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Abstract 

Purpose: The purpose of this study was to develop a robust and reliable clinical test of 

stereopsis that is complementary to the conventional disparity threshold tests.  

 Methods:   

Random dot stereograms containing disparity-defined gratings were displayed on a 

ViewPixx® monitor using LCD shutter glasses. Participants discriminated grating 

orientation. Form coherence was degraded by assigning random disparities to a variable 

proportion of dots. The threshold proportion of signal dots required for form 

discrimination is called the stereocoherence threshold (stereoCT). We explored the 

various stimulus parameters that can affect stereoCT. StereoCT were also measured for a 

variety of simulated abnormal binocular vision conditions and in patients with amblyopia.  

Results: StereoCT was lowest (most sensitive) for a stimulus with a spatial frequency of 

1cpd ,a 5.5 arc min dot size, 183 dots/deg2 dot density and a disparity amplitude of 108 arc 

sec. StereoCT showed higher sensitivity and reduced variability relative to 

stereothresholds obtained on conventional disparity thresholds under various simulated 

abnormal vision conditions (interocular luminance and contrast differences, unilateral blur, 

and unilateral Bangerter filters). In patients with amblyopia, stereoCT improved with 

contrast reduction in the fellow eye relative to the amblyopic eye.  
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 Conclusions: StereoCT testing targets the second stage of stereoscopic processing ‘global 

stereopsis where the local matches of stereoscopic images between two eyes are unified 

into a global perception of depth. Therefore, stereoCT may provide a useful measure of 

higher-level stereoscopic vision that is complementary to current tests, which rely on 

disparity thresholds.  
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Chapter 1 

1.1 Introduction to stereopsis 

The term stereoscopic vision has been defined as ‘solid sight’ referring to the three-dimensional 

view of the world when seen by two eyes1. The visual system captures images from the two eyes 

in two-dimensional forms; the brain uses these images to recover a description of depth. 

Stereopsis refers to the capacity of the visual system in combining coherently two monocular 

signals to create a three-dimensional view of the environment2. Stereoscopic view depends on 

binocular, monocular and oculomotor cues. Binocular depth cues arise due to the formation of 

different retinal images between both eyes, resulting from the horizontal separation between the 

two eyes3. Oculomotor depth cues are of the accommodation and convergence4. Monocular cues, 

also called pictorial cues, arise from aspects of the 2D image that imply depth. The most common 

cues are size, shade, illumination, texture and color etc5. The perception of depth takes into 

account both pictorial and stereoscopic (binocular and oculomotor) depth cues. 
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Retinal disparities and corresponding points: 

Retinal locations in each eye that have the same visual direction are called corresponding points. 

Images that fall on corresponding points have zero binocular disparity and produce a sensation of 

seeing features at the same depth as the point of fixation. Images that fall on non-corresponding 

points are called disparate images1. Disparate images can produce either physiological diplopia or 

stereoscopic vision.  

The empirical horopter is a locus of points, whose images fall on the corresponding points of the 

two retinas. All objects that are in front or behind the horopter stimulate non-corresponding 

retinal points creating disparate images. The brain can fuse these disparate images resulting in the 

impression of three-dimensional single vision. However, there is a finite area around the horopter 

where disparate images arising from non-corresponding points can be fused into a binocular 

single image. This area is called Panum’s fusional area as described in figure 1. Panum’s fusional 

area was first described by a Danish physiologist Panum. Panum’s fusional area is narrow at the 

center and widens towards the periphery reflecting high resolution and small receptive fields in 

central vision and low resolution and large receptive fields in the periphery6. Binocular visual 

thresholds have also been found to increase with peripheral stimulation. Stereoscopic resolution 

deteriorates exponentially with increase in stimulus eccentricity7. Ogle et al8 reported that the 

vertical extent of Panum's area increases for stimuli placed up to 12 deg from the line of sight 

along the horizontal meridian. The Veith Muller circle is a theoretical horopter. All points in this 

circle theoretically stimulate corresponding points and lead to single vision. The Veith-Muller 
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circle assumes that there is angular symmetry of the corresponding points9. The Veith-Muller 

circle does not match the empirical horopter the locus of corresponding points is an ellipse and 

not a circle10. The difference between the theoretical Veith Muller circle and empirical horopter is 

called Hering-Hillebrand deviation10. Retinal disparity describes the spatial relationship of retinal 

images with corresponding points. Images falling on corresponding points subtend zero retinal 

disparity. Images falling on non-corresponding points subtends non zero retinal disparity. Retinal 

disparity arising from objects that are closer than fixation is called ‘crossed disparity’. The images 

formed by objects closer than fixation lie more towards the temporal retina in each eye. 

Convergence of the eyes is required to place the images on the fovea. Similarly, retinal disparity 

arising from objects that are far away from the fixation is called ‘uncrossed disparity’. The image 

formed from objects closer than fixation lie towards the nasal retina in each eye. Divergence of 

the eyes is required to place these images on the fovea. 
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Figure1: Basic geometry of the horizontal horopter. Point F prime falls on the fovea and has 

zero disparity when the eyes are converged on point F. Images of point P stimulates 

corresponding points on the retina with respect to point F. The Veith-Muller circle is defined as 

the locus of all points having zero disparity. Figure adapted from binocular vision and stereopsis 

by Howard and Rogers1. 
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1.2 The physiological basis of stereopsis: 

Early work to understand the mechanism of binocular vision and stereopsis was done by 

Helmholtz, who believed that binocular stereopsis was as a result of a high-level cognitive 

processes rather than a combination of visual inputs from the two eyes at the early stages of visual 

processing2. Ramon Y Cajal, based upon anatomical investigations, proposed that inputs from 

corresponding retinal regions converge on what he called “isodynamic cells”11. This theory was 

supported by Hubel and Weisel12,13 who  reported that cells in the cat’s visual cortex receive 

inputs from the two eyes and that the receptive fields of these binocular cells occupy 

corresponding positions in the two eyes. The primary visual cortex (V1) is the first site at which 

single neurons can be activated by stimuli in both eyes14. The neurons encode information 

specifically about the relationship between the images in the two eyes.  Barlow and Pettigrew15 

were first to describe horizontal disparity sensitive neurons in the primary visual cortex of 

anesthetized cats and proposed that these may be responsible for stereopsis. Disparity detecting 

cells have since been found in a range of visual cortical areas including V1, V2, V3, V5 and the 

medial superior temporal area (MST)16. Disparity detecting cells have been classified as near cells 

which are tuned for crossed disparity, far cells which are tuned for the uncrossed disparity, tuned 

excitatory cells responding to zero disparity and tuned inhibitory cells responding to all disparities 

but having a minimal response to zero disparity11,16.  
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1.3 Neural basis of stereopsis  

Binocular disparities can be encoded as a physical difference in the retinal positions of images or 

as a phase difference between corresponding points. Binocular neurons use interocular phase or 

interocular positional differences to encode disparity. In particular, the positional shift model 

explains that disparity due to positional differences between right and left eye images is computed 

by a cell with a horizontal shift between the receptive fields of the two eyes whereas the phase 

shift proposes that it is computed by the difference in arrangement of ON and OFF subunits 

between the two eyes17. Ohzawa& Freeman18 performed the first quantitative comparison of 

monocular and binocular responses at different disparities in simple cells in cats visual cortex. 

They provided evidence that the disparity selectivity might be due to cells having receptive fields 

in corresponding retinal locations but the shape of the receptive fields is different between the two 

eyes. Anzai et al19 compared the monocular and binocular responses of simple cells in adult cats 

by showing uncorrelated noise patterns to the two eyes. Receptive field profiles were constructed 

at different locations in the two eyes. They found that binocular interactions depend not only on 

binocular disparity but also on monocular stimulus phase and positions. Quantitative evidence of 

the operation of two operational mechanisms and cells showing sensitivity to both phase and 

positional disparities indicate that encoding happens in a single pathway and both positional and 

phase signals are combined in the cortical representation. Neurons which respond to binocular 

stereoscopic depth stimuli also exhibit tuning for disparity and spatial frequency. Neurons that are 

tuned to low spatial frequencies exhibit poor resolution and respond to a wide range of disparities. 
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In contrast, neurons tuned to high spatial frequencies exhibit fine resolution properties but are 

limited to processing narrow range of disparities19,20. Trotter et al investigated the neural 

mechanisms underlying visual localization in 3-D space in area V1 of monkeys. They found that 

changes in fixation distance modify the response of cortical cells to horizontal disparities21. A 

mixture of different disparity selective cells with different encoding properties indicates that 

stereoscopic depth perception requires complex neural computation.  

 

1.4 Stereoscopic processing in the brain 

Stereoscopic depth processing appears to be a multi-stage process involving both dorsal and 

ventral stream processing. Both pathways contribute to different stereo computations and 

perceptual judgments about stereoscopic depth perception22. The crucial step of processing retinal 

disparity is finding where the image of the object is falling on the retina in one eye and defining 

its corresponding point in the other eye. This is known as the correspondence or matching 

problem. The initial hypothesis was that stereopsis is a higher-level process where the visual 

system operates on two retinal images separately performing segmentation, object recognition and 

comparison for each object in the scene individually. However, the cyclopean RDS stimulus by 

Bela Julez3,23 posed a challenge to the correspondence problem as each dot in the RDS potentially 

has many matches in another eye. The visual system processes the pattern of neighboring dots 

rather than matching the dots individually. This implies that the correspondence problem must be 

solved at a ‘global level’; in order to find the correct match one cannot consider the dots 
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individually, but must also consider the pattern of the neighboring dots. That is, the visual system 

solves the correspondence problem at a ‘global’ rather than a purely local level. The local and 

global stereopsis mechanisms are dissociable. In monkeys, Cowey and Porter24 reported impaired 

global stereopsis due to bilateral lesions affecting the inferior temporal cortex whereas removal of 

portions V1 and V2 that are responsible for central vision elevated the stereothresholds measured 

on local stereopsis leaving global stereopsis intact. Studies in humans done to understand the 

processing of local and global stereopsis have revealed contradictory results. In patients, damage 

to bilateral visual cortices have been associated with loss of three-dimensional vision25. Hamsher 

et al26 reported selective impairment of global stereopsis with intact local stereopsis in patients 

with right cerebral hemisphere damage. Ptito et al27showed evidence of unaffected local 

stereopsis when the global stereopsis was impaired due to a temporal lobe excision. The 

processing of global stereopsis is thought to occur in two stages, the first involves the detection of 

local disparity and the second involves the integration of this information across large areas of 

visual information28. Poggio et al found neurons responsible for the processing of global 

stereopsis in V1 and V2 in the foveal cortex of macaque monkeys29. The presence of two distinct 

stereoscopic processing mechanisms highlights the importance of separate measurement in 

clinical tests. Clinically, different tests are available to measure stereothresholds based on local 

and global stereopsis. More details are described in chapter 2.3. 
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1.5 Use of noise to investigate visual functions 

Perception of depth is a key task that the visual system has to perform. To achieve this, the visual 

system must integrate the signal, depth information, and segregate out noise. The ability to 

process the signal in the presence of noise can be measured psychophysically by altering the ratio 

of signal dots to noise dots (coherence thresholds) in random-dot visual stimuli. This technique 

has been used to study global (coherent) motion perception and binocular vision 30,31. In global 

motion perception experiments, the subject views a display containing signal dots moving 

coherently in one direction among noise dots moving randomly. The coherence thresholds are the 

proportion of the signal to noise dots required to report the direction of coherent motion correctly. 

The motion coherence task requires integration of local motion signals into a global percept32,33. 

Psychophysical and physiological studies have clearly distinguished global motion processing 

which is sensitivity to overall direction of motion as opposed to local motion processing which 

arises from motion sensitivity in a small region of the image34,35. In the processing of motion 

perception, early cortical areas process the local motion components of the object whereas 

extrastriate areas process motion of the object as a whole.  

The segmentation and discrimination properties of disparity processing have been examined by 

using the signal in noise tasks where an observer is asked to detect a disparity-defined target 

hidden in a cloud of random dots that mask the target. Uka et al36compared neuronal and 

psychophysical sensitivity to disparity while monkeys discriminated between two coarse 

disparities (near vs. far) in the presence of noise. The disparity signal was manipulated by varying 
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the binocular correlation. At 100% correlation, all dots were presented at preferred disparity that 

elicited a minimal response. At 50% binocular correlation half of the dots were assigned to have 

random disparities forming a three-dimensional cloud of disparity noise. All correlated dots were 

assigned fixed crossed vs. uncrossed disparities and noise dots were assigned random disparities 

between -2 and 2°. Neuronal activity was recorded using extracellular electrophysiological 

recordings. The average neuronal and behavioral thresholds were found to be nearly identical. 

