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Abstract

Vaccine development comprises multiple stages, the first of which typically involves
cultivating an organism in a microbial fermenter to produce a vaccine product. In order to
ensure the optimal synthesis of the vaccine product, it is necessary to maintain adequate
control of the dissolved oxygen (DO), which is required for the organism to grow and sur-
vive. Our work is concerned with controlling the dissolved oxygen in a biological fermenter
using a PID (Proportional-Integral-Derivative) Controller.

The product from this fermenter is used to create the immunization for a medical illness.
However, the present configuration of the PID Controller is inadequate for maintaining the
dissolved oxygen at the desired level of 35% relative to saturation. This inadequacy results
in violent DO oscillations which compromise the quality of the product. To solve this issue,
we use open-loop experimental data to develop empirical transfer-function models of the
control process for dissolved oxygen. Then, we create an optimization algorithm for the
PID Controller and apply it to obtain the proportional, integral, and derivative gains that
would best regulate the dissolved oxygen in the fermenter.

The parameters obtained from this algorithm are applied experimentally to the biolog-
ical fermenter set-up and the results are used to demonstrate that the PID optimization
algorithm provides controller settings which successfully regulate the dissolved oxygen. In
addition, we employ our transfer-function models of the DO control process to design and
configure a set of Internal Model Controllers and Model Predictive Controllers.

The Internal Model and Model Predictive Controllers are subsequently optimized to
handle external disturbances and robustly regulate the dissolved oxygen levels. This op-
timization is performed by varying the tuning parameters of the controllers and selecting
the parameters which best maintain the dissolved oxygen levels at their desired values,
minimize the effect of external disturbances, and minimize the effect of errors in process
modelling. Finally, a non-linear model of the DO control process is developed and utilized
to successfully obtain a set of gain-scheduled PID tuning parameters.
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Chapter 1

Introduction

One of the greatest breakthroughs in medicine has been the discovery of vaccines [1], which
are biologically-derived mixtures that prevent the spread of infectious diseases [2]. Vac-
cines usually function by providing inactivated micro-organisms, or inactivated portions of
micro-organisms to cells of the immune system. These inactivated biological preparations
present antigens, or immunogenic markers, to immune cells which then initiate a process
of growth and proliferation.

The mechanism of vaccine function relies on the adaptive immune response and its
ability to generate memory cells [3, 4] which ‘remember’ the structure of the antigen pre-
sented by the vaccine corresponding to a particular disease [5]. When the actual bacteria
or viruses of the disease enter the body, the memory cells can multiply much more quickly
and generate a much more effective response than the immune response corresponding to
primary exposure [6, 7]. The response by the memory cells, called the secondary response,
is far more potent and highly capable of quickly eliminating the disease vaccinated against
without causing many health-related issues.

Given the usefulness of vaccines in helping eliminate and significantly reduce the spread
of otherwise intractable illnesses (e.g. smallpox) [8], vaccine manufacturing is a highly well-
known and competitive industry. Generally, vaccine manufacturing is performed using a
biological fermenter, or bioreactor [9]. The fermenter grows the micro-organism which pro-
duces the vaccine product, usually an inactivated or attenuated antigen to be injected and
presented to the patient’s immune cells. Because the quality of the fermentation product
is highly dependent on the effective growth of the micro-organism, it is necessary to design
efficient and optimized processes in order to manufacture the vaccine [10].
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The design of efficient and optimized vaccine manufacturing processes is often facil-
itated by using sophisticated electronic controllers to very closely regulate the growth of
the organism during the fermentation process. This regulation is performed by monitoring
the physical variables relevant to microbial growth (e.g. temperature, pH, dissolved oxy-
gen) and using the electronic controllers to maintain those physical variables at constant
levels.

One of the most effective and widely used control techniques for this purpose is the
feedback control strategy. Feedback control has several applications, such as in electronics,
machine design, engineering, and pharmaceuticals [11]. The ubiquity of feedback control is
due to its ability to effectively monitor a wide range of processes regardless of any external
disturbances that may affect the system.

Feedback control normally occurs in the form of a negative feedback loop [12]. It
is implemented by measuring the quantity to be controlled, or the controlled variable, and
using that measured quantity to make modifications to other process variables (specif-
ically, the manipulated variables) which affect the value of the controlled variable [13].
These modifications are continued until the controlled variable reaches its desired set point
[14].

The key component which ensures that proper feedback control is achieved is called
the controller [15]. The controller compares the measured value of the controlled variable
to its desired set point and generates a signal which is proportionate to the error, or the
discrepancy between the desired set point and the measured value of the controlled variable
[16]. The signal generated by the controller is used to change the manipulated variable
which then alters the value of the controlled variable in order to bring it closer to the
desired set point [13, 16, 17].

In the initial stage of vaccine development, during which the biological products are
synthesized by the microbes grown in the fermenter, feedback control is used by our in-
dustrial partner to regulate multiple physical variables that affect organism growth. One
such physical variable at play here is the dissolved oxygen level, which is measured as a
percentage relative to saturation.

Because the cells being grown are aerobic, they rely on oxygen to assist with their
metabolic processes for growth and energy generation. As a result, it is essential to regu-
late the levels of dissolved oxygen in the growth medium via feedback controllers. For the
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purposes of feedback control, the controlled variable is the dissolved oxygen (henceforth
denoted by dO2), the controller is a Proportional-Integral-Derivative (PID) Controller [18],
and the manipulated variable is the stirrer rate (denoted by u).

The PID Controller functions as follows: when the level of dO2 drops below the desired
level (set-point), the controller responds by increasing the stirrer rate, which then ensures
that air bubbles are broken up more quickly by the impellers within the fermenter. More
broken-up air bubbles result in a larger available surface area for the diffusion of oxygen
into the medium. As a result, the level of dO2 increases [19, 20] towards the set-point. In
contrast, when the level of dO2 rises, the controller responds by decreasing the stirrer rate,
which results in a drop in the level of dO2 towards the set-point.

However, despite the presence of a structured feedback loop, there are problems within
the system which prevent the fermenter from being optimally productive. The prevailing
issues being experienced in the fermentation process primarily arise from the difficulty in
controlling the amount of dO2 within the fermenter. In a typical experiment, during the
first few hours of the cell growth process, there are large, violent oscillations in the levels
of dO2, even though the dissolved oxygen levels are supposed to be kept constant at 35%
relative to saturation.

These large oscillations hinder the ability of the culture to grow, and result in nu-
merous difficulties in the productivity and efficiency of the fermentation process. It is
hypothesized that these oscillations in the (dO2) are due to a sub-optimal PID configu-
ration. In other words, the PID controller settings (i.e. the proportional, integral, and
derivative gains) are far from the values required to achieve good control.

In order to overcome this issue, we use open-loop experimental data to obtain transfer-
function models of the feedback control process for the dO2 in the microbial fermenter.
Using these models, we then propose and design an algorithm to optimize the PID control
parameters using the framework developed originally by Madhuranthakam et al [21]. We
show that our PID optimization algorithm provides settings which, when applied to the
fermenter experimentally, result in successful control of the dO2 for organism growth.

While the PID optimization algorithm is sufficient to serve as a control strategy for
the industrial control of dO2, it is also insightful to develop multiple control strategies for
dO2 regulation for theoretical use. To this end, we design a set of optimal Internal Model
Controllers (IMCs) and Model Predictive Controllers (MPCs) [22, 23]. These controllers
are tuned specifically to ensure robust and tight regulation of dO2 which is relatively un-
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hindered by external disturbances. Finally, we use open-loop experimental data collected
over a large range of stirrer speeds to devise a non-linear model of the controlled process.
Employing a combination of the non-linear model and a variant of the PID optimization
algorithm, we obtain a set of gain-scheduled PID parameters which apply for a wider range
of stirrer speeds. These controllers are all tested and optimized using control system tools
provided in MATLAB (Mathworks, Inc.).
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Chapter 2

The Control System

2.1 Overview of the Problem

To produce the components of the vaccine, the organism is grown and incubated in a scaled-
down fermenter. As the microbes grow in the medium, they release chemical factors which
are collected from the broth and used to synthesize the vaccine. To facilitate organism
growth, the fermenter contains baffles which promote mixing, a stirring system comprised
of a shaft attached to two impellers, and a sparger which bubbles air into the reaction vessel.

