
Hierarchical Task Recognition and
Planning in Smart Homes with

Partial Observability

by

Dan Wang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2017

c© Dan Wang 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Older adults with cognitive impairment have significantly burdened their families and the
society due to costly caring and waste of labors. Developing intelligent assistant agents
(IAAs) in smart homes that can help those people accomplishing activities of daily living
(ADLs) independently has attracted tremendous attention, from both academia and in-
dustry. Ideally, IAAs should recognize older adults’ goals and reason about further steps
needed for the goals.

This paper proposed a goal recognition and planning algorithm to support an IAA in
smart home. The algorithm addresses several important issues. First it can deal with
partial observability by Bayesian inference for step recognition. Even advanced sensors are
not guaranteed to be 100% reliable. Besides, due to limited accessibility or privacy, not
all attributes of physical objects can be measured by sensors. The proposed algorithm
can reason about ongoing goals with some sensors missing or unreliable. Second, the
algorithm reasons about concurrent goals. For everyday life, a person is typically involved
in multi-tasks by switching back and forth. Based on the context, the proposed algorithm
can assign a step to the correct goal and keep tracks of the goal’s ongoing status. The
context involves status of ongoing goals inferred from a recognition procedure, and desired
next steps and tasks, which are obtained through a planning procedure. Last but not
least, the algorithm can handle incorrectly executed steps. For older adults with cognitive
impairment, executing unrelated or wrong steps towards certain goals is common in their
daily life. A module is designed to hand wrong steps by detecting and then prompt the
person with correct steps.

The algorithm is based on Hierarchical Task Network (HTN), of which the knowledge
base is composed of methods (for tasks) and operators (for steps). Such hierarchical mod-
eling of tasks and steps enables the algorithm to deal with partially ordered subtasks and
alternative plans. Furthermore, the preconditions of methods and operators enable to
generate feasible hints of next steps and tasks by considering uncertainties in belief states.

In the experiment, a simulator is designed to simulate the virtual sensors and a virtual
human executing a sequence of steps predefined in a test case. The algorithm is tested on
many simulated easy or difficult cases. For example single goal and correct steps are easy
test cases. Having multiple goals with wrong steps makes the problem more difficult. Also
cases of sensors missing are experimented. The results shows that the algorithm works
very well on simple cases, achieving nearly 100% accuracy. Even for the hardest cases, the
performance is acceptable when sensor reliabilities are above 0.95. Test cases with missing
sensors also provide meaningful guideline for setting up sensors for an intelligent assistant
agent.

iii

Acknowledgements

First of all, I’m very grateful to my supervisor Prof. Jesse hoey. Jesse helped me a lot
in my study and thesis. Whenever I got lost in my project, Jesse is always there to hep
and give insightful and concrete advice. He helped and supported students in all possible
ways. I enjoyed very much working with Jesse for the last two years. Time flies and I will
never forget how much time and care he invested on my research.

I also would like to thank Prof. Kate Larson and Prof. Ian McKillop for reading my
thesis. Your effort helps to improve this thesis.

When I came to Waterloo, I got to know many lab mates, including Areej Alhothali,
Josh Jung, Shehroz Khan, Deepak Rishi, Zhengkun Shang, Haiyu Zhen, Aarti Malhotra,
and Aron Li. I learned a lot from you and of course we had a lot of fun!

Lastly, I want to thank my family for their continuous support over the years.

iv

Table of Contents

List of Tables viii

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Thesis Overview . 5

2 Related Work 7

2.1 Non-Hierarchical Approaches . 8

2.1.1 Bayesian Network (BN) . 8

2.1.2 Artificial Neural Network (ANN) 9

2.1.3 HMM and CRF . 9

2.1.4 Other Machine Learning Techniques 9

2.2 Hierarchical Approaches . 10

2.2.1 HTN-based Approach . 11

2.2.2 Ontology-based Approach . 12

2.2.3 Other Approach . 13

2.3 Goal Recognition in Smart Homes . 14

2.4 Related Work Summary . 15

v

3 Problem Description 17

3.1 Definitions . 17

3.1.1 Terminology Summary . 17

3.1.2 HTN Planning . 19

3.1.3 Goal Recognition . 23

3.1.4 Goal Recognition and Planning . 25

3.2 Problem Categories . 27

4 The Algorithm 29

4.1 Data Structures and Terminologies . 29

4.2 The HTN-GRP-PO Algorithm . 36

4.3 Agent Initialization . 39

4.4 Compute PSstep Posterior . 40

4.5 Belief State bs Update . 43

4.6 Explanation Set Update . 46

4.6.1 Bottom Up Initialization . 48

4.6.2 Top Down Decomposition . 54

4.7 Wrong Steps Handling . 60

4.8 Derivation of PROB and PS . 63

4.9 Algorithm Summary . 64

5 Experiments 66

5.1 Scenario, Knowledge Base and Sensors . 66

5.1.1 Scenario . 66

5.1.2 Knowledge Base . 67

5.1.3 Sensors . 68

5.2 Simulator . 69

5.2.1 Real State Update . 69

vi

5.2.2 Sensor Reading Update . 70

5.3 Experiment Test Cases . 70

5.3.1 Single Goal Correct Step . 70

5.3.2 Multiple Goals Correct Step . 71

5.3.3 Single Goal with Wrong Step . 72

5.3.4 Multiple Goals with Wrong Step . 74

5.3.5 Multiple Tasks With Shared Step 75

5.3.6 Sensor Missing Cases . 76

5.3.7 Desired Output for Test Cases . 77

5.4 Experiment Results . 77

5.4.1 Performance Evaluation Criteria . 78

5.4.2 Results on Test Cases with Changing Sensor Reliabilities 79

5.4.3 Results on All Test Cases with Sensor Missing 91

5.4.4 Experiment Results Summary . 95

6 Conclusion and Future Work 97

6.1 Contribution Summary . 97

6.1.1 Combining Goal Recognition and Planning 97

6.1.2 Complex Problem Properties . 98

6.2 Conclusion . 99

6.3 Limitations and Future Work . 99

References 101

APPENDICES 108

A Methods in Knowledge Base 109

B Operators in Knowledge Base 117

C Pending Set Output for Cases 126

vii

List of Tables

3.1 A Goal Recognition and Planning Problem Example 26

3.2 Problem Categories . 27

4.1 The Outcome of an Algorithm Iteration . 33

4.2 Explanations after the Iteration shown in Table 4.1 34

4.3 Goal Network for expla1 in Table 4.2 . 34

5.1 Sensors Used in the Experiment (Initial values are in boldface) 68

5.2 Test Cases for Problem Categories . 71

5.3 Single Goal Correct Step Case 1-3 . 71

5.4 Multiple Goals Correct Step Case 5-6 (steps for wash-hand are in boldface) 72

5.5 Single Goal Wrong Step Case 7-10 (wrong steps have underlines) 73

5.6 Multiple Goals Wrong Step Case 11-12 (steps for wash-hand are in boldface,
wrong steps have underlines) . 74

5.7 Multiple Tasks With Shared Correct Step Case 4 (the shared step is in
boldface) . 75

5.8 Sensor Missing Category . 76

5.9 Sensor Missing Cases (boldface decimals are sensor reliabilities) 76

5.10 Average Performances on Test Cases (boldface decimals are sensor relia-
bilities) . 80

5.11 Pending Set for Case 5 with Sensor Reliability 0.90 (The First 8 steps) . . 84

5.12 Pending Set for Case 9 with Sensor Reliability 0.90 86

viii

5.13 Pending Set for Case 1 with Sensor Reliability 0.90 87

5.14 Average Performance on Case 1-3 with Sensor Missing 92

5.15 Average Performance on Case 5-6 with Sensor Missing 92

5.16 Average Performance on Case 7-10 with Sensor Missing 92

5.17 Average Performance on Case 11-12 with Sensor Missing 93

5.18 Step output for case 1 with M5 . 94

A.1 Method clean-hand . 109

A.2 Method wash-hand . 110

A.3 Method kettle-1-heat-water . 110

A.4 Method kettle-1-add-water . 111

A.5 Method prepare-hot-water . 112

A.6 Method add-tea . 113

A.7 Method add-coffee . 113

A.8 Method mix-tea-water . 114

A.9 Method mix-coffee-water . 115

A.10 Method make-tea . 115

A.11 Method make-coffee . 116

A.12 Operator use-soap . 116

B.1 Operator use-soap . 117

B.2 Operator rinse-hand . 118

B.3 Operator turn-on-faucet-1 . 118

B.4 Operator turn-off-faucet-1 . 119

B.5 Operator dry-hand . 119

B.6 Operator switch-on-kettle-1 . 120

B.7 Operator switch-off-kettle-1 . 120

B.8 Operator add-water-kettle-1 . 121

ix

B.9 Operator get-cup-1 . 121

B.10 Operator open-tea-box-1 . 122

B.11 Operator add-tea-cup-1 . 122

B.12 Operator close-tea-box-1 . 123

B.13 Operator add-water-cup-1 . 123

B.14 Operator open-coffee-box-1 . 124

B.15 Operator add-coffee-cup-1 . 124

B.16 Operator close-coffee-box-1 . 125

B.17 Operator drink . 125

C.1 Pending Set for Case 1 with Sensor Reliability 0.90 126

C.2 Pending Set for Case 2 with Sensor Reliability 0.90 127

C.3 Pending Set for Case 5 with Sensor Reliability 0.90 128

C.4 Pending Set for Case 9 with Sensor Reliability 0.90 131

C.5 Pending Set for Case 11 with Sensor Reliability 0.95 131

x

List of Figures

3.1 Method example in JSON format . 21

3.2 Operator example in JSON format . 22

3.3 Belief State example in JSON format . 25

4.1 Part of a Knowledge Base . 33

4.2 tree1 and decompGN1 in goalN1 . 35

4.3 An Algorithm Iteration . 37

4.4 A Wrong Step Handling Example . 39

4.5 Bayesian Network for Step Posterior . 41

4.6 ExplaSet Update Breakdown . 46

4.7 BottomUpExpand . 53

5.1 The Hierarchical Task Network for Experiment 67

5.2 The PROB Output for Case 1 (wash-hand) 80

5.3 The PROB Output for Case 2 (make-tea) 81

5.4 The PROB Output for Case 5 (wash-hand, make-coffee) 81

5.5 The PROB Output for Case 9 (wash-hand) 82

5.6 The PROB Output for Case 11 (wash-hand, make-coffee) 82

5.7 Explanation Numbers with Different Sensor Reliabilities 90

xi

Chapter 1

Introduction

1.1 Motivation

Nowadays, more and more older adults suffer from cognitive impairments, which cause
great difficulties in doing activities of daily living (ADLs) [19]. For example, Alzheimer’s
disease degenerates people’ capability to remember things and think clearly. As a conse-
quence, the older adults have more difficulty in taking care of themselves in ADLs, such
as cooking, laundry, etc.

Cognitive impairments impact significantly the older adult, his/her family as well as the
society. In general, people suffer from psychological stresses when they are confused with
simple things which was not the case before. Some typical symptoms include anxiety, rage,
and even violence, which accelerate cognitive deterioration. For the families, the life quality
is reduced remarkably due to costly treatment of Alzheimer’s disease. According to the
Alzheimer’s association report in 2016 [3], families with Alzheimer’s disease members have
substantial financial burden, which forces people to “take money out of their retirement
savings, cut back on buying food, and reduce their own trips to the doctor” 1. For the
society, the care of older adults with Alzheimer’s and other dementia diseases leads to
occupation of labors. As reported by the Alzheimer’s association [3], “in 2015, more than
15 million family members and other unpaid caregivers provided an estimated 18.1 billion
hours of care to people with Alzheimers and other dementias, a contribution valued at
more than $221 billion” 1. This report also predicts that by 2050, there would be about 1
million new cases of Alzheimer’s per year.

1Quote from page 459, Alzheimer’s Association. ”2016 Alzheimer’s disease facts and figures.”
Alzheimer’s & Dementia 12.4 (2016): 459-509.

1

For the above mentioned reasons, developing intelligent assistance agents (IAAs) to
help the older adults with cognitive impairments on ADLs becomes urgent. Recently, both
academia and industry have spent tremendous efforts in this direction. An IAA is expected
to help the older adults to accomplish ADLs without caregivers, so as to free caregivers
from repeated and time-consuming caring. Besides, the older adults also benefit from the
interactive process by gaining independence and self-confidence.

In a smart home, IAAs play the role of intelligent real-time reminders. It means that
the agent prompts the older adult whenever he/she is confused in ADLs. To achieve this,
IAAs should at least be capable of: gathering signals from sensors, being aware of situations
[16], recognizing ongoing goals, presenting effective assistances and alerting caregivers [36].
Ideally, the prompts should take into account older adults’ current awareness and emotional
states, so older adults move forward comfortably and smoothly.

Due to limitations of sensors and privacy concerns, not all attributes of objects in the
environment can be monitored by sensors. For example, it is not feasible to attach a sensor
to a person’s hands for detecting if his/her hands have soap. Furthermore, even though
some sensors are available, they are not 100% reliable. Thus IAAs should also cope with
partial observability due to missing or unreliable sensors.

Older adults with cognitive impairments commonly execute ADLs with irrational, re-
peated and disordered steps. IAAs are required to identify these improper behaviors. Geib
et al. [24] discussed several critical considerations of goal recognition for the older adults.
These include abandoning plans, hostile agents, observations of failed actions, partially
ordered plans, multiple concurrent goals, actions used for multiple effects, and failure to
observe.

Although an assistance agent aims to help older adults with cognitive impairments
as much as possible, aggressive prompts have the opposite consequences. According to
Hoey et al. [33], smart home assistance should be as passive as possible, so as to main-
tain the independent feeling of older adults. Researchers in social psychology also argue
that task instructions without excessive emphasizing on the memory component of a task
can improve the older adults performance on the task [19]. Hence it is undesirable to
always present the most detailed instructions for an older adult with Alzheimer’s or other
dementias.

An IAA should be customizable and generalizable. An IAA helps older adults achieve
some goals. The recipe of a daily task varies from one person to another, for two reasons.
Firstly, each person has his/her own preference and habits for ADLs. For example, to
make a cup of tea, some people are used to fill the cup with hot water first, while others
are used to dropping a tea bag first. Instructions consistent with habits make people feel

2

comfortable. Secondly, each home has its own appliances, which lead to different ways
to achieve ADLs. Ideally, IAAs should customize its assistance according to personal
specifications and preferences.

Based on all the above discussions, an IAA to help older adults with Alzheimer’s disease
or other dementias on their ADLs should address the following aspects.

• Tolerate partial observability caused by missing and unreliable sensors.

• Recognize concurrent goals.

• Detect improper steps and rectify the older adult from mistakes.

• Present hints or prompts of various detail levels.

• Customize for different personal specifications and preferences.

1.2 Objectives

This work proposes an algorithm for IAAs to address the above-mentioned issues. It should
have the following functionalities.

• Tolerance to partial observability. The input of the algorithm is sensor mea-
surements, from which the algorithm infers steps happening. Inaccurate sensor mea-
surements lead the algorithm to produce incorrect step recognition. This will further
affect goal recognition, leading to wrong hints for the next tasks and steps.

• Step recognition. Step recognition precedes goal recognition. Given sensor mea-
surements, the algorithm should give the probabilities of steps occurring. Considering
the large number of possible steps, to reduce complexity, the algorithm extracts only
steps related to the context.

• Goal recognition. As a core part of an IAA, the algorithm definitely should be
able to recognize the person’s purpose or intent based on observations. Besides,
the algorithm should know how much progress has been made towards the goals.
Furthermore, the algorithm should also work when the person is multitasking. To be
precise, the algorithm matches observations to goals, monitors the ongoing process
of each goal, and derives the probability of a goal in the progress.

3

• Planning. A planning process generates a sequence of steps for achieving a given
goal. It is needed in this work because whenever the older adult get confused, the
agent needs to reason about the correct next tasks and steps. The steps should be
feasible w.r.t. constraints. Given the status of an ongoing goal, the planning process
should prompt in different detail levels.

• Exception handling. As mentioned before, mistakes are common for older adults
with Alzheimer’s disease and other dementias when accomplishing ADLs. The algo-
rithm should identify mistakes made by the older adults and rectify them by giving
instructions.

• Customizable activities. The ADLs that need help varies from person to person.
For example, some older adults have problems with making coffee, while some can’t
take a shower independently. Furthermore, even for the same activity, different person
has different preferences. The algorithm in this work aims to be activity independent.
The caregivers can simply set up the agent based on activities that their older adults
need help with and also the older adults’ preferences.

This work proposes the HTN-GRP-PO algorithm, which stands for “hierarchical task
network based goal recognition and planning algorithm with partial observability”. The
algorithm adopts the hierarchical paradigm in Hierarchical Task Network (HTN) planning
[20], which generates feasible plans for predefined tasks by recursively decomposing com-
posite tasks using a knowledge base. The modeling of ADLs with a HTN framework has
two advantages. First, the hierarchical nature of HTNs enables the algorithm to provide
prompts of different detail levels. Second, the knowledge base allows to set up specific
goals and preferences for the older adults.

Although the algorithm aims at recognizing ongoing goals, in the step level, probabilities
of steps occurring are inferred through a Bayesian network. To reduce computational
complexity, only steps related to the context are considered. The proposed hierarchical
goal recognition algorithm can handle concurrent goals. It tracks the status of all the
ongoing goals, updates the beliefs on goals based on new observations, monitors steps
just happened, and reports wrong steps. This framework works with given hierarchical
task networks which is predefined in a knowledge base. As such, the algorithm shares
the strengths of HTNs, including the ability to deal with ordered / unordered subtasks,
alternative ways to achieve a goal, and preconditions of tasks and steps.

The planning part of the algorithm is designed to obtain the desired next steps and
tasks in order to achieve the recognized goals. It is based on HTN planning. The generated

4

hierarchical hints will be presented when necessary. Basically, the planning process decom-
poses tasks which are ready to be implemented by applying methods in the knowledge
base. A method is applied to a task only when all its preconditions are satisfied. Thus
hints for the desired next steps and tasks must be consistent with the context.

Exception handling in the algorithm is motivated by re-planning in HTN, which recre-
ates feasible plans when the execution of plans goes wrong. In the case of wrong steps,
the algorithm figures out the associated hierarchical task network and repairs the network.
The output of exception handling are hints for the next steps and tasks to execute, so as
to rectify wrong steps.

A simulator which sets up virtual sensors and simulates the occurring of steps predefined
in a test case is designed for the experiment. No real older adults are involved in the
experiment. After each simulated step, the algorithm reasons about the ongoing goals
and the correct next tasks and steps for the ongoing goals. The outputs of each step
are compared with the ongoing goals and the next tasks and steps of the corresponding
test case, so as to compute output accuracy. According to experiments, the proposed
algorithm’s performance depends on how challenging is the test case. Basically, issues like
unreliable or missing sensors, concurrent goals, and wrong steps make the problem more
difficult. The experiment results indicate that when only one kind of aforementioned issues
presents, the algorithm performs very well, with accuracy above 95%. When two kinds
of issues present, the accuracy reduces to 85%-95%. When all of the issues present, the
performance becomes unacceptable, with accuracy under 80%.

Despites the performances on some hard case being less than satisfying, meaningful
suggestions are given. The results shows that the priors of goals have impacts on the
performance. Thus, priors of goals should be carefully set up. Besides, the experiments
also indicate which sensors are important for a specific scenario. Those sensors should
be highly reliable and not missing. The experiments on test cases with sensors missing
provide meaningful guidance for setting up smart home environments properly.

1.3 Thesis Overview

The remaining of this thesis is structured as follows.

• Chapter 2 discusses related works of this paper and reviews state-of-the-art.

• Chapter 3 defines the problem that this work aims to solve. The recognition and
planning problem are mathematically defined. Problem properties are analyzed.
Also notations and terminologies are given.

5

• Chapter 4 details the proposed HTN-GRP-PO algorithm. Section 4.1 explains the
terminologies and associated data structures. Section 4.2 outlines the algorithm
by a simple example. The following six sections Section 4.3 to Section 4.8 detail
six modules of the algorithm respectively. Summary of the algorithm is given in
Section 4.9.

• Chapter 5 conducts experiments to evaluate the algorithm’s performance. It starts
with the experimental scenario and knowledge base. The simulator for the experiment
is designed in Section 5.2. Section 5.3 provides a list of test cases. Experiment results
and discussions are presented in the last section.

• Chapter 6 concludes and discusses some interesting future work.

6

Chapter 2

Related Work

Various terminologies including goal recognition, plan recognition, intent recognition, and
activity recognition, refer to the reasoning of what people are doing and what they will
do next. Activity recognition is more about recognizing ongoing activities by analyzing
low-level data gathered from physical sensors. Machine learning is widely used for activity
recognition, see surveys [40, 59]. In contrast, goal, plan, or intent recognition aims to
identify high-level goals by reasoning about observed low level steps. In our work, we focus
on the latter kind of goal recognition.

Kautz et al. defined goal recognition as finding possible top level tasks (goals) to
explain a set of observed steps [39]. Cohen et al. [14] classified goal recognition into
two categories according to whether the older adult knows he/she is observed, namely
intended or keyhole goal recognition respectively. In intended goal recognition, the person
being observed collaborates with IAA. However in keyhole goal recognition, the person is
not and doesn’t know he/sher is being monitored. Note that the target users of IAAs in
this work are the older adult with cognitive impairments, who does not have a complete
knowledge of the domain and are likely to perform erroneous steps. So this work falls to
the category of keyhole goal recognition, where users are not actively collaborating with
the IAA.

The definition of goal recognition, which involves both high level goals and low level
steps, already indicates its hierarchical nature. Such hierarchy is of multiple levels. It is also
standard to use a knowledge base for goal recognition, despite differences in formulations.
Considerations of goal recognition includes, but is not limited to, the number of actors,
the number of goals, goals priors, partially and totally ordered steps, the likelihoods of
explanations and erroneous steps.

7

In [1], goal recognition approaches are classified as either single layer approach or hier-
archical approach. For single layer approaches, the reasoning process matches the obser-
vations directly to goals. The observations are usually raw data from sensors. However, in
hierarchical approaches, the reasoning process recognizes the highest level goals together
with inner level sub-goals. In this literature review, we adopt this taxonomy and discuss
both non-hierarchy and hierarchy approaches, see Section 2.1 and Section 2.2 respectively.
A brief summary of related work is given in Section 2.3.

2.1 Non-Hierarchical Approaches

Non-hierarchical approaches do not consider complex hierarchy of tasks. So it is indeed
activity recognition rather than goal recognition. Often it boils down to a classification
problem. Many machine learning techniques have been applied to activity recognition
based on sensor data. Usually sufficient training data are needed for this kind of approach.

2.1.1 Bayesian Network (BN)

Blaylock and Allen [6] proposed a Bayesian inference based approach to recognize ongo-
ing goals. Necessary prerequisite of their work is a given plan corpus, which stores goals and
the corresponding plans an agent executes to achieve them. Given a sequence of observed
steps, the probability of each goal is computed using Bayesian inference. Conditional prob-
abilities are learned from the given plan corpus. This method is not scalable to large scale
problems and complex tasks with hierarchical structures. Furthermore, collecting plan
corpora might be extremely difficult in some domains.

Chen et al. [11] proposed a data mining framework for goal recognition in a smart
home setting. The inputs of the framework are raw annotated data from sensors which
are attached to objects in a three-bedroom apartment. In the feature extraction stage,
two popular feature selection criteria, called minimal redundancy & maximal relevance
and decision tree based on information gain, are used. They utilized four popular machine
learning methods to predict what is happening, namely Bayesian network (BN), Artificial
Neural Network (ANN), Sequential Minimal Optimization and LogitBoost.

8

2.1.2 Artificial Neural Network (ANN)

In [23], the authors applied artificial neural network (ANN) for activity recognition. The
network is trained with standard back-propagation (BP). Using different features selected,
ANN achieved competitive performance compared to other techniques.

Recently, Min et al. [43] proposed deep LSTM (Long Short Term Memory) network
that can handle noisy and non-optimal behaviors of digital game players. LSTM is a
special Recurrent Neural Network (RNN) for sequential temporal data. The proposed deep
LSTM outperforms competing methods include single layer LSTM [44], n-gram encoded
feed-forward neural network [42] and Markov logic network [30].

2.1.3 HMM and CRF

Hidden Markov Model (HMM) [67, 51] and Conditional Random Fields (CRF) are similar
and popular probabilistic models used for activity recognition.

Valina HMMs are limited in modeling state durations. Van Kasteren et al. [63] claims
that the modeling of accurate state durations is important for ADLs. For this motivation,
Hidden semi-Markov models (HSMM) and semi-conditional random fields (SMCRFs) are
proposed. The results shows that HSMM is much better than HMM. However, the perfor-
mance differences between SMCRF and CRF are not significant.

Such probabilistic models deal with noise and uncertainty in a principled manner [63].
However, they don’t scale well for complex network and relations, which is a major draw-
back of this kind of method.

