and cathode sides.  

This experiment also followed a standardized experimental procedure. The fuel cell 

assembly first rested inside the environment chamber and was properly connected to the 

fuel cell test station, as shown in Figure 3-3. Then, the activation of the fuel cell test 

station and the environmental chamber started, bringing the initial condition to the pre-set 

operating condition. The entire test system took about 90 minutes to reach a steady state. 

After the entire test system reached a steady state, the data acquisition process started. 

3.1.3. Measurement of Contact Pressures 

For contact pressure measurement, fuel cells were not in live operations. The experiments 

were carried out at a fixed room temperature of 25
o
C and a relative humidity of 30% to 

study the effect of clamping force on the stress distribution. The measurement of the 

contact pressure in the fuel cell stack relies on the Fuji pressure indicating film. This film 

is specially designed for measuring a clamping force (spatial resolution 5-15 microns; 

accuracy ±2%). First, a pressure indicating film underwent a cutting process to be the 

same size as the MEA. For different measurements, it sat either between the flow 

distribution plate and the GDL, or between the GDL and the CCM. The assembly force 

contributed to the red patch developing on the pressure indicating film. The density of 

this red colour changes depending on the amount of force applied. For example, the area 

with a deep red colour indicates a large applied force; conversely the area with a light red 
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colour represents a low applied force. This technique is a widely recognized approach of 

measuring the stress field in the fuel cell stack. In addition, image processing and analysis 

of the pressure indicting film provided the stress mapping.  

3.1.4. SEM Sample Preparation 

During SEM sample preparation, the freeze-fracturing method ensured the preservation 

of the spatial relationships among the cross section in an MEA. This method has minimal 

impacts on original structures [13]. The CCM was first submerged in liquid nitrogen for 

five minutes. Then it was broken in half when still submerged. After that, the sample 

rested on an SEM viewing stub using a carbon-coated tape. This SEM test relied on a 

JEOL JSM6464 scanning electron microscope with an Oxford INCA Energy EDS system 

(magnification 5-300,000; resolution 3.00 nm; accelerating voltage 0-30 KV).  

 

3.2. Experimental Characterizations of Mechanical 

Properties of GDLs 

3.2.1. Compression Measurement Apparatus 

This compression testing relied on two different compression measurement apparatuses: 

an INSTRON 5548 micro-tensile/compressive tester and a fully automated self-made 

compression testing station. An INSTRON 5548 tester, an ultra-high precision 

measurement apparatus, receives wide recognition for small assemblies or miniature 

specimens. In this experiment, the compressive testing of GDLs at room conditions used 

an INSTRON 5548 (Preload: rate 0.4 mm/min; load 5 N; Testing: rate 0.2 mm/min; 

maximum load 500 N). However this INSTRON tester is not applicable for cyclic testing, 

high temperature or humidified conditions. The need to study the effects of temperatures 

and relative humidity on GDLs necessitated the usage of a self-made testing apparatus 

equipped with an environmental chamber. As illustrated in Figure 3-5, this apparatus 

consisted of two calibrated electrolytic iron rods, a Velmex stepper motor, and a 

Honeywell Sensotec load. The sample (GDLs) was compressed between the two 

calibrated rods (Load measurement accuracy: ±0.5 %  of reading; Position control 
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resolution: 20 nm; Position measurement accuracy: ±0.5 μm). The lower rod was fixed 

whereas the upper rod, attached to a vertical slide, was movable and controlled by a 

Velmex stepper motor. This machine provided a series of prescribed clamping forces. The 

load cell measured the compression force and the stepper motor provided compressions 

up to 100 lbs.  

The movements of the upper rod determined the thickness reduction. First, the stepper 

motor compressed the lower rods to a set of desired compression forces and recorded the 

positions at each compression force. Then, a sample rested on the lower rod surfaces and 

was compressed to the first compression force in the set. Once the compression force 

reached the desired value (±2%) in the set, the data acquisition system automatically 

recorded the compression force and the stepper motor position. Finally, subtracting the 

position of the stepper motor from the previously recorded position without the sample in 

place determined the sample thickness. After the procedure, the stepper motor 

compressed the sample to the next desired force and repeated the measurement 

procedure.  

 

Figure 3-5  A schematic picture of the fully automated compression testing station 
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The lower rod obtained heat by an electric heater, while the upper rod was heated by 

circulating warm water from a constant thermal bath (manufactured by thermo scientific). 

These two rods heated the sample to the testing temperature. Further, an additional 

environmental chamber, as shown in Figure 3-5, was connected with a fuel cell 

automated test station, manufactured by Green Energy, which provided humidified air at 

desired temperatures. The environmental chamber wrapped with heating films which 

aimed to prevent excessive condensations at a high relative humidity. Pyrogel XT-E, a 

hydrophobic flexible thermal insulator, wrapped the outside of the heating films, ensuring 

a better insulation. A DC power generator offered power to the heating film. To keep a 

stable temperature across the sample during the test, the thermal bath, the electric heater 

for the lower rod, and the electric heating film for the chamber had the same temperature 

for each measurement.  

3.2.2. Standard Porosimetry Measurement 

A Porotech standard porosimeter 3.1 provided the porosity measurement of new and 

compressed GDLs. The porosity refers to the volume ratio of pores to the total volume of 

a material, as shown in Equation 3-1. It is a non-destructive testing method, which allows 

testing of the same sample before and after compressions. It relies on the law of capillary 

equilibrium, that is, if two or more porous bodies are filled with a wetting liquid and are 

at capillary equilibrium, then the capillary potentials for each of these porous bodies are 

equal [105]. The testing involved three porous samples: two calibrated standard porous 

samples with known porosity, and one testing sample. During the testing, these three 

samples were sandwiched. The two standard samples were on the top or bottom, while 

the testing sample rested in the middle. Once the standard samples and test sample were 

in contact, the capillary equilibrium formed by the flow of liquid and vapour, which was 

due to the capillary potential gradient. Volfkovich [105] provided more details for this 

approach. This principle provided the basis for the relationship determination between the 

liquid content in the test sample and that in the standards using the mass variation of the 

wet porous samples. Finally, the given pore size distribution curves of the standard 

sample, provided by Porotech Ltd, contributed to the porosity measurement of the testing 

sample,  
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Equation 3-1 

where, 𝜀  is the porosity of the material;    is the bulk volume of the pores; 𝑑  is the 

diameter of the test sample; 𝛿 is the thickness of the test sample;         is the total 

mass of the saturated sample and clean bottle;         is the total mass of the dry sample 

and clean bottle;    is the mass of the clean bottle; and 𝜌 is the density. 

3.2.3. Scanning Electron Microscope and Optical Microscopy  

A scanning electron microscope (SEM, JEOL JSM6464) and an optical microscope 

(AXIO Zoom, V16 Zeiss) detailed the microstructure of both fresh (before compression 

test) and compressed GDLs. Using the freezing fraction method helped to preserve the 

spatial relationships among the cross section of GDLs for the sample preparation.  

3.2.4. Measurement Conditions and Procedures 

The experimental conditions in this testing included temperatures and relative humidity. 

In order to simulate the real fuel cell operating conditions and study their effects, the 

temperature range was set from 25
o
C to 85

o
C, while the relative humidity range was set 

from 30% to 85%. To perform the testing in a stable condition (a stable temperature and 

relative humidity), the thermal bath, the electric heater, and the electric heating film 

reached the same temperature for each test two hours before the test. The humidified air 

started to fill out the environmental chamber after the chamber temperature became 

stable. The GDL samples had a disc shape. Before the experiments, it had SEM and OM 

testing, to record the initial microstructures. Then, the GDL samples rested in the 

environmental chamber for at least one hour, so that the testing sample can be fully 

heated and humidified. After the compression testing, the sample underwent the SEM and 

the OM testing again.  
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3.2.5. Uncertainty Analysis 

3.2.5.1. Compressive Behaviour Measurement 

Since the bias of the parameter measurement and the error of random variations are 

completely independent of each other, the errors in stresses and strains are composed of 

errors from two sources: the measurement parameter bias and the measurement process 

random (repeatability) error, as shown below in Equation 3-2.  

𝑢  √𝜀 
  𝜀   

Equation 3-2 

where 𝜀 
  is the error due to the parameter bias, 𝜀 

  is the random error, and  𝑢  is the 

uncertainty. The standard deviations of both stresses and strains, calculated from repeated 

measurements, are equal to the random errors. However, the parameter biases for stresses 

and strains are a weighted sum of the constituent errors because their measurements are 

involved more than one variable, as shown in Equation 3-3 and Equation 3-4.  
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Equation 3-3 
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Equation 3-4 

where 𝑑 is the diameter of the sample; 𝐹 is the force applied on the sample;    is the 

original thickness of the sample, measured by an electric disk micrometer;   is the 

displacement of the sample thickness; 𝜀    is the parameter bias for the force 

measurement; 𝜀    is the parameter bias for the sample diameter measurement; 𝜀     is the 

parameter bias for the original thickness measurement; and 𝜀      is the parameter bias for 

the displacement measurement. 
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3.2.5.2. Porosimetry measurement 

The uncertainty of the pore volume (∆𝜃   )  is ±0.075%, calculated by Equation 3-5. The 

uncertainty of the porosity (∆𝜃   )  is ±0.6%, calculated by Equation 3-6, as shown 

below. 
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Equation 3-6 

 

3.3. Experimental Characterization of Mechanical Properties 

of Catalyst Layers 

The mechanical property measurement of catalyst layers relied on a robust technique, the 

nanoindentation technique, which helps to determine thin film properties for which 

conventional testing are not feasible. The nanoindentation involves small loads and an 

indenter with a known geometry which is called Berkovich tip, as presented in Figure 3-6. 

This tip ensures the determination of the indent area. During the course of the 

instrumented indentation process, the Berkovich tip gradually penetrates the tested 

sample. Meanwhile, a record of the depth of penetration is made. These data are plotted 

on a graph to create a load-displacement curve, which enables the determination of the 

mechanical properties in the tested sample.  

As shown in Figure 3-7, the slope of the curve, dP/dh, upon unloading is indicative of the 

stiffness, S, of the contact, as presented in Equation 3-7.      is the maximum 

displacement at the maximum load     . Then, the determination of the reduced 

Modulus,   , depends on the stiffness of the contact, as presented in Equation 3-8 and 

Equation 3-9.    is the projected area on the specimen by the indenter.    is the contact 

depth. Eventually, the determination of the specimen’s Young’s modulus relied on 

Equation 3-10. Diamond indenter modulus,   , and Poisson’s ratio,   , were taken as 
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1140 GPa and 0.07, respectively.    and    are the Young’s modulus and Poisson’s ratio 

of the tested material.    was 0.25 in the test.  

  (
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Equation 3-7 
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Equation 3-10 

 

Figure 3-6  A schematic drawing of a nanoindentation test 

3.4. Validation Experiments for the Cell Structure Model 

3.4.1. Experimental Setup 

The experimental apparatus, as presented in Figure 3-8, contributed to the investigation 

of the mechanical deformation behaviour in an MEA during regular cell operations. This 

test relied on a standard Ballard fuel cell stack with an active area of 45 cm
2
. The MEA 

consists of a Nafion membrane, two catalyst layers, and two GDLs. The standard Ballard 
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fuel cell included a pressurized bladder that provides uniform compression over the 

reaction sites. The bladder, connected to a source of compressed air, kept a constant 

pressure of 0.4 MPa.  

 

Figure 3-7  A load-displacement curve for an instrumented nanoindentation test 

 

 

Figure 3-8  Experimental setup for MEA validation testing 

An accumeasure system 9000 equipped with capacitance probes offered the measurement 

for the thicknesses changes of an MEA in a Ballard fuel cell stack. The probe and target 



Experimental Development 

 

~ 42 ~ 

 

sat firmly on the top of the bipolar plates of the anode and cathode sides, respectively. 

The probe and target holders ensured an excellent mechanical stability and a high 

electrical resistance, which also kept the probe facing parallel to the target. The electrical 

capacitance formed between the accumeasure probe and the target surface varies as a 

function of the distance between the two bipolar plates. The variations of this distance, 

resulting from the thermal expansion, swelling and shrinkages of the MEA, are directly 

proportional to the displacement of the MEA.  

3.4.2. Experimental Procedure 

Commission processes including leakage and crossover tests were carried out prior to the 

displacement measurement. A heating-bath, manufactured by Thermo-Fisher scientific 

company, controlled the temperature of the fuel cell stack. The heated DI-water from the 

heating-bath flowed into the cooling plates of the fuel cell stack and circulated between 

the heating-bath and the cooling plates, making a stable temperature. The Greenlight-G40 

fuel cell testing station supplied the heated nitrogen gas with a desired humidity into the 

anode and cathode inlets of the cell stack. The Accumeasure system 9000 recorded each 

displacement measurement of the MEA at a frequency of 1 Hz; meanwhile data 

acquisition system (NI-DAQ) and thermocouple (T-type) monitored the stack 

temperature. This experimental procedure ensured that the measurement of the MEA 

deformation was accurate. Table 3-4 shows the measurement accuracy.  

Table 3-4  Measurement accuracy 

Measurement Accuracy 

Temperature (supplied gases and deionized water) ±1 
o
C 

Volume flow rate (supplied gases) ±0.4 mL min
-1

 

Relative humidity  ±5% 

 

3.5. Validation Experiments for the Cell Performance Model 

The polarization performance measurement relied on a Ballard standard fuel cell stack 

with an active area of 45 cm
2
. A G20 fuel cell testing station controlled the operating 

conditions, including the gas flow pressure, temperatures and relative humidity. The cell 
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performance test was carried at a cell temperature of 75 
◦
C, a relative humidity of 100% 

and an inlet gauge pressure of 35 kPa. The activation procedure lasted for 16 hours. 

Three-time repeated polarization tests confirmed the measurement repeatability.  

3.6. Summary 

This chapter describes the experimental design for studying the microstructures of 

original and deformed MEAs, and for measuring the mechanical property of different cell 

components. It also explains the corresponding experimental procedures and uncertainty 

analysis. In addition, it clarifies the experimental designs for validating the structure and 

the cell performance models.  
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    Chapter  4 

4. Model Development 

 

 

 

Studies of mechanical degradation in PEM fuel cells focused on numerical modelling for 

two issues. The fuel cell structure model characterized the stress and strain conditions of 

an MEA during common and cyclic operating conditions, whereas the cell performance 

model described the real-time activity of a PEM fuel cell with a deformed MEA, 

quantified through the structure model. This chapter provides the essential information 

about these two models, including physical models, assumptions, model formulations, 

boundary conditions and corresponding validation results.  

4.1. PEM Fuel Cell Structure Model 

4.1.1. Physical Model 

A comprehensive PEM fuel cell structure model involves force equilibrium equations, 

compatibility equations, constitutive equations for different cell components and 

appropriate boundary conditions. A typical single PEM fuel cell stack normally consists 

of two steel endplates, two current collectors, two graphite flow channel plates, two 

GDLs, two catalyst layers and one Nafion membrane. Figure 1-1 illustrates the schematic 
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drawing of a typical single fuel cell stack. However, because of the limitation in 

computational power, the structure model usually involves simplifications. Figure 4-1 

shows a simplified single channel PEM fuel cell model, which was made up of two 

graphite channel plates, two GDLs, two catalyst layers and one membrane.  

 

Figure 4-1  A schematic drawing of a single PEM fuel cell channel 

4.1.2. Assumptions  

 A perfect assembling of different components was assumed. The sliding was 

considered to be negligible. The stresses transmitted completely on the interfaces 

 Simplified temperature and humidity distributions were assumed. Humidity 

gradient and temperature gradient from the cathode to the anode were ignored. 

The temperature and humidity distributions were uncoupled.  

 All material properties were assumed to be isotropic, including isotropic swelling 

and thermal expansions.  

4.1.3. Governing Equations   

4.1.3.1. Force Equilibrium and Compatibility Equations.  

In continuum mechanics, a solid body is assumed to be composed of a set of infinitesimal 

cells. Each cell is connected to its neighbour cell without any gaps or overlaps. Based on 

this theory, Force equilibrium equations are proposed. They are the most essential 

equations in solid mechanics modelling, which defines that the externally applied loads 
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equal to the total internal element forces at all joints or node points of cells in a structure. 

Solving a solid mechanics issue requires that the differential equations of equilibrium for 

all infinitesimal cells within the solid must be satisfied.  

Equation 4-1 illustrates the three-dimensional force equilibrium equations of an 

infinitesimal element. The body force component, Ki , is per unit of volume in the i-

direction. Because        , the infinitesimal element is automatically in rotational 

equilibrium.  
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Equation 4-1 

In continuum mechanics, strains are defined as displacements of the structure per unit 

length. Compatibility equations mean that when all material particles in a component 

deform, translate and rotate, they need to meet up again very much like the pieces of a 

jigsaw puzzle must fit together. If the small displacement fields, ux, uy and uz are 

specified, the consistent strains can be calculated using the following Equation 4-2. Then, 

the compatibility equation can be written as Equation 4-3, which can be symbolically as 

      0. Since i, j, k and l have values ranging from 1 to 3, Equation 4-3 has a total of 

81 equations. However, because             and                    , 81 equations 

can be reduced into 6 equations. Equation 4-4 shows the three-dimensional compatibility 

equations of an infinitesimal element. 
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Equation 4-4 

4.1.3.2. Stress-Strain Relationship (Constitutive Relations) 

Gas Diffusion Layer 
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Unlike other components in a PEM fuel cell, which can be simply classified as an elastic 

material or a plastic material, the gas diffusion layer is very unique. Previously, 

researchers treated it as an elastic material [100,99,23]; however, compression testing 

shows that a GDL actually does not have a linear stress-strain relation. In addition, its 

porous structure and micro-thickness make it very challenging to go through tensile 

testing. To date, we have already characterized GDLs’ mechanical properties using 

compression testing. Here, we want to use this experimental data to model GDL’s 

mechanical behaviour.  

The hyperelasticity material model, called Blatz-Ko model, was the selection for GDLs’ 

mechanical behaviour modelling, including its non-linear compressive behaviour and 

corresponding cyclic changes, because the compression data at hand can provide the 

required parameters for this model. The constitutive behaviour of hyperelastic materials 

is usually derived from the strain energy potentials. The stretch ratio, λ, and the stretch 

invariant, I, are used to describe material deformations, which are defined in Equation 4-5 

and Equation 4-6. J is the total volumetric ratio. The strain energy potential, W, can be a 

function of the stretch ratios or the strain invariants, as shown in Equation 4-7. Equation 

4-8 determines the stress and strain relationship. Due to the material incompressibility, 

the strain energy potential can be split into the deviatoric term, Wd, and the volumetric 

term, WV, as shown in Equation 4-9. As shown in Equation 4-10 and Equation 4-11,   ̅ is 

the deviatoric invariants.   ̅̅ ̅ is the deviatoric principal stretches. The Blatz-Ko model has 

the following form, as presented in Equation 4-12.   is the shear modulus. This model 

assumed the effective Poisson’s ratio as 0.25.  
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Equation 4-12 

Nafion Membrane 

An elasto-plastic model with isotropic hardening simulated the mechanical behaviour of a 

Nafion membrane. An elasto-plastic model means that a material has both elastic and 

plastic material behaviours. The characteristic feature of elastic material behaviour is that 

the elastic strain returns to zero at complete unloading, whereas plastic strain remains 

after complete unloading. An additive composition of the strains by their elastic and 

plastic parts is shown in Equation 4-13. 
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𝜀  𝜀   𝜀   𝜀  𝜀  

Equation 4-13 

The traditional Hooke’s law determines the elastic strains 𝜀  . As soon as the initial yield 

stress is reached, plastic strains 𝜀   occur. 𝜀  is the thermal strain, whereas 𝜀 is the 

swelling strain, induced by the relative humidity. Defining the correlation between stress 

and strain for a plastic material is difficult because the plastic strain state is also 

dependent on the loading history. In order to determine the correlation of plastic strains, 

the constitutive description of plastic material behaviour includes a yield condition, a 

flow rule and a hardening law.  