The impellers are present for the purposes of ensuring good mixing, heat transfer,
and for breaking up the air bubbles which are injected through the sparger [24]. By break-
ing up the air bubbles, the impeller ensures a high surface area to volume ratio which
promotes the exchange of gases between the bubbles and the liquid medium. Additionally,
the blades of the impeller are arranged symmetrically, such that a 60◦ angle exists between
each individual blade.

The stirring system is further attached to a PID controller responsible for regulat-
ing the levels of dissolved oxygen. This regulation is performed by increasing the stirrer
speed in response to a fall in dO2 below the set-point. An increase in stirrer speed results
in more air bubbles being broken down, which increases the surface area of exchange be-
tween the air-water interface and causes more oxygen to dissolve in the growth medium,
returning the dO2 to set-point levels. A rise in dO2 above the set-point results in a fall
in stirrer speed, which eventually causes less oxygen to dissolve in the growth medium,
returning the dO2 to set-point levels.
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The PID controller is presently being operated in the PI (proportional-integral) con-
figuration by our industrial partner, with the proportional gain set to Kc = 0.33 and the
integral time set to Ti = 150 seconds. It is also worth noting that the biological fermenter
possesses a set of mechanical constraints. Specifically, the stirrer rate is confined to lie
between 100 and 675 rpm, while the flow rate of air through the sparger is either 0.5 slpm
(standard litres per minute) or 1.8 slpm.

The sparger bubbles gas into the reaction vessel, and contains several holes through
which the gas (air) is bubbled. Each hole is 0.5 mm in diameter. The purpose of the
sparger is to facilitate gas exchange by bubbling gas into the growing medium. These bub-
bles provide oxygen to the medium and take away waste gases such as carbon dioxide. The
sparger is operated throughout the fermentation process and its air flow rate is regulated
by an auxiliary controller.

In a usual fermentation process, the auxiliary controller for the airflow maintains the
flow rate of air through the sparger at 0.5 slpm throughout most of the fermentation. It is
only when the stirrer rate exceeds 675 rpm (the mechanical upper limit) that the airflow
setpoint is set to 1.8 slpm from 0.5 slpm in an effort to increase the dissolved oxygen.
Thus, the control of the airflow acts to supplement the main stirrer rate/DO-control loop,
by acting as an emergency mechanism to increase the level of dO2 when the stirrer rate
alone is unable to do so. However, according to the data observed, it is very rare for this
secondary control mechanism to intervene. Thus, we will ignore it in the development of
the process model.

When the fermentation process begins, the broth, which contains the microbes to be
grown, is placed in batch mode, where it consumes a carbon source present in the medium.
Probes which measure the pH, dissolved oxygen, and temperature are placed into the reac-
tor to record the pH, dO2, and temperature respectively. The measurements are performed
throughout the fermentation process to ensure that these 3 physical variables are tightly
regulated at their desired values (36◦C for temperature, 7.2 for pH, 35% for dissolved oxy-
gen concentration with respect to its saturation levels).

Next, between 20-35 hours after fermentation begins, a spike in the levels of dO2 trig-
gers fed-batch mode. The spike in the dO2 is indicative of a fall in the levels of the carbon
source (i.e. existing carbon sources used during the batch more are nearing depletion).
The feed to the vessel fed by a feed pump.
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Generally, as soon as fermentation commences, the pH and temperature quickly reach
their desired levels and rarely deviate from there. However, the dissolved oxygen levels ex-
hibit entirely different behaviour, oscillating wildly for the initial stages of the incubation.
This results in a host of problems which negatively affect the growth of the microorganism
and, by extension, the quality of the vaccine product. A representative plot of the uncon-
trolled dissolved oxygen in an experimental run is shown in Figure 2.1.

Figure 2.1: Time-series of the dO2 for the initial stages of the microbial fermentation
process. The batch corresponding to this recording is identified as 12253. For the

remainder of this work, we will identify experimental recordings by their ID numbers.

In Figure 2.1, it is evident that during the first 5 hours of the cell growth process,
there are large, violent oscillations in the levels of dO2. In usual experimental runs in the
scaled-down fermenter, similar oscillations are observed for between 5-10 hours following
the start of fermentation. Only after 5-10 hours do these oscillations come under control,
and in many cases, control is achieved through an inconvenient manual intervention.

Because broth conditions such as pH and temperature are so easily controlled in a
typical operation, we believe that they are not major targets when it comes to identifying
factors which bring about violent oscillations in dissolved oxygen, even though the pH and
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temperature may influence the efficacy of the growth process. Additionally, because the
feed is usually administered long after the dO2 oscillations occur, we will also ignore the
effects of the feed during modelling and controller design. It should also be noted that
while noise and measurement artifacts can play a significant role in reducing measurement
accuracy, in this case, they do not pose a significant problem. From our current estimates
and from the information provided to us, noise and probe-to-probe variation make up only
a 5% error.

Given the information discussed above, it is possible that the controller is inherently
incapable of maintaining dO2 at 35% or that there are appreciable changes in the metabolic
activity of the organism which cannot be properly dealt with by the current control con-
figuration. Regardless, we hypothesize that it is the inadequacy of the PID controller for
dissolved oxygen (currently set to Kc = 0.33 and Ti = 150s) which results in the dO2’s
erratic behaviour.

This hypothesis shall form the basis for the remainder of this study, in which we develop
and test multiple control strategies for regulating the dissolved oxygen concentration in the
microbial fermenter. This development and testing shall be performed via a two-pronged
approach. In the first part of the approach, we shall model the process and create an algo-
rithm to optimize the PID control parameters for the purpose of industrial application. In
the second part of the approach, we will use more theoretical control tools (e.g. IMC, MPC
Control) and employ a systematic process to arrive at the optimal settings corresponding
to these control tools.

In addition to the violent oscillations in dO2, the industrial fermentation process presents
multiple obstacles when it comes to finding the optimal control settings. First, the be-
haviour of the fermenter changes from batch to batch. As a result, the mathematical
model used to describe the system changes from one batch to another. Moreover, the
system is known to exhibit nonlinear behaviour: changes in the stirrer rate have different
effects on the dO2, depending on the range within which the stirrer rate is being changed.

Next, for a stirrer rate at around 200-250 rpm, the system exhibits open-loop insta-
bility. In other words, even when the feedback is turned off, a constant stirrer rate of
200-250 rpm results in violent dO2 oscillations. Finally, the controller which regulates the
dO2 by manipulating the stirrer rate is a simple PID controller without a derivative filter.
The absence of the derivative filter restricts our ability to use the derivative term, since
abrupt changes in the dO2 level can result in a disastrously large controller output. Due to
the lack of controller flexibility, and given the existing complications, modifying a simple

8



PID controller to achieve the control objectives will require extensive work and accurate
modelling, described in the following sections of the thesis.

2.2 A Sketch of the Model

In order to successfully develop an accurate mathematical model for the bioreactor system,
it is necessary to develop a foundation on which the model will be based. For a control
system, this foundation is often a simple block diagram sketch of the system and its un-
derlying processes. This sketch will serve as the framework for describing the feedback
control process. In this section, we shall outline and apply important process information
to develop a block diagram model of the control system.

To start, we will assume that the process model has only one major control loop,
in which the stirrer rate (constrained to lie between 100 and 675 rpm), is altered by the
PID controller in order to regulate the dO2. In reality, the fermentation process has several
control loops, which are all capable of controlling dissolved oxygen one way or the other.
These control loops involve temperature, pH, and airflow rate, which all have their own
effects on the concentration of dissolved oxygen in the medium. However, as mentioned
earlier, these secondary control loops tend not to play a role in a typical operation and so
will be justifiably ignored in our model formulation.

To create a preliminary sketch of the model, we will refer to a single-control loop
block diagram in Figure 2.2. Each block represents a system which acts on an input in a
particular way to provide an output. Generally, the blocks are described by mathematical
transfer functions [25]. Transfer functions relate the input to the block with the output
from the block, such that the transfer function equals the ratio of the output to the input
in the Laplace domain [25, 26]. Note that the block diagram is meant to represent the
flow of information in the bioreactor system; it is not necessarily reminiscent of physical
connections between different components of the system.

Using our knowledge of the process and the control loop of interest, we can begin to
describe what each variable and transfer function in the block diagram represents in terms
of the microbial fermentation process:

1. Ysp: The desired set-point of the controlled variable, or the dissolved oxygen concen-
tration Y . In this case, the desired level of dO2 is 35% of oxygen saturation.
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Figure 2.2: Block Diagram of a typical feedback control system. Image taken from [13].