2.1.4 Other Machine Learning Techniques

Fahad et al. [28] proposed a two level classification approach for activity recognition.
First, they use the Lloyd’s clustering algorithm [41] to separate activities into groups.
Similar activities are in one group. Then activities inside a cluster are classified by Evident
Theoretic K-Nearest Neighbor [18].

Statistical learning method can learn discriminant features without prior knowledge.
However, such methods rely on large amounts of training data. Also it does not work for
hierarchical tasks where complex relations and preferences exist among subtasks.

In summary, non-hierarchical methods focus on identifying activities based on sensor
data. The advantage is their ability to reason purely based on data gathered from sensors.

9

This paper aims at developing an IAA for older adults with cognitive impairments. The
non-hierarchical approaches have the following drawbacks.

• The inference from data to activity, without considering intermediate level tasks,
makes status tracking not feasible. As a result, next steps cannot be predicted.

• Up to now, the accuracy of most of those methods are far less than 90%, which is
not good enough for helping older adults with cognitive impairments.

• These methods are computationally expensive, particularly for complex problems.

• Non-hierarchical approaches need training data, which are not easy to obtain for
some activities.

2.2 Hierarchical Approaches

The earliest work on goal recognition with a hierarchical approach has concentrated on
story understanding. BELIEVER system by Schmidt et al. in 1978 [58] follows a hypoth-
esize and revise strategy. It is a “top down” inference system which retrieves a single plan
based on observation. Another way to understand story is script based [65]. Scripts de-
scribe regularities of the world. For instance, a classroom typically has tables, chairs, and
blackboard. Based on scripts, the dominant reasoning paradigm in AI is adopted. Those
methods need strong assumptions and can hardly handle multiple plans or goals.

A significant milestone in goal recognition is the conceptual framework published on
SCIENCE in 1986 by Kautz and Allen [39]. In this work, they proposed the hierarchy for-
mat to represent the top level tasks and low level steps, and the concept of decomposition.
This concept has became popular and standard. Their deductive inference follows a “bot-
tom up” strategy to consider multiple explanations for inputs. Knowledge hierarchies are
represented as axioms using the second order logic. There are two important assumptions
in their work. Firstly, all the known ways to perform an goal are the only ways to perform
that goal. Secondly, the given decompositions for a task are the only decompositions. Most
of the knowledge based approaches follow these two assumptions.

Advantages of hierarchical approaches are summarized in [1]. Firstly, hierarchical ap-
proaches are especially suitable for recognizing high level tasks with complex structures.
Secondly, they are suitable for interactions with humans. Thirdly, they can easily incorpo-
rate prior knowledge into the representation. Finally, with such a framework, less training
data are needed.

10

Following Kautz and Allen’s conceptual framework [39], many techniques have been
developed. Here we review Hierarchical Task Network (HTN) based and ontology
based hierarchical approaches, which are closely related to this work.

2.2.1 HTN-based Approach

HTN, a terminology in planning, is firstly proposed by Sacerdoti and Earl in 1975 [56].
In HTN planning, high-level (composite) tasks are recursively decomposed into simpler
subtasks by domain artifacts called methods. The decomposition process continues until
so called primitive tasks, which represent concrete steps to execute, are obtained. Primitive
steps are realized by the domain artifact operator. Hierarchical modeling such as HTNs
are believed to be a natural representation for complex cognitive models [13]. Researchers
have utilized HTN framework to goal recognition based on a plan execution procedure and
probability theory.

Chen et al. [12] followed the similar idea in HTN planning and constructed a hierar-
chical structure for composite and atomic activities and gestures. With such hierarchical
structure, resolution based automated reasoning is adopted to recognize composite activ-
ity. The input of their algorithm is video streams. Firstly, a list of low level gestures are
identified. Secondly, atomic actions are derived based on the identified gestures. Finally,
high level goals are obtained using resolution based reasoning. Their framework seems
general but does not take uncertainties into consideration.

Due to powerful representation of HTN knowledge base, HTN-based approaches are
usually capable of dealing with goals with complex structures, such as partially ordered
subtasks, concurrent goals, and so on. The seminal work by Goldman et al. [29] proposed
HTN for goal recognition. The proposed framework is called PHATT (Probabilistic Hostile
Agent Task Tracker). The framework can deal with partially ordered subtasks, overloaded
steps (involved in the implementation of multiple tasks), contextual influence on choices
of steps & goals and observation failures. The recipes of task implementation are coded in
a task library using the HTN format described in [21]. Based on the domain knowledge, a
series of rules, which adopt the Poole’s logic of probabilistic Horn Abduction (PHA) [53],
are proposed to reason about posteriors of steps occurring, the probabilities of goals, and
the pending step sets.

Older Adults often forget the goals they are engaged in. Considering this, Geib added
an additional module to PHATT to identify abandoned goals [24]. The probability a goal
is abandoned is computed based on the observed action sequences which do not contribute
to that goal. The proposed algorithm is tested on several examples. It turns out the time

11

complexity increases significantly with the increasing number of observations. The authors
also mentioned that goals with similar steps increase the complexity of the problem.

In [26], three series of experiments are done to analyze how the impact factors influence
the running time of PHATT [29]. The analyzed factors include tree depth, number of roots,
different order constraints and early closed plans. The results show that the ordering
constraints has the most significant effects on the algorithm’s runtime, followed by the
number of roots, and followed by the actual depth of the plan trees. Follow-up work [25]
summarized previous work and integrated a constraint reasoning module into PHATT to
consider parametrized actions and temporal constraints among actions. The main focuses
of constraint reasoning are action durations and beginning time point of actions.

The PHATT framework proposed by Geib and Goldman is very powerful. It addresses
several difficult issues in goal recognition, including multiple goals, partially ordered sub-
tasks, temporal constraints, abandoned plans, and failure to observe steps. The main
function of PHATT is to compute the conditional probability of a goal given the observa-
tion. The observation of PHATT are steps without uncertainty.

However, in reality, the steps are recognized based on sensor measurements, and usually
sensors are not 100% reliable. Given data gathered with uncertainties, only probabilities
of occurrence for steps can be obtained, rather than a deterministic step. For example,
given a list of sensor notifications, we can say that we are 90% sure that action a1 has
occurred based on the given sensor reliabilities and the current context.

Another limitation of PHATT is that it doesn’t consider the influence of the current
state on the selection of expansions. There may be more than one way to accomplish
a task. Which way to chose really depends on the current state. Some ways might be
unfeasible under a specific situation. Because PHATT does not consider the uncertainties
in the step level, its state is deterministic. Such assumption is unrealistic in practice due
to partial observability.

The algorithm proposed in this work is closely related to PHATT. The main difference
is that we addressed the uncertainties in the step level and the influence of belief states on
the selection of decomposition paths. The probability of a precondition being satisfied is
used for goal recognition and task decomposition.

2.2.2 Ontology-based Approach

Ontology-based approaches are also knowledge-driven. They highlight the modeling of ac-
tivities and behaviors with rich semantics. However, ontology-based modeling have draw-
backs including incompleteness, inflexibility, and lack of adaption. Considering this, Okeyo

12

et al. [47] proposed a novel approach to learn and evolve activity models based on “seed”
ADL ontologies. The algorithm analyzes data logs from sensors and evolves an activity
model according to the predefined evolving condition. Their work does not recognize on-
going tasks. It is designed to generate customizable knowledge bases for users in a smart
home setting.

According to [48], in ontology-based approach, activities are characterized into atomic
activity, simple activity, and composite activity. A simple activity is defined as a sequence
of ordered actions and a composite activity as two or more simple activities occurring
within a given time interval. Composite activities are formulated using both ontological
and temporal modeling formalisms.

In [49], two types of composite activities, concurrency & interleaved and sequential
activities are handled. They exploit ontological reasoning for simple activity recognition
and rule-based temporal inference to support the recognition of composite activities. Only
when two or more simple activities are identified, can they infer composite activities.

To reason about temporal constraints among subtasks of a composite task, Okeyo et al.
[46] proposed a hybrid ontological and temporal approach to model composite activities.
The corresponding approach is based on their previous work [49]. They choose the 4D-
fluents approach described in [4] to represent temporal knowledge. Personal preferences
are also considered. For a specific activity model, several activity instances with different
step order preference are provided.

The modeling of knowledge in our work is similar to those ontology based approaches.
However, the considered problems are different. Firstly, this paper considered partially
ordered relations of subtasks. It is insufficient to only involve the preferred order of a
specific person like in [46]. In fact, even for a specific person, the order of steps to achieve
an activity might change. Secondly, alternative ways of implementing a specific task under
specific state is considered. Usually, there might be many different ways to achieve a
composite task. Which way to choose depends on the current situation. Considering
alternative branches make the system more flexible and applicable. Lastly, we consider
partial observability of sensors, which are not addressed by their work.

2.2.3 Other Approach

Some other early works using hierarchical trees include parsing and Bayesian inference.
Huff and Lesser [35] utilized a parser to derive a parse tree so as to explain the observations.
This method has two main drawbacks. Firstly, it is over commitment unless it generates
all possible explanations. Secondly, every step in the plan must be observed. In other

13

words, it can not deal with partial observations. Vilain [64] also formulated a deductive
reference plan recognition method into a parsing problem. However, the parsing strategy
is not good at dealing with partially ordered subtasks because of the explosion of grammar
size.

For specific observations, there are multiple explanations. Charniak and Goldman [10]
choose the most likely interpretation using Bayesian updates. In their work, the domain
knowledge includes two parts. The predicate-calculus-like representations are used to ex-
plain the basic logic (relations) of domain knowledge. Each relationship in the domain
knowledge has a Bayesian network, telling the conditional probability distribution. Dur-
ing reasoning, the predicate-calculus like representations construct a reasonable network
through “introducing evidence”, “Up-existential” and “Down-existential”. The Bayesian
networks specify the probabilities for the whole network. The Bayesian updates on all of
the generated networks decides to what extent the evidence supports a plan hypothesis.

2.3 Goal Recognition in Smart Homes

Chen et al. [11] utilized adopted popular machine learning techniques to recognize ongoing
activities based on sensor data. The targeted activities includes: cook, watch TV, use
computer, groom, sleep, and bed to toilet. The best accuracy is about 90%. The activ-
ities considered in this work are quite simple, which do not involve complex hierarchical
structures. Also, in order to identify what is happening, a complete sensor observation are
needed in their work. In other words, an activity is identified after it has been finished.
This does not work in an IAA where the agent is supposed to recognize ongoing goals
before completion.

Fahad et al. [28] proposed a clustering based classification algorithm. The activities
considered includes toilet, shower, breakfast, and so on. Such activity recognition method
only cares about what the activity is. It doesn’t care about how the activity is accom-
plished, which way to accomplish is chosen, or what are the next steps. As a consequence,
these work is not that suitable for an IAA which helps the older adult to complete ADLs
indepedently.

Bouchard et al. [8] used the lattice theory and action description logic to stress intra-
dependencies of goals. Some goals share steps and goal recognition. For example, one
person “GoToKitchen” and wants to “GetWater” to drink and then “StartWashing”. Step
“GoToKitchen” is shared by the two goals “PrepareTea” and “WashDish”. In order to
handle this problem, the authors proposed variable plans, which is used for concrete extra-

14

plans generation. Based on observed actions, the existing plans, and the current environ-
ment state, variables in a plan are substituted by concrete actions using the proposed plan
composition process. The generated plans are guaranteed to be consistent.

In order to help older adults with cognitive impairments in smart home, Rafferty et al.
[54] proposed an intelligent agent architecture based on the beliefs, desires, and intentions
(BDIs) paradigm [57] and intention recognition (IR) techniques [2]. Specifically, in BDIs,
beliefs represent the agents perception of the world, desires stores a library of the person’s
goals, and intentions are goals an person is pursuing. Beliefs and desires are modeled
by ontologies. The IR process involves predicting the most likely goal based on observed
steps. The system proposed seems powerful. However, various issues include multiple
goals, partially ordered subtasks, and partial observability are addressed in their work.

Another important issue the above-mentioned works does not address is the goal recog-
nition with multiple occupants. In [5], the authors give a survey on multiple occupant
goal recognition in a smart home environment. They conclude that graphical probabilistic
algorithms are very popular in the modeling and recognizing of activities with multiple oc-
cupancy. Besides, they declared that taking data association and interaction into account
is a major issue for goal recognition in the context of multi-occupancy.

2.4 Related Work Summary

Due to limited representation of complex semantics of ADLs, single layered data-based ap-
proaches are not suitable for assistance agents. The hierarchical knowledge-based approach
is more powerful in both the representations of complex relations and the reasoning about
ongoing goals. Hierarchical-based approach narrows the search space for goal recognition
by goal library and the tracking context. Hence complex problems become feasible.

To summarize, the issues addressed in the above-mentioned hierarchical knowledge-
based approaches include: multiple goals, partially ordered subtasks, overloaded steps,
abandoned plans, temporal constraints and multiple occupants. In our work, we only
addressed some of them, including multiple goals and partially ordered subtasks. However,
considering our unique application scenario, we also addressed issues like wrong steps due
to cognitive impairments and partial observability due to unreliable or missing sensors.

Our algorithm is a hierarchical knowledge based approach. The knowledge base is
expressed in methods and operators using similar formats described in SHOP2 [45], which
is a well-known open source HTN planner. We also adopt the plan execution concept in
[29]. The algorithm combines goal recognition with planning. As a result, it can not only

15

recognize what the older adult is trying to do, but also what are the proper next steps and
tasks in order to achieve the recognized goals. Consequently, the algorithm is able to guide
older adults with cognitive impairments to accomplish daily tasks by providing prompts
in different levels. Our algorithm reasons from sensor data rather than steps. In this way,
partial observability are considered in the step recognition procedure and the belief state
updates process. Plan feasibility is guaranteed by checking the preconditions of methods
and operators during planning.

16

Chapter 3

Problem Description

This chapter describes and defines problems addressed in this work. The definition part,
Section 3.1, starts with a terminology summary, followed by the Hierarchical Task Network
(HTN) planning problem and the goal recognition problem. After that, the goal recognition
and planning problem is defined, which is the focus of this work. The problem is divided
into categories in Section 3.2 based on several problem properties.

3.1 Definitions

3.1.1 Terminology Summary

Terminologies occur in the definitions which are also used throughout this paper are sum-
marized as follows for reference use.

• obj: Object. An object refers to a concrete thing in the environment, such as a door,
a cup, a chair and so on.

• att: Attribute. An attribute describes a specific property of an object that matters
to the problem. For example, a door can have an attribute of open-state, a cup can
have attributes includes location, has-water, and so on.

• sensor: Sensor. A sensor is used to measure the value of an attribute. This work
assumes that one sensor measures one attribute, with a 1-to-1 binding relation.

17

• obs: Observation. A series of sensor readings which indicates values of attributes of
objects.

• t: Task. A composite activity which cannot be achieved by one step. For example,
wash-hand is a task which includes 5 steps: turn-on-faucet, use-soap, rinse-hand,
turn-off-faucet, and dry-hand.

• st: Step. An atomic or primitive action which can be achieved through one step,
such as sit-down, turn-on-light, and so on.

• g: Goal. A goal is a special composite task. It refers to a task that in the highest
level, acting as the intent or purpose. Usually a series of steps need to be executed in
order to achieve a goal. A task is a goal or not depends on the considered problem.
For example, make-tea can be a goal if the user only needs help on make-tea. However
if the user cares about make-breakfast, make-tea becomes a lower level subtask (sub-
goal) rather than a goal.

• G: Goals. G stands for all the goals in the problem. g ∈ G.

• D: Knowledge base for the problem. D = (O,M). M is a set of methods, and O is
a set of operators.

• m: A method. m ∈M . A method matches to a task. It describes the preconditions,
subtasks, and alternative branches to decompose the task.

• o: An operator. o ∈ O. An operator matches to a step. It describes the preconditions
and effects of the step.

• subt: A subtask. As mentioned before, methods can be decomposed into lower level
subtasks. A subtask in a method can be a method or an operator.

• effect: Effect. The outcome of a step, indicating the value changes of related at-
tributes.

• precondition: Precondition. The prerequisites that a method or operator can be
applied to make a goal, a task or a step happen. A precondition contains a list of
items with the format of (obj, att, value).

• s: State. A description of the real environment, including all related objects and
their attributes’ status.

18

• bs: Belief state. The agent’s belief on the current environment based on all previous
observations and reasonings.

• PROB: Goal distribution. After each iteration of reasoning, PROB is the goal
recognition result, indicating the likelihood of happening of all goals.

• PS: Pending set. After each iteration of reasoning, PS is the possible next tasks
and steps in order to achieve PROB. It has multiple levels. Each element in PS
includes level information, task or step name, and its probability. The probabilities
act as the priors for the next reasoning iteration.

• PSstep: Step level pending set. It includes the step name and its probability. PSstep ∈
PS.

• carryOnπexecuted : The carry-on effects of the executed step sequence πexecuted.

The problem definitions of HTN planning, goal recognition and goal recognition &
planning are given in Subsection 3.1.2, Subsection 3.1.3, and Subsection 3.1.4, respectively.

3.1.2 HTN Planning

Definition 3.1.1 (HTN Planning Problem). An HTN planning problem is a four tuple

P p = (s, g,D, π).

The superscription p indicates that this is a planning problem. s is the initial state,consisting
of a set of fluents that are true in the environment. g is the goal the generated plan trying
to achieve. The HTN planning domain knowledge

D = (O,M),

includes a set of methods M and a set of operators O [27]. A method decomposes a
composite task into subtasks, while an operator describes a primitive step. A solution to
the problem

π = [st1, st2, st3,, stn],

is a step list which is executable in initial state s. Goal g should be reached after sequen-
tially executing the steps in π.

19

Definition 3.1.2 (Method). A method is a list with the format of

m = (mName, precondition [], subtasks [], parent [], (startStep [])).

mName is the task name that m can be applied to. precondition and subtasks are two lists
with the same length. (precondition[i], subtasks[i]) is one of the decomposition branches
when applying m to a task. It means that when precondition[i] is satisfied in s, the
corresponding task can be decomposed into subtasks[i] by applying method m. parent
specifies all methods whose subtasks contains mName. As one can see, subtasks specifies
the top-down relationship while parent specifies the bottom-up relationship. startStep
stores the beginning steps of a goal. It is optional since startStep is present only when m
stands for a goal.

Each item in precondition is a list of fluents with the format of

precondition[i] = [(obj1, att1, value1), (obj2, att2, value2), ...].

It describes the required values of attributes of related objects to make m feasible. Each
item in subtasks is a list of subtasks

subtasks[i] = (subt1, subt2, subt3, ...).

subti has precedent(subti) and decedent(subti), specifying the order of subtasks. subti
stands for either a method or a step. subti should be executed after the completion of all
tasks and steps in precedent(subti) and must be completed before the start of any task or
step in decedent(subti).

Figure 3.1 is an example of a method written in JSON format. In the example, the
corresponding task’s name is prepare-hot-water. Both precondition and subtasks have two
items. Thus there are two ways to accomplish the task. The required values of attributes
are clearly stated in precondition. The (person-1, ability, 0.6) indicates that in order to
complete the task, the person’s awareness ability should be above 0.6. We evaluate a
person’s ability using a value between [0, 1]. The larger the better. The decomposition
result, subtasks is listed with order information. The parent list tells the parent methods
of prepare-hot-water. In this example, prepare-hot-water can be generated by decomposing
both make-tea and make-coffee. The startStep is an empty list since prepare-hot-water is
not a goal in the knowledge base.

20

Figure 3.1: Method example in JSON format

21

Definition 3.1.3 (Operator). An operator is a three tuple

o = (oName, precondition [], effect [], parent []).

oName is the step name that o can be applied to. Similar to that in a method, precondition
describes the circumstance in which the step can be executed. effect is a list of flu-
ents which comes to true after executing step oName. It has similar format to that of
precondition. parent specifies all methods whose subtasks contains oName.

Figure 3.2 is an example of an operator written in JSON format. The operator matches
to step turn-on-faucet-1. All attributes that occur in effect must exist in precondition.
The parent tells that both wash-hand and kettle-1-add-water need step turn-on-faucet-1.

Figure 3.2: Operator example in JSON format

According to the definitions of “method” and “operator”, one can summarize the fol-
lowing characteristics of the knowledge base in the HTN planning.

• It can represent multiple ways to decompose a task or a goal.

• The methods of goals and tasks can share subtasks.

22

• It supports ordered, unordered, and disordered relationships of subtasks.

• The method for a goal has “start-action” information.

• All methods and operators have “parent” information.

• It provides knowledge pieces in “method” and “operator” format. A complete de-
composition path, which contributes to a complete plan for the goal, is constructed
during the planning process using the knowledge pieces.

Definition 3.1.4 (Step Execution). A step sti can be executed in state s if the corre-
sponding operator oi satisfies

oi(precondition) ⊂ s,

The successor state after executing sti in state s is

θ(sti, s) = s ∨ oi(effect),

where symbol “∨” means making every fluent in oi(effect) true in s.

Definition 3.1.5 (Carry-on Effect). Given the initial state s0 and the already executed
step sequence

πexecuted = [st1, st2, st3, ..., sti],

the current state si can be calculated using

si = θ(sti, θ(sti−1, ..., θ(st1, s0))).

Then the carry-on effects of πexecuted is

carryOnπexecuted = si − (s0 ∩ si).

The carry-on effects is used for wrong steps handling in the algorithm.

3.1.3 Goal Recognition

Definition 3.1.6 (Goal Recognition Problem). A goal recognition problem is a tuple

P r = (bs, obs,G, prior,D, PROB).

The superscription r indicates that this is a recognition problem. bs is the initial belief
state of the real environment (values of attributes of related objects). obs is a series of

23

observations from sensors. G is a set of goals that matter to the problem, with G =
{g1, g2, ..., gn} ⊂ M . prior provides the priors of goals. D is the knowledge base which is
the same as that defined in Definition 3.1.1. PROB = {g1 : p1, g2 : p2, ..., gn : pn} is a
probability distribution over G, which is the recognition result of the problem.

In Definition 3.1.6, obs comes from sensor measurements. A sensor is attached to an
object to identify the value of a specific attribute of that object. For example a location
sensor is attached to a person to identify the person’s current location. Object attribute
and sensor are 1-to-1 binding in this work. One sensor is used to observe one attribute
and vice versa. As a result, the object name and object attribute together can determine
a sensor. Definition 3.1.7 presents the official definition of sensors used in this work.

Definition 3.1.7 (Sensor). A sensor is a five tuple

sensor = (obj, att, value, value num, reliability).

obj and att determine which sensor it is and describe the function of the sensor. value
is the current sensor reading and value num tells how many different values the sensor
has. reliability indicates the degree that the sensor can be relied on. reliability = 0.9
means that the sensor gives the correct measurement with 90% percentage. The recognition
problem considered in this work has partial observability since the sensors are not totally
reliable.

Because of sensor unreliability, the agent could never know the real state of the envi-
ronment. Thus the agent holds a belief state which is updated based on the observations
and the reasoning procedure after each step. Definition 3.1.8 provides the format of belief
states in this work. Figure 3.3 is an example of a belief state item which shows the beliefs
on values of attributes of object faucet 1. As one can see in Figure 3.3, for each attribute
of an object, the belief state item holds a complete distribution of all the possible values.

Definition 3.1.8 (Belief State). A belief state of an attribute is a tuple

bsi = (obj, att, att val prob pair []),

with obj and att specifying the attribute. att val prob pair is a list, providing the complete
distribution of all the values of the attribute.

24

Figure 3.3: Belief State example in JSON format

3.1.4 Goal Recognition and Planning

The purpose of this work is to help older adults with cognitive impairments to implement
daily tasks independently. On the one hand, the agent should be able to recognize the older
adult’s intent, which is a goal recognition problem. On the other hand, the agent needs to
tell what are the correct next steps so as to provide hints when the older adult gets stuck,
which is a planning problem. Thus the problem considered in this work is a combination
of goal recognition and planning. Therefore, the definition of the goal recognition and
planning problem is given in Definition 3.1.9.

Definition 3.1.9 (Goal Recognition and Planning Problem). A goal recognition and
planning problem is a tuple

P rp = (bs, obs,G, prior,D, PROB,PS),

where (bs, obs,G, prior,D, PROB) is the goal recognition problem defined above, and
(bs, PROB,D, PS) is the planning problem. PS is the hierarchical pending set of the
planning problem. It shows the next needed tasks and steps together with their proba-
bilities in order to achieve PROB. Given the recognition result PROB, PS is generated
through the planning process.

Unlike a pure planning problem, the result of the planning part in Definition 3.1.9,
PS, only presents the next tasks and steps rather than a complete step sequence π. There
are two considerations. Firstly, the recognition result PROB is just a belief on the older
adult’s intent of the assistance agent. With more observations, the belief might change
dramatically. Secondly, the assistance agent cannot control the older adult’s next step

25

Table 3.1: A Goal Recognition and Planning Problem Example

Variable Value

bs0 Stores a list of JSON objects as shown in Figure 3.3. Each JSON
object tells the belief states of an physical object’s attributes.

obs1 (faucet-1, state, on). This observation comes from sensor
(faucet-1, state), whose reading at time point 1 is on.