Yield Condition 

The yield condition determines if the relevant material suffers plastic strains at a certain 

stress state. It can be split into a pure stress fraction,  (𝜍), called the yield criterion (i.e. 

the equivalent stress), and an experimental material parameter,  ( ), called the flow 

stress (i.e. yield stress). Hence, Equation 4-14 presents its form. If 𝐹(𝜍  )  0 , the 

material only shows elastic material behaviour. If 𝐹(𝜍  )  0, the material experiences 

plastic deformations.  

𝐹(𝜍  )   (𝜍)   ( ) 

Equation 4-14 

There are many different yield criterions. Here, the Von Mises yield criterion, also called 

as J2-flow theory, was selected for Nafion membrane, which had the assumption that 

yielding begins when the elastic energy of distortion reaches a critical value. The VON 

Mises stress is shown in the Equation 4-15.  

 (𝜍)  √(𝜍  𝜍 )
 
 (𝜍  𝜍 )

 
 (𝜍  𝜍 ) 

 
 √

 

 
       

Equation 4-15 
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    is the component of the deviatoric stress.     𝜍   
 

 
(𝜍  𝜍  𝜍 )𝛿  . Therefore, 

the yield condition using the Von Mises yield criterion can be written as Equation 4-16.  

𝐹(𝜍  )  √
 

 
        ( )  0 

Equation 4-16 

Flow Rule and Hardening Rule 

The flow rule describes the evolution of the infinitesimal increments of the plastic strain, 

 𝜀   in the course of the load history of the body. The hardening rule describes the 

change in yield condition with the progression of plastic deformation. According to the 

hardening rule, the yield condition is determined by the plastic work, 𝛿   , during each 

incremental plastic strain, 𝛿𝜀  
  

. As a result, the increment of plastic work for each 

incremental plastic strain is shown in the following Equation 4-17: 

𝛿    𝜍  𝛿𝜀  
  

  , 

Equation 4-17 

where 𝜍   is the stress components, satisfying the yield condition and producing the 

corresponding plastic strain increment, 𝛿𝜀  
  

. According to the flow rule, the incremental 

plastic strain is normal to the yield surface, which is described in the following form, 

Equation 4-18:  

𝛿𝜀  
   𝛿 (

  

    
)
     

, 

Equation 4-18 

where 𝛿  is a scalar multiplier. In addition, the correlation between the equivalent 

incremental plastic strain and incremental plastic strain component can be described in 

Equation 4-19. Based on Euler’s theorem, it can be rewritten as Equation 4-20. Finally, 

we can obtain, 𝛿𝜀   𝛿 , meaning that the equivalent plastic strain increment is equal to 

the scalar multiplier, which provides the generalized length of the plastic strain increment.  
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𝛿𝜀     𝛿    𝜍  𝛿𝜀  
   𝜍  𝛿 (

𝜕 

𝜕𝜍  
)
     

 

Equation 4-19 
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Equation 4-20 

The quantity of strain increment can be determined using Equation 4-21. Since the scalar 

multiplies is equal to the equivalent plastic strain, it can be rewritten as in Equation 4-22. 

Additionally, because  √
 

 
       and    𝜍   

 

 
(𝜍  𝜍  𝜍 )𝛿  , the equivalent 

incremental plastic strain is described as Equation 4-23. Therefore, the equivalent plastic 

strain is shown in Equation 4-24. Consequently, the yield condition using the Von Mises 

yield criterion with isotropic hardening can be rewritten as Equation 4-25. In addition, 

because of Equation 4-18, the flow rule can be simplified as Equation 4-26. Here, 𝜍  is 

the initial yield stress. 
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Equation 4-25 
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Equation 4-26 

Rate-Dependent Isotropic Plasticity Model  

Under real fuel cell operating conditions, different frequencies of the start-up and shut-

down processes can significantly affect the mechanical response of Nafion material. We 

discussed the rate-independent plasticity model with isotropic hardening above; however, 

this model does not include the impact of the strain rate. Therefore, the rate-independent 

plasticity model needs to be modified into a rate-dependent plasticity model, using 

Peirce’s rate-dependent plasticity model, as shown in Equation 4-27. Here, m is the strain 

rate hardening parameter.   is the material viscosity parameter and 𝜍   is the static yield 

stress. This model, compared with other rate-dependent plasticity model, shows better 

convergence ability. As a result, the yield condition with the Von Mises yield criterion 

can be rewritten as Equation 4-28.  
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Equation 4-28 
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Flow Channel Plate  

The stress-strain relationship contains the material property information, which needs to 

be evaluated by experiments. According to the experimental data, a graphite flow channel 

plate has a linear stress-strain relationship, meaning that the amount of stress is 

proportional to the amount of strain. Hence, it is an elastic material. The mechanical 

material properties for most common elastic material are defined in terms of three 

numbers: Young’s modulus (modulus of elasticity) E, Poisson’s ratio ʋ, and coefficient of 

thermal expansion α.  

In order to determine the stress-strain relations in the finite element approach, it is helpful 

to look at the general strain-stress relations. The most general form of the three-

dimensional strain-stress relations for elastic materials can be written in the following 

symbolic matrix form, as shown in Equation 4-29, which is subjected to both mechanical 

stresses and temperature changes. C matrix is named as the compliance matrix, which is 

related to the material properties. ΔT is the temperature difference in reference to the 

reference temperature. α is the strains caused by a unit temperature increase. Because the 

finite element approach requires that the stresses be expressed in terms of the strains and 

temperature change, it can be rewritten as Equation 4-30.  

     ∆   

Equation 4-29 

     ∆    

Equation 4-30 

In addition, a graphite flow channel plate was assumed to be an isotropic material, 

meaning that it had equal properties in all directions. Because of this characteristic, its 

stress-strain relation had the following form, as shown in Equation 4-31. G is the shear 

modulus,   
 

 (   )
. Equation 4-31 has another form, as presented in Equation 4-32. 
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Equation 4-32 

Catalyst Layer 

According to the results of the Nano-indentation test, a catalyst layer, composed of Pt/C 

agglomerates and ionomer, can be described as a linear elastic material. In addition, 

because ionomer swelling induces strains, catalyst layer’s stress-strain relation can be 

rewritten as Equation 4-33. ΔRH is the relative humidity difference in reference to the 

reference relative humidity. β is the strains caused by a unit relative humidity increase. 

Moreover, this stress-strain model also considered the thermal expansion.   
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Equation 4-33 

4.1.3.3. Stress-Strain Relationship in an MEA (Contact Condition) 

The stress-strain relationships for each cell components of an MEA are discussed in the 

above section. However, an MEA has a five-layer structure. It is very important to choose 

an appropriate contact conditions between these layers. Here, the bonded contact 

condition is selected for the interfacial conditions for these layers because they are tightly 

connected or glued with each other in the real operation. The bonded condition means 

that stresses transmit completely on the interfaces. There is no sliding or separation 

between faces. This type of contact allows for a linear solution since the contact area will 

not change during the application of the load.  

Two layers are in bonded contact means that they do not interpenetrate, and that they can 

transmit compressive normal forces. Contact compatibility prevents the interpenetration 

between two contacting bodies. Equation 4-34 shows the contact formulations used to 

enforce compatibility at the contact interface. 𝐹       is a finite contact force,         is 

a concept of contact stiffness and              is the penetration. 

𝐹                           

Equation 4-34 

4.1.3.4. Boundary Conditions 

The boundary values were given by: 

𝑢  0  
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on the bottom of the cathode flow channel plate 

The symmetric boundary condition was applied on the edge of the channel, as shown in 

Figure 4-2. Clamping forces were applied on the top of the anode flow channel plate. 

𝑢  0 

𝜃  
 

 
[
𝜕𝑢 
𝜕 

 
𝜕𝑢 

𝜕 
]  0 

4.1.4. Material Properties of Different Cell Components 

4.1.4.1. Graphite Flow Channel Plates and Catalyst Layers 

All the components in PEM fuel cells have different material properties, which are listed 

in Table 4-1. Based on the experimental data, a flow channel plate was treated as a linear 

elastic material with thermal expansions. According to the nanoindentation testing, a 

catalyst layer had the same selection. However, it also had both thermal and swelling 

expansions. 

Table 4-1  Material properties of catalyst layers and graphite flow channel plates 

Component β (RH
-1

) ʋ E (MPa) α (K
-1

) 

Graphite Flow Channel Plate --- 0.25 10,000 5*10
-6

 

Catalyst Layers Figure 4–3 0.25 450 123*10
-6

 

 

 

Figure 4-2  Boundary conditions for the structure model 
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4.1.4.2. Nafion Membrane 

The Nafion membrane was treated as a rate-dependent plastic material with isotropic 

hardening. Its material properties depended on temperatures and humidity, as illustrated 

in the Table 4-2, Table 4-3 and Table 4-4. These material properties were defined for four 

different temperatures and relative humidity based on tensile testing. The swelling strains 

of the Nafion membrane can be obtained from experiments, as shown in Figure 4–3. So 

far, the rate-dependent parameters for the Nafion membrane cannot be found in the 

literature. However, because PTFE is the backbone of Nafion membrane, it is reasonable 

to assume that the viscoplasticity of Nafion membrane is similar to that of the PTFE, 

whose rate-dependent parameters can be easily obtained from many experiments. In this 

modelling, the hardening parameter, m, is 0.230, while the viscosity parameter, γ, is 

0.0770 [106]. 

 

Table 4-2  Material properties of Nafion membrane 

Component β (RH
-1

) ʋ E (MPa) α (K
-1

) 

Nafion Membrane Figure 4–3 0.25 Table 4-3 123*10
-6

 

 

 

Table 4-3  Young’s modulus at various temperatures and humidity for Nafion membrane [93] 

Young’s Modulus (MPa) Relative Humidity (%) 

30 50 70 90 

25 
o
C 197 192 132 121 

45
 o
C 161 137 103 70 

65
 o
C 148 117 92 63 

85
 o
C 121 85 59 46 
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Table 4-4  Yield strength at various temperatures and humidity for Nafion membrane [93] 

Yield Strength 

(MPa) 

Relative humidity (%) 

30 50 70 90 

      

T=25
o
C 6.76 6.51 5.66 4.20 

T=45
o
C 5.67 5.21 5.01 3.32 

T=65
o
C 5.14 4.58 4.16 2.98 

T=85
o
C 3.61 3.44 3.08 2.20 

     .025 

T=25
o
C 7.16 6.61 6.22 5.11 

T=45
o
C 5.70 5.72 5.43 3.69 

T=65
o
C 5.30 4.77 4.36 3.33 

T=85
o
C 4.16 3.62 3.16 2.26 

     .05 

T=25
o
C  9.71  9.26  8.65  8.88 

T=45
o
C  7.31  7.34  7.48  6.18 

T=65
o
C  6.55  5.92  5.73  5.78 

T=85
o
C  5.04  4.28  4.22  4.31 

 

 

Figure 4-3  Experimental data for dimensional change due to the swelling expansion [93] 

4.1.4.3. Gas Diffusion Layers 

The compressible hyperelastic Blatz-Ko model was used to describe GDLs’ mechanical 

behaviours in the modelling. This model involves only one coefficient, µ, the initial shear 

modulus, which needs to be determined. The uniaxial testing provided the stress-strain 

relationship of GDLs under various compressions. In addition, a GDL was assumed to 



Model Development 

 

~ 60 ~ 

 

have a Poisson ratio as 0.25 [100]. Then, hyperelastic curve fitting, using the 

experimental data at hand, determined the initial shear modulus.  

Since the material is compressible and the GDLs’ Poisson ratio is known, the stretch ratio 

can be rewritten as Equation 4-35. Consequently, the invariants have the following 

properties, as illustrated in Equation 4-36. In order to derive the relationship between 

strain energy and the experimental data from uniaxial compression testing, a 

multiplication with 
   

   
 is used, as shown in Equation 4-37. Consequently, we can obtain a 

relation between stress and strain, 𝜍   (     ). For a uniaxial compression testing, 

Equation 4-38 is valid. Eventually, a correlation between uniaxial stress and strain can be 

established, 𝜍   ( ) with a constant property, µ, needed to be determined. To obtain the 

initial shear modulus, a curve fit of the expression against the experimental data was 

required. Normalized error norm, shown in Equation 4-39, was used since it gave equal 

weight to all of the data points. S is the relative error, whereas 𝜍  is the experimental 

stress value. 

  
  

  (
∆ 
 )

 

  
   

  
(  

∆ 
 )
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Equation 4-37 

          
 
 
   

 

Equation 4-38 
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  ∑ (  
𝜍 
𝜍 

)
 

          

   

 

Equation 4-39 

 

4.1.5. Numerical Implementation 

The PEM fuel cell structure model relied on the commercial software, ANSYS 

Multiphysics, to discretize and solve its equations. The programming language APDL 

supplied the corresponding coding for swelling expansion model, Blatz-Ko model and 

Peirce’s rate-dependent plasticity model. The Newton-Raphson method was used to solve 

these equations. All variables followed a strict convergence criterion with a residual of 

10
-8

.  

4.1.6. Numerical Procedure  

Load-Force Transformation  

The internal forces of a structure can be determined directly from the equations of force 

equilibrium, as shown in Equation 4-40, which yields one matrix equation. R is an 

external load. A is a load-force transformation matrix and f is an internal force. Load-

force transformation is a function of the geometry of the structure only. It describes the 

relationship between forces in the global and local coordinate system. 

     

Equation 4-40 

Displacement Transformation Matrix 

The calculation of joint displacement involves the following matrix equation, as 

presented in Equation 4-41. d is deformation and u is the joint displacement. B is the 

element deformation-displacement transformation matrix, which is a function of the 

geometry structure. It describes between displacements in the global and local coordinate 

system.  
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Equation 4-41 

Constitutive Relations 

The forces in the elements can be expressed in terms of the deformations in the elements 

by the following matrix equation, as shown in Equation 4-42. k is the element stiffness 

and f is an internal force. 

     

Equation 4-42 

In structural analysis, the starting point is the joint equilibrium, Equation 4-40. If we 

substitute element force-deformation equation (constitutive relations), Equation 4-42, the 

joint equilibrium equation can be written as      . Then we substitute Equation 4-41, 

the general joint equilibrium can be written as     , where K is the global stiffness 

matrix. 

4.1.7. Grid Independency 

In theory, infinitely small grid size results in an exact solution. Hence, increasing the 

number of mesh seems to be a better approach of improving the accuracy. However, the 

limitation of computational resources restrains such an idea. For this structure model, grid 

independency test enabled the study of the mesh size effect on the solution, indicating 

that the number of grid points along the y-direction, namely the thickness direction, 

significantly affected the solution.  

A large mesh deformation caused the solution difficult to converge when the number of 

grid points along the y-direction for each layer was smaller than four. Here, solutions 

with 20 grid points along the y-direction in each layer were assumed to be the standard 

solutions. Compared with these standard solutions, solutions with 10 grid points along the 

y-direction in each layer had an error of about 0.26%. Further increasing the number of 

the grid points significantly increased the computational time; therefore, in this model 

each layer had 10 grid points in the y-direction. The total number of grid points of the 

computational domain was 76317. 
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4.1.8. Comparison with Experimental Data 

In order to examine the accuracy of this PEM fuel cell structure model, the GDL’s 

hyperelastic Blatz-Ko model, the Nafion membrane’s elastic-plastic model, and the 

combined structure model for the MEA need to be validated using experimental data. As 

illustrated in Figure 4-4, Figure 4-5, and Figure 4-6, the experimental compressive 

behaviours of GDLs, Nafion membranes, and MEAs were generally consistent with the 

corresponding modelling predictions, which validated the reliability of these three 

constitutive relations.  

 

Figure 4-4  Comparison between the Nafion membrane compressive testing and its corresponding 

modelling results (Temperature: 25
o
C, Relative Humidity: 30%) 
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Figure 4-5  Comparison between the GDL compressive testing and its corresponding modelling 

results (Temperature: 25
o
C, Relative Humidity: 30%, loading initial shear modulus 

 =1.1348*10
6
Pa, unloading initial shear modulus =9.447*10

5
Pa ) 

 

Figure 4-6  Comparison between MEA compressive testing and corresponding modelling results 

(Relative Humidity: 100%) 
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4.2. PEM Fuel Cell Performance Model 

This comprehensive PEM fuel cell performance model involved electrochemical reaction 

kinetics, heat generation and transfer, transport of multi-component gas species, multi-

water phases, and electrons and protons, and water phase change processes. A PEM fuel 

cell stack composes different components, including porous and solid materials. Hence, 

these transport phenomena take place in void volumes, porous and solid materials. Due to 

the limited computational power, a continuum macroscopic approach, which assumes a 

homogeneous material of GDLs, catalyst layers and membranes, was used, in order to 

model transport phenomena in major cell components simultaneously. In a continuum 

macroscopic approach, a set of conservation equations modeled each transport 

phenomena. This cell performance model is based on Wu’s model [107]. 

4.2.1. Physical Problem 

The computational domain contained a typical single PEM fuel cell channel, as illustrated 

in Figure 4-1. It included all the essential components, such as two bipolar plates, two 

single straight flow channels, two GDLs, two catalyst layers, and one Nafion membrane. 

Humidified hydrogen and oxygen flowed into the anode and cathode channel respectively.  

4.2.2. Assumptions  

This modelling included the following assumptions: 

 The gravity effect was negligible. 

 All the reactant gases were ideal gases.  

 The flow condition was laminar flow.  

 No contaminating gases were considered. 

 The membrane was impermeable to all the gases. 

 Since the liquid water can be easily removed from straight flow channels, no 

liquid water existed in the flow channels  
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4.2.3. Model Formulation 

4.2.3.1. Conservation Equations 

Several conservation equations, such as mass, momentum, electronic charge, ionic charge, 

gas species, and liquid water, were formulated for various components of the PEM fuel 

cell. They are listed below with the various source terms in these equations provided in 

Table 4-5.  

Mass of gas mixture (flow channel, GDL and catalyst layer) 

  ( 𝜌 𝑢 ⃗⃗⃗⃗ )     

Equation 4-43 

Momentum of gas mixture (flow channel, GDL and catalyst layer) 

  ( 𝜌𝑢 ⃗⃗⃗⃗  𝑢 ⃗⃗⃗⃗ )         (    𝑢 ⃗⃗⃗⃗ )     

Equation 4-44 

Gas species (flow channel, GDL and catalyst layer) 

  (𝜌 𝑢 ⃗⃗⃗⃗   )    (𝜌   
   

   )     

Equation 4-45 

Liquid water (flow channel, GDL and catalyst layer) 

  ( 𝜌 𝑢 ⃗⃗⃗⃗ )    (𝜌      )     

Equation 4-46 

Dissolved water (membrane and catalyst layer) 

0  
𝜌   

  
  (  

   
   )     

Equation 4-47 

Ionic charge (membrane and catalyst layer) 

0    (    
   

     )       

Equation 4-48 

Electronic charge (bipolar plate, GDL, catalyst layer) 
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 0    (  
   

   )     

Equation 4-49 

Energy (entire cell components) 

  ((𝜌  )  
   

𝑢⃗  )    (      
   

  )     

Equation 4-50 

Because catalyst layers and GDLs are porous materials, the gas mixture mass, momentum, 

and species conservation equations listed above are standard conservation equations with 

porous formulations [108]. In addition, the calculation of the effective porosity of the gas 

mixture involved the volume fractions of the solid materials, such as GDLs and catalyst 

layers, and the liquid water. Liquid water was assumed to exist in GDLs and catalyst 

layers. Its conservation equation was derived based on the capillary pressure in porous 

media [109]. Dissolved water was considered only for the Nafion-related materials, such 

as Nafion membranes and catalyst layers. Traditionally, its conservation equation should 

consist three terms, including diffusion, source and convection terms. However, the 

convection term was ignored since the convective mass transfer is negligible. The 

electronic and ionic charge conservation equations consisted of diffusion and source term. 

