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Abstract

Neutron interferometry with its ability to encode and extract information provides a test

bed for quantum mechanics and precise measurement of physical quantities of significant

importance in physics. However, this significant key investigative technique is weakened

by its very fragile nature; neutron interferometry has proven to be highly sensitive to

environmental noise.

Once brought to its optimal state, the use of neutron interferometry enabled with

quantum information, represents a milestone. Indeed a realization of high-quality neutron

interferometry could pave a way to probe materials research such as probing properties

water in proteins and topological materials. Thus understanding and solving the sensitivity

of neutron interferometers to noise is a key step toward possible applications. This is the

core of the work done in this Thesis.

We incorporated two theoretical techniques developed for quantum information sciences

into the construction of a new polarized neutron interferometry beam line: The technique

of quantum error correction and the technique of open quantum system. One focus of this

work is to report on the design, the construction as well as the characteristic features of

this beamline.

This thesis involves experimental data, showing how the neutron beam intensity at the

exit of a three-blade neutron interferometer can be controlled by the interferometer blades

thickness. Secondly, is also presents an alternative and simplified quantum information

approach to dynamical diffraction, based on repeated application of a coherent beam-

splitting unitary at coarse-grained lattice sites. Demanding translational invariance added

to a computationally tractable number of sites in the coarse-graining reproduced many

results typical of standard dynamical diffraction theory and experiments. Building on that,

a proposal for a new five-blade neutron interferometer is presented and its robustness to

noise, resulting from dynamical diffraction together with low-frequency external mechanical

vibration is discussed.

Steps ahead in our work, neutron interferometry may be improved as well as adapted to

more applications by incorporating the spin and orbital degrees of freedom to a path-based

iv



interferometer. In this concern, we propose a method to prepare the spin-orbit state by

passing a polarized neutron beam through a quadrupole magnetic field. Initially designed

for a beam the size of a coherent length, we extend this method to work for spatially

displaced beams by using linear magnetic gradients.
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Chapter 1

Introduction

1.1 Neutron Interferometry

Neutron Interferometry is a tool designed to explore the wave-like nature of neutrons. So

far, this tool has led to demonstrations of quantum mechanical phenomena, has provided

a way of testing the propositions of quantum mechanics, and has allowed the precise

measurement of physical quantities of interest in condensed-matter and Standard Model

physics. There is a large variety of neutron interferometry implementations, and each may

be characterized by the degree of freedom under control, such as momentum, spin, orbit,

energy, and path. For instance, the path-based interferometers are designed to split the

incident beam into two or more beams where, for example one beam may pass through a

sample and the others only through free space. In this case, the interference pattern of

different components from different paths reveals information about the examined sample.

There are a variety of books and review articles covering the practice and application of

neutron interferometry [1, 2, 3, 4].

Closest to the physics of a neutron interferometer, in its description, is an optical Mach-

Zehnder interferometer. Relevant key notes to our research are for one that the size of the

neutron beam is far broader than the coherent length. As a result, one needs to perform

an incoherent averaging over the beam during detection. For this reason, care must be
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taken to ensure that the entire beam sees the same components or a spatial incoherence

is introduced. Secondly, the neutron beam intensity is generally very low causing most

measurements to require days of averaging. Here too, unfortunately time averaging may

introduce a temporal incoherence if the phases drift over the measurement. In addition,

the neutron travels slowly through the interferometer . 2 km/s. During that time, there is

an opportunity for mechanical vibrations, temperature fluctuations, acoustical vibrations,

fluctuations in mechanical stress, and finally fluctuating background magnetic fields to

introduce decoherence. In this work, we are interested in understanding and controlling

these effects.

In previous research, noise from mechanical vibrations was removed by constructing

the neutron interferometry facility on a complex custom-made vibration isolation system

[5]. In most cases, the custom-made vibration isolation system presented to be very bulky,

requiring the experiments to be performed at a significant distance from the beam source.

Again this led to unwanted results; by the time the incident beam arrives at the inter-

ferometer it loses on needed intensity. An alternative approach can be to incorporate the

theoretical techniques developed in quantum information sciences such as quantum error

correction and open quantum system to engineer neutron interferometers which exhibit

inherent noise robustness. In particular, the notion of decoherence-free subspace (DFS)

from quantum error correction formerly adopted to implement a four-blade perfect crys-

tal neutron interferometer (NI) where information is encoded in a specific subspace, thus

isolated from external mechanical vibrational noise [6]. The realization of a DFS NI moti-

vated us to construct a compact and sizeable table-top neutron interferometry beamline at

the National Institute of Standards and Technology (NIST) Center for Neutron Research

(NCNR) [7]. The advantage of the DFS NI setup is its compactness that allow it to be

located closer to the neutron source, resulting in only a small loss in the neutron intensity.

The most commonly used type of neutron interferometer is path-base interferometry.

However, for certain applications the orbital and the spin degrees of freedom may be incor-

porated to achieve a composite interferometry with multiple degrees of freedom. Composite

neutron interferometry potentially has applications to materials characterization, for ex-

ample to probe properties of water in proteins, to probe the internal magnetic structures of

materials, and also to characterize topological properties of materials. In 2015, the orbital

2



angular momentum of an unpolarized neutron beam was modified by a spiral phase plate

and this change was experimentally detected using a perfect crystal NI [8]. In this thesis, we

theoretically show a methodology to realized spin-orbit states of a neutron wavepacket [9].

We focus this thesis on ways to improve the performance of neutron interferometry and

to extend its applications. Some of the results presented in this thesis were obtained in

collaborations with colleagues from the Cory Lab especially with D. Sarenac.

1.2 Outline and results

In chapter 2, we give a detailed report of the characteristics and features of the new

neutron interferometry facility at the NCNR, constructed to work with a DFS neutron

interferometry setup. In chapter 3, the theory of dynamical diffraction (DD) [10, 2, 3]

is introduced and then applied to demonstrate the effect of NI blade thickness on the

phase and intensity of the beam diffracted from a combination of crystals. In chapter 4,

we formulate DD from a perfect periodic lattice via a unitary evolution in real space as

opposed to the energy eigenstates formalism in momentum space. This relatively simple

quantum information approach, which predicts most of the features of DD from a single

crystal, is then applied to understand DD in an NI. In chapter 5, we show that despite being

a DFS to noise from mechanical vibration, the four-blade NI suffers from noise caused by

momentum dependent phases which originate from Bragg diffraction. Further, we provide

a design of a five-blade NI and then theoretically show how it refocuses both noise from

mechanical vibrations and momentum dependent phases. In chapter 6, we focus on the

spin-orbit states of a neutron wavepacket created by a magnetic field with a topological

charge [9]. In chapter 7, we present our conclusions and future prospects. Chapters of this

thesis are based on the completed projects listed below.

• Design and instrumentation of the new neutron interferometry facility at the NCNR

based on the article [7]; joint work with colleagues from the NIST.

• Changes in the intensity and the phase of the beams emerging from an NI when the

thickness of the interferometer blades are simultaneously varied.

3



• Formulation of the quantum information approach to DD and using it to derive

various results of DD from perfect periodic lattices [11].

• A proposal of a five-blade NI is presented alongside its ability to decoupled from

noise originating from momentum dependent phases and mechanical vibrations [12].

• The process of generation and control of spin-orbit states, using a magnetic topolog-

ical charge, followed by a Ramsey fringe experiment on the spin-orbit states [9].

1.3 Neutron optics

1.3.1 The neutron

The existence of the neutron was postulated in 1920 [13] and confirmed in 1932 [14]. Neu-

trons interacts very differently from light as they carry a magnetic dipole moment; and

from electrons as they carry no electric charge. A neutron has the ability to penetrate

materials deeply; propagate with wavelengths that coincide with material’s lattice spacing,

exhibit exceptionally strong isotope-dependent scattering in the case of hydrogen; and fi-

nally interact with magnetic materials through their magnetic dipole moment. A summary

of some important properties of neutrons compared to those of photons is listed in Tab. 1.1.

The de Broglie wave-particle duality [15] associates a wavevector, k = mv/~, with a

neutron propagating through a medium, where v is the neutron velocity, m its mass, and

~ = 1.05457×10−34Js is the reduced Planck constant. The wavefunction can be represented

as a 3D wavepacket (in Dirac notation),

|Ψ(t)〉 =

∫
dk µke

−iωkt|k〉, (1.1)

with ωk = E/~, where E is the energy, µk is the probability amplitude. The state |k〉 is

a plane wave component with position representation ψk = 〈r|k〉 = eik·r, with wavevector

k = kxêx + kyêy + kz êz and r = xêx + yêy + zêz.

The neutron is a spin one-half particle with a negative magnetic dipole moment (MDM)

indicating that the neutron’s spin and MDM are anti-aligned. In a magnetic field, the
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Property Photon Neutron

Mass 0 m = 1.674928(1)× 10−27 kg

Spin ~ 1
2
~

Magnetic Dipole Moment 0 µn = −9.66237055(71)× 10−27 J/T

Equation ∇2Ψ(r, t) = 1
c
∂2Ψ(r,t)
∂2t

HΨ(r, t) = i~∂Ψ(r,t)
∂t

Energy E = ~ck E = ~2k2

2m

n(H2O) − 1 0.33 2.88× 10−7

Velocity c v=3956
λ[Å]

m/s

Table 1.1: Properties of neutrons compared to photons. For more detail, a similar table

can be found in ref. [16]. The values listed are taken from the PDG summaries of 2014

[17]. n(H2O) − 1 is the refractive index for water. The calculated values for the neutron

uses the thermal neutron wavelength of 1.8 Å.

intrinsic spin is quantized such that the neutron can only occupy two discrete energy

states. The total wavefunction for the spin and momentum degrees of freedom is,

|Ψ(t)〉 =

∫
dk µke

−iωkt|k, s〉 (1.2)

where, |s〉, is the spin state with quantum number s. Other bases of the total wavefunctions

are possible, as will be seen in chapter 6 where the wavepacket carries orbital angular

momentum.

Many phenomena in neutron optics can be described with the terminology of the co-

herence function commonly used in quantum optics [18, 3]. The coherence function in this

case is defined generally as the autocorrelation function of the wavefunction;

Γ(∆, τ) = 〈Ψ(0, 0)|Ψ(∆, τ)〉, (1.3)

where ∆ = r − r0, and τ is the time interval. Using the wavepacket description for the

neutron wavefunction, the coherence function can be expressed as,

Γ(∆, τ) =

∫
pke

i(k·∆−ωkτ)dk, (1.4)

where, pk = |µk|2 and k ·∆ is the phase delay of each component plane wave.
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1.3.2 Wave equation

The propagation of a neutron through a medium is governed by the matter-wave Schrödinger

equation. In a time independent potential, under steady state conditions, the Schrödinger

equation in the position representation is,[
− ~2

2m
∇2 + V (r)

]
Ψ(r) = EΨ(r), (1.5)

where V (r) is the potential energy of the particle, and E is the total energy of the particle.

The equation can be written in a form that is similar to the Helmholtz equation in classical

optics as,

∇2Ψ(r) +K(r)2Ψ(r) = 0, (1.6)

with K(r) =
√

2m[E − V (r)]/~ is the medium dependent wavevector. V (r) can take

various forms including electromagnetic, gravitational, and nuclear. Of interest to us is

the nuclear and magnetic interaction which will be explored in the next section in detail.

One common way to characterize them is via the refractive index, defined as [2, 3],

n ≡ K(r)

k
=

√
2m[E − V (r)]

2mE
' 1− V

2E
, (1.7)

where k =
√

2mE~−2 is the wavevector in free space. The approximation in Eq. (1.7) is

valid for thermal neutrons as the potential V (r) can be expressed in a form equal to the

optical potential, V , which for most materials is of the order 10−5eV .

1.3.3 Spin-independent neutron-matter interaction

Neutron-matter interactions are often dominated by the spin-independent nuclear and spin-

dependent magnetic interactions. The nuclear interaction is conveniently represented as a

Fermi pseudo-potential [2] that captures the potential of a localized single atom as a delta

function. In a bulk material, the effective potential is the collection of pseudo-potentials

given by,

V (r) =
∑
j

2π~2

m
bjδ(r− rj), (1.8)
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where the summation is taken over all the atoms in the bulk. Each of which is located at rj

and have a scattering coherent length bj. A neutron scattered by a pseudo-potential gives

rise to a wave which can be represented as two components: one along the incident direction

and a spherical wave propagating in the radial direction. Their coherent superposition is

described by a single wavevector that carries the optical properties of the medium. For

example, a material with atom density, N , has an average nuclear potential of,

VO =
2π~2

m
Nb, where Nb =

∑
j

bjδ(r− rj). (1.9)

Nb is the local mean scattering length density, which represents the response of the overall

system as multiple copies of a single atom of the same kind. Generally, b is complex with

typical values in the femtometre scale. Moreover, this value leads to a scattering cross-

section defined as σ̄s = 4π|b|2 and an absorption cross-section defined as σ̄a = 4πIm[b]2k−1,

where Im[b] is the imaginary component.

When a neutron beam is shined on an absorbing target of effective thickness D, the

intensity of transmitted neutron is related to the incident intensity, I0, by [19],

I = I0e
−σ̄aND. (1.10)

Materials with high σ̄a including lead, cadmium, gadolinium, are commonly used as neutron

absorbers. For most materials, Re[b] > 0, with the few exceptions of 2H, 48Ti, and 62Ni

The general form of the complex refractive index from a spin-independent scattering

material is [3, 2],

n ≡ 1− λ2N

2π

√
b

2 −
( σ̄r

2λ

)2

+ i
σ̄rNλ

4π
, (1.11)

where σ̄r = σ̄sk
−1 and for weakly absorbing materials, σ̄r → 0. Both the refractive index

and the scattering linear density are important quantities that are used when calculat-

ing the phase or the angle of reflection/refraction when a neutron propagates through a

medium.

Shown in Fig. 1.1 is the schematic of a neutron with wavevector k incident onto a

planar boundary between air and a material with a refractive index n. Under specular
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Figure 1.1: Spin-independent reflection from a layer. (a) the neutrons incident at angles

less than the critical angle θc of the surface are reflected. In (c) is a plot of the nuclear

potential, VN, experienced by a neutron.

reflection where the angle of reflection is equal to angle of incidence, the critical angle is

defined as that for which the neutrons are totally reflected. Mathematically, the condition

is E⊥ = ~2k2
⊥/(2m) = VN, where k⊥ is the component of the wavevector normal to the

surface of the potential, VN. Given that k⊥ = k sin θ, where θ is the angle of incidence, the

critical angle is,

θc = sin−1
√

(1− n2) = λ

√
Nb/π. (1.12)

Any neutron incident at an angle θ < θc is also reflected while the neutron incident at

an θ > θc is transmitted. Materials, with very high critical angle like nickel (for 58Ni,

θ/λ = 2.03 mrad/Å) are used to coat the internal surface of neutron guides, to increase

the reflectivity of neutrons.

1.3.4 Spin-dependent neutron-matter interaction

In a medium with a static or slowly varying magnetic field B(r) and electric field E(r),

the neutron magnetic moment interact with the field through a potential [20, 21, 22],

Vm(r) = −µ ·B(r)− ~
mc
µ · (E(r)× k)− ~µ

2mc
∇ · E(r), (1.13)

where µ is the neutron magnetic moment vector and c is the speed of light. The first term

is the Zeemann energy, the second term is the Schwinger spin-orbit, and the third term
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Spin-dependent potential

Reflected 
spin up

Transmitted 
spin down

Figure 1.2: Cartoon drawing of spin-dependent reflection (not to scale) from a nonmag-

netic/magnetic layer. In (a) ↑ and ↓ are the two neutron spin states incident on a magnetic

layer. They experience different potentials resulting to ↑ reflected and ↓ tranmitted. In

(b) and (c): the potentials experienced by a neutron of each spin state.

is the Foldy interaction. The main contribution and the one we focus on is the Zeemann

term,

Vz(r) = −µ ·B(r) = −µσ ·B(r), (1.14)

where σ = (σ̂X, σ̂Y, σ̂Z) are the Pauli matrices.

Consider a neutron of wavevector k scattered by a Zeemann interaction originating from

a magnetic sample with mean magnetic field B̄. The sum nuclear and magnetic potentials

is given by,

V± =
2π~2

m
Nb± µB̄, (1.15)

where the ± refers to the spin parallel and spin anti-parallel to the magnetic field, respec-

tively. The refractive index corresponding to the potential can be expressed as,

n2
± = 1− λ2N

b± p0

2π
, p0 = − µmB̄

πN~2
(1.16)

where, p0 is the average magnetic scattering length. Magnetic scattering provides an

enhancement to the critical angle in the case of b̄+p0 and a reduction in the case of b−p0.

Even though, the critical angle for the two neutron spin states when they are reflected

by a nonmagnetic material are the same, the situation is very different when they reflect

from a planar boundary with two refractive indexes n±. A neutron of one spin emerge at a
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smaller angle than a neutron of the opposite spin. Shown in Fig. 1.2a are the trajectories

in the spin-dependent potential shown in Fig. 1.2b. These trajectories corresponding to

the reflection of the spin parallel and spin anti-parallel are at angles given by,

θ± = sin−1
√
|1− n2

±| = λ

√
N |b± p0|/π. (1.17)

Therefore, by simply controlling b and p0, the potential can be tuned to have neutrons with

spin parallel transmitted (θ+ > θc), and neutrons with spin anti-parallel reflected (θ− < θc),

see Fig. 1.2a. As an example, a layer of Fe:Co:V (49:49:2) in a saturated magnetic field

have N |b+ p0| = 36.75 µrad2Å−2, and N |b− p0| = 0.13 µrad2Å−2. Therefore, by selecting

the reflected or the transmitted neutrons a polarized neutron beam can be generated. This

is the same principle under which polarizing crystal and polarizing mirrors work [23].

1.3.5 Phase

When a neutron propagates through a medium, it can experience a change in a quantum

phase. This phase can be represented by an integral over the classical path,

Φ =
1

~

∫
Ldt, (1.18)

where L is the Lagrangian. The Lagrangian can be expressed as a function of the Hamil-

tonian H, the canonical momentum p, and the velocity v, as,

L = p · v −H. (1.19)

The phase is commonly measured when two or more waves are allowed to interfere. In-

terference phenomenon is a result of adding multiple waves with a definite phase relation

between them. An interferometry setting in phase space is shown in Fig. 1.3a where an

incident neutron, in a superposition of two states labelled |ΨI〉 and |ΨII〉, evolves through

a media picking up phases,

ΦI =
1

~

∫
LIdt, and ΦII =

1

~

∫
LIIdt, (1.20)
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Figure 1.3: The evolution of a neutron wavefunction through a system where one compo-

nent of the wavefunction goes through a potential V . When the components recombine,

they interfere. The refraction of the neutron in the potential is shown in the expanded

drawing.

respectively. One phase is introduced by a potential and the other by an empty space.

Upon recombination, the resultant phase difference between the two paths is,

∆Φ = ΦI − ΦII. (1.21)

Under the stationary state conditions, the Hamiltonians HI = HII lead to LI = pI · v−HI

and LII = pII · v − HI. As a result the phase difference may be expressed exclusively in

terms of the momentum as,

∆Φ =
1

~

(∫
path I

pI · dr−
∫

path I

pII · dr
)

=

∮
(kI − kII) · dr, (1.22)

where we have used v = dr/dt.

In Fig. 1.3b, a neutron of wavevector k = k(sinϕê||+ cosϕê⊥) is incident at an angle ϕ

onto a sample of thickness D. The wavevector inside the potential can be decomposed to

K = K(sinϕ′ê|| + cosϕ′ê⊥). In other forms, it can be expressed in terms of the refractive

index n of the medium and using Snell’s law sinϕ = n sinϕ′, we get

K = K sinϕ′ê|| + k

√
n2 − sin2 ϕê⊥, (1.23)
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Interaction Potential Phase shift [∆Φ] Reference

Nuclear 2π~2bδ(r)m−1 −NbλD [24]

Magnetic −µ ·B(r) ±µBmλD(2π~2)−1 [24]

Gravitational mg · r m2gλA sin (α)(2π~2)−1 [25]

Coriolis −~ωe · (r× k) (2m/~)ωe ·A [26]

Aharonov-Casher −µ · (v × E)c−1 ±{2µ/(~c)}E ·D [27]

Scalar Aharonov-Bohm −µ ·B(t) ±µBt/~ [28]

Berry i〈ψ(ξ)|∇ξψ(ξ)〉 Ω/2 [29]

Table 1.2: The phase shift when the associated neutron interaction potential is placed in

one arm of an NI. g is the gravitational strength, A is the normal area enclosed by the

interferometer, α is the angle between the transverse vertical to the beam and the area

A, ωe = 7.27 × 10−5s−1 is the angular rotation of the earth, E is the electric field, ω is

the solid angle subtended by the closed loop parametrized by ξ on a Bloch sphere. (Table

reproduced from [16])

where n = K/k. The phase difference is obtained to be;

∆Φ = (K− k) ·Dê⊥ = (K⊥ − k⊥)D =

(√
n2 − sin2 ϕ− cosϕ

)
Dk. (1.24)

Using n = 1−Nb̄(λ2/2π), and a first order approximation we obtain,

∆Φ ' −NbλD′, (1.25)

where D′ is the effective path length traversed by the neutron inside the sample, and is

related to the thickness by, D′ = D(k̂ · ê⊥)−1 = D/ cosϕ. If instead of a nuclear potential,

the neutron is in a constant magnetic field and with neutron spin aligned parallel or anti-

parallel to the field, the phase shift is:

∆Φ = ±µ
~
Bl

v
= ±µmλBD

2π~2
, (1.26)

where D, is the length of the region containing the field.

Besides the magnetic and nuclear interactions, which are of primary interest to us, a

list of neutron interaction potentials and the associated phase shift when the potential is

placed in one arm of an NI as compiled in ref. [16] is presented in Table 1.2.

12



Figure 1.4: Schematic drawings of NI based on wavefront division. (a) is a double slit type

NI [30]. A collimated beam through a source slit S propagates as a spherical wave onto

a double slit Sd, which acts as a two-slit secondary source to separate the wavefront into

two spherical waves. The two waves recombine on a position sensitive detection scheme

located 5 m away. Schematic setup in (b) is similar to (a) but the double slit is replaced

by a SiO2 Fresnel biprism [31]. The biprism, through refraction, refocuses the wavefront

onto a screen where interference occurs. In (c) is a spin-path based NI which is similar

to (b), but the refraction is achieved by Frenel diffraction of neutron by a ferromagnetic

domain boundary [32].

1.4 Neutron interferometry

1.4.1 Wavefront and amplitude division neutron interferometers

In wavefront division, the propagating wavefunction is split into two macroscopically dis-

tinct wavefronts in analogous to the Young slit experiment in optics [18]. Experimental

realizations include the Fresnel biprism, implemented by Maier-Leibnitz and Springer [31],

the double slit NI of Zeilinger et al [30], and the ferromagnetic crystal spin-path based NI of

Klein and Opat [32], each shown in Fig. 1.4. In Fig. 1.4a, a monochromatic neutron beam

emerging from a collimator is incident onto a source slit S, to generate a spherical wave.

The spherical wave propagates onto a double slit Sd, located 5 m away, which acts as a sec-

ondary source with two slits to separate the wavefronts into two secondary spherical waves.

These waves converge and interference on a screen located 5 m away. Shown in Fig. 1.4b

is an NI setup that is similar to Fig. 1.4a, but the double slit is replaced by a SiO2 Fresnel

biprism [31]. The biprism, through refraction, refocuses the whole wavefront onto a screen
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where interference occurs. In Fig. 1.4c, the wavefront division is realized through a spin-

dependent interaction. In addition, the refocusing is achieved due to the spin-dependent

Fresnel diffraction of neutron by a ferromagnetic domain boundary. In most cases, the

advantages of wavefront division NIs include less susceptibility to mechanical and thermal

disturbances, and a long beam path (10 m) that greatly enhances its sensitivity. On the

other hand, their limitations include the small separation of the two wavefronts which is

typically around 60 µm [31]. Small separations offer less flexibility in experiments as the

detection of the neutron is best achieved mostly by position sensitive detector. In addition,

a smaller separation makes it very difficult to resolve the beam and to place a sample in

one arm for a phase difference measurement. These factors limit the range of experiments

that can be performed and also render the implementation very challenging.

We focus on amplitude division NI where the amplitude of the wavefunction is coher-

ently split through partial reflection and partial transmission from beam splitters. An

efficient way of realizing a neutron beam splitter is through diffraction from a periodic

structure. Another implementation method is through unitary spin evolution under a

direct-current (DC) or a radio-frequency (RF) magnetic field.

1.4.2 Neutron spin-interferometry

Spin-interferometry is achieved by controlling the neutron spin via a spin-dependent in-

teraction. With stationary or time-dependent magnetic fields, the neutron spin can be

arbitrarily rotated. The associated polarization vector found by the expectation values of

the Pauli spin-matrices, P = (〈σ̂X〉, 〈σ̂Y〉, 〈σ̂Z〉), may be used to describe the dynamics of a

neutron spin. Along any axis it is defined by the ratio of the difference in the intensities

of neutrons with opposite spins to the incident beam. When a neutron beam is exposed

to a stationary magnetic field the spin evolution is described by the Bloch equation

dP

dt
= P× γB. (1.27)

The precession frequency of P is called the Larmor frequency, expressed as ωL = γ|B|,
where γ = 2µ/~ is the gyromagnetic ratio. The Larmor-precession angle solely depends

on the magnitude of the applied magnetic field and the time τ spent in the magnetic
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field; this angle is given by, α = ωLτ , for spin perpendicular to the field. A neutron with

spin orientation perpendicular to an axis along n̂ = B/|B|, and rotated by an angle α is

described by the unitary operator,

Rn(α) = ei
α
2
σ·n̂ = cos(α/2)1 + iσ · n̂ sin(α/2). (1.28)

For example, if a neutron with spin oriented along the +z axis, denoted as | ↑〉 is incident

onto a field of strength α, and with orientation along the +x-axis, n̂ = (1, 0, 0), the neutron

spin state transforms to,

Rx(α)| ↑〉 = cos(α/2)| ↑〉+ i sin(α/2)| ↓〉. (1.29)

A 50:50 spin rotation is achieved by setting α = π/2, while a spin flip is achieved by setting

α = π. Standard DC driven precession spin flippers [33, 34] for time independent fields

operate under this principle and completely reverse the spin of a neutron with nearly 100%

efficiency.

Figure 1.5a presents a Ramsey-type NI which makes use of two π/2)x spin rotators. The

first spin rotator, π/2)x, rotates the incident state | ↑〉 to the state |ψR〉 = (| ↑〉+ | ↓〉)/
√

2,

which is further rotated by a second spin rotator, π/2)x, before spin sensitive measurement.

In Fig. 1.5b, the input states given by |ψ+〉 = (| ↑〉 + | ↓〉)/
√

2 is prepared along the

x-axis. The beam splitter is achieved by passing the neutron through a Walleston prism,

whose fields are oriented along the z-axis. The Walleston prism provides a field in which

the two neutron spin states experience different magnetic gradients. As a result of the

magnetic gradient, the spins are deflected in analogous to the deflection of light through

a glass prism. A second Wollaston prism with a reversed field configuration redirects the

spin-path correlated states to propagate parallel to each. The state after the assembly is

denoted by,

|ψSP〉 =
| ↑〉|I〉+ | ↓〉|II〉√

2
. (1.30)

The separation between the two states is determined by the strength of the field, and the

time spent in the Walleston prism. With a bigger separation, a sample can be introduced

before the state is refocused by another pair of Wollaston prisms. A study with this setup

has revealed existing properties of some samples [35].
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Figure 1.5: Schematic of spin-path based neutron interferometry. (a) Ramsey-type spin

NI implemented with two π/2)x spin rotators oriented perpendicular to the incident spin

state (the +z-axis), followed by spin sensitive measurement [33]. In (b), the input state

|ψ+〉 = (| ↑〉 + | ↓〉)/
√

2 is prepared along the x-axis. The beam-splitting is achieved by

passing the neutron through a pair of Wollaston prisms, the action of which produces a

state that is correlations in the spin and path DOFs. The state is further recombined by

another pair of Wollaston prism before spin selective measurement [35]. In (c) an input

|ψ+〉 sent through a beam splitter implemented using magnetic multilayer. The spin-path

correlated state is then passed through another magnetic multilayer where they recombine

and interfere [36]. In (d), an RF field is used to create a superposition spin-energy entangled

state [34].

Figure 1.5c presents an interferometry setup similar to (a) with an input state |ψ+〉,
but the beam-splitting is achieved by reflection from a magnetic/nonmagnetic layer. A

spin-path correlated state emerging from the first beam splitter is then passed through

another magnetic multilayer where they recombine and interfere [36, 37].

Figure 1.5d presents an incident state | ↑〉|E〉, where E is the total energy, propagating

through an RF coil [38] with a time-dependent magnetic fields. In an RF flipper, the

neutron spin flip is accompanied by an energy exchange leading to a non conserved total

energy of the neutron. After the RF field, the spin anti-parallel to the field has energy
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Figure 1.6: Mach-Zehnder type grating NI with the first grating, G1, acting as a beam

splitter. The second grating, G2, refocuses the wavefuntion so that they recombine and

interfere on G3. See [41] for more details and applications of grating neutron interferometry.

E − ~ω, while that along the field remain with energy E, where ω is the frequency of the

excitation. The correlated spin-energy state then given by [39],

|ψSE〉 =
| ↑〉|E〉+ | ↑〉|E − ~ω〉√

2
. (1.31)

In an interferometry setup, the state can coherently recombine and interfere on the next

RF field. Other spin-base implementations of neutron interferometry are possible, for more

information see ref. [16].