G (wash-hand, make-coffee, make-tea)

prior {wash-hand : 0.333, make-coffee: 0.333, make-tea: 0.333}

D Contains a list of methods as shown in Figure 3.1 and a list of
operators as shown in Figure 3.2. A detailed explanation can be
find in Appendix A and Appendix B.

PROB0 {wash-hand : 0.333, make-coffee: 0.333, make-tea: 0.333}

PS0 {level-0: {turn-on-faucet-1 : 0.666, switch-on-kettle-1 : 0.333}}

startStep m(wash-hand): [turn-on-faucet-1],
m(make-tea): [turn-on-faucet-1, switch-on-kettle-1],
m(make-coffee): [turn-on-faucet-1, switch-on-kettle-1]

and cannot guarantee that the older adult will do a correct next step. Therefore, it is
not necessary to generate a complete plan for the recognition result PROB. The feasible
next tasks and steps are enough to guide the older adult to proceed forward. Furthermore,
the partial planning process makes it easy to repair from the older adult’s wrong steps
and to change the recognition result with further observations. The generated PS has a
hierarchical format. According to the user’s awareness status, the assistance agent can
choose hints at a proper level to help the user proceed smoothly and independently.

Table 3.1 shows an example of a goal recognition and planning problem. Time point 0
indicates the start point. The priors of the three goals are set to equal. Initially, PROB0

is the same as prior. PS0 has one level, containing the beginning steps of goals and
corresponding probabilities. Row startStep shows the beginning steps of the three goals.
turn-on-faucet-1 has probability 0.666 because all the three goals can begin with turn-on-
faucet-1, while make-tea and make-coffee can also begin with switch-on-kettle-1. So 0.333
+ 0.1665 + 0.1665 = 0.666. obs1 indicates that faucet-1 becomes on at time point 1, and
the change is monitored by sensor (faucet-1, state).

26

3.2 Problem Categories

The goal recognition and planning problem in this work is classified into eight categories
based on three properties of the recognition problem. Firstly, according to the number of
goals that the executed steps account for, the problem can be single goal recognition or
multiple goals recognition. Secondly, according to if the executed steps contain wrong
steps or not, the problem can be goal recognition with / without wrong steps. Note that
during plan execution, a wrong step is a step which violates the order constraints between
steps in π or does not belong to solution π at all. Lastly, according to if a sensor is present
with a reliability or is simply missing, the problem can be goal recognition with sensor
reliability or with missing sensors. Table 3.2 shows the eight categories of problem.

Table 3.2: Problem Categories

Sensor Config.
Single Goal

Correct Step Wrong step

Multiple Goals

Correct Step Wrong step

Reliability p1 p2 p3 p4

Missing Sensor p5 p6 p7 p8

In the “Sensor Config.” column of Table 3.2 , “Reliability” means that all related
sensors are present with a reliability. “Missing Sensor” means that some sensors are missing
and the agent knows about which ones are missing. The other sensors are still present with
a reliability. Wrong steps can be divided into two types: non-related wrong steps and
related wrong steps. Definition 3.2.1 is an explanation of related wrong steps.

Definition 3.2.1 (Related Wrong Step). Assume that there are two consecutive steps:
sti and sti+1. sti is a correct step while sti+1 is a wrong step. The carry-on effect of
the executed sequence which ends with step sti is carryOnπexecuted . The fluents in both
carryOnπexecuted and effectsti+1

are items with the format of [obj, att, value]. Then sti+1 is
a related wrong step if and only if effectsti+1

has

[objm, attn, valuex],

and carryOnπexecuted has
[objm, attn, valuey],

27

while
valuex 6= valuey.

If a wrong step is not a related wrong step, then it is an non-related wrong step.

As one can imagine, p1 in Table 3.2 is the easiest problem, while p8 is the hardest
one. The proposed algorithm is designed to handle all those problems. Experiments will
be done on each category to evaluate the performance of the algorithm.

28

Chapter 4

The Algorithm

The goal recognition and planning problem is defined and explained in Chapter 3. This
chapter presents the algorithm, HTN-GRP-PO, which stands for “hierarchical task network
based goal recognition and planning algorithm with partial observability”. This chapter is
divided into nine sections. Based on the example in Table 3.1, Section 4.1 explains the data
structures and terminologies and Section 4.2 describes the framework of the algorithm in
a high level and presents interrelationships among different modules. The details of each
module are given in Section 4.3 to Section 4.7. Section 4.9 summarizes the proposed
algorithm.

4.1 Data Structures and Terminologies

Definition 4.1.1 (Algorithm Iteration). Denote sensor measurements at time t as obst,
one iteration of the algorithm is the change of goal recognition and planning from

P rp
t = (bst−1, obst, G, prior,D, PROBt−1, PSt−1)

to
P rp
t+1 = (bst, obst+1, G, prior,D, PROBt, PSt).

An iteration is triggered by any change of sensor measurements. It updates the problem,
produces the new goal recognition result, and gives hint for further tasks and steps. In
this way, the assistance agent builds and corrects its beliefs on the ongoing goals based on
observations. Changes of sensor measurements comes from step occurrences. This work

29

assumes that whenever sensors report any change of measurements, only one step happens.
In other words, simultaneous steps are not considered in this work.

Table 4.1 shows an iteration which changes problem P rp
0 (same as that in Table 3.1) to

problem P rp
1 . Sensor reliabilities are 0.9 in this example. The associated partial knowledge

base of this iteration is shown in Figure 4.1. G, prior, and D are neglected in Table 4.1
because of no change. Note that PS1 in Table 4.1 has more than one levels. However, only
the step level (level 0) is shown to save space. One can easily see the changes from P rp

0

to P rp
1 . obs1 is not the outcome but the trigger of an iteration. The iteration in Table 4.1

is triggered by obs1. Similarly, obs2 will trigger the next iteration. The algorithm has a
basis of explanation, which is defined in Definition 4.1.2. Each iteration generates and
updates explanations for observations so far and then computes PROB and PS based on
explanations.

Definition 4.1.2 (Explanation). An explanation explains the observations so far by
tracking ongoing goals and providing possible paths to proceed towards those goals from
the tracked ongoing status. It is a tuple

expla = (prob, forest [], pendingStep [], startGoal{}).

The likelihood of this explanation is prob, indicating to which degree we can rely on this
explanation. forest is a list of goal networks (Definition 4.1.6) looks like

forest = [goalNet1, goalNet2, ..., goalNetn],

recording the progress statuses of ongoing goals in the explanation. pendingStep provides
the correct next steps suggested by the explanation, having format

pendingStep = [st1, st2, st3, ...].

startGoal records which goals have been started in this explanation. It’s a dictionary like

startGoal = {g1 : True, g2 : False, g3 : True, ..., gm : False}.

For each {gx : True} ∈ startGoal, there is a corresponding goal network goalNety ∈ forest
with goalNety(goalName) := gx.

Given a series of observations obs, there might be multiple explanations explaining obs.
All those explanations are stored in ExplaSet which is defined in Definition 4.1.3.

30

Definition 4.1.3 (Explanation Set). All the explanations of obs = {obs1, obs2, ..., obst}
are stored in a queue,

ExplaSet = Queue[expla1, expla2, ..., explan].

Every explai ∈ ExplaSet is generated based on an explanation in ExplaSetprev. ExplaSetprev
is the ExplaSet of the previous algorithm iteration. The number of explanations in
ExplaSet is denoted by Explanum.

For example, after the iteration indicated in Table 4.1, there are three explanations,
ExplaSet = [expla1, expla2, expla3], which are shown in Table 4.2. Each of them is a
complete explanation of observation obs = {obs1}. According to Table 4.2, expla1 believes
that wash-hand is ongoing and the supposed next step is use-soap. Note that in this
example, each explanation only has one ongoing goal. As a result, their forest only
contains one element. For each explanation, the length of forest equals to the number of
its ongoing goals. The structure of a goal network in forest is defined in Definition 4.1.6.

Definition 4.1.4 (Tree). A tree in this work is a hierarchical task network with a list of
functions, including

• tree.root(): to get the root of the tree.

• tree.create node(tag, id, parent, data): to add a new node to tree.

• tree.paste(id, childTree): to append childTree to the id node in tree.

• tree.leaves(): to return all the leaves of tree.

Definition 4.1.5 (TreeNode). A tree node in this work is a tuple

treeNode = (id, tag, level, data)

with
data = [completeness, readiness, precedent, decedent].

id is the unique identifier of the node and name is the corresponding task or step name.
level is an integer, telling in which level the node is. completeness tells if the task or
step has been completed. readiness indicates if the precedents of this node have been
completed. precedent and decedent are the predecessors and successors of the node.

31

Definition 4.1.6 (Goal Network). A goal network tracks the ongoing status of a goal
and provides the possible paths to achieve the goal. It belongs to an explanation and is a
six tuple

goalNet =

(goalName, tree, expandProb, pendingGoalNet, completeness, executeSequence).

tree is a hierarchical task network as defined in Definition 4.1.4 and Definition 4.1.5, which
tracks the ongoing status of goal goalName. It is a hierarchical task network which is
constructed with knowledge base (methods and operators) based on the recognized steps
using obs. Nodes in tree stand for either completed / ongoing tasks or completed steps in
order to achieve goalName. expandProb tells the probability of the partial plan reflected in
tree being chosen. completeness is a binary variable, indicating if the goal has been finished
or not. executeSequence contains the order of already executed steps and their carry on
effects (refer to Definition 4.1.8). pendingGoalNet stores the possible ways (decomposed
goal network, Definition 4.1.7) to proceed towards goalName from the ongoing status
indicated in tree. It comes from decomposing tree.

Definition 4.1.7 (Decomposed Goal Network). Given goalNet, each item in its
pendingGoalNet is a decomposed goal network indicating one path to proceed towards
the goal. It’s a three tuple

decompGoalNet = (decompTree, decompProb, pendingStep []).

decompTree is a hierarchical task network as defined in Definition 4.1.4 and Definition 4.1.5,
containing all the nodes in goalNet(tree) and the newly added nodes by decomposing ready
tasks in goalNet(tree). The details of the decomposing process is described in Subsec-
tion 4.6.2. decompProb is the product of probabilities of selected branches’ preconditions
are satisfied during decomposition. pendingStep is a step list representing the correct next
steps suggested by decompoTree.

Definition 4.1.8 (Execute Sequence). Given a goal network goalNet, its execute se-
quence is a tuple

executeSequence = (stepSequence, carryOn),

where stepSequence is the queue (ordered) of already finished steps in goalNet(tree),
carryOn is the carry on effects of steps in stepSequence. carryOn is a dictionary with
each item having the format of

{[obj, att, value] : sti},

where sti is the latest step in stepSequence that makes [obj, att, value] true.

32

Table 4.1: The Outcome of an Algorithm Iteration

P rp
0 P rp

1

Variable Value Variable Value

bs0 (faucet-1, state,
{off : 0.999, on: 0.001})

bs1 (faucet-1, state,
{off : 0.0001, on: 0.9999})

obs1 (faucet-1, state, on) obs2 [(hand-1, soapy, yes),
(hand-1, dry, no)]

PROB0 {wash-hand : 0.333,
make-coffee: 0.333,
make-tea: 0.333}

PROB1 {wash-hand : 0.3574,
make-coffee: 0.3213,
make-tea: 0.3213}

PS0 {level-0:
{turn-on-faucet-1 : 0.666,
switch-on-kettle-1 : 0.333}}

PS1 {level-0:
{use-soap: 0.357,
add-water-kettle-1 : 0.643}}

Figure 4.1: Part of a Knowledge Base

33

Table 4.2: Explanations after the Iteration shown in Table 4.1

Variable expla1 expla2 expla3

prob 0.3574 0.3213 0.3213

forest [goalN1], refer Table 4.3 [goalN2] [goalN3]

pendingStep [use-soap] [add-water-kettle-1] [add-water-kettle-1]

startGoal wash-hand : True,
make-tea: False,
make-coffee: False

wash-hand : False,
make-tea: True,
make-coffee: False

wash-hand : False,
make-tea: False,
make-coffee: True

Table 4.3: Goal Network for expla1 in Table 4.2

Variable goalN1

goalName wash-hand

tree tree1, see Figure 4.2

expandProb 1.0

pendingGoalNet [decompGN1] see Figure 4.2

completeness False

executeSequence turn-on-faucet-1, (faucet-1, state, on)

34

Figure 4.2: tree1 and decompGN1 in goalN1

35

Table 4.3 shows the only goal network for the expla1 in Table 4.2. The goalName in-
dicates that goalN1 records the progress status of wash-hand. tree1 is shown in Figure 4.2,
indicating that turn-on-faucet-1 has been finished. expandProb = 1.0 tells that all the
already decomposed tasks in tree1 only have one branch. decomGN1, the only element in
goalN1(pendingGoalNet) is also shown in Figure 4.2. It is derived from tree1 by decom-
posing composite task clean-hand. Only decompGN1 is derived means that there is only
one way to accomplish clean-hand. This also explains decompProb = 1.0. Note that if
there are two ways to accomplish clean-hand, goalN1(pendingGoalNet) would have two
decomposed goal networks. The goalN1(completeness) is False because wash-hand has
not been completed. turn-on-faucet-1 is the only step in executeSequence.

In summary, an iteration of the algorithm deals the problem with a basis of Expla-
nations. All the explanations are stored in an Explanation Set. An explanation has
forest storing a list of Goal Network. A forest with length bigger than one means that
in the explanation, multiple goals are in progress simultaneously. Each goal network in
forest explains the progress point of a goal. A goal network has pendingGoalNet storing
a list of Decomposed Goal Network. Based on the goal network, each decomposed
goal network stands for a specific way to move forward from the progress point in order to
achieve the goal. The Execute Sequence of a goal network records the already finished
steps and their carry on effects of that goal.

4.2 The HTN-GRP-PO Algorithm

This section outlines the proposed algorithm. As defined in Definition 4.1.1, any change of
sensor measurements triggers an iteration. In this section, we outline the algorithm using
an iteration. Considering the iteration shown in Table 4.1, the reasoning procedures for it
is shown in Figure 4.3, including the inputs and outputs of each module. Note that when
the agent is started, an initialization module is executed to initialize ExplaSet0, PROB0,
and PS0 based on D = (O,M) and the initial belief state bs0. One can understand that
this module creates the P rp

0 in Table 4.1. Details about this module is shown in Section 4.3.

An iteration starts with Compute PSstep Posterior module, which is the step recog-
nition process adopting Bayesian inference (see Equation 4.1 on page 41). It computes
the posterior of a step in PSstep that has occurred. For example, the iteration shown in
Table 4.1 computes posteriors of steps in PS0 level-0 using bs0, obs1, D and probabilities in
PS0 level-0. We call those posteriors (PSstep)posterior, which is the step recognition result
of an iteration. In this example, ((PS0)step)posterior ={turn-on-faucet-1 :0.8919, switch-on-
kettle-1 :0.0001}. Note that the sum of step probabilities in ((PS0)step)posterior is 0.892. It

36

Figure 4.3: An Algorithm Iteration

indicates that the probability of a wrong step has happened is 0.118. If the probability of
a wrong step has happened is too high (e.g. 0.75), the algorithm will report a wrong step.
Details of this module is presented in Section 4.4 with the criteria of detecting a wrong
step.

If (PSstep)posterior indicates that the just happened is a correct step, the algorithm
drops the “a wrong step has happened” branch and normalizes (PSstep)posterior to get
(PSstep)

′
prior, which is step priors for belief state update. This procedure is necessary

because the algorithm drops the “wrong step” branch and goes into a new stage. Updates
bs using Bayesian inference based on obs, D, (PSstep)

′
prior, and bslast (see Equation 4.8 on

page 44). For example, the iteration shown in Table 4.1 computes bs1 using obs0, bs0,
((PS0)step)

′
prior and D in the “Update bs” module. The high probability of (faucet-1, state,

on) comes from two things. First, the high probability of turn-on-faucet-1 in ((PS0)step)
′
prior

which is almost 1.0. Second, the precondition and effects information indicated in the
knowledge base which further supports the belief that turn-on-faucet-1 has happened.
Section 4.5 details how to update the belief state during an iteration.

37

After updating belief state, the program Updates ExplaSet using D, bs, (PSstep)
′
prior

and ExplaSetlast. Each existing explanation in ExplaSetlast (ExplaSet0) will be updated
to several new ones based on a given step and stored in the new ExplaSet (the ExplaSet1).
The update includes two procedures: recognition and decomposition. Given a step st, the
recognition procedure adopts a new goalNet to represent the new ongoing status of the
corresponding goal and computes the new explanation probability. The probability of a
new explanation is the product of the following: the probability of the base explanation,
the expandProb of the new goalNet, and the posterior of the input step (see Equation 4.12
on page 56). The creation of the new goalNets has two cases.

Case 1, st starts a new goal. In this case, there is no base goalNet for creating a
new one. A bottom up procedure as described in Subsection 4.6.1 is used to create a new
goalNet from scratch. Take the iteration in Table 4.1 as an example. Given st = turn-on-
faucet-1, when creating goalN1 for expla1 in Table 4.2, the bottom up procedure is used
to create tree1 as shown in Figure 4.2. Note that case 1 enables the algorithm to handle
concurrent goals. Case 2, st continues an ongoing goal. In this case, just choose a proper
decomposed goal network from the given goalNet(pendingGoalNet) as the new goalNet.
For example, given expla1 shown in Table 4.2 and st = use-soap, decompGN1 (Figure 4.2,
right) will replace goalN1, becoming the new goalNet in the new explanation.

The decomposition procedure creates pendingGoalNet for a goalNet through a de-
composition procedure as described in Subsection 4.6.2. Take goalN1 in Table 4.3 as
an example. It’s pendingGoalNet is obtained through a decomposition procedure. The
decomposition result is shown in the right part of Figure 4.2. When applying methods
for decomposition, the probability that a precondition is satisfied is computed (see Equa-
tion 4.11 on page 51) and accumulated to derive decompProb, which indicates to which
degree the corresponding decomposition path is feasible in bs. The decomposition process
ends when every leaf in tree is either a node standing for a step or a node standing for
a task satisfying node(data)(readiness) == False. The “update ExplaSet” module is
the most import part of the proposed algorithm. One can find a structural and detailed
description for this module in Section 4.6.

If (PSstep)posterior indicates that what just happened is a wrong step, the program will
go into the Wrong Step Handling module. This module rectifies existing explanations so
as to restore them from the wrong step. An visualization example of wrong step handling is
shown in Figure 4.4. Assume that an explanation contains ongoing status of wash-hand as
shown in the left tree of Figure 4.4. So the desired next step is use-soap. However, a wrong
step is reported during the computation of (PSstep)posterior. Even though the algorithm
does not know which wrong step has happened, the observation indicates that the effect
of step turn-on-faucet-1 has been destroyed by the wrong step. The wrong step handling

38

Figure 4.4: A Wrong Step Handling Example

module rectifies the ongoing status of wash-hand to the point as shown in the right tree of
Figure 4.4. Consequently, the algorithm will remind the older adult to do turn-on-faucet-1
again. One can refer to Section 4.7 for details of handling wrong steps.

The last step of an iteration is Compute PROB and PS , which depends purely on
the latest ExplaSet. For example, the iteration in Table 4.1 computes PROB1 and PS1

based on the three explanations shown in Table 4.2. The probability of goal g in PROB is
the sum of probabilities of explanations whose startGoal contains g. The probability of a
task t (or step st) in PS is the sum of probabilities of explanations whose forest contains
a node standing for t (or st) with completeness being false while readiness being true.
For details please refer to Section 4.8.

In the following sections, detailed implementations of the related modules are given
one by one from Section 4.3 to Section 4.7. Those sections also show how the proposed
algorithm is designed to deal with the problems raised in Section 3.2.

4.3 Agent Initialization

When the assistance agent is started, the initialization process is executed to initialize
ExplaSet without any observation. This process is executed only once. The pseudo code
of the initialization process is shown Algorithm 1.

39

Algorithm 1 Initialize (M,G, prior)

1: ExplaSet← Queue()
2: expla← Explanation()
3: pendingStep← Dict()
4: for each g ∈ G do
5: mg ← m, where m ∈M and m(mName) == g
6: for each st ∈ mg(startStep) do
7: pendingStep[st]← pendingStep[st] + prior(g)
8: end for
9: end for

10: expla(prob)← 1
11: expla(pendingStep)← pendingStep
12: ExplaSet← ExplaSet.add(expla)
13: return ExplaSet

After initialization, ExplaSet has one expla with probability 1. This is reasonable since
without observations the algorithm believes that nothing is happening. The expla(pendingStep)
contains all the start steps of all the goals in G. Even though there are no observations,
the algorithm gets to know the start steps purely based on the knowledge base.

In Algorithm 1, line 5 selects the correct method from M for goal g. Lines 6-8 build
pendingStep by adding new {st : prior(g)} pairs or updating existing {st : prob} pairs,
where prob stands for the accumulated prior of step st. The initialization process is such
so that:

• A seed explanation should be created without observations.

• All the start steps of all the goals should be stored in pendingStep, which will be
used in the oncoming algorithm iteration.

• Start steps related to a goal that has a higher prior should also have a higher prob-
ability in pendingStep than others.

4.4 Compute PSstep Posterior

Deriving the posteriors for steps in PSstep is the step level recognition in the algorithm,
which is the very first step of an iteration (refer to Figure 4.3). The posterior of a step

40

is calculated based on a standard Bayesian network shown in Figure 4.5 and the step’s
corresponding operator in the knowledge base.

In Figure 4.5, stt stands for step st happening at time point t. The states at the
last time point st−1 and stt together contribute to the current state st. st produces the
observation at time point t, which is obst.

stt

st

obst

st−1

Figure 4.5: Bayesian Network for Step Posterior

p(stt|obst) =
p(stt, obst)

p(obst)
∝ p(stt, obst)

=
∑
st

∑
st−1

p(stt, st, st−1, obst)

=
∑
st

∑
st−1

p(st|st−1, stt)× p(obst|st)× p(st−1)× p(stt)

(4.1)

Based on Figure 4.5, Equation 4.1 computes the posterior of stt given st−1 and obst.
Note that the st−1, st, and obst in Equation 4.1 only contain attributes relating to stt, so as
to reduce problem complexity. Items in st−1, st and obst have the format of [obj, att, value].
Equation 4.1 is applied to every step in PSstep to get step posteriors. p(stt) is the prior of
step stt in PSstep.

41

In Equation 4.1, given st−1 and st, the conditional probability p(st|st−1, stt) is defined
in Equation 4.2. The probability 0.999 is used because when the precondition of stt is not
satisfied, it is usually impossible to happen.

p(st|st−1, stt) =

{
0.999, if stt(precondition) ⊂ st−1 and θ(stt, st−1) ⊂ st
0.001, otherwise

(4.2)

Given st and its corresponding observation obst, the conditional probability p(obst|st)
is calculated using Equation 4.3. attItemstt stands for the related attributes to step stt.
Each item ∈ attItemstt is a pair (obj, att), specifying an attribute. Thus sensoritem stands
for the sensor monitoring the attribute. (st)item targets at the item in st which describes
the status of the attribute.

p(obst|st) =
∏

item∈attItemstt

p(sensoritem)

p(sensoritem) =

{
sensoritem(reliability), if sensoritem(val) == (st)item(val)
1− sensoritem(reliability), otherwise

(4.3)

Given st−1, p(st−1) is calculated using Equation 4.4. bsitem is the belief state distribution
of the attribute specified by item. (st−1)item(val) specifies which attribute value to choose
in the belief state distribution.

p(st−1) =
∏

item∈attItemstt

bsitem[(st−1)item(val)] (4.4)

In the following, an example is used to explain how the posterior of a step is obtained
using Equation 4.1. Assume that in Figure 4.5, stt is turn-on-faucet-1 as shown in Fig-
ure 3.2. Thus the related attributes occurring in stt(precondition) and stt(effect) is a list
with length 4, which is shown in Equation 4.5. Assume that each of the attribute has two
possible values, then the total number of state instances related to step stt is 24 = 16.
One possible state instance is shown in Equation 4.6.

attItemstt =[(faucet-1, state), (faucet-1, location),

(person-1, location), (person-1, ability)]
(4.5)

42

stateInstancest =[(faucet-1, state,on), (faucet-1, location,kitchen),

(person-1, location,kitchen), (person-1, ability, 0.6)]
(4.6)

When summing over in Equation 4.1, st and st−1 can choose one of the 16 state in-
stances. Thus the total number of combinations of st and st−1 is 16× 16 = 256. The sum
in Equation 4.1 will enumerate all possible combinations of st and st−1.