The transient term was ignored because the electrochemical double layer charging and 

discharging was very fast. The energy conservation equation considered all the transport 

properties in solids, liquids and gases. Table 4-6 shows the source terms for the gas 

mixtures. 

Table 4-5  Source terms in the governing conservation equations 

                                   
 kg m-3 kg m-2 kg m-3 kmol m-3 A m-3 A m-3 W m-3 W m-3 

BP 0 0 0 0 0 0 ‖  
 
‖
 
  
   

 0 

Channel    0 0 0 0 0 0 0 

GDL     
  

  
𝑢 ⃗⃗ ⃗⃗       0 0 0 

‖  
 
‖
 
  
   

     

          

Anode CL 
   

    
 
  

  
𝑢 ⃗⃗ ⃗⃗       

     
       

       

  |    |

 ‖  
 
‖
 
  
   

 ‖  
   

‖
 
    
   

     

     (    
         ) 
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Cathode 

CL 

   

    
 
  

  
𝑢 ⃗⃗ ⃗⃗       

  
 𝐹
     
       

       

 
   ∆ 

 𝐹
   |    |

 ‖  
 
‖
 
  
   

 ‖  
   

‖
 
    
   

     

     (    
         ) 

Membrane 0 0 0 0 0 0 
‖  

   
‖
 
    
   

     

0 

 

Table 4-6  Source terms for the gas mixtures 

       

BP 0 0 

Channel 0       
GDL 0       

Anode CL    
  

  
 𝐹

   
                

Cathode CL    
  

  
4𝐹

   
                

Membrane 0 0 

 

4.2.3.2. Gas Transport Equations 

All the gases involved in the model were assumed to be ideal gases. Therefore, the gas 

mixture density was calculated based on the ideal gas law, as shown in Equation 4-51.    

is the gas phase pressure. R is the universal gas constant.    and    are the mass fraction 

and molecular weight of species i, respectively.  

𝜌    (  ∑
  
  

 

)

  

 

Equation 4-51 

Based on the kinetic theory, the dynamic viscosity of the ideal gas mixture can be 

determined using Equation 4-52 and Equation 4-53. Xi is the mole fraction of species, i, 

while i and j represent different species. Because parameters change with different 

temperatures and pressures, their effects need to be considered. Table 4-7 provides some 

experimental correlations of dynamic viscosity and mass diffusivity under various 

temperatures and pressures in different species [110,111].  
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   ∑
    

∑       
 

 

Equation 4-52 

    

*  (
  
  
)
 . 

(
  

  
)
 .  

+

 . 

[8 (  
  

  
)]

 .  

Equation 4-53 

Table 4-7  Transport properties [112] 

Parameter Correlation (T in K, P in Pa) 

Hydrogen dynamic viscosity (kg m
-1

s
-1

)    
  . 05   0  (  9 .85⁄ ) . (  7 )  .  

Oxygen dynamic viscosity (kg m
-1

s
-1

)    
 8.46   0  (  9 . 5⁄ ) . (    7)  .  

Water vapour dynamic viscosity (kg m
-1

s
-1

)    7.5    0  (  9 . 5⁄ ) . (    0)  .  

Liquid water dynamic viscosity (kg m
-1

s
-1

)     .4 4   0    0   . (     )⁄  

Hydrogen diffusivities (m
2
s

-1
)    

  .055   0  (    . 5⁄ ) . ( 0   5  ⁄ ) 

Oxygen diffusivities (m
2
s

-1
)      .65   0  (    . 5⁄ ) . ( 0   5  ⁄ ) 

Water vapour diffusivities in anode (m
2
s

-1
)   

   .055   0  (    . 5⁄ ) . ( 0   5  ⁄ ) 

Water vapour diffusivities in cathode (m
2
s

-1
)   

   .98   0  (    . 5⁄ ) . ( 0   5  ⁄ ) 

Specific heat capacities of H2, O2, vapour 

waters and liquid water (J kg
-1

 K
-1

) 

(  )  
  4 8        (  )  

 9 9.     

(  )  
  0 4          (  )  

 4 8  

Thermal conductivities of H2, O2, vapour 

waters and liquid water (W m
-1

 K
-1

) 

   
 0. 67                 

 0.0 64 

    0.0 6                  0.6 

Entropy change of reaction (J kmol
-1

 K
-1

) ∆    6   0 

Latent heat of condensation (J kg
-1

)         4 8.5    70700 

 

Gas transports are highly associated with the porous condition of the transport media and 

the liquid water which can block the transport media. Their effects were considered 

through modifying the gas permeability. Equation 4-54 and Equation 4-55 determined the 

gas phase and liquid phase permeability, respectively, which depended on the intrinsic 

permeability of the porous materials and the local volume fraction of the liquid water. 

Both of them indicated that if the liquid water blocks the pores of GDLs and catalyst 

layers, the permeability will become zero.  
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     (    )
 .  

Equation 4-54 

       
 .  

Equation 4-55 

The effective mass diffusion coefficient needed to be modified due to the porosity and 

tortuosity of GDLs and catalyst layers, which was done through the Bruggemann 

correlation, as shown in Equation 4-56. In this equation, the impact of liquid water on the 

effective diffusion coefficients was treated the same as the porosity with an exponent of 

1.5.   
   

is the effective mass diffusion coefficient for species, i. When the pore volumes 

of GDLs and catalyst layers are full of liquid water, the diffusion coefficient will become 

zero, indicating the water flooding.  

  
   

    
 . (    )

 .  

Equation 4-56 

4.2.3.3. Water Transport Equations 

In this modelling, the liquid water was assumed to have a constant density under different 

temperatures because the changes of its density within the fuel cell operating 

temperatures were negligible. The interfacial drag coefficient was calculated using 

Equation 4-57 [110]. The liquid water dynamics viscosity was associated with the 

temperature changes.  

  
    

    
 

Equation 4-57 

The capillary diffusion coefficients of liquid water in GDLs and catalyst layers were 

defined by Equation 4-58, where the effect of capillary pressure was considered [113]. 

The capillary pressure was determined using the Leverett function, as shown in Equation 

4-59, where it was a function of the liquid water volume fraction [114,115]. 𝜃 is the static 

contact angle, which relies on the wettability of GDL and CL surface. 𝜍 is the surface 
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tension coefficient between liquid water and gas mixture, whose experimental correlation 

is temperature dependent, as shown in the following, Equation 4-60 [116].  

    
  

  

𝑑  
𝑑  

 

Equation 4-58 

   

{
 
 

 
 𝜍    𝜃 (

 

  
)
 . 

[ .4 7(    )   .  (    )
   . 6(    )

 ]     𝜃  90 

𝜍    𝜃 (
 

  
)
 . 

[ .4 7    .    
   . 6  

 ]     𝜃  90 
 

Equation 4-59 

𝜍   0.000 676  0.   8      7 . 5     7 . 5  

Equation 4-60 

The liquid phase pressure was calculated based on the capillary pressure and gas phase 

pressure, as illustrated in Equation 4-61. The liquid phase velocity was calculated based 

on the liquid phase pressure as shown in Equation 4-62 [117]. Table 4-8 shows the water 

phase change functions. 

         

Equation 4-61 

𝑢 ⃗⃗  ⃗   
  

  
    

Equation 4-62 

Table 4-8  Correlations related to water phase change 

Vapour and liquid water      {
     𝜀(    )

(       )

  
          

     𝜀  

(       )

  
                       

 

Dissolved water and vapour      𝜁   
𝜌

  
(         )(    ) 

Saturation pressure [118] 

            . 794  0.0 95 (   7 . 5)  9. 8 7

  0  (   7 . 5)   .4454

  0  (   7 . 5)  
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During a normal PEM fuel cell operation, an electrochemistry reaction produces 

dissolved water. Then, vapour water, liquid water and dissolved water co-exist on the 

catalyst layer surface [113]. Therefore, the dissolved water content needs to be 

considered, which was calculated using Equation 4-63. EW is the equivalent weight of 

membrane. 𝜌    is the density of the dry membrane. 

   
  

𝜌   
     

Equation 4-63 

The different distribution of water content in the membrane resulted in the membrane 

water diffusion. Then, the diffusivity of dissolved water could be determined using 

Equation 4-64. In addition, the equilibrium dissolved water content was calculated using 

Equation 4-65. As shown in Equation 4-66, a is the water activity. 

   {
 .   0    [   (0. 8  )   ]   (

   46

 
)     0      

4. 7   0    [ 6    (   )   ]   (
   46

 
)           7

 

Equation 4-64 

       {
0.04   7.8    9.85    6.0       0     
 4.0   4(   )                                               

 

Equation 4-65 

  
    

    
     

Equation 4-66 

In order to study the impact of the electro-osmic drag on the water transport, source term, 

     was introduced into the membrane water conservation equation, as shown in 

Equation 4-67. The EOD coefficient is the number of water molecules dragged per 

hydrogen ion moved through the ionomer, as calculated in Equation 4-68 [118].  
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       (
  
𝐹

    
   

     ) 

Equation 4-67 

   
 .5  
  

 

Equation 4-68 

4.2.3.4. Electron and Ion Transport Equation 

The proton conductivity of the Nafion membrane was calculated using Equation 4-69 

[118]. Since GDLs and catalyst layers are porous materials, its proton and electron 

conductivity calculations involved some modifications with the original Bruggemann 

correlation. As shown in Equation 4-70 and Equation 4-71, the porosities of the catalyst 

layers and GDLs, and the ionomer volume fraction in the catalyst layers were considered 

in the correlation. An exponent of 1.5 was used in this correlation. This coupled model 

considered the effect of pressure on the interfacial electron conductivity between GDLs 

and flow channel plates, as illustrated in Figure 4-7. In addition, the interfacial 

conductivity between GDLs and catalyst layers was ignored because the catalyst layer 

was a very thin layer.   

     (0.5  9   0.  6)   [  68 (
 

 0 . 5
 
 

 
)] 

Equation 4-69 

  
   

 (     ) .    

Equation 4-70 

    
   

   .      

Equation 4-71 
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Figure 4-7  The effect of pressure on the contact resistance [119] 

The reaction rates in the anode and cathode catalyst layers were calculated using the 

classical Butler-Volmer equations, as illustrated in Equation 4-72 and Equation 4-73. F is 

the Faraday’s constant and C is the concentration. Table 4-9 shows the correlations and 

values of the parameters related to the electrochemical reactions. 

   (    )    
   

(
   

   

   
)

 . 

[   (
 𝐹  

  
    )     ( 

 𝐹  

  
    )] 

Equation 4-72 

   (    )    
   

(
   

   

   
)

 . 

[    (
4𝐹  

  
    )     ( 

4𝐹  

  
    )] 

Equation 4-73 

Table 4-9  Parameters related to electrochemical reactions [112] 

Parameter Correlation 

Overpotential  (V)                

Transfer coefficient       0.5 

Volumetric reference exchange current 

density in anode  (A m
-3

) 
    
   

     
   

|
   .   

   [  400(
 

 
 

 

 5 . 5
)] 

Volumetric reference exchange current 

density in cathode  (A m
-3

) 
    
   

     
   

|
   .   

   [ 7900(
 

 
 

 

 5 . 5
)] 
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4.2.3.5. Energy Transport Equation 

The effective volumetric heat capacities in the energy conservation equation were 

calculated using Equation 4-74 and Equation 4-75. (  )  is the specific heat capacity of 

the gas mixture, which was calculated using Equation 4-76. (  )    is the specific heats 

of the electron conducting materials in catalyst layers and all solid materials in GDLs and 

bipolar plates. The effective thermal conductivity in the energy conservation equation 

was calculated as a volume averaged value, as shown in Equation 4-77, Equation 4-78 

and Equation 4-79. Since the effect of temperatures on the specific heat capacity and 

thermal conductivity is insignificant under the range from 0-100
o
C, both of them were 

considered as constant in the modelling [111].  
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4.2.3.6. Boundary and Initial Conditions 

The boundary conditions in this modeling included the inlet reactant flow conditions, 

operating temperatures, operating pressures and electric loads. The inlet mass flow rates 

were defined using Equation 4-80, while the species concentrations at the inlets were 

shown in Equation 4-81.    and    are the stoichiometry ratios for the anode and cathode 

respectively. A is the cell active area. 𝜌 
  and 𝜌 

  are the anode and cathode inlet gas 

density, respectively.      is the reference current density. A constant pressure was 

specified at the outlets of the flow channel. A constant temperature was defined at the 

anode, cathode flow channel inlets and the surrounding walls. The liquid water volume 

fraction was set at zero for the flow channels because the liquid water was assumed to be 

removed out of the channel quickly. 
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4.2.3.7. Cell Voltage Correlations.  

Cell voltages and current densities were characterized using Equation 4-82. The 

electronic potential at the bottom surfaces of the cathode bipolar plate was set as zero, 

while the electronic potential at the top surface of the anode bipolar plate was the 

difference between the reversible and operating cell voltages. The reversible cell voltage 

was determined using Equation 4-83.  
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4.2.4. Numerical Procedures  

The PEM fuel cell performance model relied on commercial software, FLUENT 6.3, to 

discretize and solve its conservation equations. The programming language C imported 

these equation models into FLUENT according to the user defined functions (UDFs) 

because this commercial software merely provided the gas mass, momentum and species 

and energy conservation equations. UDFs also supplied the corresponding coding for 

various source terms, model parameters, material property correlations, boundary 

conditions and relaxation stabilization schemes. The pressure-based segregated solver 

offered the sequential solutions for the individual variables of the conservation equations. 

Here, each conservation equation was segregated from the other equations. A pressure 

correction equation helped to achieve the constraint of the gas mass conservation on the 

gas velocity field. The SIMPLE algorithm was used to solve these equations. An 

algebraic multi-grid (AMG) method with a Gauss-Seidel type smoother increased the 

efficiency of the convergence. All variables followed a strict convergence criterion with a 

residual of 10
-8

. The following loops described the main procedure for each iteration:  

1. Define the initial condition for the first iteration 

2. Update the temperature- and pressure- based properties according to the current 

solution 

3. Solve the momentum equations separately  

4. Solve the pressure correction equation using the values obtained from step 3 

5. Solve the rest of the conservation equations  

6. Check for the convergence of the equations. If not meet the convergence criterion, 

start again from step 2 
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4.2.5. Grid Independency 

The selection of the grid point number involved the consideration of computational time 

and the convergence process. Ideally, a large number of grid points helps to achieve a 

more accurate result. However, they also consume more computational resources. Hence, 

the goal of this grid independency study aimed to find an optimal grid size. In this three 

dimensional cell performance model, the length of the flow channel and the number of 

parallel flow channel determined the number of grid points along the X-, Z- direction, 

respectively. Different MEA components had the same number of grid points along the 

thickness direction.  

A grid independency study probed the grid size on three directions, which indicated that 

the number of grid points along the y-direction significantly affected the solutions. In 

order to study the effect of grid number along the thickness direction, the number of grid 

points along the X- and Z- directions was fixed at 100 and 20 in a typical single PEM fuel 

cell channel with a channel length of 90 mm and channel width of 1 mm. A cell current 

density is one of the essential parameters of cell performance, which changes with the 

number of grids. Therefore, the following grid independence study clarified its relation 

with various grid sizes.  

The results showed that less than six grids along the thickness direction made the solution 

difficult to converge, whereas more than twenty grids had a similar problem, which might 

result from a high aspect ratio of the computational cells. The result with twenty grids on 

the Y-direction was assumed to be the standard solution. Ten grid points in each 

component of an MEA contributed to an error of about 1%. Therefore, ten grid points 

were the selection of this modelling since further increasing the grid number not only 

elongated the computational time, but also impaired the convergence.  
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4.3. Cell Structure-Performance Coupled Model 

4.3.1. Physical model  

The cell structure-performance coupled model considers the effect of MEA’s deformation 

on cell performance. The structure model quantifies the deformations of an MEA, as 

shown in Figure 4-8.  

 

Figure 4-8  A schematic drawing of a single PEM fuel cell channel with deformation 

4.3.2. Model Coupling (Effective Transport Property) 

The assembly procedure, operation conditions and material degradation resulted in cell 

component deformations which changed the porosity, and more importantly, the effective 

transport properties in GDLs and catalyst layers, as discussed in the cell performance 

modelling. Equation 4-84 described the porosity change of GDLs with deformations 

[112]. Equation 4-85 shows the relation between the intrinsic permeability of porous 

materials and its porosity [120]. This model considered the overall changes in porosity, 

instead of the changes at discrete locations in a GDL.  

    (    )
𝛿 
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Equation 4-84 
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4.3.3. Numerical Implementation 

Cell structure-performance coupled analyses provide more realistic results of cell 

performance with a deformed cell structure under various operating conditions, although 

such analyses are more computationally intensive. This modelling depended on ANSYS 

Workbench which has a wide application in multiphysics coupling. The system coupling 

participants were a static structure and a steady fluid flow. The solution to two-way 

structure-performance interaction required co-simulation between computational fluid 

dynamics and structural mechanics, which consisted of three main procedures. 

1) The cell performance model, based on an intact single PEM fuel cell structure, 

determined the distributions of temperatures, relative humidity and pressures 

under a designed cell operating condition.  

2) The mapping technique assigned the temperature, relative humidity and pressure 

distributions, obtained from the first step, to the corresponding nodes of the 

structure model. This structure model used these distributions as loading 

conditions and ran the model, which then characterized the deformation of the 

MEA and the flow channel plate. In addition, MEAs’ deformation is associated 

with the transport parameters of GDLs and catalyst layers. It enabled the 

determination of the corresponding changes in porosity, permeability, diffusivity 

and conductivity of GDLs and catalyst layers. 

3) The cell performance model then used the deformed cell structure to calculate the 

cell performance with a designed operating condition. In addition, the porosity, 

permeability, diffusivity, intrinsic and interfacial conductivity were updated with 

the operating condition.  

4.3.4. Comparison with Experimental Data 

The comparison of experimental measurements and the model predictions validated the 

reliability of the cell performance-structure coupled model. The model parameters were 



Model Development 

 

~ 81 ~ 

 

adjusted according to the experimental conditions to obtain agreement with the 

experimental data. As presented in Figure 4-9, the model predictions agree with the 

experimental data.  

 

Figure 4-9  Comparison between cell performance model predictions and experimental data (Inlet 

Temperature: 75
o
C, Relative Humidity: 100%, Clamping Force: 0.4MPa) 

 

4.4. Summary  

This chapter explains the fuel cell structure model, the performance model and the 

structure-performance coupled model. Corresponding experiments validated the 

reliability of these two models. In addition, this chapter clarifies the required steps to 

couple the structure and performance models.  

In the structure model, a variety of constitutive models enabled the simulation of different 

materials in cells. In particular, a rate-dependent isotropic plasticity model with 

temperature- and humidity-dependent material properties modeled the viscoplasticity of 

the Nafion membrane. In addition, a hyperelasticity material model simulated GDLs’ 

different loading and unloading compressive behaviours. Further, a traditional elastic 

model determined the linear mechanical behaviour of catalyst layers and graphite flow 

channel plates. The experimental compressive behaviours of GDLs, Nafion membranes, 
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and MEAs were generally consistent with the corresponding modelling predictions, 

which validated the reliability of these three constitutive relations.  

The cell performance involved electrochemical reaction kinetics, heat generation and 

transfer, transport of multi-component gas species, multi-water phases, and electrons and 

protons, and water phase change processes. It considered the effects of porosity, 

permeability, diffusivity, thermal and electron conductivity on cell performance, which 

enabled its coupling with the structure model.  