2. Ỹsp: The set-point used by the controller Gc, which is an electric current that rep-
resents the value of the dO2 set-point. We will assume that the transfer function
between the actual set-point and its corresponding electric signal is a simple propor-
tional gain Km (i.e. there are no delays).

3. E: The error signal, or the difference between the measured value of the dO2 and its
set point. This signal is fed to our controller.

4. Gc: The controller of the system. It processes the error signal and provides an output
signal depending on the magnitude of the error signal. The default industrial setup
uses a PID controller in which the derivative term is set to zero. The transfer function
is given by:

Gc(s) = Kc

(
1 +

1

Tis
+ Tds

)
(2.1)

where Kc represents the proportional gain (default setting: 0.333), Ti represents the
integral time (default setting: 150 s), and Td represents the derivative time (default
setting: 0). In a typical PID controller, there is also a low-pass filter in the derivative
term, which acts to limit the effect of sudden variations in the error signal due to
external noise. Here, we have omitted the low-pass filter because the industrial setup
does not contain a derivative filter. In addition to using a simple PID controller for
this block, we will also substitute IMC, MPC, and a gain-scheduled PID controller
for Gc later in this study.
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5. Gv: The final control element. This device converts an electrical output signal from
the controller into a physical signal which changes the stirrer speed, denote by the
process variable U . From experimental data, we have determined that Gv = 20,
which means that the signal from the controller is multiplied by 20 to give the stirrer
rate. In addition, the controller output is directly conveyed to the stirrer without any
significant delays. Furthermore, because the stirrer rate is constrained to lie between
100 and 675 rpm, we will also incorporate a saturation block into the final control
element to ensure that these constraints are obeyed.

6. U : The manipulated variable, which is adjusted by the final control element according
to the controller output signal P . In this fermenter, the manipulated variable is the
stirrer rate.

7. Gp: The plant or process, which receives an input from the manipulated variable U
and outputs part of the controlled variable Yu (the dO2). To determineGp, differential
equation models for organism growth may be developed. Alternatively, step-response
experiments may be carried out to obtain an empirical estimate of this transfer
function (refer to chapter 3 for details).

8. D: The disturbance variable. For now, we will neglect the effects of any disturbance
variables on the system, since according to our current information, noise does not
play a huge role in altering our measurements or our system. However, optimizing
our controller settings with respect to disturbance rejection will serve as a potential
control strategy later in our work.

9. Gd: The disturbance transfer function, which receives a disturbance input and uses
that input to bring about a change in the controlled variable Y . Since the disturbance
variable is initially neglected, we will ignore this transfer function as well for the time-
being, and will take it into account later on in the report.

10. Y : The overall controlled variable, equivalent to the dissolved oxygen concentration.
Note that there are two contributions to the controlled variable: the contribution Yd
due to the disturbance and the contribution Yu due to the change in the stirrer rate.

11. Gm: Sensor and transmitter. This device measures Y and converts that measurement
into an electrical signal which may be processed by the controller. We will assume
that the sensor instantaneously measures the dissolved oxygen concentration and that
there are no significant delays in the measurement process. Any actual measurement
delays will be incorporated into the plant block Gp. As a result, we will set Gm = 1.
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Chapter 3

Determining Plant Model

3.1 Step-Response Open-Loop Experiments

The crucial element missing from our mathematical model described in section 2.2 is the
plant model, or the process transfer function Gp. As mentioned earlier, it is possible to ob-
tain Gp by using a mechanistic model - that is, developing differential equations to describe
microbial growth and using those differential equations to find a transfer function between
the stirrer speed and dO2 [27]. Unfortunately, due to the lack of data for the growth rate of
the cells and the concentration of the carbon source throughout the fermentation process,
it is difficult to come up with a pure mechanistic model for the processes occurring within
the bioreactor.

Nevertheless, it is possible to develop an empirical model using carefully designed step-
response experiments conducted by our industrial partner. In these experiments, the con-
troller is turned off and the measurement probe for dissolved oxygen is removed from the
medium. This results in the experiment being conducted in ‘open-loop’ mode, because the
feedback to the controller in the control loop (Figure 2.2) is now cut off [13, 14]. Under
these open-loop conditions, the stirrer rate becomes constant and the dO2 of the system
eventually settles. Once the system settles to a steady state, the stirrer speed is changed
in a stepwise fashion and the resulting changes in dissolved oxygen are recorded.

The rationale behind performing step-response experiments between stirrer rate and
dissolved oxygen is that the data obtained from these experiments can be used to empiri-
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cally determine the process transfer function Gp. Because Gp is defined as:

Gp(s) =
Y (s)

U(s)
(3.1)

where Y (s) is the dissolved oxygen in the Laplace domain while U(s) is the stirrer speed
in the Laplace domain, a known step change in the stirrer rate U(s), as well as a known
trajectory followed by the dissolved oxygen Y (s), is enough information to estimate Gp.
More specifically, the estimation of Gp is carried out by fitting known, pre-defined transfer
functions with unknown parameters to experimental step-response results.

Figure 3.1: Stirrer Rate and dissolved oxygen data during the open-loop phase in the
fermentation experiments 3885 and 3886. Notice how the step changes in the stirrer rate

bring about exponential-like responses in the dissolved oxygen.

Four experiments were performed in which the stirrer rate was varied from steady state
in a stepwise fashion, and the resulting dynamics of the dissolved oxygen were recorded.
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Figure 3.1 shows the results of batches 3885 and 3886, while figure 3.2 shows the results
of batches 12429 and 12430. In experiments 3885 and 3886, the stirrer speed started at
400 rpm, and was first stepped up by 30 rpm to 430 rpm. Once the system was allowed
sufficient time to reach a new steady state, another step change of 30 rpm was performed,
and the resulting changes in dissolved oxygen recorded.

In experiments 12429 and 12430, the stirrer rate was increased from a starting value of
450 rpm to 500 rpm. Once the system reached steady state, the stirrer rate was decreased
to 475 rpm, and the resulting changes in dissolved oxygen were recorded throughout these
step changes. Because the observed behaviour of the dissolved oxygen changes from one
experiment to another, it is important to both propose and use multiple transfer functions
Gp to describe the process. The proposal, estimation, and isolation of the best transfer
function models for each experimental batch shall constitute the main goal of the remainder
of this chapter.

Figure 3.2: Stirrer Rate and dissolved oxygen data during the open-loop phase in the
fermentation experiments 12429 and 12430. Notice how the step changes in the stirrer

rate bring about exponential-like responses in the dissolved oxygen.
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3.2 Proposal and Selection of Transfer Function Mod-

els

The first step in finding the best transfer function models for each experimental batch
is proposing multiple candidate models. Here, we proposed 5 potential transfer functions
that described the relationship Gp between the dissolved oxygen Y (s) and the stirrer speed
U(s). These transfer functions are listed and described below:

1. First-Order Process (FOP): The transfer function for a first-order process is given
by:

Y (s)

U(s)
=

K

(τ1s+ 1)
(3.2)

This relationship represents a first-order process due to the presence of only one pole
(i.e. root of the denominator). Physically, it represents a system in which a step
change in the manipulated variable will result in the controlled variable approaching
a new steady state in an exponential fashion with a single time constant τ1.

2. Second-Order Process (SOP): The transfer function for a second-order process
is given by:

Y (s)

U(s)
=

K

(τ1s+ 1)(τ2s+ 1)
(3.3)

This expression represents a second-order process, because it contains two poles.
Physically, it represents a system in which a step change in U is met by a biexpo-
nential response by Y , in which there are two time constants - τ1 and τ2.

3. Second-Order Process with Lead (SOPLD): The transfer function for a second-
order process with lead is given by:

Y (s)

U(s)
=

K(τ3s+ 1)

(τ1s+ 1)(τ2s+ 1)
(3.4)

This equation represents a variation on the second-order process (Equation 3.3), and
is achieved by adding a lead or a zero. Physically, a zero represents a component
of the transfer function which causes the output to ‘lead’ the input in phase, when
the input and outputs are sinusoidal. In the case of a step change in U , a zero
simply acts to modulate the coefficients of the exponentials (whose time constants
are obtained from the denominator of the transfer function) in the response of the
controlled variable Y . In particular, a zero in the transfer function can bring about
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an overshoot in the controlled variable Y when there is a step change in U . This
overshoot has been observed in the experimental recordings, and there is reason to
believe that a zero is necessary to describe the dynamics of the plant.