The findings indicated that MT was well suited to provide signals that form the basis of 

perceptual judgments even when stereopsis signals are noisy. Visual noise has also been used in 

measuring the sensitivity of stereothresholds in human observers. Palmisano et al37 examined the 

effect of additive disparity noise on human observer's ability to detect surfaces with periodic 

corrugations in depth.  Noise displays were added to the stereoscopically defined 3D surface by 

scrambling the signal stimuli along the vertical dimension. The stereoscopic information was 

preserved while the surface representation of the corrugated surface was disrupted. Additive 

disparity noise was found to interfere with stereoscopic surface detection for human observers. 

External noise has been used widely in investigating visual functions. The quantification of 

motion perception in noisy signals was taken as a model system to develop a new test based on 

quantifying depth perception in noise.  
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Chapter 2 

STEREOACUITY 

 

2.1 Depth discrimination thresholds and stereoacuity 

The quantification of stereopsis provides information about the binocular vision status of a 

patient. The depth-discrimination threshold is the smallest depth interval between two stimuli that 

a subject can detect. Stereoacuity is the depth discrimination threshold expressed in angular terms. 

Stereoresolution of the human visual system under optimal conditions is as low as few seconds of 

arc38,39. Stereoacuity is a hyperacuity at the fovea; depth differences can be distinguished that are 

smaller than the diameter of individual photoreceptors40,41.  

In the 19th century, Wheatstone invented the stereoscope which dichoptically presented images 

containing horizontal disparity between the two eyes using mirrors. This produced retinal 

disparity and a sensation of depth. Wheatstone’s work showed that retinal disparity contributes 

critically to depth perception and that the brain uses horizontal retinal disparity to estimate 

relative depth42. The processing of stereoscopic information involves local matching of retinal 

images to obtain an estimate of the absolute disparity of objects relative to the point of fixation. 

The relative disparity is then computed so that the relative depth of objects is represented 

independently from the point of fixation43. Westheimer et al41 provided evidence that humans are 

more sensitive to changes in relative disparity than absolute disparity. Further works found 

neurons selective to absolute disparities in the primary visual cortex. Neurons selective to relative 
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disparity were found in area V244. This provided evidence of stereoscopic processing downstream 

of primary visual cortex. 

 

2.2 Monocular and binocular cues to depth perception  

The perception of depth can be monocularly or binocularly perceived depending on the visual 

cues available. The relative size, interposition, lightness and shading, motion parallax and linear 

and aerial perspective of an object are cues giving rise to monocular depth perception11. Binocular 

cues to depth include horizontal binocular disparities and vergence effects45. A clear difference in 

performance under monocular and binocular viewing conditions has been demonstrated for fine 

motor tasks such as bead threading46 and reaching and grasping movements47,48. Removing 

binocular information even in the presence of monocular cues can interfere with fine motor task 

performance. 

 

2.3 Measurement of stereoacuity 

Stereoacuity is a measure of stereoscopic performance based on the minimum detectable 

horizontal disparity. Stereopsis tests have two basic divisions, local and global stereopsis. Local 

stereopsis depends on horizontal disparity from monocularly detectable patterns whereas global 

stereopsis consists of cyclopean patterns which are not detectable when viewed monocularly49. 

Therefore, global stereopsis requires local matching of stimulus elements between the two eyes to 
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recover local depth cues, followed by integration of these local cues into a global, or coherent, 

percept of form.  

There are presently several tests available to assess stereoacuity50.  A wide variation in 

stereoacuity has been observed within individual subjects and between stereopsis tests51. Real 

depth tests such as the Howard-Dolman test and the Frisby test create depth by physical 

separation of test elements. In the Howard-Dolman test, the subject views two vertical rods 1cm 

in diameter, 6 cm apart, from 6 meters. The subjects judge the relative position of the two rods. 

The Howard-Dolman test measures stereoacuity thresholds as low as 2 seconds of arc52. The 

Frisby stereo test consists of three transparent plates with different thicknesses: 6mm, 3mm, and 

1.5mm. The target is a randomly arranged pattern of arrowheads of various sizes printed on one 

side of the plate with a circular patterned region printed on the other side of the plate in one of the 

four quadrants. The subject identifies the disk that differs in depth. The plate creates a binocular 

disparity of between 15 and 340 arc seconds, depending on its thickness and the viewing 

distance53. Real depth tests have the advantage of not requiring dissociative glasses and give 

better real world experience50. A motion parallax cue is present in real depth stereopsis tests that 

can be minimized by limiting the movement between patient and test plate53. Random dot 

stereogram tests including the TNO test and Randot tests are used to measure global stereopsis 

and are widely recommended for detecting abnormal binocular vision. Random dot stereograms 

(RDS) were first introduced by Bela Julesz in 1960. These stereograms are created by presenting 

similar random dot patterns to each eye with no apparent shape when viewing monocularly. A 
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cyclopean shape is created by horizontally shifting a region of dots in one eye creating a disparity 

with respect to the surrounding dots10. The perception of depth is achieved when monocular 

images containing horizontal disparity are fused23. The design of RDS eliminates all non-

stereoscopic cues. Clinically, the limitation of RDS test design is longer viewing duration to 

identify stereoscopic form54. Stereoacuity norms for several standard clinical tests have been 

widely reported. Cooper et al55 traced the development of stereoacuity in children between 3 to 11 

years using Titmus, TNO and Randot sterotests. Adult performance was reached on all the tests 

by the age of 7 years. Heron et al56 reported that stereoacuity was higher in children when 

measured on Frisby stereo test than TNO or Titmus test. Fox et al57 measured stereoacuity in 

children using Howard-Dolman apparatus and found mean stereoacuity of 12.6 seconds of arc for 

a 5 year old participant. Fox concluded that the adult level stereoacuity is achieved at or soon after 

the age of five years. 

The present clinical tests used to quantify stereopsis, which is an important indicator of normal 

binocular vision, face major limitations. Different test designs have a cap on the maximum 

stimulus disparity that can be used. Subjects who initially fail to detect the maximum disparity are 

labeled as having nil stereopsis on the clinical tests (ceiling effect). Stereograms with high 

disparity are not easier to detect than those with moderate disparity levels in those with impaired 

binocular vision58. This ceiling effect has a major disadvantage as the clinician cannot quantify or 

report improvements in stereopsis in people with severe loss. Similarly, the clinical test also has 

limitations on the smallest stimulus disparity that can be measured based on the test design. Under 
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ideal conditions, the stereothresholds for a normal trained observer can be as low as 2 seconds of 

arc. However, on clinical stereopsis test, depending on the type of clinical test being used 10 to 

409,50,59,60 seconds of arc has been reported as a good performance. Given that the lowest disparity 

thresholds that can be detected are considerably better, a floor effect is observed in many 

subjects51.  

Most tests available also contain monocular cues that may lead to measuring artificially enhanced 

stereoacuity or false positive results. Also, most stereopsis tests used in clinical settings are also 

calibrated for use at a specific testing distance. The alteration of test distance closer or farther 

from the patient's eye can cause increase or decrease of retinal disparity resulting in 

overestimation or underestimation of steroacuity61. The repeatability of stereoacuity was found to 

be poor in subjects with poor binocular vision and the clinical stereoacuity tests exhibit reduced 

agreement indicating that they cannot be used interchangeably62. At present, there are no tests for 

stereopsis that are robust in being able to adequately detect a wide range of binocular visual 

function, provide good within and between test reliability and provide a useful measurement 

variability. Redesign of clinical stereoacuity measures without the ceiling and floor effects and 

with good repeatability could, therefore, provide a more accurate estimate of stereopsis and would 

be helpful for monitoring improvement and screening in patients with abnormal binocular vision.  

 



 

16 

 

2.3.1 Spatial characteristics of stereoacuity 

The spatial characteristics of RDS stimuli have been studied extensively. The dot density was 

defined as the percentage of the total stereogram area that is covered by dots. Tyler63 measured 

stereothresholds in random dot stereograms with a range of dot densities and found that for dot 

densities greater than 43 dots/deg2, density had very little effect on stereothresholds. Gant et al64 

obtained stereothresholds for a small disparate line segment superimposed on low and high-

density flat random dots background. They found optimal thresholds for detecting a stereo pair of 

vertical bars was 13.8 seconds of arc with a background of 1.77% dot density. The 

stereothresholds increased two folds (doubled) at lower and higher dot densities with densities 

that ranged between 1.15% and 15%. They explained that the increase in stereothresholds at low 

dot densities might be due to increased spacing between elements and attributed the increase in 

stereothresholds with increased density to crowding effects which might lead to interruptions in 

disparity averaging mechanisms between the two eyes. The increase in stereothresholds can occur 

regardless of the discrimination of individual elements in the stereogram65,66. The effect of spatial 

frequency on the perception of corrugated surfaces within RDS was first reported by Tyler63. 

Tyler modulated the disparities of RDS containing sinusoidal gratings. The amplitude (peak to 

peak) of the wave pattern was varied at different spatial frequencies. Observers were asked to 

indicate the range of amplitudes at which perception of depth was still noted. Stereo thresholds 

exhibited decreased thresholds at upper and lower disparities. The variations in depth in the 

corrugated sinusoidal gratings could not be perceived beyond 5cycles/degree. The optimal 
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performance was found to be at 1 c/deg. Graham et al67 found the thresholds for detecting 

corrugated sinusoidal gratings were lowest at 0.3 to 0.5 c/deg and increased for higher spatial 

frequencies. Graham et al measured thresholds at six different spatial frequencies 0.05, 0.1, 0.2, 

0.4, 0.8 and 1.6 cycles per degree. Graham et al did not observe any floor effects and thresholds 

were measurable at chosen spatial frequencies. The sensitivity curves for perceiving depth in 

corrugated sinusoidal gratings agreed well with the results from the previous studies63. Fusion was 

achieved in high and low spatial frequencies. Absolute sensitivity in Tyler’s63 experiments was 

between 15 and 30 arcsec of the disparity between the peaks and troughs of the corrugations at 

spatial frequency of 1 cycles/degree which was comparable to the data from Graham et al. 

Harwerth et al54 studied the effect of viewing time on thresholds for depth and form 

discrimination using random dot stereograms. Stereoscopic stimuli with crossed and uncrossed 

disparities were presented with viewing times ranging from 0.12 sec to 7 sec. A linear relationship 

between logarithmic viewing time and disparity threshold for depth discrimination was found. 

Extended observation times required to detect global stereopsis might indicate the complexity of 

neural processing54.   

 

2.3.2  Effect of interocular differences on stereoacuity 

Binocular vision and stereoscopic processing mechanisms are affected by inter-ocular differences 

in contrast and luminance68–70. Halpern and Blake68 measured stereothresholds as a function of 
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interocular contrast difference using the method of adjustment. The observers adjusted the retinal 

disparity of a narrowband stimulus until it appeared in the depth plane defined by two flanking 

reference lines. When the fixed contrast was high, stereo acuity deteriorated steadily as the 

contrast in one eye was decreased. This effect was greatest at the lowest spatial frequency tested. 

When the fixed contrast was low, however, small increases in the contrast to one eye had no 

deleterious effect on stereo acuity. In addition, reducing contrast to only one eye impairs stereo 

acuity more than an equivalent contrast reduction to both eyes68,71 while having essentially no 

effect on fusion limits71.  

The mean luminance in both eyes and one eye was manipulated using neutral density filters by 

Alexandre et al72 to investigate the effects of luminance on stereopsis. Disparity processing was 

minimally affected by a binocular change in luminance but was greatly affected by a luminance 

mismatch between the two eyes. Stereothresholds remained constant until ∼1.5 ND but grew 

exponentially to approximately three-fold with an increase in luminance mismatch between two 

eyes >1.5 ND filter.  Stereothresholds also progressively degraded with the addition of dioptric 

blur and by diffusing blur using a Bangerter filter over one eye73,74. Stereothresholds are sensitive 

to mismatch of luminance, contrast and spatial frequency between the two eyes. The reduced 

sensitivity might be due to inter-stimulus suppression where the stimulus with higher luminance 

or contrast suppresses the weaker stimulus. Location shifts have also been attributed as the cause 

where a brighter stimulus causes shifts in the apparent location of the dimmer stimulus reducing 

the disparity between them10. Loss of stereothresholds due to unequal illumination between the 
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two eyes might be due to the latency differences between the stimuli. With unequal illumination, 

visual inputs from the two eyes arrive at the visual cortex at different times causing asynchrony. 