1.4.3 Periodic structure neutron interferometers

Periodic structure neutron interferometers have been implementated with either gratings

[40] or perfect crystal [3]. For a grating NI, a schematic is shown in Fig. 1.6. The first

grating, G1, coherently splits the incident neutron wavefunction into various orders. The

second grating, G2, is geometrically oriented to refocus the selected orders, by use of a

slit, onto the third grating, G3, where they interfere. For more details on functionality and

applications, see ref. [41].

A greater part of this thesis is based on perfect crystal NI. Therefore, prior to giving

a detailed description, we first introduce some geometries that have been used over the
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Figure 1.7: Perfect single crystal NIs. a) Single crystal NI with Pendelosung oscillations

[43]. (b) Double crystal NI in the Laue geometry [44]. (c) Double crystal NI in the Bragg

geometry [45]. The first crystals of the double crystal NI is a beams splitter, to create a

coherent superposition state which then recombine and interfere on the second crystal.

years. One reason for the use of Si is the availability of pure monocrystalline ingots

originally provided by the semiconductor industry. These NIs are macroscopic devices

with a characteristic dimension typically of a few centimeters. In most cases, they consist

of one or more parallel crystal blades machined on a common crystal base. This ensures

an arcsecond alignment of the lattice planes of each blade relative to each other, which is

a stringent requirement to observe interference from Bragg diffraction. In addition, their

operation principle is based on the undisturbed arrangement of atoms in a single crystalline

silicon crystal. When a neutron beam is incident on a perfect crystal such that the Bragg

condition given by,

2dhkl sin θB = nλ, with, n = ±1,±2, · · · , (1.32)

is satisfied, the beam splits coherently into two components. dhkl, is the crystal lattice

spacing along the reciprocal lattice vector defined by the Miller indices h, k, l. As will be

discussed further in chapter 4, when the incident wavefunction satisfies the Bragg condition,

the resulting forward-diffracted and Bragg-diffracted waves also satisfy the Bragg condition

and get diffracted within the same crystal. The secondary diffraction generates a single

crystal interference pattern known as the Pendelösung oscillation. Shown in Fig. 1.7a is a

schematic of a NI based on Pendelösung oscillations, from a single crystal oriented in the

Laue geometry [42, 43].
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The forward-diffracted and the Bragg-diffracted waves (transmitted and reflected waves)

propagate out of a single crystal as a superposition of two macroscopically separated com-

ponents of a neutron wavefunctions. A second crystal can be used to recombine the wave-

functions, thereby realizing a double crystal interferometer in either the Laue or Bragg

geometries [44, 45]. Schematic drawings of two crystal NI are shown in Figs. 1.7b and 1.7c.

Of recent, they have been used to study deformation in crystals, and also in the search for

the neutron electric dipole moment [46].

The commonly used perfect crystal interferometer is the three-blade NI in the Laue

geometry [3]. It is analogous to the Mach-Zehnder interferometer in light optics and

also inherits many features from x-ray interferometry. Made with three crystal blades,

the first blade acts as a beam splitter and the middle blade as a lossy mirror to refocus

the two components of the wavefunction onto the third crystal blade. Depending on the

experiment, the mirror crystal can be implemented to achieve either the symmetric or the

skew-symmetric NI. In the symmetric case, Fig. 1.8a, the neutron wavefunction on both

arms reaches the mirror crystal at the same time. Meanwhile, in the skew-symmetric case,

Fig. 1.8b, the mirror crystal is split into two blades located such that the components of

the wavefunction on both arms reach it at different times [27, 47]. One of the advantages of

the skew-symmetric NI over the symmetric NI is that it can accommodate a bigger sample

which can be translated from one path to another without the need to rotate.

Over the years, other geometries of interferometers have been developed. The four-

blade NI, shown in Fig. 1.8c, is similar to the three-blade NI, but differs in that the

neutron wavefunction reaching the analyzer crystal is reflected twice without mixing at

the crossing. In addition, the four-blade NI has been experimentally demonstrated to be

immune to a low-frequency mechanical vibrational noise [6]. The five-blade NI, shown in

Fig. 1.8d, can be converted into various geometries. One useful configuration is similar to

the four-blade NI, but differs in that the wavefunctions interfere when they cross paths

in the middle (see chapter 5). In Fig. 1.8e is a hybrid NI that can be converted into a

three-blade and four-blade NIs. In Fig. 1.8f, is the six-blade double loop NI, which is a

large area interferometer and has been used for probing the dynamical phase [48].
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Figure 1.8: Schematics of Laue-type NIs. Shown in (a) is a symmetric three-blade NI. (b)

is a skew symmetric three-blade NI is shown. It has a larger space to accomodate a bigger

sample. (c) is a four-blade NI which is shown to refocus noise from mechancal vibration

[6]. (d) is a multi-loop five-blade NI. It can be converted to three-blade and five-blade NIs.

(e) is another design of the five-blade, which can be convereted to the four-blade DFS and

standard symmetric three-blade NIs. Finally, in (f) is the double loop interferometer, with

six blades. It is a large area interferometer and has been used for probing the dynamical

phase [48]

1.5 Operator representation

In the operator picture for neutron interferometry, the plane wave diffraction is formulated

in terms of eigen-kets [49]. Figure 1.9 is a schematic of an incident wave coherently split

into two states by a silicon crystal. These states, denoted by |I〉 for k|| > 0, and |II〉
for k|| < 0, form a basis for SU(2). One representation is the eigenvectors of σ̂Z in the

computational basis,

|I〉 =

(
0

1

)
, and |II〉 =

(
1

0

)
. (1.33)

Since neutrons are from a single beam, the only choices of the input state to an NI is

|Ψin〉 = |I〉 or |II〉, which can be represented as a density matrix,

ρ = |Ψin〉〈Ψin|. (1.34)
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Figure 1.9: Operator formalism of a single crystal diffraction. (a) is the schematic of the

evolution of |I〉, and (b) is the evolution of |II〉. A full sketch of the paths within a three-

blade NI is shown in (c). The neutrons leaving after the middle crystal do not make it to

O-beam or H-beam.

As a result, the input state for the path degree of freedom (DOF) is always pure. Depending

on the type of crystal, neutrons are absorbed. For Si, the absorption cross-section for

thermal neutrons is σa = 0.17 barns. This corresponds to a neutron transmission of 0.99

through a 10 mm thick sample of Si.

If we neglect the absorption, the transformation of the basis states under the crystal

blade operator is a unitary operation. This unitary designated as UB acts as:

UB|I〉 = t|I〉+ r|II〉, UB|II〉 = r̄|I〉+ t̄|II〉,

where, t, is the transmission coefficient from down-to-up, and t̄, is the transmission coef-

ficient from up-to-down, and r and r̄ the similarly defined reflections. The 2 × 2 matrix

representation of UB is,

UB = t|I〉〈I|+ r|II〉〈I|+ r̄|I〉〈II|+ t̄|II〉〈II|

with, t̄ = t∗, r̄ = −r∗, and |t|2+|r|2 = 1 the unitary conditions. The exact form of operator

will be discussed in chapter 4. A phase flag, commonly made from a precisely machined

plate of uniform density material, may be placed in the interferometer to induce a phase

shift between the two paths, see Eq. 1.25. If phase difference induced by a sample in one

path is φ = NbλD (see Fig. 1.9), the phase operator may be represented as,

Uφ = eiφ|I〉〈I|+ |II〉〈II|. (1.35)
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The middle crystal of the three-blade NI equally acts as a beam splitter, although from

the geometry of the NI some neutrons leave the NI, Fig. 1.9. This is because no infor-

mation encoded in the phases is lost to these neutrons that are usually not detected. By

post-selection on neutron arriving at either the O-beam or H-beam, a unitary evolution

description of the NI is obtained after re-normalization. The operator of the lossy mirror

can be derived from UB, as,

UM = ΠOUBΠH + ΠHUBΠO+ = r̄|I〉〈II|+ r|II〉〈I| (1.36)

where, ΠO and ΠH are corresponding projection operators given by,

ΠO = |I〉〈I|, ΠH = |II〉〈II|, (1.37)

when darkcounts resulting from the response of the detectors in the absence of the beam

are neglected. The operator of the analyzer blade is the same as a beam splitter operator

UB, so the overall evolution of the state in an NI is given by,

ρ′ = UBUMUφUB|Ψin〉〈Ψin|U †BU
†
φU
†
MU

†
B. (1.38)

In the case where the neutrons in both beams are detected at the exit of the interferom-

eter, historically known as the the O-beam and H-beam (see Fig. 1.9), the unnormalized

intensities averaged over a time period containing I0 neutron are,

IO = Tr [ρ′ΠO] = 2I0|trr̄|2
(

1 + cos(∆Φ)
)
, (1.39)

IH = Tr [ρ′ΠH] = I0

(
|trt̄|2 + |rr̄r|2 − 2|trr̄|2 cos(∆Φ)

)
, (1.40)

where ∆Φ = φ + φ0, and φ0 is a constant phase resulting from any imbalance in the

interferometer geometry. Also, the sum intensity is IO + IH = Tr[ρ′] = I0|r|2 and the

neutrons escaping from the interferometer have intensities I0|t|4 and I0|rt|2 for the upper

and lower paths, respectively. Using the projective value measure (PVM) and renormalizing

the output intensity, we note that ΠO + ΠH = 1, the sum probabilities of detection on the

O-beam and H-beam intensities is 1. This leads to a quantum information description of

the second blade treated as a perfect mirror with operator OM , given by;

OM = ei arg[r]|II〉〈I| − e−i arg[r]|I〉〈II|. (1.41)
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In other words, the NI evolution of the state leads to an output state of,

ρ = UBOMUφUB|Ψin〉〈Ψin|U †BU
†
φO
†
MU

†
B. (1.42)

The average renormalized intensity at the O-beam and H-beam can be expressed as,

IO = AO

(
1 + cos(∆Φ)

)
, and IH = BH −AO cos(∆Φ), (1.43)

where,

AO = 2|tr|2, BH = |t|4 + |r|4, AO + BH = 1. (1.44)

In perfect crystal neutron interferometry experiments, self-interference occurs where at

most a single neutron is present inside the interferometer at a given time. This is achieved

thanks to the low intensity of neutrons through the interferometer, about 1 neutron per

ms. At this rate, one neutron is detected at a time when the next is yet to be born.

1.6 Interferometry contrast

The contrast (analogous to the fringe visibility in optics) is commonly used to quantify the

quality of the interference pattern. It can be expressed as,

V =
Imax − Imin

Imax + Imin

, (1.45)

where Imax and Imin are the maximum and minimum intensities of the interference pattern.

In the ideal interferometry setting in Eq. (1.43), the contrasts for the O- and H-beams

is VO = 1 and VH = AO/BH, respectively. In reality, the highest contrast is below 1.

This is due to the presence of noise resulting from various environmental conditions and

imperfections in making the NI. The loss of contrast can be viewed as a result of the loss

of coherence.

In order to make a simple analogy between the contrast and the coherence function,

we consider a wavepacket propagating through a three-blade NI with a material sample in

one path. At the exit, each component of the wavepacket picks a phase ∆Φ = k·∆ relative

23



to the reference beam with no sample. The intensities at the O-beam and H-beam may be

be expressed similar to Eqs. (1.39, 1.40) as,

IO = AO

(
1 + |Γ(∆)| cos (arg[Γ(∆)])

)
, (1.46)

IH = BH −AO|Γ(∆)| cos (arg[Γ(∆)]) . (1.47)

With the coherence function expressed as,

Γ(∆) = Γ(∆, 0) =

∫
dk pk exp(ik ·∆), (1.48)

where, pk = |µk|2|tr̄|2/AO. By comparison with Eq. 1.45, the contrasts in the O-beam and

H-beam is related to the coherence function by,

VO = |Γ(∆)|, VH = AO/BH|Γ(∆)|. (1.49)

Thus, it is clear that the coherence in the O-beam is equal to that in the H-beam. However,

the contrast in the O-beam is equal to the absolute value of the coherence function, but

that of the H-beam is scaled by a factor AO/BH. Therefore, the contrast in an NI is equal

to the absolute value of the coherence function only for a balanced NI.

1.7 Neutron detection

Neutron detection in perfect crystal neutron interferometry is mostly done with 3He de-

tectors. These detectors are typically thin walled, cylindrical, stainless steel containers of

2.5 cm in diameter pressurized to 10 bar of 3He. During detection, the nuclear reaction,

3He + n→ p+ 3H + 0.746 MeV, (1.50)

takes place, with the energy released as the kinetic energy of the proton, p, and triton, 3H.

As these energetic particles propagate through the gas chamber, they create ion pairs that

move to a thin anode/cathode wire producing an electrical signal. The signal is passed

through an amplifier and an electronic pulse counter to generate a count. Figure 1.10

shows a typical circuit used for neutron detection.
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Figure 1.10: A schematic circuit used for neutron detection. After a nuclear reaction, the

energetic fission products create a proton and triton pair that moves to the cathode and

anode to ionize 3He gas and generate an electric signal. The signal is then amplified and

converted to a standard TTL pulse. The pulse is registered by a digital aquisition DAQ

control board as a count. The DAQ is controlled via a computer.

Another type of detector is the fission chamber detector. They are used especially for

monitoring fluctuations of the neutron beam. Also, they are usually designed in a uranium

coated flat panel form for a large surface area of a cathode cylinder. Made from uranium-

235 (U-235), fission chamber detectors are less efficient (about 0.1% or less), but can accept

a high intensity beam compared to 3He detectors. The neutrons in the beam undergo a

nuclear reaction given by,

235
92 U +1

0 n→ fission products + ν1
0n. (1.51)

Among various types of fission products, the two products 92
36Kr and 141

56 Ba for ν = 3,

carry energies of about 90 Mev and 65 MeV. As they travel through gas, the gaseous

mixture (e.g methane/argon) along their path is ionized. Depending on their charge,

the ion pairs travel to the cathode and anode producing a current that is digitized and

displayed. Fission chambers typically don’t use amplifiers as the signal produced is strong

enough for detection.

Another class of detectors are those used especially in neutron imaging. They exploit

the electronic excitations generated when a thermal neutron is captured and then a sub-

sequent emission of energetic charged particles. The electrons created from ionization can

generate further excitations in the material causing more electrons to be emitted. When
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the electrons relax, they emit photons. These photons are then passed through photomul-

tiplier tube or avalanche photodiode before being registered as counts. The details of these

detectors will not be discussed here.

In polarized neutron experiments spin-dependent detection is commonly accomplish

with polarized 3He filter in combination with a neutron detector. The operation principles

of a polarized 3He filter is the large nuclear spin-dependence of neutron capture into the

broad unbound resonance of the intermediate 4He state [50]. The neutron capture cross-

section σc for 3He depends on the wavelength by σc[barns] = 2962λ [Å]. In it design, the
3He is filled in a 1.8 bar pressurized glass cell alongside Rubidium and nitrogen. The cell

is polarized by the collision of 3He atoms and rubidium in a process referred to as spin-

exchange optical pumping [51]. In optical pumping, a circularly polarized infrared laser

light that is tuned to the appropriate wavelength, is used to excite electrons in rubidium.

Through collision, angular momentum is transferred from the rubidium electrons to the
3He nuclei. Nitrogen serves as a quenching gas to prevent the fluorescence of 3He, a process

that would lead to depolarization. An 3He polarization, PHe, of about 75% can be achieved

[52]. Using these values and also ignoring the small scattering of the neutrons with spin-

component parallel to the 3He nuclear spin, the spin-dependent transmission of the neutron

beam through the cell of length D, is given by,

T± = (1/2)TE exp [−nHeDσ±] , where σ± = σc(1∓ PHe) (1.52)

where ± refers to neutron and 3He nuclear spins parallel or anti-parallel, respectively. nHe

is the 3He atomic number density, TE is the transmission of the cell glass window. The

spin-dependent cross-sections are about σ+ = 876 barns and σ− = 6131 barns for thermal

neutrons through helium with a polarization of 75%. The filtering efficiency of a 3He cell

target, during polarized neutron detection, is given by,

P =
T+ − T−
T+ + T−

= tanh(−σcnHeDPHe). (1.53)

The quantity σcnHeD is often referred to as the opacity of the cell.
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Chapter 2

A New Neutron Interferometry &

Optical Facility at NCNR

2.1 Introduction

The Neutron Interferometer and Optics Facility (NIOF) is part of the cold stage instru-

ments that are installed in the guide hall of NCNR. It is home to two neutron interferom-

etry beamlines designated as NIOF and NIOFa, see in Fig. 2.1. The NIOFa beamline was

added, during the 2010 yearlong reactor shut-down that saw the expansion of NCNR (see

Fig. 2.1), to accommodate the high volume of experiments. This new facility, benefits from

higher flux, improved neutron polarization capabilities, a designated cryostat for cold stage

measurements, and an environmental temperature control. On the other hand, the facility

may lack long-term phase stability as it is not fully isolated from the rest of the guide

hall like the NIOF. To ensure temperature stability, we placed the NI crystal in a vacuum

chamber, isolating from the environment [53]. NIOFa will focus on:- spin-based neutron

interferometry, neutron spin manipulation, materials research, and quantum information

science applications.

In this chapter, we present design features and characteristics of NIOFa, full description

of which can also be found in article [7]. This chapter is structured as follows: The Sec. 2.2
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Figure 2.1: A simplistic layout of the NCNR showing the reactor core (purple) surrounded

by high energy neutron instruments denoted by BT#. The next segment shows the cold

source instruments, where the recently added beamline, NIOFa, resides just upstream of

the existing beamline NIOF of the NG7 guide (see ref. [7]).

describes the NIOFa beamline followed by the neutron beam characteristics description

in Sec. 2.3. Section 2.4 presents the wavelength measurement and Sec. 2.5 the contrast

measurements followed by the polarization measurement in Sec. 2.6.

2.2 Description of NIOFa beamline

A layout of NIOFa beamline is presented in Fig. 2.2 (for a detailed schematic see ref. [7]).

Neutrons extracted from NG7 by two pyrolythic graphite (PG) (002) monochromators,

labelled Mon1 and Mon2, with lattice vector angular variation (otherwise called the mosaic)

of 0.5◦. PG crystals are locally perfect and imperfect over a long range due to a distribution

in the reciprocal lattice vector. The neutron reflectivity of a mosaic crystal is greater than
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Figure 2.2: Schematic of the NIOFa beamline. A PG(002) silicon crystal (Mon2) extracts

4.4 Å wavelength neutrons into the facility. The neutron beam passes through a set of

devices including a collimator, fission chamber, beryllium filter, polarizer, and spin flip-

per before reaching the interferometer aluminum box enclosure. Shown also is a second

monochromator Mon1 that reflects neutrons into the NIOF hutch (see ref. [7]).

that of a perfect crystal where the distribution of angular lattice parameter is zero. Mon2

reflects neutrons of wavelength 4.4 Å to NIOFa, and Mon1 reflects neutrons to the NIOF

beamline. Due to the orientation of Mon1 and Mon2, the two beams cross path. Mon2 is

coupled to a nema true planetary gearhead1 on a stage system with motors2 that controls

1model # NT17-100-H-34-615-557-D769
2Faulhaber model # AM1524-A-0.25-15.5-6 15/8 900:1
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Figure 2.3: A sketch of a top view of a Söller collimator in (a) and a front view picture of

it installed at the NIOFa beamline. Any neutron incident at an angle greater the allowed

divergence of 0.2◦ is absorbed.

rotation and tilt, simultaneously. Rotation stages facilitate the monochromator Bragg

scan, and the tilt stage assists in the optimization of the reflectivity.

A 41 cm gap exists between the two shielding walls and contains a 30 cm-long Söller

collimator [54] to restrict the transverse horizontal beam divergence to 0.2◦ (see Fig. 2.3),

with no effect on the beam divergence in the vertical direction. The internal plates of the

Söller collimator are made with neutron absorbing gadolinium-coated blades oriented to

absorb neutrons at angles greater than 0.2◦. Downstream of the Söller collimator is a com-

bination of 12 mm thick boron nitride and 76 mm thick lead that serves as an adjustable

window for neutrons. A shutter is used to open and close the neutron window during oper-

ation. It is made from 12 mm thick boron-nitride, 1 mm thick cadmium, and 10 cm lead.

The neutron source fluctuation is monitored with a fission chamber of detection efficiency

0.01% mounted after the shutter. On the downstream of the fission chamber is Slit1 made

from two perpendicular pairs of boron-nitride. Slit1 can be translated and adjusted to any

desired beam size. Located after Slit1 is a liquid nitrogen cold beryllium (Be) filter to

remove undesired thermal neutrons from the beamline by scattering wavelengths λ < 3.96

Å into the boron shielding. The Be crystal is cooled by liquid nitrogen to reduce the in-

coherent scattering cross-section due to phonon excitations, and improve the transmission
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Figure 2.4: A real view of the NIOFa beamline looking from the guide.

of the 4.4 Å wavelength by about 15%.

Following the Be filter is a neutron spin polarizer. The later is made from a CoFeV-

coated mirror and works in the transmission geometry by reflecting the undesired spin state

out of the beam. The NIOFa is capable of achieving polarizations P ≥ 98% for a beam

polarized and analyzed with supermirrors (see Sec. 2.6). A second slit assembly, identical

to Slit1 and labelled Slit2 is used downstream of the polarizer to limit the beam divergence.

The combination of Slit1 and Slit2 generates a trapezoidal-distributed beam profile whose

width depends on slit sizes and separation. Downstream from Slit2 is a precession coil spin

rotator to flip the neutron’s polarization.

After the spin flipper there is a 150 cm by 180 cm non-magnetic optical bench (Fig. 2.5)

and a breadboard on which the interferometer is supported by a rotation stage3, transverse

horizontal stage4 and transverse vertical stage5. The rotation stage is used to aligne the

interferometer to the beam via Bragg scan, and the horizontal and vertical translation

stages are used to locate the best operating spot, characterized by the highest contrast.

3PI Micos model # PRS-200 180:1 with SiGNUM Encoder
4Huber model # 5101.20
5Huber model # 5103.A20
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Figure 2.5: A real view of an interferometer on the NIOFa beamline.

The NI rests on felt cloth lining the aluminium mounting plate to avoid stress on the crystal

blades. In polarized neutron interferometry, a spin analyzer is used for analyzing neutrons

in the O-beam or H-beam. Detection is done with 3He counters of 2.5 cm in diameter6

and filled with pressurized 3He to 10 bar. After the detector, there is a beam block, made

from a combination of high-density polyethylene coated boron nitride and lead. Most of

the thermal neutrons go straight through the setup and captured by a beam block. The

whole NI setup on the table is housed by an aluminium box 76 × 76 × 76 cm3, to reduce

phase instability due to thermal gradients. The box is thermally isolated from the table by

a 3 mm thick piece of fibreglass, which is a poor heat conductor, and from stray neutrons

by a cadmium lining on the interior surface.

2.3 Beam characteristics

The orientation of Mon2 determines the wavelength and the intensity of neutrons directed

to the NIOFa beamline. Mon2 is first aligned to the beam optically and then a Bragg scan

6For the 25.4mm in diameter: GE Energy, model # RS-P4-0802-204
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Figure 2.6: A Bragg angle scan of the monochromator PG crystal to determines the wave-

length of the beamline. (a) is a schematic diagram of Mon2 reflecting neutrons from NG7.

Mon2 is first aligned to the beam optically and then via a Bragg rotation scan around

the crystallographic axis denoted by Rot axis. The experimental data from the NIOFa

is shown in (b) with peak intensity at the Bragg angle. The full width at half maximum

(FWHM) is related to the lattice vector spread of the PG crystal and the peak corresponds

to λ = 4.4 Å. In (c) is the crystal tilt angle scan for optimizing the intensity.

is performed using motorized stages. The schematic of the setup is shown in Fig. 2.6a.

The intensity of neutrons reflected from Mon2 against the angle of rotation is shown in

Fig. 2.6b. The location of the peak intensity corresponds to the main wavelength, and the

FWHM is related to the lattice vector spread of the PG crystal. With the PG set to the

peak intensity location the intensity optimization scan against tilt is shown in Fig. 2.6c.

At the NIOFa, the main neutron wavelength is 4.4 Å and is closer to the peak of the

Maxwell-Boltzmann distribution provided by the liquid hydrogen cold source leading to a
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Figure 2.7: (a)a schematic diagram of neutron velocity selector disc choppers. In consist

of a fixed disc C1 (just a slit) and a rotating disc C2. By carefully chosing the rotation

frequency and the sepration, a particular wavelength can be selected. In (b), the spectrum

for various neutron harmonics λ = (4.4/n) Å, with n = 1, 2, 3, . . . measured using a disc

chopper (a) prior to installing the beryllium filter. In (c), are measurements after the

installation beryllium filter. Only the λ = 4.4 Å neutrons remain. The measurements in

(b) and (c) were carried under different measurement times and so the intensities and the

time bins are different.

high neutron intensity.

The total number of neutrons going through a unit area per unit time is known as the

flux, measured in neutrons cm−2 s−1. In the NIOFa beamline, the flux measured after Slit1

using a fission chamber with 32.6 µg of uranium is 3.56×106 neutrons cm−2 s−1. This flux

is higher than the flux of 1.32×105 neutrons cm−2 s−1 measured after Mon1 on the NIOF

beamline.
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The neutron flux measured for both NIOFa and NIOF do not discriminate between the

λ/n harmonics present in the beam. In order to quantify the beam, a disc chopper was

used to measure the composition of the beam because it is capable of selecting neutrons

according to their velocity. It is made from two consecutive discs with windows on one

quadrant as shown in Fig. 2.7a. The first chopper (C1) functions as a source slit by selecting

a pulse beam with different energies, and the second chopper (C2) which is opened at a well

defined later time (due to it rotation) transmits only a single wavelength. The wavelength

is related to the separation L and time t by λ = 2π~t(mL)−1.

Shown in Fig. 2.7a is the spectrum for various harmonics λ = (4.4/n) Å, with n =

1, 2, 3, . . ., measured using a disc chopper, prior to installing the Be filter; the relative

composition of the harmonics λ/n to the peak wavelength is 25%. With the Be filter, the

intensity obtained using a disk chopper time-of-flight measurement is shown in Fig. 2.7b

with no detectable λ/n and a reduced relative composition of the main wavelength to 62%.

Note that the measurements are carried with different time windows.

2.4 Wavelength measurement

The wavelength measurement was carried out using a nearly perfect Si (111) crystal ana-

lyzer of dimensions 15 × 40 × 60 mm3 oriented in the Laue geometry. The lattice vector

spread of nearly perfect crystals is relatively broad compared to perfect crystals, but rel-

atively small compared to a PG crystal. This allows for a greater reflected intensity than

perfect crystals and a better resolution than PG crystals. The setup contains the crystal

and three detectors labelled D+, D−, and D0. Detector D+ measures the intensity at an

angle +2θB which correspond to the crystallographic orientation parallel to the monochro-

mator; D− is located at −2θB and correspond to the crystallographic orientation oriented

anti-parallel. The direct beam detector D0 is a monitoring detector to record the drop in

the intensity of the transmitted beam when the crystal is oriented at the Bragg angle. The

alignment of the analyzer crystal to the beam was done via a 2θB scan (see Fig. 2.8a, a

similar process as the monochromator) using a stage with a highly accurate encoder7. The

7Heidenhain model # RON 287 18000 lines per revolution
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Figure 2.8: (a) Schematic setup for wavelength measurement, made up of a nearly perfect

Si [111] crystal analyzer and three detectors. The crystal is rotated around the Bragg in two

distinct orientations ±θB in which neutrons are detected with detectors D±, respectively.

D± are mounted at ±2θB to measure the reflected intensities in parallel and anti-parallel

geometries, respectively. The monitor D0 is located in the direct beam to measure the

reduction in the neutron counts when the crystal is at the Bragg angle. (b) plot of the

Bragg angle at various tilts is fitted to a second degree polynomial to determine the optimal

tilt. (c) the intensity recorded by D− (red squares) and D+ (blue circles) versus the rotation

angle, after background subtraction. The intensity in D− is fit to a Gaussian and that in

D+ to a triple-peak Gaussian. These fits are shown in (d) with the same data in (c) plotted

against the wavelength. The wavelength, calculated using the Bragg diffraction formula,

corresponding to the peak and marked as a vertical line, is obtained to λ = 4.389± 0.009

Å with ∆λ/λ ≈ 0.8 %, where ∆λ is the FWHM.

optimization of the Bragg angle performed via the crystal tilt scan is shown in Fig. 2.8b.

The data is fit to a second degree polynomial to obtain the Bragg angle. The minimum of
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the polynomial corresponds to the exact Bragg angle. Shown in Fig. 2.8c, is the intensity

at D− (red boxes) and D+ (blue circles) against the Bragg angle after background counts

are subtracted. The difference between the angles at which the peaks occur is 2θB. These

angles are obtained by fitting the resulting data to a Gaussian, with the center representing

the angle and the FWHM the error in the angle. The data on D− was fit to a single Gaus-

sian, while that in D+ was fit to a triple-peak Gaussian. The fits are shown in Fig. 2.8d,

which are the same data in (c) plotted against the wavelength, λ. The wavelength is calu-

lated using the Bragg diffraction formula λ = 2d sin θ, with ∆λ defined as the FWHM of

the resulting fit. The mean wavelength λ = 4.389 Å, is indicated by a vertical line and the

wavelength is determined to be λ = 4.389± 0.009 Å with ∆λ/λ ≈ 0.8 %.

2.5 Contrast measurement

The contrast measurements on the NIOFa was performed for two wavelengths, namely

λ = 2.2 Å and λ = 4.4 Å. The intensities of the O-beam and H-beam versus the NI

rotation for λ = 2.2Å are shown in Fig. 2.9a and 2.9b, respectively. The line shows the fit

to a Gaussian to obtain the peak at θB = 20◦. Setting the NI angle to the peak intensity,

the spot characterized by the highest contrast is determined by doing a contrast scan. This

scan is achieved by introducing a phase flag in the interferometer and rotating to introduce

a phase difference between the two paths.