The structure-performance coupled model, on one hand, accounted for the effects of 

deformation on the cell performance. On the other hand, it also studied the impact of 

working conditions, which are associated with cell performance, on the MEA’s 

deformation. Therefore, it provided a more realistic method to study the mechanical 

impact on cell performance. In addition, the experimental results were consistent with the 

corresponding modelling predictions.  
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    Chapter  5 

5. Microstructures in MEAs and 

Their Changes 

 

 

 

The durability of a PEM fuel cell is associated with the microstructures and their changes 

in MEAs. In this chapter, a scanning electron microscope detailed the original 

microstructures of different components in MEAs as well as their changes after an 

accelerated durability test. The comparison of the microstructures in original and used 

MEAs shed light on the mechanism behind these structural changes.  

5.1. Stress Distributions in the Fuel Cell Assembly 

Stress distributions are crucial for studying the morphological defects in MEAs, since 

inappropriate stresses could possibly result in the microstructural changes. The pressure-

indicating film provided the stress distribution measurement in the fuel cell assembly, as 

shown in Figure 5-1. The film measured the normal stress distribution on the GDL and 

the catalyst layer, so that it rested either between the flow distribution plate and the GDL 

or between the GDL and the catalyst layer.  
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The measured stress distribution had variations corresponding to the periodicity of the 

flow channels, as presented in Figure 5-1. The stress at the edge of the MEA was larger 

than that at the center of the MEA. The maximum normal stress at the edge was about 1.5 

MPa, while it was about 1.0 MPa at the center on the GDL surface. This difference is 

understandable because the bolts and nuts located around the edge of the active area. 

Another contributing factor is size difference between the endplate (210.25 cm
2
) and the 

graphite flow channel plate (110.25 cm
2
). When the assembly force was applied through 

each bolt, the endplate tended to bulge, leading to a non-uniform stress distribution. This 

non-uniform distribution can cause the reactants, water, heat and electron to transfer in a 

non-uniform way, in turn resulting in the non-uniform distributions of temperature and 

water content in the cell. As illustrated in Figure 5-2, the stress distribution on the 

catalyst layer surface was more uniform than that on the GDL surface, since GDLs 

worked as a cushion on the catalyst layer.  

 

 

 

 

Figure 5-1  Longitudinal normal stress distributions on the GDL surface 
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Figure 5-2  Longitudinal normal stress distributions on the catalyst layer surface 

 

5.2. Microstructures of New CCMs and GDLs 

Figure 5-3 and Figure 5-4 illustrate the surface and cross sectional view of a new 

Nafion117-based CCM. Due to the differences in electron densities, various elements 

show distinct intensities of colour in SEM images. Based on the colour intensity, the 

catalyst layer had a highly porous structure characterized by fairly evenly distributed 

pores, represented as the dark spots, on a roughened surface. However, the dimensions of 

the pores were not the same. Micro-cracks existed in the catalyst layer, as shown in the 

circles. They could deteriorate cell performance because excess water can stay in the 

cracks and block the reaction site. At present, the sizes of these cracks were small; 

however, they could develop into large ones under large assembly forces and thermal-

hygro stresses during operations. This possible development could further reduce cell 

performance. 

The cross sectional images shown in Figure 5-4 and Figure 5-5 indicates that the two thin 

catalyst layers were in a close contact with the membrane. The thicknesses of the catalyst 

layers and the membrane were quite uniform. The catalyst layer was about 10µm thick, 

while the membrane was about 138 µm thick. Compared to the porous structure of the 

catalyst layers, the membrane was denser and its surface was smoother. Figure 5-6 

provides a higher magnified image about the catalyst layer morphology. The catalyst 

layer was a collection of agglomerates with varying sizes. The aggregation of these 
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agglomerates formed the networks of pores. Reactant gases flow into the reaction site 

through this network. 

 

 

Figure 5-3  A face view of a catalyst layer at 5000* magnification 

 

 

 

Figure 5-4  A cross sectional view of a CCM at 400* magnification 
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Figure 5-5  A cross sectional view of a CCM at 3000* magnification 

 

 

Figure 5-6  A cross sectional view of a catalyst layer at 7500* magnification 

In most tested samples, catalyst layers and Nafion membranes were connected closely. 

However, some new CCM samples witnessed the delamination between the catalyst layer 

and the Nafion membrane, as shown in Figure 5-7. The separation of catalyst layers and 

membranes is one of the most common defects in MEAs, which can cause a series of 

issues, including water flooding, hot spot and catalyst loss. Therefore, it is important to 

discuss in detail this structural change.  
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Figure 5-7  Delamination in a new CCM at 350* magnification 

At the edge of the layer in Figure 5-7, the catalyst layer was still connected with the 

polymer membrane; however, the connection between them was poor as indicated by 

some fissures around the connection. At approximately 400 µm away from the 

delamination starting point, the catalyst layer was totally separated from the Nafion 

membrane. The separation was about 25 µm. Unlike the catalyst layer, the polymer 

membrane can still keep its original shape while the catalyst layer deformed into a bow 

shape. This deformation can result in many issues. For example, excess water can stay in 

the void space formed by the membrane and deformed catalyst layer, which blocks the 

proton transport path for reaction sites and thereby reduces the proton conductivity and 

cell performance. Consequently, the temperature at this region was higher than other 

locations, leading to a heat spot.  

In addition, a catalyst layer, coated on the Nafion membrane, is very fragile due to its 

porous structure. During cell operations or cell assembly processes, the catalyst layers 

around this delamination can easily flake off. A high resolution image, shown in Figure 

5-8, indicates that the delamination did not change the texture of the catalyst layer. Pores 

and agglomerations still existed. The observed delamination in new CCMs was most 

likely caused by the fabrication process, where inappropriate working temperatures, 

relative humidity, spray approaches, and the unnecessary bending of membranes can 

contribute to this defect.  
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Furthermore, the catalyst layer and the Nafion membrane underwent an energy-dispersive 

spectroscopy (EDS) test, an analytical technique used for elemental analysis of a sample. 

Its fundamental principle is that each element has a unique atomic structure, allowing a 

unique set of peaks on its X-ray spectrum. Based on this unique peak, the type of an 

element can be determined. The test was carried out at three different locations, as shown 

in Figure 5-9.  

 

 

Figure 5-8  Delamination in a new CCM at 1500* magnification 

 

 

Figure 5-9  Associated EDS test spots on the catalyst layer and the membrane 
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Test #3 was at the membrane region, while tests #1 and #2 were at the catalyst layer 

regions. As illustrated in Table 5-1 , the catalyst layer mainly contained carbon, fluorine 

and platinum although the element compositions at different regions of the catalyst layer 

were slightly different. Compared with region #2, the Pt composition at region #1 was 

relatively lower (#2: 34.37%; #1: 30.8%). The Nafion membrane was composed of 

carbon, fluorine, oxygen and sulphur. The concentration of fluorine was the highest 

among the four elements.  

 

Table 5-1  EDS results on the catalyst layer and the membrane 

spectrum C error O error F error S error Pt error Total 

1 45.87 8.08% --- --- 23.33 6.63% --- --- 30.80 6.78% 100% 

2 48.10 10.09% --- --- 17.52 7.99% --- --- 34.37 8.99% 100% 

3 30.68 7.63% 2.77 8.20% 63.11 6.18% 3.44 1.31% --- --- 100% 

 

A GDL, as a highly porous material, consists of numerous carbon fibres, which connect 

with each other in a random manner to form a thin layer. Hence, it has a unique structure. 

Such a structure becomes more complicated when the GDL is coated with PTFE. Figure 

5-10 and Figure 5-11 illustrates the carbon fibre in two kinds of GDLs, a raw GDL 

without PTFE treatment and a PTFE-coated GDL. Each carbon fibre can be clearly 

observed in a raw GDL without PTFE coating. Average diameters of these fibres were 

about 10 µm. The networks of pores were formed by the irregular connections between 

different carbon fibres. On the other hand, in a PTFE-coated GDL, carbon fibres were 

wrapped with coatings. As shown in Figure 5-11, the coating looks like debris 

accumulated on the fibre surface. Due to the coating, the overall diameters of these fibres 

were larger than those in a raw GDL; therefore, the PTFE-coated GDL had a smaller pore 

volume compared with the raw GDL. It has been proposed that the in-plane and through-

plane mass transfer resistances are dependent on the microstructure of the GDL. 

Therefore, this reduced pore volume in a PTFE-treated GDL might introduce a larger 

resistance in mass transfer. 
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Figure 5-10  Carbon fibres in a new GDL without PTFE coating at 500* magnification 

 

 

Figure 5-11  Carbon fibres in a new PTFE-treated GDL at 500* magnification 

The morphology of a new PTFE-treated GDL is presented in Figure 5-12. Many pinholes 

and cracks appeared on the roughened PTFE-coated surface. These pinholes and cracks 

mainly came from inappropriate storage and usage methods because the PTFE coating is 

very fragile; even small frictions can make the PTFE flake off from the surface. Figure 

5-13 provides a more detailed morphology of the pinhole, which was corresponding to 

the one in Figure 5-12 marked in a red circle. These pinholes offered a suitable space for 

water produced during the cell reaction. In general, excess water should be removed from 

the flow channel in order to prevent water flooding. However, the water could stay in 



Microstructures in MEAs and Their Changes 

 

~ 92 ~ 

 

these pinholes. In this case, if the pinhole is full of water, it prevents reactant gases 

transferring into the reaction sites in the catalyst layer. Consequently, the reaction rate 

decreases. The cross section of the PTFE-treated GDL is presented in Figure 5-14. The 

GDL was divided into two layers, the PTFE-coating layer and the carbon fibre layer with 

depths of approximately 50 µm and 150 µm respectively. The pore size in the PTFE-

coating layer was much smaller than that in the fibre layer. Thus, the PTFE-coating layer 

is usually placed, facing towards to the catalyst layer for the water management.  

 

Figure 5-12  Face view of a PTFE-coated GDL at 37* magnification 

 

 

Figure 5-13  A pinhole in a PTFE-coated GDL at 1100* magnification 
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Figure 5-14  A cross sectional view of a new PTFE-coated GDL at 500* magnification 

 

5.3. Microstructural Changes of CCMs and GDLs after Cell 

Operations 

The above section discussed many structural defects in new CCMs and GDLs. These 

defects can affect the cell performance in two aspects. First, they can lead to an initial 

low cell performance. In addition, some small defects in new CCMs and GDLs can 

develop into large ones during a regular cell operation and start-up/shut-down processes, 

causing a further cell performance reduction. This section mainly focuses on the 

structural changes of used CCMs and GDLs.  

Figure 5-15 presents the cross section of a used MEA. Five layers tightly connected with 

each other, including two catalyst layers, two GDLs and one Nafion membrane. 

However, the thickness of the entire MEA varied as opposed to the initial uniform 

thickness. Clamping forces and hygro-thermal stresses gave rise to this thickness 

variation. Clamping forces caused the reduction in the thickness of the MEA under the 

land. On the other hand, the thickness of the MEA under the channel had little changes. 

During cell operations, hygro-thermal expansions also added more loads on the 

membrane because of a fixed space between the anode and cathode flow channel plates, 
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making the membrane undergo permanent deformations, called plastic deformations. 

Figure 7-4 explains the difference between lands and channels. As a result, these 

permanent deformations corresponded to the structure of the flow channel plate.  

 

Figure 5-15  A cross sectional view of a used MEA at 100* magnification 

 

This five-layer structure is significant for the performance of PEM fuel cells because a 

close connection between GDLs and CCMs not only reduces the electronic resistance, 

but also provides a transport path to the reaction site. Additionally, this close connection 

helps the water management. Therefore, it is important to discuss this structure in detail. 

The GDL rested on top of the catalyst layer. The PTFE was coated on only one-side of 

the GDL. This coated side was facing towards the catalyst layer. As illustrated in Figure 

5-16, the pore size of the PTFE coating was larger than that of the catalyst layer. Water 

was produced in catalyst layers during reactions. Then, it tended to flow into large pores 

in the PTFE layers. Because of PTFE’s hydrophobic characteristic, excess water can 

easily be removed out of the GDL to the flow channel, from where it can be delivered out 

the cell stack by the reactant gas flow. Therefore, this pore size difference between 

catalyst layers and PTFE coatings, and the arrangement of layers helped to relieve the 

water flooding.  
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Figure 5-16  Pore size differences between catalyst layers and PTFE coating at 2000* 

magnification 

 

Although the GDL connected with the catalyst layer in most test samples, some catalyst-

GDL delamination and catalyst-membrane delamination still existed in test samples, as 

presented in Figure 5-17 and Figure 5-18. Unlike the delamination found in new CCMs, 

unevenly distributed stresses, including clamping stresses and hygro-thermal stresses, 

could be the main reason for the delamination in used CCMs. In the used CCMs, the 

length of the separation between the catalyst layer and the membrane was about 1 µm, 

which was much smaller than that found in new CCMs. This separated catalyst layer still 

maintained a fairly uniform thickness. However, the delamination found in new CCMs 

deformed into a bow shape. The reason behind this deformation variation was the 

difference between the fabrication conditions and cell operating conditions. The 

fabrication condition for CCMs is usually maintained at a certain level of temperature 

and relative humidity. This condition remains constant to prevent the shrinkage or 

expansion of the membrane. Delamination occurs mainly because of inappropriate 

working temperatures, relative humidity, spray approaches, and unnecessary bending. 

However, in an operating fuel cell, the operating temperatures and relative humidity 

change all the time, which brings changes in thermal-hygro stresses. Also, as mentioned 

earlier, the water content in the membrane is changing during cell operations. This water 

content variation can cause different levels of expansions in a membrane, which can 
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reduce the adhesion between the catalyst layer and the membrane. Once delamination 

occurs, the reaction rate at the separation region is lower than its surroundings, leading to 

a non-uniform temperature distribution, and consequently, a non-uniform distribution of 

water content in the membrane.  

 

 

Figure 5-17  Delamination in a used CCM at 2000* magnification 

 

 

Figure 5-18  Delamination between a GDL and a CCM at 2000* magnification 

 

Figure 5-19 shows the cross section of a used CCM, which witnessed the thickness 

variation in catalyst layers and membranes. In order to compare the thickness of used and 
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new catalyst layers and membranes, corresponding measurement relied on Plot Digitizer 

software with an accuracy ±0.24µm. This software is a Java program. It can digitize 

values off a scanned image. Figure 5-4 and Figure 5-19 provide high resolution images; 

therefore, they were the selection of these measurements. Eleven evenly distributed 

locations along the length of the catalyst layer and the membrane provided the 

measurement spot. Equation 5-1 determined the relative variation of the thickness with 

the aim of characterizing the thickness uniformity.  

 

Figure 5-19  Thickness variations of a used CCM 

 

                   
|  𝑑   𝑑𝑢                              |

                 
 

Equation 5-1 

As illustrated in Figure 5-20, the membrane thickness of a new CCM was fairly uniform. 

The average thickness was approximately 137.66 µm and the relative variation was from 

0.37% to 1.69%. However, the used CCM witnessed a pronounced difference in the 

thickness. The average thickness reduced to 120.74 µm, and the relative variation was 

from 1.40% to 8.62%. Mechanical impact might be the main reason for the thinning 

process in the thickness. Meanwhile, the spatial variation in the deformation (thickness 

variation) might result from the structure of the flow channel plate, as shown in Figure 

3-2 and the uneven temperature and humidity distributions. The membrane thickness is 

directly linked with the ionic resistance. Therefore, thickness variations result in a non-
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uniformed reaction rate, which would in turn strengthen the uneven distribution of 

temperature and humidity. Consequently, this uneven distribution further contributes to 

the thickness variation. Understandably, when the thickness of the membrane reduces to a 

certain level, it may be weaken easily with compressions.  

 

 

Figure 5-20  Thickness variation of new and used membranes 

Figure 5-21 and Figure 5-4 represent the change of catalyst layer thickness. The 

thicknesses of these two catalyst layers in a new CCM were almost the same. The 

average of the anode catalyst layer was 10.33 µm, whereas the cathode catalyst layer was 

10.17 µm. The relative variation of the cathode catalyst layer ranged from 0.41% to 

2.40%, whereas the anode catalyst layer was in the range of 0.01-2.15%. On the other 

hand, 250-hour testing witnessed a reduction in catalyst layer thickness. The average 

thickness for the used cathode catalyst layer was 9.04 µm while it was 10.12 µm for the 

used anode catalyst layer. Additionally, the relative variations were 0.66-18.33% and 

0.17-4.41% for the cathode and anode catalyst layers respectively. Again, mechanical 

stresses could be one factor for this thickness reduction. In addition, Pt migration from 

the catalyst layer into the membrane was another reason for the changing thickness. The 



Microstructures in MEAs and Their Changes 

 

~ 99 ~ 

 

catalyst layer thickness reduction can bring some microstructure defects, for examples, 

pinholes. The thinnest thickness region of the membrane existed at location 0.6. Pinhole 

formations are more like to occur at locations with a high catalyst layer thickness and a 

low membrane thickness, since the reaction rate is high and more heat is generated. 

Therefore, hot spot are likely to form at this location which can lead to pinholes.  

 

Figure 5-21  Thickness variation of new and used catalyst layers 

 

Figure 5-22  The bending of a Nafion membrane and catalyst loss at 500 * magnification 
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Figure 5-22 shows the deformation and the catalyst loss of a used CCM. As mentioned 

before, inappropriate mechanical stresses and the structure of the flow channel pattern 

caused the bending of a CCM. If the mechanical stress is larger than the yield strength of 

the Nafion membrane, the membrane undergoes a plastic deformation or permanent 

deformation. As illustrated in Figure 5-22, the Nafion membrane deformed into a bow 

shape. Also, the catalyst layer, which was originally attached to the Nafion membrane, 

flaked off. The catalyst layer, a very fragile composite material, needs to be coated on a 

substrate so that it can maintain a certain shape. In addition, it is less flexible than the 

Nafion membrane because it only contains around 30% Nafion. Large mechanical 

stresses resulted in the deformation of a membrane, which brought some cracks in the 

catalyst layer since it was less flexible. When the fuel cell was under operation, the 

thermal-hygro stresses further expanded these cracks in catalyst layers. Also, a membrane 

tended to undergo further deformation during cell operations. All these factors eventually 

caused the catalyst layer to flake away from the membrane.  

Meanwhile, the catalyst loss can further negatively affect cell performance. The reaction 

rate at one catalyst-loss region is much lower than the surrounding areas. This non-

uniform reaction rate along the catalyst layer surface can lead to non-uniform temperature 

and relative humidity distributions, consequently causing uneven stress distributions. 

Further, the catalyst loss creates a gap between the membrane and the GDL, which is a 

suitable space for water flooding. The cracks and gaps leave space for the water which 

contains dissolved contaminants. These contaminants might finally get into the pores of 

the catalyst layer and the GDL. The can block the transportation path and deteriorate the 

cell performance. 

Figure 5-23 shows the surface of a used Nafion membrane. Many small cracks and 

agglomerates existed on the surface. The widths of these cracks were about 0.01µm 

whereas the length varied. These cracks did not break the Nafion membrane. However, 

they broke the continuity of the membrane, and therefore would definitely increase the 

proton resistance. These small cracks might be a suitable place for water flooding, thus 

contamination dissolved in the water can flow in. Most agglomerates randomly 

distributed on the membrane surface. In particular, these agglomerates might be the 
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contaminants from the catalyst layer. The sizes of them were different. However, many 

bigger agglomerates accumulated on the cracks path, as presented in Figure 5-24.  