Stimulus asynchrony could directly interfere with the detection of disparity72. Stereothresholds 

also show sensitivity to unilateral defocus. Peters et al75 found that 80% of subjects show 

deterioration of stereothresholds for 1D of monocular defocusing. The degree of tolerance of 

monocular defocus also differs between local and global stereopsis. The tolerance to defocus is 

better for global stereopsis than local stereopsis76. 

Human stereopsis has been shown to have constraints in detection due to spatial characteristics of 

the stimulus as described above. The maximum and minimum disparities that can be detected 

provide a background in understanding these constraints.  

 

 

2.4 Stereopsis and amblyopia 

Amblyopia is defined as a neuro-developmental disorder of the visual cortex that arises from 

abnormal visual experience early in life77. It presents with a number of impairments in spatial 

vision such as reduced visual acuity, impaired contrast sensitivity, impaired global motion 

integration, reduced stereopsis and reduced visual acuity with crowding78. The risk of developing 

amblyopia is associated with strabismus, significant refractive error, and conditions that may 

cause form vision deprivation. Amblyopia is clinically significant because it is one of the most 
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prevalent visual disorders in children affecting 4.7% of children in Canada79. The key to 

successful treatment depends on detecting amblyogenic risk factors by measuring impairments in 

spatial vision, specifically, reduced visual acuity and/or stereopsis. The importance of an accurate 

and precise clinical test to measure stereopsis is essential in screening for amblyopia. Stereopsis 

measures can also reveal the effectiveness of therapy and be helpful in monitoring the disease. 

Impaired stereopsis has real-world implications for patients with amblyopia including reduced 

performance on a wide range of visuomotor tasks80–82and visually guided hand movements83. 

Improved stereoacuity has also been associated with better reading ability84.  

Stereoscopic perception is strongly depended on well-balanced input from the two eyes68,85,86. 

Under conditions of normal vision, balanced binocular vision is maintained due to symmetric 

suppression between the two eyes. Imbalance of suppression leads to abnormal binocular vision. 

In amblyopia, the dominant eye or the fellow fixing eye (FFE) exerts stronger suppression over 

the non-dominant eye or the amblyopic eye (AE) resulting in disrupted binocular vision87,88. 

Suppression of the amblyopic eye has been implicated as a possible cause of amblyopia and loss 

of stereopsis in humans30,89,90. A modern binocular approach has been used to reducing 

suppression by rebalancing the information between the two eyes. Binocular treatment is based on 

evidence that patients with amblyopia have functionally suppressed binocular visual systems 

under normal viewing conditions and the visual system in amblyopia can combine information 

between the two eyes if suppression is reduced30,91,92
. The treatment involves reduction of contrast 

in the fellow dominant eye while presenting the amblyopic eye with full contrast. Many recent 
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studies have explored contrast balanced binocular treatment to improve visual function91,93–95. 

Significant improvements in visual acuity and stereopsis were observed on in adults and 

children92. Ding et al96measured the recovery of stereopsis in stereo blind individuals through 

perceptual learning (PL) on contrast balanced visual stimuli between the two eyes. The best stereo 

performance for normal observers occurred when two eyes were presented with identical contrast. 

All observers with stereothresholds of less than 100 seconds of arc showed substantial 

improvements of on both psychophysical and clinical stereothreshold tests after perceptual 

learning on contrast balanced targets. Hess et al90 showed improvement of stereopsis on a 

dichoptic, video-game-based iPod treatment called Tetris. Tetris stimuli comprise high and low 

contrast blocks. The high contrast blocks are falling blocks that are seen by the amblyopic eye. 

The players have to change the position and orientation of the falling blocks to form tessellated 

rows of blocks at the bottom of the screen. Low contrast blocks are seen by the fellow fixing eye. 

The contrast offset between the two eyes is increased overtime by 10% of its starting value. 

Stereothresholds improved significantly by 0.61 log units post treatment. In some patients, 

stereopsis that could not be measurable clinically was improved to fine or coarse levels after 

treatment. Hess et al97 investigated the residual stereothresholds of patients with strabismic 

amblyopia by using motion in depth targets. Amblyopic patients who had no stereoscopic 

function were retested by placing a neutral density filter (ND) in front of the fellow fixing eye. 

The idea behind this was to reduce the suppressive influence of the normal eye and balance 

binocular input between the two eyes to reveal the presence of any latent stereo function. Stimuli 
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were dynamic random dot stereograms consisting of red and green dots distributed on a dark 

background. The dynamic random dot stereogram was made up of disparity defined square shapes 

with crossed and uncrossed disparity. Temporally correlated and uncorrelated dynamic random 

dot stereograms were used. Subjects were asked to indicate whether the disparity-defined square 

in the left or right side of the screen was closer. The use of an ND filter in front of the fixing eye 

significantly improved performance in a selected group that exhibited chance performance 

without filters. This residual stereopsis was called latent stereopsis. However, the similar 

comparison made on static stereoacuity tests such as Randot and TNO tests did not reveal 

improved stereopsis in this group. The authors suggested latent stereopsis is specific for dynamic 

stimuli in strabismic amblyopia. In chapter 6, we focus on measuring global stereothresholds 

using noise coherence and disparity thresholds by balancing the contrast between eyes for randot 

stereograms in a small set of participants with amblyopia. 

 

2.5 Objective and aims of the study 

The perception of global stereopsis in RDS is a two-stage process, the first stage involves 

processing of local disparity signals and the second stage involves the integration of local 

stereoscopic information into a global coherent form15,98,99. The overall purpose of our research 

was to develop a novel measure of stereopsis that targets global integration. This was achieved by 

degrading orientation discrimination of a depth defined sinusoidal grating within random dot 
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stereograms by randomizing the depth position of a proportion of dots (noise dots). We call the 

thresholds obtained by this novel measure as stereocoherence thresholds or stereoCT.  

The specific aims were: 

Aim 1 

Spatial stimulus characteristics for stereoCT 

The first aim was to identify appropriate spatial parameters for a stereoCT stimulus that consisted 

of an RDS depicting a depth-defined sinusoidal grating. We focussed on four main spatial 

parameters: the density and dot size of the RDS, the spatial frequency of the sinusoidal grating in 

the RDS and finally the peak-to-peak disparity of the sinusoidal grating. We also evaluated the 

test-retest repeatability of the stereoCT at variable stimulus disparities. 

 

Aim 2 

The second aim of the study was to investigate the effects of disrupted binocular vision induced 

with to uniocular blur, uniocular fogging and with differences in interocular contrast and in 

luminance on stereoCT in normal individuals. The hypothesis was that the stereoCT measures 

would exhibit increased sensitivity to binocular disruption and reduced variability in healthy 

individuals compared to conventional disparity thresholds under conditions of disrupted binocular 

vision. 
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Aim 3 

The final aim was to examine stereoCT in patients with amblyopia. StereoCT were measured with 

a suprathreshold stimulus disparity determined by conventional disparity thresholds and retested 

with different levels of penalisation of the dominant eye. The hypotheses were that the stereoCT 

would improve at the same optimum contrast reduction in the fellow eye as disparity thresholds 

and that stereoCT would be more sensitive and less variable than similar measurements using 

conventional disparity thresholds. 

 

 

 

 

 

 

 

 



 

25 

 

Chapter 3 

Overview of methods, apparatus, and procedures 

3.1 Introduction: 

The research undertaken comprises a series of studies. Firstly, pilot studies to define the normal 

parameters of stereopsis with conventional thresholds and stereoCT. The main studies utilized 

artificially degraded vision to characterize the impact of visual degradation on stereo thresholds. 

Finally, the stereopsis tests were used to explore binocularity on a small series of individuals with 

amblyopia. 

In this chapter, the strategies for measuring stereoCT are explained and the overall methods and 

apparatus are outlined.  

 

3.2 Experimental stimuli 

3.2.1 Software description and instrumentation 

Stimuli were created in MATLAB (The Math Works; CA) with the Psychophysics toolbox100 and 

displayed on a gamma-corrected VPixx 3D monitor (VPixx technologies, Vision Science 

Solutions) at a viewing distance of 600 cm. Each pixel subtended 0.15 arc minutes at this viewing 

distance.  Subjects viewed the stimulus wearing VPixx LCD shutter glasses, which operated on an 

active shutter (frame sequential) principle providing a single stereoscopic image. Between 
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presentations, the observer fixated a central white dot, presented dichoptically (zero disparity), 

against a gray background (35 cd/m2). Figure 5 shows a similar stimulus that can be viewed using 

red: green filters to separate the eyes. The stimuli comprised two interleaved images of RDS that 

were presented within a central square area of 2.86 degree X 2.86 degree. The random dot 

stereogram consisted of randomly distributed white dots (5.5 arcmin diameter dot size; dot density 

of 183 dots/deg2 and 1 cpd spatial frequency). All the signal dots formed a corrugated sinusoidal 

grating. A similar corrugated surface can be seen in Figure 3 using red-green glasses. The noise 

dots were dots that had similar stimulus properties such as dot size and contrast equal to those of 

the signal dots. The noise dots were positioned randomly within the disparity range defined 

sinusoidal grating. The proportion of noise dots to the signal dots could be varied and staircase 

procedures were used to determine thresholds based on observer’s responses101,102. The stimuli for 

measuring conventional disparity thresholds comprised of two interleaved images of a RDS (2.86 

deg X 2.86 deg) presented dichoptically on the VPixx screen. Coherent random dots contained a 

sinusoidal corrugated surface. A range of stimulus disparities were introduced based on positional 

differences between the two half images necessary to give rise to binocular disparity. The 

minimum change in stimulus disparity that could still give rise to the perception of depth was 

recorded as disparity threshold in seconds of arc. We added 10% random noise dots to the 

conventional (100% coherent) disparity threshold stimulus to minimize floor effects. This was a 

novel method to overcome the test limitation. 
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Figure 2: A red-green stereogram presented above illustrates stimuli similar to those used in the 

study. (In the study monocular gray dots were separated between the eyes using LCD shutter 

goggles.) The image on the left shows RDS with 100% coherence and the image on the right 

shows a RDS with 60% coherence (40% noise dots). The disparity of the sinusoidal grating is the 

same in the right and left images but the image on the right has a less coherent form due to an 

increase in the proportion of noise dots. 
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3.2.2 VPixx display Luminance calibration 

VPixx monitors have better performance than CRTs because of their superior temporal and spatial 

characteristics103. Calibration and luminance readings for the VPixx monitor were made using a 

computer-controlled spectrophotometer. The sensor of the spectrophotometer is first calibrated 

using a standard white calibration plate. The spectrophotometer is then placed against the screen 

to block any stray light (i1, X-Rite, VPixx technologies); the i1Pro photometer can measure 

spectral data between 380 nm and 730 nm at 10 nm intervals.  

 

3.2.3 Psychophysical Thresholds: 

 

StereoCT 

A two alternative forced-choice staircase procedure was used to estimate the stereoCT and 

disparity thresholds. A coherence of 100% means that all dots are signal dots; while a coherence 

of 0 means that all dots are noise dots. The stereothresholds were reduced after four consecutive 

correct responses and increased after one wrong response that corresponded to a criterion of 

85.84% correct102. The reduction rate in disparity or coherence was 20% before the first reversal 

and 10% after the 1st reversal, while the increase rate was always 5% of the incorrect response. 

Each session was terminated after five reversals and the threshold was computed from the mean 

of the last three reversals. Observers were asked to detect the orientation of sinusoidal gratings, 
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which was oblique towards either the left or right side. At the end of each presentation, the 

observer made a forced-choice decision about the orientation of the disparity target. The stimulus 

was presented for one second and the observers had 30 seconds to respond.  

 

Disparity thresholds 

Disparity thresholds followed a similar threshold measuring procedure in terms of step size, 

number of reversals and presentation time. The disparity amplitude was modulated using a one up 

and four down staircase. The stereoacuity was first assessed using the stereo fly test and this 

information was used to present the initial largest disparity on the test to determine thresholds. 

 

3.2.4 Screening Tests  

Clinical visual acuity and stereoacuity 

Best-corrected visual acuity was measured using the Freiburg Visual Acuity test, an automated 

procedure measurement of visual acuity104. Landolt-Cs were presented on a monitor in one of 

eight orientations. The subjects were asked to respond to the orientation of the Landolt-Cs using a 

keypad. Acuity thresholds were determined by the ‘‘Best Probability Estimation of Sensory 

Threshold’’ (PEST) staircase. The BEST-PEST algorithm estimates visual acuity in adaptive 

steps starting with large optotypes and closing in on the thresholds by reducing the step size based 

on the observer's response105. Stereoacuity was measured using the Stereo Fly Test. This test was 
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performed at 40 cm with the subject wearing polarizing spectacles. The Stereo Fly test consists of 

line stereograms of a housefly with large disparity, animals with disparities of 400 to 100 seconds 

of arc, and nine sets of circles with disparities of 400 to 20 seconds of arc. The stereo fly test 

evaluates both gross and fine stereopsis from 800 to 20 seconds of arc. The fly was shown first. If 

a positive response was given, the subjects proceeded to identify the perception of depth in 

animals and circles respectively. The lowest disparity that the subject was able to detect was 

recorded as their stereo thresholds in seconds of arc. 