At the NIOFs the phase flag is an optically flat piece of fused silica of dimension 5 cm

× 5 cm × 0.15 cm chosen so as to introduce a phase shift in both paths of an NI. By

rotating the phase flag by an angle δ from its initial position parallel to the blades, a phase

shift of

∆φ(δ) =−NbλD
[

1

cos(θB + δ)
− 1

cos(θB − δ)

]
=−NbλD

[
2 sin (δ) sin (θB)

cos2 (θB)− sin2 (δ)

]
(2.1)

where b, N , and D are the scattering coherent length, number density, and thickness of

the phase flag, respectively. An interaction to be probed with phase (φs) can be added,
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Figure 2.9: The interferometer Bragg angle scan with intensity recorded on the O-beam

shown in (a) and and that in the H-beam shown in (b) for λ = 2.2 Å. The data is fit to a

Gaussian to obtain the peak at 20.75◦.

and the total phase also include the intrinsic phase (φ0) resulting from imperfections in the

matching of the beam on the blades. Shown in Fig. 2.10a, is an interferometry setup to

measure the phase shift due to a sample. In Fig. 2.10b is a real picture of the three-blade

neutron interferometer that was used in the measurements. In Fig. 2.10c are interferograms

for IO (red circles) and IH (blue squares) obtained by rotating a phase flag a few degrees, in

the absence and presence of a neutron absorbing sample. The coefficients in the equations,

IO = AO

(
1 + V cos(∆Φ)

)
, IH = AH − AOV cos(∆Φ). (2.2)

are determine from the fit with total phase difference ∆Φ = ∆φ(δ) + φs + φ0. Because the

sample has an absorption cross-section σa, the O-beam intensity may be expressed as,

IO = AOe
−σaND

2

[
cosh

(
σaND

2

)
+ V cos(∆Φ)

]
, (2.3)

where e−σaND is the absorption coefficient. An analogous but slightly complicated equation

for IH can be written by making use of the individual reflection and transmission coefficients

of each of the blades.

The NIOFa optical table is mounted on vibration isolation legs to suppress vibrations

38



2500

2000

1500

1000

500

0
-2 -1 0              1               2

Sample In

Sample Out

Sample In

Sample Out

Figure 2.10: (a) An interferometry setup to measure contrast or extract the phase due

to a sample. (b) A real picture of the three-blade neutron interferometer tested at the

NIOFa. (c) An interferogram showing IO (red circles) and IH (blue squares) for sample

in and out with line fit using Eq. 2.2. The interferomegram indicates that the sample has

an appreciable neutron scattering cross-section. The phase shift due to the sample φs is

obtained by comparing the sample in (solid) and out (dotted) intensity patterns.

as low as 1 Hz. The table legs are equipped with an active support structure 8 built on a

piezoelectric (PZT) driven compensator system. When the table moves, the compensator

system uses a feedback mechanism to balance the table by canceling the movement. How-

ever, this response might drive the table to a different position than its previous, leading to

tiny unavoidable NI drifts around the center of the beam. The contrast was measured when

the table is supported on various isolations including the PZT system, a pressure-driven

8TMC model # STACIS iX

39



1800

1600

1400

1200

1000
 /120 s 

-3 -2 -1 0        1        2        3

300

250

200

150

100

50

O
-b

ea
m

 C
ou

nt
s 

(


 /3
0s

 

-0.4 -0.2 0.0 0.2 0.4
300

250

200

150

100

50

O
-b

ea
m

 C
ou

nt
s 

(


 /3
0s

 

-0.4 -0.2 0.0 0.2 0.4
800

700

600

500

400

300

200
-3 -2 -1 0        1         2        3

Figure 2.11: The O-beam intensities for two neutron wavelengths λ = 2.2 Å (red squares)

and λ = 4.4 Å (blue circles). In (a), a picture of the table supported by PZT-control

STACIS, and in (b) a picture of table supported by rubber pad fixed legs. In (c) are

interferograms when the table is supported by STACIS with the PZT-control turned off.

The contrast is 47% for λ = 2.2 Å and 32% for λ = 4.4 Å. In (d) the contrast decreased

to 30% for 2.2 Å and 21% for 4.4 Å for table resting on fixed rubber pad legs.

control9, an assembly of rubber pads. A picture of the table with PZT-control STACIS is

shown in Fig. 2.11a and that with rubber pad fixed legs is shown in Fig. 2.11b. A contrast

of V = 47% for λ = 2.2 Å and V = 32% for λ = 4.4 Å measured when the PZT-control

of the STACIS system are turned off, but the table still retains some vibration isolation is

shown in Fig. 2.11c. In Fig. 2.11d is the interferograms for a table supported by rubber

pads with the contrast reducing to 30% for λ = 2.2 Å and 21% for λ = 4.4 Å. In com-

parison with the NIOF beamline, this same NI can measure a contrast of about 85% at

2.71 Å. Many factors may be responsible for the decrease in contrast. These may include

9model # PEPS II
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mechanical vibration, temperature fluctuations and the beam divergence. A contrast of

about 45% was observed for the 4.4 Å wavelength with a tiny beam size.

2.6 Neutron polarization

The NIOFa is primarily constructed for polarized neutron interferometry. The neutrons are

polarized with double-V cavity supermirrors10, which use preferential reflection [23]. The

polarization is manipulated with high efficiency using DC driven precession spin flippers

[33, 34] and thin films [37]. The polarizer and analyzer at the NIOFa are specially designed

supermirrors to reach neutron polarization P ≥ 98% with a pencil size neutron beam of

wavelength more than 2.0 Å [55]. Each supermirror (SM) is 30 cm long and 5 cm tall, and

is divided into three identical 3 mm channels, each equipped with two double-sided coated

SM plates which are mounted back-to-back in the shape of a V (see Fig. 2.12a), hence the

name double-V. The design maximizes the neutron transport capabilities of the SM. On

either sides of the channel there are neutron absorbing materials capturing neutrons of the

opposite spin which are reflected from the CoFeV-coated mirror.

Figure 2.12 is a schematic setup for polarization measurement with two consecutive

slits Slit1 and Slit2 for collimation, and a Be filter to remove shorter neutron wavelengths.

Downstream of the Be filter is, a SM spin polarizer, a coil spin flipper, a spin analyzer, and

a 3He counter. Slit1 and Slit2 are used to limit the transverse horizontal beam divergence

since the measured polarization of the beam depends it. The Be filter is located before

the SM polarizer to remove all the higher energy neutrons so that the optimization of the

components is carried out with only the 4.4 Å wavelength. Slit2 can be located either

downstream or up stream of the SM polarizer. The location downstream is suited for

geometric reasons only.

The neutron spin flipper is a rectangular double coil DC spin flipper, see Fig. 2.12b.

The inner coil is used to generate a compensating field and the outer coil to generate a

field perpendicular to the neutrons flight path. The compensating field is tuned to exactly

cancel the vertical guide field at the flipper location. A background magnetic field of about

10custom designed and made by SwissNeutronics
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Figure 2.12: Schematic setup used to measure neutron polarization at the NIOFa. The

components used are the two slits for collimation, a beryllium filter to remove shorter

wavelengths. The polarizer, spin flipper and analyzer are the main components. The neu-

tron beam is polarized with a SwissNeutronics double-V cavity supermirrors and analysed

with either another double-V supermirror or polarized 3He filter. A picture of the coil spin

flipper used is shown in (b) and that of the 3He counters are shown in (c).

8 Gauss was used. This field is far above the earth magnetic field to avoid depolarization.

The optimization of the inner coil’s field to the maximum flipping ratio, characterized by

a π-flip, is shown in the bottom plot in Fig. 2.13. Also, the optimization of the outer coil’s

field to the maximum flipping ratio is shown in the top plot in Fig. 2.13. The flipping

probability of our spin flippers is 0.99.

Prior to polarization measurements, the detector was aligned to an empty beam (no

component present) by translating it and rotation it around the beam center. The linear

scan, performed to locate the center of the beam is shown in Fig. 2.14a. On the detector

rotation shown in Fig. 2.14b, there is a secondary peak resulting from background neutrons
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Figure 2.13: Experimental data for tuning the currents in the vertical and horizontal coils

of the coil spin flipper shown in Fig. 2.12c.

streaming from the NG7 guide into the NIOFa beamline. For the mean time, the detectors

are enhanced with snouts (to reduce background neutrons) and rotated to angles that

exclude these neutrons. With a snout (see Fig. 2.12c), the beam profile is a trapezoidal

distribution resulting from the convolution of the collimation slit and the detector snout.

The polarizer and analyzer alignments are done in a similar fashion as the detector through

a linear and a rotation scan.

The degree of neutron polarization P is determined from the flipping ratio expressed

as R = Ioff/Ion, where Ioff and Ion denotes the neutron intensity recorded on the detector
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Figure 2.14: Detector linear and rotation scan for alignment during polarimetry. There is

a secondary peak on detector rotation which comes from background neutrons streaming

from the NG7 guide into the NIOFa beamline.

when the spin flipper is on and off, respectively. In the off state, the spin orientation of the

neutron remains unchanged as it propagates between the polarizer and analyzer. On the

other hand, when the flipper state is on, the neutron spin orientation is reversed between

the polarizer and the analyzer. The flipping R is related to the polarizer efficiency Pn and

flipper efficiency εF by

P = Pa εF Pn =
R− 1

R + 1
(2.4)

where Pa is the analyzer efficiency. Without the Be filter, the measured polarization was

≤ 90%, major reason being the presence of short wavelength neutrons that constitute∼25%

of the beam, and also fall outside the polarizing SM range. After installing the Be filter,

the neutron polarization increased to ∼ 98%, but strongly depends on the experimental

settings such as a beam size, divergence, and polarizer orientation.

There are four double-V SM at the NIOFa each of which was characterized as a po-

larizer. The SM polarizing efficiencies were each measured using polarized 3He cells in

combination with a 3He detector and with the flipper taken out of the beam. The po-

larization efficiencies for SMs designated as Cavity 1.1, 1.2, 2.1 and 2.2. are presented in
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Figure 2.15: The spatial dependence of polarization of Cavity 2.2 supermirror for a fixed

rotation angle. (a) is the schematic diagram of the polarizer linear scan setup. (b) is

the polarization efficiency when Cavity 2.2 acts as a polarizer and (c) is the polarization

efficiency when Cavity 2.2 acts as an analyzer.

Tab. 2.111 for different slit sizes. Because of the dependence of the polarization on beam

size, a small beam of about 1.15 × 13 mm2 was used to measure the polarizing efficiency

of each of the three channels of the SM (about 2.5 mm). For Cavity 1.2, the polarizations

of 98.26± 0.50%, 98.51± 0.50%, 97.46± 0.50% were obtained for each of the channels.

11∗ refers to measurements done with Syrah, and † are those done with Marverick cell

Slit[mm2] Cavity 1.1, [%]∗ Cavity 1.2, [%]† Cavity 2.1,[ %]∗ Cavity 2.2,[%]∗

1.25x10 98.32 98.20 97.60 99.23

1.25x15 98.79 98.51 — 99.23

5x5 97.23 96.83 96.40 96.99

11.25x1.25 96.79 98.47 96.40 98.50

2.5x7.5 97.62 — 98.15 97.98

Table 2.1: Table shows polarization of each SM measured with polarized 3He cell as analyzer

for various slit configurations. The beam used for these measurements has a uniform beam

divergence for which Slit1 and Slit2 are same size.
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Figure 2.16: Plots showing the beam profile for the various combination of polarizer and

analyzer, including when both are in and out of beam simultaneously. In the setup, the

detector is translated along a direction perpendicular to the beam direction and results

for various configurations obtained. It can be noted that when the SM polarizer and SM

analyzer are out of the beam, there is just one peak. When wither the SM polarizer or SM

analyzer are in the beam the beam is splitted in to two components. The splitting is likely

caused by refraction from the double-Vs in each channel.

Because the polarization efficiencies of each of the SM channels differ, the dependence

of the degree of polarization was measure with linear scans. A schematic setup for polar-

izer/analyzer transverse linear scan is shown in Fig. 2.15a. Figure 2.15 is the polarization

versus translation linear scan when Cavity 2.2 acts as a polarizer (left) and analyzer (right).

It is clearly noticeable that the linear position affects the performance thereby making it

challenging to work with a wider beam as portions of the beam may carry different polar-

izations.

The beam emerging from either the polarizer/analyzer combination is split into various

peaks, studied with a position sensitive detection realized by translating a detector with a

1×8 mm2 slit on the snout. In these measurements, collimator Slit1 was set to 1.25×5 mm2.

For calibration purposes, the detector translation scan was first done (without the polarizer

and the analyzer). Various SM polarizer/analyzer combination scan were performed and

the data is shown in Fig. 2.16.
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When a SM polarizer and SM analyzer are present on the beam, the beam splits into

two peaks indicating that the two peaks coming out of the polarizer have polarization of

the same sign. The cause of the splitting might be attributed to refraction from the edge of

the double-Vs in each channel. A final study of the effect of the slit size on the polarization

was done by keeping one slit fixed and changing the width of the other. It was observed

that the polarization is strongly affected by the slit.
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Chapter 3

Dynamical Diffraction in a Perfect

Crystal Neutron Interferometer

3.1 Introduction

The theory of dynamical diffraction (DD) is a very successful theory; first formulated for

x-rays [56, 10, 57] and later adapted for electrons [58] and neutrons [2, 59]. It describes the

interaction of a particle with a periodic lattice which includes atomic crystal structures,

nanometre scaled multi-layers, and self-assembly systems. Our main interest is in perfect

periodic crystals although, the concepts presented here can be adapted to other periodic

structures. According to the theory of DD, a plane wave incident at the Bragg condition

generates four distinct wavefields inside the crystal. Two of the wavefields propagate along

the direction of incidence and the other two propagate along the reflected direction. Despite

being distinct wavefields, their wavevectors differ only slightly and so they interfere as

they propagate through the crystal, generating most of the fine features of DD. At the exit

surface of the crystal, the four waves recombine into two waves whose properties depend on

the momentum at incidence and the nature of the lattice [60, 61, 62]. The diffracted waves

propagate at a direction determined by the geometry of the crystal. The two common

geometries are the Bragg geometry where both the incident and diffracted waves are on

the same surface of the crystal, and the Laue geometry where they are on different surfaces.
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An alternative theory to DD is the kinematical theory of diffraction. The theory of DD

differs from the kinematical theory because it describes the approximate position of the

diffraction peaks in reciprocal space while making corrections for refraction, interference,

and multiple scattering. The validity of DD is commonly described as the thick crystal

regime. This regime is when the crystal thickness is greater than the extinction length,

and the beam divergence is greater than the Darwin width of the crystal. On the one

hand, the Darwin width specifies the acceptance angle of an incident beam which has a

finite divergence. On the other hand, the extinction length is the minimum thickness at

which neutrons are completely reflected from the crystal. The DD effects are dominant in

perfect crystal neutron interferometry. This is because, the NI blade thicknesses are orders

of magnitude greater than the extinction length.

In previous DD work where the incident beam was assumed to have a broad wavelength

distribution, the neutron intensity seems to be independent of the crystal thickness [63,

64, 65]. However, for highly monochromatic neutron beams realized using perfect crystal

monochomators [43, 66], this assumption is not true. The result is that the intensity couples

to the crystal thickness offering a possible control of the intensity via the thickness. In

perfect crystal NI, monochromatic beams are inevitably used offering an opportunity to

optimize the neutron intensity through an interferometer via the thickness.

In this chapter we present a brief description of the theory of DD, then provide simula-

tions and experiments of the effect of thickness on the intensity of neutrons diffracted from

a combination of perfect crystal beam splitters. In Sec. 3.2, we describe DD from a single

crystal. In Sec. 3.3 we outline the effect of crystal thickness on the intensities at the exit

of a three-blade NI together. In Sec. 3.4 the experimental procedure is presented, and in

Sec. 3.5 the data collected are shown presenting experimental results. Finally, in Sec. 3.6

we present the data fitting procedure and then conclude in Sec. 3.7

3.2 Dynamical diffraction

Consider a plane wave component of a wavepacket, incident on a periodic silicon crystal of

thickness z0, located at r = zê⊥, see Fig. 3.1. The crystal is oriented in the Laue geometry
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Figure 3.1: Illustration of Bragg diffraction in the Laue geometry. An incident wave at the

Bragg angle is coherently split into two components, the forward diffracted with wavevector

kO and the reflected wavevector kH which orginate from the wavefield inside the crystal

along branch 1 and 2. The current J1,2
P propagate at an angle Ω which is an amplification

of the deviation δθ. For Si [220], the amplification is tan θB/σD ∼ 106. The diffraction of

the two possible imput waves is shown in (b) and (c).

with the crystallographic planes assumed to be perpendicular to the crystal surface. As a

result, the incident wavevector can be represented as k = k⊥ê⊥+k‖ê‖, where ê⊥ and ê‖ are

unit vectors perpendicular and parallel to the crystal surface, respectively. The position

representation of the steady state wavefunction is a sum over plane-waves,

Ψ(r) =

∫
dkµk ψk(r), (3.1)

where, ψk(r) = exp(ik · r).

Inside the crystal, the wavefunction Ψ(r) must satisfy the stationery state Schrödinger

equation, [
− ~2

2m
∇2 + V (r)

]
Ψ(r) = EΨ(r), (3.2)

where V (r) is the potential of the scattering centres. The total energy E of the particle

inside the crystal is equal to the kinetic energy of the particle in free space, E0 = ~2k2/2m,

where k = |k| and m is the mass particle. For a periodic crystal, V (r) = V (r + R) where

R is the crystal translation vector. So the solutions to Eq. (3.2) are multiple scattered
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Bloch waves which maybe expressed as [67],

ΨK(r) = uK(r) exp(iK · r), (3.3)

where K is the wavevector of the neutron inside the crystal. The functions uK(r) are

periodic modulation functions with period R. Because of the periodicity condition, the

potential and the modulation functions maybe be rewritten as Fourier transforms,

V (r) =
∑
H

vHe
iH·r, u(r) =

∑
H

uHe
iH·r, (3.4)

where, uH and vH are Fourier coefficients, and H = hb1 + kb2 + lb3 is the reciprocal lattice

vector with Miller indices (h, k, l). The vectors bi = 2πaj × ak/vol are reciprocal basis of

the lattice spanned by the vectors ai and unit cell volume vol. Using Eqs. (3.2-3.4) and

resetting the indices we obtain,∑
H

[
~2

2m
(K + H)2 − E

]
uH expi(K+H)·r = −

∑
HH′

vH-H′uH′ expi(K+H)·r . (3.5)

which is a set of linearly independent equations. They are satisfied for every r leading to

the Fourier coefficients which satisfy,[
~2

2m
(K + H)2 − E

]
uH = −

∑
H′

vH-H′uH′ . (3.6)

It is worth mentioning that no assumptions have been made so far about the physics,

apart from the periodicity of the potential. In other words, Eq. (3.6) is the Fourier space

representation of the Schrödinger equation in a periodic lattice. The coefficients uH depend

only on the displaced coefficients, uH′ and vH-H′ , for reciprocal lattice vectors H′, allowing

it to foresee the periodicity of the dispersion curves.

The coefficients can be rewritten as,

uH = −
∑

H′ vH−H′uH′[ ~2

2m
(K + H)2 − E

] for E 6= ~2

2m
(K + H)2. (3.7)

Using the Bragg condition for internal wavevectors KH = K + H and the fact that the

neutron-nuclear interaction is extremely small (V � E) we can use Eqs. (3.6) and (3.7) to
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conclude that only vH with two energies EK and EKH are strongly excited. In DD, this is

commonly referred to as the two wave approximation, otherwise states as,

H = 0 :

(
~2

2m
K2 − E

)
u0 = −v0u0 − v− HuH, (3.8)

H 6= 0 :

(
~2

2m
K2
H − E

)
uH = −vHu0 − v0uH, (3.9)

or in matrix form, (
EK − ε v−H

vH EKH − ε

)(
u0

uH

)
= 0, (3.10)

where EK = ~2K2/2m, EKH = ~2K2
H/2m, and ε = E − v0. The non-trivial solution

obtained by setting the determinant to zero,

(EK − ε)(EKH − ε)− vHv−H = 0. (3.11)

is a quadratic equation in ε representing the energy dispersion. The solutions to this

quadratic equation give the dispersion relations:

ε1,2 = EK + |vH|
(
η ±

√
η2 + 1

)
, (3.12)

with the dimensionless normalized energy parameter expressed as,

η =
EKH − EK

2|vH|
, (3.13)

whose significance will be explained later. The difference between the eigenvalue of the

energy is

∆ε = ε1 − ε2 = 2|vH|
√
η2 + 1. (3.14)

It is worth mentioning that far away from the Brillouin zone boundary |EKH−EK | � |vH|,
whereas on the boundaries EKH − EK = 0 and this leads to the energy gap, ∆ε = 2|vH|.

The wavevectors inside the crystal associated with each of the kinetic energies ε1,2 =

~2K2
1,2/2m, maybe expressed as,

K1,2 = K1,2⊥ê⊥ +K1,2‖ê‖. (3.15)
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From the conservation of energy, the neutron wavevector parallel to the surface of the

crystal is unchanged, i.e, K1,2‖ = K‖ = k‖, while the normal components are, K1,2⊥ ≈

K⊥

[
1 + |vH |

2EK⊥

(
η ±

√
η2 + 1

)]
. Combining these components, we obtain,

K1,2 = K +
π

∆H

(
η ±

√
η2 + 1

)
ê⊥, (3.16)

where, ∆H is the extinction length expressed as,

∆H =
~2K⊥π

m|vH|
. (3.17)

∆H specifies the minimal thickness at which the energy of the incident wave is fully con-

verted into the reflected wave, i.e total reflection. Inside the crystal, the eigenstates are

doubly degenerate Bloch waves, giving rise to four excited waves; two waves propagat-

ing along the transmitted direction, with wavevectors K1,2, and two along the reflected

direction with wavevectors K1,2 + H. The slight change in the wavevectors given by,

∆K =
2π

∆H

√
η2 + 1, (3.18)

leads to a complicated mutual interference pattern known as the Pendellösung oscillations.

The period of oscillations is ∆H and it is sometimes referred to as the extinction length.

Inside the crystal, the there are two probability currents, denoted as J1,2
p , which propagate

at an angle Ω, see Fig. 3.1a. This angle is an amplification of δθ given by,

Ω =
(2E sin2 θB

|vH|

)
δθ, (3.19)

where for Si [220] at thermal neutrons 2E sin2 θB/|vH| ∼ 106.

To understand the Pendellösung oscillations, consider the case where the exact Bragg

condition is satisfied (η = 0) so that K1,2 = K ± π
∆H
ê⊥. The standing wave inside the

crystal is a sum of two excitations, one with nodes at the atomic planes and the other with

nodes between the planes, and is given by [68],

ΨII(r) = eiK·r
[

cos

(
πz

∆H

)
+ ie−iHx sin

(
πz

∆H

)]
. (3.20)
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The cosine term represents the component in the forward direction and the sine term

represents the component in the reflected direction. The reflected component contains

a phase exp(−iπHx) that accounts for the location at which the wave is incident. As

z changes, the waves oscillate between the forward and reflected directions, so that the

thickness z0 determines the ratio of the transmitted to the reflected intensity. For Silicon

[111], the Pendellösung period λ = 2.2 Å is ∆H = 90.4µm and for λ = 4.4 Å, it is

∆H = 34.4µm. In order to preserve this interference, the dimensions of the interference

system have to be accurate on a scale compatible to this length.

A the exit surface, due to the boundary conditions, the four waves recombine to form

the transmitted wave denoted ΨO and the reflected wave denoted ΨH. Here O and H

traditionally refer to the transmitted and reflected direction as defined by the reciprocal

lattice vector H. Using Eq. (3.1) we get,

ΨO(r) =

∫
dkµk t(k)ψk(r), and ΨH(r) =

∫
dkµk r(k)ψk(r). (3.21)

The reflection (r) and transmission (t) coefficients for non-absorbing crystals are given

by [3, 62],

t = eiχ exp (−iAη)
[

cos(A
√

1 + η2) +
iη√

1 + η2
sin(A

√
1 + η2)

]
, (3.22)

r = eiχ exp [i(−Aη + 2Aηz/z0)]

(
vH

v-H

)
−i√
1 + η2

sin(A
√

1 + η2), (3.23)

where A = πD/∆H is the dimensionless crystal thickness, and χ is the nuclear phase shift

due to refraction given by,

χ = D(K⊥ − k⊥), where K⊥ =
√
k2
⊥ − 2mV/~2, (3.24)

χ is also present when the crystal is oriented outside the Bragg condition. In Fig. 3.1b,

the transmission and reflection for a beam incident along −ê|| is denoted by t̄ and r̄,

respectively. It can be easily shown that (ref. chapter 4)

t̄ = t(−η) = t∗, r̄ = r(−η) = −r∗. (3.25)
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We note here that the parameter η = η(δθ) characterizes the deviation (angular or mo-

mentum) from the exact Bragg condition, so that each component of the wavepacket have

a unique transmission coefficient. η can manifest itself in different forms although, it is

commonly used to denote the scaled angular or momentum deviation.

The reflection and transmission probabilities are given by,

pr = |r|2 =
sin2

(
πz0
∆H

√
1 + η2

)
1 + η2

, and pt = |t|2 =
η2 + cos2

(
πz0
∆H

√
1 + η2

)
1 + η2

, (3.26)

In the special case of zero beam divergence (η = 0), the transmitted and reflected proba-

bilities at any thickness z are

pt = |r|2 = sin2

(
πz

∆H

)
, and pr = |t|2 = cos2

(
πz

∆H

)
. (3.27)

The probabilities oscillate out of phase such that, at any instant, the ratio z/∆H determines

the relative amplitudes of the wave in each direction. At the exit, the relative amplitudes

in the forward and reflected directions are determined by z0/∆H . These oscillation are

explored in details in Chapter 4.

3.3 Three-blade neutron interferometer

A detail sketch of a three-blade perfect Si crystal NI, is shown in Fig. 3.2. It depict four

waves leaving the NI into the O-beam detector DO, H-beam detector DH, transmitted-

transmitted beam D1, and reflected-transmitted beam D2. Consider a wavefunction |Ψ〉
satisfying the Bragg condition of a three-blade NI. Without loss of generality the projected

wavefunctions on the detectors D1, DO, DH, and D2 are respectively,

|Ψ1〉 = tt|Ψ〉, |ΨO〉 =
(
trr̄ + ei∆Φrr̄t

)
|Ψ〉,

|Ψ2〉 = rt̄|Ψ〉, |ΨH〉 =
(
trt̄+ ei∆Φrr̄r

)
|Ψ〉, (3.28)

where ∆Φ is the total phase difference. It is a combination of the control phase from the

phase flag and the constant phase from the offset between the two states. The probabilities
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Figure 3.2: Schematic of the experimental setup at the NIOFa. Left figure shows the top

view of the three-blade NI setup with four detectors D1, DO, DH, and D2 placed in the

beams at the NI exit. The component of the wavefunction arriving at detectors DO and

DH has a phase difference, which can be varied by rotating the phase flag. Each beam path

can be blocked using a cadmium plate to form a network of consecutive beam splitters. In

order to vary the thickness of each of the beam splitters, the interferometer is tilted around

the x-axis. On the right is the side view of the experimental setup diagram.

associated with each of the components are,

p1 = |t|4, pO = 2|r|4|t|2
(

1 + cos(∆Φ)
)
,

p2 = |r|2|t|2, pH = |r|2|t|4 + |r|6 − 2|r|4|t|2 cos(∆Φ). (3.29)

The lack of a dependence on ∆Φ indicates that there is no interference in the p1 and p2

terms. Therefore, the rotation of the phase flag does not affect these beams.

It is a common assumption in the theory in DD that the incident beam has a momentum

spread significantly broader than the Darwin width. In addition to this assumption, if

the crystal thickness is greater than the extinction length, then the detected intensity is

independent of the thickness of the crystal [63, 64, 65]. However, in a perfect crystal NI,

the first blade reduces the momentum spread of the beam input onto the second blade,

which further narrows the width of the input onto the third blade. The resulting beam

has a narrow spread and thus averaging over a spread equals to the Darwin width leads
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Figure 3.3: Illustration of the various wavevector deviation from the mean value (considered

the center of the wavepacket or the exact Bragg wavevector). (a) when the deviation in

magnetude and direction (angle) are both zero. (b) there is a deviation in angle but not

magnetude, (c) there is a deviation is magnetude but not direction, while (d) illustrates

deviation in both magetude and direction.

to intensities profiles that weakly couple to the thickness of the beam splitters. Although

other possibilities exist as illustrated in Fig. 3.3, we are only interested in the case where

there is an angular or wavelength divergence. In Fig. 3.3a you see a plane wave with no

angular and no wavevector distribution. In Fig. 3.3b is a distribution with an angular

and a fixed wavevector while in Fig. 3.3c is a distribution with a wavevector magnitude

and no angular divergence. Finally in Fig. 3.3d there is both an angular and wavevector

distribution.

3.3.1 Case of wavelength spread

When the incident beam is distributed in wavelength, λ = 2π/k, an average over the

reduced length A(λ) = πD/∆H must be taken into account. This leads to the full average

probability spectrum expressed as,

Jnm =

∫ ∞
−∞

pr(η)npt(η)m
∣∣∣dA
dλ

∣∣∣dλ =

∫ ∞
−∞

pr(η)n [1− pr(η)]m dA, (3.30)

where the identity pt = 1 − pr is used. The average are taken over the whole space

because the Darwin width is very small. Applying this average to the probability densities
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Figure 3.4: The Pendellösung oscillations. The averages of pr, J
′
nm and Jnm, are plotted

against η for A = 5π in (a) and A = 11π/2 in (b).