 

 

Figure 5-23  Surface cracks on a used membrane at 2000* magnification 

 

Figure 5-24  Agglomerates on a used membrane at 10000* magnification 

 

5.4. Summary  

SEM tests detailed the initial microstructures and their changes in an MEA before and 

after durability testing. In the testing of new MEAs, structural defects, such as 

delamination, pinholes, and cracks, occasionally appeared. Further observation of these 
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new MEAs showed that, initially, the thicknesses of the catalyst layers and Nafion 

membranes were quite uniform. During the 250 hours of accelerated testing, cell 

performance underwent a noticeable decay. More structural defects occurred in these 

used MEAs. Interestingly, catalyst layers and Nafion membranes experienced 

pronounced changes in the thickness. This thickness variation could result in a series of 

changes in the fuel cell, leading to a further cell performance reduction. The possibility 

that large stresses, including clamping forces and hygro-thermal stresses were the reason 

behind these structural changes necessitated the following study of stress conditions in 

the MEA of PEM fuel cells.  
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    Chapter  6 

6. Mechanical Properties of Cell 

Components 

 

 

 

The previous chapter suggests that the stress condition of MEAs was the reason behind 

the microstructural changes. Currently, due to the technique limitation in measuring 

stresses, numerical modelling is the most promising method to probe the stress condition 

in MEAs. A reliable structure model involves appropriate constitutive relations. 

Therefore, the preparation of a comprehensive structure model requires knowing the 

mechanical properties of different components in a typical PEM fuel cell, which guides 

the selection of constitutive relations in the modelling. However, to date, only a few 

studies focus on the mechanical properties of GDLs and catalyst layers. Therefore, as a 

preparation for the structure model, this chapter mainly concentrates on studying the 

compressive behaviour of GDLs and catalyst layers using a micro-compression tester and 

the nanoindentation technique, respectively.  

6.1. Mechanical Properties of Gas Diffusion Layers  
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6.1.1. Quasi-Static Compressive Behaviour 

6.1.1.1. A Typical GDL Compressive Stress-Strain Curve (loading and unloading) 

Figure 6-1 shows a typical GDL compressive behaviour after one cycle loading and 

unloading. First, it is clear that the compressive stress-strain relations of a loading and 

unloading curve were not linear, in contrast with most mechanical behaviour of GDLs 

used in the modeling. Hence, a common deformation analysis for PEM fuel cells using 

Hook’s law might not be appropriate. Second, the compressive stress-strain curve 

contained three regions: an initial region (compression stresses were quite small, 0-0.25 

MPa), a middle region (compression stresses were between 0.25-2 MPa) and a final 

region (compression stresses were larger than 2 MPa). This phenomenon can be 

explained through the microstructural changes of GDLs under compressions. 

GDLs have highly porous structures, made up of numerous carbon fibres that connect 

with each other in a random manner. Although in reality all the carbon fibres are 

connected throughout, for the ease of understanding, it is assumed that the GDL is 

composed of many alternating layers. One set of layers consists of densely packed 

randomly connected fibres. The second set of layers is also connected with these random 

fibres but these layers are less dense.  

Due to GDLs’ special structure, GDLs behaved differently when compression stresses 

changed. When compression stresses were comparatively very small (in the initial region) 

they did not destroy the layer structure. Instead, compression stresses made the less-dense 

layer more condensed without breaking the carbon fibres inside the layers. This structure 

can return to its original shape once the compression stresses were released. Because the 

GDL behaved elastically to small compression stresses, the stress-strain curve was linear 

at this compression range. Compared with the GDLs’ behaviour in the initial stage, 

increased compressive stresses in the middle region, as shown in Figure 6-1, continuously 

compressed the less-dense layer and made the less-dense layers more condensed, which 

led to carbon fibre breakages among the denser layers themselves as well as carbon fibre 

slippages among the less-dense layers. These microstructural changes were non-

reversible; thereby GDLs behaved inelastically. As the compressive stresses continued to 
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increase, the less-dense layers experienced significant reductions, leading to the layer 

deposition. As a result, the whole GDL was much more and evenly condensed, as 

presented in Figure 6-2. The stress-strain relation became elastically and linear again due 

to this condensed structure.  

GDLs’ compressive loading curve and unloading curve were different. As shown in 

Figure 6-1, the unloading curve did not follow the same path as the loading curve 

although the compressive stress was released in the same way where it was applied. 

Similar to the loading stress-strain curve, the unloading stress-strain curve was divided 

into three regions. The first unloading curve was a linear region; however its Young’s 

modulus was larger than that of its corresponding loading curve. At the first unloading 

region, the GDL was initially compressed under large compressive stresses. The whole 

GDL was very condensed. When the compressive stresses were gradually released, some 

of the compressed structures tended to turn back to their original shape. However, due to 

the previous permanent structure changed, the GDLs still had a non-linear stress-strain 

curve region, which was larger than that of the loading curve, indicating that more carbon 

fibre breakages and slippages occurred during this period.  

 

Figure 6-1  The compressive behaviour of a raw GDL (sprectracarb carbon paper) under one 

cycle of loading and unloading (five-sample stack, temperature 25
o
C, RH 30%) 
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(a) Uncompressed GDL (b) Compressed GDL (2.7MPa) (C) Compressed GDL (6 MPa) 

Figure 6-2  The microstructure of a raw GDL (temperature 25
o
C, RH 30%)  

6.1.1.2. The Effect of Stack Sizes  

It is considerably challenging to carry out high-precise compressive tests on GDLs, 

because of its micro-thickness. In general, testing a several sample stack helps to reduce 

experimental errors. However, the effect of stack sizes on compressive behaviour of 

GDLs still remains unclear. So far, to the best knowledge of the author, there are few 

studies regarding this issue. Most of the available literature does not even mention how 

many GDLs were used in a stack in the experiments. Therefore, in order to clarify the 

stack size impact, the study of GDL compressive behaviour involved stacks with 

different numbers of GDLs (1~10).  

As illustrated in Figure 6-3, the stress-strain curve of a one-sample stack was different 

from a two-sample stack, and both of them indicate differences from large stacks. Under 

the same compressive stresses, these two stacks had higher compressive strains than 

others, meaning that they were more compressible. With the increase in stack sizes, the 

compressive behaviours tended to become less different. This phenomenon can be 

explained from two perspectives. From the perspective of the elastic strain energy, 

thinner stack are more conducive for the energy transformation from the test rod to the 

tested stack, so that the stack can store more strain energy, which expresses itself as a 

more compressible behaviour. From the perspective of microstructural changes, the 

compression stress triggers the microstructural changes of GDLs. However, GDLs tend 

to deform to a structure that helps it to resist the impact of compressions. The thicker 

sample has more complicated microstructures, compared to a thinner sample, suggesting 

that it has a better capability to resist compressions. Therefore, the thinner samples are 
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more compressible. This compression process was recorded by an OM testing, as 

presented in Figure 6-4. More microstructural changes of GDLs (i.e. carbon fibre 

breakage) occurred with the increase in deformations.  

 

Figure 6-3  The compressive behaviour of raw GDLs with different stack sizes (SpectraCarb 

2050A-0850 carbon paper, 1-10 samples, temperature 25
o
C, RH 30%) 

 

Figure 6-4  A five-stack raw GDL under compressions (temperature 25
o
C, RH 30%) 
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Figure 6-3 indicates that the compressive behaviours of GDLs actually changed with the 

numbers of GDLs. However, so far the literature of the measurement regarding GDLs 

compressive properties normally did not mention clearly the stack sizes, which might put 

into question the reliability of the data. Besides, the structure modeling of PEM fuel cells 

requires the GDL mechanical properties. In real PEM fuel cells two pieces of GDLs, 

sandwiched with a CCM, are normally used as the component of an MEA. This might 

trigger another problem: what stack sizes are the best to represent the real GDLs 

compressive properties in an MEA? Therefore, in order to obtain more convincing and 

meaningful results, the measurement of GDLs’ compressive behaviour should consider 

the effect of the stack size of GDLs.  

Many studies used either piecewise linear expressions or exponential correlations to 

describe the compressive behaviour of GDLs. However, none of them paid attention to 

the unloading curve, which is important in mechanical modelling. For the ease of 

modelling, the loading and unloading compressive behaviours are described using 4
th

 

polynomial curves, as shown in Table 6-1. 

Table 6-1  4th order polynomial correlations for loading/unloading curves 

Stack size Type Correlation 

One-sample stack 
loading   0.0 575  0. 8    9.745   5.988    .445   

unloading    0.0 4   0.058 7   .   8    7.90     .96   

Two-sample stack 
loading   0.0   9  0.4 9    5.00   5.  6     .47   

unloading    0.0 74   . 04   7. 8    00.    89.68   

Five-sample stack 
loading   0.00866  0.7545   8. 6   9 .0     0 .9   

unloading    0.064 4   . 05     6. 5     5.     .49    

 

As indicated in Figure 6-5, due to the measurement uncertainty, the compressive 

behaviour of GDLs with different stack sizes can mainly be divided into three categories: 

a one-sample stack, a two-sample stack and a five-to-ten-sample stack. As previous 

mentioned, a large stack size helps to reduce the experimental errors. Also, the general 

shapes of their curves are similar. Therefore, a five-sample stack was mainly used for the 

following test. The loading curve contains sufficient information to describe the 
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compressive behaviour of GDLs. The following sections only concentrated on studying 

the effects of temperatures, relative humidity, and the amounts of PTFE coatings on the 

compressive behaviour.  

 

Figure 6-5  The typical raw GDL compressive stress-strain loading curve with error bars 

(SpectraCarb 2050A-0850 carbon paper, temperature 25
o
C, RH 30%) 

6.1.1.3. The Effect of Operating Temperatures 

A PEM fuel cell is typically working at operating temperatures of around 65
o
C to 85

o
C; 

therefore, the compressive behaviour of GDLs during these temperature ranges is worth 

being investigated. However, studies in the literature regarding the GDL’s compressive 

properties have mainly focused on compression tests at room temperature (about 25
o
C). 

In order to clarify operating temperature effects, the compressive stress-strain curves of 

GDLs were probed at different temperatures. Tests relied on a five-stack raw GDL 

(SpectraCarb 2050A-0850, carbon paper) at four various temperatures (25
o
C, 45

o
C, 65

o
C, 

and 85
o
C) with a constant relative humidity 30%. As illustrated in Figure 6-6, these four 

curves overlapped and the differences between them were statistically insignificant. 

Although small variations can be seen among these curves, they lied within the range of 

measurement uncertainties. These results indicated that the compressive behaviour of 
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GDLs did not change appreciably within the fuel cell operating temperature range; thus 

the effect of operating temperatures on GDLs’ compressive properties was negligible. As 

mentioned, the compressive behaviour of GDLs mainly depended on the microstructure 

changes. Because carbon fibres have a high temperature tolerance and a very low thermal 

expansion, the increased testing temperature did not change the microstructure status of 

GDLs and carbon fibre properties in an appreciable way, compared to those at room 

conditions. Therefore, the compressive behaviour remained unchanged.  

 

Figure 6-6  The compressive behaviour of raw GDLs with different temperatures (SpectraCarb 

2050A-0850 carbon paper, a five-sample stack, temperature 25
o
C, RH 30%) 

6.1.1.4. The Effect of Relative Humidity 

Since the proton conductivity of a Nafion membrane is directly correlated with its 

hydration level, the humidification of a membrane is usually essential. Therefore, PEM 

fuel cells operate at a humidified condition (normally above 80%). A GDL is a composite 

material, consisting of carbon fibres and resin which is used as a binder to connect the 

carbon fibres into a certain shape. The most common type of resin used in GDLs is 

phenolic resin. Studies indicate that this resin becomes weaker as its moisture content 

increase [88]. Hence, it is possible that the compressive behaviour of GDLs at a high 
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humidified condition is different from that at a dry condition. However, very few studies 

have been performed to characterize the compressible properties of GDLs at a highly 

humidified condition.  

In order to clarify the relative humidity effects, the GDLs were tested at the same 

temperature of 85
o
C with two different relative humidity (30% or 85%). As shown in 

Figure 6-7, the initial linear region of compressive stress-strain curve at different 

humidified conditions did not show any significant differences, compared with that for 

the dry sample. It needs to be mentioned that due to the measurement uncertainty, the 

compressive behaviours of dry and humidified GDLs at the initial region were similar 

enough to be considered as the same, although it is possible that they might have slight 

differences. However, for the non-linear region, the compressive behaviours of the 

humidified GDLs became more compressible than the dry samples; whereas for the final 

linear region, the Young’s modulus of GDLs became similar. A moist environment can 

soften the resin and make it easier for the carbon fibres to dislocate and slip. However, 

when the compression stresses were very small, they did not destroy the layer structure in 

spite of the softened resin, which was the reason why at the initial region, the 

compressive properties of dry and humidified samples were quite the same. When the 

compressive stresses started to increase to a point where the carbon fibre breakage and 

slippage can occur, the compressive stress-strain curves moved into the non-linear region. 

Because of the softened resin, the humidified GDL became more compressible than the 

dry GDL sample at this region. As the compressive stresses continued to increase, the 

whole GDL became more condensed, meaning that the microstructure of the GDL 

became stable. At this stage, the softened resin did not have an appreciable impact on the 

microstructure changes; hence the compressive strain changed at approximately the same 

rate as that of the dry sample.  

6.1.1.5. The Effect of Hydrophobic Coatings 

GDLs are often treated with hydrophobic binders (PTFE) for the water management. This 

treatment results in the microstructural changes, as illustrated in Figure 5-14. Compared 

with a raw GDL without PTFE, the PTFE coating not only wraps the carbon fibre and 

fills out some pores, but also acts as a binding agent, which leads to a different 
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compressive behaviour from a raw GDL. However, there is no in-depth investigation 

regarding the microstructural changes caused by the PTFE coatings and their 

corresponding compressive behaviours. The following tests measured Toray-type carbon 

papers (TGP-H-120) with different amounts of PTFE loadings. 

 

Figure 6-7  The compressive behaviour of GDLs under different relative humidity (SpectraCarb 

2050A-0850 carbon paper, a five-sample stack, temperature 85
o
C) 

Since the compressive behaviours of GDLs are significantly affected by their 

microstructures, PTFE’s effects on GDLs’ microstructures need to be investigated first in 

order to have a comprehensive understanding of its impact on compressive properties of 

GDLs. Figure 6-8 and Figure 6-9 show the integral and differential distributions of pore 

volume as a function of pore radius for uncompressed GDLs with different amounts of 

PTFE loadings. Table 6-2 provides the volumetric porosity of GDLs with different 

amounts of PTFE loadings. Because the PTFE wrapped the carbon fibres, the pore 

volume decreased with the amount of PTFE loadings. The radii of the pores in tested 

sample were mainly between 10 to 20 µm. The most common pore radius was 15 µm. In 

addition, in spite of its effect in reducing the overall pore volume, PTFE coatings did not 

exert appreciable effects on the maximum pore size and size distribution of GDLs.  
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Figure 6-8  The uncompressed integral distribution of pore volume as a function of logarithmic 

pore radius for Toray carbon paper (TGP-H-120) GDLs with 0-40% PTFE treatments 

 

 

Figure 6-9  The uncompressed differential distribution of pore volume as a function of pore 

radius for Toray carbon paper (TGP-H-120) GDLs with 0-40% PTFE treatments 
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Table 6-2  The volumetric porosity of GDLs with different amounts of PTFE loadings 

PTFE loading 0% 5% 10% 20% 30% 40% 

Porosity  0.7818 0.7303 0.7204 0.6987 0.6560 0.6281 

Uncertainty ±0.0040 ±0.0039 ±0.0038 ±0.0037 ±0.0036 ±0.0035 

 

Figure 6-10 illustrates the stress-strain curves of Toray carbon paper GDLs with different 

PTFE loadings (0%, 5%, 10%, 20%, 30% and 40%). Similarly to that of the SpectraCarb 

carbon paper, the compressive behaviour of a PTFE-coated GDL can also be divided into 

three regions. However, it varied with the amount of PTFE loadings. In the initial region, 

all the stress-strain curves overlapped, indicating that the amount of PTFE loading 

actually did not show any appreciable effects on the GDLs’ compressible behaviour when 

the compressive stresses were smaller than 1.5 MPa. The initial small compressive 

stresses made the less-dense layers more condensed. Because of PTFE coatings, the 

number of less-dense layers became increasingly smaller. However, since the initial 

compressive stress was so small, it only condensed the less-dense layers in a reversible 

way, which would not affect the original compressive behaviour in an appreciable way.  

However, the compressive behaviours changed when the compressive stresses move into 

the middle region. As shown in Figure 6-10, raw GDLs (Toray 0% PTFE) behaved 

differently from GDLs with PTFE coatings. Raw GDLs (Toray 0% PTFE) were more 

compressible, whereas GDLs with different amounts of PTFE coatings still acted in a 

similar way. Because compressive stress at this range resulted in the carbon fibre 

breakage and slippage, a raw GDL (Toray 0% PTFE) behaved non-linearly. On the other 

hand, the added PTFE coating worked as a binder and strengthened the GDL structure, 

thereby reducing the carbon fibre breakages and slippages. This might be the reason why 

it is less compressible. As the compressive stresses moved into the third region, they 

made the whole GDL more evenly condensed. In this case, the presence of PTFE actually 

wrapped the carbon fibres and reduced the pore volume. Because of the lay depositions, 

at this region the measured compressive behaviour was the combination of the GDL 

carbon fibres and the different levels of PTFE coatings, which was why all the stress-

strain curves were different from each other. However, for a common PEM fuel cell 
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operating clamping force (0.4-1.2MPa), the compressive behaviour of GDLs with 

different PTFE coatings was quite the same.  

 

Figure 6-10  The Compressive behaviour of GDLs with different PTFE loadings (a five-sample 

stack, temperature 25
o
C, RH 30%) 

 

6.1.2. Cyclic Compressive Behaviour 

In an operating fuel cell, the MEA suffers a combination of clamping forces and thermal-

hygro stresses. The clamping force is constant once the fuel cell is assembled. However, 

due to the cyclic changes of the operating conditions (shut-down/start-up processes), the 

thermal-hygro stresses will change during the operation, indicating that the cyclic 

compressive nature of GDLs is worth being studied. However, so far studies regarding 

the cyclic compressive behaviour of GDLs are only limited to a few cycles; whereas the 

real durability target for a fuel cell to be used in vehicles is approximately 30,000 shut-

down/start-up cycles.  
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6.1.2.1. Five Cycles of Loading and Unloading 

Figure 6-11 shows the stress-strain behaviour of GDLs after five loading-unloading 

cycles. Unlike the first cycle, the loading and unloading curves tended to become similar 

with the increase of the cycles, which resulted from the reductions in less-dense layers. 

After the first compression, the GDL experienced a reduction in less-dense layers. The 

whole GDL became more condensed. However, some less-dense layers still existed, 

which would experience continuously condensed processes after the subsequent cycles. 

Figure 6-11 shows that the compressive strain under the same compressive stress 

increased after five cycles. Such an increase reduced by about 60% after five cycles, as 

illustrated in Figure 6-12. 

 

Figure 6-11  The compressive behaviour of a raw GDL (SpectraCarb) under five loading and 

unloading cycles (a five-sample stack, temperature 25
o
C, RH 30%) 
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Figure 6-12  The compressive strain changes under the maximum compressive stress during five 

cycles (a raw SpectraCarb GDL, a five-sample stack, temperature 25
o
C, RH 30%) 

6.1.2.2. Effect of Cyclic Loading 

In order to simulate the cyclic loading (the start-up/shut-down processes), GDLs were 

compressed under the range from 1-2 MPa. The assembled forces were assumed to be 1 

MPa, whereas the cyclic loadings resulting from the thermal-hygro stresses were between 

0-1 MPa. The GDL was first compressed to 2 MPa. Then, the compression was gradually 

reduced to 1 MPa. This cycle repeated for about 2000 times. As shown in Figure 6-13, 

the compressive strain measured at 2 MPa was plotted as a function of cycle number.  