 

Cover/uncover test and alternate cover test 

Ocular alignment was assessed using a cover/uncover test and alternate cover test for both a 

distance (6 m) and near (50 cm) target. In the cover/uncover test the participant is asked to look at 

a fixation target placed at a distance or near. A cover paddle is used to switch between binocular 

fixation (uncover) and monocular fixation (cover) by occluding the participant’s right eye and 

then left the eye. The examiner observes the un-occluded eye to determine if re-fixation occurs. 

The alternate cover test was performed by switching occlusion between the left and right eye for 1 

to 2 seconds without allowing binocular fixation to occur. A deviated eye will show refixation 

when uncovered. If strabismus (manifest deviation) or heterophoria (refixation on the alternating 

cover test) was detected, the deviation was neutralized using prism bar. Normal subjects showed 

heterophoria within normal limits according to Morgan’s norms106,107. 
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Worth four-dot test 

The Worth-four dot test is a subjective test to determine the presence of binocular fusion or 

suppression. The testing target consists of four illuminated dots; two dots are green, one is red, 

and one is white. The participant views the target through red-green glasses that consist of a red 

filter in front of one eye and a green filter in front of the other. Monocularly, the participant sees 

two red dots through the red filter and three green dots through the green filter. Binocularly, 

however, the fused perception results in the participant seeing four dots because the white dot is 

seen as either a single red or green dot, according to which eye is dominant.  

 

Test for eye dominance (Hole in a card test) 

Eye dominance was determined by instructing the subject to binocularly fixate one letter on a 

visual acuity chart (20/200) at distance through a ‘hole’ between their hands. The subject was 

asked to report from which eye the target was visible while the examiner occluded each 

alternately. The dominant eye was the eye that could maintain the view of the letter centered in 

the hole. Eye dominance was measured to simulate amblyopic vision by placing neutral density 

filters over the non-dominant eye. Zhou et al69 replicated the strong binocular imbalance between 

two eyes observed in patients with amblyopia by manipulating interocular luminance using 

neutral density filters placed over the non-dominant eye.  
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3.2.5 Participants 

All studies were designed as cross-sectional studies. Subjects were recruited through University 

of Waterloo bulletin boards, email lists, and the University of Waterloo graduate studies website. 

The total number of normal participants in the study was 50 and 4 participants had amblyopia. All 

subjects were screened using the test described in detailed below 

 

Table 1: Characteristics of healthy participants 

 

Inclusion criteria for healthy participants 

 Best corrected visual acuity 0.1 Log MAR or better in each eye. 

 Stereoacuity 25 seconds of arc or better on the stereo fly test. 

 Heterophoria within normal limits based on Morgan’s norms106,107. 

 The absence of strabismus and other ocular diseases. 
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Participants with visual acuity worse than 0.1 Log MAR or stereoacuity worse than 25 seconds of 

arc on the stereo fly test were excluded from the study unless they met the criteria for amblyopia 

(see Chapter 6). The subjects gave informed written consent before participating and the study 

was approved by University of Waterloo office of Research Ethics (see Appendix 1). 

 

 

Figure 3 Depicts the hierarchy of the experimental procedure. All healthy participants and 

participants with amblyopia underwent routine clinical evaluation and if they were eligible, 

conventional disparity threshold and stereoCT were obtained using the experimental stimulus. 
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3.3 Statistical Analysis 

Statistical analysis was performed using the commercial software SPSS (version 24). Descriptive 

statistics included mean and SD for normally distributed variables and median and interquartile 

range (IQR) for non-normally distributed variables. The Shapiro-Wilk test was used to check for 

the normality of distribution. A p-value of ≤ 0.05 was considered statistically significant.  

3.3.1 Paired comparisons of means 

The paired t-test calculates the difference within each before-and-after pair of measurements, 

determines the mean of these changes, and reports whether this mean of the differences is 

statistically significant. The paired t test assumes that the variance between groups is equal. Our 

data revealed unequal variances between conditions. We used post hoc paired Tamhanee T2 test 

corrected p values. This test is used when the variances between paired groups are unequal108.This 

method is based on the student t-distribution. It uses the Sidak test to set the alpha level and the 

Welch procedure to determine degrees of freedom. 

 

3.3.2 Variance calculations 

An F test109 is used to measure statistical differences if variances of the two populations are equal. 

Variances are a measure of dispersion or scatter of data from the mean. Larger values represent 

greater dispersion.  
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3.3.3 Test-retest Repeatability 

Test-retest repeatability was assessed using the intraclass correlation coefficient (ICC). The ICC 

is a measure of the reliability of measurements or ratings. The ICC is calculated with variance 

estimates obtained through analysis of variance. The benchmark values of <0.75 ICC indicate 

poor to moderate reliability, Values >0.75 indicate good reliability110. 

In Chapter 4 spatial stimulus parameters including dot density, dot size, spatial frequency and 

stimulus disparity were varied for conventional disparity thresholds and stereoCT. The main 

studies are elaborated in Chapters 5 and 6. In chapter 5, the stimulus parameters were fixed and 

binocular vision was disrupted with uniocular contrast and luminance differences and with 

uniocular fogging and optical blur, using Bangerter filters and blur respectively. The effects of 

these disruptions on stereothresholds were studied for both conventional disparity thresholds and 

stereoCT. Chapter 6 describes in detail stereothresholds obtained by both tests on participants 

with amblyopia. 
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Chapter 4 

Pilot study: Spatial stimulus characteristics for stereoCT 

4.1 Introduction to the pilot studies: 

The perception of depth in a random dot stereogram is purely cyclopean and has been shown to be 

affected by spatial stimulus characteristics. Spatial stimulus characteristics such as spatial 

frequency, the density of dots in an RDS and size of the dots effect disparity thresholds 63,64,111–113 

(see Chapter 2, section 2.3, subsection 2.3.1.) We evaluated the effect of these parameters on 

stereoCT to identify the optimal stimulus for subsequent experiments. In addition, the stereoCT 

stimulus is constructed from a suprathreshold disparity-defined sinusoidal grating. Therefore, we 

also varied the maximum disparity of the grating.  

 

Chapter 4 includes four different pilot studies: 

 

Study 1: Effect of dot density and dot size on stereoCT 

The aim of this study was to determine the effect of varying dot density and dot size on stereoCT 

and to find the dot density and dot size that allowed for the lowest stereoCT. 
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Study 2: Effect of spatial frequency on conventional disparity thresholds and stereoCT 

The aim of this study was to determine the effect of spatial frequency of the disparity defined 

sinusoidal grating on stereothresholds measured by both conventional disparity thresholds and 

stereoCT.  

 

Study 3: Effect of stimulus disparity on stereoCT 

The aim of this study was to determine the effect of changing the maximum disparity of the 

disparity-defined grating on stereoCT.  

 

Study 4: Test-retest repeatability of stereoCT 

The aim of the final pilot study was to determine the test-retest repeatability of stereoCT and 

assess whether this varied with the maximum disparity of the disparity defined gating.  
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4.2 Pilot Study 1: Effect of dot density and dot size on stereoCT: 

The goal of this study was to examine which RD density and dot size would show best 

stereothresholds for subsequent application as the test stimulus for our main studies.  

 

Methods: 

Participants were healthy volunteers (n=10) who were screened for normal vision and binocularity 

as explained in chapter 3, section 3.2, sub-section 3.2.4. Stimulus presentation and psychophysical 

thresholds were obtained using a two alternative forced choice staircase as described in chapter 3, 

section 3.2, and sub-section 3.2.3. A constant stimulus disparity of 108 seconds of arc was used to 

measure stereoCT. The stimulus characteristics of dot density and dot size were manipulated in 

this experiment. Three different dot densities were tested at three different dot sizes (dot densities: 

367, 183 and 122 dots/deg square at dot sizes of 1.3, 5.5 and 7.9 arcmin).  These dot densities and 

dot sizes were chosen to cover the range of the stimulus parameters that could be presented on the 

test screen. Stimulus order was randomized across participants. 
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Figure 4 Image presented in a red-green stereogram for illustration (stimuli used in the studies 

contained white dots separated using liquid crystal shutter goggles). Image 1, 2 and 3 are RDS 

with a similar dot size but with varying dot densities. For a full screen at 6 meters this dot size 

was 5.5 arc min. The target disparity is similar in all three images (sinusoidal grating, 108 sec of 

arc, 1 cycle/deg spatial frequency when presented on the VPixx screen 6 meters from the 

participant). This dot density (183 dots/deg2) was found to have better stereoCT for further 

analysis. 
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Results 

The results are seen in Figure 5. We plotted mean stereoCT as a function of dot density with 

different dot sizes.  

 

 

 

Figure 5: Mean stereoCT for depth discrimination (y-axis) as a function of dot density (x-axis) 

for different dot sizes. Orange diamonds, blue squares and purple triangles represent dot widths of 

1.3, 5.5 and 7.9 arcmin respectively. Error bars represent 1SEM.  
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There was a significant main effect of dot size on stereoCT ANOVA F=3.4, (p=0.03). Lowest 

stereoCT were observed for a random dot size of 5.5 arc minutes at 183 dots/deg2 dot density 

(figure 5). At this density and dot size thresholds averaged approximately 0.25 (25% signal dots, 

75% noise dots). When the dot size was decreased from 5.5arc min, stereoCT increased 

significantly (post hoc LSD 0.02,). A Larger dot size of 7.9 arc min did not reveal any significant 

difference from the optimum size. Dot densities did not have any significant effect on measured 

thresholds. 

 

Discussion 

The lowest stereoCT were observed for a random dot size of 5.5 arc minutes at 183 dots/deg2 dot 

density. We tested the coherence thresholds at three different densities 367, 183 and 122 

dots/deg2. Based on the dot sizes, we calculated the percentage of the total stereogram area that 

was covered by dots. The percent area covered ranged from low density of 7% to higher densities 

of 83%. We found lowest stereoCT at around 29% RDS densities but varying dot density did not 

have much effect on stereoCT. Gantz et al114 measured stereothresholds for a random dot 

stereogram superimposed on a line segment. Stereothresholds were measured with varying dot 

densities ranging between 1.15% and 15% density. Lowest stereothresholds were found when the 

dot density was 1.77% and approximately doubled for lower and higher dot densities. The results 

are not comparable as there is a fundamental difference in the stimulus disparity amplitude at 

which the thresholds were obtained between both studies. The lowest disparity that could be 
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measured by our stimuli was 18 seconds of arc. We measured the effect of dot density for a 

corrugated sinusoidal grating, which had maximum disparity amplitude of 108 seconds of arc. 

The reason we did not find significance with varying density might be because the background 

sinusoidal grating had a larger disparity amplitude and increasing density might not have affected 

the stereothresholds as much. Moreover, stereoCT may be affected by interactions between dot 

size and dot density. If the RDS is covered densely with signal dots adding more noise might 

disrupt the stereoscopic perception much faster provided that the presented stimulus disparity is at 

threshold. Studies have reported a decrease in stereothresholds with increasing dot density due to 

crowding39,115,116. Studies have also reported elevation of stereothresholds at low dot densities 

attributed to increased spacing between elements64 which makes it harder to integrate the surface. 

We found significant increase in thresholds with smaller dot sizes. This might have to do with the 

detection of stereoscopic surface in the presence of smaller dots and a greater effect of noise dots 

making it harder to integrate the stereoscopic surface. If the dot size is larger, it might provide 

better stereoscopic resolution of the background sinusoidal grating making it easier to integrate 

the surface. 
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4.3 Study 2: Effect of spatial frequency on stereoCT: 

The aim of this study was to measure the stereothresholds as a function of spatial frequency. We 

hypothesized that the stereothresholds obtained by conventional disparity thresholds and noise 

based stereoCT would worsen at very high and very low spatial frequencies due to spatial 

constraints exhibited by stereoscopic processing mechanisms (more details in chapter 2, section 

2.3, subsection 2.3.1).  

 

Methods:  

Participants for this pilot study were healthy volunteers with normal binocular vision. 