Eq. (3.29), we obtain

I1(η) = J02, IO = J21(1 + cosφ),

I2(η) = J11, IH = J30 + J12 − J21 cosφ. (3.31)

The Jnm’s are obtained by replacing the integrals of the sinusoidal oscillations with the

averages taken over A, given by 〈sin2(·)〉 → 1/2, 〈sin4(·)〉 → 3/8, and 〈sin6(·)〉 → 5/8, to

get for example,

J21(η) =
1 + 6η2

8(1 + η2)3
, J10(η) =

1

2(1 + η2)

Another formulation (best suited for perfect crystals momochromators and microradian

collimation) is to take the average of the reduced length around the mean period of A±∆A,

with beat frequency ∆A = 2π/(η +
√

1 + η2) to get,

J ′nm =

∫ λ+∆λ

λ−∆λ

pr(η)npt(η)m
1

∆λ

∣∣∣dA
dλ

∣∣∣dλ =
1

2∆A

∫ A0+∆A

A0−∆A

pr(η)n[1− pr(η)]mdA. (3.32)

The deviation between the two averages is very small, and so each can be used interchange-

ably as the case may be. A comparison of J10 and J ′10 is shown alongside the probability

pr in Fig. 3.4, and there is a significant agreement.
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3.3.2 Case of angular spread

As mentioned earlier, when perfect crystal monochromators are used, it is realistic to

ignore the wavelength distribution. On the other hand, it is extremely difficult to obtain

a collimated beam with no angular divergence. We address the case where the incident

beam is monochromatic but has angular spread. If a beam with only angular spread is

incident onto a network of perfect crystal beam splitters so that it undergoes n reflections

and m transmissions, the average intensity as a function of crystal thickness z0,

Jnm =

∫ ∞
−∞

pr(z0)npt(z0)mdη =

∫ ∞
−∞

pr(z0)n[1− pr(z0)]mdη, (3.33)

where the integration is taken over all possible η’s. In experiments, the intensity Jnm
can be varied through two techniques. One technique varies the neutron wavelength for

a fixed crystal thickness [43, 69], and the other varies the thickness of the crystal for a

fixed wavelength [42, 70]. The method adopted here is that of changing the thickness of

the crystal and maintaining the same wavelength. This was achieved by tilting the crystal

around an axis parallel to the crystallographic plane, as shown in Fig. 3.2.

The intensities at the detectors obtained from the average of the probabilities in

Eq. (3.29) over angular divergence are,

I1(z0) = J02, IO(z0) = 2J21 (1 + cosφ) ,

I2(z0) = J11, IH(z0) = J30 + J12 − 2J21 cosφ. (3.34)

It is possible to express Jnm as a sum of reflections, Jn, (where the zero is suppressed for

brevity) only as J12 = J1 − J3, J11 = J1 − J2,J21 = J2 − J3, and J12 = J1 − 2J2 + J3.

With the approximate intensity modulation function J10 given by [71],

J1 '
π

2
− 1

2

√
∆H

z0

[
cos

(
2πz0

∆H

+
π

4

)
+

5

16

∆H

πz0

sin

(
2πz0

∆H

+
π

4

)]
(3.35)

and also

J2 '
3π

16
− 1

2
F ′(z0; 2, 16/13) +

1

32
F ′(z0; 4, 32/13),

J3 '
15π

128
− 15

32
F ′(z0; 2, 16/21) +

3

64
F ′(z0; 4, 16/21)− 1

288
F ′(z0; 6, 16/7).
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Figure 3.5: On the left, a colour representation of the contrast variation along the transverse

vertical and transverse horizontal positions of the NI. On the right the contrast variation

versus interferometer tilt γ for O- and H- beams (see Fig. 3.2 for the tilt geometry).

The function F ′(z0; a, b) is defined as,

F ′(z0; a, b) =

√
∆H

z0

[
cos

(
aπz0

∆H

+
π

4

)
+

1

b

∆H

πz0

sin

(
aπz0

∆H

+
π

4

)]
, (3.36)

which is true for z0/∆H > 1. Similar expressions can be obtained for higher order values of

n and m, but their analytical forms are long and cumbersome. Because the intensities de-

pend on the thickness, there is in principle a thickness z0 for which J20−J30 = J10/2, which

effectively generates a balanced NI. This limit is however not achieved in our experiments

due to geometric constraints.

3.4 Experimental procedure

An experiment was performed on the NIOFa beamline at the NCNR described in Chapter

2. In this experiment, the thickness of the NI was changed by tilting. The NI used was

a three-blade Laue-type made from perfect crystal silicon with a blade thickness of 2.51

mm and a (111) crystallographic orientation. A detail sketch of the setup is shown in

Fig. 3.2a. It shows movable pieces of cadmium to block either the transmitted beam or

reflected beam after the first blade. Detectors DO, DH, D1, and D2 are located on each
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Figure 3.6: Simulations showing the variation of the contrast of the H-Beam with the blade

thickness of a three-blade NI for a neutron wavelength of 2.2 Å and 4.4 Å. The horizontal

line shows the contrast when integrated over a broad neutron wavelength distribution.

of the beams leaving the NI. They are large area detectors meant to detect the neutron

beam in the experiment with a cross-section area of 5 × 3.75 mm2. The tilt geometry is

shown in Fig. 3.2b. In order to ensure that the tilt does not affect the neutron wavelength

selected, Bragg scans were done at three different tilt angles, γ = −4◦, 0◦, 4◦, for which no

significant change in Bragg angle was observed.

After aligning the interferometer to the beam, a 2D contrast scan in the transverse

vertical and horizontal directions was performed to find the position with highest contrast

shown in Fig. 3.5 (left). Wit the interferometer at this position, a contrast scan against

the NI tilt is shown Fig. 3.5 (right). For an ideal perfect crystal NI with blades of equal

thickness, the O-beam is made up of a superposition of components of the same amplitude

and so it’s contrast is expected to remain constant as the NI is tilted. However, some

fluctuations attributed to phase drift arising from the difference in the thickness of various

NI blades are observed. From the fabrication techniques, it is known that the thicknesses

of the blades might differ by about ±10µm. Because of this difference, possible features of

DD might emerge. These effects were not studied in this chapter.
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3.4.1 Contrast variation

The contrast of the H-beam depends on the thickness, z0, as,

V(z0) =
2J21(z0)

J30(z0) + J12(z0)
. (3.37)

Theoretically, it fluctuates around the value of 39.13% as the thickness increases, see page

284 of [16]. Simulations of the H-beam contrast versus the thickness is shown in Fig. 3.6

for the 2.2 Å and 4.4 Å neutron wavelengths. The plot shows some oscillations, although

these were not observed in our experiments. These oscillations can be observed in beamlines

with arseconds divergence in wavevector spread. Obtained plots show that the thickness

of the NI blades should be carefully considered when designing an interferometer. This is

a result of the H-beam contrast difference with wavelength (∆H = 0.091 mm for 2.2 Å,

and ∆H = 0.035 mm for 4.4 Å) .

3.5 Intensities from an interferometer

The experimental data and fit to the data collected from an NI (without beam blocks)

illuminated with neutrons of wavelength λ = 2.2 Å are shown in Fig. 3.7. The intensity

at the O-beam and H-beam against the tilt angle, γ, are shown in Figs. 3.7a and 3.7b,

respectively. Also shown in Fig. 3.7c is the empty interferometer phase against the tilt

and a fit to a linear equation c1 + c2 γ. This phase difference is obtained by rotating the

phase flag and extracting the phase, for every γ. Also shown in Fig. 3.7d is the sum of the

O-beam and H-beam intensity alongside a line of best fit given by,

IO(z0) + IH(z0) = J1. (3.38)

It is clearly visible on the plots that the intensity changes with the thickness. Still the

variation is very slow thus a high neutron counts is required.

In the study of two or more consecutive beam-splitting, a piece of cadmium was used

to block one of the NI paths (see Fig. 3.2a). With beam block I inside the interferometer,

no neutron is observed on detector D1. On the O-beam, the intensity corresponds to two
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Figure 3.7: The O- and H-beam, the sum, and their phases obtained by tilting an NI

without a phase flag. In (a) is plot of the experimental data and fit to the O-beam intensity

for 2.2 Å wavelength. In (b), is the H-beam intensity for the same wavelength. In (c), is

the phase of each of the beams fit to a linear equation c1 + c2 γ. In (d) is the the sum

intensity (O+H) against the interferometer tilt (see Fig. 3.2).

reflections plus one transmission (rr̄t) and on the H-beam to three reflections (rr̄r). On

detector D2, the beam correspond to a reflection-transmission (rt). These intensities can

be expressed as,

IO(z0) = J21, IH(z0) = J30, I2(z0) = J11. (3.39)

The schematic setup for measuring these intensities is shown in Fig. 3.8(a). Experimental

data and fit to the H-beam intensity is shown in Fig. 3.8. For neutrons with λ = 2.2 Å

the intensity is shown in Fig. 3.8b and for neutron with λ = 4.4 Å the data is shown in

Fig. 3.8c. Also shown is the data and fit to I2(z0) in Fig. 3.8d only for neutrons with

λ = 4.4 Å. Other possible configurations include the beam block in the reflected beam of

the first blade, for which the O-beam intensity remains (trr̄) and the H-beam undergoes

(trt̄) giving an intensity IH(z0) = J12.
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Figure 3.8: The schematic setup for measuring the H-beam intensity vs tilt angle for a

neutron beam through three consecutive beam splitters is shown in (a). In (b) is the

intensity for λ =2.2 Å and a fit using A = 86.37. In (c) is the intensity for λ =4.4 Å and a

fit using A = 227.03. In (d), The experimental data and fit to the intensity on D2 versus

tilt angle λ =4.4 Å.

3.6 Data analysis

For a [111] perfect silicon crystal the calculated values of the reduced length A = πz0∆H
−1=

86.86 rad for λ = 2.2 Å and A = πz0∆H
−1= 228.32 rad for λ = 4.4 Å. Correspondingly,

for the 2.2 Å the Pendellösung period is ∆H = 90.4µm and for the 4.4 Å, the Pendellösung

period is ∆H = 34.4µm. When the NI is tilted by γ, the blade thickness becomes z =

z0 sec(γ − γ0), where z0 is the thickness at zero tilt which is the offset angle γ0. The fit

function to J1 as specified by theory is,

R
(1)
F = B1 +B2

√
∆H cos(γ − γ0)

4z0

(
cos[g(γ)] +

5

16

∆H

πz0

sin[g(γ)]

sec(γ − γ0)

)
, (3.40)
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where B1 and B2 are constants to be determined, and g(γ) =
(

2πz0
∆H

sec(γ − γ0) + π
4

)
. The

fit to the sum intensity in Fig. 3.7d gave the values B1 = 3781 ± 49, B2 = 6275 ± 705,

γ0 = −0.011± 0.002◦.

The values of A = πz0∆−1
H at zero tilt obtained by simultaneously fitting all the data

from the various experimental configurations, gave the values πz0∆−1
H = 86.37 ± 0.02 for

a wavelength of 2.2 Å and πz0∆−1
H = 226.75 ± 0.02 for a wavelength of 4.4 Å. The ratio

∆H(2.2)/∆H(4.4) = 2.625, obtained from experiments, has a remarkable agreement with

the calculated value ∆H(2.2)/∆H(4.4) = 2.628.

The fit function to the O-beam intensity for the empty NI is,

IF (γ) = B1 +B2S3

[
2πz0

∆H

sec(γ − γ0)

]
[1 + cos(C1 + C2γ)] , (3.41)

and is shown in Fig. 3.7a, with fit parameters B1 = 3287.5 ± 38, B2 = −2937 ± 83,

c1 = −38.27± 1.59, and c2 = 6.31± 0.06.

3.7 Conclusion

We employed the technique of tilting the NI to study how the transmission and reflection

coefficients can be controlled. The experimental results agree with the simulations for a

crystal thickness of 2.51 mm, and neutron wavelengths of 2.2 Å and 4.4 Å. Having the ability

to control the beam-splitting efficiencies, the intensity imbalance of the O-beam and H-

beam may be controlled by designing an NI with no beam asymmetry. In the gravitational

phase shift experiments [25], the NI was tilted to introduce a height difference between the

two neutron paths in the NI, thereby introducing a gravitational phase shift. In a recent

experiment (ref. [62]) a perfect crystal Si sample inside was tilted in an NI to probe the

DD phases. The geometry of our experiment in Fig. 3.2b is different from that of these

two experiment. These results could open up a way to customize the transmission and

reflection coefficients for specific neutron wavelengths leading to an optimized NI.
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Chapter 4

Quantum Information Approach to

Dynamical Diffraction

4.1 Introduction

The theory of DD, as mentioned earlier, predicts many features of diffraction from periodic

lattices; for example Pendellösung oscillations [43, 61], the extinction length and abnormal

transmission [10] and the Borrmann effect [72]. DD theory is often approximated in the

thick crystal regime by two waves emerging from the crystal, with one propagating along

the incident wave direction called the transmitted or forward diffracted wave, and another

propagating in the complementary direction called the reflected or Bragg diffracted wave.

This treatment will be referred to as the standard theory of DD.

Although, the standard theory of DD has been very successful in explaining many

diffraction phenomena, the mathematics can be quite cumbersome and involves solving

the Schrödinger’s equation for a lattice with Avogadro’s number of interaction potentials.

Even in the two-wave approximation, the standard theory of DD still uses many variable

substitutions to make the formulae readable [3, 73, 74]. This lack of readability may end

up obscuring very simple concepts.
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Presented here is an alternative relatively simple treatment of DD that uses the language

of quantum information (QI) to model a periodic lattice as a network of beam splitters. In

this treatment, DD is considered as a coherent quantum effect arising from the interference

of different paths taken by the wave as it passes through the lattice. While comparatively

simple, this approach can accurately explain many effects of DD. We will consider beam

profiles for DD through a single thick crystal, and show how it predicts the widening of

the neutron beam profile. This widening is bounded by the outer path in the transmitted

beam and the outer path in the reflected beam thereby forming a triangular region, known

as the Borrmann triangle. The QI model also predicts the sinusoidal variations known

as Pendellösung oscillations in the intensities of transmitted and reflected beams. The

Pendellösung oscillations is a consequence of the energy transfer between the reflected and

transmitted beams. Lastly, it is shown how this approach may be extended to multi-blade

crystal devices, such as, three-blade NI.

Consider a neutron with wavefunction, Ψ(r) =
∫
dkµk ψk(r), (where ψk(r) = eik·r are

a basis of plane-waves) diffracting off a silicon crystal. In the diffraction process, the wave

inside the crystal is a superposition of two waves one along the direction of incidence,

with wavevector K , and the other along the reflected direction, with wavevector KH (see

Fig. 3.1 in chapter 3). The wavefield at the exit surface of the crystal splits into the

transmitted wave, which has undergone an even number of reflections, and the reflected

wave, which has undergone an odd number of reflections. The difference in the number of

reflections gives rise to a phase difference which lead to Pendellösung oscillations of energy

exchange. For an incident plane wave satisfying exactly the Bragg condition on a crystal

aligned to the origin, the two internal wavevectors K ± π
∆H
ê⊥ correspond to a coherent

superposition wavefunction inside the crystal given by,

Ψinside(r) = e
i
(
Kz− π

∆H

)
z

cos
(πx
d

)
+ ie

i
(
Kz+ π

∆H

)
z

sin
(πx
d

)
. (4.1)

The cosine component is located at the lattice planes and the sine component is located

between the lattice planes. The components of the wavevector along z are slightly different,

resulting in a beating of the wave as it propagates through the crystal. For this reason the

orientation of the wavefront oscillates periodically between the two directions.

According to DD, when a plane wave is incident on a non-absorbing crystal, for example
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silicon (220), with vH/v−H = 1 and thickness D, the reflection (r) and transmission (t)

coefficients for non-absorbing crystal are

t = eiχeiϕ cosϑ r = eiχe−i% sinϑ,

where,

χ = D(K⊥ − k⊥), ϑ ≡ arcsin

[
sin[Φ(η)]√

1 + η2

]
, (4.2)

% ≡ −Aη + 2Aηz/D0 + π/2, ϕ ≡ −Aη + arctan

[
η

1 + η2
tan[Φ(η)]

]
, (4.3)

with Φ(η) = A
√

1 + η2, where, η quantifies the deviation from the Bragg condition. If the

incident wavevector is in the complementary direction as shown in Fig. 1.9, the reflection

and transmission amplitudes are denoted by r̄ and t̄, respectively. The evolution can be

written as an effective unitary operator of a 2× 2 matrix, UDD(ϕ, %, ϑ), given by,

UDD(ϕ, %, ϑ) =

(
t −r∗

r t∗

)
= eiχ

(
eiϕ cosϑ −ei% sinϑ

e−i% sinϑ e−iϕ cosϑ

)
(4.4)

Where we have used t̄ = t∗, and r̄ = −r∗. Under ideal conditions in DD (perfect

monocrystalline crystal and no momentum spread and beam divergence) the parameters

are ϕ = 0, % = π/2, and ϑ = A, giving rise to a constant unitary operator for the blade.

In Sec. 4.2, we extend the definition of the unitary operator to develop a QI model for

DD.

4.2 Quantum information model

The process of DD through a perfect periodic non-absorbing crystal is a unitary evolution.

In this work, we propose an alternative quantum information model for DD, based on the

requirement that a crystal can be segmented into planes, with each acting as a unitary

operator and the same unitary operator is repeatedly applied throughout the process.

This is an operational approach that considers a coarse-graining of a thick perfect crystal
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into a computationally tractable number of planes of logical scattering sites. Each of the

logical scattering sites may be modelled as a general beam splitter that coherently splits an

incoming wave into transmitted and reflected components. The choice of unitary depends

on the number of planes in the coarse-graining, with the constraint that the phase of

the wavefunction leaving the crystal does not wrap around in multiples of 2π. As the

number of planes increase, so does the number of possible paths through the crystal for

a given output component. This results in the widening of the matter wave beam profile,

and the interference between the multiple paths reproduces many of the effects typically

described by standard DD theory. The coarse-graining of scattering sites is necessary as

there are an order of Avogadro’s number of atoms corresponding to physical scattering

sites in a perfect crystal. However, many DD features can be reproduced with only a

modest number of coarse-grained scattering sites considered. This QI approach to DD is

a quantum mechanical version of a Galton’s board, that is one form of a discrete time

quantum walk [75, 76, 77]. It is also related to the original proposal of DD by Darwin

[78, 79] that involves breaking down the scattering media into layers, in conformation to

the invariance principle in physics [61, 80].

4.2.1 Formalism of QI model for DD

In the QI model, it is also assumed that the scattering at each coarse-grained site is

macroscopically distinct, similar to Bragg scattering and Bloch theory. This model also

makes the assumption that the entire process of diffraction, through the crystal, is within

the coherence length of the incoming wave.

The coarse-graining for a perfect crystal into scattering nodes is illustrated in Fig. 4.1.

This coarse-graining procedure is performed in several steps. The crystal is segmented into

planes, and each plane is further divided into nodes, creating a lattice where each node

corresponds to a scattering site. Each node functions as a beam splitter with two input and

output ports. The scattering action of an arbitrary node (denoted by j, which specifies the

node’s relative vertical location) may therefore be modelled as a unitary transformation,

Uj, acting on the two-level system {|aj〉, |bj〉} ∈ C2 of the incident state. The collective

action of all the nodes lead to a multiple scattering process that gives rise to quantum
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Figure 4.1: A perfect crystal decomposed into various scattering sites (nodes) shown as

blocks. The incident wave is a single ray moving upward along AB and the direction AC is

the reflected wave. The region ABC is the Borrmann triangle. At each node, the unitary

operator Uj coherently splits the wave into two components; the transmitted and reflected.

Repeated application of Uj generates the transmitted and reflected outputs of the crystal.

Any ray of the transmitted beam has undergone an even number of reflections while those

of the reflected beam have undergone an odd number of reflections.

interference effects. The unitary generating this multi-scattering process is denoted by,

U(N) ∈ L(C2N), and its dimensions depend on the number of planes, N , considered in the

coarse-grained approximation. The transmitted and reflected waves, denoted as |ΨT 〉 and

|ΨR〉, respectively, leaving the crystal surface and the corresponding intensities, depend on

the parameters of U(N).

A ray is used to represent a single logical level of any wave, which may be modelled as

a state vector |aj〉 or |bj〉, where the labels a and b refer to rays moving upwards (when

k|| > 0) or downwards (when k|| < 0), respectively. Using |aj〉 and |bj〉 also reduces the

ambiguity originating from the identification of transmitted wave and reflected wave, as
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they depend on the type of input. The ray tracing approach is analogous to a path integral,

and is used to illustrate some of the features of the wave leaving the crystal.

At the scattering site, the beams are coherently split according to the relation,

|aj〉 7→ ta|aj+1〉+ ra|bj−1〉, (4.5)

|bj〉 7→ rb|aj+1〉+ tb|bj−1〉, (4.6)

where, ta, tb, ra, and rb are complex transmission and reflection coefficients. For the scat-

tering relation to be unitary, the conditions,

|ta|2 + |ra|2 = 1, |tb|2 + |rb|2 = 1, tarb + ratb = 0 (4.7)

must be satisfied. A possible choice for these parameters is,

ta = eiξ cos θ, tb = e−iξ cos θ,

ra = −e−iζ sin θ, rb = eiζ sin θ, (4.8)

The parameters ξ, θ, and ζ maybe determined by two possible ways. The first is from

experimental intensity profiles of the transmission and reflection beam. By mapping the

intensities at node j and j + 1 at the exit surface to the position in the Borrmann fan, we

could determine possible values of ξ, θ, and ζ. The second way to get these parameters is

from the minimum thickness of a crystal, τ , for which the neutrons are all reflected given

by τ/∆H < 1/2, where ∆H is the Pendellösung length. By relating this standard DD

formula to the model, we obtain that θ = πτ/∆H , ξ = 0, and ζ = π.

The unitary operator is then,

Uj,ξ,θ,ζ =
(
eiξ cos θ|aj+1〉 − e−iζ sin θ|bj−1〉

)
〈aj|+

(
eiζ sin θ|aj+1〉+ e−iξ cos θ|bj−1〉

)
〈bj|

= |aj+1〉
(
eiξ cos θ〈aj|+ eiζ sin θ〈bj|

)
− |bj−1〉

(
e−iζ sin θ〈aj| − e−iξ cos θ〈bj|

)
. (4.9)

It is evident that the action of Uj,ξ,θ,ζ depends on the site that can be identified by j and

τ . According to this, we define the state as a composition given by, |j〉 to,

|aj〉 ≡ |a〉 ⊗ |j〉, and |bj〉 ≡ |b〉 ⊗ |j〉, (4.10)
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such that the operation of the node is split into two parts; a part which only decides the

direction of movement denoted, C, and a part which does the movement, Sτ . The up state

| ↑〉 denotes the upward motion, while the down state, | ↓〉, denotes the downward motion.

In addition, {| ↑〉, | ↓〉} ∈ SU(2). The operator is then expressed as a product of C⊗ 1 and

Sτ as,

Uj,ξ,θ,ζ = C⊗ 1 · Sτ (4.11)

where in the language of quantum walk the shifting operator, Sτ , defined as,

Sτ =
τ∑
j=1

|aj+1〉〈aj|+ |bj−1〉〈bj| =
τ∑
j=1

|a〉〈a| ⊗ |j + 1〉〈j|+ |b〉〈b| ⊗ |j − 1〉〈j|, (4.12)

is conditioned on the outcome of the coin operator, C, defined such that

C⊗ 1 =
τ∑
j=1

|aj〉
(
eiξ cos θ〈aj| − eiζ sin θ〈bj|

)
+ |bj〉

(
e−iζ sin θ〈aj|+ e−iξ cos θ〈bj|

)
, (4.13)

=
[
|a〉
(
eiξ cos θ〈a| − eiζ sin θ〈b|

)
+ |b〉

(
e−iζ sin θ〈a|+ e−iξ cos θ〈b|

)]∑
j

|j〉〈j|,

with,

C =

(
eiξ cos θ −eiζ sin θ

e−iζ sin θ e−iξ cos θ

)
, 1 =

∑
j

|j〉〈j|. (4.14)

|j − 1〉〈j| and |j + 1〉〈j| stand for the operators which are responsible for movement in the

lower and upper positions of the lattice, respectively. The subscript j is dropped from the

coin operator because it is independent of the location. In this parametrization, ξ and ζ

are the phases of the transmitted and reflected beams, respectively, and θ/2 is the rotation

for a single node. In addition, θ determines the relative intensities of the reflected and

transmitted beams from a single node.

Consider a normalized input state,

|Ψ0〉 = α|ΨT
0 〉+ β|ΨR

0 〉, (4.15)
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spanning multiple nodes, where the upward propagating |ΨT
0 〉 and the downward propa-

gating |ΨR
0 〉 components are given by,

|ΨT
0 〉 =

∑
j

αj|aj〉, |ΨR
0 〉 =

∑
j

βj|bj〉. (4.16)

From the normalization condition of |Ψ0〉, |α|2 + |β|2 = 1, we get∑
j

|αj|2 +
∑
j

|βj|2 = 1. (4.17)

The action of all the scattering nodes of a single vertical plane with M layers is given by,

UM |ΨT
0 〉 =

∑
j∈T

αj

(
ta|aj+1〉+ ra|bj−1〉

)
(4.18)

UM |ΨR
0 〉 =

∑
j∈R

βj

(
rb|aj+1〉 − tb|bj−1〉

)
, (4.19)

where, UM =
∑

j Uj ∈ C2M , so that the (unnormalized) transmitted and reflected beams

are given by,

|Ψ1〉 = |ΨT
1 〉+ |ΨR

1 〉 (4.20)

|ΨT
1 〉 = ta

(∑
j∈T

αj|aj+1〉

)
+ rb

(∑
j∈R

βj|aj+1〉

)
, (4.21)

|ΨR
1 〉 = ra

(∑
j∈T

αj|bj−1〉

)
− tb

(∑
j∈R

βj|bj−1〉

)
. (4.22)

These states are then the input to the next plane. The appropriate normalization factor

for the transmitted and reflected beams will depend on the reflection and transmission

coefficients, and the resulting interference. Using these equations when the process in

repeated until the last plane at the exit surface, the effective unitary, U(N), of a single

blade at any time τ = M , gives the state,

|ΨM〉 = UM |ΨM−1〉 =
M∏
k=1

UM |Ψ0〉 =
M∏
k=1

k∑
j=1

Uj|Ψ0〉, (4.23)
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In general, after propagating though a crystal segmented into N planes, the wavefunction

is,

|ΨN〉 = U(N)|Ψ0〉 = |ΨT
N〉+ |ΨR

N〉, (4.24)

|ΨT
N〉 =

∑
j∈T

αj|aj〉, (4.25)

|ΨR
N〉 =

∑
j∈R

βj|bj〉, (4.26)

where the expansion coefficients are given by,

αj = 〈aj|U(N)|Ψ0〉, and βj = 〈bj|U(N)|Ψ0〉. (4.27)

Using these equations, the effective unitary of a single blade U(N) based on the QI model

may be represented by,

U(N) =
N∏
τ=1

Uτ =
N∏
τ=1

τ∑
j=1

Uj. (4.28)

If |ψk〉, k = r, t is the two-level macroscopic orthonormal subspace for the presentation, the

2 × 2 form of the operator, U(N), may be represented as U(N) =
(
Ukk′

)
where, Ukk′ =

〈ψk|U(N)|ψ′k〉. Relating to the above, for a crystal, a reasonable value of N ∼ 2D/∆H .

4.2.2 Example: 50:50 beam splitter

Here we apply the formalism to a particular case where each node acts as a 50:50 beam

splitter. Consider the values of the parameters ξ = 0, θ = π/2, and ζ = 0, which sets the

unitary Uj to the Hadamard matrix,

Uj =
1√
2
|aj+1〉

(
〈aj|+ 〈bj|

)
+

1√
2
|bj−1〉

(
〈aj| − 〈bj|

)
. (4.29)

For an input state at not j on the entrance surface,

|Ψ0〉 = |ψj〉 = α0|aj〉+ β0|bj〉, (4.30)
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the output from the single node is,

|Ψ1〉 = Uj|ψj〉 =

(
α0 + β0√

2

)
|aj+1〉+

(
α0 − β0√

2

)
|bj−1〉. (4.31)

Let’s make a restriction to the case of a single input ray with |ψj〉 = |aj〉, that is β0 = 0

and α0 = 1, so that

|Ψ1〉 =
1√
2

(|aj+1〉+ |bj−1〉) . (4.32)

At the second vertical plane, the transmitted state, |aj+1〉, becomes an input to a node

with unitary Uj+1, and the reflected state, |bj−1〉, becomes an input to a node with unitary

Uj−1, such that,

Uj+1|aj+1〉 =
1√
2

(
|aj+2〉+ |bj〉

)
, Uj−1|bj−1〉 =

1√
2

(
|aj〉 − |bj−2〉

)
, (4.33)

leading to the state,

|Ψ2〉 = Uj+1Uj−1|Ψ1〉 = Uj+1Uj−1Uj|Ψ0〉 =
1√
2

(
|ΨT

2 〉+ |ΨR
2 〉
)
, (4.34)

where the transmitted beam, |ΨT
2 〉, and reflected beam, |ΨR

2 〉, each consists of two rays,

|ΨT
2 〉 =

1√
2

(
|aj+2〉+ |aj〉

)
, |ΨR

2 〉 =
1√
2

(
|bj〉 − |bj−2〉

)
. (4.35)

Appending an additional plane to make the three-plane case leads to three rays in each of

the transmitted and reflected beams,

|Ψ3〉 =

√
2

3
|ΨT

3 〉+
1√
3
|ΨR

3 〉 (4.36)

|ΨT
3 〉 =

1√
6

(
|aj+3〉+ 2|aj+1〉 − |aj−1〉

)
(4.37)

|ΨR
3 〉 =

1√
2

(
|bj+1〉+ |bj−3〉

)
. (4.38)

Due to constructive and destructive interference of the state |aj+1〉 and |bj−1〉, two-third

of the intensity is in the transmitted beam, and one-third in the reflected beam. Adding a
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fourth plane gives,

|Ψ4〉 =

√
3

4
|ΨT

4 〉+
1

2
|ΨR

4 〉, (4.39)

|ΨT
4 〉 =

1

2
√

3

(
|aj+4〉+ 3|aj+2〉 − |aj〉+ |aj−1〉

)
, (4.40)

|ΨR
4 〉 =

1

2

(
|bj+2〉+ |bj〉 − |bj−2〉 − |bj−4〉

)
. (4.41)

With four planes and a 50:50 beam splitter we notice that the beam at the exit spreads

unevenly due to interference.