By applying Equation 4.1 to every step in PSstep, step posteriors (PSstep)posterior is
obtained. The algorithm detects wrong steps based on (PSstep)posterior. A step is re-
ported as a wrong step if the probability of otherHappen is higher than a threshold
otherHappenThresh. Equation 4.7 explains the wrong steps detection process. The
computation of otherHappenProb is simply deducting the sum of posteriors of steps
in PSstep from 1. otherHappenProb tells the probability of occurrence of some un-
known steps which do not belong to PSstep. Comprehensive experiment results show
that otherHappenThresh = 0.75 is a good value for almost all of the problem categories
defined in Table 3.2.

otherHappenProb = 1−
∑

st∈PSstep

(PSstep)posterior(st)

otherHappen =

{
True, if otherHappenProb > otherHappenThresh
False, otherwise

(4.7)

4.5 Belief State bs Update

According to Figure 4.3, “Update bs” is executed when the algorithm believes that a correct
step has occurred. Firstly, (PSstep)posterior is normalized by 1 to get (PSstep)

′
prior, since the

algorithm drops the “wrong step handling” branch and goes into the handling of a correct
step. The formula to update belief state is shown in Equation 4.8, which is applied to
attributes relating to the current iteration one by one.

43

p(st|obst) =
p(st, obst)

p(obst)
∝ p(st, obst)

=
∑

st−1∈(atti)value

∑
st′t∈(PSstep)′prior

p(st, st
′
t, st−1, obst)

=
∑

st−1∈(atti)value

∑
st′t∈(PSstep)′prior

p(st|st−1, st′t)× p(obst|st)× p(st−1)× p(st′t)

(4.8)

For example, here we update the belief state for attribute atti. We assume that the
possible values of atti are (atti)value = [v1, v2] (only binary attributes are considered in
this work). In Equation 4.8, the sum over st−1 enumerates values in (atti)value. The sum
over stt enumerates values in PSstep)

′
prior. p(v1|st−1, obst) and p(v2|st−1, obst) are computed

separately using Equation 4.8 and normalized over 1 to be the new belief state on attribute
atti.

In Equation 4.8, p(st′t) is the probability of st′t in (PSstep)
′
prior. p(st−1) is the algorithm’s

belief that atti has value st−1 after the reasoning of the last iteration. Assume that st−1 = v1
and st = v2, the conditional probability of p(st|st−1, stt) is obtained using Equation 4.9.
The conditional probability of p(obst|st) is obtained using Equation 4.10.

p(v2|v1, stt) =

{
0.999, if v1 ∈ st′t(precondition) and v2 ∈ st′t(effect)
0.001, otherwise

(4.9)

p((obst)atti(value)|v2) =

{
sensoratti(reliability), if sensoratti(value) == v2
1− sensoratti(reliability), otherwise

(4.10)

Since Equation 4.8 is only applied to related attributes, the first step of “Update bs”
is to obtain all the related attributes of the current iteration. A related attribute presents
in the effect of at least one of the steps in PSstep. The procedure of obtaining those
related attributes is depicted in Algorithm 2. It returns a list of attributes with the format
of obj att = [att1, att2, att3, ...]. Algorithm 3 updates the belief states of those related
attributes. In Algorithm 3, the for loop in line 4 sums over st−1 and the for loop in line 5
sums over stt.

44

Algorithm 2 ObtainRelatedAttribute (PSstep)

1: obj att← Set()
2: for each st ∈ PSstep do
3: o← o ∈ O and o(oName) == st
4: for each e ∈ o(effect) do
5: obj att.add(e)
6: end for
7: end for
8: return obj att

Algorithm 3 UpdateBeliefState (obj att, (PSstep)
′
prior, obst, bst−1, sensor)

1: for each att ∈ obj att do
2: for each st ∈ attvalue do
3: p(st)← 0
4: for each st−1 ∈ attvalue do
5: for each stt ∈ PSstep do
6: pp← p(st|st−1, stt)× p(sensoratt(value)|st)× p(st−1)× (PSstep)

′
prior[stt]

7: p(st) = p(st) + pp
8: end for
9: end for

10: bs[att][st]← p(st)
11: end for
12: normalize bs[att]
13: end for
14: return

45

4.6 Explanation Set Update

The most important module of the proposed HTN-GRP-PO algorithm is “update ExplaSet”.
ExplaSet is updated in this module based on two principles: the step recognition result
(PSstep)

′
prior which is obtained after dropping the “wrong step handling” branch, and the

updated belief state bst which is obtained from the “update bs” module. The update on
ExplaSet is a process which combines procedures of goal recognition and planning. It
consists of several functions as shown in Figure 4.6. The blue rectangle UpdateExplaSet()
is the module interface.

Figure 4.6: ExplaSet Update Breakdown

Algorithm 4 gives the pseudo code of function UpdateExplaSet(). The newExplaSet
is created based on ExplaSet and will be assigned to ExplaSet at the end of the algorithm.
A set of new explanations can be generated based on an existing expla ∈ ExplaSet and a

46

Algorithm 4 UpdateExplaSet (ExplaSet, bst−1, bst, (PSstep)
′
prior, D)

1: newExplaSet = Queue()
2: for each expla ∈ ExplaSet do
3: for each (st : stprob) ∈ ((PSstep)

′
prior do

4: new expla← GenerateNewExplaBottomUp(st, stprob, expla, bst−1, D)
5: newExplaSet.extend(new expla)
6: new expla← GenerateNewExplaDecompose(st, stprob, expla, bst, D)
7: newExplaSet.extend(new expla)
8: end for
9: end for

10: ExplaSet← newExplaSet
11: return ExplaSet

step st which has probability of occurrence stprob (line 2-3). There are two ways to create
new explanations given expla and (st : stprob).

GenerateNewExplaDecompose(), which is the right red rectangle in Figure 4.6, creates
new explanations by exploring on an existing goalNet in expla(forest) (Algorithm 4, line
6). Each new explanation is generated by function CreateNewExpla(), which is the green
part in Figure 4.6.

GenerateNewExplaBottomUp(), which is the left red rectangle in Figure 4.6, creates
new explanations by adding a new goalNet to expla(forest) (Algorithm 4, line 4). It
means that according to the explanation the old adult just starts a new goal with step st.
We firstly generate new goalNets based on st using InitializeTreeStructure(), which is a
bottom up initialization process as presented in the yellow rectangles in Figure 4.6. Then we
generate new explanations based on the newly created goalNets using CreateNewExpla().

In Algorithm 4, the generated new explanations is attached to newExplaSet (line 5
and line 7). After the two loops on ExplaSet and (PSstep)

′
prior, ExplaSet is replaced by the

newly generated newExplaSet (line 10). The returned ExplaSet will be used to calculate
PROB and PS of this iteration. As indicated in the green part in Figure 4.6, the two
ways to generate new explanations share the function CreateNewExpla(). The shared
part is where the goal recognition and planning procedures are combined together. Detail
explanations of each function in Figure 4.6 is given in the following subsections.

47

4.6.1 Bottom Up Initialization

This subsection explains how to generated new explanations using the bottom up pro-
cedure. The pseudo code of function GenerateNewExplaBottomUp() is shown in Al-
gorithm 5. Given the input expla and (st, stprob), it returns a list of new explanations,
new explas. Each explanation in the returned new explas holds a newly added goalNet.
It indicates that in the explanation, a new goal has been just started with st. Therefore,
the GenerateNewExplaBottomUp() can be applied only when the input expla has a goal
satisfying: the goal has not been started (line 4) and the goal’s startStep contains st (line
6). Otherwise, no new explanations will be created in this procedure.

In Algorithm 5, before creating new explanations (line 8-14), new goalNets are created
through function InitializeTreeStructure() (line 7). InitializeTreeStructure() creates
new goalNets using a bottom up expansion process starting with st. Those goalNets
account for goals which can start with step st. The given expla can be updated into a new
explanation with each goalnet ∈ goalNets using procedure CreateNewExpla() (line 11).
The Algorithm 10 in Subsection 4.6.2 demonstrates the details of the CreateNewExpla()
procedure.

Tree Structure Initialization

Given bst−1, D and st, InitializeTreeStructure() generates new goalNets for goals
which can start with st. Step st matches to a leaf node in a goalNet(tree). Starting with
the leaf node, the goalNet(tree) is constructed through a bottom up expansion procedure.
Parents nodes are iteratively added to the root of the current tree, until the root of the tree
reaches the highest goal level. The pseudocode of InitializeTreeStructure() is shown in
Algorithm 6. Note that bst−1, rather than bst, is used in the bottom up procedure because
st occurred in bst−1. Thus a bottom up path to a goal that is possible in bst−1 rather than
bst is needed.

The returned value of Algorithm 6 is a list of goalNets rather than a single one, all of
which are built based on st. There two major reasons. Firstly, there might be more than
one goals starting with step st. Secondly, there are multiple paths from st to one goal
because of different branches of methods. Algorithm 6 implements a breadth-first-search
(BFS) in order to obtain all those possible goalNets. The candidate tree structures are the
mid products of creating goalNets. The candidate tree structures and their probabilities of
being chosen are stored in tempForest. Initially there is only one tree which contains one
node standing for st (line 2). The corresponding expandProb is 1 (line 3). The expansion
process of a tree ends when the corresponding method of the root of the tree does not have
any parents(line 10-11 and 23). Inside the while loop (line 5), candidate trees are checked
one by one (line 8) to see if it needs further bottom up expansion.

48

Algorithm 5 GenerateNewExplaBottomUp (st, stprob, expla, bst−1, D)

1: new explas = List()
2: tempStartGoal ← expla(startGoal)
3: for each g ∈ tempStartGoal do
4: if g(started) == False then
5: mg ← m ∈M with m(mName) == g
6: if st ∈ mg(startStep) then
7: goalNets← InitializeTreeStructure(st, bst−1, D)
8: for each goalnet ∈ goalNets do
9: if tempStartGoal[goalnet(goalName)](started) == False then

10: tempStartGoal[goalnet(goalName)](started)← True
11: new expla← CreateNewExpla(expla, st, st prob, goalnet,D)
12: new explas.add(new expla)
13: end if
14: end for
15: end if
16: end if
17: end for
18: return new explas

49

Algorithm 6 InitializeTreeStructure (st, bst−1, D)

1: goalNets← List(); tempForest← Queue(); tree← Tree()
2: tree.create node(id = st, tag = st, data(completeness) = True)
3: tree(prob)← 1
4: tempForest.enqueue(tree)
5: while length(tempForest) > 0 do
6: len← length(tempForest)
7: for i in range(len) do
8: theTree← tempForest.dequeue()
9: rootName← theTree.root()(tag)

10: mroot ← m ∈M with m(mName) == rootName
11: parentList← mroot(parent)
12: if length(parentList) > 0 then
13: for each p ∈ parentList do
14: mp ← m ∈M with m(mName) == p
15: BottomUpBranches← BottomUpGetBranch(mp, rootName, bst−1)
16: for each branch ∈ BottomUpBranches do
17: tempTree← theTree
18: tempTree(prob)← branch(prob)× theTree(prob)
19: tempTree← BottomUpExpand(p, tempTree, branch(subtasks))
20: tempForest.enqueue(tempTree)
21: end for
22: end for
23: else {length(parentList) == 0}
24: newGoalNet← New goalNet (rootName, theTree, theTree(prob))
25: goalNets.append(newGoalNet)
26: end if
27: end for
28: end while
29: return goalNets

50

If the tree has reached a goal (line 23, the parentList has length 0), the expansion
process ends. Thus a newGoalNet will be created (line 24) and added into the returned
goalNets (line 25). Otherwise, new candidate trees are created by adding one more layer
to the top of theTree (line 13-22) and saved into tempForest (line 20) waiting for fur-
ther expansion. For each p ∈ parentList, several new candidate trees with root p can
be generated. The number of newly generated candidate trees using p depends on the
number of different branches containing the current root in method mp. Line 15 in Algo-
rithm 6 gets those branches and their probabilities of being chosen in bst−1 using function
BottomUpGetBranch().

The details of BottomUpGetBranch() is shown in Algorithm 7. With each branch ∈
BottomUpBranches, a new candidate tree is created by adding the parent node p and
the subtasks in branch to the top of theTree using BottomUpExpand() (line 19), which
is explained in Algorithm 8. The new probability is obtained by multiplying the newly
added branch(prob) and the previous theTree(prob) (line 18).

As explained in Definition 4.1.6, in order to create a goalNet, one needs to specify six
parameters. However, the InitializeTreeStructure() function only specifies the first three
variables, which are goalName, tree, and expandProb (Algorithm 6, line 24). Given a tree
theTree which has reached to a goal and is ready to be used to create a new goalNet, the
tag name of its root becomes goalName; the tree itself becomes tree; the probability of
this specific expansion path is selected, which is prob, becomes expandProb. The others
will be specified in function CreateNewExpla() which is described in Subsection 4.6.2.

Getting bottom up branches

Function BottomUpGetBranch() is used to return branches of mp whose subtasks
containing subt, based on the given method mp, subtask subt, and belief state bst−1, The
pseudo code is shown in Algorithm 7. Each element in the returned branches (line 15)
has prob and subtasks, where prob explains to which degree the branch’s precondition is
satisfied in bst−1, and subtasks shows the subtasks of that branch. The probability of a
precondition prec being satisfied in bst is calculated using Equation 4.11.

prob(prec)bst =
∏

(obji,atti,valuei)∈prec

bst[obji][atti][valuei] (4.11)

In Algorithm 7, the degrees of satisfaction for preconditions in mp are computed and
normalized in lines 1-5. The loop on branches of mp selects branches whose subtasks
contain the given subt (line 7-8). Those branches are added into the returned branches
with their subtasks and the probabilities of precondition satisfaction (lines 9-12).

51

Algorithm 7 BottomUpGetBranch (mp, subt, bst−1)

1: prob← List()
2: for each prec ∈ mp(precondtion) do
3: prob.append(prob(prec)st−1)
4: end for
5: normorlize prob
6: branches← List()
7: for (i = 0; i < len(mp(subtasks)); i+ +) do
8: if subt ∈ mp(subtasks)[i] then
9: branch← Dict()

10: branch(prob)← prob[i]
11: branch(subtasks)← mp(subtasks)[i]
12: branches.append(branch)
13: end if
14: end for
15: return branches

Bottom up Expansion

Algorithm 8 is the pseudo code for BottomUpExpand(). The inputs include the new
root tag p, the current tree structure tree, and the chosen branch’s subtask list subtasks.
Figure 4.7 is a visualization of function BottomUpExpand().

Firstly a single node tree, newTree, is created using p (line 1-3). Secondly, the input
tree is attached to the newTree (line 9), together with the decedent and precedent con-
straints of tree’s root node (line 7-8). The joint point is the root of tree and the subtask in
subtasks which has the same name as tree.root. For example, in Figure 4.7 the joint node
is m3. Finally, a loop on subtasks is used to add the other children of p into newTree(line
12-17). In Figure 4.7, the other children are [m4, st3]. The generated newTree will be
returned to Algorithm 6, waiting for the next expand iteration.

52

Algorithm 8 BottomUpExpand (p, tree, subtasks)

1: newTree← Tree()
2: data← Data(completeness = False, readiness = True)
3: newTree.create node(tag = p, id = parent, data = data)
4: currentTreeRoot← tree.root()
5: for each subt ∈ subtasks do
6: if subt == currentTreeRoot(tag) then
7: currentTreeRoot(data)(precedent)← subt[pre]
8: currentTreeRoot(data)(decedent)← subt[dec]
9: newTree.paste(currentTreeRoot(id), tree)

10: end if
11: end for
12: for each subt ∈ subtasks do
13: if subt 6= currentTreeRoot(tag) then
14: newData← Data(precedent = subt[pre], decedent = subt[dec])
15: newTree.create node(tag = subt, id = subt, parent = newTree.root(), data =

newData)
16: end if
17: end for
18: return newTree

Figure 4.7: BottomUpExpand

53

4.6.2 Top Down Decomposition

As shown in Algorithm 4 and Figure 4.6, another way to create new explanations is to use
function GenerateNewExplaDecompose(), whose pseudo code is depicted in Algorithm 9.
Our main idea is to replace one of the goalNets in expla with a new one. We regard it
as a top down decomposition process in the sense that the newGoalNet is generated from
the old goalNet using a top down decomposition procedure.

Algorithm 9 GenerateNewExplaDecompose (st, stprob, expla, bst, D)

1: new explas = List()
2: for each gN ∈ expla(forest) do
3: for each decompGoalnet ∈ gN(pendingGoalNet) do
4: if st ∈ decompGoalnet(pendingStep) then
5: newTree← decompGoalnet(decompTree)
6: g ← newTree.root()(tag)
7: expProb← decompGoalnet(decompProb)
8: newGoalNet← New goalNet (g, newTree, expProb, gN(executeSequence))
9: new expla← CreateNewExpla(expla, st, stprob, newGoalNet,D, gN)

10: new explas.append(new expla)
11: end if
12: end for
13: end for
14: return new explas

The key point of this function is that st proceeds to one of the goals that has started
in expla, leading to the evolvement of expla. Before revising expla to a new explanation,
two questions need to be answered. Firstly, which goal does st contribute to? Secondly,
which decomposition path is chosen if st is executed in order to proceed towards the goal?

Thanks to the pendingGoalNet parameter in a goalNet structure (Definition 4.1.6), the
algorithm is capable of dealing with those two questions. A goalNet(tree) represents the
progress point of a goal. The pendingGoalNet of a goalNet stores all the decomposition
paths based on goalNet(tree), which are generated through the planning process of the
last iteration. Each decomposition path reaches to steps by executing which can proceed
towards the goal from the goal’s progress point.

Consequently, for the first question, the goal should have a decomposition path whose
pending steps contains st. For the second question, the path containing pending step st is
the chosen decomposition path. With those two points, lines 2-4 in Algorithm 9 loop and

54

Algorithm 10 CreateNewExpla (expla, st, stprob, newGoalNet,D, oldGoalNet)

1: stNode← newGoalNet(tree).get node(st)
2: stNode(completeness)← True
3: newGoalNet(tree).updateCompleteness()
4: newGoalNet(tree).updateReadiness()
5: nES ← AddStepToExecuteSequence(newGoalNet(executeSequence), st, O)
6: newGoalNet(executeSequence)← nES
7: new prob← stprob × newGoalNet(expandProb)× expla(prob)
8: pGNets← DecomposeGetPendingGoalNet (newGoalNet(tree), D, bst)
9: newGoalNet(pendingGoalNet)← pGNets

10: newForest← expla(forest)
11: newForest.remove(oldGoalNet)
12: newStartGoal← expla(startGoal)
13: if newGoalNet(completeness) == True then
14: newStartGoal[newGoalNet(goalName)](started) = False
15: else {newGoalNet(completeness) == False}
16: newForest.append(newGoalNet)
17: end if
18: new expla← New Explanation (new prob, newForest, [], newStartGoal)
19: new expla.CreatePendingStep()
20: return new expla

find the target goal and the decomposition path decompGoalnet. The newGoalNet is cre-
ated based on decompoGoalnet (line 5-8), where the tree and expandProb are correspond-
ingly initialized with decompGoalnet(decompTree) and decompGoalnet(decompProb). With
newGoalNet, a new explanation is created in function CreateNewExpla().

New Explanation Creating

Function CreateNewExpla() updates an explanation by replacing one of the explana-
tion’s goalNets, which is oldGoalNet, with the input newGoalNet. The reason for doing
this is to make the explanation account for the input st. The pseudo code of this func-
tion is in Algorithm 10. On the one hand, this function updates the input explanation’s
probability and the corresponding goalNet to explain the input st, which is a goal recog-
nition logic. On the other hand, this function generates pendingGoalNet for the updated
goalNet to provide the correct next tasks and steps considering the new progress status of
the target goal, which is a planning process.

55

In order to create a new explanation, there are six sequential steps, most of which
modify the newGoalNet.

• Step 1: mark st as completed in newGoalNet. This includes changing the com-
pleteness status of the corresponding node in newGoalNet(tree) to True (line 2);
updating the other nodes’ completeness and readiness status (line 3-4); and adding
st into the newGoalNet(executeSequence) (line 5-6). The criteria of updating the
completeness and readiness statuses for nodes are straight forward. For complete-
ness, a treeNode can be marked as completeness = True only when all its children
are completed. For readiness, a treeNode can be marked as readiness = True only
when all its precedents are completed.

• Step 2: compute the probability of the new explanation using Equation 4.12 (line 7).
The new probability is the product of the posterior of st, the newly added branching
factor when choosing st as the next step, and the probability of expla.

new expla(prob) = stprob × goalnet(expandProb)× expla(prob) (4.12)

• Step 3: decompose newGoalNet(tree) to generate newGoalNet(pendingGoalNet)
(line 8-9), which is a planning process as shown in Algorithm 12. Before executing
the planning process, newGoalNet(tree) has been revised in line 1-4.

• Step 4: Update startGoal and replace oldGoalNet with newGoalNet in newForest
(lines 10-17). As explained in lines 13-17, if newGoalNet indicates that the goal has
been finished with the newly added st, the goal’s ongoing status should be set to
False (line 13). In this case, newGoalNet should not be added into newForest.

• Step 5: Initialize the new explanation with all the prepared information (line 18).

• Step 6: Update pendingStep for the new explanation. Function CreatePendingStep()
(line 19) is adopted. It simply collects all the decompGoalNet(pendingSteps) from
each goalNet(pendingGoalNet).

Function AddStepToExecuteSequence(), which is used in Algorithm 10 lines 5, includes
2 steps. The corresponding pseudo code is shown in Algorithm 11. Firstly, the given step
is appended into the stepSequence list in line 1. Secondly, in lines 3-5, the carryOn is
extended based on the effects of step. Function DecomposeGetPendingGoalNet() is more
complicated and is explained in the following paragraphs.

56

Algorithm 11 AddStepToExecuteSequence (executeSequence, step, O)

1: executeSequence(stepSequence).add(step)
2: o← o ∈ O and o(oName) == step
3: for each (obji, atti, valuei) ∈ o[effect] do
4: executeSequence(carryOn).update((obji, atti, valuei))
5: end for
6: return executeSequence

Tree Decomposition

Given a progress point of a goal indicated by tree, DecomposeGetPendingGoalNet()
is used to explore paths to proceed towards the goal from that point. Each path is stored in
a DecompGoalNet. A path is obtained by applying methods to tasks whose corresponding
nodes in tree is a leaf node with readiness status True. Methods decompose those tasks
into subtasks and expand the tree in a top down direction. This exploring contributes to
the next steps & tasks hint. The process of tree decomposition ends when all the leaves
in tree are one of the following. This two criteria guarantee that the planning process will
reach to the lowest step level.

• it’s a node standing for a step

• it’s a node standing for a task satisfying node(data)(readiness) == False.

Given a leaf node treeNodei standing for task t, with treeNodei(data)(readiness) ==
True, the corresponding method m node ∈ M should be applied to decompose t. The
decomposed subtasks are added into the tree structure. Because of the multiplicity of a
method’s branches, the planning process will produce multiple new tree structures with a
base tree. Each new tree stands for one decomposition path to reach the lowest step level.

Algorithm 12 explains the BFS implementation of the top down planning process.
treeQueue stores queueItems which need further decomposition. Each queueItem contains
a network with a base of tree and a probability telling the likelihood of the decomposition
path is chosen. Initially, treeQueue contains one item with tree as the network and prob-
ability 1 (line 2-6). The while loop on treeQueue in lines 7-32 is the BFS based planning.
During each iteration, pop out an element thisTree from treeQueue (line 8) and check if
the tree has finished the planning process. The check process is another loop on leaves of
thisTree(tree) (line 11). Each leaf is inspected according to the criteria mentioned above
to see if the node needs further decompositions (line 12). The planning process on thisTree
ends only when all its leaves do not need further decompositionss.

57

Algorithm 12 DecomposeGetPendingGoalNet (tree, bst, D)

1: pendingGoalNets← List()
2: treeQueue← Queue()
3: queueItem← Dict()
4: queueItem[tree]← tree
5: queueItem[prob]← 1
6: treeQueue.enqueue(queueItem)
7: while treeQueue is not empty do
8: thisTree← treeQueue.dequeue()
9: leaves← thisTree[tree].leaves()

10: flag ← True
11: for each node ∈ leaves do
12: if node(data)(readiness) == True and node stands for method then
13: mnode ← m ∈M with m(mName) == node(tag)
14: flag ← False
15: decompBranches← GetDecompBranches(mnode, bst)
16: for each branch ∈ decompBranches do
17: newQueueItem← Dict()
18: newQueueItem[tree]← thisTree[tree]
19: newQueueItem[tree].create nodes(node(tag), branch(subtasks))
20: newQueueItem[prob]← thisTree[prob]× branch(prob)
21: treeQueue.enqueue(newQueueItem)
22: end for
23: break
24: end if
25: end for
26: if flag == True then
27: thisTree[tree].udpateReadiness()
28: pendS ← leaf.tag with leaf ∈ thisTree[tree].leaves() and

leaf(data)(readiness) == True, leaf(data)(completeness) == False
29: newDGNet← New DecompGoalNet (thisTree[tree], thisTree[prob], pendS)
30: pendingGoalNets.append(newDGNet)
31: end if
32: end while
33: return pendingGoalNets

58

During each iteration of the while loop in line 7, there are two cases. Case 1, the
popped out thisTree do not need further decompositions (flag == True). Then a new
decompGoalNet is created in lines 26-31 and is added into the return list in line 30. The
pendingStep takes all leaves in thisTree(tree) standing for steps with readiness status true
but completeness status false (line 28).