Stereothresholds were obtained using conventional disparity thresholds (n=7) and stereoCT 

(n=10). Stimulus presentation and psychophysical thresholds were obtained using a two 

alternative forced choice staircase as described in chapter 3, section 3.2, sub-section 3.2.3. A 

constant stimulus with a maximum disparity of 108 seconds of arc was used to measure stereoCT. 

The spatial frequency of the stimulus was manipulated in this experiment. Stereothresholds were 

tested with five different spatial frequencies 0.5, 1, 2, 4 and 8 cycles/degree. These spatial 

frequencies were chosen to cover the range of low and high spatial frequencies similar to previous 

experiments on conventional disparity thresholds63,111,117. All the measurements were made in one 

session; the spatial frequencies were presented in random order. 
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Results: 

The results are seen in Figure 6a and 6b. In Figure 6a, we plotted stereoCT as a function of spatial 

frequency in bar graphs. In figure 6b, conventional disparity thresholds are plotted as a function 

of spatial frequency in box and whisker plots. The results of Figure 6a are normally distributed 

and 6b are not normally distributed. 

Fig 6a                                                                                  Fig 6b 

 

Figure 6b: Global stereoCT plotted as a function of spatial frequency (n=10). Error bars represent 

95% CI. Coherence thresholds were measured at five different spatial frequencies (0.5, 1, 2, 4 and 

8 cycles/degree). Figure 6a shows box and whisker plots with median values with interquartile 

range (n=7) of disparity thresholds (conventional test) plotted as a function of spatial frequency 

for comparison.).  
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The stereoCT versus spatial frequency function for is U-shaped, with the lowest threshold 

occurring at 1cpd (figure 6a). The main effect of spatial frequency on stereoCT was significant F 

(4) =5.7, p=<0.001, two-factor ANOVA. StereoCT gradually increased with increase in spatial 

frequency. The stereoacuity versus spatial frequency function for disparity thresholds showed 

some floor effects with lowest thresholds (median 18 sec of arc) at spatial frequencies of 1 and 2 

cpd. 
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Table 2: Paired comparisons between spatial frequencies of random dot stereograms for stereoCT 

and disparity thresholds 

 

 

Paired comparisons 

Post hoc paired comparisons with bonferroni correction showed that significant differences in 

stereoCT were observed at 4 and 8 cpd spatial frequency when compared to 1 cpd (paired t-test 

p<0.05) for which the thresholds were lowest. Disparity thresholds were not significantly different 
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between lower spatial frequencies up to 4 cpd and were significantly increased for the higher 

spatial frequencies of 4 and 8 cpd from the spatial frequency with lowest stereoCT (p<0.05, 

Wilcoxon sign ranked test).  

 

Discussion   

The sensitivity function for corrugated sinusoidal gratings for stereoCT showed a peak at 1 

cycle/deg, with a fall-off in sensitivity at both lower and higher spatial frequencies. These results 

are consistent with Tyler’s63 data and Rogers and Graham’s67 on the spatial limit of 

stereothresholds for disparity defined sinusoidal gratings. The optimal performance was found to 

be around 1 c/deg and efficiency deteriorates when the corrugation frequency is above 1c/deg or 

below 0.1cpd. Previous studies37,118 have established that detection of a single step edge in depth 

is simpler than detection of a surface with numerous variations in depth. For a corrugated 

sinusoidal grating with constant dot density, increasing spatial frequency means introducing more 

variations in surface structure. As the spatial frequency increases, there are fewer dots that define 

each of these variations in depth. Introducing disparity noise to such surfaces increases difficulties 

in dot matching with neighboring dots whose disparities are different and also surface integration 

is disrupted.  
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4.4 Pilot Study 3: Effect of stimulus disparity on stereoCT 

 

Introduction 

Disparity processing has two resolution limits; the smallest disparity that can be detected and the 

largest disparity that can still convey a perception of depth119 (more details in chapter 2, section 

2.3, subsection 2.3.1). We measured the stereoCT at ranges of high and low stimulus disparities to 

find a stimulus disparity that had lowest thresholds and could be implemented in main 

experiments. 

 

Methods 

Participants for this pilot study were healthy volunteers with normal binocular vision. StereoCT 

were obtained on 20 participants. Stimulus presentation and psychophysical thresholds were 

obtained using a two alternative forced choice staircase as described in chapter 3, section 3.2, 

subsection 3.2.3. All stimulus parameters including dot density and dot size remained constant 

during the experiment. The maximum disparity amplitude of the sinusoidal gratings was 

manipulated in this experiment. Stereothresholds were tested with five different stimulus 

disparities 36, 72, 108, 144 and 216 seconds of arc. These disparity amplitudes were chosen to 

cover the range of low to high disparities of the sinusoidal gratings that could be presented on our 
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experimental screen. All the measurements were made in one session; the spatial frequency was 

presented in random order. 

Results 

The results are seen in Figure 7, where we have plotted the stereoCT as a function of five 

different disparities as a bar graph in the normal population sample. These results are normally 

distributed. 
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Figure 7: Mean stereoCT (proportion of signal dots) as a function of stimulus disparity (peak to 

trough) for RDS of corrugated sinusoidal gratings. Error bars represent 95% CI (n=20). 

 

The stereoCT were lowest at 108 seconds of arc for this dot density and dot size. StereoCT were 

increased significantly for stimuli with higher and lower stimulus disparities when compared to 

thresholds at 108 seconds of arc (p<0.05, paired t-test) as shown in figure 7. We further did pair 

wise t-tests on all five groups. Table 3 shows significance values for paired t-tests at varying 

levels of disparity amplitude.  
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Table 3: Paired comparisons between RDS with different disparity amplitudes. 

 

*Paired comparison of means using Tamhanee posthoc paired t test with Bonferroni correction. 

 

The effect on stereoCT of disparity amplitude was significant F=11.6, p=<0.001, two-factor 

ANOVA. The lowest stereoCT threshold was found at 108 seconds of arc. StereoCT doubled to 

more than 50% coherence with the lowest disparity of 36 seconds of arc when compared to the 

mean threshold of 25% at 108 seconds of arc. StereoCT were significantly higher at lower 
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stimulus disparity of 72 and highest stimulus disparity of 216 seconds of arc when compared to 

the optimum disparity of 108 seconds of arc. 

Discussion 

StereoCT were elevated when the stimulus disparity of the sinusoidal RDS was too fine or too 

large. Thresholds were worse for the shallowest surface with a maximum depth of 36 seconds of 

arc than for deepest surface with a maximum depth of 216 seconds of arc. This might be due to 

the interaction of the sinusoidal grating with noise dots. At low stimulus disparities, the noise dots 

are densely packed within the peak and trough of the sinusoidal grating. This might lead to the 

disruption of the depth pattern due to crowding or possibly dot matching difficulty. At high 

stimulus disparities, the visual system is at its peak with regards to achieving maximum fusion to 

detect stereopsis. Adding noise dots might breakdown the smooth perception of background wave 

much easier and observers fail to integrate the information. The stereoCT might also have some 

additive effect with regards to the resolution of the background sinusoidal grating detection at 

different stimulus disparities.  
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4.5 Pilot Study 4: Test-retest repeatability of stereoCT 

 

Introduction: 

Any clinical test that is being used to diagnose or monitor disease progression should have its 

repeatability assessed to know correctly if the change in the measurement can be attributed to test-

retest variability or demonstrates a clinically significant change.  

 

Methods 

To determine the repeatability of stereoCT, we measured test-retest repeatability of stereoCT. 

Test-retest repeatability was assessed using five different disparity amplitudes. Twenty normal 

participants took part in this study. All the measures of stereoCT were undertaken by the same 

examiner to minimize inter-examiner variability.  

 

Results: The stereoCT of the first test is plotted against those of the retest in Figures 8a to Figure 8e. 

 

 

 

 



 

54 

 

Fig 8a 
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Fig 8b 
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Fig 8C 
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Fig 8d 
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Fig 8e 

 

 

Figure 8: Bland-Altman plots of stereoCT measures at various maximal stimulus disparities (Fig 

8a-36, Fig 8b-72, Fig 8c-108, Fig 8d-144 and Fig 8e-216 seconds of arc). Red line (middle) 

represents the mean difference and green line (above and below the red line) indicates lower and 

upper limit of agreement. 
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Table 4 Intraclass correlation coefficients on a two-tailed test. 

 

 

The intraclass correlation coefficient was best at largest stimulus disparity (216 seconds of arc) 

and lower at finest stimulus disparity (36 seconds of arc) as shown in figure 8. Overall the 

stereoCT exhibited good test-retest repeatability at variable stimulus disparities. 
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Discussion 

The stereoCT showed good test-retest repeatability. The repeatability was best at largest disparity 

because of the cyclopean pattern in RDS was more easily discriminable as compared to fine 

stimulus disparity in normal observers. When noise is added to a large disparity sinusoidal 

grating, there might be some information of the wave pattern still preserved which might aid in 

the resolution of the pattern. In contrast, when the noise is added to fine disparities, there is a lot 

of crowding and dot matching constraints that make it more difficult to detect and additionally, 

there might be a total disruption of the stereoscopic surface with no residual information left to 

integrate. The stereothresholds obtained by conventional stereoacuity tests show evidence of wide 

variation between individual subjects and between stereo tests51,120. High test-retest variability of 

clinical stereoacuity tests has also been shown in patients with abnormal binocular vision121. We 

did not study repeatability of conventional stereoacuity thresholds because the resolution of our 

stimulus screen produced a floor effect for normal observers with a minimum available depth of 

18 seconds of arc. In clinical tests, it has been reported that 89% of observers with normal 

binocular vision show floor effects for depths of less than 10 seconds of arc on the Frisby test and 

less than 40 seconds of arc on the widely used Titmus test51,62. The stereoCT did not reveal any 

floor effects because it is possible to display very low coherence levels, thus providing a below 

threshold stimulus for all observers.  
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4.6 General Conclusions from pilot studies 

The objective of the pilot study was to find the spatial parameters which have lowest 

stereothresholds that can be used to design the test stimulus. Based on our findings, in normal 

participants, stereothresholds were lowest for dot density of 29% RDS densities. StereoCT 

showed better sensitivity at spatial frequency of 1cpd. StereoCT were also lowest when measured 

at mid-range disparity amplitudes of 72-108 seconds of arc. We used these parameters to design 

our test stimulus. In the main experiments all spatial parameters except for disparity amplitudes. 

In observers with disrupted binocular vision, we presented stimuli at higher disparities to improve 

repeatability and allow discrimination of the stereo target. 
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Chapter 5 

Comparison of stereoCT with conventional disparity thresholds in normal and simulated 

abnormal vision 

 

5.1 Introduction 

The presence of degraded stereothresholds on clinical tests is commonly associated with reduced 

monocular or binocular visual functions such as visual acuity and contrast sensitivity. The 

associated dysfunctions typically result from various ocular conditions such as uncorrected 

refractive error, cataract, strabismus, anisometropia, and amblyopia122. Artificially degraded 

vision in one eye using optical blur, Bangerter filters and interocular luminance and contrast 

differences can impair stereovision (more details in chapter 2, section 2.3 and subsection 2.3.2). 

We evaluated the effect of using artificial disruption of binocular vision on disparity thresholds 

and stereoCT. 

Chapter 5 includes two different experiments: 

 

Study 1: Effect of interocular luminance and contrast differences on stereothresholds 

The aim of this study was to determine the effect of varying interocular luminance and contrast on 

conventional disparity and stereoCT. 
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Study 2: Effect of induced uniocular optical blur and Bangerter filters on stereothresholds 

This experiment was done to investigate the effects of artificially disrupting binocular vision 

using optical blur and Bangerter filters on conventional disparity and stereoCT.  

The overall hypothesis was that stereoCT would show better sensitivity and less variability to 

different levels of induced deficit than conventional disparity thresholds. 

 

5.2 Experiment 1: Effect of interocular luminance and contrast differences on 

stereothresholds 

 

Introduction 

Stereopsis is dependent on luminance and contrast. Differences in contrast and luminance 

between the two eyes disrupt binocular vision and lead to deterioration of stereopsis (more details 

in chapter 2, section 2.3, and subsection 2.3.2). In this study, we investigated the effects of 

interocular luminance and contrast differences on stereoCT and disparity thresholds. 
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Methods  

Stereothresholds were obtained from10 participants for each experiment who had normal visual 

and stereoacuity determined on clinical tests (section 3.2.5). Participants in experiment measuring 

interocular contrast differences had a median age of 26 (range=19-34), six male and four female 

participants.Participants in experiment measuring interocular luminance differences had a mean 

age of 25 (range=19-33), four male and six female participants. Stimulus presentation and 

psychophysical thresholds were obtained as described in chapter 3, section 3.2 subsections 3.2.3. 