After a few cycles, the compressive strains of both PTFE-coated GDLs and raw GDLs 

experienced an appreciable increase even under the same compressive stress. After about 

1500 cycles, the compressive strains of both kinds of GDLs reached a relatively stable 

state. In addition, a few sudden increases can be noticed on these two curves. This 

phenomenon was still linked with the less-dense layers. Similar to what occurs after 10 

cycles, as depicted in Figure 6-12, the less-dense layers continues to be condensed to a 

certain point under a certain compressive stress. However, due to the cyclic load, the 

GDLs experienced fatigue issue, consequently causing further carbon fibre breakage and 
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slippage, as shown in Figure 6-14. These further damages resulted in new less-dense 

layers, thereby further increasing the compressive strain. After about 1500 cycles, carbon 

fibres dislocated and became condensed. Then, there was little room for the new-born 

less condensed layers; hence the stress-strain curve became stable. Moreover, because a 

GDL was basically a random porous material, even two GDL samples from the same 

batch would not behave exactly the same. Therefore, these sudden jump increases 

randomly occurred. Table 6-3 shows the volumetric porosity of GDLs after 2000 cycles. 

Due to the carbon fibre breakage and slippage, the porosity of raw and coated GDLs 

decreased. Although the reduction was only 6%, it is possible that these changes would 

lead to significant changes in other properties of GDLs, such as thermal and electrical 

resistances.  

 

Figure 6-13  The compressive behaviour of a raw GDL after 2000 cycles (a five-sample stack 

temperature 25
o
C, RH 30%) 

 

Table 6-3  The volumetric porosity of GDLs after 2000 cycles 

PTFE loading Uncompressed 

volumetric 

porosity 

Volumetric 

porosity after 

2000 cycles 

Relative 

changes, % 

Uncertainty, % 

0% 0.7818 0.7702 1.48 0.51 

20% 0.6987 0.6560 6.11 0.53 
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(a) Uncompressed raw GDL-I (b) Compressed raw GDL-I after 2000 cycles 

  

(c) Uncompressed raw GDL-II (d) Compressed raw GDL-II after 2000 cycles 

Figure 6-14  The microstructural changes of a raw GDL after 2000 cycles 

 

6.2. Mechanical Properties of Catalyst Layers  

All the cell structure modelling done, so far, ignored the catalyst layers in the modelling 

and considered the catalyst layer and the gas diffusion layer as one single layer because 

of the unknown mechanical properties of catalyst layers. Catalyst layers’ mechanical 

properties, including Young’s modulus, can be obtained from the nanoindentation 

technique, using the relations mentioned in Chapter 3.  

Figure 6-15 illustrates the indentation curves for the catalyst layer in terms of load and 

displacement. It included one loading and unloading curves. The loading and 
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displacement relation was linear. The unloading curve determines the Young’s modulus, 

as shown in Figure 6-16 and Figure 6-17. The Young’s modulus of catalyst layers varied 

with different locations, depths and applied forces. According to Table 5-1, the 

distributions of pores, Pt particles and carbon supports were not uniform. Therefore, 

during the process of the indentation, the Berkovich indenter could encounter pores, 

aggregated Pt particles or carbon particles, which affected the Young’s modules values. 

Here, we took the Young’s modules of catalyst layer as the average 450 MPa. 

 

Figure 6-15  Nanoindentation results for catalyst layers in terms of load and indentation depth 

 

Figure 6-16  Young’s modulus of catalyst layers under various applied forces 
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Figure 6-17  Young’s modulus of catalyst layers with various indentation depths 

 

6.3. Summary  

The structure model of a PEM fuel cell strongly depends on the compressive behaviour of 

GDLs and catalyst layers. In an operating fuel cell, a GDL suffers from not only the 

clamping force and thermal-hygro stresses but also cyclic changes of these stresses; 

therefore, the importance of GDLs’ compressive behaviours under common operating 

conditions and cyclic loadings cannot be ignored. This chapter focuses on the effects of 

stack sizes, operating temperatures, relative humidity, the amount of PTFE coatings, and 

cyclic loadings on the compressive properties of GDLs. The results indicated that 

microstructure changes made GDLs’ compressive behaviours disobey Hook’s law. 

Therefore, mechanical modelling in previous research, where a GDL was assumed to 

have elastic properties, might not be appropriate. Previous research did not consider the 

impact of stack size; however, it did affect the measurements. The funding showed that, 

in general, GDLs with various amounts of PTFE coatings behaved differently, yet, during 

the common operating compression range, their properties were almost the same.  

Various conditions created somewhat different effects on GDLs’ compressive behaviour. 

The results showed that the common PEM fuel cell operating temperature did not change 

the mechanical properties of GDLs in an appreciable way, whereas the relative humidity 
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could soften the GDL binder, making the GDL more compressible. However, during a 

common operating compression range, such a softening effect was not significant. 

Moreover, cyclic loading further varied the GDL’s microstructure, and changed its 

original porosity and corresponding mechanical properties.  

Compared to GDLs, it is even more challenging to measure catalyst layers’ mechanical 

properties because of its structure; however, the nanoindentation technique made this 

measurement possible. The catalyst layer had an elastic mechanical behaviour with a 

Young’s modulus that changed with the applied force and the indentation depth. This 

occurred because pores and Pt/C agglomerates did not distribute uniformly.  

The above obtained mechanical properties are very important because they guided the 

selection of various constitutive relations for cell components in a structure model. The 

following structure model included GDLs, catalyst layers and Nafion membranes. Based 

on the experimental data, a hyperelastic model, Blatz-Ko model, simulated GDLs’ 

nonlinear compressive behaviours. In addition, an elastic model simulated catalyst layers’ 

mechanical behaviour. Meanwhile this model also considered its thermal and hygro- 

expansion under various cell operating conditions.  
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    Chapter  7 

7. Mechanical Behaviour of 

MEAs  
 

 

 

Chapter 5 suggests that microstructural changes of MEAs occur mainly because of 

inappropriate stresses, including hygro-thermal stresses and clamping forces. This 

suspicion necessitated the study of the stress and deformation of MEAs. This chapter 

presents three conditions to clarify the effects of clamping forces, cell temperatures, and 

relative humidity on the stress and deformation of an MEA. A temperature of 25
o
C and a 

relative humidity of 30% defined the initial temperature and relative humidity conditions, 

namely the zero stress-state.  

 Condition 1: Impose clamping forces with a constant cell temperature of 75
o
C 

and a relative humidity of 100%. Clamping force was applied by linearly 

increasing the clamping pressure from 0.2 MPa to 0.8 MPa.  

 Condition 2: Increase cell temperature with a fixed clamping force of 0.4 MPa 

and a relative humidity of 100%. All the cell components had the same 

temperature. The temperature of the entire fuel cell assembly was linearly 

increased from 25
 o
C to 75

o
C, while maintaining a relative humidity of 100%. 
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 Condition 3: Increase the relative humidity with a fixed clamping force of 0.4 

MPa and a cell temperature of 75
o
C. Only the catalyst layers and Nafion 

membranes were assumed to react to relative humidity which increased from 30% 

to 100%.  

7.1. The Effect of Clamping Force 

      

Figure 7-1  The in-plane stress distribution of the Nafion membrane with a clamping force of 0.8 

MPa, a temperature of 75
o
C and a relative humidity of 100% 

 

Figure 7-2  The out-of-plane stress distribution of the Nafion membrane with a clamping force of 

0.8 MPa, a temperature of 75
o
C and a relative humidity of 100% 

 

Figure 7-3  The Von Mises stress distribution of the Nafion membrane with a clamping force of 

0.8 MPa, a temperature of 75
o
C and a relative humidity of 100% 

A proper clamping force is a significant factor for cell performance. It should be large 

enough so that the contact resistance between each cell component reaches a reasonable 
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level, thereby improving cell performance. However, an inappropriately large clamping 

force can also result in structural defects in an MEA, causing a cell performance 

reduction. Figure 7-1, Figure 7-2, and Figure 7-3 illustrate the three different stress 

distributions on the Nafion membrane with a temperature of 75
o
C, a relative humidity of 

100%, and a clamping force of 0.8 MPa. For in-plane and out-of-plane stresses, the stress 

under the channel was always smaller than that under the land. However, the Von Mises 

stress distribution showed an opposite condition. The Von Mises under the channel was 

greater than that under the land. 

The Von Mises stress is not really a stress, but a number determining whether the stress 

combination at a given point will cause plastic deformation. A structure model involved a 

complex three-dimensional system of stresses, indicating that at any point within a body 

there are stresses acting in different directions. The direction and magnitude of stresses 

changes from point to point. The Von Mises stress relies on a formula for combining 

these three stresses into an equivalent stress, which is then compared to the yield stress of 

the material, as shown in Equation 4-16.  

During a common operating condition, a Nafion membrane had different deformations at 

various locations. The membrane under the channel tended to bulge, whereas the one 

under the land experienced thickness reductions. This deformation difference could give 

rise to several structure defects, such as catalyst loss and cracks, especially at the 

transition region between the land and the channel. Meanwhile, deformation induced the 

in-plane stress. The membrane under the land, suffering the out-of-plane stress, resisted 

the bulge of the membrane under the channel, which was why it had a greater in-plane 

stress. In addition, since the in-plane stress was much larger than the out-of-plane stress, 

the Von Mises stress largely depended on it, as presented in Equation 4-16. Therefore, in 

the following, we will mainly focus on studying the effects of different operating 

conditions on the in-plane stress.  

In order to study the effect of clamping forces on the in-plane stress, it is better to 

concentrate on two different locations, as shown in Figure 7-4, because these two 

locations experienced two different deformations. One location is under the centre of the 

land, whereas the other is under the centre of the channel. Figure 7-4 illustrates the stress 
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conditions at these two locations on the Nafion membrane surface. The in-plane stress 

continued to increase overall with the clamping force. However, the in-plane stress under 

the land was larger than that under the channel. Understandably, the raised clamping 

force strengthened the bulge effect of the Nafion membrane under the channel. 

Meanwhile, the Nafion membrane under the land resisted this effect. As a result, the in-

plane stress on the Nafion membrane under the land was always larger than that under the 

channel. Moreover, the in-plane stress under the land had a higher increase rate as the 

clamping force increase.  

 

Figure 7-4  The in-plane stresses at two locations on the Nafion membrane’s surface with a 

temperature of 75
o
C and a relative humidity of 100% 

As illustrated in Figure 7-5, the Von Mises stresses on the Nafion membrane under the 

channel and under the land varied. For the Nafion membrane under the land, the Von 

Mises stress decreased with a raised clamping force. This is because the enhanced 

clamping force strengthened both the in-plane and the out-of-plane stresses. Based on 

Equation 4-16, the subtraction of in-plane and the out-of-plane stresses could lead to the 

reduction in the Von Mises stress. On the other hand, the Von Mises stress for the Nafion 

membrane under the channel behaved differently. Because of a low increase rate of the 

in-plane stress under the channel with the levelled clamping force, the Von Mises stress 

on the Nafion membrane under the channel increased. This difference meant that the 

Nafion membrane under the channel was more likely to have greater plastic deformations 

with raised clamping forces at a range from 0.2 MPa to 0.8 MPa, whereas the membrane 
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under the land had a less possibility to suffer large plastic deformations under larger 

clamping force at this range.  

 
Figure 7-5  The Von Mises stress at two locations on the Nafion membrane’s surface with a 

temperature of 75
o
C and a relative humidity of 100% 

 

Figure 7-6  The equivalent plastic strains at two locations on the Nafion membrane’s surface with 

a temperature of 75
o
C and a relative humidity of 100% 

A corresponding phenomenon also occurred in Figure 7-6, which reflects the equivalent 

plastic strain on the Nafion membrane. Equivalent plastic strain gives a measure of the 
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amount of permanent strain in an engineering body. Equation 4-24 shows its formula, 

which was calculated from the component plastic strain. The equivalent plastic strain 

under the land remained constant with the increase in clamping forces, because of the 

decreased Von Mises stress on the membrane under the land. However, it increased for 

the Nafion membrane under the channel. During operations, the Nafion membrane under 

the channel bulged and the Nafion membrane under the land thinned. Plastic strains 

meant that some membrane parts of this bulge and thickness reduction cannot return to its 

original shape after unloading, namely the shut-down process. However, the permanent 

strain on the Nafion membrane also had impacts on catalyst layers which were coated on 

the membrane. These layers were less flexible than the membrane. Nafion membranes’ 

unrecoverable deformations could easily cause the catalyst flake off the Nafion 

membrane, as shown in Figure 5-22. Another interesting phenomenon is that merely 

increasing the clamping force had an insignificant effect on the enhancement of plastic 

strain. The results shows that when the clamping force was 0.8 MPa, which was four 

times larger than the original clamping force, 0.2 MPa, the plastic strain under the 

channel only rose less than 3%.  

7.2. The Effect of Operating Temperature 

 

Figure 7-7  The in-plane stress at two locations on the Nafion membrane’s surface with a 

clamping force of 0.4 MPa and a relative humidity of 100% 
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To date, more researchers suggest that the optimal working temperature for a PEM fuel 

cell is around 70
o
C-75

o
C. For the start-up process, a cell temperature can increase from 

30
o
C to 75

o
C. Within this temperature range, the overall in-plane stress decreased, as 

presented in Figure 7-7. The temperature increase motivated the thermal expansion and a 

corresponding increase in the swelling expansion, which, in theory, enhances the in-plane 

stress. Nevertheless, the raised temperature also softened the Nafion membrane, thereby 

relieving the in-plane stress. As a result, the combination of these two factors led to the 

in-plane stress reduction. Therefore, the temperature has a major role in relieving the in-

plane stress.  

 

Figure 7-8  The Von Mises stress at two locations on the Nafion membrane’s surface with a 

clamping force of 0.4 MPa and a relative humidity of 100% 

According to Figure 7-8, the Von Mises stresses decreased with the cell temperature 

enhancement. However, it was always larger than the yield stress because high 

temperatures not only softened the Nafion material, but also lowered membrane’s yield 

stress. In addition, the Von Mises stress distribution was quite uniform on the Nafion 

membrane, meaning that the entire MEA had plastic deformation. The difference for 

membrane under the land and under the channel was less than 1% because the in-plane 

stress was insensitive to enhanced cell temperatures, as shown in Figure 7-7. A 

corresponding distribution also existed in the equivalent plastic strain. In addition, 
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compared to the effect of clamping force, raised temperatures caused a 50% greater 

increase in the equivalent plastic strain, as presented in Figure 7-9.  

 

Figure 7-9  The equivalent plastic strain at two locations on the Nafion membrane’s surface with 

a clamping force of 0.4 MPa and a relative humidity of 100% 

7.3. The Effect of Relative Humidity 

 

Figure 7-10  The in-plane stress at two locations on the Nafion membrane’s surface with a 

clamping force of 0.4 MPa and a temperature of 75
o
C 
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A high relative humidity helps Nafion membranes and catalyst layers to maintain a 

certain level of hydration, while inducing significant swelling. Figure 7-10 shows the in-

plane stress condition of the Nafion membrane with an increasing relative humidity. 

During this process the overall in-plane stress increased about 300%. Similar to a high 

cell temperature, a high relative humidity also has a softening-effect. However, compared 

to the effect of cell temperatures on expansions, the expansion resulting from increased 

relative humidity was much more appreciable than that from the increased temperature. 

Hence, the increase in relative humidity was attributed to the rise in the in-plane stress, 

although a high relative humidity could soften the Nafion membrane, which, in turn, 

explained the increase in the Von Mises stress, as illustrated in Figure 7-11. The Von 

Mises stress had a more than four times enhancement, which corresponds to the 

significant increase in the in-plane stress. In addition, the difference in the Von Mises 

stress at different locations became smaller as the relative humidity rise. 

 

Figure 7-11  The Von Mises stress at two locations on the Nafion membrane’s surface with a 

clamping force of 0.4 MPa and a temperature of 75
o
C 

When the cell was working at 75
o
C with a clamping force of 0.4 MPa, the relative 

humidity determined whether the membrane had plastic deformation, as shown in Figure 

7-12. A plastic strain occurred when the relative humidity was higher than about 65%, 

which indicated that relative humidity, compared with the clamping force and the cell 
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temperature, was the most significant factor determining if the Nafion membrane suffers 

plastic deformations. Since a PEM fuel cell generally works with a relative humidity of 

90%-100%. The Nafion membrane inevitably suffers plastic deformations.  

 

Figure 7-12  The equivalent plastic strain at two locations on the Nafion membrane’s surface with 

a clamping force of 0.4MPa and a temperature of 75
o
C 

7.4. One Fuel Cell Duty Cycle 

          

Figure 7-13  The evolution of Von Mises stress after one fuel cell duty cycle 
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Figure 7-14  The evolution of in-plane stress after one fuel cell duty cycle 

       

Figure 7-15  The evolution of out-of-plane stress after one fuel cell duty cycle 

The study of the stress condition during start-up and shut-down processes counted on a 

fuel cell duty cycle simulation. The clamping force remained constant as 0.4 MPa during 

this duty cycle, whereas the cell temperature and relative humidity increased from 25
o
C 

to 70
o
C and 30% to 90%, respectively, during the loading process and returned to the 

initial condition after unloading. The evolution of the stresses throughout a fuel cell duty 
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cycle enabled the study of stress distributions at the maximum loading and after 

unloading. As presented in Figure 7-13, at the maximum load, the Nafion membrane was 

in overall yielding condition. Figure 7-13 also illustrates the residual Von Mises Stress. If 

plastic deformation did not occur during loading, the stress condition would return to the 

initial condition after unloading. Otherwise, the stress condition would change, which is 

called the residual stress. As shown in Figure 7-13, the residual Von Mises stress was 

larger than the stress at the maximum loading condition, meaning that the Nafion 

membrane experienced further yielding during the fuel cell shut-down process.  

A similar phenomenon also occurred in the in-plane stress and the out-of-plane stress 

distributions, as presented in Figure 7-14 and Figure 7-15. The shrinkage of the Nafion 

membrane contributed to a redistribution of the internal forces and stresses. As a result, 

tensile in-plane stresses were achieved upon unloading. However, the out-of-plane stress 

was smaller than the in-plane stress. Because of the constant clamping stress, its change 

was not significant.  

These results meant that both the start-up and shut-down processes contributed to the 

plastic deformation of a Nafion membrane. In addition, Figure 7-14 and Figure 7-15 

indicates that the stress effect changed in one fuel cell duty cycle. For instance, the initial 

compressive in-plane stress shifted to the tensile in-plane stress after unloading, which 

could intensify the microstructure changes. For example, cyclic compression and pull 

could impair the attachment between the catalyst layer and the Nafion membrane, 

causing delamination. 

7.5. Effect of Cyclic Loading in Temperatures and Relative 

Humidity 

A PEM fuel cell used in a vehicle has to undergo numerous start-up and shut-down 

processes. Hence, its stress and strain condition under cyclic loadings is worth studying. 

Fifty cycles of fuel cell start-up and shut-down processes were simulated. The clamping 

force remained at 0.4 MPa during the cycles. The cell temperature and relative humidity, 

on the other hand, increased from 25
o
C to 70

o
C and 30% to 90%, respectively, during the 

loading process and returned to the initial condition after unloading. Figure 7-16 provides 
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the equivalent plastic strain conditions of the Nafion membrane under cyclic changes of 

temperatures and relative humidity. The equivalent plastic strain first experienced an 

initial cyclic change. During the process to reach the maximum loading, the equivalent 

plastic strain always increased. However, during the unloading process, it decreased. 

After about 25 cycles, the equivalent plastic strain tended to become stable. This stability 

occurred because during the loading, levelled stresses disentangled the chains, making 

them more ordered and aligned. This outcome can be understood by looking at the idea of 

crystallinity. With greater alignment, crystallinity was induced in the Nafion membrane. 

Crystallinity, the solid part of the plastic strain, increased with the stress enhancement. 

However, there was a limit point. After this certain level of stress, crystallinity cannot 

increase any more. At this point, the Nafion membrane is more solid. In this case, when 

stress continued to increase, the plastic strain decreased. In the meantime, the difference 

in plastic strains, between the Nafion membrane under the land and the channel, 

decreased during these cycles. 

 

Figure 7-16  The equivalent plastic strain of the Nafion membrane with a constant clamping force 

under cyclic changes of temperatures and relative humidity 

A corresponding phenomenon also existed in the evolutions of the Von Mises stresses. 