4. Second-Order Process with Time Delay and Derivative (SOPTDD): By
neglecting the constant term in the numerator of Equation 3.4, it is possible to
obtain a model which serves as a more ‘extreme’ version of a zero. We will refer
to this model as a second-order process with time delay and derivative (SOPTDD),
whose transfer function is described below:

Y (s)

U(s)
=

Ke−θdss

(τ1s+ 1)(τ2s+ 1)
(3.5)

The term derivative is used to refer to the numerator of equation 3.5 which contains
a lone s, much like the derivative term of a PID controller, that only has s in its
numerator. Physically, the derivative represents zero gain at very low input frequency
(i.e. s = 0). Specifically, a step change in U will cause a large overshoot in Y , but after
some time, that overshoot will decay to zero according to the Final Value Theorem.
This means that the cells in the bioreactor will eventually completely consume the
dO2 if the stirrer rate is not increased to match the cell’s consumption. In addition,
the SOPTDD model also exhibits a time delay term, represented by the exponential
term in the numerator. Physically, this means that Y will be delayed by time θd
whenever there is a step change in U . For our bioreactor, the presence of a non-zero
θd will be used to indicate delays in the measurement of dO2, such that the current
dO2 reading actually corresponds to the level of dissolved oxygen θd seconds back in
time.

5. Second-Order Process with Time Delay and Lead (SOPTDLD): Finally, the
last transfer function model used to describe our plant is a second-order process with
time delay and lead (Equation 3.6). Its transfer function is shown below:

Y (s)

U(s)
=

Ke−θds(τ3s+ 1)

(τ1s+ 1)(τ2s+ 1)
(3.6)

Like the SOPLD and SOPTDD, this process is an extension to the simple second
order process in equation 3.3, but now contains both a lead and time delay.

Open-loop data from each of the four experiments shown in Figures 3.1 and 3.2 were fit
to each of the five transfer functions proposed. This resulted in a total of 20 fits, with 5
different transfer function fits for each experimental batch.
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For a particular experimental batch, the transfer function fits were accomplished using
the ‘tfest’ function in MATLAB. The fits were also refined by running the ‘tfest’ function
20 more times, using the final guess from the previous iterate as the initial guess for the
current iterate. Then, each fit was plotted against the experimental data for comparison.
For every experimental batch we computed the residuals (exi = yi − yx, where yi is the
ith experimental data point and yx is the corresponding value from model x) for dissolved
oxygen corresponding to a particular model fit.

We then analysed the correlation, distribution, and frequency characteristics of these
residuals to check the quality of our fit. In addition, we computed the corresponding sum
of square error (SSE) for each fit, which we denote as SSEx =

∑
e2xi. The SSE for each fit

was used as a key metric to assess the quality of the fit to a particular transfer function
in relation to the fits from the other transfer functions. We also computed the degrees of
freedom corresponding to each fit using the following relation:

dx = N − px (3.7)

where dx is the number of degrees of freedom for model x, N is the number of data points
used for fitting the experiment, and px is the number of parameters in model x. In this
case, the number of parameters for the five models are 2, 3, 4, 4, and 5 for the FOP, SOP,
SOPLD, SOPTDD, and SOPTDLD transfer functions respectively.

For each batch, we used the quality of the fits of each transfer function, which were
indicated by the sum of squared errors and the degrees of freedom for each fit [28], to
determine the best possible transfer function model describing that batch. The relative
quality of the fits was judged by using the F-test [44, 30] to perform comparisons between
the five models and find the most parsimonious transfer function model for a particular
experimental batch.

Each F-test comparison executed for a particular experimental batch had a purpose
in deciphering the physical behaviour of the bioreactor system. Because of the computa-
tional load and lack of usefulness of a comprehensive series of F-tests, in which every model
was compared to every other model, we used only five F-tests.

The selection of these F-tests was based on choosing comparisons which provide the
most information. For instance, we only compared the Equation 3.2 model to the Equa-
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tion 3.3 model to check whether two poles were necessary to describe the plant’s dynamics.
It was not necessary to compare Equation 3.2 to Equation 3.6 if we already found that
the second order process was a better descriptor of the system’s response. Overall, the
following list defines and describes the F-test comparisons performed:

1. Between equations 3.2 and 3.3:

FFS =

SSEFOP−SSESOP

dFOP−dSOP

SSESOP/dSOP

(3.8)

The purpose of this F-test is to determine whether or not an additional pole was
necessary to describe the behaviour of a particular experimental dataset.

2. Between equations 3.3 and 3.4:

FSSLD =

SSESOP−SSESOPLD

dSOP−dSOPLD

SSESOPLD/dSOPLD

(3.9)

The goal of this F-test is to check whether or not a lead or zero is required when a
second-order model is already present.

3. Between equations 3.4 and 3.6:

FSLDSLDTD =

SSESOPLD−SSESOPTDLD

dSOPLD−dSOPTDLD

SSESOPTDLD/dSOPTDLD

(3.10)

This F-test is meant to determine whether a time delay is needed for a model which
already has two poles and a zero.

4. Between equations 3.4 and 3.5:

FSLDSTDD =
SSESOPLD

SSESOPTDD

(3.11)

This F-statistic compares directly between two second order models, one of which
has only a lead, while the other has a time delay and a ‘derivative’ term.

5. Between equations 3.5 and 3.6:

FSTDDSLDTD =

SSESOPTDD−SSESOPTDLD

dSOPTDD−dSOPTDLD

SSESOPTDLD/dSOPTDLD

(3.12)

The F-statistic above weighs the quality of a model with a trivial zero (SOPTDD)
with the quality of a model with a non-trivial zero (SOPTDLD).
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Like many other statistical measures, F-values lie on a parent distribution - the F-distribution.
The shape of the F-distribution depends on the two degree-of-freedom parameters associ-
ated with the F-statistic. When an F-value is calculated according to one of the equations
above, its relative location on the distribution may be determined. This location gives rise
to a p-value, which denotes the likelihood of finding an F-value greater than that calculated
by the F-statistic.

If this likelihood determined from the p-value is sufficiently small (below 0.05 for our
work), then that means the F-statistic calculated is statistically significant. In simpler
terms, this means that there is a statistically significant difference between the two models
compared via the F-test. For example, if FFS is sufficiently large that its p-value is less
than 0.05, then the SOP model gives a significantly better fit than the FOP model because
the SOP model has a far lower SSE for a marginally higher number of parameters.

However, if FFS was small enough that its p-value was greater than 0.05, then the
SOP model may or may not give a more accurate fit, but the improved accuracy is not
enough to make up for the extra parameter in the SOP model. Thus, in the latter case,
the FOP model would be chosen as the superior option. An alternative technique to assess
the most parsimonious model for a particular data set is the Akaike Information Criterion
(AIC) [31]. For a transfer function model x with px parameters, the AIC is defined by:

AICx = 2px − 2 lnL (3.13)

where L denotes the likelihood function evaluated by comparing the experimental data
to the results from fitting the transfer function model. This likelihood function denotes
the probability that a model with a particular set of estimated parameters describes the
underlying experimental data. It is common practice to express the likelihood function as
the inverse of an error function. In MATLAB, for example, the expression for the AIC is
written as follows:

AICx = N

[
2 ln(2π) + 1

]
+ 2px + ln

[
det

(
1

N

N∑
i=1

e2xi

)]
(3.14)

where N is the number of data points in the batch and exi is the residual for the ith data
point in model x. Equation 3.14 penalizes models with a large number of parameters,
and also penalizes models that are less accurate (i.e. high residuals). Therefore, the AIC
is very similar to the F-test, in that it seeks to determine the model which achieves the
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optimal balance between accuracy and simplicity. Generally, the smaller the AIC value for
a model, the better that model is at achieving this balance.

The AIC and F-test will both be used to determine the best-fit model equation for
each experimental batch. Once the best-fit model is determined, it will be examined fur-
ther to ascertain the quality of the fit and the nature of its residuals. If the fit and residuals
are sufficiently good, then the model will be used as the Gp for its corresponding exper-
imental batch when the optimal control strategies are determined starting from Chapter
4.