Dot density, dot size, contrast, luminance and stimulus disparity remained constant when 

measuring stereoCT (dot size 5.5 arcmin, dot density 183 dots/deg2, stimulus disparity 108 

seconds of arc, full contrast in both eyes). For disparity thresholds, all spatial parameters were 

similar to those for the stereoCT except for stimulus disparity which was measured using a 

staircase procedure. We manipulated the stimulus presented to one of the two eyes by changing 

contrast and luminance. The contrast was altered at four different left and right eye combinations. 

The contrast in one eye was always 50% (the maximum contrast between the grey background 

and white dots). The contrast in the other eye was 20%, 30%, 40% or 50% contrast. The stimulus 

contrast is expressed as Michelson contrast, which is defined as C= (Lmax-Lmin/Lmax+Lmin) where 

Lmax and Lmin are the maximum and minimum luminance of the stimulus respectively. The mean 

luminance seen in the non-dominant eye was manipulated by using neutral density (ND) filters placed in 

front of the eye. Four different ND filters were used 0.3, 0.6, 1.2 and 1.8 log units. All the measurements 
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were made in one session with the different contrast and luminance levels presented in random 

order. 

 

Results: 

The results are shown in Figure 9 where we have plotted the results of stereoCT and disparity 

thresholds as a function of interocular contrast and luminance differences. The results were 

normally distributed which were determined by performing Shapiro-Wilk test. 
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Fig 9a 
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Fig9b 

 

Figure 9a: StereoCT (left) and disparity thresholds (right) plotted as a function of interocular contrast 

difference (n=10). Error bars represent 95% CI. The mean stereothresholds were measured at four different 

contrast levels: 10, 20, 30 and 50% contrast in one eye. The contrast in the other eye was always 50%. 

Figure 9b: StereoCT (left) and disparity thresholds (right) plotted as a function of interocular luminance 

difference (n=10). Error bars represent 95% CI. Stereothresholds were measured at five different 

luminance levels: no filter, 0.3, 0.6, 1.2 and 1.8 log unit filter density. Filters were placed over only the 

non-dominant eye. 
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Interocular contrast difference 

The mean stereoCT is shown in figure 9a (left) and increased in a linear fashion as the interocular 

differences in contrast increased (ANOVA F (3,40)=11.32, p<0.001). Reducing unilateral contrast 

to 40% did not worsen stereoCT significantly (post hoc Tamhanee paired test p>0.05) shown in 

table 5. When the contrast in one eye was reduced to 30%, the thresholds rose significantly 

compared to the 50% contrast (baseline) condition (post hoc Tamhanee paired test p<0.05). 

Unilateral contrast reduction to 20% doubled the thresholds as compared to the 50% contrast 

condition. The mean disparity thresholds shown in figure 9a (right) revealed a main effect with 

change in contrast F (3, 32) = 3.40, p=0.02, one way ANOVA. Disparity thresholds remained 

stable for the 40 and 30% contrast conditions. At 20% contrast, the mean disparity thresholds also 

doubled when compared to full contrast conditions but the paired comparisons described in table 

5did not reveal a statistically significant difference (post hoc Tamhanee paired test p>0.05). 

Analysis of the difference in variances is described below (Table 6) 

 

 

 

 

 

 



 

69 

 

Table 5: Effects of interocular contrast differences on stereoCT and disparity thresholds. 

 

Posthoc paired comparison using Tamhanee paired test. 

 

Variance Analysis 

The variance analysis was done separately for stereoCT and disparity thresholds. The variance 

between conditions was calculated at different contrast levels as described in table 6. For 

stereoCT, the variance between groups was not significantly different as the interocular 

differences in contrast increased (F test of variance, p>0.05). For disparity thresholds, as the 

interocular contrast was increased, significant differences in variance between conditions were 

* 

* 
Arc  

seconds 

* 
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observed. At 40% contrast, the variance was not significantly different from the 50% contrast 

condition. At 30 and 20% contrast, variance was significantly larger than the 50% contrast 

condition. 

 

Table 6: Analysis of variance (F-test) between conditions for interocular contrast differences. 

StereoCT and disparity threshold measures. 

 

*F test between conditions, p values <0.05 are significant. 
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Interocular luminance differences 

The mean stereoCTs shown in figure 9b (left) increased in a linear fashion as the interocular 

differences in luminance increased F=17, p<0.01, ANOVA. Weak ND filters of 0.3 and 0.6 log 

units did not worsen the thresholds significantly ((post hoc Tamhanee paired test p>0.05) shown 

in table 7. As the ND filter strength increased to 1.2 log units, the thresholds rose significantly and 

almost doubled compared to no filter condition ((post hoc Tamhanee paired test p<0.05). 

Unilateral luminance reduction with the highest filter of 1.8 log units increased the stereoCT 

three-fold compared to no filter condition (paired t-test p<0.001). The mean disparity thresholds 

are shown in figure 9b (right). Significant increase in disparity thresholds were revealed only for 

the strongest filter with respect to the baseline condition (1.8 log units, post hoc Tamhanee paired 

test p=0.01) as described in table 7. Analysis of the difference in variances between groups is 

described below. 
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Table 7 Effects of interocular luminance differences on stereoCT and disparity thresholds. 

 

*Posthoc paired comparisons using Tamhanee paired test.  



 

73 

 

Variance Analysis 

The variance analysis was conducted separately for stereoCT and disparity thresholds. The 

variance between groups was calculated at different interocular luminance differences as 

described in table 8. For stereoCT, the variance between groups was not significantly different at 

the low level of 0.3 log units compared with the no filter condition (F test of variance, p>0.05). 

StereoCT showed increased variance as the ND filter strength was increased until the highest 

filter density (1.8 log units, F test of variance, p<0.05). For disparity thresholds, as the interocular 

luminance differences were increased, significant differences in variance from baseline were 

observed only with higher filter strengths of 1.2 and 1.8 log units (F test of variance, p<0.05). 
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Table 8 P values for analysis of variance (F-test) between conditions for interocular luminance 

differences. StereoCT and disparity threshold measures. 

 

           * F test between conditions, p values <0.05 are significant. 
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Discussion 

Interocular contrast differences 

We first investigated the effect of interocular contrast differences on stereoCT and disparity 

thresholds. StereoCT was progressively degraded as contrast differences between the two eyes 

were increased. StereoCT were significantly degraded for all interocular contrast differences of 

1.5 times contrast or greater and variances remained consistent. Disparity thresholds were not 

significantly different at any of the contrast levels tested from the baseline condition of 50% 

contrast in both eyes. However, interocular contrast differences increased the variances of 

disparity thresholds. The results imply that StereoCT is sensitive to smaller differences in contrast 

between the two eyes (interocular contrast differences ≥1.5 times than baseline) than conventional 

disparity thresholds (no differences in thresholds up to 2.5 times than that of baseline). Studies 

done in the past have implied that stereothresholds measured by conventional tests are affected by 

interocular contrast differences68,85,123. For example, Legge and Gu85 measured the effect of 

interocular contrast difference on stereoacuity using sinusoidal gratings. Stereoacuity gradually 

deteriorated with interocular contrast differences of up to three fold with left/right eye ratio of 4:1 

measured on a grating of 2.5 cpd. The average increase in threshold for two participants with 2:1 

left/right eye contrast differences was greater than 400 seconds of arc for a grating of 0.5 cpd. In 

our study, average disparity thresholds increased to >60 seconds of arc with 2.5:1 interocular 

contrast differences from the baseline average threshold of 27 seconds of arc for a grating of 1 

cpd but the differences was not significant in view of the high variances between participants. The 
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results from our study differ from those of Legge and Gu85. This might be because of the 

differences in stimulus design and field size etc. In the present study, variance analysis revealed 

no difference in variance between the baseline and disrupted binocular vision conditions for 

stereoCT. Differences were present for the disparity threshold data. This indicates that stereoCT is 

a particularly stable measure of stereoscopic function especially in conditions of abnormal 

binocular vision compared to conventional disparity threshold measures. 

 

Interocular luminance differences 

StereoCT and disparity thresholds progressively degraded as the interocular luminance difference 

was increased. The change in stereoCT with interocular luminance difference was progressive 

whereas disparity thresholds did not exhibit significant differences with low density filters and 

increased abruptly when a filter with higher ND (1.8 log units) was introduced over one eye. 

Studies done in the past have implied that stereothresholds measured by conventional tests are 

affected by interocular luminance differences72,123,124. Chang et al examined the effects of 

interocular differences in retinal luminance on stereoacuity by using neutral density filters. 

Stereoacuity was measured on Titmus test and Lang tests. On the Titmus test, stereoacuity began 

to decline significantly when the value of the ND filter was 1.4 log units with a mean 

stereoacuity of 92.8 seconds of arc. The results are consistent with our data on disparity 

threshold measures. Even though we did not measure thresholds at 1.4 log units, we found 

significant deterioration of stereothresholds for global stereopsis only for the 1.8 log units filter 
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with mean thresholds around 142 seconds of arc. StereoCT showed higher sensitivity with 

significant deterioration of thresholds at the 1.2 log unit filter level. Variance analysis revealed 

overall less variance differences between normal and disrupted binocular vision conditions for 

stereoCT. This indicates that stereoCT is more stable measure of stereoscopic function, especially 

in conditions of abnormal binocular vision compared to conventional disparity threshold measures 
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5.3 Experiment 2: Effects of induced uniocular optical blur and Bangerter filters on 

stereothresholds 

 

Introduction 

Degradation of the image in one eye leads to deterioration of stereopsis (more details in chapter 2, 

section 2.3 and subsection 2.3.2). In this study, we investigated the effects of induced optical blur 

and uniocular fogging with Bangerter filters on stereoCT and disparity thresholds. 

 

Methods 

Stereothresholds were obtained on 10 healthy participants for each experiment. The median age 

was 26 (range=21-41), eight participants were female and two male for interocular blur 

experiment.The median age of participants for interocular Bangerter filter experiments was 26.5 

(range=22-41) with nine female and one male participant. Stimulus presentation and 

psychophysical thresholds were obtained as described in chapter 3, section 3.2, and subsection 

3.2.3. Dot density, dot size, contrast, luminance and stimulus disparity remained constant when 

measuring stereoCT. For disparity thresholds, all spatial parameters were similar to stereoCT 

except for stimulus disparity which was measured using a staircase procedure. We manipulated 

the stimulus presented to one of the two eyes by inducing optical blur using plus lenses or 

Bangerter filters. We reduced vision using plus lenses to two visual acuity levels, 0.17 LogMAR 
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(6/9) and 0.30 LogMAR 6/12, for easier comparison between subjects. Bangerter filters are 

translucent occlusion filters consisting of a characteristic pattern of micro bubbles that cause 

visual degradation125. The filter label indicates the visual acuity in linear fraction predicted by the 

manufacturer when the filter is placed in front of eyes with normal visual acuity. Two Bangerter 

filter strengths of 0.8 and 0.6 were used over one eye to artificially degrade binocular vision. The 

stereoCT for blur and uniocular diffusion was obtained at a supra-threshold stimulus disparity of 

270 seconds of arc. This is because the on the conventional disparity threshold, mean 

stereothresholds worsened to approximately 250 seconds of arc with induced blur and Bangerter 

filters. A supra-threshold stimulus disparity was used so that all observers could discriminate the 

equivalent depth pattern when binocular vision was disrupted and so that the inability to see 

stimulus disparity could not disrupt measured stereothresholds using the stereoCT. All the 

measurements were made in one session for either blur or Bangerter filters; the blur and Bangerter 

filter levels were presented in random order. Some participants did both the bur and Bangerter 

filter experiments in a single study. 