Figure 7-17 shows the Von Mises stress on the Nafion membrane when the fuel cell 

underwent a start-up process and worked at a temperature of 70
o
C and a relative humidity 
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of 90%. The Von Mises stress continuously increased for the first 10 cycles with a 

decrease in the increase rate. Then, it became stable. A similar phenomenon can also be 

found in Figure 7-18, where the fuel cell experienced a shut-down process and return to a 

room condition with a temperature of 25
o
C and a relative humidity of 30%. The residual 

stress after shut-down process was much larger than the stress at the maximum loading 

condition, thus validating the initial cyclic changes in the equivalent plastic strain.  

 

Figure 7-17  The Von Mises of the Nafion membrane with a constant clamping force of 0.4 MPa 

at a maximum loading under cyclic changes of temperatures and relative humidity 

 

Figure 7-19 indicates the thinning of the Nafion membrane under the land. Such a 

phenomenon is related to crystallinity. A more ordered and aligned disentangled chains 

resulted in a more intense structure, which meant a decreased thickness. In addition, this 

thinning mainly occurred during the first 20 cycles. After that, the thinning of Nafion 

membrane under the land for each cycle becomes increasingly smaller. The Nafion 

membrane is used to block electrons and reactant gases. It should have a strong 

mechanical stability. However, the thinning could deteriorate its mechanical stability. 

Due to the computational limitation, the effect of only 50 cycles was studied. The 

reduction of Nafion membrane under the land was only about 0.6%. However, it is very 

likely that with the increase of cycles, the thinning might be great enough to cause 

structural defects, such as pineholes. In addition, the thinning of the Nafion membrane 
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under the land meant the bulge of the membrane under the channel became more 

noticeable, which can cause delamination between the catalyst layer and the membrane. 

Also, this difference in thickness variations between membrane under the channel and 

land can lead to significant structural changes, especially at the transition region of the 

membrane between the land and the channel.  

 

Figure 7-18  The residual Von Mises of the Nafion membrane with a constant clamping force of 

0.4 MPa after unloading under cyclic changes of temperatures and relative humidity 

 

Figure 7-19  Nafion membrane thinning process 
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7.6. Summary 

The structure model characterized the stress and deformation of an MEA during common 

and cyclic operating conditions. A variety of constitutive models simulated different 

materials in cells. In particular, a rate-dependent isotropic plasticity model with 

temperature- and humidity-dependent material properties modeled the viscoplasticity of 

the Nafion membrane. In addition, a hyperelasticity material model simulated GDLs’ 

different loading and unloading compressive behaviours. Moreover, a traditional elastic 

model determined the linear mechanical behaviour of catalyst layers and graphite flow 

channel plates. Corresponding experiments validated the reliability of various constitutive 

models. The simulation results were in agreement with the experimental results.  

The results verified the suspicion in the previous chapter that large stresses resulted in the 

microstructure defects in an MEA. For example, a large clamping force made the Nafion 

membrane under the channel undergo plastic deformations, although it enabled an 

improvement in electron conductivity. Consequently, under a common cell temperature 

and relative humidity, it is not recommended to apply large clamping forces. In addition, 

a thermal loading sequence caused a further deformation in the membrane, in spite of its 

assistance in upgrading the reaction rate. Similarly, a significant increase in Von Mises 

stress in the Nafion membrane was attributed with the growth of relative humidity. It was 

the determining factor of whether a Nafion membrane had plastic deformation. The 

results noted that these three operating conditions can have a number of advantages when 

applied at an appropriate scale. However, when they are inappropriately large, 

microstructure defects might occur. Therefore, their selections should consider both the 

cell performance and the durability. 

During a regular fuel cell duty cycle, the expansion of the Nafion membrane brought a 

compressive in-plane stress during loading, whereas the shrinkage of the Nafion 

membrane resulted in a tensile in-plane stress upon unloading. In addition, the residual 

Von Mises stress was much larger than the stress at the maximum loading condition, 

giving rise to the crystallinity, and its associated thinning. This thinning was a possible 

reason for several structure defects. 
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The structure model quantified the MEA’s deformations during common operations. 

These deformations were associated with the porosity, permeability, and intrinsic 

electronic conductivity of catalyst layers and GDLs. Moreover, the channel size and 

interfacial electronic conductivity also varied with the deformation. The following 

chapter concentrates on studying the effect of these deformations on cell performance.  
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    Chapter  8 

8. Cell Performance with 

Deformed MEAs 

 

 

 

Chapter 7 presents that the structure model quantified the deformations of a single PEM 

fuel cell channel under various operating conditions. This deformation was associated 

with the transport parameters of GDLs and catalyst layers, in turn affecting cell 

performance. In this chapter, the structure-performance coupled model, described in 

Chapter 4, helped to study the impact of the early stage degradation, caused by various 

operating conditions, assembly methods, and flow channel designs, and the late stage 

degradation on cell performance. In this structure-performance coupled model, the 

deformed cell structure worked as the physical model for the cell performance modelling. 

It also determined associated transport properties in catalyst layers and GDLs. 

8.1. Early Stage Degradation 
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8.1.1. The Effect of Clamping Force 

A clamping force, one of the most significant working conditions for PEM fuel cell 

performance, prevents leaking and ensures reasonable electronic resistances between 

different components in a cell. The clamping force is also associated with the 

deformation of various components in an MEA, which results in the change of transport 

parameters, including porosity, permeability, and diffusivity. Figure 8-1 presents the 

porosity distribution of GDLs under different assembly forces. According to Figure 8-1, a 

GDL’s thickness reduction contributes to the porosity decrease, affecting its associated 

permeability and diffusivity.  

 

Figure 8-1  The porosity distribution of GDLs under various clamping pressures with a 

temperature of 75
o
C and a relative humidity of 100% 

As shown in Figure 8-1, the porosity of GDLs under the land declined significantly, 

whereas the one under the flow channel had minimal changes. For example, the GDL 

under the land experienced a 16% reduction in porosity under a clamping force of 1.0 

MPa. As a result, its overall permeability, which can be determined using Equation 4-84, 

could decline by as much as one or two orders of magnitude within this clamping force 

range. On the other hand, clamping forces have a negligible impact on the transport 

properties of catalyst layers. Although a catalyst layer has a porous structure, unlike the 

GDL which is a very compressible material, its Young’s modulus is 450 MPa, indicating 

that under a common clamping forces range, its deformation due to clamping forces is 
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negligible. Therefore, its changes to transport properties are mainly related with operating 

conditions, such as cell temperatures and relative humidity, which will be discussed in 

the following sections. 

Figure 8-2 illustrates the I-V curves of a PEM fuel cell with various clamping forces. The 

increase in the clamping force improved the cell performance. During the low current 

density range, where current density was smaller than 0.5 A/cm
2
, such an improvement 

was not significant. However, this improvement became more appreciable when the 

current density was greater than 0.6 A/cm
2
. As presented in Figure 8-3, the current 

density increased about 7% as the levelled clamping force increased from 0.4 MPa to 1.0 

MPa when the cell voltage maintained at 0.7 V. This is a very interesting phenomenon 

because, in theory, a large clamping force brings reductions in the porosity of a GDL, 

which consequently should result in impaired gas transport phenomena. Nevertheless, in 

fact, a large clamping force not only increased the contact surface between the GDL and 

the gas mixture, but also improved the GDL’s intrinsic and interfacial electron 

conductivity. As a result, it led to the performance growth.  

 

Figure 8-2  Cell performance under various clamping forces with a temperature of 75
o
C and a 

relative humidity of 100% 

Figure 8-4 shows the H2 mole fraction distribution in the anode GDL. On one hand, a 

large clamping force reduced the porosity of the GDL under the land. On the other hand, 
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under the channel, it also caused the GDL bulge, which increased the contact surface 

between the GDL and the gas mixture. During the cell operation, hydrogen diffused into 

the GDL from the GDL surface under the channel. As presented in Figure 8-4, because of 

this increased contact surface, levelled clamping forces improved the diffusion effect of 

hydrogen in the anode GDL.   

 

Figure 8-3  Comparison of current density for a fuel cell operating at 0.7V with different 

clamping forces 

 

The gas transport phenomenon on the cathode side was different from the anode side. An 

oxygen reduction reaction produced water in the cathode catalyst layer, which needed to 

be removed from the GDL under the channel. While the water was being removed, 

oxygen diffused into the GDL from the channel. Because the land blocked the 

transportation path for the liquid water, the liquid water at this region could not be 

removed and was much higher than that under the channel. In addition, the enhancement 

of clamping forces further reduced the overall GDL porosity and intensified liquid water 

distribution difference, as illustrated in Figure 8-6. Because this accumulated water under 

the land blocked the transportation path for the oxygen, the oxygen molar fraction in the 

cathode GDL under the land was lower than that under the channel, as presented in 

Figure 8-5.  

 



Cell Performance with Deformed MEAs 

 

~ 144 ~ 

 

 

Figure 8-4  Distribution of H2 mole fraction in the anode GDL with various clamping forces at a 

temperature of 75
o
C and a relative humidity of 100% 

 

Figure 8-5  The distribution of O2 mole fraction in the cathode GDL with various clamping forces 

at a temperature of 75
o
C and a relative humidity of 100% 

Another interesting issue about the cathode side transport phenomenon is the enlarged 

contact surface between the gas mixture and the GDL under the channel. As shown in 
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Figure 8-6, bulged GDLs reduced the channel size. Since the mass flow rate was constant, 

the inlet gas velocity increased, which helped to remove the water out of the GDL more 

effectively. The combination of an increased gas velocity and contact surface helped to 

relieve the water management issue for the cathode GDL under the channel. This 

advantage became more significant when the cell was working at a high current density 

where water flooding was the main reason for performance decay.  

 

Figure 8-6  The distribution of liquid water volume fraction in the cathode GDL with various 

clamping forces at a temperature of 75
o
C and a relative humidity of 100% 

Electronic conductivity, another essential property affecting cell performance, includes 

the contact electronic conductivity between different components and the intrinsic 

electronic conductivity of the material itself. A GDL with a reduced porosity is also more 

condensed, which contributed to a reduction in the intrinsic electron resistance. 

According to Equation 4-70, the intrinsic electron resistance of a GDL decreases by about 

17% under the clamping force of 1 MPa. Moreover, a large clamping force relieved the 

interfacial resistance between the channel plate and the GDL. The combination of these 

two reduced resistances eventually improved the cell performance. 

Although a large clamping force improved cell performance, its selection should consider 

the associated mechanical impacts. As mentioned in Chapter 7, a large clamping force 
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resulted in a greater Von Mises stress in the Nafion membrane under the channel, 

indicating a strengthened plastic deformation of the Nafion membrane. This plastic 

deformation could lead to structure defects, like delamination, since catalyst layers were 

attached to the membrane. Therefore, there existed an ideal clamping force which could 

balance cell performance and durability.  

8.1.2. The Effect of Cell Temperature 

From the perspective of cell performance, a proper cell temperature enhances the reaction 

rate while ensuring a certain hydration of a Nafion membrane. On the other hand, from 

the perspective of MEAs’ deformation, cell temperatures cause the thermal- and 

swelling-expansion of a Nafion membrane and a catalyst layer, which not only results in 

further deformation of an MEA, but also changes its related transport properties. Figure 

8-7 shows the GDL porosity at different cell temperatures. The effect of cell temperatures 

on the GDL porosity changes was not significant. However, the catalyst layer and the 

Nafion membrane both tended to expand with a raised cell temperature, breaking the 

initial stress-strain balance in the MEA. Since the clamping force was constantly at 0.4 

MPa and the anode flow channel plate was movable, the expansion of the Nafion 

membrane and the catalyst layer led to the movement of the anode flow channel plate as 

opposed to greater deformation of the GDL. Consequently, this movement helped to 

reach a new stress-strain balance in the MEA, which was the reason why the changes of 

GDLs’ deformations and their corresponding porosities under various temperatures were 

small.  

However, cell temperatures had a significant impact on the catalyst layer’s porosity. A 

catalyst layer contains mainly ionomers and Pt/C agglomerates. The ionomers expanded 

noticeably with the increase in temperatures and relative humidity. This expansion 

reduced the porosity and the electron conductivity of catalyst layers. Here, a simplified 

catalyst layer modelling indicated the reduction in porosity of catalyst layers on both 

anode and cathode sides at various cell temperatures and a constant relative humidity of 

100%.  
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Figure 8-7  The porosity distribution of GDLs under various cell temperatures with a constant 

clamping force of 0.4 MPa and a relative humidity of 100% 

Figure 8-8 illustrates the effect of cell temperatures on cell performance. Compared with 

cell temperatures of 60
o
C and 85

o
C, a PEM fuel cell had a better performance at a 

temperature of 75
o
C. In theory, a high cell temperature can increase the reaction and the 

gas diffusion rate. However, a high temperature also led to a reduction in the porosity of a 

catalyst layer and its corresponding permeability and diffusivity. Therefore, determining 

an optimal cell temperature is significant for the performance improvement. Figure 8-9 

shows the H2 mole fraction in the anode catalyst layer at different cell temperatures. 

Compared with catalyst layers at a cell temperature of 60
o
C or 85

o
C, H2 mole fraction in 

the anode catalyst layer at a cell temperature of 75
o
C was the highest. This phenomenon 

was consistent with the changes in the catalyst layers’ porosity and gas diffusion rate. 

Although the anode catalyst layer had the highest porosity at 60
o
C, the hydrogen 

diffusion rate was comparatively low. Consequently, hydrogen gas could not diffuse into 

the anode catalyst layer as easily as it did at 75
o
C. The situation became the opposite 

when the fuel cell worked at 85
o
C. Hydrogen had a high diffusion rate at 85

o
C; 

nevertheless, the porosity of the catalyst layer decreased more than that at 75
o
C. As a 

result, the catalyst layer had the lowest H2 mole fraction at this temperature.  
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Figure 8-8  Cell performance with various cell temperatures under a clamping force of 0.4 MPa 

and a relative humidity of 100% 

Understanding the gas transport phenomenon on the cathode side requires considerations 

of both the oxygen mole fraction and the liquid water in the GDL, as shown in Figure 

8-10 and Figure 8-11. The reaction rate is associated with the cell temperature. Generally 

speaking, a high cell temperature ensures a high reaction rate. For the fuel cell working at 

60
o
C, its reaction rate was much lower than that working at 75

o
C or 85

o
C, indicating less 

water production. This low reaction rate explains why the liquid water in the GDL at 

60
o
C was the lowest among the three conditions. Meanwhile, a high cell temperature, 

85
o
C, not only increased the reaction rate, elevating the water production, but also 

enhanced the water evaporation. As a result, the fuel cell working at 75
o
C had the highest 

liquid water in the GDL. Because water blocked the transportation path of the GDL, the 

oxygen mole fraction in GDLs at this temperature was the lowest.   

Aside from the gas transport phenomenon, cell temperatures also affected the electron 

conductivity of catalyst layers in two ways. On one hand, the porosity reduction caused 

by levelled temperature improved the catalyst layer conductivity. On the other hand, the 

increased volume fraction of ionomer degraded the electron conductivity. However, at 

the same time the enhanced volume fraction of ionomer also improved the proton 

conductivity. Therefore, these trade off effects explained why merely increasing the cell 
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temperature is not a wise method for the performance improvement and why an optimum 

cell temperature exists for a better cell performance. 

 

Figure 8-9  The distribution of H2 mole fraction in the anode catalyst layer with various cell 

temperatures under a clamping force of 0.4 MPa and a relative humidity of 100% 

 

Figure 8-10  The distribution of O2 mole fraction in the cathode catalyst layer with various cell 

temperatures under a clamping force of 0.4 MPa and a relative humidity of 100% 
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Figure 8-11  The distribution of liquid water volume fraction in the cathode GDL with various 

cell temperatures under a clamping force of 0.4 MPa and a relative humidity of 100% 

8.1.3. The Effect of Inlet Relative Humidity 

The proton conductivity of a Nafion membrane relies on its hydration level. In order to 

keep a certain hydration of a Nafion membrane, the most effective method is to humidify 

the inlet gas mixture. However, gas humidification gives rise to the swelling expansion of 

a Nafion membrane and a catalyst layer, which causes further deformations in an MEA 

and changes its transport properties. Figure 8-12 shows the GDL porosity with different 

inlet relative humidity. Similar to the effect of cell temperatures, the changes in inlet 

relative humidity did not impact the GDL porosity in a noticeable way because this 

modelling involved a constant-clamping-force assembly method. However, the inlet 

relative humidity contributed to the shifts in the porosity of catalyst layers. The ionomers 

experienced a significant expansion with the increase in the inlet relative humidity. Here, 

the corresponding modelling indicated that the catalyst layer experienced a reduction in 

porosity on both cathode and anode sides with varying inlet relative humidity and a 

constant cell temperature of 75
o
C. 

Figure 8-13 presents the impact of inlet relative humidity on the cell performance. This 

fuel cell showed the best performance with an inlet relative humidity of 100%. The 
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elevation of inlet relative humidity improved the cell performance because hydration 

enhancement reduced the proton resistance of a Nafion membrane. Nevertheless, such an 

improvement in the cell performance is not significant, compared with the improvement 

resulting from the cell temperature, indicating that once the Nafion membrane maintained 

a certain hydration, a further rise in the inlet relative humidity could not appreciably 

upgrade the cell performance.  

 

Figure 8-12  The porosity distribution of GDLs under various inlet relative humidity with a 

constant clamping force of 0.4 MPa and a cell temperature of 75 
o
C 

An inlet relative humidity affects the gas transport in different components of an MEA in 

two different ways. A high relative humidity reduces the porosity of the catalyst layers, 

and lows gas mole fraction. Figure 8-14 and Figure 8-15 illustrate H2 and O2 mole 

fractions in the anode and cathode catalyst layers, respectively. Catalyst layers with a low 

inlet relative humidity had high H2 and O2 mole fractions, meaning that H2 and O2 can 

easily diffuse into catalyst layers at a low inlet relative humidity. Under this operating 

condition, the porosity of catalyst layers was larger than that with a high inlet relative 

humidity. In addition, it was more difficult to remove the produced water from a catalyst 

layer with a low porosity. Therefore, as presented in Figure 8-16, the cathode catalyst 

layer with an inlet relative humidity of 100% had the highest liquid water volume fraction. 
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Moreover, a low inlet relative humidity indicated high H2 and O2 mole fractions in the 

mixture gas, which was conducive to the gas diffusion.  

 

Figure 8-13  Cell performance with various cell relative humidity under a clamping force of 0.4 

MPa and a cell temperature of 75 
o
C 

 

Figure 8-14  The distribution of H2 mole fraction in the anode catalyst layer with various inlet 

relative humidity under a clamping force of 0.4 MPa and a cell temperature of 75 
o
C 
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Figure 8-15  The distribution of O2 mole fraction in the anode catalyst layer with various inlet 

relative humidity under a clamping force of 0.4 MPa and a cell temperature of 75 
o
C 

 

 

Figure 8-16  The distribution of liquid water in the anode GDL with various inlet relative 

humidity under a clamping force of 0.4 MPa and a cell temperature of 75 
o
C 
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Figure 8-17  The distribution of water content in the membrane and the anode and cathode 

catalyst layers across the thickness direction under a clamping force of 0.4 MPa and a cell 

temperature of 75 
o
C 

Although a high inlet relative humidity impeded the gas diffusion, it helped to maintain a 

more uniform water content distribution among the anode and cathode catalyst layers and 

the Nafion membrane. Figure 8-17 shows the distribution of water content in the 

membrane and the anode and cathode catalyst layers. The catalyst layers and the Nafion 

membrane working at an inlet relative humidity of 100% had the highest water content. 

In addition, its distribution was more uniform than that with a low inlet relative humidity. 