3.3 Results of Transfer Function Model Fits

Five fits to each of the four experimental batches were performed, starting with batch
3885. Table 3.1 shows the parameter values resulting from fitting each model to experi-
ment 3885, while Table 3.2 shows the results of the AIC and F-tests used to compare the
models. Interestingly, the pure second-order model and the second-order model with the
lead does not exhibit real poles, since the discriminant of the quadratic expression in their
denominators (see table 3.1, rows 2 and 3) is negative. Thus, the fits corresponding to
these models show weak oscillatory behaviour. It should also be noted that the zeros in
the SOPTDLD and the SOPLD models are both negative.

In table 3.2, the second column shows the values of the AIC for each model fit, and
indicates that the 2nd order model with time delay and derivative is the best fit for the
experiment. This finding is corroborated by the F-tests and their corresponding p-values,
shown in the fifth and sixth columns respectively. The F-tests demonstrate that the second-
order model is superior to the first-order model (negligible p-value in 1st entry), and that
the lead and time delay with lead are superior alternatives to a simple second-order model
(small p-values in the 2nd and 3rd entry).

Additionally, the results show that while the derivative model is preferable to the
second-order model with lead only (refer to the F-test in the 4th row), the derivative
model is not significantly worse than the SOPTDLD fit, since the p-value for that com-
parison is greater than our significance bound of 0.05. This suggests that the SOPTDD
model is a superior alternative to the SOPTDLD model because it has fewer parameters.
Furthermore, the AIC for the SOPTDD model is slightly lower than that for the SOPT-
DLD model. Therefore, from both the F-tests and AIC, we conclude that equation 3.5
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represents the best descriptor of the process transfer function in experiment 3885.

For a stronger visual comparison, the fits to experiment 3885 of all five models have
been plotted. These plots are shown in Figures 3.3 and 3.4. Note that the SOP and SOPLD
fits show very slight oscillatory behaviour, which is consistent with the obtained forms of
their transfer functions. Note also that the SOPTDD and SOPTDLD fits in Figure 3.4
essentially overlap with each other, indicating that these two models exhibit roughly the
same accuracy, even though the SOPTDD model is the simpler of the two.

Figure 3.3: Comparison of Experimental Data (grey) to the fits from the FOP and SOP
models. Legend shows the quality of the fit in percentage for each model (100% denotes a

completely accurate fit).
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Model Type Parameter Values

1st Order (3.2) K = 0.309, τ1 = 98.2 s
2nd Order (3.3) K = 0.305, Denominator:

1 + 1.61(54.8s) + (54.8s)2

2nd Order, Lead (3.4) K = 0.306, τ3 = −9.50, Denominator:
1 + 1.80(45.5s) + (45.5s)2

2nd Order, Derivative, Time Delay (3.5) K = 2033, τ1 = 86.0 s, τ2 = 5656 s,
θd = 24 s

2nd Order, Lead, Time Delay (3.6) K = −2.55, τ1 = 85.8 s, τ2 = 52310 s,
τ3 = −7356 s, θd = 24 s

Table 3.1: Parameter values obtained from fitting the 5 models to the dataset for
experiment 3885. When possible, parameters are listed in a manner consistent with the

corresponding model equations.

Figure 3.4: Comparison of Experimental Data (grey) to the fits from the SOPLD,
SOPTDD, and SOPLDTD models. Legend shows the quality of the fit in percentage for

each model (100% denotes a completely accurate fit).
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Model
Type

AIC Value SSE Degrees of
Freedom

F-Statistics P-Value

1st Order
(3.2)

600.9 123.3 309 FFS =
620.5

0

2nd Order
(3.3)

261.7 40.9 308 FSSLD =
10.25

0.0015

2nd Order,
Lead (3.4)

253.5 39.6 307 FSLDSLDTD =
307.6

0

2nd Order,
Derivative,
Time Delay

(3.5)

37.0 19.9 307 FSLDSTDD =
1.99

1.12 ×10−9

2nd Order,
Lead, Time
Delay (3.6)

37.2 19.7 306 FSTDDSLDTD =
1.85s

0.175

Table 3.2: Comparing the 5 transfer function models fits to the dataset for experiment
3885. From both the AIC and the p-test, we can conclude that the SOPTDD model

(equation 3.5) is the best description for the process in experiment 3885.
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Each transfer function fit performed has a set of corresponding residuals eix, which de-
notes the difference between the experimental data and the corresponding points obtained
from the empirical model fit. In order to fully verify that the SOPTDD model represents a
good fit for batch 3885, we have plotted the power spectrum [33], probability distribution
[32], autocorrelation, and cross-correlation [30] for the residuals of the SOPTDD fit. The
results of this plot are shown in Figure 3.5.

In an ideal scenario, the residuals of a fit should exhibit both whiteness and inde-
pendence. How ‘white’ the residuals are can be determined using an autocorrelation plot
of the residuals, in addition to a power spectrum plot. If the residuals are purely white
(i.e. exhibit nearly constant power at all frequencies and do not appear to exhibit a certain
frequency), then the autocorrelation plot will be a Kronecker-Delta function, with a peak
at zero lag and insignificant correlations at all other lags. Moreover, the power spectrum
plot will show relatively constant power for all frequencies.

Similarly, residuals that are independent show insignificant cross-correlation at all lags.
If residuals are independent, then that means the model adequately describes the relation
between the given input (stirrer rate) and the output (dissolved oxygen), and there are no
missing terms in the input-output relation used. Another diagnostic tool used to assess
the quality of the residuals is their distribution. Residuals that are relatively normally
distributed with a mean around zero indicate that the model is reasonably good.
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Figure 3.5: Top Left: Power Spectrum of Residuals. Top Right: Amplitude
Distribution of the Residuals. Bottom: Correlation Plots for SOPTDD residuals when
fit to Experiment 3885. Left panel shows autocorrelation between residuals and right

panel shows cross-correlation between residuals and the input (i.e. the stirrer rate). 99%
confidence band is shown by the blue region in both panels.

Figure 3.5 shows that the residuals resulting from the SOPTDD fit to batch 3885 ex-
hibit high power at low frequency (see top left of figure for power spectrum), and are
relatively normally distributed with a mean of roughly zero. Moreover, the residuals for
this fit exhibit independence because the cross-correlations are relatively insignificant with
respect to the 99% confidence band. Because of the insignificance of the cross-correlations
to the input and the relatively normal distribution of the residuals, we conclude that the
SOPTDD transfer function fit is sufficient to describe the variations in dissolved oxygen
when there are changes in the stirrer speed.

However, the residual characteristics also suggest the weaknesses of the SOPTDD fit.
High power at low frequency and significant autocorrelations at non-zero lags imply that
the residuals lack ‘whiteness’. A potential reason for the lack of ‘whiteness’ is the absence
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Model Type Parameter Values

1st Order (3.2) K = 0.356, τ1 = 92.3 s
2nd Order (3.3) K = 0.353, Denominator:

1 + 1.81(47.3s) + (47.3s)2

2nd Order, Lead (3.4) K = 0.354, τ1 = 15.9 s, τ2 = 60.4 s,
τ3 = −13.8 s

2nd Order, Derivative, Time Delay (3.5) K = 3167, τ1 = 80.8 s, τ2 = 8009 s,
θd = 20 s

2nd Order, Lead, Time Delay (3.6) K = 0.326, τ1 = 89.0 s, τ2 = 564.7 s,
τ3 = 719.1 s, θd = 18 s

Table 3.3: Parameter values obtained from fitting the 5 models to the dataset for
experiment 3886. When possible, parameters are listed in a manner consistent with the

corresponding model equations.

of a disturbance term from our transfer function model. In other words, the model fails to
account for the disturbance which gives rise to noise and variations in the dissolved oxygen
that creates the ‘non-whiteness’ and suboptimal frequency characteristics.

The data from experiment 3886 are also fit to the 5 transfer function models, and
the models are compared using F-tests and the AIC test. The parameter values from the 5
fits are shown in Table 3.3 while the results of the model comparisons are shown in Table
3.4. From table 3.3, it is observed that while the fit to the second-order process gives
complex poles, and hence some slight oscillatory behaviour, all other model fits give real
poles, unlike experiment 3885.