 

Results 

The results are shown in Figure 9 where we have plotted the results of stereoCT and disparity 

thresholds as a function of uniocular contrast and uniocular fogging. The results were normally 

distributed which were determined on Shapiro-Wilk test. 
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Fig 10a                                                              Fig 10b 

 

Figure 10 StereoCT (10a) and disparity thresholds (10b) plotted as a function of uniocular blurred acuity 

(n=10). Error bars represent 95% CI. Stereothresholds were measured for two levels of blurred visual 

acuity 6/9 and 6/12. 
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             Fig 11a                                                                Fig11b 

 

 

Figure 11: StereoCT (11a) and disparity thresholds (11b) plotted as a function of uniocular 

Bangerter filter strength. Error bars represent 95% CI. Stereothresholds were measured at two 

different Banger filter strengths, 0.8 and 0.6, over one eye, which reduced acuity to 6/12.1 and 

6/16 on average as well as reducing uniocular contrast. 
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Effect on stereothresholds of uniocular blurring 

The mean stereoCT shown in figure 10a (left) increased progressively as the blur levels increased 

F=20 p<0.05, one way ANOVA. Unilateral reduction of VA to 0.17 (6/9) almost doubled the 

stereoCT (Fig 10a). Degradation of stereoCT was significant for both blur levels used but the 

difference in stereoCT between the 6/9 and 6/12 blur levels was not significant (posthoc 

Tamhanee paired test p>0.05) (Table 9). The mean disparity thresholds are shown in figure 10b 

(right) which also shows that thresholds increased almost three-fold with blurred acuity to 6/9 

(paired t-test P<0.05). Blurred acuity to 6/12 also revealed a significant deterioration of disparity 

thresholds (posthoc Tamhanee paired test p<0.01) but the differences observed between the 6/9 

and 6/12 blurred levels were not significant (posthoc Tamhanee paired test p>0.05) as described 

in table 9. The error bars shown in figure 10a are less variable for stereoCT when compared to 

disparity thresholds. Analysis of the difference in variances is described below. 
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Table 9: Paired comparisons for stereoCT and disparity thresholds with uniocular blur 

 

*Posthoc paired comparisons using Tamhanee paired test. P<0.05 is considered statistically 

significant.  
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Variance Analysis 

The variance between groups was calculated at different blurred acuity levels as shown in table 

10. For stereoCT, the variance between groups was not significantly different at either blurred 

acuity levels when compared to no blur condition (F test of variance, p>0.05). For disparity 

thresholds, as the blurred acuity deteriorated, there was a significant increase in variance between 

groups (F test of variance, p<0.001). Variance was not significantly different between two blurred 

acuity levels (F test of variance, p>0.05) 

 

Table 10: Analysis of variance (F-test) between conditions for stereoCT and disparity thresholds 

with uniocular blur 

 

*F test between conditions, p values <0.05 are significant. 
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Effect on stereothresholds of Uniocular fogging using Bangerter filters 

Bangerter filters significantly deteriorated the visual acuity in all participants. The median 

LogMar visual acuity with 0.8 BF was 0.3 (6/12) range (0.16-0.48) and with 0.6 BF was 0.45 

(6/16) range (0.25-0.63). The mean stereoCT is shown in figure 11 (left) increased progressively 

as the unilateral Bangerter filter strength was increased F=16.5, p<0.05, one way ANOVA. 

Inducing unilateral fogging using Bangerter filters even as low as 0.8 almost doubled the 

stereoCT (paired t-test p>0.05) as shown in table 11. There was no significant difference in 

stereoCT between the 0.8 and 0.6 strength Bangerter filters (paired t-test p>0.05). The mean 

disparity thresholds are shown in figure 11b (right) which also showed increased thresholds with 

both filters when compared with no filter condition (paired t-test p<0.05). There were no 

significant difference observed between the 0.8 and 0.6 Bangerter filter group (paired t-test 

p>0.05) as described in table 18. The error bars shown in figure 11b are less variable for stereoCT 

when compared to disparity thresholds. Analysis of the difference in variances is described below. 
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Table 11: Paired comparisons for stereoCT and disparity threshold measures with uniocular 

fogging (Bangerter filters). 

 

*Posthoc paired comparisons using Tamhanee paired test. P<0.05 is considered statistically 

significant.  

 

Variance Analysis 

The variance between groups was calculated at different uniocular Bangerter filter strength as 

described in table 12. For stereoCT, the variance between groups was not significantly different at 
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either BF levels when compared to no filter condition (F test of variance, p>0.05). For disparity 

thresholds, as the Bangerter filter strength increased, there was a significant increase in variance 

between groups (F test of variance, p<0.001) compared to no filter condition. Variance was not 

significantly different between 0.8 and 0.6 levels (F test of variance, p>0.05) 

 

Table 12: Analysis of variance (F-test) between conditions for Bangerter filters, stereoCT and 

disparity threshold measures. 

 

*F test between conditions, p values <0.05 is significant  
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Discussion 

Thresholds progressively degraded as optotype visual acuity was degraded in one eye using 

Bangerter filters or optical blur for disparity and stereoCT. Previous studies have examined the 

effects of induced optotype acuity deficits on disparity thresholds using either optical blur or 

diffusing filters73,126. The increase in an optical blur in one eye caused proportional loss in 

stereoacuity assessed by the Titmus test127 that is proportional to Snellen acuity. Odell et al73 

examined the effects of fogging induced by Bangerter filters on stereoacuity measured using real 

depth and random dot tests. Their study reported that the degradation of fine stereoacuity of 60 

seconds of arc or better on the preschool Randot test was observed with visual acuity 0.1 LogMar 

or worse. Coarse to nil stereoacuity of >200 seconds of arc was observed with 0.8 LogMar visual 

acuity or worse. More than 85% of the participants had stereoacuity >200 seconds of arc on 

distance Randot test with fogging to 0.8 LogMar. Stereoacuity was found to be more easily 

degraded when using random dot tests compared to real depth tests. We found median disparity 

thresholds to be 67.5 seconds of arc (range=18-162) with 0.8 BF which reduced the LogMar 

visual acuity to 0.3 and 94.5 seconds of arc (range=18-252) with 0.6 BF which reduced the 

LogMar visual acuity to 0.45. According to Odell et al73 with visual acuity reduction using 

Bangerter filters to 0.3 and 0.4 more than 50% of participants were able to detect fine stereoacuity 

of better than 60 seconds of arc. In our study however, 50% participants had stereoacuity better 

than 60 seconds of arc with 0.3 LogMar visual acuity reduction using uniocular Bangerter. This 

percentage reduced to 30% when the acuity was reduced to 0.45 LogMar.The degradation of 
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stereothresholds measured with Bangerter filters is the cumulative effect of reductions in both 

optotype visual acuity and contrast sensitivity128. Our findings are consistent with Li et al74 who 

found a linear reduction in stereothresholds measured on the Randot preschool test for normal 

observers. Their study concluded that Bangerter filters significantly disrupt binocular vision more 

than monocular defocus. Bangerter filters had significant and pronounced effects on stereopsis 

when compared with monocular acuity. StereoCT showed better sensitivity to unilateral blur 

using defocus or Bangerter filters than conventional disparity thresholds. Stereothresholds have 

been shown to exhibit a great deal of variability in responses, especially in disrupted binocular 

vision conditions129,130. We found that the variability in stereopsis associated with disrupted 

binocular vision from optical blur and Bangerter filters was limited to the conventional disparity 

thresholds. Variability for stereoCT did not increase with uniocular blur or fogging. Improved 

sensitivity and reduced variability of stereoCT indicate that it may be a useful test for assessing 

stereopsis, especially in conditions of abnormal binocular vision such as strabismus and 

amblyopia. 
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Chapter 6 

Disparity and stereoCT in amblyopia: a feasibility study on a small sample 

Introduction 

Abnormal binocular vision in amblyopia is a result of abnormal visual input early in life and is 

associated with deficits in a spatial vision such as impaired visual acuity, contrast sensitivity, and 

perception of depth. According to Weber and Wood131, impaired stereopsis is the most common 

deficit associated with amblyopia under binocular viewing conditions. Studies in the past have 

provided evidence that degrading the vision in one eye in the normal population by 

blurring129,132,126, filtering128, reducing contrast85 and luminance69,133 results in reduced 

stereoacuity. One developing approach to treatment in amblyopia is focused on rebalancing 

binocular vision by manipulating the contrast between the two eyes. Contrast is gradually reduced 

in the fellow fixing eye (FFE) to balance it with the amblyopic eye (AE). Previous studies have 

provided evidence of improvements in visual functions based on binocular balancing by 

manipulating contrast between the two eyes91,93–95 (more details in chapter 2, section 2.4).  

 

Clinically, stereoacuity is one of the visual functions used to monitor amblyopia. Accurate 

measurement and quantification of stereoacuity are highly important. The current clinical tests 

used to measure stereoacuity have limitations in design when applied to patients with amblyopia. 

The clinical stereoacuity tests have a cap on the largest disparity that can be presented based on 
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the test design (chapter 2, section 2.3). Subjects who initially fail to detect the maximum disparity 

are labelled as having no measurable depth perception (nil stereopsis). This has a major 

disadvantage as the clinician cannot quantify or report improvements in people with nil stereopsis. 

Stereoacuity tests used in clinics also exhibit poor repeatability and high variability in people with 

abnormal binocular vision134135. Redesign of clinical stereoacuity tests could therefore provide a 

more accurate estimate of stereopsis for the diagnosis and monitoring of abnormal binocular 

vision. 

 

The objective of the study was to investigate the use of stereoCT to quantify stereopsis in patients 

with amblyopia and to study the effect of contrast balancing on stereothresholds. The hypothesis 

was that stereoCT would improve with an optimum contrast reduction in the FFE. This 

improvement might be greater and/or more easily quantified than that found with conventional 

disparity thresholds. 
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Methods  

Participants 

StereoCT and disparity thresholds were obtained from four participants with amblyopia. The 

participants had strabismic amblyopia or a mix of strabismic and anisometropic amblyopia. A 

complete clinical examination was performed based on the screening and clinical tests described 

in section 3.2.4. Amblyopia was defined as a 2 line (0.2 LogMar) or greater interocular difference 

in best-corrected visual acuity associated with strabismus or anisometropia. Anisometropic 

amblyopia was defined as amblyopia in the presence of a difference in refractive error between 

both eyes of ≥1 diopter (D) of spherical or cylindrical power136. Two out of four patients had 

undertaken previous patching therapy but still met the criteria for amblyopia. Two patients had no 

measurable stereoacuity on the stereo fly test. All measurements were made after providing best-

corrected vision through glasses or contact lenses. 
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Table 14 Clinical details of the amblyopic observers. 

 

The following abbreviations have been used in Table 14: aniso for anisometropia, mixed for 

mixed strabismic–anisometropic. Motor evaluation: ET for esotropia, XT for exotropia, XP 

for exophoria and PD for prism diopters. Refractive error (RE): DS for diopter sphere, RE 

for the right eye and LE for the left eye. 
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Experimental design 

Stimulus presentation and psychophysical thresholds were obtained as described in section 3.2.3. 

Dot density, dot size, and spatial frequency remained constant during the experiment. With full 

refractive correction in place, we manipulated the stimulus presented to the FFE by manipulating 

the contrast (interocular contrast ratio). The amblyopic or the non-dominant eye (AE) eye always 

was presented with full contrast (50% contrast between dots and background) and the contrast in 

the FFE  was presented at full contrast (50%), 40, 30, 20, 10 and 1% contrast (interocular contrast 

ratios of 1, 0.8, 0.6,0.4,0.2 and 0.02).The stimulus contrast is expressed as Michelson contrast, 

which is defined as C=( Lmax-Lmin/Lmax+Lmin) where Lmax and Lmin are the maximum and 

minimum luminance of the stimulus respectively. StereoCT were obtained at supra-threshold 

stimulus disparities that were subject-specific and above their own disparity thresholds. A supra-

threshold stimulus disparity was used so that observers could accurately discriminate the disparity 

defined grating stimuli before noise was added for the measurement of stereoCTs.  

 

Control group:  

Stereothresholds were obtained on 10 participants. Control group data was obtained from chapter 

5; section 5.2 investigating the effects of interocular contrast differences on stereothresholds in 

normal participants. The contrast in one eye was always 50% (the maximum contrast between the 

gray background and white dots). The contrast in the other eye was manipulated at different 
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levels; full contrast (50%), 40%, 30% and 20% contrast levels (interocular contrast ratio 1, 0.8, 

0.6 and 0.4). Sinusoidal gratings in the control experiment were presented with a maximum 

disparity of108 seconds of arc. Dot density, dot size, and spatial frequency were matched between 

the control and the amblyopia experiments. 

 

Results: 

Five participants were screened for the study. One participant was excluded due to failure in 

detecting the highest disparity presented in the disparity threshold test (500 seconds of arc). Four 

participants with amblyopia had sufficient stereopsis to achieve disparity threshold measures. The 

disparity thresholds for the four participants were 90, 306, 396 and 405 seconds of arc. Based on 

the disparity thresholds, the suprathreshold stimulus was chosen randomly between 10 to 30 arc 

seconds higher than the threshold based on the available disparities and the participant’s ability to 

see the presented stereo target. The suprathreshold levels used were 108, 324, 405 and 432 

seconds of arc. Disparity and stereoCT measured with equal contrast in each eye and with contrast 

reductions in the dominant eye for the individual participants with amblyopia are shown in figures 

12-15.  
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Figure 12 Stereothresholds for participant GJ. The blue line (diamonds) represents patient’s data 

while the red line (squares) represents mean threshold data from the normal population (n=11). 