This uniform water content prevented the Nafion membrane from drying at the anode 

side, while it reduced the proton resistance. As a result, a high inlet relative humidity 

improved the cell performance.  

8.1.4. The Effect of Assembly Methods 

Currently, assembling a PEM fuel cell mainly involves two methods: the fixed-clamping-

force assembly method and the fixed-displacement assembly method. As shown in Figure 

3-8, in the fixed-clamping-force method, a pressurized bladder applies a constant 

clamping force on endplates. This constant force enables the assembly of a fuel cell stack. 

In this chapter, all the previous modelling and validation tests relied on this assembly 

method. On the other hand, the fixed-displacement method is a traditional assembly 
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method, where bolts and nuts ensure the assembly of a cell where the distance between 

the two endplates is fixed. During operations, this distance remains unchanged. The 

major difference between these two approaches is that the flow channel plate is movable 

in a PEM fuel cell with the fixed-clamping-force assembly method.  

During operations, the expansion of a Nafion membrane and a catalyst layer led to the 

movement of the anode flow channel plate as opposed to greater deformation of an MEA 

in a cell with the fixed-clamping-force assembly method. However, with the fixed-

displacement assembly method, such an expansion resulted in further deformation of an 

MEA, since the flow channel plates were fixed. In order to compare the effect of these 

two assembly approaches, we ensured that the displacement of the flow channel plates in 

a cell using the fixed-displacement method was the same as that in a cell with a constant 

clamping force of 0.4 MPa at room conditions. The results show that during operations, 

the overall porosity of the GDL in a fixed-displacement fuel cell was 1.6% smaller than 

the one in a cell with a constant clamping force.  

Figure 8-18 illustrates the cell performance with various assembly approaches. A PEM 

fuel cell with a fixed displacement had slightly better performance than that with a 

constant clamping force. The mechanism behind this improvement was similar to the 

improvement of a cell under increased clamping forces, as shown in Figure 8-3. Because 

of the bolts and nuts, the thickness of the entire MEA was fixed after assembly. However, 

operation conditions caused the expansion of the catalyst layer and the Nafion membrane. 

This expansion resulted in the further thickness reduction of GDLs under the land, giving 

rise to an increase in the contact surface, and a decrease in the porosity, diffusivity and 

permeability of the GDL. In addition, this expansion improved the contact conductivity 

between the GDL and the graphite channel plate.  

Although the fixed-displacement method initially offered a slightly better performance, 

the fixed-clamping-force method was the preferred selection in terms of long term 

durability. Figure 6-13 and Figure 6-14 indicates the thickness reduction of the GDL after 

several start-up and shut-down processes. Meanwhile, Figure 7-19 shows the thinning of 

the Nafion membrane after cyclic loadings. Consequently, it is very likely that the 

thickness of the MEA would decrease after a large number of shut-down and start-up 
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processes. This thickness reduction could create a very small space between the GDL and 

the flow channel plate in fixed displacement fuel cells, meaning that the contact condition 

between GDLs and lands would not be as good as the initial condition. Therefore, the 

contact resistance between the land and the GDL could increase significantly after a large 

number of shut-down and start-up processes in a fuel cell with the fixed-displacement 

assembly method. This was the major reason for the performance decay. However, a 

PEM fuel cell with a constant clamping force did not have this issue because the constant 

pressure ensures consistent contact conductivity between the GDL and the land. 

Furthermore, a large deformation in an MEA was associated with structure defects, such 

as delamination and catalyst loss. Therefore, the constant-clamping-force assembly 

method contributes to the improvement of cell durability. 

 

Figure 8-18  Cell performance with different assembly method at a cell temperature of 75
o
C and a 

relative humidity of 100 % 

8.1.5. The Effect of Channel Designs 

The design of the flow channel plate has a significant effect on the deformation of an 

MEA. Here, we focused on the effect of land size on the cell performance with the 

constant-clamping force assembly method because this part directly contacts the MEA 

and consequently contributes to its structure changes. The width of the land size varied 

from 0.8 to 1.2mm. The active area of the MEA and the clamping force were the same as 
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in previous modelling. Figure 8-19 shows the porosity distribution of GDLs with 

different land sizes. Since the clamping force on the flow channel plate was constant, the 

compressive stress on the GDL changed with the land size. As presented in Figure 8-19, a 

0.8-mm land width contributed to the smallest porosity of a GDL under the land. 

However, a small land size meant that most parts of the GDL were under the channel; 

therefore, a GDL’s overall porosity did not have a significant reduction. Here, the largest 

difference in overall porosity among GDLs under 0.8-mm, 1.0-mm and 1.2-mm channel 

lands was about 0.7%.  

 

Figure 8-19  The porosity distribution of GDLs with various channel size with a constant 

clamping force of 0.4 MPa, a cell temperature of 75
o
C and a relative humidity of 100% 

Figure 8-20 shows the cell performance with different channel lands. PEM fuel cells with 

land widths of 1.0 mm and 0.8 mm were very close, whereas the PEM fuel cell with a 

land width of 1.2 mm provided a better performance under large current densities. This 

improvement was associated with the gas transport in the MEA and the electronic 

conductivity. Figure 8-21 presents the hydrogen mole fraction in the anode GDL with 

different land widths. The GDL with a 1.2-mm-width land had the largest H2 mole 

fraction, compared to GDLs with other two lands. This phenomenon is different from 

what we thought, because the above discussion indicated that a large contact surface was 

conducive to the gas diffusion to the GDL.  
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Figure 8-20  Cell performance with different channel land widths at a cell temperature of 75
o
C, a 

relative humidity of 100 % and a clamping force of 0.4 MPa 

An inlet velocity was the main reason behind this phenomenon. Since the inlet flow rate 

was constant for each operating condition. The inlet velocity depended on the inlet area. 

Unlike the previous modelling, the change of inlet channel area was mainly associated 

with the deformation of GDLs. However, such a deformation was very small compared to 

the original channel size. The land width had an appreciable impact on the inlet area. 

When the land width changed from 0.8 mm to 1.2 mm, the inlet areas experienced a 50 % 

reduction, which significantly increased the inlet velocity. Figure 8-22 illustrates the H2 

mole fraction in the anode channel with different land sizes. The anode channel with a 

1.2 mm-width land had the highest H2 mole fraction. As we know, the driving force for 

the gas diffusion is the concentration difference. The concentration of H2 gradually 

decreased when flowing through the anode channel, indicating a reduction in the driving 

force. A high inlet velocity meant that hydrogen stayed in the channel for a short time, 

which ensured a relatively high H2 concentration. This comparatively high H2 

concentration improved the H2 diffusion in the anode GDL with a large land width, 

although its contact surface was small. 

On the cathode side, water management was the main issue. A wider land made it more 

difficult to remove the water out of the GDL, because the part of GDL under the channel 
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was much smaller. In addition, liquid water stayed in the GDL, blocking the transport 

path of the O2, as illustrated in Figure 8-23 and Figure 8-24. The GDL with a land width 

of 1.2 mm contained more liquid water than other GDLs, in turn contributing to its low 

O2 mole fraction. In theory, the GDL with a land width of 0.8 mm should contain less 

liquid water, due to its enlarged contact surface of GDL under the channel. However, its 

low inlet velocity impaired its water removable ability. As a result, the GDL with a land 

width of 1.0 mm had the highest O2 mole fraction and less liquid water.  

 

Figure 8-21  The distribution of H2 mole fraction in the anode catalyst layer with various land 

widths at a cell temperature of 75
o
C, a relative humidity of 100 % and a clamping force of 0.4 

MPa 

Moreover, a land width has a significant effect on the electronic conductivity. A wider 

land contributes to a reduction of contact resistance between GDLs and flow channel 

plates, and an enhancement in the intrinsic electronic conductivity of the GDL, which 

was the main reason why a PEM fuel cell with a 1.2-mm-width land had a better 

performance. However, a wider land meant that more parts of GDLs are under 

compression conditions. The result in Chapter 6 showed that GDLs under cyclic loading 

experienced a further reduction in the thickness and greater carbon fibre breakage. These 

structural changes could cause a water management issue and deteriorates cell 
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performance. Therefore, in terms of cell durability, a 1.0 mm-width land is the preferred 

choice. 

 

Figure 8-22  The distribution of H2 mole fraction in the anode channel with various land widths at 

a cell temperature of 75
o
C, a relative humidity of 100 % and a clamping force of 0.4 MPa 
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Figure 8-23  The distribution of O2 mole fraction in the cathode catalyst layer with various land 

widths at a cell temperature of 75
o
C, a relative humidity of 100 % and a clamping force of 0.4 

MPa 

 

Figure 8-24  The distribution of liquid water in the cathode GDL with various land widths at a 

cell temperature of 75
o
C, a relative humidity of 100 % and a clamping force of 0.4 MPa 

 

8.2. Late Stage Degradation 

The above section studied the impact of early stage degradation on cell performance. 

However, as shown in Figure 6-11 and Figure 6-13, GDLs’ mechanical properties 

degrade with cyclic changes in operating conditions. After 2000 cycles, the compressive 

strain decreases about 7%. This material degradation further affects the cell performance. 

Figure 8-25 shows the effects of mechanical degradation on cell performance. The 

performance decreases about 8% after 2000 cycles of start-up and shut-down processes, 

which results from a decrease in porosities, effective transport parameters and 

corresponding decay in the transport phenomenon. As mentioned in chapter 1, practical 

degradation targets require less than 10% loss in the efficiency of the fuel cell system at 

the end of application. According to the modelling result, the performance reduction has 

already reached about 8% by merely considering the mechanical degradation. Therefore, 
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in order to increase the life span of a PEM fuel cell, it is important to find an effective 

approach to relief the mechanical degradation. For example, a stiffer GDL can relief the 

reduction in the porosity, in turn, improving cell performance in the long run. 

 

Figure 8-25  Cell performance with early and late stage of degradation at a cell temperature of 

75
o
C, a relative humidity of 100 % and a clamping force of 0.4 MPa 

 

8.3. Summary 

A structure-performance coupled model provided a more realistic method to study cell 

performance under different operating conditions, assembly methods, and land structures. 

Unlike the modelling in previous studies, this coupled model considered the effect of 

deformation on the porosity, permeability, and conductivity of different components in an 

MEA. The results revealed that the effect of deformation on cell performance was 

complex.  

A raised clamping force caused the deformation of GDLs and its associated increases in 

the conductivity, which promoted cell performance. Meanwhile, such a deformation also 

increased the contact surface between the gas mixture and the GDL, improving the H2 

diffusion on the anode side. However, a levelled clamping force led to the plastic 
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deformation in the Nafion membrane, which deteriorated its durability. Therefore, the 

selection of clamping forces should balance cell performance and durability. 

Because cell temperature and relative humidity influenced a number of factors in the cell 

components, the outcomes had both negative and positive effects on cell performance. A 

high cell temperature intensified the reaction rate; nevertheless, it also decreased the 

porosity of catalyst layers, which impeded the reaction gases from transferring to the 

reaction site. Therefore, there existed an optimal cell temperature. A higher relative 

humidity ensured the hydration of the Nafion membrane and, in turn, an improvement of 

cell performance.  

Aside from operating conditions, various assembly methods have competing effects on 

cell performance and durability. Compared to the constant-clamping-force assembly 

method, the fixed-displacement assembly method offered a slightly better cell 

performance. However, in terms of durability, the constant-clamping-force assembly 

method was an ideal selection. Under a constant clamping force, a wider channel land 

gave rise to the conductivity increase without significantly sacrificing the porosity, thus 

improving cell performance.  

Under 2000 cyclic changes in operating conditions, the cell performance decreases about 

8% merely with the mechanical degradation. Therefore, in order to increase the life span 

of a PEM fuel cell, it is important to find an effective approach to relief the mechanical 

degradation. 
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    Chapter  9 

9. Conclusions and Future Work 

 

 

 

Mechanical degradation is of paramount importance in a proton exchange membrane fuel 

cell’s commercialization because it is associated with not only the durability but also the 

cell performance. However, studies focusing on the mechanical degradation of MEAs in 

PEM fuel cells and its impacts on cell performance are very scarce because previous 

research mainly concentrated on chemical degradation. As we know, the study of 

mechanical degradation is a broad topic, which could be carried out from many different 

angles. Hence, this thesis clarified the mechanical degradation mainly through two 

perspectives. On one hand, it explained the effects of mechanical impact on the 

deformation of MEAs and its associated durability. On the other hand, it elaborated the 

impacts of early and late stages of mechanical degradation on cell performance. 

This thesis was divided into two parts: the experimental part and the modeling part. In the 

experimental phase, SEM tests detailed the initial microstructures and their changes in an 

MEA before and after accelerated durability testing. This testing enabled a structural 

comparison between new and used MEAs. It also clarified the relationship between cell 

performance and MEAs’ structure changes. The results indicated that structure defects, 
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such as delamination, catalyst loss, and cracks, resulted in both cell performance and 

durability decay. The possibility that large stresses, including clamping forces and hygro-

thermal stresses, were the reason behind these structural changes, necessitated the study 

of stress conditions in the MEA of PEM fuel cells. 

A comprehensive structure model enabled the study of stress and deformation in an 

MEA. The preparation of this model required knowing the mechanical properties of 

different cell components. These properties guided the selection of constitutive relations 

in the modelling. In previous studies, however, the mechanical properties of GDLs and 

catalyst layers varied due to different assumptions. For instance, GDLs were assumed to 

have the same Young’s modulus as carbon fibres. A microcompression tester and the 

nanoindentation technique made it possible to characterize the mechanical properties of 

GDLs and catalyst layers. The results showed that GDLs’ nonlinear compressive 

behaviour weakened the reliability of the previous mechanical modelling, where a GDL 

was assumed to have elastic properties. In addition, previous structure modelling did not 

include a catalyst layer due to the lack of mechanical properties. Yet, the nanoindentation 

test of catalyst layers revealed its elastic mechanical properties, which made it possible to 

consider its effects in the structure model.  

In the modelling phase, a structure model characterized the stress and deformation of 

MEAs during common and cyclic operating conditions. This structure model overcame 

many standing limitations in previous models. For example, instead of using the Young’s 

modulus of carbon fibres, a hyperelasticity material model simulated GDLs’ different 

loading and unloading compressive behaviours. In addition, this structure model included 

the catalyst layers, which were ignored in all the previous modelling. Furthermore, the 

rate-independent plasticity model enabled a more accurate simulation of Nafion 

membranes.  

The stress and deformation conditions validated the suspicion that inappropriately large 

stresses caused thickness variations and their associated structure defects in MEAs. In 

addition, the results showed that the selection of various operating conditions, including 

clamping forces, cell temperatures, relative humidity and cyclic loadings, should consider 
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their impacts on durability because a Nafion membrane experienced permanent 

deformation under operations, especially for the membrane under the channel.  

The structure model indicated the degree and type of MEA deformation during common 

operations. This deformation changed the porosity, permeability, and intrinsic electronic 

conductivity of catalyst layers and GDLs. Moreover, the channel size and interfacial 

electronic conductivity also varied with the deformation. As a result, this deformed MEA 

enabled a more realistic method to study the cell performance under different operating 

conditions, assembly methods, and land structures. On one hand, this structure-

performance coupled model involved electrochemical reaction kinetics, heat generation 

and transfer, transport of multi-component gas species, multi-water phases, and electrons 

and protons, and water phase change processes. It considered the effects of the porosity, 

permeability, and conductivity on cell performance. On the other hand, it also accounted 

for the impacts of the cell real-time activity on the cell deformations.  

The primary funding revealed that the deformations of MEAs had a complex effect on the 

transport phenomenon. The bulge of an MEA under the channel increased the contact 

surface between the gas mixture and the GDL, thus improving the H2 diffusion on the 

anode side. However, the thinning of an MEA under the land decreased the porosity of a 

GDL, thus causing water flooding on the cathode side.  

As mentioned above, an MEA’s deformation is associated with durability. Since 

operating conditions, assembly methods and land structures are associated with a number 

of factors in the cell component, the outcomes had both negative and positive effects on 

cell performance and durability. Therefore, their selections should balance both cell 

performance and durability. 

Under 2000 cyclic changes in operating conditions, the cell performance decreases about 

8% merely with the mechanical degradation. Therefore, in order to increase the life span 

of a PEM fuel cell, it is important to find an effective approach to relief the mechanical 

degradation. 

 



Summary and Future Work 

 

~ 167 ~ 

 

The key conclusions are as follows: 

o Accelerated durability testing proved that structure defects in MEAs caused cell 

performance decay. Consequently, reducing the occurrence of structure defects 

could enable a high cell performance, and, in turn, improve the durability. 

o Unrecoverable microstructure changes made GDLs’ compressive behaviours 

disobey Hook’s law, which weakened the reliability of previous structure 

modelling, where a GDL was assumed to have elastic properties. 

o Various factors impacted GDL’s compressive behaviour measurements. For 

example, the structure modelling should account for the effects of stack size of a 

GDL test sample. In addition, the amount of PTFE coating and relative humidity 

could change the microstructure of GDLs, thereby influencing its mechanical 

properties. However, during a common operating compression range, such effects 

are not significant.  

o Cyclic loadings further intensified the GDL’s microstructure changes, reducing its 

original porosity and making it more compressible. These changes explained the 

performance decay in the long term. Decreased porosity and thinning process 

deteriorated the transport phenomenon and interfacial conductivity. Hence, a stiff 

GDL might improve the cell durability. 

o A catalyst layer is a very stiff material. Its deformation was mainly associated 

with the deformation of a Nafion membrane, where it served as a coating. 

Consequently, decreasing the permanent deformation of the Nafion membrane 

might be an effective way to prevent the structure defects, such as catalyst loss.  

o Cyclic compression and pull intensified the plastic deformation in the Nafion 

membrane, which could impair the attachment between the catalyst layer and the 

membrane, causing delamination and catalyst loss. Therefore, a strengthened 

attachment between the catalyst layer and the membrane could improve cell 

durability.  

o A high relative humidity gave rise to a pronounced swelling expansion which was 

the determining factor for the membrane’s permanent deformations. However, it, 

on the other hand, improved the cell performance. Therefore, a Nafion membrane 

with a low swelling expansion coefficient could improve cell durability.  
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o The selection of operating conditions, such as clamping forces, cell temperatures, 

and relative humidity, should balance both cell performance and durability. A 

high value of these factors contributed to a high initial cell performance; however, 

they also led to more structure defects and weakened durability. 

o Compared with the constant-clamping-force assembly method, the fixed-

displacement assembly method offered a slightly better cell performance. 

Nevertheless, this method also enabled a reduction in the interfacial conductivity. 

As a result, the constant-clamping-force assembly method, offering better 

durability and constant interfacial conductivity, was an ideal selection.  

o Under a constant clamping force, a wider channel land gave rise to the increased 

conductivity without significantly sacrificing the porosity, thus promoting cell 

performance. Yet, for the sake of durability, a 1.0 mm width land was the 

preferred choice. 

o Under 2000 cyclic changes in operating conditions, the cell performance 

decreases about 8% merely with the mechanical degradation. Therefore, in order 

to increase the life span of a PEM fuel cell, it is important to find an effective 

approach to relief the mechanical degradation. 

 

 

This research also highlights some areas for future studies: 

 The effect of structure defects--- Structure defects occurred during common cell 

operations and start-up and shut-down processes, as illustrated in Chapter 5, 

further impairing cell performance. However, the current structure model only 

considered the deformation of an MEA, without modelling these structure defects.  

 The effect of industrial-size (multiple channels)--- This thesis probed the MEA’s 

deformation with only a single PEM fuel cell channel; however, the MEA’s 

deformation under a multi-channel flow plate may be severe and complex. 

 The effect of spatial distribution of porosity--- This structure-performance 

coupled model only considered the overall change in porosity because of the 

computational resources limitations. However, it is worth studying how porosity 
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changes at discrete locations in a GDL, known as spatial change. These more 

precise measurements better reflect the real-time activity of a PEM fuel cell.  
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