The other case is that the check process of thisTree (line 11) detects a leaf node who
needs further decompositions. The decomposition process for that node is executed by
applying the corresponding method mnode in lines 15-22. Firstly, all branches of mnode is
obtained through GetDecompBranches() (line 15). Details of this function is provided in
Algorithm 13. Secondly, for every branch ∈ decompBranches, creating a newQueueItem
by adding branch(subtasks) into thisTree(tree) (line 18-19) and updating the decomposi-
tion probability (line 20). The probability is obtained by multiplying the previous accumu-
lated probability and the newly added branch(prob). The newly created newQueueItem
is added into treeQueue, waiting for the next check process.

Algorithm 13 is the pseudo code for function GetDecompBranches(). The returned
branches is a list. Each branch contains its subtasks and the probability of the branch’s
precondition is satisfied in bst. The degree of satisfaction for a precondition is calculated
using Equation 4.11

Algorithm 13 GetDecompBranches (mnode, bst)

1: branches← List()
2: for (i = 0; i < len(mnode(precondition)); i+ +) do
3: branch← Dict()
4: prec← mnode(precondition)[i]
5: branch(prob)← prob(prec)st
6: branch(subtasks)← mnode(subtasks)[i]
7: branches.append(branch)
8: end for
9: normalize on branch(prob) ∈ branches

10: return branches

59

4.7 Wrong Steps Handling

As shown in Figure 4.3 and Equation 4.7, if a wrong step is detected, the program switches
into the wrong step handling process. This module repairs the goal networks of an expla-
nation from the wrong step and recovers the impacts of the wrong step. As indicated in
Definition 3.2.1, wrong steps can be classified as related wrong steps or non-related wrong
steps. Non-related wrong steps do not lead to any change of an explanation. In order to
retrieve an explanation from a related wrong step, a repairing process on its goalNets is
needed which will be explained later.

Algorithm 14 details how to handle a related wrong step. The inputs of function
HandleWrongStep() do not include a specific step. Although a wrong step is reported,
the algorithm does not know which step it is. Therefore in this module, the algorithm needs
to recover from an unknown related wrong step according to the differences between obst−1
and obst, which is called sensorNotif . The crucial part of function HandleWrongStep()
is the goalNet repairing process in lines 5-18.

Given an expla in ExplaSet, the process is applied to every goalNet in expla(forest).
The fluents in the carry on effects, which are no longer true due to the wrong step’s ef-
fects, should be repaired. The effects to be repaired for expla are collected and stored
in explaRepairSummary (line 3). A explaRepairSummary together with its explana-
tion’s probability are added into repairSummary which belongs to ExplaSet (line 20-22).
repairSummary contains the impacted effects and their probabilities (the degree of be-
ing impacted) of all explanations. Following the repairing process, line 24 updates the
belief state to bst using repairSummary. Finally, with the amended belief state stt and
goalNets, lines 25-29 generates the new pendingGoalNet for every goalNet.

Given sensorNotif , in Algorithm 14 we propose the following procedures to repair a
goalNet from the unknown wrong step.

• Find out the affected steps which have been executed in order to achieve the goal.
In line 5, affected steps are obtained by comparing sensorNotif with the carry on
effects of goalNet.

• For nodes of affected steps, change their completeness status to False (line 7).

• For nodes whose completeness or readiness status have been changed, update the
completeness and readiness status for nodes which relate to them (line 8). Function
UpdateCompletenessAndReadiness() includes three steps. Given an affected node:
firstly, all of its parents’ completeness are changed to False; secondly, all of its

60

decedents’ readiness and completeness are changed to False; thirdly, if the node is
not leaf but has a False readiness status, remove the node and its children (the
subtree) from goalNet(tree). Please notice that, affected nodes are not only the ones
standing for the affected steps, but also the ones whose completeness or readiness
statuses have been changed.

• Remove fluents which have been destroyed by the wrong step from the carry on effects.
Line 11 removes the affected steps from goalNet(executeSequence)(stepSequence),
so as to create the new carryOn which does not contain the effects that are no longer
true.

• Get the impacted effects of the goal. In the algorithm, those impacted effects
is stored in effectRepairSummary in line 12. It is obtained by comparing the
new carryOn and the old one. The goalNet’s effect repair summary is added to
explaRepairSummary in line 13.

• If a goalNet’s execute sequence has length 0 (all steps were affected and removed),
remove it from expla(forest) (line 15-18).

Generally, a related wrong step rewinds the progress status of a goal by destroying
the executed steps’ carry on effects. The wrong step handling module manipulates this
rewinding process and forces the explanation to go back to a restored progress point, from
where one can continue towards to the goal. It is not necessary to repeat the destroyed
step sequence. Once the explanation has been repaired, it will allow all possible ways to
achieve the goal from the restored point. This is important since the older adult might
choose another way to proceed forward.

61

Algorithm 14 HandleWrongStep (sensorNotif, ExplaSet)

1: repairSummary ← Dict()
2: for each expla ∈ ExplaSet do
3: explaRepairSummary ← Dict()
4: for each goalNet ∈ expla(forest) do
5: affectedStep← GetAffectedSteps(sensorNotif, goalNet(executeSequence))
6: for each st ∈ affectedStep do
7: goalNet(tree).get node(st)(data)(completeness)← False
8: goalNet(tree)← UpdateCompletenessAndReadiness(goalNet(tree), st)
9: end for

10: oldExecuteSequence← goalNet(executeSequence)
11: goalNet.UpdateExecuteSequence(affectedStep)
12: effectRepairSummary ← goalNet.GetRepairSummary(oldExecuteSequence)
13: explaRepairSummary.extends(effectRepairSummary)
14: exeS ← goalNet(executeSequence)(stepSequence)
15: if length(exeS) == 0 then
16: expla(startGoal)[goalName](started)← False
17: expla(forest).remove(goalNet)
18: end if
19: end for
20: for each (obji, atti, valuei) ∈ explaRepairSummary do
21: repairSummary[obji][atti][valuei] + expla(prob)
22: end for
23: end for
24: Update bst−1 to bst based on repairSummary
25: for each expla ∈ ExplaSet do
26: for each goalNet ∈ expla(forest) do
27: goalNet(pendingGoalNet)← DecomposeGetPendingGoalNet(goalNet(tree), D, bst)
28: end for
29: end for
30: return ExplaSet

62

4.8 Derivation of PROB and PS

As shown in Figure 4.3, “calculate PROB&PS” is the last executed module of an iteration.
The goal recognition result PROB and hints for the next tasks and steps PS are generated
purely based on ExplaSet, which is the one newly generated in the same iteration. The
pseudo code for this calculation is shown in Algorithm 15.

Algorithm 15 GeneratePROSandPS (ExplaSet)

1: PROB ← Dict()
2: PStask ← Dict()
3: PSstep ← Dict()
4: for each expla ∈ ExplaSet do
5: for each goalNet ∈ expla(forest) do
6: gName← goalNet(goalName)
7: PROB[gName]← PROB[gName] + expla(prob)
8: for each treeNode ∈ goalNet(tree) and treeNode(data)(completeness) ==

False and treeNode(data)(readiness) == True do
9: nodeName← treeNode(tag)

10: if treeNode is step then
11: PSstep[nodeName]← PSstep[nodeName] + expla(prob)
12: else {treeNode is task}
13: pprob← PStask[nodeName][

′prob′]
14: PStask[nodeName][

′prob′]← pprob+ expla(prob)
15: PStask[nodeName][

′level′].add(treeNode(level))
16: end if
17: end for
18: end for
19: end for
20: PS ← (PSstep, PStask)
21: return PROB, PS

Basically, the probability of goal g in PROB is the sum of probabilities of explanations
whose forest contains a goalNet for goal g (Algorithm 15, line 6-7). The probability of a
task t(or step st) in PS is the sum of probabilities of explanations whose forest contains
a node standing for t (or st) with completeness being false while readiness being true
(Algorithm 15, line 8-17). The completeness and readiness constraints guarantee that
only tasks and steps ready to go are added into PS.

63

When computing PS, a node standing for a step is stored in PSstep with its probability
(Algorithm 15, line 10-11). A node standing for a task is stored in PStask with its prob-
ability and level information (Algorithm 15, line 12-15). The step probabilities in PSstep
will act as the priors of steps when calculating step posteriors in the next iteration.

The calculation of PROB and PS seems simple given ExplaSet. The key point is how
to generate the new ExplaSet during each iteration. Four complicated modules are needed
to generate ExplaSet. Details of those modules are given in the following subsections.

4.9 Algorithm Summary

The proposed HTN-GRP-PO algorithm has partial observability in the sense that the
sensors may have reliabilities less than 1 or even missing. For the algorithm, a missing
sensor has no difference from a sensor with reliability 0.5. Thus, the algorithm treats
missing sensors in the same way as for sensors of reliability 0.5. In this work, the partial
observability is considered in the following aspects.

• The step recognition process (Section 4.4) computes the posterior of a step occurring
with the consideration of sensor reliabilities.

• We take sensor reliability into account when updating the belief states (Section 4.5).

• Explanation construction (Subsection 4.6.1 and Subsection 4.6.2) determines the
probability of an explanation and the probability of a bottom up or top down path
to be chosen by utilizing the degree of satisfaction for preconditions of knowledge
base pieces (methods and operators). To compute the probability of a precondition
is satisfied, distributions in the belief state are adopted.

As declared in Section 3.2, the proposed algorithm can deal with recognition problems
with multiple goals. This capability lies in that one explanation is able to account for
the simultaneous progresses on multiple goals. As defined in Definition 4.1.2, every goal
network in forest reveals an ongoing goal. A goalNet provides the correct next steps
and tasks to continue towards the goal. However, the probability of its corresponding
explanation affects the final weights of those steps and tasks in the recognition result
PROB and the planning result PS. Furthermore, the algorithm can recover from side
effects of wrong steps thanks to the carefully designed wrong step handling module in
Section 4.7.

64

The proposed algorithm solves the goal recognition and planning problem defined in this
work. The planning process is reflected in the generation of goalNet(pendingGoalNet),
which is implemented in Algorithm 12. A goalNet(tree) records the progress status of
its goal. goalNet(pendingGoalNet) contains networks obtained through decomposing
goalNet(tree). Given an intermediate process towards a goal, there are many ways to
move forward. goalNet(pendingGoalNet) explains all those possible ways. Whenever
goalNet(tree) changes, goalNet(pendingGoalNet) needs to be reproduced. This is be-
cause for different progress points the ways to move forward are different.

An iteration only computes posteriors of occurrences for steps in PSstep. The motivation
is to reduce computing complexity. This is reasonable since PSstep contains necessary steps
relating to the context. In the following chapter, a series of experiments are conducted to
evaluate the effectiveness and performance of the proposed algorithm.

65

Chapter 5

Experiments

The effectiveness and performance of the proposed hierarchical task recognition algorithm
with partial observability is evaluated in this chapter through test cases. The occurring
of steps in a test case is simulated by a simulator and no real older adults with cognitive
impairments are involved. Section 5.1 describes the scenario and the knowledge base of
the experiment study, which relates to three common daily tasks. Section 5.2 presents the
simulator, which simulates the changes of real environment. In the third part, Section 5.3,
a list of test cases for each problem category is given. In Section 5.4, experiment results
on each category of problems are shown with detailed discussions.

5.1 Scenario, Knowledge Base and Sensors

5.1.1 Scenario

Helen is an old woman with mild Alzheimer’s disease. She has problems doing three simple
daily tasks in the kitchen: washing hands, making a cup of tea, and making a cup of coffee.
Her caregiver reports some of her common mistakes. When washing hands, she might forget
to use soap or turn the faucet off, or repeatedly rinse her hands. Similar issues happen
when making a cup of tea or coffee. The caregiver hopes an intelligent assistance agent
can help Helen complete those simple tasks independently.

66

Figure 5.1: The Hierarchical Task Network for Experiment

5.1.2 Knowledge Base

There are three goals for the scenario above: wash-hand, make-tea and make-coffee. This
section shows the domain knowledge (D = (O,M)) for these three goals. Although meth-
ods and operators in knowledge base are individual pieces, they implicitly indicate a hierar-
chical plan graph, which is presented in Figure 5.1. In the graph, the root nodes stand for
goals G. Leaf nodes are the lowest level steps. Other internal nodes are inner level tasks.
Each goal or task node corresponds to a method in M , and each step node corresponds to
a step in O.

Figure 5.1 reflects some features of knowledge base. Firstly, different goals might share
lower level knowledge. For example, both make-tea and make-coffee share the task prepare-
hot-water. Secondly, there might be multiple ways to achieve a goal, depending on the
current environment. For example there are two ways to prepare-hot-water. If kettle-1
contains water, only kettle-1-heat-water is needed. If kettle-1 does not contain water,
sequential task kettle-1-add-water and kettle-1-heat-water are needed. However, the order
information among subtasks cannot be shown in the graph. One can refer to Appendix A
and Appendix B for details of preconditions, subtasks and effects of M and O.

One advantage of the proposed algorithm is that it only explores parts of the network
rather than the whole thing. On the one hand, when reasoning about what is going on,

67

Table 5.1: Sensors Used in the Experiment
(Initial values are in boldface)

SensorID Obj Att V alue

1 hand 1 soapy no, yes

2 hand 1 dirty yes, no

3 hand 1 dry yes, no

4 faucet 1 state on, yes

5 faucet 1 location kitchen, washroom

6 person 1 location kitchen, washroom

7 person 1 ability 0.6, [0, 1]

8 kettle 1 has water no, yes

9 kettle 1 switch off, on

10 kettle 1 water hot no, yes

11 cup 1 location cabinet, table

12 cup 1 has water no, yes

13 cup 1 has tea no, yes

14 cup 1 has coffee no, yes

15 tea box 1 location table, cabinet

16 tea box 1 open no, yes

17 coffee box 1 location table, cabinet

18 coffee box 1 open no, yes

only related goals are explored. For example, if the step switch-on-kettle-1 is observed,
only make-tea and make-coffee will be explored. On the other hand, when generating the
possible next steps, only branches with a satisfied precondition will be explored. Those
designs contribute to more efficient algorithm by pruning unnecessary search space.

5.1.3 Sensors

According to the experiment scenario and the given knowledge base, virtual binary sensors
(Table 5.1) are set up for the sake of simulation. There are 18 sensors altogether. The
V alue column shows all the possible readings of the sensors, with boldface the initial values.
Sensor reliability is not shown in the table because it is a variable and will be specified for

68

different experiment. For easy reference, sensors are referred to by their SensorIDs as in
Table 5.1 in this chapter.

Sensor’s obj and att should be consistent with terms in preconditions and effects of
methods and operators. For example, sensor4, whose obj is faucet-1 and att is state,
provides measurement for item (faucet-1, state, off), which is the first precondition item
in step turn-on-facuet-1 as shown in Figure 3.2.

sensor7 measures an older adult’s ability using a value between [0, 1]. sensor7 = 0
means an older adult has no ability to ADLs at all, while sensor7 = 1 means an older
adult has perfect ability to ADLs. Strictly speaking, sensor7 is not a sensor since it is a
manual input. In the precondition of a method or operator, there is required ability to
execute the corresponding task or step. The algorithm compares the requited ability to
the older adult’s real ability to determine if he/she has the ability to accomplish the task
or step.

5.2 Simulator

The simulator simulates real environment state changes that results from virtually executed
steps. The occurring of simulated steps is controlled by the simulator. No real human are
involved in the experiment. Whenever a simulated step happens, the simulator firstly
simulates the update of real state according to the effects of the step, and then simulates
the change of sensor measurements based on the simulated real state and sensor reliability.

5.2.1 Real State Update

The state in the simulator is grouped by object. Equation 5.1 stands for the real state of
obji, which contains obji’s attributes that matter.

Statei = {obj type, obj name, obj att value pair[]} (5.1)

When a step happens, state is updated following the effects of the step. We assume
that whenever a step happens its effects (outcomes) will come true in the real environment.
Thus, a simulated step will result in changes in state same as effects of the step. For
example, the initial state of objj is

statej = {faucet, faucet 1, [(state, off), (location, kitchen)]}.

69

If that step turn-on-faucet-1 (Table B.3) happens, the state would change into

statej = {faucet, faucet 1, [(state,on), (location, kitchen)]},
since step turn-on-faucet-1 has an effect changing (faucet, state, off) to (faucet, state, on).

5.2.2 Sensor Reading Update

The value of a sensor depends on the status of the corresponding attribute. For any sensor
s, s(value) reports the correct attribute status with probability s(reliability) and reports
the opposite wrong status with probability 1− s(reliability). Assume that object j’s state
is

statej = {faucet, faucet 1, [(state, off), (location, kitchen)]}.
Step turn-on-faucet-1 (Table B.3) happens, changing (faucet 1, state) from off to on.
Note that sensor4 Table 5.1 monitors this attribute and we assume that the reliability of
sensor4 is 0.9. In order to update the value for sensor4, firstly, the simulator generates a
random number in range [0, 1]. Then sensor4(value) would be set to on if the generated
random number falls in range [0, 0.9), otherwise set to off .

5.3 Experiment Test Cases

Each test case is list of steps in the order of execution. It accounts for one single goal or
multiple goals. Noisy wrong steps can exist in the list. Given a test case, the simulator sim-
ulates step by step changes of objects’ states and sensor measurements, with consideration
of sensor reliability. The algorithm also reasons about PROB and PS step by step. This
section presents test cases for each problem category as shown in Table 5.2. All test cases
are based on the knowledge base given in Subsection 5.1.2, which contains three goals:
wash-hand, make-tea, and make-coffee. Note that case 4 is missing in Table 5.2. This is
because case 4 contains shared steps of goals, where an executed step accounts for multiple
goals. Thus it does not belong to any problem category in Table 5.2. It is designed to
explain why the proposed algorithm in cannot solve problems with shared steps. Details
about this is given in Subsection 5.3.5.

5.3.1 Single Goal Correct Step

Table 5.3 shows correct step sequences for achieving a single goal. They are cases 1-3,
aiming at wash-hand, make-tea, and make-coffee, respectively. Goal wash-hand is easy to

70

Table 5.2: Test Cases for Problem Categories

Sensor Config.
Single Goal

Correct Step Wrong step

Multiple Goals

Correct Step Wrong step

Reliability Case 1-3 Case 7-10 Case 5-6 Case 11-12

Missing Sensor Case 1-3 Case 7-10 Case 5-6 Case 11-12

implement, with only five steps. However, make-tea and make-coffee are more complicated,
with 11 total steps each. The first six steps of case 2 and case 3 are the same. They differ
from step 7.

Table 5.3: Single Goal Correct Step Case 1-3

Step Num.
Case 1

wash-hand

Case 2

make-tea

Case 3

wash-coffee

1 turn-on-faucet-1 turn-on-faucet-1 turn-on-faucet-1

2 use-soap add-water-kettle-1 add-water-kettle-1

3 rinse-hand turn-off-faucet-1 turn-off-faucet-1

4 turn-off-faucet-1 switch-on-kettle-1 switch-on-kettle-1

5 dry-hand switch-off-kettle-1 switch-off-kettle-1

6 get-cup-1 get-cup-1

7 open-tea-box-1 open-coffee-box-1

8 add-tea-cup-1 add-coffee-cup-1

9 close-tea-box-1 close-coffee-box-1

10 add-water-cup-1 add-water-cup-1

11 drink drink

5.3.2 Multiple Goals Correct Step

Test cases 5 and 6 in Table 5.4 are cases for multiple goals with correct steps. The steps
in those cases indicate that an old adult person works on many goals simultaneously by

71

switching back and forth. In Table 5.4, steps in bold format account for the goal wash-
hand and steps in normal format account for the goal make-coffee. Based on Table 5.4,
one can easily figure out how the older adult switch between wash-hand and make-coffee.

Table 5.4: Multiple Goals Correct Step Case 5-6
(steps for wash-hand are in boldface)

Step Num.
Case 5

wash-hand, make-coffee

Case 6

wash-hand, make-coffee

1 turn-on-faucet-1 turn-on-faucet-1

2 use-soap add-water-kettle-1

3 rinse-hand turn-off-faucet-1

4 turn-off-faucet-1 switch-on-kettle-1

5 turn-on-faucet-1 turn-on-faucet-1

6 dry-hand use-soap

7 add-water-kettle-1 rinse-hand

8 turn-off-faucet-1 turn-off-faucet-1

9 switch-on-kettle-1 dry-hand

10 switch-off-kettle-1 switch-off-kettle-1

11 get-cup-1 get-cup-1

12 open-coffee-box-1 open-coffee-box-1

13 add-coffee-cup-1 add-coffee-cup-1

14 close-coffee-box-1 close-coffee-box-1

15 add-water-cup-1 add-water-cup-1

16 drink drink

5.3.3 Single Goal with Wrong Step

Case 7-10 are test cases aiming at a single goal but with wrong steps, which are shown
in Table 5.5. Wrong steps in those cases are marked with underlines. As explained in
Definition 3.2.1, wrong steps are divided into non-related wrong steps and related wrong
steps, depending on whether a wrong step changes the carry-on effects of its previous steps.

Case 7 is a step sequence to achieve the goal wash-hand, involving one related wrong
step turn-off-faucet-1. The older adult turn-off-faucet-1 after use-soap, forgetting to rinse-

72

Table 5.5: Single Goal Wrong Step Case 7-10
(wrong steps have underlines)

Step Num.
Case 7

wash-hand

Case 8

wash-hand

Case 9

wash-hand

Case 10

make-tea

1 turn-on-faucet-1 turn-on-faucet-1 turn-on-faucet-1 turn-on-faucet-1

2 use-soap use-soap use-soap turn-off-faucet-1

3 turn-off-faucet-1 use-soap use-soap turn-on-faucet-1

4 turn-on-faucet-1 use-soap turn-off-faucet-1 add-water-kettle-1

5 use-soap rinse-hand turn-on-faucet-1 turn-off-faucet-1

6 rinse-hand turn-off-faucet-1 use-soap switch-on-kettle-1

7 turn-off-faucet-1 dry-hand rinse-hand switch-off-kettle-1

8 dry-hand rinse-hand get-cup-1

9 dry-hand open-tea-box-1

10 turn-off-faucet-1 open-tea-box-1

11 close-tea-box-1

12 open-tea-box-1

13 add-tea-cup-1

14 close-tea-box-1

15 add-water-cup-1

16 drink

hand. This is a related wrong step because it changes the faucet state on to off, which is a
carry on effect of the previous steps. The step sequence in case 8 is also for goal wash-hand,
containing two non-related wrong steps. The older adult repeats use-soap for a long time.
Although using soap many times is not correct, the step itself does not have any impact on
the carry-on effects of the previous steps. As a result, it will not affect the preconditions
of later steps.

Case 9 is for the goal wash-hand with two non-related wrong steps (step 3, 8) and
one related wrong step (step 4). Step 3 and step 8 repeat their previous step and should
not have any side effects. For step 4, the older adult turn-off-faucet-1 too early without
rinse-hand. Note that cases 7-9 are sequences to achieve the goal wash-hand. In case 7
and 8, the order of the last two steps is turn-off-faucet-1 and then dry-hand. However, in
case 9, dry-hand is ahead of turn-off-faucet-1. They are both correct because these two

73

Table 5.6: Multiple Goals Wrong Step Case 11-12
(steps for wash-hand are in boldface, wrong steps have underlines)

Step Num.
Case 11

wash-hand, make-coffee

Case 12

wash-hand, make-tea

1 turn-on-faucet-1 turn-on-faucet-1

2 use-soap add-water-kettle-1

3 rinse-hand turn-off-faucet-1

4 rinse-hand switch-on-kettle-1

5 turn-off-faucet-1 turn-on-faucet-1

6 turn-on-faucet-1 turn-off-faucet-1

7 dry-hand turn-on-faucet-1

8 add-water-kettle-1 use-soap

9 turn-off-faucet-1 use-soap

10 switch-on-kettle-1 rinse-hand

11 switch-off-kettle-1 rinse-hand

12 get-cup-1 turn-off-faucet-1

13 open-coffee-box-1 dry-hand

14 add-water-cup-1 switch-off-kettle-1

15 close-coffee-box-1 get-cup-1

16 open-coffee-box-1 open-coffee-box-1

17 add-coffee-cup-1 add-coffee-cup-1

18 close-coffee-box-1 close-coffee-box-1

19 drink add-water-cup-1

20 drink

steps are unordered steps and either one can be executed first. Case 10 is a step sequence
for goal make-tea. It contains one non-related wrong step (step 10) and two related wrong
steps (steps 2 and 11).

5.3.4 Multiple Goals with Wrong Step

Cases 11 and 12 in Table 5.6 are test cases with multiple goals and wrong steps. Both the
two sequences account for the goal wash-hand and make-coffee. Steps for wash-hand are
in bold format and wrong steps are underlined. In case 11, step 4 is a non-related wrong
step relating to the goal wash-hand, step 15 is a related wrong step for make-coffee. In
case 12, there are two non-related wrong steps and 1 related wrong step for wash-hand.