In general, after propagating though a media with N vertical planes the transmitted

and reflected components of the wavefunction are,

|ΨT
N〉 =

∑
j∈T

αj|aj〉, |ΨR
N〉 =

∑
j∈R

βj|bj〉, (4.42)

where, in general, the probability amplitudes αj 6= βj.

It is possible to use this QI model to extract information about parameters in DD

experiments. This is captured by Eqs. (4.2) and (4.3) with functional dependence on ξ, ζ,

and θ. Various applications of DD and choices of these parameters are considered in the

next section.

The QI model can be used to derive results consistent with DD, examples include:

• Wavefield in the Borrmann triangle

• Integrated intensities after diffraction

• Pendellösung oscillations.

These are further discussed in Sec. 4.3. In addition, this approach provides a simple

phenomenological way to study various types of noise processes considered in QI theory

(such as dephasing), that may occur during a diffraction process due to variations in the

parameters of individual scattering nodes when averaged across many particles. It is also

simple to generalize this approach to predict the behaviour of multi-blade devices, such as

neutron interferometers, which are discussed in Sec. 4.4.
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4.3 Applications

In this section the QI model is applied to a few well-known phenomena in DD. Throughout

this section, the state of the neutron at the input (node at j = 0) is,

|Ψ0〉 = |a0〉,

which is a single ray propagating upwards. This scenario is depicted in Fig. 4.1.

4.3.1 Intensity profile of the Borrmann triangle

The first application considered is a simulation of the position dependent intensity profile

for a single crystal. The spreading of the beam profiles caused by the crystal thickness is

known as the Borrmann fan. The triangle formed by the outer edges of the transmitted

beam, reflected beam, and the input point of a single ray is called the Borrmann triangle.

In the QI model, it is given by the region ABC in Fig. 4.1. AB is along the transmitted

wave direction and AC is along the reflected wave direction. As expected, the intensity

profile of the transmitted and reflected beams exiting the crystal depends on both the

number of planes considered in the model, and the transmission and reflection coefficients

ta, tb, ra, and rb for a single node. The intensity spreading in the Borrmann triangle has

been observed experimentally by scanning a slit, several microns wide, across the output

surface of the crystal [43]. To study this in the QI model, the intensities at the output of

the crystal are simulated for various values of θ. The transmitted and reflected probabilities

at the output node j are given by,

pTj = |〈aj|U(N)|a0〉|2,
pRj = |〈bj|U(N)|a0〉|2. (4.43)

Figure 4.2 shows the reflected and transmitted intensity distributions of the exiting beam

across the crystal surface for N = 150 and θ = π/8, π/4, π/3, and 2π/5. From the figure, it

can be seen that the reflected beam has a symmetric profile with two intensity peaks at the

edges of the Borrmann triangle. On the other hand, the transmitted beam is asymmetric,

with the beam concentrated on one side of the Borrmann triangle. In addition, as θ → π,
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Figure 4.2: Simulated intensity profiles for the reflected beam (a)-(d) and transmitted beam

(e)-(f) for a thick crystal modelled by N = 150 scattering planes, and for transmission and

reflection coefficients t = cos θ, and r = sin θ, for values of θ = π/8, π/4, π/3, and 2π/5.

The reflected intensities are symmetric with two peaks at the edges, while the transmitted

intensities are asymmetric with a single peak at the outside. As |t| approaches 1 the widths

of both beams are compressed.

the width of the beam is reduced, leading to a profile with the intensity concentrated in

the center of the Borrmann triangle. The data presented in Fig. 4.2, obtained with only

a modest number of planes, are in good agreement with those obtained by the standard

theory of DD and those observed experimentally.

4.3.2 Integrated intensities and Pendellösung oscillations

In the second application, the QI model is used to derive the integrated intensities of the

output beam. The integrated intensities are obtained by summing over all the transmitted

and reflected probabilities in the Borrmann triangle. For a wavefunction undergoing evolu-
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tion under U(N), the relative integrated transmitted intensity and the relative integrated

reflected intensity allows us to define the integrated transmission, IT , and reflection, IR,

coefficients as,

IT =
∑

j |〈aj|U(N)|a0〉|2, (4.44)

IR =
∑

j |〈bj|U(N)|a0〉|2. (4.45)

The integrated transmission and reflection coefficients are known to undergo oscillations

which are out of phase with each other, called Pendellösung oscillations. The phase dif-

ference is a result of the reflected beam undergoing an odd number of reflections and the

transmitted beam undergoing an even number of reflections. When controlled, this pe-

riodic oscillation forms the basis for a single crystal NI. The integrated reflectivity was

repeatedly observed in experiments where either the crystal thickness was varied [42, 70],

or the neutron energy was varied [43].

In Fig. 4.3, the sum intensity is plotted against the N , for θ = π/16, π/8, π/4, and

60π/111. Figure 4.3e, is a magnified version of the reflected intensity shown in Fig. 4.3c. In

addition, Fig. 4.3f, is the experimental observed integrated reflectivity of Bragg scattering

in the Laue geometry (see Fig. 1 of ref. [42]. Copyright permission from Elsevier). In

the special case of a 50:50 splitting, the normalized, integrated transmitted and reflected

intensities converge to 0.65 and 0.35, respectively. In the limiting case θ → π/2, both the

integrated reflected and transmitted intensities approach 1/2, as shown in a). There is a

significant agreement between the results from experiments and the QI model.

In DD, the probability current inside the crystal propagates in two components. One

centred on the atomic planes position and the other at the inter-planar position. As the

wave propagates through the crystal, these currents constantly exchange energy with one

another in a way that the total current is conserved. The energy exchange occurs in an

oscillating manner, and is referred to as Pendellösung oscillation. In the standard theory of

DD, Pendellösung oscillations are best represented by plotting the reflected or transmitted

intensity as a function of the deviation from the Bragg condition (the parameter η is

described in chapter 3).

In the simulation of the Pendellösung oscillations using the QI model, the output in-

tensity is post-selected on a specific node, and the angle θ is varied to mimic the energy
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Figure 4.3: Transmitted and reflected intensities at the exit of a single coarse-grained

crystal. Plots obtained with the QI model using node unitary operators U0,0,θ, for θ =

π/16, θ = π/8, θ = π/4, and θ = 60π/111 are shown in (a), (b), (c) and (d), respectively.

In (e) is a magnefied version of the integrated reflectivity plot shown in (a). In (f) the

measured integrated reflectivity of Bragg scattering in the Laue geometry Fig. 1 of ref.

[42]. Copyright permission from Elsevier.

variation, while the number of planes N is fixed. This is illustrated on the left plot of

Fig. 4.4 for N = 50, the unitary, Uj,0,0,θ, and θ ∈ [0, π]. In the simulations, the probability

is post selected on node j = 25. In Fig. 4.4a is, the transmitted probability, Fig. 4.4b is

the reflected probability and then their sum is plotted in Fig. 4.4c. Lastly, Fig. 4.4d is a

80



0

1

2

3X10-3
 

N
od

e 
in

te
ns

ity

Transmitted

0

1

N
od

e 
in

te
ns

ity

0.5

0

1
Transmitted
ReflectedReflected

        +
Transmitted

S
um

 in
te

n
si

ty

0.5

0

1

N
od

e 
in

te
ns

ity

Reflected

0.5

Figure 4.4: Plot of our simulated Pendellösung oscillation at the exit of the Borrmann fan.

At node j = 25, and a blade with N = 50, a) and b) are the transmitted and reflected

intensities, respectively, and c), is the sum each plotted against θ. The intensity conforms

to the same effect derived from conventional dynamical diffraction theory. In d) the sum

intensity, with the parameter θ, of the unitary U is shown. As θ → π, both the reflected

and transmitted intensities approach 1/2.

plot of the integrated intensity plotted against θ. These plots are consistent with the plots

of the Pendellösung oscillations obtained from the standard DD theory. It can be noted

that as θ → π/2, the integrated reflected and transmitted intensities both approach 1/2.

4.4 Extension to a neutron interferometer

Here, the QI model of a single perfect crystal blade is extended to a three-blade perfect

crystal NI. For a concise application of the standard theory of DD to a neutron interfer-
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ometer, see refs. [81, 3]. The interferometer blades are of equal thickness. The first blade

of the NI is identical to our single blade treatment and splits the neutron into the reflected

and transmitted beams. The second NI blade splits the reflected and transmitted beams

of the first blade each into two other transmitted and reflected beams so that a total of

four beams emerge after the second blade. Only two of these make it to the last blade due

to the geometry of the NI.

4.4.1 Beam profiles

The neutron beam profiles produced by the QI model for each of the eight beams in the

three-blade NI are presented in Fig. 4.5. For the simulation the unitary operator at each

node is Uj,0,0,π/4, and a coarse graining of N = 100 and N = 1000 is considered. If each

blade of a three-blade neutron interferometer contains N -planes, then the output on the

third blade has 3N -nodes, and hence the beam size increases at each blade. Note however,

that the plotted profiles in the figure are normalized in width. By a normalized we mean

that the horizontal axis is scaled so that the beams at each blade have the same size (this

is just for convenience since the beam after the 3rd blade is three times the size of the

beam after the first blade). We find that the simulations are in agreement with the profiles

generated by the application of the standard theory of DD to an NI.

4.4.2 Output intensities

The QI model is applied to simulate the output integrated intensities of a three-blade NI.

Consider projectors onto the O-beam, and the O-beam given by,

PO =
∑
j

|aj〉〈aj|, and PH =
∑
j

|bj〉〈bj|. (4.46)

The unitary operator for the phase difference between the two macroscopic paths is,

Uz(χ) = exp
[
iχ
∑
j

(|aj〉〈aj| − |bj〉〈bj|)/2
]
. (4.47)
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Figure 4.5: The various intensity profiles for a three-blade NI. The inteferometer geometry

and the beam trajectories are shown in the middle. The two inner rows correspond to our

simulated profiles with N = 100. The next two outer rows correspond to to our simulated

profiles with N = 1000. And for comparison, in the two outermost rows, the intensity

profiles obtained by standard theory of dynamical diffraction.

The rays along the each direction picks the same phase χ. Using the earlier notation

where the operator of the first blade and last blade is UB and the middle blade is UM , the

wavefunction at the output is,

|Ψ〉 = UBUMUz(χ)UB|Ψ0〉. (4.48)

Because no renormalization is performed yet, the operator of the middle blade is not a

unitary. Explicitly, it can be represented by,

UM =
∑
ij

(
〈ai|UB|bj〉|ai〉〈bj|+ 〈bj|UB|ai〉|bj〉〈ai|

)
. (4.49)
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Figure 4.6: The intensity of the O-beam and H-beam against the phase difference χ between

the two NI paths. N = 100. In (a) the node unitary operator is Uj,0,0,π/4 and in (b) it is

Uj,0,0,π/8.

Upon projection, the O and H components of the wavefunction at the output can be

written as,

|ΨO〉 =
∑
j

ψj,r̄rt
(
e−iχ/2 + eiχ/2

)
|aj〉, (4.50)

|ΨH〉 =
∑
j

(
e−iχ/2ψj,t̄rt + eiχ/2ψj,rr̄r

)
|bj〉. (4.51)

with the probability amplitudes ψj,r̄rt = 〈aj|UBPHUMPOUB|Ψ0〉, and ψj,t̄rt and ψj,rr̄r are

similarly obtained. We note that the output based on the QI model can be compared to

that of the standard DD in Eq. (1.43).

The sum intensity for O and H beams as a function of the phase difference between

the paths is given by,

IO = A(1 + cosχ), IH = B −A cosχ, (4.52)

with the coefficients,

A = 2
∑

j |ψj,r̄rt|2, and B =
∑
j

(
|ψj,t̄rt|2 + |ψj,rr̄r|2

)
. (4.53)

The intensities at the output of the NI for the O and H beams are presented in Fig. 4.6 for

N = 100 planes in each blade and the unitary Uj,0,0,π/4 at each node (note that θ = π/4
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Figure 4.7: The contrast of the H-beam for a three-blade NI as a function of the number

of planes in each blade N . In (a), the unitary operator for each node is Uj,0,0,17π/36, and in

(b), the unitary operator is Uj,0,0,π/4.

corresponds to ta = ra = 1/
√

2. It is shown that the intensities of the output beams

oscillate in a sinusoidal fashion and it can be seen that the intensity of the O-beam has a

minimum at zero. The well known asymmetry known from interferometry can be seen on

the H-beam, where the intensity never goes to zero.

4.4.3 Contrast

Under ideal conditions, the contrast of the H-beam using Eq. (4.52) is modulated by a

function of the blade properties as it is not balanced. We therefore get VH = A/B, although

the contrast of the O-beam is always 1. In experiments, the contrast is always below 1

due to various reasons such as NI impurities, blade imperfections, external vibrations, and

thermal gradients. Figure 4.7 shows the contrast as a function of the number of planes

obtained using the QI model where θ = 17π/36. In the QI model, to obtain the contrast

for a fixed number of planes, the phase difference between the two interferometer paths is

varied over a full cycle and the maximum and minimum values are extracted. The standard

theory of DD predicts that the contrast on the H-beam of a three-blade NI converges to

0.39 with the thickness of the blade [3]. With the QI model, if θ is increased, the contrast

on the H-beam is reduced for a fixed number of planes. The 0.39 contrast obtained in the
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Figure 4.8: Depiction of various deffects can be studied with the QI model of DD.

standard theory of DD could be reproduced in the QI model by using a suitable choice of

θ that is close to π/2, corresponding to t→ 0, r → 1. In this limit, the contrast converges

to value approximately equal to that predicted by the standard theory of DD.

4.5 Further work and conclusion

In the future, the QI model will be applied to investigate decoherence during DD. Some

specific cases are when the unitary Uj is different for various nodes, for example a miss-

ing link, a deformation in the periodic lattice, absorption, or isotopic concentration as

illustrated on Fig. 4.8.

We have developed a QI model for DD and applied it to reproduce DD features such

as the intensities in the Borrmann triangle and Pendellösung oscillation.
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Chapter 5

Noise-Refocusing Five-blade Neutron

Interferometer

5.1 Introduction

Perfect crystal neutron interferometry provides a powerful methodology for probing, with

remarkable accuracy, the scattering coherence length of various samples [2, 3, 82]. However,

as the neutron travels through the interferometer, it may couple to mechanical vibrations

and pick up an undesired phase. The effect of mechanical vibrational noise is very drastic

in the three-blade perfect crystal NI. As a measure to remove mechanical noise, isolation

and control techniques have been developed by building vibration isolation systems that

deal with low-frequency mechanical vibrational noise [5, 7, 83].

Of recent, the quest for noise-free neutron interferometry has motivated the design

of the four-blade NI with a DFS [6, 84]. The information encoded in this DFS is free

from low-frequency mechanical vibrational noise. In spite of it robustness to mechanical

vibrational noise, we will show, in this chapter, that the four-blade NI is prone to the DD

phase noise. DD phases result from variations in a blade’s transmission amplitude (see

Eq. 3.22). This can be caused by the finite angular and wavelength spreads resulting from

the collimation and monochromation of the incident beam. For more details on DD phases
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and some applications see ref. [62, 48]. It is therefore important that all NI geometries

have the ability to refocus DD phases. We will also show that despite being affected by

mechanical vibrational noise, the three-blade NI is capable of refocusing the DD noise. In

order to eliminate the dynamical and mechanical noise, we propose a five-blade NI that is

capable of refocusing low-frequency mechanical vibrational noise and DD noise.

This chapter is structured as follows: In Sec. 5.2, we present a brief overview of the the

origin of the DD phase. It also include an analysis of the effect of the dynamical phase on

the three-blade, four-blade and five-blade NIs. Next, Sec 5.3 is an analysis of the effects of a

low-frequency external mechanical vibrational noise on the three interferometric geometries

in terms of the coherence function [3, 18, 85, 86]. Lastly, in Sec. 5.4 is the conclusion and

a highlight of future work with the proposed five-blade NI.

5.2 Dynamical phase

5.2.1 Interferometer geometries

The NI geometries considered are shown in Fig. 5.1. The analysis is carried out using the

novel QI model of DD which is based on unitary evolution [11]. In each of the geometries

considered in this section, the path degree of freedom (DOF) is a two-level system, which

is defined by the momentum along the x-axis such that state |I〉 labels kx > 0, and the

state |II〉 labels kx < 0.

The three-blade NI (see Fig. 5.1a) consists of three identical blades separated by the

same distance L, with the second blade acting as a mirror to redirect the two paths to the

third blade where they recombine and interfere. In the four-blade DFS NI (Fig. 5.1b), the

situation is similar to the three-blade NI, with the difference that the two paths are redi-

rected twice (with no mixing of states in the center of the interferometer) before reaching

the last blade. The five-blade NI (Fig. 5.1c) can be thought of as two coupled three-blade

NIs or a four-blade NI with the neutrons allowed to interfere on the additional blade in the

middle. In all the interferometers considered, we ignore the neutrons that escape through

the lossy mirror crystal by post-selecting on the neutrons that arrive at the detectors.
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Figure 5.1: Sketch of different 50:50 splitting NI geometries with phase flags producing

phases φ and χ. The two detectors are O-detector (IO) and H-detector (IH). a) A symmetric

three blade NI with phase flag φ and inter-blade distance 2L. b) Four blade (DFS) NI with

inter-blade distances: L, 2L, L. c) Five blade (double MZ loop) NI with blade separation

L. The noise along the x-axis is x(t), and along around the y-axis is θy(t). Iout/Iinc is the

ratio of the neutrons at the output Iout = IO + IH to those at incidence Iinc. VMV and VDD

are the fringe visibility with Z-noise (ω = 4.4 Hz) and dynamical phase noise simulated for

the DFS interferometer dimensions of [6], respectively.

Hence a simple renormalization, we treat the second blade as a perfect mirror.

5.2.2 Single blade unitary operator

Consider a schematic of DD from a single blade shown in Fig. 5.2 where two rays are

incident; one at the Bragg angle θB and the other at an angle θ that is is slightly off the

Bragg angle by δ. The deviation from Bragg parameter is defined uniquely in terms of the
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Figure 5.2: Bragg diffraction, in the symmetric Laue geometry showing incident and exit

beams at pecfect Bragg conditions (black). The corresponding profile for with a misset

parameter δkx is shown in red [68].

wavevector or the angle as,

η = − δkx
σkBx

= −kx − δkBx
σkBx

or η ≈ − δθ
σD

= −θ − θB
σD

(5.1)

where,

σkBx =
m|vH |
~2kBx

, and σD =
|vH |

E sin(2θB)
(5.2)

are the momentum width and Darwin width of the crystal related by σkBx = kzσD. kx is

the wavevector along the x-axis, and kBx = H/2 = π/d is the exact Bragg vector with

the crystallographic planes assumed perpendicular to the surface. The conservation of

energy and the wavefunction continuity conditions lead to the incident wavevector and

transmitted wavevector being identical to k, while the reflected wavevector changes. The

momentum transfer, ~ ~H, along the planes leads to kHx = kx −H and kHz =
√
k2 − k2

Hx,

such that for a wave incident at an angle θB + δθ, one get,

k = k sin(θB + δθ)êx + k cos(θB + δθ)êz,

kH ' −k sin(θB − δθ)êx + k cos(θB − δθ)êz. (5.3)

The deviation from the Bragg condition parameter changes sign, i.e, for an incident wave

at an angle θB + δθ, the transmitted wave emerges at an angle θB + δθ and the reflected at
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an angle θB − δθ. As a result, δθ and δkx changes sign after every reflection, leading to a

corresponding change in the reflection and transmission coefficients (see Fig. 1.9) denoted

by r̄ = r(−η), t̄ = t(−η), where, r̄ = −r∗, t̄ = t∗. DD from a single non-absorbing crystal

can be abstracted as a rotation matrix,

UB =

(
eiξ cos(α/2) ie−iζ sin(α/2)

ieiζ sin(α/2) e−iξ cos(α/2)

)
, (5.4)

where, ξ(η) = arg[t] and ζ(η) = arg[r], satisfying the relations ξ(−η) = −ξ(η) and ζ(−η) =

−ζ(η), are the phases of the transmitted and reflected waves, respectively. ξ(η) is commonly

referred to as the dynamical phase.

Due to symmetry, the Bragg diffraction is required to take the same form if the crystal

is rotated by 180◦. The consequence is that, the crystal blade operator can be expressed

as a composite sequence of rotations

UB = Rz(ξ)Rxy(ζ, α)Rz(ξ) (5.5)

with the standard definitions of Bloch sphere rotations Rz(ξ) = exp(iξσz/2), Rxy(ζ, α) =

exp(iα(cos(ζ)σx + sin(ζ)σy)/2), where the Pauli matrices for the path are expressed as

σX = |I〉〈II|+ |II〉〈I|, σY = −i|I〉〈II|+ i|II〉〈I|, σZ = |I〉〈I| − |II〉〈II|. (5.6)

By definition, the dynamical phase is ξ, while the phase between the two paths in an

interferometer is β = ξ − ζ. We may limit the Rxy rotation to be along the σx, thereby

effectively setting ζ = 0. This is justified because ζ � ξ is a small linear contribution.

This leads us to hypothesize a composite crystal blade operator [11]

UB = Rz(β)Rx(α)Rz(β). (5.7)

From these relations, one can identify the relation to the dynamical diffraction variables

as β = arg[t], t = cos(α/2), and r = sin(α/2). α ∈ [0, π] describing the transmis-

sion/reflection ratio, while β corresponds to the dynamical phase. When α = π/2, the

blade acts as a 50:50 beam splitter.
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5.2.3 Three-blade neutron interferometer

In the composite rotation formalism, the operator of the first and last blades of a three-

blade NI is, UB = Rz(β)Rx(α)Rz(β). The operator of the middle blade which acts as a

mirror to redirect the two paths onto the third blade is given by,

UM = Rz(β)Rx(π)Rz(β) = Rx(π) = iσx. (5.8)

With a phase difference φ between path I and path II (Fig. 5.1a), the NI operator is

U3BNI = UBUMRz(φ)UB,

= Rz(β)Rx(α)Rx(π)Rz(φ)Rx(α)Rz(β), (5.9)

where, the simplification identity Rx(π) = Rz(β)Rx(π)xRz(β) is used. Consider an input

state |I〉 onto a three-blade NI with balanced beam splitters, α = π/2. If the measurement

PVM is {|I〉〈I|, |II〉〈II|}, we obtain the probabilities of detecting a neutron on the O-detector

and H-detector,

pO =
1

2

(
1 + cosφ

)
, (5.10)

pH =
1

2

(
1− cosφ

)
. (5.11)

Because these probabilities are independent of β, taking an average over different neutron

instances leads to no loss in the contrast. Therefore, the three-blade NI is immune to the

dynamical phase noise. This is also the case when α 6= π/2.

5.2.4 Four-blade neutron interferometer

In the four-blade NI the operator of the first and fourth blades is UB = Rz(β)Rx(α)Rz(β).

The second and third blades act as mirrors UM . With an initial state |I〉 and a phase

difference φ between paths I and II (see Fig. 5.1b), the overall operator sequence for the

four-blade NI is,

U4BNI = UBRx(π)Rx(π)Rz(φ)UB,

= Rz(β)Rx(α)Rz(2β)Rz(φ)Rx(α)Rz(β), (5.12)
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where, the identity 1 = Rx(π)xR(π) is used. When α = π/2, the probabilities of detecting

a neutron on the O-beam and H-beam are given by,

pO =
1

2

(
1− cos(φ+ 2β)

)
, (5.13)

pH =
1

2

(
1 + cos(φ+ 2β)

)
. (5.14)

It is clear that the dynamical phase β is not refocused in the four-blade NI. When the

detected intensity is averaged over different neutrons each with a different β, dephasing

occurs. The dephasing leads to a reduction in the coherence by an amount dependence on

the strength of the noise. The average normalized neutron intensities at the detectors is,

IO(φ) =
1

2

(
1−

∫
dβp(β) cos(φ+ 2β)

)
, (5.15)

IH(φ) =
1

2

(
1 +

∫
dβp(β) cos(φ+ 2β)

)
. (5.16)

where p(β) as the probability distribution. The intensity can be re-written as

IO(φ) =
1

2

(
1− |γ| cos(φ+ arg γ)

)
, (5.17)

IH(φ) =
1

2

(
1 + |γ| cos(φ+ arg γ)

)
, (5.18)

where, γ =
∫
dβp(β)ei2β, quantifies the effect of noise. Generally, when α 6= π/2 we get,

IO(φ) = BO − |AH| cos(φ+ arg[AH]), (5.19)

IH(φ) = BH + |AH| cos(φ+ arg[AH]), (5.20)

where,

AH =

∫
pHe

i2βη, BH =

∫
pHdη, pH = 2|tr|2, BO =

∫ (
|t|4 + |r|4

)
dη.

If the four-blade NI is made from 1 mm thick Si blades in the (111) crystallographic

orientation, and illuminated with neutrons of λ = 2.71 Å, the contrast γ = AO/BH is about

80%. The extent to which the DD noise affects the coherence in a four-blade NI is not yet

well quantified experimentally.
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Figure 5.3: A 2 mm thick (111) Si crystal is added after the first blade of a three-

blade NI and rotated around the Bragg angle. In (a) an additional blade of the same

crystallographic orientation is added to a three-blade NI. An insert of an additional blade

in the Bragg geometry is also shown. In (b), is the contrast and momentum distribution

p(δθ) plotted against δθ, and in (c), is the phase and g(δθ) plotted against δθ. The

Lorentzian distributions are a simulated one with a full width at half maximum (FWHM)

given by Darwin width of the crystal σD = 4.26 µrad, and a fit to a Lorentzian distribution

with FWHM of σθ = 69 [µrad] extracted from the measured data. For more details on the

data see the thesis [12, 87].

In a separate experiment, performed at the NCNR, to measure the neutron charge

radius it was measured to which extent the contrast is affected by the dynamical phase

(For more details see the thesis of M. Huber in ref. [87]) and the article [12]. The schematic

of the setup is shown in Fig. 5.3a. In that experiment, a perfect Si crystal blade, of

thickness 2 mm and crystallographic orientation [111], was added after the first blade of a

three-blade neutron interferometer. When the crystal is aligned to the Bragg angle of the

interferometer and the Bragg reflected beams are blocked, it replicates the dynamical phase

that manifests itself in a four-blade NI. Using α = π/2 the normalized output intensity at

the O-beam in this case can be expressed as,

IO(φ) = AO − |BO| cos(φ+ arg[BO]), (5.21)

where as shown in [62],

AO =

∫
dδθ g(δθ), BO =

∫
dδθ g(δθ)eiβ, g(δθ) =

σθ/π

σ2
θ + (δθ − δθ0)2

, (5.22)
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Figure 5.4: The DD phase extracted from the setup in Fig. 5.3, using a Lorentzian distri-

bution FWHM σθ = 69 [µrad]. This is a valid approach because the defocusing introduced

by the crystal has no effect on the momentum distribution.

The average here is taken over δθ = θ − θB since β = β(δθ) is a function of the angular

deviation, where θB is the Bragg angle. The measured contrast and phase against δθ are

shown in Fig. 5.3b and Fig. 5.3c, respectively. Also shown is the simulated momentum

distribution g(δθ) accepted by a single crystal, where the full width at half maximum

(FWHM) is given by Darwin width of the crystal σD = 4.26 µrad. In addition, a fit to a

Lorentzian distribution with FWHM of σθ = 69 [µrad] extracted from the measured data.

The presence of the extra crystal in the three-blade NI also breaks the symmetry of

the NI. The symmetry is in the distance separating the NI crystals. The result of this

is that the beam arriving the third blade is partially defocused. The introduction of

a defocusing is accompanied by a phase difference. This phase is extracted using the

FWHM σθ = 69 [µrad] of the measured data and plotted in Fig. 5.4. This is a valid

approach because the defocusing introduced by the crystal has no effect on the momentum

distribution. .

A similar experiment has since then been done, with the extra crystal blade oriented

in the Bragg geometry [62]. The schematic setup is shown as an inset in Fig. 5.3a. In ref.

[62] an analytical form of the contrast has been derived under the approximations listed

below :

95



1. The total phase (DD and the nuclear) is ∆Φ(δk) = χ(1 + B/δk), for η > 1, where

B = |VH |2m(V0~2H2)−1; and χ = D(K⊥ − k⊥) is the nuclear phase,

2. |t| = 1 for the added blade since it cause a very small intensity reduction;

3. The momentum space distribution is assumed to be a Lorentzian

g(δk′) =
σk

π(σ2
k + (δk′ − δk)2)

; (5.23)

The combined conditions for a monocrystalline crystal and a beam misaligned from the

Bragg condition of the crystal by δk′, the integrated intensity at the O-beam is,

IO(φ) =

∫
g(δk′ − δk)

(
1 + cos[∆Φ(δk)]

)
dδk′,

= 1 + exp
( −Bσk
δk2 + σ2

k

|χ|
)

cos
[( Bδk
δk2 + σ2

k

+ 1
)
χ+ φ

]
. (5.24)

The measured phase χmeas and the contrast V vary as,

V = exp
( −Bσk
δk2 + σ2

k

|χ|
)

χmeas =
( Bδk
δk2 + σ2

k

+ 1
)
χ, (5.25)

where σk and δk are the width and center of the distribution, respectively, and χ is the

nuclear phase from the Si crystal.