In Table 3.4, the F-tests indicate that models with more poles, an additional lead,
and an additional time delay give the best fit results while keeping the number of parame-
ters low. This finding is corroborated by the AIC tests, in which added levels of complexity
lower the AIC. The end result is that the second-order process with lead and time delay
(equation 3.6) is the best fit for the data in batch 3886. This is in contrast to batch 3885,
where the best-fit transfer function was the SOPTDD process model.
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Model
Type

AIC Value SSE Degrees of
Freedom

F-Statistics P-Value

1st Order
(3.2)

564.8 110.9 305 FFS =
562.6

0

2nd Order
(3.3)

247.2 38.9 304 FSSLD =
33.0

2.20×10−8

2nd Order,
Lead (3.4)

217.4 35.1 303 FSLDSLDTD =
221.9

0

2nd Order,
Derivative,
Time Delay

(3.5)

61.2 21.2 303 FSLDSTDD =
1.65

6.92×10−6

2nd Order,
Lead, Time
Delay (3.6)

48.3 20.2 302 FSTDDSLDTD =
15.0

1.31×10−4

Table 3.4: Comparing the 5 transfer function models fits to the dataset for experiment
3886. From both the AIC and the p-test, we can conclude that the SOPTDLD model

(equation 3.6) is the best description for the process in experiment 3886.
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Figure 3.6: Comparison of Experimental Data (grey) to the fits from the FOP and SOP
models. Legend shows the quality of the fit in percentage for each model (100% denotes a

completely accurate fit).
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Figure 3.7: Comparison of Experimental Data (grey) to the fits from the SOPLD,
SOPTDD, and SOPLDTD models. Legend shows the quality of the fit in percentage for

each model (100% denotes a completely accurate fit).

For visual comparison, the fits corresponding to each model describing experiment
3886’s data have been plotted in Figures 3.6 and 3.7. From both plots, we find that the
SOPTDLD model is the most accurate when describing the behaviour in the observed
experimental data, showing a 96.47% fit quality. Since the SOPTDLD model was the best
descriptor of the step response data from experiment 3886 according to the F-tests, AIC,
and response plots, our next step in the model verification was to fully determine the qual-
ity of its fit using residual analysis.

The residual analysis for batch 3886 followed exactly the same steps as that for batch
3885. It consisted of computing and plotting the power spectrum, the amplitude distri-
bution, the autocorrelation and the cross-correlation with the input (i.e. stirrer rate) of
the residuals from the SOPTDLD fit (Figure 3.8). The cross-correlation was found to be
insignificant for all calculated lags, while the distribution of the residuals was found to
have a mean of about zero and a somewhat normal shape with the exception of a large
peak near zero. This indicated that the transfer function model adequately described the
relation between the dissolved oxygen and the stirrer speed.

29



On the other hand, the autocorrelation was found to be significant for smaller lags,
while the power spectrum was demonstrated to contain more power at the lower frequen-
cies, just as for batch 3885. Again, this lack of whiteness is attributed to our ignoring of
the disturbances in the formulation of our transfer function models. The low-frequency
behaviour of the residuals also suggests that the external disturbance to the microbial sys-
tem is low frequency noise.

Figure 3.8: Top Left: Power Spectrum of Residuals. Top Right: Amplitude
Distribution of the Residuals. Bottom: Correlation Plots for SOPTDLD residuals when

fit to Experiment 3886. Left panel shows autocorrelation between residuals and right
panel shows cross-correlation between residuals and the input (i.e. the stirrer rate). 99%

confidence band is shown by the blue region in both panels.

The model determination for experiments 12429 and 12430 was done in a manner very
similar to the model determination for 3885 and 3886. Conveniently, the results of the
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Model Type Parameter Values

1st Order (3.2) K = 0.278, τ1 = 59.6 s
2nd Order (3.3) K = 0.275, Denominator:

1 + 1.01(57.3s) + (57.3s)2

2nd Order, Lead (3.4) K = −0.523, τ1 = 107.9 s, τ2 = 9236 s,
τ3 = −7522 s

2nd Order, Derivative, Time Delay (3.5) K = 1156, τ1 = 110.7 s, τ2 = 2767 s,
θd = 10 s

2nd Order, Lead, Time Delay (3.6) K = −0.829, τ1 = 80.7 s, τ2 = 11960 s,
τ3 = −5721 s, θd = 24 s

Table 3.5: Parameter values obtained from fitting the 5 models to the dataset for
experiment 12429. When possible, parameters are listed in a manner consistent with the

corresponding model equations.

model fitting were also similar to those found earlier. For example, in tables 3.5 and 3.6,
which represent the results of the fitting to the data from experiment 12429, we found that
the second-order transfer function with lead and time delay was the best fit model. This
result is very similar to that found for batch 3886, and is supported by both the F-tests
and the AIC tests.

However, it should be noted that for this best-fit model, the lead (zero) exists on the
right half of the complex plane, a finding which will be made use of in a later chapter when
we develop internal model controllers for each experimental dataset. The right-half plane
zero also has special consequences when determining the model predictive controller for
the system. Figures 3.9 and 3.10 show the plots of the model fits against the experimental
data. While the simple first-order and second-order transfer functions fail to capture the
behaviour of much of the data, the more complex models, which include leads and time
delays show significant improvement in the fit quality.

Because the SOPTDLD model (equation 3.6) best describes experiment 12429, we
decided to further examine the quality of the model fit via residual analysis. The elements
of residual analysis are exactly the same as those of batches 3885 and 3886, and the com-
plete plots are shown in Figure 3.11. The figures shows little cross-correlation between the
residuals and the stirrer speed input, in addition to a relatively normal residual distribu-
tion centred slightly left of zero. This suggests that the residuals are independent of the
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Model
Type

AIC Value SSE Degrees of
Freedom

F-Statistics P-Value

1st Order
(3.2)

2548 5359 483 FFS = 37.0 2.44×10−9

2nd Order
(3.3)

2516 4978 482 FSSLD =
14163

0

2nd Order,
Lead (3.4)

861.0 163.5 481 FSLDSLDTD =
278.6

0

2nd Order,
Derivative,
Time Delay

(3.5)

811.7 148.3 481 FSLDSTDD =
1.10

0.143

2nd Order,
Lead, Time
Delay (3.6)

639.0 103.5 480 FSTDDSLDTD =
208.1

0

Table 3.6: Comparing the 5 transfer function models fits to the dataset for experiment
12429. From both the AIC and the p-test, we can conclude that the SOPTDLD model

(equation 3.6) is the best description for the process in experiment 12429.
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model input and that the SOPTDLD transfer function is sufficient to capture the dissolved
oxygen-stirrer rate dependence.

In contrast, the autocorrelation plot showed statistically significant correlation at non-
zero lags, while the power spectrum of the residuals showed greater power at low fre-
quencies. From these results, it can be concluded that the residuals fail to demonstrate
‘whiteness’, the even distribution of power at all possible frequencies. Again, we posit
that this is likely due to the disturbance which has not been accounted for in the transfer
function models.

Next, the step-response data from experiment 12430 were fit to our 5 models and the
results tabulated (Tables 3.7 and 3.8). Here, it was found that the second-order transfer
function with time delay and derivative served as the best fit for the experiment, similar to
the results for batch 3885. Plotting the outputs of the fits against the experimental data
(Figures 3.12 and 3.13) confirmed this finding.

Residual analysis of the best-fit model (i.e. equation 3.5) showed no significant cross-
correlation between the input and the residuals, but showed significant autocorrelation
within the residuals, likely due to the lack of inclusion of a term which accounted for the
disturbances. In addition, the distribution of the residuals was found to be somewhat nor-
mal and centred at zero, indicating that the model was capable of adequately describing
the relationship between the dissolved oxygen and stirrer rate. Finally, the power spectrum
once again showed the presence of low frequency noise, which, as we proposed for the other
3 batches, is likely due to the lack of a disturbance term in the transfer function model.
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Figure 3.9: Comparison of Experimental Data (grey) to the fits from the FOP and SOP
models. Legend shows the quality of the fit in percentage for each model (100% denotes a

completely accurate fit).
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Figure 3.10: Comparison of Experimental Data (grey) to the fits from the SOPLD,
SOPTDD, and SOPLDTD models. Legend shows the quality of the fit in percentage for

each model (100% denotes a completely accurate fit).
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Figure 3.11: Top Left: Power Spectrum of Residuals. Top Right: Amplitude
Distribution of the Residuals. Bottom: Correlation Plots for SOPTDLD residuals when

fit to Experiment 12429. Left panel shows autocorrelation between residuals and right
panel shows cross-correlation between residuals and the input (i.e. the stirrer rate). 99%

confidence band is shown by the blue region in both panels.
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Model Type Parameter Values

1st Order (3.2) K = 0.282, τ1 = 69.6 s
2nd Order (3.3) K = 0.279, Denominator:

1 + 1.17(57.5s) + (57.5s)2

2nd Order, Lead (3.4) K = −0.537, τ1 = 103.0 s, τ2 = 15280 s,
τ3 = −10870 s

2nd Order, Derivative, Time Delay (3.5) K = 2130, τ1 = 97.6 s, τ2 = 5461 s,
θd = 7 s

2nd Order, Lead, Time Delay (3.6) K = −0.827, τ1 = 80.7 s, τ2 = 11940 s,
τ3 = −5722 s, θd = 24 s

Table 3.7: Parameter values obtained from fitting the 5 models to the dataset for
experiment 12430. When possible, parameters are listed in a manner consistent with the

corresponding model equations.