74

5.3.5 Multiple Tasks With Shared Step

Case 4 does not belong to any problem category in Table 3.2 and no experiment is run
with it. It is used to explain a limitation of the proposed algorithm. Case 4 provides
an execution sequence for achieving goals wash-hand and make-coffee. These two goals
have a shared step which is present in bold and italic format in Table 5.7. The shared
step turn-on-faucet-1 contributes to both make-coffee followed by step 2, and wash-hand
followed by step 3. When comparing case 4 with case 5 in Table 5.4, one can see that in
case 5 turn-on-faucet-1 is done twice, one for wash-hand, another for make-coffee. However
in case 4, turn-on-faucet-1 is done once but accounts for two goals, which is a shared step.

The algorithm proposed in this paper can only assign one step to one goal. So turn-on-
faucet-1 in case 4 is assigned to either goal make-coffee or goal wash-hand, but not to both.
If it is assigned to make-coffee, the start step for wash-hand never happens. As a result,
the algorithm recognizes step 3 use-soap as a wrong step. Consequently, the proposed
algorithm cannot handle shared steps between goals.

Table 5.7: Multiple Tasks With Shared Correct Step Case 4
(the shared step is in boldface)

Step Num. Case 4

1 turn-on-faucet-1

2 add-water-kettle-1

3 use-soap

4 rinse-hand

5 turn-off-faucet-1

6 dry-hand

7 switch-on-kettle-1

8 switch-off-kettle-1

9 get-cup-1

10 open-coffee-box-1

11 add-coffee-cup-1

12 close-coffee-box-1

13 add-water-cup-1

14 drink

75

5.3.6 Sensor Missing Cases

Sensor missing cases are designed to evaluate the algorithm’s robustness to missing sensors
and to figure out what kinds of sensors are crucial for goal recognition. My assumption is
that the importance of a sensor strongly depends on its related steps. If the attribute that
a sensor measures could be affected by a step which starts a goal, the sensor is important.
If the attribute that a sensor measures could be affected by a step who has multiple
effects (the step affects multiple attributes), the sensor is not very crucial. Based on this
assumption, four sensor missing categories are given in Table 5.8. The category name is
simply taking the first letter of the property. For example “S-E-S-M” stands for “Single
Effect Start step sensor Missing”.

Table 5.8: Sensor Missing Category

Category Name Single Effect Step Multiple Effects Step

Start Step S-E-S-M M-E-S-M

Non-start Step S-E-N-S-M M-E-N-S-M

Table 5.9: Sensor Missing Cases
(boldface decimals are sensor reliabilities)

Missing
Sensor ID

Explanation Category

Sensor Missing Cases Name

Other Sensor
Reliability:

0.9

Other Sensor
Reliability:

0.8

4 faucet-1, state S-E-S-M M-1 M-7

2 hand-1, dirty M-E-N-S-M M-2 M-8

10 kettle-1, water-hot M-E-S-M M-3 M-9

9 kettle-1, switch M-E-S-M M-4 M-10

8 kettle-1, has-water S-E-N-S-M,
M-E-N-S-M

M-5 M-11

13 cup-1, has-tea S-E-N-S-M M-6 M-12

With sensor missing category defined in Table 5.8, 12 cases with single sensor missing
are designed by changing the missing sensor and the reliability of other sensors. In order

76

to distinguish between the test cases defined before, missing sensor cases start with capital
letter “M”. In Table 5.8, the “Missing Sensor ID” column shows the sensor ID indicated in
Table 5.1. Note that sensor8 belongs to two categories. This is because it relates to two
steps, one is a single effect non-start step (add-water-kettle-1), and another is a multiple
effects non-start step (add-water-cup-1).

5.3.7 Desired Output for Test Cases

The proposed algorithm aims to solve goal recognition and planning problem defined in
Definition 3.1.9. So the output for each simulated step should include two parts: the goal
distribution PROB and the correct next tasks or steps PS. The desired output for each
simulated step is as follows.

• In PROB, the ongoing goals should have higher probabilities of happening than
others after one or two steps.

• In PS, the correct next steps should have higher probabilities than the others.

• In PS, the correct next composite tasks in inner levels should have higher probabil-
ities than the others.

• For test cases of multiple goals, the algorithm should correctly assign each step to
the correct goal.

• For problems with wrong steps, the algorithm should report both related and non-
related wrong steps.

• For detected related wrong steps, the algorithm should be able to correctly target to
the affected goals and rectify their ongoing status so as to give correct hint of next
steps.

5.4 Experiment Results

This section presents experiment results for all the problem categories with detailed dis-
cussions. It includes three parts: performance evaluation criteria, results and discussions
of each problem category, and a summary to the experiment section.

77

5.4.1 Performance Evaluation Criteria

The proposed algorithm recognizes the older adult’s intents based on observations and gives
proper hints when necessary. Note that hints are not necessarily of the lowest step level.
It can be inner level composite tasks. For example in case 1 (Table 5.3), the algorithm
believes that the older adult is trying to wash-hand after step use-soap. The hint can be
the highest level goal wash-hand, or the intermediate level task clean-hand, or the lowest
level step rinse-hand.

Each iteration should produce correct PROB and PS. Given a test case, it is easy to
decide if PROB is correct or not. However PS can be partially correct when only some
of its levels are correct. It is quite likely that the hint in a higher level is correct while it
is wrong in the lowest level. However, if the hint in the lowest step level is correct, PS
must be correct. To simplify evaluation, we measure the performance of PS in a strict
way. PS is correct only when its lowest step level is correct. For cases with wrong steps,
this criterion is also applicable because if the hint in the step level is correct, the algorithm
must have reported and repaired the wrong step.

Note that to help an older adult with a cognitive impairment, recognizing his/her intent
and providing proper hints are equally important. Thus, when measuring performance,
the goal recognition result PROB and the planning result PS are considered with equal
weights. Assume that the number of steps in a test case is N , the number of iterations
that the algorithm correctly recognizes the ongoing goals is PROBC (PROB correct),
and the number of iterations that the algorithm provides the correct hint is PSC (PS
correct). The performance is computed using Equation 5.2. Because of the strict criterion
on PS, the obtained performance using Equation 5.2 is worse than the real performance
of the algorithm. However, if the performance is acceptable under this evaluation, the real
performance of the algorithm must be satisfying.

Performance =
0.5× PROBC + 0.5× PSC

N
× 100% (5.2)

In the following subsections, the performance on each problem category is presented
one by one. Sensor reliability has four values [0.99, 0.95, 0.90, 0.80]. For instance, sensor
reliability 0.8 means that all the 18 sensors in Table 5.1 have reliability 0.8. Sensor missing
has 12 cases M1-M12. Each test case is run under a specific sensor configuration for 20
times. The average performance is computed as the final performance.

Each algorithm iteration computes the goal recognition result PROB and planning
result PS (the correct next tasks and steps) based on explanations stored in the current

78

ExplaSet (refer to Section 4.1). In general, the number of explanations (Explanum) that
can explain the observation series so far obs = [obs1, obs2, obs3, ...] should not be large. Dur-
ing reasoning, many incorrect explanations with relatively low probabilities are generated
due to the partial observability. A large Explanum indicates that many noisy explana-
tions exist which can consequently affect the correctness and perfectness of PROB and
PS. When an iteration updates ExplaSet (refer Section 4.2), it reasons about every expla-
nation in ExplaSet. To avoid too much calculation, explanations with probability smaller
than 0.001 are removed when running experiments.

5.4.2 Results on Test Cases with Changing Sensor Reliabilities

The average accuracies of all the test cases with changing reliabilities is presented in Ta-
ble 5.10, for which we conclude:

• The performances positively correlate with sensor reliabilities. When sensor reliabil-
ities reduce, the average accuracies of test cases deteriorate as well.

• The easiest problem category p1, which targets problems with single goal and correct
steps, has the best performance. The average accuracies are very high even when
sensor reliabilities are only 0.8.

• The hardest problem category p4, which targets problems with multiple goals and
wrong steps, has the worst performance. The accuracies are acceptable only when
sensor reliabilities are above 0.95. This result is reasonable since the algorithm has
to deal with noisy sensors, multiple goals and wrong steps.

• The other two categories, p2 and p3, have similar performances, which are acceptable
when sensor reliabilities are above 0.9.

• When the sensor reliabilities are above 0.95, the average accuracies of all the test
cases are very high.

• Since the methods in the knowledge base contains unordered subtasks, the results
also indicate that the algorithm is capable of dealing with unordered steps and tasks.

The results in Table 5.10 demonstrate the proposed algorithm’s capacity to solve the
goal recognition and planning problem described in Chapter 3. Our algorithm can ef-
ficiently handle issues including partial observability, wrong steps, unordered steps, and
simultaneous goals.

79

Table 5.10: Average Performances on Test Cases
(boldface decimals are sensor reliabilities)

Case Num. 0.99 0.95 0.90 0.80

Case 1 100% 97% 95% 93%

Case 2 100% 99% 99% 97%

Case 3 100% 100% 98% 98%

Case 5 99% 99% 90% 79%

Case 6 100% 99% 93% 86%

Case 7 100% 98% 93% 44%

Case 8 100% 99% 98% 96%

Case 9 100% 96% 94% 59%

Case 10 100% 92% 83% 62%

Case 11 100% 90% 70% 66%

Case 12 100% 94% 79% 69%

Figure 5.2: The PROB Output for Case 1 (wash-hand)

80

Figure 5.3: The PROB Output for Case 2 (make-tea)

Figure 5.4: The PROB Output for Case 5 (wash-hand, make-coffee)

81

Figure 5.5: The PROB Output for Case 9 (wash-hand)

Figure 5.6: The PROB Output for Case 11 (wash-hand, make-coffee)

82

The Influence of Sensor Reliabilities on PROB

In order to see how sensor reliabilities affect reasoning, we pick the PROB and PSstep
outputs of case 1, case 2, case 5, case 9, and case 11 in one time run. The PROB
distributions after each step of those cases are shown in Figure 5.2, Figure 5.3, Figure 5.4,
Figure 5.5, and Figure 5.6, respectively. Their corresponding PSstep outputs are shown
in Appendix C start from page 126. According to those figures, we have the following
conclusions.

• The convergence of PROB is correlated with sensor reliability. In those figures, when
the sensor reliability is 0.99, PROB changes quickly. For example, the probability
of wash-hand in Figure 5.2 with sensor reliability 0.99 jumps to 0.99 in the second
step. When the sensor reliability reduces, PROB becomes smoother. It indicates
that the algorithm updates PROB gradually with more observations.

• The probabilities of ongoing goals outweigh the probabilities of non-happening goals
after the second or third steps. The algorithm can correctly recognize the ongoing
goals very quickly.

• The probabilities of goal make-tea and make-coffee align with each other until step
get-cup-1 in case 2, case 5 and case 11. By referring to the knowledge base in
Subsection 5.1.2, one can see make-tea and make-coffee have the same step sequence
before get-cup-1. Furthermore, the priors of goals are set to equal. That’s why the
probabilities of those two goals align with each other. The alignments in plots for
case 1 and case 9 also come from the even distribution of goal priors.

• The probability of a goal drops to 0.0 when it is finished. According to all those
figures, the probabilities of ongoing goals reach to 1.0 after sufficient observations
and drop to 0.0 when they are finished. This is reasonable since a finished goal
should not be regarded as an ongoing one.

• For case 5 and case 11, which have multiple goals, the probabilities of non-happening
goals in PROB are very high when the sensor reliabilities are less than 0.9. Those
include plots in Figure 5.4 with sensor reliability 0.9 and 0.8 and plots in Figure 5.6
with sensor reliability 0.95, 0.9, and 0.8. Such unsatisfying PROB distributions
indicate significant noises caused by low sensor reliabilities and multiple goals.

Further explanation for Figure 5.4. In case 5 the first 4 steps are for goal wash-
hand. No matter what the sensor reliability is, the probability of wash-hand reaches to 1.0

83

after step 4 turn-off-faucet-1, while the probabilities of make-tea and make-coffee reduce
to 0.0. After step 5 turn-on-faucet-1, which is for make-tea or make-coffee, the probability
of wash-hand stays the same. The probabilities of make-tea and make-coffee jump to
above 0.5. This distribution indicates that the algorithm believes wash-hand and make-tea
(or make-coffee) are in progress. The curve of make-tea cannot distinguish from that of
make-coffee because the first six steps of those two goals are the same. When referring to
Table 5.11 on page 84, it turns out this uncertainty does not affect PSstep output because
both dry-hand and add-water-kettle-1 have very high probability in step 5. The probability
of add-water-kettle-1 is high because add-water-kettle-1 is the desired next step of both
make-tea and make-coffee.

Table 5.11: Pending Set for Case 5 with Sensor Reliability 0.90
(The First 8 steps)

Step Num. Step Name PSstep for This Step

1 turn-on-faucet-1
add-water-kettle-1: 0.6426

use-soap: 0.3574

2 use-soap
turn-off-faucet-1: 0.2644

rinse-hand: 0.7356

3 rinse-hand
turn-off-faucet-1: 0.9853

switch-on-kettle-1: 0.0147
dry-hand: 0.9853

4 turn-off-faucet-1
turn-off-faucet-1: 0.4253

dry-hand: 0.5747

5 turn-on-faucet-1
add-water-kettle-1: 0.9274

dry-hand: 0.9274

6 dry-hand
turn-off-faucet-1: 0.9107

add-water-kettle-1: 0.4079
dry-hand: 0.9107

7 add-water-kettle-1

turn-off-faucet-1: 0.5765
switch-on-kettle-1: 0.4235
add-water-kettle-1: 0.1987

dry-hand: 0.8489

8 turn-off-faucet-1

turn-off-faucet-1: 0.8461
switch-on-kettle-1: 0.9964
add-water-kettle-1: 0.0503
switch-off-kettle-1: 0.0036

dry-hand: 0.8497

84

In Figure 5.4, when the sensor reliabilities are 0.9 or 0.8, the probability of wash-hand
does not drop much after step dry-hand. It indicates that the algorithm fails to recognize
the step dry-hand. The probability of wash-hand in the following steps is maintained. The
PSstep output (Table 5.11, page 84) also explains this mistake. After step 6, dry-hand is
always presented in the PSstep. Furthermore with sensor reliability 0.9 or 0.8, after step
open-coffee-box-1, although the probability of make-coffee is the highest, the probability
of make-tea is still very high. The high probability of make-tea comes from the sum of
probabilities of noisy explanations whose ongoing goals contain make-tea.

Further explanation for Figure 5.5. Case 9 contains wrong steps which are marked
with * in Figure 5.5. As one can see, PROB does not change when a wrong step happens.
This is because when a wrong step is recognized, the algorithm repairs the forest of an
existing explanation rather than changing its probability. Evidences of successfully dealing
with those wrong steps can be found in Table 5.12, which shows the PSstep output of case
9 in one time run with reliability 0.9. Step 3 and 8 are two non-related steps, and the
algorithm gives the PSstep prompts same as the ones of the last step. Similarly, step 7
and step 8 have the same PSstep. Step 4 is a related wrong step which violates the effect
(faucet-1, state, on). The algorithm repairs this wrong step and suggests the older adult
to execute turn-on-faucet-1 again.

When sensor reliability is 0.8 (the forth plot in Figure 5.5), the algorithm recognizes
make-tea & make-coffee as the ongoing goals, which is wrong. As the plot shows that the
algorithm gets lost after the wrong step turn-off-faucet-1. With sensor reliability 0.8, the
probabilities of make-tea and make-coffee are 0.22 after step 3 use-soap. This contributes
to the high prior for turn-off-faucet-1 after use-soap, which is about 0.45. Consequently
the algorithm believes that the wrong step turn-off-faucet-1 is correct and votes make-tea
or make-coffee as the ongoing goals. After step 4, the algorithm always detects the correct
steps as wrong steps and never recovers.

Further explanation for Figure 5.6. The PROB distribution with sensor reliability
0.99 is perfect. With sensor 0.95, the probabilities change in the correct direction with
noise. As the plot shows, the noise is significant since the probabilities of non-happening
goals, wash-hand and make-tea, keep going up in the later steps of the test case, reaching
to 0.4 and 0.6, respectively. However, the algorithm still works because the probabilities of
the correct ongoing goals outweigh the probabilities of the other goals. For sensor reliability
0.9 and 0.8, one can easily see the horizontally straight lines in the later steps. It means
the algorithm gets lost and does not update the explanations any more. That’s why

85

Table 5.12: Pending Set for Case 9 with Sensor Reliability 0.90

Step Num. Step Name PSstep for This Step

1 turn-on-faucet-1
add-water-kettle-1: 0.6426

use-soap: 0.3574

2 use-soap
turn-off-faucet-1: 0.2621

rinse-hand: 0.7379

3 use-soap
turn-off-faucet-1: 0.2621

rinse-hand: 0.7379

4 turn-off-faucet-1 turn-on-faucet-1: 1.0

5 turn-on-faucet-1
add-water-kettle-1: 0.4779

use-soap: 0.71

6 use-soap

turn-off-faucet-1: 0.0981

add-water-kettle-1: 0.0221

rinse-hand: 0.9019

use-soap: 0.0342

7 rinse-hand
turn-off-faucet-1: 1.0

dry-hand: 1.0

8 rinse-hand
turn-off-faucet-1: 1.0

dry-hand: 1.0

9 dry-hand
turn-off-faucet-1: 0.8999

dry-hand: 0.1001

10 turn-off-faucet-1

performances with sensor 0.9 and 0.8 are very bad. In this test case improper priors and
wrong steps cause the algorithm’s failure. Detailed explanations are given in the following
sub-subsections. The experiment result on case 11 shows that the algorithm’s ability to
tolerate sensor noises is quite limited when dealing with problems with multiple goals and
wrong steps. If the sensors are reliable enough (with reliability above 0.95), the algorithm
can work very well.

86

Table 5.13: Pending Set for Case 1 with Sensor Reliability 0.90

Step Num. Step Name PSstep for This Step

1 turn-on-faucet-1
add-water-kettle-1: 0.6426

use-soap: 0.3574

2 use-soap
turn-off-faucet-1: 0.2644

rinse-hand: 0.7356

3 rinse-hand

turn-off-faucet-1: 0.9871

switch-on-kettle-1: 0.0129

dry-hand: 0.9871

4 turn-off-faucet-1
turn-off-faucet-1: 0.1011

dry-hand: 0.8989

5 dry-hand

The Influence of Priors and Wrong Sensor Readings on PROB and PS

According to Table 5.3, test case 1 is much simpler than case 2 and 3. But the overall
performance on case 1 shown in Table 5.10 is not as good as that on case 2 and 3. By
looking into the wrong recognition outputs of case 1, it turns out error occurs when related
sensors of step 2 use-soap didn’t give the proper notification. Whenever this happens, the
PSstep after use-soap is

PSstep = [rinse-hand : 0.2367, turn-off-faucet-1 : 0.7633].

The PROB after use-soap is

PROB = [wash-hand : 0.2367,make-tea : 0.3817,make-coffee : 0.3817].

This result is regarded as wrong because the goal wash-hand and the next step rinse-hand
are supposed to have the highest probabilities.

The wrong output comes from the algorithm’s incorrect belief that the second step that
happened is add-water-kettle-1. However, the incorrect belief is reasonable for the following
reasons. Firstly, although use-soap happens, its related sensor didn’t present the proper
notification; Secondly, the prior of add-water-kettle-1 is much higher than use-soap. When
referring to Table 5.13 in page 87, which shows PSstep of case 1 in one time run with sensor
reliability 0.9, one can see after step turn-on-faucet-1, PSstep is

[add-water-kettle-1 : 0.6426, use-soap : 0.3574].

87

After turn-on-faucet-1, each goal has a probability of about 0.333 since the priors of the
three goals are set to equal. Furthermore, the desired next step for both make-tea and
make-coffee are add-water-kettle-1. That’s why add-water-kettle-1 has a higher prior after
turn-on-faucet-1. The missing notification and the high prior of add-water-kettle-1 lead to
the higher posterior of add-water-kettle-1, which convinces the algorithm to believe that
add-water-kettle-1 has happened.

The Influence of Wrong Steps on Accuracies

According to Table 5.10, the accuracies of case 7, 9 and 10 with sensor reliability 0.8
are extremely bad. The main reason for the bad performances is the related wrong
steps in those three cases. With sensor reliability 0.8, the sensors are more likely to give
wrong measurements, making the algorithm mistakenly report a correct step as wrong, or
vice versa. Once a wrong step is reported mistakenly, the algorithm will repair the tree
structure to a worse status. As a result, no matter how correct the later measurements are,
the algorithm keeps giving wrong step reports in the later steps and can not go back to
the correct direction. That’s why the accuracies on case 7, 9, and 10 with sensor reliability
0.8 are below 60%. The bad performances on case 11 and case 12 with sensor reliability
0.9 and 0.8 have the similar reason.

In the contrast, the accuracies of case 8, which only contains non-related wrong
steps, are very good with any sensor reliability. The result proves that related wrong
steps create much more noises than non-related ones, which aligns with our assumptions
in the problem description section.

The Explanum of Different Problem Categories

As mentioned before, the number of explanations is also an important measure of the
reasoning result. The more explanations, the more noisy the algorithm. Too many noisy
explanations might drag the algorithm away from correct reasoning. The average Explanum
of case 2, case 9, case 5 and case 11 are shown in Figure 5.7a, Figure 5.7b, Figure 5.7c, and
Figure 5.7d, respectively. According to those figures, we have the following observations.

• In General, the average Explanum increases when sensor reliability decreases. This
indicates that low sensor reliability leads to more noises to the recognition process.

• For test cases with wrong steps, case 9 in Figure 5.7b and case 11 Figure 5.7d, a higher
sensor reliability does not guarantee a smaller number explanations. For example,

88

in Figure 5.7b, the average Explanum with sensor reliability 0.8 is smaller than that
with sensor reliability 0.9. This is because the algorithm gets lost in some step and
keeps reporting wrong steps for the later steps without adding new explanations.

• For recognition problems with multiple goals, the algorithm generates more noisy
explanations than the ones with a single goal. Case 2 and case 9 are test cases
with only one goal. Case 5 and case 11 are test cases with two goals. As shown in
Figure 5.7, the average Explanum of case 5 and case 11 reach to about 30, which are
much more than those of case 2 and case 9. Despite many noisy explanations, the
algorithm still works because usually noisy explanations have very small probabilities.

• Wrong steps slightly increase the number of explanations. In Figure 5.7, case 9 and
case 11 contain wrong steps. Their explanation numbers are slightly bigger than
those of case 2 and case 5, which do not have wrong steps. Whenever a wrong step
is detected, the algorithm will repair existing explanations rather than creating new
ones. Thus wrong steps do not increase the number of explanation to a large degree.

• By referring to Figure 5.7 and the accuracy results in Table 5.10, we can concludes
that a large number of explanations lead to low accuracies. When the correct expla-
nations cannot compete with the noisy ones, the algorithm will present the wrong
reasoning result.

• Note that explanations with probability smaller than 0.001 are deleted during the
experiments. When this parameter is 0.00001, the number of explanations for test
case 11 reaches to 430. We delete noisy explanations with small probabilities to save
computation time.

89

(a) Case 2 (b) Case 9

(c) Case 5 (d) Case 11

Figure 5.7: Explanation Numbers with Different Sensor Reliabilities

90

5.4.3 Results on All Test Cases with Sensor Missing

This section presents the algorithm’s performance on all the test cases with missing sen-
sors. Table 5.14, Table 5.15, Table 5.16 and Table 5.17 are the experiment results on the
four categories of problems with missing sensor cases, which are p5-p8. We obtained the
following conclusions.

• Compared with experiment results in Table 5.10, the overall performances with sen-
sor missing are not as good as those without sensor missing. The difference is not
significant for problems with single goal and correct steps. However, for the others,
the performances deteriorate greatly when there is a missing sensor.

• Performances on problems with single goal and correct steps (Table 5.14) are the best.
The problems with multiple goals and wrong steps have the worst performances (Ta-
ble 5.17). Accuracies on problems with single goal and wrong steps (Table 5.16) are
higher than those on problems with multiple goals and correct steps (Table 5.15).
This means with missing sensors, the algorithm can hardly distinguish among differ-
ent goals. This is reasonable since without sensor measurements, the algorithm can
not prune the non-happening goals.

• Performances on M1-M6 are better than those on M7-M12. It indicates that higher
reliabilities of non-missing sensors contribute to higher accuracies. For problems p6,
p7, and p8, the accuracies with non-missing sensors’ reliabilities 0.8 (M7-M12) are
not acceptable.

• Missing sensor category “S-E-S-M” and “M-E-S-M”, which match to M1 and M4,
have relatively worse accuracy, such as [M1, case 5]. This means missing sensors re-
lating to a start step of a goal have profounder impacts on the algorithm performance
than the other categories of sensor missing.

• According to results in Table 5.14, performances on problem category p5 with sensor
missing cases M1-M6 is almost the same as those with sensor missing cases M7-M12.
This means for problems with single goal and correct steps, the performance is not
sensitive with sensors reliabilities.