5.2.5 Five-blade neutron interferometer

The five-blade NI is similar to the four-blade NI but with an additional beam splitter blade

in the middle. With a phase φ in the first loop and another phase χ in the second loop

(see Fig. 5.1c), the combined operation of the interferometer is,

U5BNI = UBRz(χ)Rx(π)UBRx(π)Rz(φ)UB,

= Rz(β)Rx(α)Rz(χ)Rx(α)Rz(φ)Rx(α)Rz(β). (5.26)

If the initial state is |I〉, and balanced beam splitters, the probability of detecting a neutron

at the O-beam and H-beam are,

pO =
1

4

(
2 + cos(χ− φ)− cos(χ+ φ)

)
, (5.27)

pH =
1

4

(
2− cos(χ− φ) + cos(χ+ φ)

)
. (5.28)
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The probability is independent of β is an indication that the dynamical phase is refocused

in the five-blade NI. The refocusing of the dynamical phases can also be understood in

the sense of chirping. This means that the wavevectors that were travelling faster than

the mean wavevector before the second blade (mirror) tend to travel slower than the

mean wavevector after it and vice versa. With this concept in mind, the dynamical phase

refocusing is similar to the principle of noise refocusing in nuclear magnetic resonance using

Hahn echo and Carr-Purcell sequences [88, 89, 33].

5.3 Effects of mechanical vibration

The effect of mechanical vibrations in interferometry is commonly removed using vibration

isolation systems, although, the effect of low-frequency vibration still persist. The four-

blade NI has the experimentally demonstrated advantage, over the three-blade NI, of being

robust against slow varying external mechanical vibrations. In this section, we adopt the

vibration model in [84], that treats mechanical vibrational noise as sinusoidal oscillations

of the form, ζ(t) = ζ0 sin(ωt+ϕ), where ζ0 is the amplitude of the noise, ω is the frequency

and ϕ ∈ [0, 2π] is a random phase that considers different arrival times of the neutrons

at the first blade. The effect of noise due to mechanical vibrations on the five-blade NI is

presented in detail, and for completeness we also present previous results of the three-blade

and four-blade NI.

Mechanical vibrations can cause a change in the momentum of the neutron. A change

in momentum ∆p gives rise to a phase difference, around any closed loop, given by

∆Φ =
1

~

∮
∆p · ds. (5.29)

In our model, the most significant effect comes from the linear vibration along the x-axis

(X-noise) and NI rotations around the y-axis (Y-noise). The X-noise is that caused by

the interferometer oscillations along the reciprocal lattice vector, while the Y-noise is that

from rotations around the axis perpendicular to plane of interference. Using the form of

the noise stated above, the X-noise and Y-noise can be modelled as x(t) = x0 sin(ωt + ϕ)

and θ(t) = θ0 sin(ωt + ϕ) respectively, where x0 and θ0 are noise amplitudes. In general,

the noise can have different frequencies.
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5.3.1 X-Noise

The velocity of the incident neutron can be decomposed into two components (perpen-

dicular and parallel to the reciprocal lattice vector), v = v⊥êz + v‖êx. If the interaction

of the neutron with the blade is modelled in a similar way to a ball bouncing off a hard

surface, then the velocity along the z-axis is not affected while the velocity along the x-axis

after the crystal is, vx = −v‖ + 2ẋ, with ẋ = dx/dt. Assume that the neutron enters the

interferometer at t = 0, then the phase shift around a three-blade NI loop, due to the

changes in momentum along path I and path II is,

∆Φ(ϕ) =
32m

~
τ 2[v‖ − ux(0)]u̇x(0), (5.30)

where ux(t) = ẋ(t), m is the mass of the neutron, τ = L/v⊥ and L is the inter-blade

distances. For low frequency noise where ωτ � 1,

∆Φ(ϕ) =
32mv‖x0τ

2

~
ω2 sinϕ, (5.31)

since v‖ � ux(0). The probability of detecting a single neutron at the O-detector and

H-detector is,

pO =
1

2

(
1 + cos[φ+ ∆Φ(ϕ)]

)
, (5.32)

pH =
1

2

(
1− cos[φ+ ∆Φ(ϕ)]

)
. (5.33)

Each neutron arrives on the first blade at different time instances thereby picking up

a different initial phase ϕ. Taking an average over a uniform probability distribution,

p(ϕ) = 1/2π, the intensity at the O-beam detector as a function of the phase φ is,

IO(φ) =
1

4π

∫ 2π

0

(
1 + cos[φ+ ∆Φ(ϕ)]

)
dϕ =

1

2

(
1 + |γ| cos[φ+ arg(γ)]

)
, (5.34)

where γ is the coherence function. γ is defined for statistically stable noise [71, 18] as

γ =
1

2π

∫ 2π

0

exp[i∆(ϕ)]dϕ. (5.35)
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For an interferometer with L = 5 cm, illuminated with wavelength 4.4 Å, and noise with

x0 = 0.1 µm the coherence function for three-blade NI reduces to,

γ = J0(Ωω2), with Ω =
32mv‖x0τ

2

~
, (5.36)

where J0 is the zero order Bessel function of the first kind. For the O-beam of a three-blade

NI, |γ| = V . The plots of the intensity versus φ are shown in Fig. 5.5a for ω = 0, 100, 200

Hz, and the plot of |γ| against ω is shown in Fig. 5.5d. At the 100 Hz the intensity

modulation depth is almost zero for three-blade NI.

In the four-blade NI the phase difference ∆Φ1 in the first loop and ∆Φ2 in the second

loop are,

∆Φ1 = −4mτ 2

~
[v‖ − ux(0)][2u̇x(0) + τ üx(0)], (5.37)

∆Φ2 =
4mτ 2

~
[v‖ − ux(0)][2u̇x(0) + 7τ üx(0)]. (5.38)

In the low frequency noise regime where ωτ � 1, the phase difference over the four-blade

NI is,

∆Φ(ϕ) = −∆Φ1 + ∆Φ2 =
24mv‖x0τ

3

~
ω3 cosϕ. (5.39)

At the exit, the probability of detecting a single neutron at the O-detector and H-detector

in the four-blade NI is

pO =
1

2

(
1− cos[φ+ ∆Φ(ϕ)]

)
, (5.40)

pH =
1

2

(
1 + cos[φ+ ∆Φ(ϕ)]

)
. (5.41)

Taking the average over the phase ϕ, and considering the fact that the H-beam in the

four-blade NI carries the same phase information as the O-beam in the three-blade case,

the intensity becomes

IH(φ) =
1

4π

∫ 2π

0

(
1 + cos[φ+ ∆Φ(ϕ)]

)
dϕ =

1

2

[
1 + |γ| cos(φ+ arg γ)

]
, (5.42)
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Figure 5.5: The intensity against phase for X-noise with ω = 0, 100 and 200 Hz. In (a) is

the O-beam intensity for the three-blade NI, in (b) is the H-beam intensity for the four-

blade NI, and in (c) is the H-beam intensity for the five-blade NI. The oscillations in the

three-blade NI are damped as the noise increases, while those for the four-blade are not.

In the five-blade NI, the effect of noise leads to simply a DC shift. In (a) are the simulated

variation of the absolute value of the coherence function γ against ω for the three-, four-

and five-blade NIs. The interferometer separation between blades L = 5 cm, the neutron

wavelength is 4.4 Å. The noise-refocusing condition φ = −χ+ π is used in plot (d).

where, the coherence is

γ = J0(Ωω3), with Ω =
24mv‖x0τ

3

~
. (5.43)

The intensity, as a function of φ, is shown in Fig. 5.5b for ω = 0, 100, and 100 Hz. Also

shown in Fig. 5.5d is a comparison of the variation of |γ| with ω.
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Trajectory I

Trajectory II

Trajectory III

Trajectory IV

a) b)

Figure 5.6: Sketches of the different paths, I, II, III and IV that leads to the output and

contribute to the (a) symmetric and the (b) antisymmetric case.

In the case of the five-blade NI, the interferometer is first resolved into loops formed

by the paths taken by the neutron from the first to the last blade. For simplicity, we split

the four trajectories into two categories: the symmetric case and the antisymmetric case.

The symmetric case contains the two paths corresponding to the middle blade acting as a

perfect transmitter (see Trajectories I and II in Fig. 5.6a), and the antisymmetric case is

where the middle blade acts as a perfect reflector (see Trajectories III and IV in Fig. 5.6b).

It is worth noting that the symmetric case is identical to the four-blade NI. The phases

loop 1 and loop 2, denoted by ∆Φ1 and ∆Φ2, respectively are,

∆Φ1 = −4mτ 2

~
[v‖ − ux(0)][2u̇x(0) + τ üx(0)], (5.44)

∆Φ2 =
4mτ 2

~
[v‖ − ux(0)][2u̇x(0) + 7τ üx(0)], (5.45)

In the antisymmetric case, the phases in loop 1 and 2 denoted by ∆Φ′1 and ∆Φ′2 are,

∆Φ′1 = ∆Φ1, (5.46)

∆Φ′2 = − 4mτ 2

~
[v‖ − ux(0)][2ux(0) + 3τ üx(0)], (5.47)

In the low frequency noise regime where τω � 1, the phase difference in both cases due to

X-noise and can be represented as,

∆Φ(ϕ) = ∆Φ1 + ∆Φ2 =
24mv‖x0τ

3

~
ω3 cosϕ, symmetric (5.48)

∆Φ′(ϕ) = ∆Φ′1 + ∆Φ′2 =
16mv‖x0τ

2

~
ω2 sinϕ, antisymmetric. (5.49)
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The phase difference from external vibrations along the x-axis almost cancel out in the

symmetric case, but effectively doubles in the anti-symmetric loop. The phase in the

antisymmetric loop is similar to that in the four-blade NI.

With a phase φ in the first loop and χ in the second (see Fig. 5.1c), the probability of

detecting a single neutron at the O- and H- detectors in the five-blade NI are,

pO =
1

4

(
2 + cos[χ− φ+ ∆Φ(ϕ)]− cos[χ+ φ+ ∆Φ′(ϕ)]

)
, (5.50)

pH =
1

4

(
2− cos[χ− φ+ ∆Φ(ϕ)] + cos[χ+ φ+ ∆Φ′(ϕ)]

)
. (5.51)

where, the symmetric, ∆Φ(ϕ), and the antisymmetric, ∆Φ′(ϕ), phase differences are those

defined in Eqs. (5.48) and (5.49). The intensity in the H-beam obtained by taking an

average over a uniform distribution in ϕ is given by,

IH(φ) =
1

4π

∫ 2π

0

(
2− cos[χ− φ+ ∆Φ(ϕ)] + cos[χ+ φ+ ∆Φ′(ϕ)]

)
dϕ. (5.52)

A plot of this intensity without noise (ω = 0) is shown in Fig. 5.7a, and in Fig. 5.7b, the

same intensity is plotted for noise with ω = 200 Hz. The region through the 2D plots,

where the oscillations are dampened, depicts the effect of noise. It is clearly visible on the

plot that there are combinations of φ and χ for which the effect of noise is minimal. These

include the lines φ = −χ + µ, where µ is a constant. Along this set of lines the effect of

noise results in a DC shift of the intensity profile with no effect on coherence. The 1-D

plots in Fig. 5.5c illustrate the effect of noise with, ω = 0, 100, and 100 Hz on the five-blade

NI. At high frequencies, the intensity result in a DC shift, clearly visible on the plot.

The average intensity shown in Eq. (5.52) can be rewritten in terms of the coherence

functions as,

IH(φ, χ) =
1

4

(
2− γ1 cos (χ− φ)− γ2 sin (χ− φ) + γ3 cos (χ+ φ) + γ4 sin (χ+ φ)

)
,

=
1

4

(
2− |γ| cos(χ− φ+ arg γ) + |γ′| cos(χ+ φ+ arg γ′)

)
. (5.53)

γ has a real and imaginary parts denoted as γ1 and γ2, while γ′ has a real and imaginary

parts denoted respectively as γ3 and γ4. The full expressions of the coherence function are,

γ =
1

2π

∫ 2π

0

exp[i∆Φ(ϕ)]dϕ, γ′ =
1

2π

∫ 2π

0

exp[i∆Φ′(ϕ)]dϕ (5.54)
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Figure 5.7: 2D plot of the intensity at the H-beam for a five-blade NI, as a function of the

phase, φ in loop 1, and χ in loop 2 . (a) The plot without noise shows oscillations in 2D

plot with (φ, χ). (b) Shows the effect of noise with frequency ω = 200 Hz. The interference

pattern is dampened along some configurations of (φ and χ).

Using the phase difference due to X-noise, γ and γ′ are real,

γ = J0(Ωω3), with Ω =
24mv‖x0τ

3

~
(5.55)

γ′ = J0(Ω′ω2), with Ω′ =
16mv‖x0τ

2

~
. (5.56)

Under the condition φ+ χ = π, the average intensities for the five-blade NI are,

IH(φ, φ) =
1

4

[
2− J0(Ω′ω2)− |J0(Ωω3)| cos

(
2φ− arg(J0(Ωω3))

) ]
,

IO(φ, φ) =
1

4

[
2 + J0(Ω′ω2) + |J0(Ωω3)| cos

(
2φ− arg(J0(Ωω3))

) ]
. (5.57)

The effect of noise is a DC shift or an additional background contribution of 1− J0(Ω′ω2).

Shown in Fig. 5.5c, the interference pattern is displaced along the vertical axis by 1 −
J0(Ω′ω2) and the O-beam is displaced by the same amount below the maximum intensity

of 1. Therefore, the coherence or the depth of the modulation, |γ|, remains the same

despite a reduction in the contrast as defined in Eq. (1.45). The contrast for the five-blade
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under this noise is

V =
|J0(Ωω3)|

2− J0(Ω′ω2)
. (5.58)

For Y-noise with an ω = 100 Hz, the interferogram is offset by 0.2 which results in a

relative contrast of about 82%. In Fig. 5.5d, a plot of |γ| is compared with that for the

three-blade and four-blade NIs. The five-blade NI is capable of refocusing low-frequency

noise just as the four-blade DFS NI and the coherences in these two NIs only show some

effects at frequencies above 250 Hz.

5.3.2 Y-noise

Consider the noise resulting from vibrations around the y-axis, modelled as θ(t) = θ0 sin(ωt+

ϕ). Once again, assuming that a neutron beam is incident on the first blade at t = 0, the

phase difference due to Y-noise in a three-blade NI using small angle approximations is

∆Φ(ϕ) =
32mτ

~
[v‖ − 2Lθ̇(0)]Lθ̇(0) =

32mLv‖θ0τ

~
ω cosϕ,

=
32mv⊥v‖θ0τ

2

~
ω cosϕ. (5.59)

Under the same conditions for a four-blade NI as the three-blade NI, the phase differences

∆Φ1 in loop 1 and ∆Φ2 in loop 2 are given by,

∆Φ1 =
8mτ

~
[v‖ − 2Lθ̇(0)][Lθ̇(0)− Lτθ̈(0)], (5.60)

∆Φ2 = −8mτ

~
[v‖ − 2Lθ̇(0)][Lθ̇(0) + 5Lτθ̈(0)], (5.61)

The resulting phase difference reduces to,

∆Φ(ϕ) = ∆Φ1 + ∆Φ2 = −
48mv⊥v‖θ0τ

3

~
ω2 sinϕ, (5.62)

for low frequency vibrations.

In a similar approach as the X-noise, the phase difference for the five-blade NI is

obtained by splitting it into loops. In the symmetric case, the phase difference, ∆Φ1,
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Figure 5.8: The intensity versus phase for Y-noise with ω = 0, 10, 20 Hz. In (a), is the

O-beam intensity against phase for the three-blade NI, in (b) is the H-beam intensity for

the four-blade NI, and in (c) is the H-beam intensity for the five-blade NI. Similar to X-

noise, the oscillations in the three-blade NI are damped as the noise increases, while those

for the four-blade are not. The interferometer separation between blades L = 5 cm, the

neutron wavelength is 4.4 Å. In (c) are simulations of the variation of the absolute value

of the coherence function, |γ| , with ω for each of the NIs. The coherence function of the

four-blade and five-blade NIS remain unchanged at frequencies greater than 2 Hz while the

three-blade NI is significantly affected. Note that the decoherence free condition from the

configuration of the phase flags φ and χ is used.

acquired in loop 1 and ∆Φ2 in loop 2 are,

∆Φ1 =
8mτ

~
[v‖ − 2Lθ̇(0)][Lθ̇(0)− Lτθ̈(0)], (5.63)
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∆Φ2 = −8mτ

~
[v‖ − 2Lθ̇(0)][Lθ̇(0) + 5Lτθ̈(0)], (5.64)

and those in loop 1 and loop 2 in the antisymmetric case are

∆Φ′1 = ∆Φ1, (5.65)

∆Φ′2 =
8mτ

~
[v‖ − 2Lθ̇(0)][Lθ̇(0) + Lτθ̈(0)], (5.66)

At low frequencies, τω � 1, the phase differences in the five-blade NI resulting from the

symmetric and the antisymmetric cases are

∆Φ(ϕ) = ∆Φ1 + ∆Φ2 = −
48mv⊥v‖θ0τ

3

~
ω2 sinϕ, symmetric (5.67)

∆Φ′(ϕ) = ∆Φ′1 + ∆Φ′2 =
16mv⊥v‖θ0τ

2

~
ω sinϕ, antisymmetric. (5.68)

Just like the X-noise, the phase difference from external mechanical vibrations around the

y-axis in the symmetric is the same as the four-blade (almost cancels out), and in the

antisymmetric case it is similar to the three-blade case. The Y-noise can be refocused in a

similar way as was done for the X-noise.

Let us consider again an NI with balanced beam splitters and vibrational noise with

amplitude of θ0 = 0.1 µrads, on an NI of L = 5 cm illuminated with neutrons of λ = 4.4

Å. The O-beam intensity versus the phase for the three-blade and the H-beam intensity

versus phase for the four-blade and five-blade NIs for Y-noise strengths of ω = 0, 10 and

20 Hz are shown in Figs. 5.8 a, b and c respectively. The oscillations in the three-blade NI

are damped as the noise increases, while those for the four-blade are not. In the five-blade,

the effect of noise leads to a DC shift on the axis or effectively an additional background

term. The coherence function of the various interferometers under the influence of Y-noise

is plotted in Fig. 5.8d. Although the three-blade NI coherence function is strongly affected

by noise, those of the four-blade and five-blade NIs remain unchanged.

It is worth noting that the noise refocusing ability of the five-blade NI goes beyond the

symmetric noise which is refocused by the four-blade NI. If the noise is antisymmetric, the

five-blade NI still retains the ability to refocus, but with the configuration changed from

φ = −χ + µ to φ = χ + µ. The four-blade DFS NI does not have the ability to refocus
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this class of noise as the phase difference in two loops add up instead of cancelling. If the

coherence function for a specific geometry is defined in general as,

γ = 〈cos (Φ + νΦ) + i sin (Φ + νΦ)〉, (5.69)

=

∫
p(Φ) exp [i(Φ + νΦ)] dΦ, (5.70)

where the noise spectrum is p(Φ), and ν = ±1. The coherence function can be calculated

when the phase shift caused by noise (e.g vibration noise X, Y, etc) is known.

5.4 Future prospects and conclusion

The full five-blade NI is a multipath interferometer made up of multiple loops. This

makes it possible to convert it to a number of interferometry geometries. Consider the

full five-blade NI with phase differences χi, i = 1, · · · shown in Fig. 5.9 with the ability

to convert to multiple NI geometries as shown in (a) to (k). For interferometry studies

some of the geometries are redundant. However, for the study of DD the geometries can

be used to study the behavior of the beams under the influence of the number of blades

and the thickness. The geometries in Figs. 5.9c and 5.9k can be related to the Fransen

interferometer in light optics. There is a possibility of three-loop interferometry in which

the loops are of the same sizes and of different sizes. It is possible to explore a delay choice

type experiments for neutron in this interferometer, as well as momentum squeezing.

We used the unitary operator approach of an interferometer blade to study the effect

of dynamical phase on the three-blade, four-blade and five-blade NIs. It was shown that

in spite it’s robustness to external vibrational noise the four-blade NI is susceptible to

the dynamical phase noise. The dynamical phase noise is refocused in the three-blade NI

despite it susceptibility to the external mechanical vibrational noise. We then propose

a design for a five-blade NI that is insensitive to both dynamical phase noise and low

frequency vibration noise.
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Figure 5.9: A schematic of a multipath five-blade NI. (a) to (k) are some possible config-

urations that could be used for in different studies.
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Chapter 6

Spin-Orbit states of a neutron

wavepacket

6.1 Introduction

In free space, matter waves may carry linear and angular (spin, orbital) momentum. Or-

bital angular momentum (OAM) states are characterized by a spatial-distribution helical

wavefront of the form ei`φ. OAM for photons was first recognized by Allen et al. [90],

and since been experimentally observed with photons and electrons with numerous appli-

cations including quantum communication, imaging, resonators, quantum cryptography,

QIP [91, 92, 93]. In this chapter, we focus on creating and manipulating OAM in a neu-

tron wavepacket. Recently, it was demonstrated that neutrons can support OAM states

by using a spiral phase plate to write a helical wavefront onto a neutron beam [94, 95]. In

this realization, the OAM induced was an extrinsic property of the neutrons as opposed

to the intrinsic property, where the whole beam propagates through the axis of the OAM

inducing device. In effect, each neutron carries a well defined OAM that depends on the

location of the wavepacket.

This chapter presents the methods of generation and detection of neutron orbital an-

gular momentum states using a spiral phase plate, as well as the limitations due to the
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off axis effects that result from the limited coherence length of the neutron wavepacket. It

later proposes a method to prepare an entangled state between the orbital and spin states

of a neutron and a Ramsey-fringe-type measurement, suggested as a method to verify the

spin-orbit correlations.

This chapter is structured as follows: In Sec. 6.2, we present the basics of a wavefunction

carrying OAM. Next, in Sec. 6.3, we identify how to generate OAM with a spiral phase plate

and detect it using an NI. Further, in Sec. 6.4, we look at how to generate spin-orbit states

with a magnetic quadrupole, and explore the entanglement. Subsequently, in Sec. 6.5, we

discuss the Ramsey fringe experiment for OAM states generated by a quadrupole and a

linear gradient. Finally, in Sec. 6.6, we discuss how to detect spin-orbit states in an NI.

6.2 Wavefunction

It is convenient to consider a neutron beam travelling along the z-direction, with momentum

kz, and the expectation values of momentum in the transverse plane equalling to zero such

that, the mean wavevector is, k = (0, 0, kz). Consider a wavepacket with momentum

distribution along the x and y characterized by the standard deviations ∆kx,y, which are

related to the spatial distribution by the minimum uncertainty relation. Under these

conditions, the system can be treated in the paraxial approximation that uses ∂2/∂2
z =

k2 + 2iz∂/∂z to reduce the equation to the Helmholtz type. There is a mapping between

the paraxial approximation Helmholtz equation and the Schrödinger equation of a quantum

mechanical Harmonic Oscillator [96, 97]. As a result, the solution are the Laguerre-Gauss

modes, known to possess discrete values of orbital angular momentum per unit energy [90].

The OAM operator in a cylindrical coordinate system is L̂z = i ∂
∂φ

, and its eigenstates are

a convenient basis for the neutron wavepacket when the standard deviations of momentum

in the transverse directions are equal i.e σx = σy ≡ σ⊥, where σx,y = 1/(2∆kx,y) (not to

be confused with Pauli operators σ̂X,Y). In cylindrical symmetry, the separable neutron

wavefunction is given by

Ψ(r, φ, z) = R(r)Φ(φ)Z(z), (6.1)
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where R(r),Φ(φ) and Z(z) the radial, azimuthal and longitudinal components of the wave-

function parametrized by r =
√
x2 + y2 and φ = arctan(y/x). When propagating through

space, the standard deviation of momenta in the transverse direction remains constant, so

the transverse wavefunction, R(r)Φ(φ), is properly described in terms of the solutions to

the 2D harmonic oscillator. In this chapter the longitudinal wavefunction, Z(z), is treated

as a Gaussian wavepacket while the transverse is treated as solutions to the Hamiltonian;

H = − ~2

2m
∇2 +

1

2
mω2

⊥r
2, (6.2)

where ~ is the reduced Planck’s constant, m is the mass of the neutron, and∇2 = 1
r
∂r(r∂r)−

1
r2∂

2
ϕ. The matter-wave oscillation frequency, ω⊥, in the transverse direction is related to

the neutron coherence length by,

σ2
⊥ =

~
2mω2

⊥
. (6.3)

The transverse Schrödinger equation defined using the Hamiltonian in Eq. (6.2), with a

periodic orbital continuity condition, Φ(0) = Φ(2π), has the solution Φ ∼ e−i`φ, where,

` ∈ Z are orbital quantum numbers. In the radial direction, the solutions R(r) are the

Laguerre-Gauss polynomials. The combined transverse and longitudinal solution is,

ψn`(r, φ, z) =
1

σ⊥

√
n!

π(n+ |`|)!

(
r

σ⊥

)|`|
e
− r2

2σ2
⊥L|`|n

(
r2

σ2
⊥

)
e−i`φZ(z), (6.4)

where, n ∈ N0 is the radial quantum number, and Z(z) is the wavefunction function along

the z-axis. In the presence of an external magnetic field, the spin state contribute to the

total wavefunction to constitute a basis state specified by,

ψn`s(r, φ, z) =
1

σ⊥

√
n!

π(n+ |`|)!

(
r

σ⊥

)|`|
e
− r2

2σ2
⊥L|`|n

(
r2

σ2
⊥

)
e−i`φZ(z)⊗ |s〉, (6.5)

that is an eigenstate with total energy,

ET = ~ω⊥(2n+ |`|+ 1) +
~2k2

z

2m
+ ~µ · ~B. (6.6)
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Our desired form to specify the basis states will be in the Dirac notation, which is,

|ψn`s〉 = |n, `, s, kz〉. (6.7)

However, throughout this work, for any z, we will work exclusively with the transverse

part of the basis function, denoted as |n, `, s〉, and with the transverse projection

ψn`s(ξ, φ, z) = N ξ|`|e−
ξ2

2 L|`|n
(
ξ2
)
e−i`φ ⊗ |s〉. (6.8)

|n, `, s〉 ∈ H = HR ⊗ HO ⊗ HS, where R,O, and S stand for the radial, orbital and spin

subspaces. The parameters ξ = r/σ⊥, and N =
√

n!
π(n+|`|)! , are such that the integration

element will be ξdξ.

6.2.1 Basic characteristics of Laguerre-Gauss beams

Laguerre-Gauss (LG) are extensively studied in the optics literature, thus we will emphasize

only those features we need.

• The LG represent wavepackets with Gaussian envelopes and constitute a complete,

orthonormal set of modes, so that,

〈p,m, s′|n, `, s〉 = δpnδm`δs′s. (6.9)

Any localized wavefunction can be represented as a superposition

|Ψ〉 =
∑
n`s

Cn,`,s|n, `, s〉, where Cn,`,s = 〈n, `, s|Ψ〉. (6.10)

• LG modes with ` 6= 0 contain a screw dislocation of the wavefront on the wavepacket

axis, ψn` ∝ ei`φ; in other words, they contain a phase vortex of strength, `, at r = 0

and have a well-defined z-component of the OAM,

L̂z|n, `, s〉 = ~`|n, `, s〉 (6.11)
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Figure 6.1: Beam profiles of the probability amplitude |ψn`(ξ, φ)|2 for combinations of

n = 0, 1, 2 and allowed values ` = 0,±1,±2.

• In cylindrical coordinates, the transverse probability density is,

ρn`s(r) = |〈ξ, φ|n, `, s〉|2 = |ψn`s(ξ, φ)|2, (6.12)

which for ` 6= 0 represents n + 1 radial modes (concentric circles) which vanish at

r = 0. To visualize this feature, various combinations of n = 0, 1, 2 and ` = 0, 1, 2 are

illustrated in Fig. 6.1, clearly showing that only beams with ` = 0 have a non-zero

intensity on the beam axis.

• If there is a term eikzz in the wavefunction, the mode carries linear momenta, ~kz,
per neutron, oriented along their propagation, with momentum density P `(ξ), and

probability current density j`(ξ),

P `(ξ) = ~ (kz êz + `/ξêφ) ρ`(ξ), (6.13)

j`(ξ) = P `(ξ)/m. (6.14)

The only dependence on φ is in the phase leading to the cylindrically symmetry of the

complex amplitude about the beam axis. When n = ` = 0, the mode is a Gaussian

mode with complex amplitude independent of φ.
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Figure 6.2: A neutron wavepacket with center (x0, y0), propagating off the center of a phase

inducing device with coordinate (x, y). The neutron coordinate is (X, Y ).

6.2.2 Internal and external OAM

The internal OAM is an origin-independent angular momentum that can be associated

with a helical phase over the neutron wavepacket carrying the same OAM. On the other

hand, the external OAM is the origin-dependent angular momentum that can be associated

to a neutron beam, this time with each constituent neutron wavepacket carrying a distinct

OAM. As an example, when a spiral phase plate (SPP) is used to generate OAM, any

wavepacket propagating through the axis gets a unique OAM as opposed to when the

wavepackets is off-center. In the latter, a linear momentum in the tangential direction

relative to the beam center is induced and it can be represented as a sum of multiple

OAMs. We will commonly refer to the intrinsic OAM as on-axis, and the extrinsic OAM

as off-axis.