Figure 11 (left) stereoCT is plotted on the x-axis and % contrast reduction in the FFE is plotted on 

the y-axis. A suprathreshold stimulus disparity of 405 seconds of arc was used to measure 

stereoCT. Figure 11 (right) Disparity plotted as a function of contrast reduction. 
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Figure 13 Stereothresholds for participant DA. Data plotted as in Figure 12. A suprathreshold 

stimulus disparity of 432 seconds of arc was used to measure stereoCT.  
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Figure 14 Stereothresholds for participant CW. Data plotted as in Figure 12. A suprathreshold 

stimulus disparity of 108 seconds of arc equal to that of control group was used to measure 

stereoCT.  

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Full 
contrast

40 30 20 10 1

S
t
e

r
e

o
c
o

h
e

r
e

n
c
e

  
t
h

r
e

s
h

o
ld

s

% Contrast  in FFE

CW

0

60

120

180

240

300

360

Full contrast 40 30 20 10 1

D
is

p
a

r
it

y
 
t
h

r
e

s
h

o
ld

s

% Contrast  in FFE

Patient CW

Normals



 

99 

 

 

Figure 15 (left) Stereothresholds for participant JP. Data plotted as in Figure 12. A suprathreshold 

stimulus disparity of 324 seconds of arc was used to measure stereoCT.  

 

Results 

Improvement in stereothresholds was observed in three participants (CW, DA and JP). For 

participant CW, on conventional disparity thresholds, the improvement in contrast was twofold 

when the contrast was reduced to 30% in the FFE when compared to full contrast condition. 
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Disparity thresholds gradually worsened when the interocular contrast differences increased 

beyond this level. StereoCT also exhibited improvements with contrast balancing. Participant JP 

showed improvements in stereoCT with contrast reduced to 10% in the FFE, whereas disparity 

thresholds did not improve on contrast balancing when compared to full contrast conditions. For 

participant DA, performance improved on disparity thresholds when the contrast was reduced to 

30% and 1%. StereoCT showed corresponding improvements with contrast reduction of 40% to 

30% and with 1% reduction of contrast in FFE. Participant GJ did not reveal any advantage in 

either disparity or stereoCT with contrast reduction. Thresholds worsened with contrast reduction 

in FFE between 40-10% ranges. Stereothresholds improved when the contrast was reduced to 1% 

but was similar to threshold values on the full contrast condition. Overall, the thresholds were 

higher and more variable for the patients compared to the controls.  

 

Discussion: 

A binocular approach to improving stereopsis in patients with amblyopia can be attempted by 

interocular contrast balancing of stereo thresholds. The effects of reducing suppression on 

stereoacuity by presenting contrast balanced images between two eyes in patients with amblyopia 

have been studied in the past. Significant improvements in stereo sensitivity were observed as a 

consequence of a combination of perceptual learning and anti-suppression treatment91,93,137, 138. 

To our knowledge, the effect of acute contrast balancing on stereoscopic resolution has not been 

reported before. We did not find a consistent pattern of improved thresholds of either stereoCT or 
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disparity thresholds with five levels of contrast reduction in the fellow eye relative to the 

amblyopic eye in our four participants.  

Under normal binocular viewing conditions, the weak signals coming from the amblyopic eye 

do not allow for optimal local matching between the two eyes, which is crucial for stereoscopic 

perception. Global integration of stereoscopic images relies on the successful resolution of local 

matches between the two eyes. Since local matching is impaired in amblyopia, the global 

integration of stereoscopic images measured using stereoCT also shows impaired thresholds. 

The balancing contrast of the images between the two eyes may reduce suppression and allow 

for local matching and global integration to occur at optimum contrast as demonstrated in our 

study for one participant. Participant CW who had best initial stereopsis showed the expected 

pattern of improved thresholds when the balance point was reached with contrast reduction in 

the FFE. Our findings show that quantitative measures of binocular interactions for global 

stereopsis in patients with amblyopia can be assessed using the stereoCT measure. For some 

patients with coarse stereopsis, the limitation of no measurable stereothresholds on clinical tests 

can be overcome by measuring stereoCT on suprathreshold disparity defined targets. We also 

addressed the limitation of smaller dot sizes on clinical tests. Clinical RDS test designs are 

made up of smaller dot sizes which may contribute to the decrease in stereothresholds in 

amblyopic participants. Accurate and reliable measurements of stereoscopic deficits may 

improve the treatment of amblyopia. 
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Our study also has implications the use of contrast-balanced stereo targets between two eyes for 

perceptual learning experiments. Although, our participants showed some benefit of using 

interocular contrast balancing, the effects were not consistent. Future studies might be needed to 

study the effect of using contrast balanced targets on stereoresolution. Also, more detailed 

investigation of the benefits of using contrast balanced targets in different types of amblyopic 

patients is also required. 
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Chapter 7 

General discussion and conclusion 

The objective of our study was to develop a new clinical measure of global stereopsis that was 

complimentary to the presently used clinical tests. Stereopsis tests presently used in clinics exhibit 

limitations in test design such as floor and ceiling effects, which affects measurement reliability. 

We developed a new measure of stereothreshold called as stereoCT.  The stimulus used to 

measure stereoCT is based on a signal in noise test. Coherence thresholds were obtained for 

disparity defined form (sinusoidal grating) that was degraded by assigning random disparity to a 

subset of noise dots in a random dot stereogram. We also measured conventional disparity 

thresholds by introducing positional differences between two images. Both stereoCT and disparity 

thresholds were measured psychophysically using an adaptive staircase. 

The first aim of the study was to investigate spatial parameters which would reveal low stereoCT 

and can be used to design stimuli which would be used for the main experiments. We investigated 

the effects of dot density, dot size, disparity amplitude and spatial frequency on stereoCT. In 

normal participants, we found that best stereoCT were encountered around the dot density of 29% 

and the dot size of 5.5 min of arc. StereoCT also was most sensitivity at spatial frequency of 1cpd 

and significantly elevated for 4 and 8cpd gratings. StereoCT were significantly lower for gratings 

with maximal depth of 108 and 144 seconds of arc. We used these parameters to design our test 

stimulus.  
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The second aim of the study was to see the performance of stereoCT in artificially degraded 

binocular vision conditions. We measured these effects by inducing abnormal vision using 

interocular contrast differences, interocular luminance differences, unilateral defocus and 

unilateral fogging using Bangerter filters. StereoCT was a worse with each level of disrupted 

binocular vision. We related this reduction in performance to reduction of conventional disparity 

threshold measures. Disparity thresholds were also worse but only for much larger interocular 

differences compared to the stereoCT. The decline in thresholds was more abrupt for disparity 

thresholds in contrast to a gradual decrease in performance on stereoCT. We also measured the 

variance between each level of disrupted binocular vision on both stereoCT and disparity 

thresholds. The performance on stereoCT was less variable between control participants with 

different levels of degraded binocular vision compared with conventional disparity thresholds. 

Disparity thresholds had different variances between conditions even with low level of 

degradation. We conclude from these findings that stereoCT might be a better measure of 

stereoscopic performance especially in conditions of abnormal binocular vision such as in 

amblyopia. Lower variances allow more sensitive detection of abnormality and of change. 

Finally, we conducted a feasibility study on a small set of amblyopic participants. We used the 

interocular contrast balancing method on stereo targets measuring both stereoCT and disparity 

thresholds. Step-wise contrast reduction in FFE was introduced and the stereoscopic performance 

was measured. Stereo thresholds are reported for four amblyopic participants. We found the 

expected systematic benefit of acute contrast reduction in the FFE on stereoscopic performance in 
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one participant with good initial level of stereoacuity. In others, the effects of contrast reduction 

were inconsistent. Our findings show that quantitative assessment of binocular interactions for 

global stereopsis in patients with amblyopia can be assessed using the stereoCT measure. The 

limitation of no measurable stereothresholds on clinical tests can be overcome in some 

ambyopes by measuring stereoCT on suprathreshold disparity defined targets.  

Our study has some limitations. We examined parameters within ranges where we expected good 

thresholds but did not evaluate all the combination of parameters. Some parameters such as field 

size were not assessed. Our stereoCT is dependent on the successful resolution of the disparity 

defined sinusoidal grating since it measures global stereopsis. If stereoCT is to be implemented 

as a new clinical test, either designing a test with step by step detection of first disparity 

thresholds followed by stereoCT or measuring disparity thresholds on conventionally used 

clinical tests and presenting a suprathreshold stimulus disparity to measure stereoCT might be 

required. We have reported stereoCT for a corrugated sinusoidal grating; future work might 

focus on stereoCT for a square wave and other simple stereo targets in order to create a clinical 

test that does not require patients to complete psychophysical staircase testing.  

StereoCT is a new measure of stereopsis which targets the second stage of stereoscopic 

processing where global integration of the 3D image occurs from local matching between two 

eyes. The global integration of stereopsis measured by stereoCT might involve higher and more 

complex level of neuronal processing. 
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Appendix A 

Information and consent Letter 

INFORMATION LETTER/CONSENT FORM 

Title: Binocular interactions in Amblyopia-electrophysiology and psychophysical study 

Faculty Supervisor 

Dr. Benjamin Thompson BSc, PhD 

School of Optometry &Vision Science 

University of Waterloo 

(519) 888 4567 Ext 39398 

ben.thompson@uwaterloo.ca 

 

Dr. Daphne McCulloch OD, PhD  

School of Optometry & Vision Science 

University of Waterloo 

Ext- 37940 

daphne.mcculloch@uwaterloo.ca
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1 Ms. Viquar Unnisa Begum BSc (Optom) 

(MSc thesis) 

School of Optometry & Vision Science 

University of Waterloo 

(519)7294026, vunnisab@uwaterloo.ca 

2Ms. Dania Abuleil BSc 

(Co-investigator) 

School of Optometry & Vision Science 

University of Waterloo 

(519) 7811919, dmabuleil@uwaterloo.ca 
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Study procedure:  

Screening 

1. Ocular Health History:You will be asked to answer questions regarding the history of 

your eyes health(E.g.: history of reduced vision, history of patching, previous ocular 

surgeries etc.) 

2. Visual acuity:This is to determine how well your eyes see separately and together. You 

will be asked to read the vision chart with different sized alphabets. 

3. Cover test: This is to determine the amount of eye turn (strabismus) using special lenses 

called prisms. You will be asked to look at the given target while the examiner neutralizes 

your eye turn using prisms. 

4. Sensory status:This is to determine how well your eyes work together. This procedure 

involves two steps. 

 Participant will be asked to wear 3D glasses and look at images with depth information for 

recording depth perception. 

 Worth four dot tests is used where participant will be shown a torch with four dots and 

asked to wear red green goggles and specify number of dots seen. This test helps in 

identifying patients with amblyopia 
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Psychophysical tests 

Participant will be asked to first wear 3D glasses and look at images on a computer 

monitor. Sets of dots will be presented with motion or depth information. Participants have 

to respond the direction of the coherent dots in a field of randomly moving dots for motion 

coherence thresholds and to the orientation of a pattern defined by depth for stereopsis 

threshold. 

Your participation in the study is voluntary. You may decide to withdraw from this study 

or may refuse to complete any of the experimental tasks or other tasks in whole or in part, 

at any time for any reason by advising the researcher, and may do so without any penalty 

or loss of participation To do so, please do inform Ms. Viquar Unnisa Begum or Ms. 

Dania Abuleil. 

CONSENT FORM 

I have read the information presented in the information letter about a study being 

conducted by Ms. Viquar Unnisa under the supervision of Dr. Ben Thompson and Dr. 

Daphne McCulloch of the Department of Optometry at the University of Waterloo.I 

have made this decision based on the information I have read in the Information letter. All 

the procedures, any risks and benefits have been explained to me. I have had the 

opportunity to ask any questions and to receive any additional details I wanted about the 

study.I am aware that I may withdraw from the study without penalty at any time by 

advising the researchers of this decision  
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I understand that this project has been reviewed by, and received ethics clearance through 

a University of Waterloo Research Ethics Committee.  I was informed that if I have any 

comments or concerns resulting from my participation in this study, I may contact the 

Director, Office of Research Ethics at (519) 888-4567 ext. 36005. 

By signing this consent form, I am not waiving my legal rights or releasing the 

investigator(s) or involved institution(s) from their legal and professional responsibilities. 

With full knowledge of all foregoing, I agree, of my own free will, to participate in this 

study. 

Print Participant Name:  _________________________   

Participant Signature:  _______________________________   

Witness Name and Signature: _____________________________________________ 

Dated At Waterloo, Ontario:   ___________________________  
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