91

Table 5.14: Average Performance on Case 1-3 with Sensor Missing

Case Num. M1 M2 M3 M4 M5 M6

1 100% 94% 94% 95% 85% 97%

2 98% 99% 97% 99% 99% 99%

3 100% 100% 100% 99% 98% 100%

Case Num. M7 M8 M9 M10 M11 M12

1 93% 91% 95% 95% 73% 97%

2 98% 97% 97% 99% 96% 98%

3 99% 99% 98% 100% 97% 99%

Table 5.15: Average Performance on Case 5-6 with Sensor Missing

Case Num. M1 M2 M3 M4 M5 M6

5 77% 92% 92% 84% 83% 93%

6 82% 89% 93% 93% 90% 91%

Case Num. M7 M8 M9 M10 M11 M12

5 67% 75% 77% 75% 57% 74%

6 82% 85% 90% 84% 89% 86%

Table 5.16: Average Performance on Case 7-10 with Sensor Missing

Case Num. M1 M2 M3 M4 M5 M6

7 56% 94% 91% 96% 39% 95%

8 99% 100% 98% 98% 77% 98%

9 55% 93% 96% 97% 32% 97%

10 90% 85% 70% 67% 81% 71%

Case Num. M7 M8 M9 M10 M11 M12

7 56% 50% 57% 57% 35% 59%

8 45% 98% 98% 94% 61% 94%

9 55% 53% 51% 60% 38% 53%

10 69% 61% 58% 49% 75% 71%

92

Table 5.17: Average Performance on Case 11-12 with Sensor Missing

Case Num. M1 M2 M3 M4 M5 M6

11 75% 67% 61% 74% 57% 78%

12 82% 89% 83% 62% 83% 76%

Case Num. M7 M8 M9 M10 M11 M12

11 71% 72% 66% 65% 42% 63%

12 69% 63% 61% 64% 70% 68%

Case Num. M13 M14 M15 M16 M17 M18

11 71% 87% 87% 89% 82% 87%

12 86% 90% 85% 67% 91% 90%

Further explanation for Table 5.14. Generally speaking, the accuracies for case
1-3 are very high, except cases [M5, case 1] and [M11, case 1], which are shown in a
bold format. In M5 and M11, sensor8, which monitors attribute (kettle-1, has-water), is
missing. As a result, the algorithm cannot obtain any information about the happening
of step add-water-kettle-1. Table 5.18 is used to explain the non-satisfying performance
on case 1 with M5 and M11. After step turn-on-faucet-1, the prior for add-water-kettle-1
is about 0.6426, much higher than that of use-soap. Since the observations of add-water-
kettle-1 is missing, the algorithm can not prune the likelihood that add-water-kettle-1 has
happened. Due to the high prior, the algorithm prunes to believe that the second step that
happened is add-water-kettle-1.

The upper part of Table 5.18 shows the PROB and PSstep after the step use-soap
when the related sensors of use-soap present correct measurements. After step use-soap,
the probability of wash-hand improves a little, and the probabilities of the other two
goals reduce a little, which are correct. However, the PSstep is wrong since rinse-hand
is supposed to have a higher probability than turn-off-faucet-1. This indicates that the
correct sensor measurements from use-soap cannot compete with the high prior of add-
water-kettle-1 when missing sensor8. The lower part of Table 5.18 shows the PROB and
PSstep after step use-soap when the related sensors of use-soap failed to present correct
measurements. In this case, the algorithm is more confident to believe that add-water-
kettle-1 has happened, which contribute to goal make-tea or make-coffee. Consequently,
the probability of wash-hand reduces to 0.0613, while the probabilities of make-tea and
make-coffee increase to 0.4693, which is totally wrong.

93

Table 5.18: Step output for case 1 with M5

Step Name wash-hand make-tea make-coffee Pending Set

turn-on-faucet-1 0.3574 0.3213 0.3213
use-soap: 0.3574

add-water-kettle-1: 0.6426

use-soap 0.3701 0.315 0.315
turn-off-faucet-1: 0.6299

rinse-hand: 0.3701

Step Name wash-hand make-tea make-coffee Pending Set

turn-on-faucet-1 0.3574 0.3213 0.3213
use-soap: 0.3574

add-water-kettle-1: 0.6426

use-soap 0.0613 0.4693 0.4693
turn-off-faucet-1: 0.9387

rinse-hand: 0.0613

Further explanations for Table 5.16. The performances on problem category p6
are not stable. For example under M1, the accuracies of case 7 and 9 are about 55%,
while the accuracies of case 8 and 10 are above 90%. Note that both case 7 and 9 have
the related wrong step turn-off-faucet-1. Meanwhile the related sensor sensor4 (faucet-
1, state) is missing in M1. Consequently, for case 7 and 9, the algorithm mistakenly
recognizes the wrong step as a correct step and never goes back in the later steps.The
fluctuating performance on case 7-10 indicates that for test cases with wrong steps, the
algorithm can never come back in case it gets lost.

Besides, performances on case 7 and 9 under missing sensor case M5 are extremely bad.
The high prior of add-water-kettle-1 plus the missing sensor sensor8 (kettle-1, has-water)
convince the algorithm to believe that add-water-kettle-1 has happened. When the wrong
step turn-on-faucet-1 is inputed, the algorithm further confirms that make-coffee or make-
tea is happening, which is totally wrong. Another reason for the overall bad performance
under M5 is that this sensor relates to more steps than the other sensors.

Further explanations for Table 5.17. The results in Table 5.17 indicate that the
algorithm can hardly handle problems with multiple goals, wrong steps and missing sensors.
This is reasonable since the algorithm has to deal with noises from missing sensors, sensor
reliabilities, multiple goals and wrong steps, which are too much. Case 11 and case 12 are
run on another set of missing sensor cases M13-M18, where the reliabilities of other sensors
are 0.95. It turns out the performance is improved comparing to that with M1-12.

94

5.4.4 Experiment Results Summary

Based on all the experiment results and case-by-case discussions, a summary of the per-
formance of the proposed algorithm is given in this section. For experiment results with
sensor reliability changes, we have the following conclusions:

• The algorithm can easily handle recognition problems with single goal and correct
steps.

• If sensor reliabilities are above 0.9, the algorithm have relative stable and high accu-
racies on recognition for multiple goals & correct steps and for single goal & wrong
steps.

• The algorithm can correctly distinguish related and non-related wrong steps. For
related wrong steps, it can target at the corresponding hierarchical tree structure
and repair the explanation from the wrong step so as to provide the desired next
steps PSstep.

• The algorithm can deal with multiple tasks & wrong steps with sensor reliability
equal or above 0.95.

• The algorithm can handle unordered tasks and steps.

• The accuracies of the goal recognition result PROB (a distribution over goals) and
the planning result PS (the desired next tasks and steps) are positively correlated
with sensor reliabilities.

• Generally, the probabilities of ongoing goals outweigh the probabilities of the other
goals after 2 or 3 steps.

• With more noises (e.g. sensor reliability, multiple goals, wrong steps), the num-
ber of explanations increase greatly. Multiple goals lead to dramatic increasing of
explanation numbers.

• The algorithm usually makes mistakes when a step with lower prior in PSstep hap-
pens while the related sensor does not give correct measurements. In this case the
algorithm tends to believe that the step with higher prior in PSstep has happened.

• For wrong steps, if the algorithm get lost, it can never go back.

95

According to experiment results with missing sensors, we have the following suggestions
for setting up a smart home environment.

• Sensors related to start steps of goals should not be missing.

• If a step related to multiple sensors, one of the sensors is missing can be tolerated by
the algorithm.

• If the caregiver notices that the old adult repeatedly make mistakes on some steps,
the sensors related to those steps should not be missing.

• If a sensor relates to many steps, it should not be missing.

• For a step at the very beginning of a goal which has a high prior, its related sensors
should not be missing.

96

Chapter 6

Conclusion and Future Work

The number of older adults with cognitive impairments increases dramatically in recent
years, which brings significant burden to the person himself/herself, their families and also
the society. We propose a goal recognition and planning algorithm to support IAAs to
help older adults with cognitive impairments complete ADLs independently. Addressed
issues in the algorithm include partial observability due to unreliable or missing sensors,
concurrent goals, incorrectly executed steps, and partially ordered plans. The algorithm is
supposed to enable IAAs to liberate caregivers from repeated and cumbersome care giving
works.

6.1 Contribution Summary

6.1.1 Combining Goal Recognition and Planning

This work integrates goal recognition and planning into one process, so as to satisfy the
required abilities of an IAA in a smart home setting. In order to teach an older adult
with cognitive impairments who does not know how to finish a task, the agent needs to
figure out what the older adult is trying to do, monitor the progress status of the task, and
provide correct guidance when necessary. The proposed algorithm is a HTN framework
based goal recognition and planning process. The recognition procedure and planning
procedure are highly coupled together. The HTN framework reduces the searching space
for goal recognition. The planning procedure generates the desired next steps to proceed
towards the recognized ongoing goals.

97

Typically the inputs of a goal recognition problem are steps, rather than raw data
collected from sensors. In this work, the goal recognition contains a standard Bayesian
network based step recognition process which works with sensor measurements. This step
recognition process is added to make the algorithm a complete solution for IAAs in smart
homes. However, the proposed algorithm can integrate with any action recognition algo-
rithm as long as it can recognize steps with raw sensor data.

Thanks to the hierarchical nature of HTN knowledge base, the hints for the next steps
and tasks provided by the planning process are in multiple levels. Thus, the agent can
choose a proper level of hints to present to the older adult according to his/her mood and
cognitive status. This is very important in the sense that we want the older adult to keep
a sense of independence.

6.1.2 Complex Problem Properties

This work considers several important properties of goal recognition: partial observability,
concurrent goals, and wrong steps.

Partial Observability

Partial observability means sensors are not 100% reliable or totally missing. Thus some-
times sensors do not give the proper measurements of attributes. The partial observability
has direct impact on the step recognition and belief state update. Typical goal recognition
algorithms start from step inputs, so they usually do not consider wrong sensor measure-
ments. In this work, the algorithm firstly takes such uncertainties into consideration in
the step recognition and belief state update. After that, uncertainties are propagated to
goal recognition by computing the degree of satisfaction for preconditions of methods and
operators.

Concurrent Goals

The proposed algorithm has the capacity to track multiple ongoing goals. The algorithm
can assign a recognized step to the correct decomposition path of the corresponding goal
and update the progress status of that goal. In general, recognition problems with multiple
goals have a step sequence input, and reason about which goals are ongoing. However,
in this work, the problem is even harder. Besides correctly recognizing which goals are

98

ongoing, the algorithm has to assign each step to the correct execution path of the correct
goal so as to correctly track the goal.

Wrong Steps

Another big issue for older adults with cognitive impairments is that they are prone to
make mistakes when accomplishing ADLs. A wrong step handling module is proposed in
this work to deal with incorrectly executed steps. Similar to re-planning, which is used to
handle exceptions in plan execution, the algorithm simulates the pull back effects of the
wrong step and rectifies the ongoing status of a goal. As a result, the agent is able to guide
the older adult to repair the impact of wrong steps and proceed to the goal.

6.2 Conclusion

The effectiveness of the proposed algorithm is reflected in the experiment results, which
are satisfying. For simple recognition problems with single goal and correct steps, the
performance is almost 100% as long as sensor reliabilities are above 0.8. Even for the
hardest kind of problem, which has multiple goals and wrong steps, the performance is
acceptable when sensor reliabilities are above 0.95. Besides, the conducted experiments
with sensor missing produce a meaningful guidance on how to set up sensors to help older
adults complete ADLs using the proposed algorithm.

6.3 Limitations and Future Work

The proposed algorithm cannot solve recognition problems with shared steps, where an
executed step works for more than one goals. However, this phenomena is common in our
daily life. An interesting topic would be extending the algorithm to tackle this kind of
problem.

The adopted knowledge base is believed to offer the caregivers the freedom to specify
their own target goals and preferences, which is customizable. However, great efforts and
education are needed to set up a correct knowledge base. A promising way to do this
is adopting machine learning techniques to learn those hierarchical knowledge base for
common ADLs. At the same time, providing some freedoms for caregivers to configure
their preference, such as the order of subtasks, the preferred ways to accomplish a goal.

99

Currently, goal priors conditional probabilities are set according to the user’s experience.
A more precise and practical way is to learn customized parameters using history data.
With customized parameter, on the one hand, the algorithm can provide more accurate
recognition and planning result. On the other hand, the algorithm could easily observe
abnormal behaviors of the older adult so as to remind the caregiver pay attention to
potential worsening status of the older adult.

100

References

[1] Jake K Aggarwal and Michael S Ryoo. Human activity analysis: A review. ACM
Computing Surveys (CSUR), 43(3):16, 2011.

[2] J Allen, H Kautz, R Pelavin, and J Tennenberg. A formal theory of plan recognition
and its implementation. Reasoning About Plans, pages 69–126, 1991.

[3] Alzheimer’s Association et al. 2016 alzheimer’s disease facts and figures. Alzheimer’s
& Dementia, 12(4):459–509, 2016.

[4] Sotiris Batsakis and Euripides GM Petrakis. Sowl: a framework for handling spatio-
temporal information in owl 2.0. In International Workshop on Rules and Rule Markup
Languages for the Semantic Web, pages 242–249. Springer, 2011.

[5] Asma Benmansour, Abdelhamid Bouchachia, and Mohammed Feham. Multioccupant
activity recognition in pervasive smart home environments. ACM Computing Surveys
(CSUR), 48(3):34, 2016.

[6] Nate Blaylock and James Allen. Corpus-based, statistical goal recognition. In IJCAI,
volume 3, pages 1303–1308, 2003.

[7] Blai Bonet and Hector Geffner. Planning under partial observability by classical
replanning: Theory and experiments. 2011.

[8] Bruno Bouchard, Sylvain Giroux, and Abdenour Bouzouane. A smart home agent for
plan recognition of cognitively-impaired patients. Journal of Computers, 1(5):53–62,
2006.

[9] Sandra Carberry. Incorporating default inferences into plan recognition. In AAAI,
pages 471–478, 1990.

101

[10] Eugene Charniak and Robert P Goldman. A bayesian model of plan recognition.
Artificial Intelligence, 64(1):53–79, 1993.

[11] Chao Chen, Barnan Das, and Diane J Cook. A data mining framework for activ-
ity recognition in smart environments. In Intelligent Environments (IE), 2010 Sixth
International Conference on, pages 80–83. IEEE, 2010.

[12] Shuwei Chen, Jun Liu, Hui Wang, and Juan Carlos Augusto. A hierarchical human
activity recognition framework based on automated reasoning. In Systems, Man, and
Cybernetics (SMC), 2013 IEEE International Conference on, pages 3495–3499. IEEE,
2013.

[13] Dongkyu Choi and Pat Langley. Learning teleoreactive logic programs from problem
solving. In International Conference on Inductive Logic Programming, pages 51–68.
Springer, 2005.

[14] Philip R Cohen, C Raymond Perrault, and James F Allen. Beyond question answering.
Strategies for natural language processing, pages 245–274, 1981.

[15] Diane J Cook and Sajal K Das. How smart are our environments? an updated look
at the state of the art. Pervasive and mobile computing, 3(2):53–73, 2007.

[16] Diane J Cook, Hani Hagras, Vic Callaghan, and Abdesalam Helal. Making our envi-
ronments intelligent. Pervasive and Mobile Computing, 5(5):556–557, 2009.

[17] Samuel Falcon Davis-Mendelow, Jorge A Baier, and Sheila McIlraith. Making reason-
able assumptions to plan with incomplete information: Abridged report. In Workshops
at the Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

[18] Thierry Denoeux. A k-nearest neighbor classification rule based on dempster-shafer
theory. IEEE transactions on systems, man, and cybernetics, 25(5):804–813, 1995.

[19] Olivier Desrichard and Catalina Köpetz. A threat in the elder: the impact of task-
instructions, self-efficacy and performance expectations on memory performance in
the elderly. European Journal of Social Psychology, 35(4):537–552, 2005.

[20] Kutluhan Erol, James Hendler, and Dana S Nau. Htn planning: Complexity and
expressivity. In AAAI, volume 94, pages 1123–1128, 1994.

[21] Kutluhan Erol, James A Hendler, and Dana S Nau. Umcp: A sound and complete
procedure for hierarchical task-network planning. In AIPS, volume 94, pages 249–254,
1994.

102

[22] Oren Etzioni, Steve Hanks, Daniel S Weld, Denise Draper, Neal Lesh, and Mike
Williamson. An approach to planning with incomplete information. KR, 92:115–125,
1992.

[23] Hongqing Fang, Lei He, Hao Si, Peng Liu, and Xiaolei Xie. Human activity recognition
based on feature selection in smart home using back-propagation algorithm. ISA
transactions, 53(5):1629–1638, 2014.

[24] Christopher W Geib. Problems with intent recognition for elder care. In Proceedings
of the AAAI-02 Workshop Automation as Caregiver, pages 13–17, 2002.

[25] Christopher W Geib and Robert P Goldman. A probabilistic plan recognition algo-
rithm based on plan tree grammars. Artificial Intelligence, 173(11):1101–1132, 2009.

[26] Christopher W Geib and S Harp. Empirical analysis of a probabilistic task tracking
algorithm. In Proceedings of Workshop on Agent Tracking, Autonomous Agents and
MultiAgent Systems (AAMAS). Citeseer, 2004.

[27] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: theory and
practice. Elsevier, 2004.

[28] L Gillani Fahad, Syed Fahad Tahir, and Muttukrishnan Rajarajan. Activity recog-
nition in smart homes using clustering based classification. In Pattern Recognition
(ICPR), 2014 22nd International Conference on, pages 1348–1353. IEEE, 2014.

[29] Robert P Goldman, Christopher W Geib, and Christopher A Miller. A new model of
plan recognition. In Proceedings of the Fifteenth conference on Uncertainty in artificial
intelligence, pages 245–254. Morgan Kaufmann Publishers Inc., 1999.

[30] Eunyoung Ha, Jonathan P Rowe, Bradford W Mott, and James C Lester. Goal
recognition with markov logic networks for player-adaptive games. In AIIDE, 2011.

[31] David R Heise. Expressive order: Confirming sentiments in social actions. Springer
Science & Business Media, 2007.

[32] Jesse Hoey and Marek Grzes. Distributed control of situated assistance in large do-
mains with many tasks. In ICAPS, 2011.

[33] Jesse Hoey, Pascal Poupart, Axel von Bertoldi, Tammy Craig, Craig Boutilier, and
Alex Mihailidis. Automated handwashing assistance for persons with dementia using
video and a partially observable markov decision process. Computer Vision and Image
Understanding, 114(5):503–519, 2010.

103

[34] Jesse Hoey, Tobias Schröder, and Areej Alhothali. Affect control processes: Intelligent
affective interaction using a partially observable markov decision process. Artificial
Intelligence, 230:134–172, 2016.

[35] Karen Huff and Victor Lesser. Knowledge-based command understanding: An exam-
ple for the software development environment. Computer and Information Sciences
Technical Report, pages 82–6, 1982.

[36] A Hwang and J Hoey. Diy smart home: narrowing the gap between users and technol-
ogy. In Proceedings of the Interactive Machine Learning Workshop, 2013 International
Conference on Intelligent User Interfaces, 2013.

[37] Leslie Pack Kaelbling. Hierarchical learning in stochastic domains: Preliminary re-
sults. In Proceedings of the tenth international conference on machine learning, volume
951, pages 167–173, 2014.

[38] Henry A Kautz. A formal theory of plan recognition. PhD thesis, Bell Laboratories,
1987.

[39] Henry A Kautz and James F Allen. Generalized plan recognition. In AAAI, volume 86,
page 5, 1986.

[40] Oscar D Lara and Miguel A Labrador. A survey on human activity recognition using
wearable sensors. IEEE Communications Surveys and Tutorials, 15(3):1192–1209,
2013.

[41] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information
theory, 28(2):129–137, 1982.

[42] Wookhee Min, Eunyoung Ha, Jonathan P Rowe, Bradford W Mott, and James C
Lester. Deep learning-based goal recognition in open-ended digital games. In AIIDE,
2014.

[43] Wookhee Min, Bradford Mott, Jonathan Rowe, and James Lester. Deep lstm-based
goal recognition models for open-world digital games. 2017.

[44] Wookhee Min, Bradford Mott, Jonathan Rowe, Barry Liu, and James Lester. Player
goal recognition in open-world digital games with long short-term memory networks.
In Proceedings of the 25th International Joint Conference on Artificial Intelligence,
pages 2590–2596, 2016.

104

[45] Dana S Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J William Murdock, Dan
Wu, and Fusun Yaman. Shop2: An htn planning system. J. Artif. Intell. Res.(JAIR),
20:379–404, 2003.

[46] George Okeyo, Liming Chen, and Hui Wang. Combining ontological and temporal
formalisms for composite activity modelling and recognition in smart homes. Future
Generation Computer Systems, 39:29–43, 2014.

[47] George Okeyo, Liming Chen, Hui Wang, and Roy Sterritt. Ontology-based learning
framework for activity assistance in an adaptive smart home. In Activity Recognition
in Pervasive Intelligent Environments, pages 237–263. Springer, 2011.

[48] George Okeyo, Liming Chen, Hui Wang, and Roy Sterritt. A hybrid ontological and
temporal approach for composite activity modelling. In Trust, Security and Privacy
in Computing and Communications (TrustCom), 2012 IEEE 11th International Con-
ference on, pages 1763–1770. IEEE, 2012.

[49] George Okeyo, Liming Chen, Hui Wang, and Roy Sterritt. A knowledge-driven ap-
proach to composite activity recognition in smart environments. In Ubiquitous Com-
puting and Ambient Intelligence, pages 322–329. Springer, 2012.

[50] Nuria Oliver, Ashutosh Garg, and Eric Horvitz. Layered representations for learning
and inferring office activity from multiple sensory channels. Computer Vision and
Image Understanding, 96(2):163–180, 2004.

[51] Donald J Patterson, Dieter Fox, Henry Kautz, and Matthai Philipose. Fine-grained
activity recognition by aggregating abstract object usage. In Wearable Computers,
2005. Proceedings. Ninth IEEE International Symposium on, pages 44–51. IEEE, 2005.

[52] Martha E Pollack. Generating expert answers through goal inference. SRI Interna-
tional. Artificial Intelligence Center, 1983.

[53] David Poole. Probabilistic horn abduction and bayesian networks. Artificial intelli-
gence, 64(1):81–129, 1993.

[54] Joseph Rafferty, Chris D Nugent, Jun Liu, and Liming Chen. From activity recognition
to intention recognition for assisted living within smart homes. IEEE Transactions
on Human-Machine Systems, 2017.

[55] Ira J Roseman and Craig A Smith. Appraisal theory. Appraisal processes in emotion:
Theory, methods, research, pages 3–19, 2001.

105

[56] Earl D Sacerdoti. A structure for plans and behavior. Technical report, DTIC Docu-
ment, 1975.

[57] Fariba Sadri. Ambient intelligence: A survey. ACM Computing Surveys (CSUR),
43(4):36, 2011.

[58] Charles F. Schmidt, NS Sridharan, and John L. Goodson. The plan recognition prob-
lem: An intersection of psychology and artificial intelligence. Artificial Intelligence,
11(1-2):45–83, 1978.

[59] Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten, and
Paul JM Havinga. A survey of online activity recognition using mobile phones. Sen-
sors, 15(1):2059–2085, 2015.

[60] Geetika Singla, Diane J Cook, and Maureen Schmitter-Edgecombe. Incorporating
temporal reasoning into activity recognition for smart home residents. In Proceedings
of the AAAI workshop on spatial and temporal reasoning, pages 53–61, 2008.

[61] Thad Starner and Alex Pentland. Real-time american sign language recognition from
video using hidden markov models. In Motion-Based Recognition, pages 227–243.
Springer, 1997.

[62] Douglas L Vail, Manuela M Veloso, and John D Lafferty. Conditional random fields
for activity recognition. In Proceedings of the 6th international joint conference on
Autonomous agents and multiagent systems, page 235. ACM, 2007.

[63] TLM Van Kasteren, Gwenn Englebienne, and Ben JA Kröse. Activity recognition
using semi-markov models on real world smart home datasets. Journal of ambient
intelligence and smart environments, 2(3):311–325, 2010.

[64] Marc B Vilain. Getting serious about parsing plans: A grammatical analysis of plan
recognition. In AAAI, pages 190–197, 1990.

[65] Robert Wilensky. Planning and understanding: A computational approach to human
reasoning. 1983.

[66] Andrew D Wilson and Aaron F Bobick. Recognition and interpretation of parametric
gesture. In Computer Vision, 1998. Sixth International Conference on, pages 329–336.
IEEE, 1998.

106

[67] Daniel H Wilson and Chris Atkeson. Simultaneous tracking and activity recogni-
tion (star) using many anonymous, binary sensors. In International Conference on
Pervasive Computing, pages 62–79. Springer, 2005.