Model
Type

AIC Value SSE Degrees of
Freedom

F-Statistics P-Value

1st Order
(3.2)

2330 2570 523 FFS =
66.89

2.22×10−15

2nd Order
(3.3)

2270 2278 522 FSSLD =
8817

0

2nd Order,
Lead (3.4)

757.2 127.1 521 FSLDSLDTD =
−438.3

1

2nd Order,
Derivative,
Time Delay

(3.5)

622.5 21.23 521 FSLDSTDD =
1.29

0.002

2nd Order,
Lead, Time
Delay (3.6)

639.0 809.0 520 FSTDDSLDTD =
−456.5

1

Table 3.8: Comparing the 5 transfer function models fits to the dataset for experiment
12430. From both the AIC and the p-test, we can conclude that the SOPTDD model

(equation 3.5) is the best description for the process in experiment 12430.
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Figure 3.12: Comparison of Experimental Data (grey) to the fits from the FOP and SOP
models. Legend shows the quality of the fit in percentage for each model (100% denotes a

completely accurate fit).
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Figure 3.13: Comparison of Experimental Data (grey) to the fits from the SOPLD,
SOPTDD, and SOPLDTD models. Legend shows the quality of the fit in percentage for

each model (100% denotes a completely accurate fit).
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Figure 3.14: Top Left: Power Spectrum of Residuals. Top Right: Amplitude
Distribution of the Residuals. Bottom: Correlation Plots for SOPTDD residuals when
fit to Experiment 12430. Left panel shows autocorrelation between residuals and right

panel shows cross-correlation between residuals and the input (i.e. the stirrer rate). 99%
confidence band is shown by the blue region in both panels.
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Chapter 4

Optimal PID Control

4.1 Optimization of set-point tracking

PID controllers are among the most popular and frequently used controllers in industry.
Their simplicity and ease of implementation make them ideal candidates for serving as
control systems for most industrial processes, including the microbial fermentation process
examined here. A host of tuning rules associated with PID controllers exist. These include
the Ziegler-Nichols Method and the Cohen-Coon Method [36, 37]. However, due to the
complexity of the best-fit models found in the previous chapter as well as their batch-to-
batch variability, it is necessary to develop a more systematic tuning method which can
easily be implemented using computational software such as MATLAB.

Here, we will develop a PID tuning method based on a nonlinear least-squares op-
timization technique derived from Madhuranthakam et al’s PID tuning method [21]. Four
block diagrams are constructed in Simulink - one for each batch. Every block diagram
contains the same PID controller followed by a twenty-fold gain block and a saturation
block (the latter two blocks represent the final control element Gv mentioned in chapter
2). The saturation block contains the upper and lower limits of the stirrer rate at 100 and
675 rpm, but these limits are re-centred according to the initial stirrer speed at which the
step response experiments were conducted.

This re-centring is necessary because the process transfer functions Gp were estimated
by subtracting the initial values of the stirrer rate and dissolved oxygen so that the system
starts at (0,0). As a result, the limits on the stirrer rate have to be made relative to the
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initial stirrer rate for the particular experimental batch. For example, the initial stirrer
rates for 3885 and 3886 are around 400 rpm, while the initial stirrer rates for 12429 and
12430 are around 450 rpm, meaning the limits for these two sets of batches are [-300,275]
and [-350,225] respectively.

Following the specification of the final control element, Gp is then plugged into the
Simulink block diagram for its corresponding batch. In addition, a step change in the
set-point ysp of dissolved oxygen is specified. The set-point change includes a step in the
relative dissolved oxygen from 0 to 10% at t = 0, followed by a step down from 10 to -5%
at t = 1000, where the dissolved oxygen is held until t = 2000 seconds.

After these initial arrangements are made, we end up with 4 Simulink block diagrams
representing each of the 4 experimental batches sharing the exact same PID controller,
with each diagram containing the same step stimulus to which the control system must
respond. The algorithm is then run using an initial guess for the PID settings (i.e. Kc,
Ti and Td) obtained from approximate manual tuning done using the PID tuner app in
MATLAB. PID settings for future iterates are then estimated by a nonlinear least-squares
strategy which seeks to find the optimal values for Kc, Ti and Td in equation 2.1 such that
the following cost function is minimized:

EIA =

∫ Ts

0

|e|dt (4.1)

where EIA is the integral absolute error, e is the error (ysp − y) between the set-point
and the actual dissolved oxygen value, and Ts is the simulation time (2000 seconds). For
the fermentation models determined in chapter 3, the initial guess used was Kc = 0.3625,
Ti = 92.95s, and Td = 3.501 s. This initial guess was obtained by using the PID Tuner
application in MATLAB to arrive at rough PID settings that would optimize the control
of dissolved oxygen for the process model of batch 3885.

When the responses of all 4 control systems was computed for the initial PID pa-
rameters, the EIA’s for the individual systems were tallied and added. The total EIA for
all 4 block diagrams/experimental batches was then minimized by a nonlinear least-squares
optimization technique by varying the PID parameters and running the control systems
again with the new PID parameters. If the new PID parameters provided a smaller total
EIA, then those settings were accepted and the process was continued. After the maximum
number of iterations had been reached, or after the tolerance criteria for EIA were met,
the simulation stopped and the PID parameters used in the last run were outputted and
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the results plotted.

Running our optimization algorithm multiple times, with the final value from one run
being used as the initial guess for the other run gave us a set of optimal PID parameters:
Kp = 0.3226, Ti = 91.0s, and Td = 4.3 s. Figure 4.1 shows the response of the dissolved
oxygen to the step change stimulus described above for the optimized PID parameters for
all 4 experimental batch models. As seen from the figure, the PID parameters do quite
well in allowing the dissolving oxygen to reach the set-point quickly. The overshoot (i.e.
the rise in the dO2 beyond the set point) is kept relatively low and the dO2 stays relatively
close to the desired set-point.

Compared to the previously used settings of Kp = 0.3333, Ti = 150s, and Td = 0
s (see Figure 4.2), the new settings do a far better job of allowing the system to reach the
desired level of dissolved oxygen. The settings found allow the system to settle much more
quickly and stay relatively close to the set-point throughout the run. We expect these
new settings to solve the problem of the DO oscillations observed experimentally, since a
potential reason for the occurrence of the oscillations is that the controller is incapable
of adjusting to changes in DO, which causes it to respond insufficiently and furthers the
degree and extent of the oscillations.

After testing this hypothesis experimentally, we found that indeed, the new PID set-
tings solve the problem of uncontrollable oscillations in dissolved oxygen. Figures 4.3,4.4,
and 4.5 show an experimental run in which the old PID settings of Kp = 0.3333, Ti = 150s,
and Td = 0 s were initially used. As seen from the figures, the original settings were in-
capable of adequately regulating the dissolved oxygen, resulting in large, uncontrolled
oscillations.

However, as soon as the new settings calculated from our PID optimization algorithm
were implemented, the dissolved oxygen settled to its desired set point of 35%. This is
likely due to the introduction of a (albeit small) derivative term and the reduction of the
integral time to 91 seconds. Because of these changes, the system now responds much
more quickly than before, and is able to achieve control much more easily. From these
experimental runs, we have demonstrated that our PID optimization algorithm is capable
of arriving at settings which allow the system to better achieve control.
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Figure 4.1: Response of all 4 experimental batch models to the step change stimulus
shown in red. Optimized PID settings are used for control.