We start by distinguishing the coordinates present: locations relative to the axis of

the SPP are (x, y) and those relative to the center of the wavepacket are (X, Y ) (see

Fig. 6.2). In polar coordinates x = ξ cosφ, y = ξ sinφ and X = ρ cosϕ, Y = ρ sinϕ. The

center of mass coordinate of the wavepacket relative to the axis of the SPP is denoted by

x0 = ξ0 cosφ0 and y0 = ξ0 cosφ0. Using the transformations above, any location on the

wavepacket is related to the beam axis and beam center by, (X, Y )=(x− x0, y − y0), such

that, ρ cosϕ = ξ cosφ − ξ0 cosφ0 and ρ sinϕ = ξ sinφ − ξ0 cosφ0. Consider an incident
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Gaussian state with no OAM relative to the wavepacket axis. The incident Gaussian

wavefunction relative to the two coordinates is,

ψin(ρ, ϕ) = (1/
√
π)e−

ρ2

2 = ψ00(ρ, ϕ), wavepacket coordinates (6.15)

ψin(r, φ; r0, φ0) = (1/
√
π)e−

ξ2+ξ20−2ξξ0 cos(φ−φ0)

2 , SPP coordinates. (6.16)

Using the Jacobi-Anger transformation, Eq. (A.14), the input state can be rewritten as,

ψin(ξ, φ; ξ0, φ0) =
1√
π
e−

ξ2+ξ20
2

∞∑
`=−∞

I` (ξξ0) ei`(φ−φ0). (6.17)

A few things can be noted from this state. Despite carrying no harmonics, ` = 0, around

the center of the wavepacket, the state is composed of an infinite sum of harmonics relative

to the axis of the SPP. Using the Laguerre-Bessel transform, Eq. (A.15), the input state

can be represented in terms of the LG basis states as,

ψin(ξ, φ) =
∞∑
n=0

∞∑
`=−∞

Gn`(ξ0, φ0)ψn`(ξ, φ), (6.18)

where, we have defined the location dependent modulation function as,

Gn`(ξ0, φ0) =

(
ξ2

0

4

)n+
|`|
2 (−1)ne

ξ20
4
−i`φ0√

n!(n+ |`|)!
, (6.19)

for, ξ0, 6= 0. In the on-axis case, ξ0 = φ0 = 0, the input state reduces to,

ψin(ξ, φ; 0) = ψ00(ξ, φ) = ψ00(ρ, ϕ), (6.20)

which is a state with a well defined OAM ` = 0.

6.3 Generating OAM with a spiral phase plate

Here we analyze the action of an SPP in creating OAM. The spin component of the

wavefunction as well as the z-component, will be ignored for now. An SPP is a material
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with shape satisfying the equation of the thickness h(φ) = h0 + hs/(2π)φ, where φ is the

azimuthal angle, h0 is the base height, and hs is the step height. As a result of the optical

potential, a neutron propagating along the center of the SPP picks a phase,

α(φ) = α0 + qφ, (6.21)

where the uniform phase α0 = −Nbcλh0 being the nuclear phase, with Nbc the scattering

length density of the material and λ the neutron wavelength. The topological charge

(nothing to do with electronic charge) uniquely quantifies the nature of the singularity at

the center of any SPP [98], and is generally defined as,

q =
1

2

∮
dα(φ). (6.22)

When planar waves propagate through such a topology, the wavefronts become a |q| inter-

twined helical surface, with the helicity or handedness, determined by the sign of q.

6.3.1 On-axis SPP

When a neutron propagates through the center of an SPP with topological charge q, the

wavefunction is modified by eiqφ. Let us consider an input state with arbitrary, but well

defined quantum numbers,

|ψin〉 = |n0, `0〉, (6.23)

through the center of an SPP. At the exit (we set z = 0 without loss of generality), the

resulting wavefunction, eiq|ψin〉 is expanded in term of the basis functions as,

|ΨSPP〉 =
∞∑
n=0

∞∑
`=−∞

Cn,`|n, `〉, (6.24)

where the expansion coefficients are given by,

Cn,` =

∫ ∞
0

dξ

∫ 2π

0

dφ ξ〈n, `|ξ, φ〉〈ξ, φ|ΨSPP〉. (6.25)
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Figure 6.3: The probabilities for each of the ` = 0, 1,−1 and n = 0, 1 states when a neutron

wavepacket with no OAM (n0=`0=0) passes through an SPP of topological charge q .

In most cases, OAM is generated from an incident state which carries no OAM, i.e n0 =

`0 = 0, and so in that case we get,

Cn,` =

e
iqπsinc(qπ) for n = ` = 0

1√
n!(n+|`|)!

|`|
2

Γ
(

1 + |`|
2

)
ei(q−`)πsinc[(q − `)π] otherwise

. (6.26)

where Γ is the Gamma function, and Cn,`=0 6= 0 only for n = 0. Since q is a function of

the parameters of the SPP, plotted in Fig. 6.3 are the probabilities for a combination of

n = 0, 1 and ` = 0, 1,−1 against the topological charge q. For q =+1, the state is,

|ΨSPP〉 =
∞∑
n=0

√
π

16n!(n+ 1)!
|n, 1〉.

Although the OAM is incremented by the topological charge, the radial quantum number

of the outgoing wavepacket can take any allowed values, with the most probable one being

n = 0, when n0 = `0 = 0. Helium-3 neutron detectors do not distinguish different quantum

states (radial and orbital) and so the effect of measurement traces over the radial quantum

number.

6.3.2 Off axis SPP

In most neutron beamlines, the coherence length is relatively small ( 1-100 nm) compared

to the size of the SPP, which is the same size as the neutron beam (1 cm). As mentioned,
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the state exiting the SPP has a tangential linear momentum, which can be represented

as a sum over the basis states of the SPP axis or the internal OAM on the wavepacket

axis, such that the resulting beam carries an external OAM. Consider a neutron wavepacket

propagating parallel to the SPP axis, and displaced by ξ0, as shown in Fig. 6.2. A state |ψin〉
gets modified to |ΨSPP〉 = eiqφ|ψin〉. Expanding in terms of the basis vector {ψn`(ρ, ϕ)} of

the center of the wavepacket, one obtains,

|ΨSPP〉 =
∞∑

nr=0

∞∑
`=−∞

Cn,`|n, `〉, (6.27)

with the coefficients,

Cn,` =

∫ ∞
0

∫ 2π

0

〈n, `|ρ, ϕ〉〈ρ, ϕ|ΨSPP〉ρdρdϕ, (6.28)

that satisfy the normalization condition
∑
|Cn,`|2 = 1. A major difference is that, unlike

the on-axis, where φ = ϕ, ξ = ρ, φ is function of the radial coordinate given by,

φ(ρ, ϕ) = tan−1

(
ρ sinϕ+ ξ0 sinφ0

ρ cosϕ+ ξ0 cosφ0

)
, ξ(ρ, ϕ) = ρ2 + ξ2

0 + 2ρξ0 cos(ϕ+ φ0). (6.29)

In effect, the periodic linear relationship between φ and ϕ becomes sinusoidal. In this

regard, the coefficients depend on the location of the input states and therefore are not

guaranteed to be real, as in the on-center case. The mathematics is slightly simplified if

we work with the axis of the SPP, namely ρdρdϕ→ ξdξdφ. The coefficients are,

Cn,` =

∫ ∞
0

∫ 2π

0

〈n, `|ξ, φ〉〈ξ, φ|ΨSPP〉ξdξdφ, (6.30)

with explicit forms (using 〈ξ, φ|ΨSPP〉 = exp [−(ξ2 + ξ2
0 − ξξ0 cos(φ− φ0))/2)] /

√
π) given

by (see appendix),

Cn,` = e−
ξ20
2 e−i(`−q)φ0

∫ ∞
0

ξG`−qn,` (ξ) dξ, (6.31)

where we define,

Gmn,` (ξ) = 2

√
n!

(n+ |`|)!
ξ|`|e−ξ

2L|`|n
(
ξ2
)
Im (ξξ0) , (6.32)
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Figure 6.4: Coefficients of the ` = 0 and ` = 1 OAM for the n = 0 and n = 1 subspaces,

for an input state |0, 0〉. Since the coefficients are complex, we plot for φ0 = 0.

which are coordinate invariant, as expected.

For an input state |0, 0〉, the coefficients versus the displacement of the wavepacket from

the SPP axis are plotted in Fig. 6.4. Only the case for φ0 = 0, where the coefficients are

real, is plotted. Figure 6.4a is the plots for C0,0 and C0,1, and Fig. 6.4b is the plots C1,0

and C1,1. These plots illustrate that the coefficient of the OAM term quickly falls off with

the distance from the center i.e the most probable state changes, signifying the difficulty

in generating OAM through the center. Since it is impossible to selectively address each

of the OAM of given neutrons, we will characterize the average projected OAM onto the

transverse plane.

6.3.3 Characterizing OAM using 〈Lz〉

As shown in the previous section, the probability amplitude of the most probable state

decreases rapidly with the distance from the center of the SPP. The average projection of

the OAM on the transverse plane can be used to quantify the quality of the wavefunction.

Assuming the state is normalized, we get,

¯̀= 〈ΨSPP|L̂z|ΨSPP〉, (6.33)
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Since OAM is preserved upon the beam propagation [99], it can be calculated at an arbi-

trary plane, at z = 0, for example. Using Eqs. (6.3) and (6.31)

¯̀=
∞∑
n=0

∞∑
`=−∞

`|Cn,`|2 = 2
∞∑

`=−∞

`e−ξ
2
0

∫ ∞
0

ξe−ξ
2I2

`−q(ξξ0)dξ. (6.34)

It can be noticed that with the term e−ξ
2
0 , the average OAM decreases significantly from

the contribution of the SPP when the wavepackets is far off the center.

6.3.4 Detection using a neutron interferometer

Due to the significant length scale difference between the coherent length and the SPP,

OAM generated by an SPP is not directly detectable as all the neutron are off the axis.

Nevertheless, if the SPP is inserted in one arm of the three-blade NI, the beam OAM can

be detected Fig. 6.5a. Consider a balanced NI with 50:50 beam splitters, a mirror, and

a phase difference χ between the two paths. Denoting the states in the path degree of

freedom by |I〉 and |II〉, and an incident state of |ψ00〉 = |0, 0〉, the neutron wavefunction

inside the interferometer just before the third blade is,

|ΨNISPP〉 =
1√
2

(
|II〉|ΨSPP〉+ eiχ|I〉|ψ00〉

)
. (6.35)

After traversing a full three-blade neutron interferometer, the wavefunction becomes,

|ΨNISPPO〉 =
|I〉
2

(
|ΨSPP〉+ eiχ|ψ00〉

)
+
|II〉
2

(
|ΨSPP〉 − eiχ|ψ00〉

)
. (6.36)

The probability of detecting a neutron at the O-beam detector is I0 = |〈I|ΨNISPPO〉|2.

Considering the fact that many neutrons arriving at the detector take different trajectories

through the SPP, the average intensity on a 2D position sensitive detection at the output

is a sum over these neutrons given by,

I2D(ξ, χ, φ) =
1

2
F (ξ, φ)

(
1 + cos(χ+ `φ)

)
. (6.37)
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Figure 6.5: A schematic setup and a 2D plot of the intensity at the O-beam when a spiral

phase plate (SPP) of topology ` is placed on one arm of a three-blade NI. In (a) is the

schematic experimental setup showing the phase difference, χ, between the two paths. The

incident state |ψ00〉 carries no OAM. In (b) is the intensity distribution with χ = 0 and

` = 2, and in (c) is the intensity with χ = π/2 and ` = 2.

where the envelope function F (ξ, φ), over the area of radius R, is independent of φ, due to

symmetry and is given by

F (ξ, φ) =
1

π2R2

∫ R

0

ξ0dξ0

∫ 2π

0

dφ0e
−ξ2−ξ2

0+ξξ2
0 cos(φ−φ0) =

2e−ξ
2

πR2

∫ R

0

ξ0dξ0e
−ξ2

0I0(2ξξ0).

(6.38)

This intensity is that of a beam carrying OAM ` (relative to the axis of the SPP). In

Fig. 6.5 are 2D intensity distributions for ` = 2, for two values of χ. As χ changes, the

OAM profile is rotated by an equivalent amount as shown in Fig. 6.5b for χ = 0 and in

Fig. 6.5c for χ = π/2. The internal OAM from a SPP is extremely difficult to achieve in

the case of a neutron beam. In the following sections we propose and analyse a method to

create a neutron spin-orbit state over the coherence length of a neutron wavepacket.

6.4 Spin-orbit states of a neutron wavepacket

In order to generate the spin-orbit states, the spin independent SPP is replaced with a

spatially dependent spin rotation. The OAM are generated as a result of the topological
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Figure 6.6: Vector plot of a quadrupole, with the region x � y along the x-axis and

y � x along the y-axis shown. In these regions, the quadrupole behaves approximately as

a linear magnetic gradient.

phase arising from the spin rotations induced by a quadrupole magnetic field. The resulting

state is a spin-orbit state, as illustrated in the next subsection.

6.4.1 Generating operator for spin-orbit states

Consider a spin-polarized (along the z-axis) neutron wavepacket travelling through a quadrupole

magnetic field geometry, Fig. 6.6, whose components satisfy, ∂Bx/∂y = −∂By/∂x. In

Cartesian coordinates, it is given by,

B = |∇B|r(cos(qφ), sin(qφ), 0), (6.39)

where |∇B| is the quadrupole gradient, r is the distance from the quadrupole’s center,

and the topological charge q = −1. At a fixed radius, the magnetic field strength is a

constant, but the orientation varies with the azimuthal direction. The Hamiltonian inside

the quadrupole can be parametrized by,

H =
1

2
γσ̂ ·B, (6.40)

where γ = 2µn/~ is the gyromagnetic ratio of the neutrons, and σ̂ is the Pauli matrix

vector (note: there is no relationship between σ̂ and σ⊥). A more informative form of the
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Hamiltonian is,

H =
1

2
γ|∇B|r

(
σ̂X cos(qφ) + σ̂Y sin(qφ)

)
,

=
1

2
γ|∇B|r

( σ̂X

2

(
eiqφ − e−iqφ

)
− i σ̂Y

2

(
eiqφ + e−iqφ

) )
,

=
1

2
γ|∇B|r

(
ˆ̀
+σ̂+ + ˆ̀−σ̂−

)
, (6.41)

where, `+ is the raising and `− is the lowering operator for OAM, and σ̂+ and σ̂− are

conditional spin-flipping operators. Their explicit forms are,

σ̂+ =
1

2
(σ̂X + iσ̂Y) , σ̂− =

1

2
(σ̂X − iσ̂Y) , (6.42)

ˆ̀
+ = e−iqφ, ˆ̀− = e+iqφ. (6.43)

The operators `± and σ̂± provide a clear relationship between the spin orientation of

the incident neutron and the resulting OAM of the output state through the spin-orbit

component ˆ̀
+σ̂+ + ˆ̀−σ̂−.

Consider a quadrupole of length D, then the time spent by the neutron inside the

quadrupole is tQ = Dv−1
z , where vz = 2π~m−1λ−1 is the velocity of the neutron. Ignoring

the scattering effect, and the change of direction of the center of the wavepacket (Stern-

Gerlach effects), the unitary operator is

UQ = exp

[
i
γ|∇B|rD

2v
(σ̂x cosφ− σ̂y sinφ)

]
,

= cos

(
πr

2rc

)
1 + i sin

(
πr

2rc

)
(ˆ̀

+σ̂+ + ˆ̀−σ̂−). (6.44)

We have conveniently re-parametrized the operator using the transverse radius rc at which

the spin state is reversed on passing through the length of the quadrupole, γ|∇B|rcD/vz =

π. The action of the quadrupole operator is simply to increment the orbital state, and

equipping the radial quantum number with information about the number of spin rotations

along that direction.
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Figure 6.7: 2D intensity of the neutron after a single quadrupole. (a) the component with

no OAM, ` = 0 and (b) the component with OAM, ` = 1. In the plots, the coherence

length σ⊥ = 2, and rc/σ⊥ = 1.

6.4.2 On-axis spin-orbit states

As in the case of an SPP, consider the case where an arbitrary spin up polarized basis state,

|ψin↑〉 = |n0, `0, ↑〉, is incident through the center of a quadrupole. As mentioned above,

the quantities kz, and ∆z, defining the wavefunction are all conserved upon propagation

through a quadrupole magnetic field so that the state emerging (ignoring the z component)

is,

|ΨQ〉 = cos

(
πr

2rc

)
|n0, `0, ↑〉+ ieiφ sin

(
πr

2rc

)
|n0, `0, ↓〉. (6.45)

This state is spin coupled to the OAM state, which we refer to subsequently as spin-orbit.

With a spin filter after a quadrupole, the position sensitive intensities for each of the spin

states for ` = 0 and ` = 1 are,

I↓,`=1 =
e−ξ

2

π
sin2

(
πσ⊥ξ

2rc

)
, and I↑,`=0 =

e−ξ
2

π
cos2

(
πσ⊥ξ

2rc

)
(6.46)

The intensities are shown in Fig. 6.7 with spin up in (a) and spin down in (b). The spin-

down intensity is zero at the origin, as a result of the geometry of the magnetic field. The
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Figure 6.8: 2D plot of the components of polarization along the x-axis (a), along the y-axis

(b), and along the z-axis, for rc = σ⊥ = 4.

integrated intensities are,

I↑ = 2

∫ ∞
0

ξe−ξ
2

cos

(
πσ⊥ξ

2rc

)2

dξ = 1− πσ

2rc
F
(
πσ⊥
2rc

)
,

I↓ = 2

∫ ∞
0

ξe−ξ
2

sin

(
πσ⊥ξ

2rc

)2

dξ =
πσ

2rc
F
(
πσ⊥
2rc

)
, (6.47)

where F is the Dawson function [100].

One interesting quantity to consider is the polarization. The polarization gives the

component of the spin orientation in each of the x, y, z-axes is expressed as,

Polj = 〈ΨQ|σj|ΨQ〉, (6.48)

where j ∈ {x, y, z}. Density plots of the polarization along each x-, y- and z-axis are shown

in Figs. 6.8a, b, and c, respectively, for rc = σ⊥ = 4

The state in Eq. (6.45) can be expanded in the basis functions as

|ΨQ〉 =
∞∑
n=0

∞∑
`=−∞

(
Cn,`,↑|n, `, ↑〉+ iCn,`,↓|n, `, ↓〉

)
, (6.49)

where the expansion coefficients are,

Cn,`,↑ = 〈n, `, ↑ |ΨQ〉 = 〈n, `, ↑ | cos (πr/2rc) |n0, `0, ↑〉 = 〈n| cos (πr/2rc) |n0, 〉δ``0

= δ``0

∫ ∞
0

Gn0,`0
n,`0

(ξ) cos

(
πσ⊥
2rc

ξ

)
ξdξ (6.50)
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Figure 6.9: The coefficients Cn,0,↑ and Cn,1↓ of the spin-orbit state for the n = 0 and n = 1

subspaces. The plots are for various inputs states n0, `0 ∈ {0, 1}.

Cn,`,↓ = 〈n, `, ↓ |ΨQ〉 = 〈n, `, ↓ | sin (πr/2rc) |n0, `0 + 1, ↓〉 = 〈n| sin (πr/2rc) |n0〉δ`,`0+1

= δ`,`0+1

∫ ∞
0

Gn0,`0
n,`0+1(ξ) sin

(
πσ⊥
2rc

ξ

)
ξdξ, (6.51)

where,

Gn,l
p,m(ξ) = 2

√
p!n!

(p+ |m|)!(n+ |l|)!
ξ|m|+|l|e−ξ

2L|m|p

(
ξ2
)
L|l|n
(
ξ2
)
. (6.52)

The sum selects ` = `0 for the spin-up coefficients, and ` = `0 + 1 for the spin-down

coefficients, leading to,

|ΨQ〉 =
∞∑
n=0

(
Cn,`0,↑|n, `0, ↑〉+ iCn,`0+1,↓|n, `0 + 1, ↓〉

)
. (6.53)
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Similar to the SPP, the coefficients Cn,`0,↑ and Cn,`0+1,↓ are real for all values of rc/σ⊥. The

ratio rc/σ⊥ quantifies the action of the quadrupole on the neutron wavepacket of transverse

coherent length σ⊥. The strong quadrupole fields regime corresponds to rc → 0 and the

weak quadrupole regime to rc → ∞. Figure 6.9 shows the various coefficients for the

specific subspaces for an input state |n0, `0, ↑〉, with n0, `0 ∈ {0, 1}. It can be shown that

the normalization condition ∑
n

(|Cn,`0,↑|2 + |Cn,`0+1,↓|2) = 1, (6.54)

holds. For the proof, see the appendix.

In the case where a wide neutron beam is considered, most of the neutrons are off-center

and in a similar way as the SPP, the off-axis state of a neutron through the magnetic

quadrupole is,

|ΨQ〉 =
∑
n,`

(
Cn,`,↑|n, ` ↑〉+ iCn,`,↓|n, `, ↓〉

)
, (6.55)

with the coefficients,

Cn,`,↑ = e−
ξ20
2 e−i`φ0

∫ ∞
0

G`n,` (ξ) cos

(
πσ⊥
2rc

ξ

)
ξdξ, (6.56)

Cn,`,↓ = e−
ξ20
2 e−i(`−1)φ0

∫ ∞
0

G`−1
n,` (ξ) sin

(
πσ⊥
2rc

ξ

)
ξdξ. (6.57)

The coefficients in this case are not real, and depend on the location of the center of the

wavepacket ξ0, φ0 of the neutron.

6.4.3 Charactering spin-orbit states via entanglement

A useful measure of entanglement, for a bipartite quantum system, is the concurrence

[101, 102, 103], which is equal to 1 when the entanglement is maximum, and 0 when the

state is separable. For a bipartite mixed state, ρSO, the concurrence is given by,

C(ρSO) = max{0, λ1 − λ2 − λ3 − λ4}, (6.58)
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Figure 6.10: (a) Concurrence of the spin-orbit state for the filtered n = 0, 1, 2 subspaces

and (b) the corresponding probabilities of the filtered spin-orbit n = 0, 1, 2.

where the λi’s are the eigenvalues, sorted in descending order of the density matrix,√√
ρSO(σy ⊗ σy)ρ∗SO(σy ⊗ σy)

√
ρSO, and ρ∗SO is the complex conjugate of ρSO. For a pure

state, ρSO = |ψSO〉〈ψSO|, Eq. (6.58) reduces to,

C(|ψSO〉) =
√

2 (1− Tr[ρ2
S]), (6.59)

where ρS = TrO[|ψSO〉〈ψSO|], is the reduced density matrix obtained by tracing over the

subsystem S (or equivalently, tracing over subsystem O ).

Let us first consider the entanglement of the spin-orbit neutron state in the case where

we filter out a single radial quantum number n = η. With the current coherent length, the

neutron intensity and the field gradients at our setup, filtering a particular radial subspace

is extremely difficult to achieve. However, if there are other ways to realize it, we obtain

the renormalized pure spin-orbit state ;

|ψη〉 =
1
√
pη

(
Cη,`0,↑|`0 ↑〉+ Cη,`0+1,↓|`0 + 1 ↓〉

)
, (6.60)

where pη are the probabilities of the wavepacket being in the n = η subspace given by,

pη = C2
η,`0,↑ + C2

η,`0+1,↓. (6.61)

The concurrence of |ψη〉, and the probability pη, are shown in Fig. 6.10 for the n = 0, 1, 2

radial subspaces. The concurrence of the spin-orbit state obtained by passing through a
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Figure 6.11: Concurrence of the spin-orbit state projected to the n = 0 and n = 1

subspaces for various inputs. The input is |0, 0, ↑〉 in (a), in (b), the input is |0, 1, ↑〉, in

(c), the input is |1, 0, ↑〉, in (d), the input is |1, 1, ↑〉.

quadrupole is maximized for the n = 0 radial subspace, where the spin-flip ratio r/σ⊥ =

1.82. In other cases, we considered different input states. Figure 6.11 illustrates the

concurrences of the n = 0, 1 subspaces for an input state |0, 0, ↑〉 in (a), |0, 1, ↑〉 in (b),

|1, 0, ↑〉 in (c), and |1, 1, ↑〉 in (d)

In the second case, we assume that the neutron capture cross-section of the detector

to be independent of the n subspace such that the spin-orbit density matrix obtained by

tracing over the radial degree of freedom from Eq. (6.53) is,

ρSO =
∞∑
n=0

(
C2
n,0,↑|0, ↑〉〈0, ↑ |+ iCn,0,↑Cn,1,↓|0, ↑〉〈1, ↓ |

− iCn,0,↑Cn,1,↓|1, ↓〉〈0, ↑ |+ C2
n,1,↓|1, ↓〉〈1, ↓ |

)
. (6.62)

This reduced state is not a pure state as Tr[ρ2
SO] 6= 1, as seen in Fig. 6.12a. The concurrence

of the mixed spin-orbit state as given by Eq. (6.58) is plotted in Fig. 6.12b. We find that

the maximum value of concurrence is C(ρSO) = 0.97, and it occurs at rc/σ⊥ = 1.82. Hence
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Figure 6.12: (a) Tr[ρ2
SO] against the rc/σ⊥. (b) The concurrence in the spin-orbit states

after ρSO in Eq.6.62.

even after averaging over all radial subspaces, the spin-orbit state is still highly entangled.

6.4.4 Expectation of L̂z

For an incident state |0, 0, ↑〉 in the on-axis and off-axis case the expectation value 〈Lz〉 of

the state generated by the quadrupole is,

` = 〈ΨQ|L̂z|ΨQ〉 =


πσ
2rc
F
(
πσ⊥
2rc

)
for ξ0 = 0

2
∑

m `e
−ξ2

0

∫∞
0
ξe−ξ

2I2
m−1(ξξ0) sin2

(
πσ⊥
2rc

ξ
)
dξ otherwise

(6.63)

A plot of the expectation value 〈Lz〉 against rc/σ⊥ is shown in Fig. 6.13. The expectation

value decreases both with the strength of the magnet and with the distance off the axis.

6.5 Ramsey-type experiment with spin-orbit states

6.5.1 Spin-Orbit generated from a quadrupole

To experimentally implement this proposal, two quadrupole magnets are constructed from

specially orientated discrete NdFeB magnets. A 10-cm-long quadrupole with a gradient
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Figure 6.13: Numerical simulation of the on-axis expectation value Lz against the strength

of the quadruple rc/σ⊥.

of 13.8 T/cm would be required to satisfy the rc = 1.82σ⊥ condition for neutrons with

a typical transverse coherence length of σ⊥ = 100 nm and a wavelength of 2.71 Å. With

NdFeB of a surface field of strength 0.7 T, this gradient corresponds to an inner quadrupole

gap of around 1 mm and length 10 cm. Under these experimental conditions, concurrences

of 1 and 0.77 are obtained in the filtered subspaces n = 0 and 1 in Eq. (6.60) and a value

of 0.97 in the trace state in Eq. (6.62).

The Ramsey-type experiment [104] provides a test of the spin-orbit preparation. In the

experimental setup, we require a polarized neutron beam, two quadrupoles and a solenoid

in between them, see Fig. 6.14. The solenoid provides a uniform magnetic field along

the spin quantization axis and introduces a phase shift, β, in the spin degree of freedom

through Uz = exp(βσ̂z/2). The second quadrupole can be rotated by angle θ, so that when

its magnetic fields are anti-parallel to the first quadrupole, it acts as an inverse operator

of the first quadrupole, such that,

UQ2 = cos

(
πr

2rc

)
1 + i sin

(
πr

2rc

)
(e−iθ ˆ̀

+σ̂+ + eiθ ˆ̀−σ̂−). (6.64)

With the setup shown in Fig. 6.14, when the input state is |ψ00↑〉 = |0, 0, ↑〉, the state at
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Figure 6.14: On the left is the schematic setup for the spin-orbit Ramsey-type experiment.

The arrows on the magnets depict the quadrupole geometry. On the right is the integrated

intensity at the output for the spin up and spin down neutrons as a function of the spin

precession (β) inside the solenoid. The rotation of the second quadrupole is set to θ = π.

An identical plot can be obtained when β = π and the quadrupole rotation is varied. This

behavior is an indication of the correlation between the spin and OAM such that a phase

induced by the spin rotation can be compensated by the rotation of the quadrupole.

the exit (with the global phase eiθ/2 excluded) is,

|ΨR〉 = UQ2(θ)Uz(β)UQ|ψ00↑〉

=

[
cos

(
πr

rc

)
cos

(
β − θ

2

)
+ i sin

(
β − θ

2

)]
|ψ00↑〉+ i sin

(
πr

rc

)
cos

(
β − θ

2

)
eiφ|ψ00↓〉

The integrated intensities at the output are,

I↑(β, θ) = 1− πσ⊥
rc
F
(
πσ⊥
rc

)
cos2

(
β − θ

2

)
, I↓(β, θ) = 1− I↑(β, θ) (6.65)

where F(πσ⊥/rc) is the Dawson function. These intensities show the same behaviour if β

and θ are interchanged, indicating that the spin rotation can be compensated by rotation

of the orbital state; a signature of spin-orbit correlation. On the right plot in Fig. 6.14 is

the spin-dependent integrated intensity for β, varied with θ = π, and with rc/σ⊥ = 1.82.

Note that the amplitude of the oscillations of the integrated intensity is not 1 because the

spin-orbit state obtained by tracing the radial degree of freedom is not pure. Shown in

Fig. 6.15 is a 3D plot of the spin up intensity for rc/σ⊥ = 1.82.
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Figure 6.15: 3D plot of the integrated intensity at the output for the spin down neutrons

as a function of β and θ The phase induced by the spin rotation can be compensated by

the rotation of the quadrupole.