[68] Shuai Zhang, Sally McClean, Bryan Scotney, and Chris Nugent. Learning under
uncertainty in smart home environments. In Engineering in Medicine and Biology
Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE, pages
2083–2086. IEEE, 2008.

107

APPENDICES

108

Appendix A

Methods in Knowledge Base

Table A.1: Method clean-hand

Precondition 1

Num. Object Attribute Value

1 faucet-1 state on

2 hand-1 dirty yes

3 hand-1 soapy no

4 person-1 location kitchen

5 person-1 ability 0.6

Subtasks 1

Num. Name Precedent Decedent

1 use-soap None [rinse-hand]

2 rinse-hand [use-soap] None

109

Table A.2: Method wash-hand

Precondition 1

Num. Object Attribute Value

1 faucet-1 state off

2 hand-1 dirty yes

3 hand-1 soapy no

4 person-1 location kitchen

5 person-1 ability 0.6

Subtasks 1

Num. Name Precedent Decedent

1 turn-on-faucet-1 None [clean-hand]

2 turn-off-faucet-1 [clean-hand] [dry-hand]

3 dry-hand [turn-off-faucet-1] None

4 clean-hand [turn-on-faucet-1] [turn-off-faucet-1]

Table A.3: Method kettle-1-heat-water

Precondition 1

Num. Object Attribute Value

1 kettle-1 water-hot no

2 kettle-1 has-water yes

3 kettle-1 switch off

4 person-1 location kitchen

5 person-1 ability 0.6

Subtasks 1

Num. Name Precedent Decedent

1 switch-on-kettle-1 None [switch-off-kettle-1]

2 switch-off-kettle-1 [switch-on-kettle-1] None

110

Table A.4: Method kettle-1-add-water

Precondition 1

Num. Object Attribute Value

1 faucet-1 state off

2 faucet-1 location kitchen

3 kettle-1 water-hot no

4 kettle-1 has-water no

5 kettle-1 switch off

6 person-1 location kitchen

7 person-1 ability 0.6

Subtasks 1

Num. Name Precedent Decedent

1 turn-on-faucet-1 None [add-water-kettle-1]

2 turn-off-faucet-1 [add-water-kettle-1] None

3 add-water-
kettle-1

[turn-on-faucet-1] [turn-off-faucet-1]

111

Table A.5: Method prepare-hot-water

Precondition 1

Num. Object Attribute Value

1 faucet-1 state off

2 faucet-1 location kitchen

3 kettle-1 water-hot no

4 kettle-1 has-water no

5 kettle-1 switch off

6 person-1 location kitchen

7 person-1 ability 0.6

Subtasks 1

Num. Name Precedent Decedent

1 kettle-1-heat-water [kettle-1-add-
water]

None

2 kettle-1-add-water None [kettle-1-heat-
water]

Precondition 2

Num. Object Attribute Value

1 kettle-1 water-hot no

2 kettle-1 has-water yes

3 kettle-1 switch off

4 person-1 location kitchen

5 person-1 ability 0.6

Subtasks 2
Num. Name Precedent Decedent

1 kettle-1-heat-water None None

112

Table A.6: Method add-tea

Precondition 1

Num. Object Attribute Value

1 tea-box-1 open no

2 tea-box-1 location table

3 cup-1 has-coffee no

4 cup-1 has-tea no

5 cup-1 location table

6 person-1 location kitchen

7 person-1 ability 0.6

Subtasks 1

Num. Name Precedent Decedent

1 close-tea-box-1 [add-tea-cup-1] None

2 add-tea-cup-1 [open-tea-box-1] [close-tea-box-1]

3 open-tea-box-1 None [add-tea-cup-1]

Table A.7: Method add-coffee

Precondition 1

Num. Object Attribute Value

1 cup-1 has-coffee no

2 cup-1 has-tea no

3 cup-1 location table

4 coffee-box-1 open no

5 coffee-box-1 location table

6 person-1 location kitchen

7 person-1 ability 0.6

Subtasks 1

Num. Name Precedent Decedent

1 open-coffee-box-1 None [add-coffee-cup-1]

2 add-coffee-cup-1 [open-coffee-box-1] [close-coffee-box-1]

3 close-coffee-box-1 [add-coffee-cup-1] None

113

Table A.8: Method mix-tea-water

Precondition 1

Num. Object Attribute Value

1 tea-box-1 open no

2 tea-box-1 location table

3 kettle-1 water-hot yes

4 kettle-1 has-water yes

5 kettle-1 switch off

6 cup-1 has-coffee no

7 cup-1 has-tea no

8 cup-1 location cabinet

9 cup-1 has-water no

10 person-1 location kitchen

11 person-1 ability 0.6

Subtasks 1

Num. Name Precedent Decedent

1 add-tea [get-cup-1] None

2 add-water-cup-1 [get-cup-1] None

3 get-cup-1 None [add-tea,add-
water-cup-1]

114

Table A.9: Method mix-coffee-water

Precondition 1

Num. Object Attribute Value

1 kettle-1 water-hot yes

2 kettle-1 has-water yes

3 kettle-1 switch off

4 cup-1 has-coffee no

5 cup-1 has-tea no

6 cup-1 location cabinet

7 cup-1 has-water no

8 coffee-box-1 open no

9 coffee-box-1 location table

10 person-1 location kitchen

11 person-1 ability 0.6

Subtasks 1

Num. Name Precedent Decedent

1 add-coffee [get-cup-1] None

2 add-water-cup-1 [get-cup-1] None

3 get-cup-1 None [add-coffee,add-
water-cup-1]

Table A.10: Method make-tea

Precondition 1

Num. Object Attribute Value

1 kettle-1 switch off

2 person-1 location kitchen

3 person-1 ability 0.6

Subtasks 1

Num. Name Precedent Decedent

1 mix-tea-water [prepare-hot-water] [drink]

2 drink [mix-tea-water] None

3 prepare-hot-water None [mix-tea-water]

115

Table A.11: Method make-coffee

Precondition 1

Num. Object Attribute Value

1 kettle-1 switch off

2 person-1 location kitchen

3 person-1 ability 0.6

Subtasks 1

Num. Name Precedent Decedent

1 drink [mix-coffee-water] None

2 prepare-hot-water None [mix-coffee-water]

3 mix-coffee-water [prepare-hot-water] [drink]

Table A.12: Operator use-soap

Precondition 1

Num. Object Attribute Value

1 kettle-1 switch off

2 person-1 location kitchen

3 person-1 ability 0.6

Subtasks 1

Num. Name Precedent Decedent

1 drink [mix-coffee-water] None

2 prepare-hot-water None [mix-coffee-water]

3 mix-coffee-water [prepare-hot-water] [drink]

116

Appendix B

Operators in Knowledge Base

Table B.1: Operator use-soap

Precondition

Num. Object Attribute Value

1 hand-1 dirty yes

2 hand-1 soapy no

3 person-1 location kitchen

4 person-1 ability 0.6

Effect
Num. Name Precedent Decedent

1 hand-1 soapy yes

Parent Task [clean-hand]

117

Table B.2: Operator rinse-hand

Precondition

Num. Object Attribute Value

1 faucet-1 state on

2 hand-1 dirty yes

3 hand-1 soapy yes

4 person-1 location kitchen

5 person-1 ability 0.6

Effect

Num. Name Precedent Decedent

1 hand-1 dry no

2 hand-1 dirty no

3 hand-1 soapy no

Parent Task [clean-hand]

Table B.3: Operator turn-on-faucet-1

Precondition

Num. Object Attribute Value

1 faucet-1 state off

2 faucet-1 location kitchen

3 person-1 location kitchen

4 person-1 ability 0.6

Effect
Num. Name Precedent Decedent

1 faucet-1 state on

Parent Task [wash-hand ,kettle-1-add-water]

118

Table B.4: Operator turn-off-faucet-1

Precondition

Num. Object Attribute Value

1 faucet-1 state on

2 faucet-1 location kitchen

3 person-1 location kitchen

4 person-1 ability 0.6

Effect
Num. Name Precedent Decedent

1 faucet-1 state off

Parent Task [wash-hand ,kettle-1-add-water]

Table B.5: Operator dry-hand

Precondition

Num. Object Attribute Value

1 hand-1 dry no

2 hand-1 dirty no

3 person-1 location kitchen

4 person-1 ability 0.6

Effect
Num. Name Precedent Decedent

1 hand-1 dry yes

Parent Task [wash-hand]

119

Table B.6: Operator switch-on-kettle-1

Precondition

Num. Object Attribute Value

1 kettle-1 water-hot no

2 kettle-1 has-water yes

3 kettle-1 switch off

4 person-1 location kitchen

5 person-1 ability 0.6

Effect

Num. Name Precedent Decedent

1 kettle-1 water-hot yes

2 kettle-1 switch on

Parent Task [kettle-1-heat-water]

Table B.7: Operator switch-off-kettle-1

Precondition

Num. Object Attribute Value

1 kettle-1 water-hot yes

2 kettle-1 switch on

3 person-1 location kitchen

4 person-1 ability 0.6

Effect
Num. Name Precedent Decedent

1 kettle-1 switch off

Parent Task [kettle-1-heat-water]

120

Table B.8: Operator add-water-kettle-1

Precondition

Num. Object Attribute Value

1 kettle-1 water-hot no

2 kettle-1 has-water no

3 kettle-1 switch off

4 person-1 location kitchen

5 person-1 ability 0.6

Effect
Num. Name Precedent Decedent

1 kettle-1 has-water yes

Parent Task [kettle-1-add-water]

Table B.9: Operator get-cup-1

Precondition

Num. Object Attribute Value

1 cup-1 has-water no

2 cup-1 has-tea no

3 cup-1 location cabinet

4 cup-1 has-coffee no

5 person-1 location kitchen

6 person-1 ability 0.6

Effect
Num. Name Precedent Decedent

1 cup-1 location table

Parent Task [mix-tea-water ,mix-coffee-water]

121

Table B.10: Operator open-tea-box-1

Precondition

Num. Object Attribute Value

1 tea-box-1 open no

2 tea-box-1 location table

3 person-1 location kitchen

4 person-1 ability 0.6

Effect
Num. Name Precedent Decedent

1 tea-box-1 open yes

Parent Task [mix-tea-water]

Table B.11: Operator add-tea-cup-1

Precondition

Num. Object Attribute Value

1 tea-box-1 open yes

2 tea-box-1 location table

3 cup-1 has-coffee no

4 cup-1 has-tea no

5 cup-1 location table

6 person-1 location kitchen

7 person-1 ability 0.6

Effect
Num. Name Precedent Decedent

1 cup-1 has-tea yes

Parent Task [mix-tea-water]

122

Table B.12: Operator close-tea-box-1

Precondition

Num. Object Attribute Value

1 tea-box-1 open yes

2 tea-box-1 location table

3 person-1 location kitchen

4 person-1 ability 0.6

Effect
Num. Name Precedent Decedent

1 tea-box-1 open no

Parent Task [mix-tea-water]

Table B.13: Operator add-water-cup-1

Precondition

Num. Object Attribute Value

1 kettle-1 water-hot yes

2 kettle-1 has-water yes

3 kettle-1 switch off

4 cup-1 has-water no

5 cup-1 location table

6 person-1 location kitchen

7 person-1 ability 0.6

Effect

Num. Name Precedent Decedent

1 kettle-1 water-hot no

2 kettle-1 has-water no

3 cup-1 has-water yes

Parent Task [mix-tea-water ,mix-coffee-water]

123

Table B.14: Operator open-coffee-box-1

Precondition

Num. Object Attribute Value

1 coffee-box-1 open no

2 coffee-box-1 location table

3 person-1 location kitchen

4 person-1 ability 0.6

Effect
Num. Name Precedent Decedent

1 coffee-box-1 open yes

Parent Task [mix-coffee-water]

Table B.15: Operator add-coffee-cup-1

Precondition

Num. Object Attribute Value

1 cup-1 has-coffee no

2 cup-1 has-tea no

3 cup-1 location table

4 coffee-box-1 open yes

5 coffee-box-1 location table

6 person-1 location kitchen

7 person-1 ability 0.6

Effect
Num. Name Precedent Decedent

1 cup-1 has-coffee yes

Parent Task [mix-coffee-water]

124

Table B.16: Operator close-coffee-box-1

Precondition

Num. Object Attribute Value

1 coffee-box-1 open yes

2 coffee-box-1 location table

3 person-1 location kitchen

4 person-1 ability 0.6

Effect
Num. Name Precedent Decedent

1 coffee-box-1 open no

Parent Task [mix-coffee-water]

Table B.17: Operator drink

Precondition
Num. Object Attribute Value

1 cup-1 has-water yes

Effect

Num. Name Precedent Decedent

1 cup-1 has-water no

2 cup-1 has-tea no

3 cup-1 has-coffee no

Parent Task [make-coffee ,make-tea]

125

Appendix C

Pending Set Output for Cases

Table C.1: Pending Set for Case 1 with Sensor Reliability 0.90

Step Num. Step Name PSstep for This Step

1 turn-on-faucet-1
add-water-kettle-1: 0.6426

use-soap: 0.3574

2 use-soap
turn-off-faucet-1: 0.2644

rinse-hand: 0.7356

3 rinse-hand

turn-off-faucet-1: 0.9871

switch-on-kettle-1: 0.0129

dry-hand: 0.9871

4 turn-off-faucet-1
turn-off-faucet-1: 0.1011

dry-hand: 0.8989

5 dry-hand

126

Table C.2: Pending Set for Case 2 with Sensor Reliability 0.90

Step Num. Step Name PSstep for This Step

1 turn-on-faucet-1
add-water-kettle-1: 0.6426

use-soap: 0.3574

2 add-water-kettle-1
turn-off-faucet-1: 0.9632

rinse-hand: 0.0368
3 turn-off-faucet-1 switch-on-kettle-1: 1.0

4 switch-on-kettle-1
switch-on-kettle-1: 0.0073

turn-on-faucet-1: 0.0073
switch-off-kettle-1: 0.9927

5 switch-off-kettle-1 get-cup-1: 1.0

6 get-cup-1
add-water-cup-1: 1.0

open-coffee-box-1: 0.5
open-tea-box-1: 0.5

7 open-tea-box-1

add-coffee-cup-1: 0.0997
add-tea-cup-1: 0.8888

add-water-cup-1: 0.9885
open-coffee-box-1: 0.0057

open-tea-box-1: 0.0057

8 add-tea-cup-1
close-tea-box-1: 0.9964
add-tea-cup-1: 0.0036

add-water-cup-1: 0.9964

9 close-tea-box-1
close-tea-box-1: 0.0032

add-water-cup-1: 0.9968
10 add-water-cup-1 drink: 1.0
11 drink

127

Table C.3: Pending Set for Case 5 with Sensor Reliability 0.90

Step Num. Step Name PSstep for This Step

1 turn-on-faucet-1
add-water-kettle-1: 0.6426

use-soap: 0.3574

2 use-soap
turn-off-faucet-1: 0.2644

rinse-hand: 0.7356

3 rinse-hand
turn-off-faucet-1: 0.9853

switch-on-kettle-1: 0.0147
dry-hand: 0.9853

4 turn-off-faucet-1
turn-off-faucet-1: 0.4253

dry-hand: 0.5747

5 turn-on-faucet-1
add-water-kettle-1: 0.9274

dry-hand: 0.9274

6 dry-hand
turn-off-faucet-1: 0.9107

add-water-kettle-1: 0.4079
dry-hand: 0.9107

7 add-water-kettle-1

turn-off-faucet-1: 0.5765
switch-on-kettle-1: 0.4235
add-water-kettle-1: 0.1987

dry-hand: 0.8489

8 turn-off-faucet-1

turn-off-faucet-1: 0.8461
switch-on-kettle-1: 0.9964
add-water-kettle-1: 0.0503
switch-off-kettle-1: 0.0036

dry-hand: 0.8497

9 switch-on-kettle-1

turn-off-faucet-1: 0.8491
dry-hand: 0.8491

add-water-kettle-1: 0.0504
switch-off-kettle-1: 1.0

10 switch-off-kettle-1

turn-off-faucet-1: 0.8438
add-water-kettle-1: 0.0501

dry-hand: 0.8501
get-cup-1: 0.9937

switch-on-kettle-1: 0.0063
switch-off-kettle-1: 0.0063

Continued on next page

128

Table C.3 – continued from previous page

Step Num. Step Name PSstep for This Step

11 get-cup-1

open-tea-box-1: 0.5
turn-off-faucet-1: 0.8491

add-water-kettle-1: 0.0504
dry-hand: 0.8491

open-coffee-box-1: 0.5
add-water-cup-1: 1.0

12 open-coffee-box-1

add-coffee-cup-1: 0.8889
open-tea-box-1: 0.006

turn-off-faucet-1: 0.8395
add-tea-cup-1: 0.0991

add-water-kettle-1: 0.0499
dry-hand: 0.8515

switch-on-kettle-1: 0.012
open-coffee-box-1: 0.006
add-water-cup-1: 1.0

13 add-coffee-cup-1

add-coffee-cup-1: 0.0057
turn-off-faucet-1: 0.8443

close-coffee-box-1: 0.9943
add-water-kettle-1: 0.0502

dry-hand: 0.85
switch-on-kettle-1: 0.0057

add-water-cup-1: 1.0

14 close-coffee-box-1

close-coffee-box-1: 0.0038
turn-off-faucet-1: 0.846

add-water-kettle-1: 0.0503
dry-hand: 0.8497

switch-on-kettle-1: 0.0038
add-water-cup-1: 1.0

Continued on next page

129

Table C.3 – continued from previous page

Step Num. Step Name PSstep for This Step

15 add-water-cup-1

turn-off-faucet-1: 0.8266
drink: 0.966

close-coffee-box-1: 0.0036
add-water-kettle-1: 0.0487

dry-hand: 0.8479
switch-on-kettle-1: 0.0277

add-water-cup-1: 0.0304

16 drink

turn-off-faucet-1: 0.8366
switch-on-kettle-1: 0.0148

drink: 0.0148
add-water-kettle-1: 0.0497

dry-hand: 0.8514

130

Table C.4: Pending Set for Case 9 with Sensor Reliability 0.90

Step Num. Step Name PSstep for This Step

1 turn-on-faucet-1
add-water-kettle-1: 0.6426

use-soap: 0.3574

2 use-soap
turn-off-faucet-1: 0.2621

rinse-hand: 0.7379

3 use-soap
turn-off-faucet-1: 0.2621

rinse-hand: 0.7379

4 turn-off-faucet-1 turn-on-faucet-1: 1.0

5 turn-on-faucet-1
add-water-kettle-1: 0.4779

use-soap: 0.71

6 use-soap

turn-off-faucet-1: 0.0981

add-water-kettle-1: 0.0221

rinse-hand: 0.9019

use-soap: 0.0342

7 rinse-hand
turn-off-faucet-1: 1.0

dry-hand: 1.0

8 rinse-hand
turn-off-faucet-1: 1.0

dry-hand: 1.0

9 dry-hand
turn-off-faucet-1: 0.8999

dry-hand: 0.1001

10 turn-off-faucet-1

Table C.5: Pending Set for Case 11 with Sensor Reliability 0.95

Step Num. Step Name PSstep for This Step

1 turn-on-faucet-1
add-water-kettle-1: 0.6426

use-soap: 0.3574

2 use-soap
turn-off-faucet-1: 0.1448

rinse-hand: 0.8552

3 rinse-hand
turn-off-faucet-1: 1.0

dry-hand: 1.0
Continued on next page

131

Table C.5 – continued from previous page

Step Num. Step Name PSstep for This Step

4 rinse-hand
turn-off-faucet-1: 1.0

dry-hand: 1.0

5 turn-off-faucet-1
turn-off-faucet-1: 0.0496

dry-hand: 0.9504

6 turn-on-faucet-1
add-water-kettle-1: 0.9591

dry-hand: 0.9591

7 dry-hand
turn-off-faucet-1: 0.0614

add-water-kettle-1: 0.9622
dry-hand: 0.0614

8 add-water-kettle-1
turn-off-faucet-1: 1.0

add-water-kettle-1: 0.3769
dry-hand: 0.0199

9 turn-off-faucet-1

turn-off-faucet-1: 0.039
switch-on-kettle-1: 1.0
add-water-kettle-1: 0.3696

dry-hand: 0.039

10 switch-on-kettle-1

turn-off-faucet-1: 0.0382
add-water-kettle-1: 0.384

dry-hand: 0.0382
switch-on-kettle-1: 0.0229
switch-off-kettle-1: 0.9771

use-soap: 0.0229

11 switch-off-kettle-1

turn-off-faucet-1: 0.0373
add-water-kettle-1: 0.3975

dry-hand: 0.0373
get-cup-1: 0.9557

switch-off-kettle-1: 0.0443
use-soap: 0.0443

Continued on next page

132

Table C.5 – continued from previous page

Step Num. Step Name PSstep for This Step

12 get-cup-1

open-tea-box-1: 0.4681
add-water-cup-1: 0.9362
turn-off-faucet-1: 0.0366

add-water-kettle-1: 0.4098
dry-hand: 0.0366
get-cup-1: 0.0638

open-coffee-box-1: 0.4681
use-soap: 0.0638

13 open-coffee-box-1

add-coffee-cup-1: 0.8396
turn-off-faucet-1: 0.0328

add-tea-cup-1: 0.0425
add-water-kettle-1: 0.4446

dry-hand: 0.0328
use-soap: 0.1179

open-coffee-box-1: 0.1179
add-water-cup-1: 1.0

14 add-water-cup-1

add-coffee-cup-1: 0.832
turn-off-faucet-1: 0.0281

close-coffee-box-1: 0.0305
add-water-kettle-1: 0.5051

add-tea-cup-1: 0.0364
add-water-cup-1: 0.1428

dry-hand: 0.0281
open-coffee-box-1: 0.1011

use-soap: 0.2134

15 close-coffee-box-1

add-coffee-cup-1: 0.832
turn-off-faucet-1: 0.0281

close-coffee-box-1: 0.0305
add-water-kettle-1: 0.5051

add-tea-cup-1: 0.0364
add-water-cup-1: 0.1428

dry-hand: 0.0281
open-coffee-box-1: 0.1011

use-soap: 0.2134
Continued on next page

133

Table C.5 – continued from previous page

Step Num. Step Name PSstep for This Step

16 open-coffee-box-1

add-coffee-cup-1: 0.832
turn-off-faucet-1: 0.0281

close-coffee-box-1: 0.0305
add-water-kettle-1: 0.5051

add-tea-cup-1: 0.0364
add-water-cup-1: 0.1428

dry-hand: 0.0281
open-coffee-box-1: 0.1011

use-soap: 0.2134

17 add-coffee-cup-1

add-coffee-cup-1: 0.2539
turn-off-faucet-1: 0.0295
add-water-cup-1: 0.1007

close-coffee-box-1: 0.7461
add-water-kettle-1: 0.5887

dry-hand: 0.0252
use-soap: 0.3502

18 close-coffee-box-1

turn-off-faucet-1: 0.0286
drink: 0.6032

add-water-cup-1: 0.0941
close-coffee-box-1: 0.3027

add-water-kettle-1: 0.6147
dry-hand: 0.0236
use-soap: 0.3918

19 drink

turn-off-faucet-1: 0.0297
dry-hand: 0.0239

add-water-kettle-1: 0.6084
drink: 0.388

use-soap: 0.3823

134

	List of Tables
	List of Figures
	Introduction
	Motivation
	Objectives
	Thesis Overview

	Related Work
	Non-Hierarchical Approaches
	Bayesian Network (BN)
	Artificial Neural Network (ANN)
	HMM and CRF
	Other Machine Learning Techniques

	Hierarchical Approaches
	HTN-based Approach
	Ontology-based Approach
	Other Approach

	Goal Recognition in Smart Homes
	Related Work Summary

	Problem Description
	Definitions
	Terminology Summary
	HTN Planning
	Goal Recognition
	Goal Recognition and Planning

	Problem Categories

	The Algorithm
	Data Structures and Terminologies
	The HTN-GRP-PO Algorithm
	Agent Initialization
	Compute PSstep Posterior
	Belief State bs Update
	Explanation Set Update
	Bottom Up Initialization
	Top Down Decomposition

	Wrong Steps Handling
	Derivation of PROB and PS
	Algorithm Summary

	Experiments
	Scenario, Knowledge Base and Sensors
	Scenario
	Knowledge Base
	Sensors

	Simulator
	Real State Update
	Sensor Reading Update

	Experiment Test Cases
	Single Goal Correct Step
	Multiple Goals Correct Step
	Single Goal with Wrong Step
	Multiple Goals with Wrong Step
	Multiple Tasks With Shared Step
	Sensor Missing Cases
	Desired Output for Test Cases

	Experiment Results
	Performance Evaluation Criteria
	Results on Test Cases with Changing Sensor Reliabilities
	Results on All Test Cases with Sensor Missing
	Experiment Results Summary

	Conclusion and Future Work
	Contribution Summary
	Combining Goal Recognition and Planning
	Complex Problem Properties

	Conclusion
	Limitations and Future Work

	References
	APPENDICES
	Methods in Knowledge Base
	Operators in Knowledge Base
	Pending Set Output for Cases