When the center of the incident wavepacket, |Ψin〉, is off-axis, Eq. (6.16), the state at

the exit of a Ramsey setup is,

|ΨR〉 =

[
cos

(
πr

rc

)
cos

(
β − θ

2

)
+ i sin

(
β − θ

2

)]
|Ψin, ↑〉

−ieiφ cos

(
β − θ

2

)
sin

(
πr

rc

)
|Ψin, ↓〉. (6.66)

After filtering the spin selection, the integrated intensity for spin down is

I↓(β, θ; ξ0, φ0) = G(ξ0) cos2

(
β − θ

2

)
, (6.67)

where, the intensity modulation function,

G(ξ0) = 2e−ξ
2
0

∫ ∞
0

ξe−ξ
2I0(2ξ0ξ) sin2

(
πσ⊥ξ

rc

)
dξ. (6.68)

Over an area of the quadrupole πξ2
c selected around the axis gives an amplitude,

G (rc/σ⊥) =
2

ξ2
c

∫ ξc

0

dξ0 ξ0G(ξ0) =


1
2

for ξc →∞
πσ⊥
rc
F
(
πσ⊥
rc

)
for ξc → 0

(6.69)
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This illustrates that, the modulation envelope is independent of the ratio rc/σ⊥ for large

slit radii resulting in an oscillating intensity, with a maximum at 1/2. In this regime, it

is not possible to distinguish the effect of a strong and weak quadrupole. The intensity

obtained is statistically equivalent to the one obtained by averaging over the neutrons

arriving randomly at any location ξ0, φ0. With this in mind, we designed a way to generate

OAM around the center of mass of each neutron, a concept that is equivalent to neutrons

propagating through the center of the quadrupole.

6.5.2 Spin-orbit generated from linear gradients

The challenge of focusing neutrons on the axis of the magnetic quadrupole leads us to a

different process of generating OAM using two magnetic gradients. Two field gradients,

one along the x-axis, and one along the y-axis when combined generate a state that is

approximately similar to that generated by a quadrupole. The action of each linear gradient

is translationally periodic. So by replacing the quadrupole with two linear gradients, we

avoid the problem of the origin. A composition of the two gradients,

Ux = ei
πr
2rc

cosφσx , and Uy = e−i
πr
2rc

sinφσy , (6.70)

can be understood via the BCH expansion

UyUx = e−i
πr
2rc

sinφσyei
πr
2rc

cosφσx = e
i πr
2rc

(ˆ̀
+σ̂++ˆ̀−σ̂−)+iπ

2r2

4r2c
sin(2φ)σz+···

, (6.71)

and noticing that, to first order expansion in r/rc, the double gradient behaves like a

quadrupole. The state generated by the two gradients is similar to that generated by a

single quadrupole when higher order terms are ignored.

Figure 6.16 illustrates the generation of OAM using two linear gradients where G1

and G2 are magnetic field gradients. The incident neutron, polarized along the z-axis, is

represented as a ring for convenience. The spin orientation after the first field gradient is

shown with part of the ring state pointing along the y-axis. In the second field, oriented

along the y-axis, the same process is repeated so the resulting state is approximated to an

OAM state. The intensity for spin up and spin down after a pair of linear gradients with

rc/σ⊥ = 1 is shown in Fig. 6.16b and c, respectively.
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Figure 6.16: Generating OAM using two linear gradients. G1 is a field gradient along the

x-axis, and G2 along the y-axis. The neutron is depicted as a ring with the incident state

polarized along the z-axis. After G1, the spin that experience the same field are left in the

same configuration (unchanged in this setup). In G2, the same process is repeated. 2D

intensity of the neutron after a pair of linear gradients, (a) is the spin down and (b) is the

the spin up for rc/σ⊥ = 1. (d) Ramsey fringe pattern for a pair of quadrupoles compared

to two pairs of linear gradients and they show a significant agreement.

In the proposed implementation, the gradients are realized by a quadrupole far off the

center. The field of a quadrupole is,

B = |∇B|r(cosφ,− sinφ, 0) =

|∇B|r cosφ for φ→ 0

−|∇B|r sinφ for φ→ π/2
, (6.72)

and is plotted in Fig. 6.6, with regions of the field shown at x � y along the x-axis

and y � x along the y-axis. In these regions, the quadruple is approximated to a linear

gradient.
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The fidelity of the state in this case is simply the overlap between the state generated

from a quadrupole and that from two linear gradients can be used to quantify the devia-

tions. We instead focus on the Ramsey fringe intensity for a pair of quadrupoles and two

pairs of linear gradients. With the flipping radius rc/σ⊥ = 1, and the background field

parameter β varied, the intensity is shown in Fig. 6.16d.

6.6 Spin-orbit states in a neutron interferometer

Consider a quadrupole on one arm of a balance three- blade NI. Denoting the states in the

path degree of freedom by |I〉 and |II〉 and incident state of |ψ00↑〉 = |0, 0, ↑〉, the neutron

wavefunction inside the interferometer just before the third blade is,

|ΨNIQ〉 =
1√
2

(
|I〉|ΨQ〉+ eiχ|II〉|ψ00↑〉

)
, (6.73)

where χ is the phase difference between the two arms of the NI, and |ΨQ〉 is the quadrupole

state given in Eq. (6.53). Upon traversing a full interferometer, the wavefunction at the

output is,

|ΨNIQO〉 =
|I〉
2

(
|ΨQ〉+ eiχ|ψ00↑〉

)
+
|II〉
2

(
|ΨQ〉 − eiχ|ψ00↑〉

)
. (6.74)

Given that the topological charge of the quadrupole is ` = 1, the unfiltered intensity

at the O-beam is

I2D(ξ, χ, φ) =
F (ξ, φ)

2

[
1 + cos

(
πσ⊥ξ

2rc

)
cosχ

]
, (6.75)

contains a radial dependence modulation, but not the orbital, with F (ξ, φ) given earlier in

Eqn. (6.38). It is possible to insert a spin flipper in the arm of the NI that doesn’t contain

the quadrupole. In this case, the unfiltered intensity at the O-beam,

I2D(ξ, χ, φ) =
F (ξ, φ)

2

[
1 + sin

(
πσ⊥ξ

2rc

)
sin(χ+ φ)

]
, (6.76)

is dependent on the orbital state. Figure 6.17 is the 2D intensity distribution with spin

flip (a) and without spin flip (b). Other configurations are possible with spin filters.
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Figure 6.17: 2D intensity distribution at the unfiltered O-beam of an NI relative to the

center of symmetry of the quadrupole, when a spin polarized neutron is incident into the

interferometer. In (a), there is no spin flipper on one arm of the interferometer while in

(b), there is a spin-flipper in the arm that doesn’t contain the quadrupole.

6.7 Conclusion

We propose a method for preparing spin-orbit states of neutron wave packets that uses

a quadrupole magnetic field. We also demonstrated that the spin-orbit state would be

entangled, and that this entanglement is maximized for certain values of the coherence

length and quadrupole-magnetic-field strength. A Ramsey fringe experiment on the spin-

orbit states is also presented.
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Chapter 7

Conclusion and Future Prospects

Conclusion

In chapter 2, we presented a description of the NIOFa beamline recently installed in the

guide hall of the NCNR. This beamline is designed to work with a DFS NI but the four-

blade DFS interferometer used to demonstrate the proof of concept of refocusing mechanical

vibrational noise is not compatible with the beamline wavelengths. However, a three-blade

symmetric NI has a measured contrast of about 40%.

Significant progress was made to improve temperature stability. A vacuum chamber

got tested and showed to achieve a temperature stability of 3mdeg/hr. Furthermore a

temperature control box equipped with thermal sensors and heaters to reduce temperature

fluctuations to about mK is being tested. With a combination of both methods, the whole

assembly is expected to significantly improve the phase stability, thus the contrast.

There are plans to probe material samples on the NIOFa beamline have been made.

Most of these measurements will require polarized neutron and a low temperature facility.

NIOFa has achieved a neutron polarization of about 98% with a broad-wavelength neu-

tron beam. Despite the significance of that achievement, and because of high polarization

requirements for some experiments, there is current work aimed at improving the neutron

138



polarization to about 99.9% for a neutron beam with broader wavelength and bigger di-

vergence. A cold stage cryostat, capable of reaching temperatures of about 10K, has now

been installed for low-temperature measurements.

In chapter 3, we also presented a brief overview of the theory of DD, then some exper-

imental results to show the effect of DD in a three-blade NI. This include controlling the

neutron intensity variation at the output of a multiblade device. Since intensity couples to

interferometer thickness, the thickness plays an important role in determining the contrast

of an unbalanced beam made from a superposition of waves with different amplitudes.

In chapter 4, we discussed the development of an alternative approach to the theory

of DD based on unitary evolution in real space. Later on, this new approach is applied

to better understand the origin of DD features including the Pendellösung oscillations,

beam profiles, and the sum intensity in the Borrmann triangle. It is also extended to the

interferogram and contrast of a three-blade NI. Further, our method may be applied to

the two-blade and four-blade NIs as well as in the study of finer details of DD without

reference to parameters such as the particle wavelength, crystallographic orientation and

the interferometer geometry. In addition, it can be applied to the germanium neutron

interferometer bearing higher neutron absorption than silicon.

In chapter 5, we showed that noise from the dynamical phase affects a four-blade NI

but not a three-blade. According to the theory of DD, the waves emerging from a single

crystal has a phase gradients induced by the momentum distribution of the incident beam

when extended to an NI. In order to remove the momentum phase gradients, we proposed a

five-blade NI design that are robust against both dynamical phase noise and low frequency

mechanical vibrational noise. The noise formalism is done with the coherence function

and can be generalized to any neutron interferometer geometry, to electrons and atomic

interferometers.

In the quest to create an NI, which incorporates spin and orbital states, we propose a

method for preparing spin-orbit states of a neutron wave packets using quadrupole magnetic

field. We theoretically demonstrated the entanglement in the spin-orbit state and proposed

a Ramsey-type experiment between the spin and orbit states. A successful realization of

the spin-orbit states will provide an opportunity to use neutron interferometry as a probe
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of chiral and helical materials. For example, these unique spin-orbit coupled states may

be used to study chiral magnetic materials, spinwaves, and skyrmions.

Future prospects

• The neutron interferometry setup will be adapted to work with a cold stage cryostat,

capable of reaching temperatures of about 5K. Low temperature measurements of

correlated magnetic system could then be carried out.

• The QI model applied to variations in coherence effect as a function of the trans-

verse beam mismatch in a four-blade NI will be employed. This formulation has the

potential to reveal some information that will assist in the design of a four-blade NI

refocussing DD phase.

• The QI model will be applied to study various DD features from imperfect and

deformed crystal interferometers. This includes near-perfect crystals and pyrolytic

graphite.

• Characterization of the five-blade NI will be done by measuring the contrast in each

of the loops in the NI. A study of the beam distribution will also help us understand

the ratio of neutron living each blade. Measurements of the effect of mechanical

vibration noise on a five-blade NI will be done. Further opportunities are:

• Experimentation of higher order interference in a five-blade NI with multiple beams;

This is related to the Born’s rule.

• Calculations and experiments of the change in the capture cross-section when a neu-

tron carrying OAM propagate through a material like boron and beryllium.

• Generation of OAM states in a lattice using linear gradients, and using it to study

skyrmion lattice that are topological phases of matter.
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A.2 Important mathematical relations

∫ 2π

0

ei(n−m)φdφ =

2πei(n−m)π sin[(n−m)π]
(n−m)π

for n−m ∈ R

2π n−m ∈ Z
(A.1)

ez cosφ =
∞∑

m=−∞

Im(z)eimφ, (A.2)

∫ ∞
0

ξγ−1e−ξLµn (ξ) dξ =
Γ(γ)Γ(1− γ + µ+ n)

n!Γ(1− γ + µ)
, γ > 0 (A.3)

δ(t, x) = e−ttα
∑
p

p!

(p+ α)!
L|α|p (t)L|α|p (x) (A.4)

2e−ξ
2

∫ ∞
0

e−x
2I0(2ξx)xdx = 1 (A.5)
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2

∫ ∞
0

e−ξ
2In(ξx)In(ξy)ξdξ = e

x2+y2

4 In
(xy

2

)
for Re n > −1 (A.6)

2e−ξ
2

∫ ∞
0

e−x
2
∑
I2
n(ξx)xdx = 1 (A.7)

∑
In(ξ2) = eξ

2

(A.8)

A.3 Coefficients of a an SPP

On-axis:

Consider an input state |n0, `0〉 on a topological charge of an SPP, q ∈ R, and ψn`s(ξ, φ, z) =

N ξ|`|e− ξ
2

2 L|`|n (ξ2) e−i`φ, we get expansion coefficients of the output as

Cn,` =

∫ ∞
0

dξ

∫ 2π

0

dφ r〈n, `|ξ, φ〉〈ξ, φ|ΨSPP〉 =

∫ ∞
0

∫ 2π

0

ψn0,`0(ξ, φ)eiqφψ∗n`(ξ, φ)ξdξdφ

=

∫ ∞
0

dξ ξGn0,`0
n,` (ξ)

1

2π

∫ 2π

0

ei(`0+q−`)φdφ, with, Gn,`
p,m(ξ) = 2πψpm(ξ, 0)ψn`(ξ, 0)

= ei(`0+q−`)π sin[(`0 + q − `)π]

(`0 + q − `)π

∫ ∞
0

dξ ξGn0,`0
n,` (ξ)

where we have used the integral Eq. (A.1), and

Gn,l
p,m(ξ) = 2

√
p!n!

(p+ |m|)!(n+ |l|)!
ξ|m|+|l|e−ξ

2L|m|p

(
ξ2
)
L|l|n
(
ξ2
)

(A.9)

For an incident state with no OAM |ψin〉 = |0, 0〉,

Cn,` =

∫ ∞
0

dξ ξG0,0
n,`(ξ) =

e
iqπsinc(qπ) for n = ` = 0

1√
n!(n+|`|)!

|`|
2

Γ
(

1 + |`|
2

)
ei(q−`)πsinc[(q − `)π] otherwise

,

by making use of the LG normalization integral identity in Eq. (A.3).
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Off-axis in terms of SPP coordinate:

The expansion coefficients are from ψin =
∑∞

l=−∞
1√
π
e−

ξ2+ξ20
2 Il (ξξ0) eil(φ−φ0), and eiqφψin as

Cn,` =

∫ ∞
0

dξ

∫ 2π

0

dφ r〈n, `|ξ, φ〉〈ξ, φ|ΨSPP〉

Using the Jacobi-anger transform in Eq.(A.2), and also (A.1), we get for ξ0 6= 0, φ0 6= 0

Cn,` = 2e−
ξ20
2

∫ ∞
0

ξdξe−
ξ2

2

∞∑
m=−∞

Im (ξξ0)ψ∗n`(ξ, 0)
1

2π

∫ 2π

0

dφeim(φ−φ0)eiqφe−i`φ

= e−
ξ20
2

∞∑
m=−∞

∫ ∞
0

dξ ξGmn,`(ξ, ξ0)e−imφ0
1

2π

∫ 2π

0

dφei(m+q−`)φ

= e−
ξ20
2


∑∞

m=−∞ e
−imφ0ei(m+q−`)π sin[(m+q−`)π]

(m+q−`)π

∫∞
0
dξ ξGmn,`(ξ, ξ0) for m+ q − ` ∈ R

e−i`φ0
∫∞

0
dξ ξGq−`n,` (ξ, ξ0) for m+ q − ` ∈ Z

,

where another function is defined as

G`p,m(ξ, ξ0) = 2

√
p!

(p+ |m|)!
ξ|m|e−ξ

2L|m|p

(
ξ2
)
I` (ξξ0) (A.10)

Normalization:

The normalization condition of the OAM states of an SPP can be shown using the coeffi-

cients in Eq. (6.31) as follows for the integer case.∑
n,`

|Cn,`|2 = e−ξ
2
0

∫ ∞
0

dξ

∫ ∞
0

dζ ξζ
∑
n,`

Gq−`n,` (ξ, ξ0)Gq−`n,` (ζ, ξ0)

= 4e−ξ
2
0

∑
`

∫ ∞
0

dξ

∫ ∞
0

dζ ξξ|`|e−ξ
2

ζζ−|`|δ(ζ2, ξ2)I`−q (ξξ0) I`−q (ζξ0) Eq. (A.4)

where we have used:∑
n,`

Gq−`n,` (ξ, ξ0)Gq−`n,` (ζ, ξ0) =
∑
n

4n! ξ|`|e−ξ
2

(n+ |`|)!
ζ |`|e−ζ

2 L|`|n
(
ξ2
)
L|`|n
(
ζ2
)
I`−q (ξξ0) I`−q (ζξ0)

= 4 ξ|`|e−ξ
2

ζ−|`| I`−q (ξξ0) I`−q (ζξ0) δ(ζ2 − ξ2) using Eq. (A.4),
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Using the property of delta function,

δ(ξ2, ζ2) =
1

2|ζ|

(
δ(ξ − ζ) + δ(ξ + ζ)

)
=

1

2ζ
δ(ξ − ζ) for ξ, ζ > 0 (A.11)

we obtain∑
n,`

|Cn,`|2 = 2e−ξ
2
0

∫ ∞
0

dξξe−ξ
2
∑
`

I2
`−q (ξξ0) = 1 using Eq. (A.7).

A.4 Input state expanded in to the LG basis

A wave packet located off axis with it center located at a x0 = r0 cosφ0, y0 = r0 cosφ0 can

be represented similarly to eqn. 6.15 as

ψin(x, y) = Ne−(x−x0)2−(y−y0)2

, cartesian cordinates (A.12)

ψin(ξ, φ) = Ne−ξ
2−ξ2

0+2ξξ0 cos(φ−φ0), polar cordinates (A.13)

where ξ =
√
x2 + y2, φ = arctan(y/x), and N = 1/

√
π. Using the Jacobi-Anger transform

and the Bessel to Laguerre relation

ez cosφ =
∞∑

l=−∞

Il(z)eilφ, (A.14)

Il(z) =
(z

2

)l e−t

Γ(l + 1)

∞∑
p=0

L|l|p (−z2/4t)
p+lCpp!

, (A.15)

where, p+lCp = (p+ l)!/l! for positive l and arbitrary t, the incident beam off axes can be

represented as a spectral decomposition of Laguerre-Gauss modes. Eqn. (A.13) becomes

ψin(ξ, φ) =
1√
π
e−

ξ2+ξ20
2

∞∑
l=−∞

Il (ξξ0) eil(φ−φ0). (A.16)

Making a choice of t = −ξ2
0/4 the expansion of the associated Bessel becomes

Il (ξξ0) =

(
ξξ0

2

)l
e
ξ20
4

Γ(l + 1)

∞∑
p=0

L|l|p (ξ2)
p+lCpp!

, (A.17)

=

(
ξξ0

2

)l
e
ξ20
4

∞∑
p=0

L|l|p (ξ2)

(p+ l)!
. for l ∈ Z,Γ(l + 1) = l! (A.18)
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Eq. (A.16) can be re-expressed as:

ψin(ξ, φ) =
∞∑
p=0

∞∑
l=−∞

(
ξ2

0

4

)p+ |l|
2

e
ξ20
4 · (−1)p√

π(p+ |l|)!
e−

ξ2

2 ξ|l|L|l|p
(
ξ2
)
eil(φ−φ0). (A.19)

Making a choice of normalized LG beams basis of

ψLGpl (ξ, φ) =

√
p!

π(p+ |l|)!
ξ|l|e−

ξ2

2 L|l|p
(
ξ2
)
eilφ, (A.20)

the off-axis beam input state becomes

ψin(ξ, φ) =
∞∑
p=0

∞∑
l=−∞

(−1)p
(
ξ2

0

4

)p (
ξ2
0

4

) |l|
2
e
ξ20
4√

p!(p+ |l|)!
ψLGpl (ξ, φ− φ0, 0). (A.21)

This is a combination of two Laguerre-Gauss basis. The coordinates can be interchanged

giving rise to two orbital momenta states define relative to two origins one along the axis

of the SPP (0, 0), and the other around the neutron center r0, φ0. The OAM around the

center of the neutron is polynomial modulated Laguerre-Gauss

ψ0l = N0

(
ξ0

2

)|l|
e
ξ20
4 (A.22)

and it in turn modulate the OAM about the axis of the SPP. The normalization factor is

N0 =
√

2l−1/(π`!σ⊥).

ψin(ξ, φ) =
∞∑
p=0

∞∑
l=−∞

Apl(ξ0, φ0)ψLGpl (ξ, φ− φ0, 0), (A.23)

where we have defined the location dependent modulated Gaussian as:

Apl(ξ0, φ0) =

(
ξ2

0

4

)p+ |l|
2 (−1)pe

ξ20
4√

p!(p+ |l|)!
(A.24)

Upon taking diffraction into account, we can express σ⊥ = σ⊥(z) at any point z along the

z-axis. We can note from the state in Eq. A.23 that the state at incidence carries infinite

sum of OAM as a result of it proximity.
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Propagating through a phase plate of topological charge q the state at the exit is

ΨSPP(ξ, φ, 0) = ψin(ξ, φ)eiqφ (A.25)

=
∞∑
p=0

∞∑
l=−∞

Apl(ξ0)ψpl(ξ, φ− φ0)eiqφ, (A.26)

which can be expressed as a linear combination of the basis as

ΨSPP(ξ, φ, 0) = ψin(r, φ)eiqφ (A.27)

=
∞∑
p=0

∞∑
l=−∞

Apl(ξ0)e−ilφ0

∞∑
n=0

∞∑
m=−∞

Cpl
nmψnm(ξ, φ)eimφ, (A.28)

where

Cpl
nm =

∫ ∞
0

ξdξ

∫ 2π

0

dφ ψpl(ξ, φ)ψnm(ξ, φ)∗eiqφ =

∫ ∞
0

dξ ξGp,l
n,m(ξ)

1

2π

∫ 2π

0

ei(l+q−m)φdφ,

=

ei(l+q−m)π sin[(l+q−m)π]
(l+q−m)π

∫∞
0
dξ ξGp,l

n,m(ξ) for l + q −m ∈ R∫∞
0
dξ ξGp,l

n,m(ξ) δ(l + q −m) for l + q −m ∈ Z
. (A.29)

A.5 On-axis quadrupole

The output state is from a quadrupole when an input state if |ψ0,0,↑〉 = |n0, `0, ↑〉 can be

rewritten as an expansion to the basis function as

|ΨQ〉 = cos

(
πr

2rc

)
|ψ0,0,↑〉+ ieiφ sin

(
πr

2rc

)
|ψ0,0,↓〉 =

∑
n,`

|n〉
(
Cn,`,↑|` ↑〉+ iCn,`,↓|`, ↓〉

)
,

where,

Cn,`,↑ =

∫ ∞
0

dr

∫ 2π

0

dφ ξ〈n, `|ξ, φ〉〈ξ, φ|ΨQ〉 = 〈n, `, ↑ | cos (πr/2rc) |n0, `0, ↑〉

= 〈n| cos (πr/2rc) |n0, 〉δ``0 ,= δ``0

∫ ∞
0

Gn0,`0
n,`0

(ξ) cos

(
πσ⊥
2rc

ξ

)
ξdξ (A.30)
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Cn,`,↓ =

∫ ∞
0

dr

∫ 2π

0

dφ ξ〈n, `|ξ, φ〉〈ξ, φ|ΨQ〉 = 〈nr, `, ↓ | sin (πr/2rc) |n0, `0 + 1, ↓〉

= 〈n| sin (πr/2rc) |n0〉δ`,`0+1 = δ`,`0+1

∫ ∞
0

Gn0,`0
n,`0+1(ξ) sin

(
πσ⊥
2rc

ξ

)
ξdξ (A.31)

where

Gn,l
p,m(ξ) = 2

√
p!n!

(p+ |m|)!(n+ |l|)!
ξ|m|+|l|e−ξ

2L|m|p

(
ξ2
)
L|l|n
(
ξ2
)

(A.32)

Using the coefficients above, the states above can be represented as

|ΨQ〉 =
∑
n

|n〉
(
Cn,`0,↑|`0 ↑〉+ iCn,`0+1,↓|`0 + 1, ↓〉

)
, (A.33)

The coefficients are all real and normalized, i.e∑
n

(
C2
n,`0,↑ + C2

n,`0+1,↓

)
= 1 (A.34)

Proof:

Define an arbitrary coefficient

T n,lp,m =

∫ ∞
0

Gn,l
p,m(ξ)F (ξ)ξdξ, where, F (ξ) = sin

(
πσ⊥
2rc

ξ

)
or cos

(
πσ⊥
2rc

ξ

)
,

so that that the sum over p,∑
p

|T n,lp,m|2 =
∑
p

∫ ∞
0

dξ

∫ ∞
0

dζ Gn,l
p,m(ξ)Gn,l

p,m(ζ) ξF (ξ) ζF (ζ). (A.35)

Using Eq. (A.32), one gets∑
p

Gn,l
p,m(ξ)Gn,l

p,m(ζ) =
∑
p

4p!n! ξ|m|+|l|e−ξ
2

(p+ |m|)!(n+ |l|)!
ζ |m|+|l|e−ζ

2 L|m|p

(
ξ2
)
L|m|p

(
ζ2
)
L|l|n
(
ξ2
)
L|l|n
(
ζ2
)

=
4n! ξ|m|+|l|e−ξ

2

(n+ |l|)!
ζ−|m|+|l| L|l|n

(
ξ2
)
L|l|n
(
ζ2
)
δ(ζ2 − ξ2) using Eq. (A.4),

such that in combination with the delta function decomposition Eq. (A.11), we get∑
p

|T n,lp,m|2 =
2n!

(n+ |l|)!

∫ ∞
0

dξ ξ2|l|e−ξ
2L|l|n

(
ξ2
)2
ξF (ξ)2. (A.36)
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Noting that this relation is independent of m, the normalization condition becomes,∑
n

|Cn,`0,↑|2 +
∑
n

|Cn,`0,↓|2 =
2n0!

(n+ |`0|)!

∫ ∞
0

dξ ξ2|`0|e−ξ
2L|`0|n

(
ξ2
)2
ξ
(

sin2() + cos2()
)
,

=
n0!

(n0 + |`0|)!

∫ ∞
0

ξ|`0|e−ξL|`0|n0
(ξ)2 dξ = 1 LG normalization

A.6 Non expanded input state in to the LG basis

Consider the input wavepacket with no OAM, polarized along the z-axis, and located at

(r0, φ0) i.e Gaussian modulation ψin = 1√
π
e−ξ

2−ξ2
0+2ξξ0 cos(φ−φ0) which we denote as |ψin, ↑〉.

The output state of a quadrupole is

|ΨQ〉 = cos

(
πr

2rc

)
|ψin, ↑〉+ ieiφ sin

(
πr

2rc

)
|ψin, ↓〉 =

∑
n`

(
Cn,`,↑|n, `, ↑〉+ iCn,`,↓|n, `, ↓〉

)
where, Cn,`,↑ =

∫∞
0
dr
∫ 2π

0
dφ r〈n, `|r, φ〉〈r, φ|ΨQ〉 using the Jacobi-anger transform in

Eq. (A.2), we get

Cn,`,↑ =
e−

ξ20
2

√
π

∫ ∞
0

ξdξ

∫ 2π

0

dφe−
ξ2

2

∞∑
m=−∞

Im
(
rr0

σ2
⊥

)
cos

(
πσ⊥ξ

2rc

)
ψ∗n`(r, 0)eim(φ−φ0)e−i`φ

= 2
√
πe−

ξ20
2

∞∑
m=−∞

∫ ∞
0

ξdξe−
ξ2

2 Im (ξξ0) cos

(
πσ⊥ξ

2rc

)
ψ∗nl(ξ, 0)e−imφ0

1

2π

∫ 2π

0

dφei(m−`)φ

= e−
ξ20
2

∞∑
m=−∞

∫ ∞
0

ξdξGmn,`(ξ, ξ0) cos

(
πσ⊥ξ

2rc

)
e−imφ0

1

2π

∫ 2π

0

dφei(m−`)φ

= e−
ξ20
2


∑∞

m=−∞ e
−imφ0ei(m−`)π sin[(m−`)π]

(m−`)π

∫∞
0
dξ ξGmn,`(ξ, ξ0) cos

(
πσ⊥ξ
2rc

)
for m− ` ∈ R

e−i`φ0
∫∞

0
dξ ξG`n,`(ξ, ξ0) cos

(
πσ⊥ξ
2rc

)
for m− ` ∈ Z

,

(A.37)
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In a similar fashion, ξ0 = r0/σ⊥. In a similar way

Cn,`,↓ =
e−

ξ20
2

√
π

∫ ∞
0

ξdξ

∫ 2π

0

dφe−
ξ2

2

∞∑
m=−∞

Im (ξξ0) sin

(
πσ⊥ξ

2rc

)
ψ∗n`(r, 0)eim(φ−φ0)ei(1−`)φ

= e−
ξ20
2


∑

m e
−imφ0ei(m−`+1)π sin[(m−`+1)π]

(m−`+1)π

∫∞
0
dξ ξGmn,`(ξ, ξ0) cos

(
πσ⊥ξ
2rc

)
for m− ` ∈ R

e−i(`−1)φ0
∫∞

0
dξ ξG`−1

n,` (ξ, ξ0) cos
(
πσ⊥ξ
2rc

)
for m− ` ∈ Z

,

(A.38)

where

G`p,m(ξ, ξ0) = 2

√
p!

(p+ |m|)!
ξ|m|e−

ξ2

2 L|m|p

(
ξ2
)
I` (ξξ0) (A.39)
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