4.2 Optimization of set-point tracking and disturbance

rejection

The optimization algorithm mentioned and tested in the previous section is based primar-
ily on ensuring that the dO2 closely tracks the set-point. However, of equal, or perhaps
even greater importance, is the ability of the control system to reduce the effect of a dis-
turbance to the system. Disturbances may occur due to external noise or an interruption
in the process, and a well-adjusted control system ought to have countermeasures in place
to ensure that disturbances have minimal effect on the controlled variable (dO2).

Because of the importance of disturbance rejection in ensuring the maintenance of
proper control, a potential variation on the optimization algorithm is to now include distur-
bance rejection as a criterion with respect to which the PID settings ought to be optimized.
The only difference in the block diagrams between the disturbance rejection criterion and
the set-point tracking criterion is that in the former, the set-point is now held constant at
zero but there is a step in the stirrer rate of 20 rpm just before the output at t = 0. The
added disturbance to the stirrer rate is held at the +20 rpm elevated value until t = 2000.
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Figure 4.2: Response of all 4 experimental batch models to the step change stimulus
shown in red, but now, the industrial settings are used.

Figure 4.3: First experimental run of the biological fermenter, starting with the old
settings of Kp = 0.3333, Ti = 150s, and Td = 0 s. The black arrows indicate the point at

which the settings were switched to Kp = 0.3226, Ti = 91.0s, and Td = 4.3 s.

When disturbance rejection is added to set-point tracking as another optimization cri-
terion, then the resulting settings of Kp = 0.3228, Ti = 83.0s, and Td = 4.3 s are very
similar to those found from using only set-point tracking as the optimization criterion.
Note that here, the initial guess used was Kp = 0.3226, Ti = 91.0s, and Td = 4.3 s - the
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Figure 4.4: Second experimental run of the biological fermenter, starting with the old
settings of Kp = 0.3333, Ti = 150s, and Td = 0 s. The black arrows indicate the point at

which the settings were switched to Kp = 0.3226, Ti = 91.0s, and Td = 4.3 s.

Figure 4.5: Third experimental run of the biological fermenter, starting with the old
settings of Kp = 0.3333, Ti = 150s, and Td = 0 s. The black arrows indicate the point at

which the settings were switched to Kp = 0.3226, Ti = 91.0s, and Td = 4.3 s.

settings found from the previous optimization. Because the settings between the two sets
of optimization are very similar, we hypothesise that the PID settings we have are equal,
or very close, to the true optimal settings for the microbial fermenter. This hypothesis is
further corroborated by the success of the experiments shown in figures 4.3, 4.4, and 4.5.

Figure 4.6 shows the results of the set-point tracking simulation using the settings
of Kp = 0.3228, Ti = 83.0s, and Td = 4.3 s found from optimizing with respect to both
disturbance rejection and set-point tracking. Comparing the optimized settings to the
original industrial settings shows that the former do a far more superior job at tracking
the set-point (even though the overshoot is slightly larger) than the industrial settings. In
addition, figure 4.7 compares the optimized settings to the original industrial settings using
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Figure 4.6: Response of all 4 experimental batch models to the step change stimulus
shown in red. Both optimized PID settings (blue) and the original industrial settings

(black) are used for control.

the input disturbance simulation. The figure demonstrates that not only do the optimized
settings allow the system to settle nearly twice as quickly as the industrial settings, but
also that the maximum effect of the input disturbance on the dissolved oxygen is also
significantly less for the optimized settings.
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Figure 4.7: Response of all 4 experimental batch models to an input step disturbance of
20 rpm. Both optimized PID settings (blue) and the original industrial settings (black)

are used for control.
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Chapter 5

Internal Model Controllers

5.1 Deriving Internal Model Controllers

Internal Model Control (IMC) is a control strategy which involves determining an analyt-
ical expression for the controller transfer function in terms of the process model [38]. It
is closely related to direct synthesis, which provides a controller such that the closed loop
transfer function of the feedback loop (i.e. Y/Ysp) obeys a user-specified relationship.

In fact, IMC provides the exact same controller that the direct synthesis method pro-
vides, as long as the user-specified relationships between Y and Ysp and the specification
of design parameters are consistent. However, IMC is based on a slightly re-formulated
version of the typical feedback control loop, and is shown in Figure 5.1. With internal
model control, the controller output P is applied to both the real process Gp (including
disturbances) and the model of the process G̃p. The outputs of both are subtracted, yield-
ing Y − Ỹ , which is then used to form the input signal for the controller G∗c .
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Figure 5.1: Block Diagram of an internal model control structure. Figure used from [13].

When proposing a new controller or control structure, three important criteria necessary
for physical realisability must be taken into consideration:

1. Stability: For an IMC setup, it can be shown that if the process model G̃p is stable
and sufficiently close to the actual process Gp, then the feedback control system is
stable if and only if the IMC controller G∗c is stable. Given that the process models
G̃p found in chapter 3 are all stable, we only require the IMC controller formulated
to be stable for overall process stability [13].

2. Proper: A physically realisable IMC controller must be proper. If the IMC controller
G∗c(s) is described by a rational expression, this means that the order of its numerator
must be less than or equal to the order of its denominator. This ensures that the
IMC does not perform strict differentiation, which may be problematic because fast
step-changes in the controlled variable or set-point can bring about large impulse
changes in the manipulated variable u. Mathematically, a proper IMC controller is
such that:

lim
s→∞
|G∗c(s)| (5.1)

is finite.

3. Causality: A physically realisable IMC controller must be causal. That is, it should
respond to changes in the controlled variable/set-point from the past, and not an-
ticipate changes in the future. A ‘future-predicting’ IMC controller is impossible to
achieve [39].

Designing an IMC controller involves a sequence of algebraic operations. First, the pro-
cess model G̃ is decomposed into two components, G̃p+ and G̃p−, such that G̃ = G̃p+G̃p−.
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G̃p+ contains terms which can bring about instability and physically unrealisable terms in
the controller G∗c . These terms are also known as the non-minimum phase elements, and
include right-half plane zeros and time delays.

On the other hand, G̃p− contains everything else from the process, and is therefore
a minimum phase component and invertible [40]. The separation of the process model
into minimum phase and non-minimum phase components is required to ensure that the
resulting controller is stable and proper. It should be noted that G̃p+ is formulated such
that its steady-state gain is 1 (i.e. G̃p+(s = 0) = 1 from the final value theorem), while
any non-unitary gains are placed into the ‘stable’, minimum phase component G̃p−. Once
G̃p+ and G̃p− are specified, the IMC controller can be analytically formulated using the
following relation:

G∗c =
1

G̃p−
f (5.2)

where f is the IMC filter. It is generally specified as a low pass filter of the form
f = 1/(τcs + 1)r, where τc is the desired closed-loop time constant and r is the filter
coefficient. The specification of only G̃p− ensures stability and causality, since G̃p− does
not include right-half plane zeros and time delays, which would appear as unstable poles
(a stability problem) and anticipatory steps (a causality problem) in G∗c .

Moreover, the addition of an IMC filter ensures that the controller remains proper.
For the remainder of our discussion, we will set r to unity, making one notable exception
in the process model for batch 12429, which contains a right-half plane zero. It is possible
to convert directly from an internal model controller to a feedback controller Gc shown in
Figure 2.2 using the expression below:

Gc =
G∗c

1−G∗cG̃
(5.3)

When G∗c or Gc are specified according to the IMC formulation, we can show that the
overall closed-loop transfer function Y/Ysp becomes:

Y

Ysp
= G̃+f (5.4)

Therefore, if we use the direct synthesis method and specify our desired closed-loop trans-
fer function between Y and Ysp to be given by equation 5.4, we will obtain the exact same
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expression for our feedback controller as that shown in equation 5.3. This is why direct
synthesis and internal model control are, at some level, equivalent.

From our analysis in the previous section, we determined 3 distinct models that were
capable of describing the behaviour of the experimental batches. For batches 3885 and
12430, the SOPTDD model (equation 3.5) was found to be the best option according to
both the F-test and the Akaike Information Criterion (AIC). Using this model, only the
time delay was excluded from G̃p−. As a result, the expression for the internal model
controller was found to be:

G∗c =
(τ1s+ 1)(τ2s+ 1)

Ks(τcs+ 1)
(5.5)

where τc is our filter time constant and r = 1 is the filter coefficient. Using equation 5.3,
it is possible to determine the expression for the feedback controller using some simple
algebra. It can be shown that:

Gc =
(τ1s+ 1)(τ2s+ 1)

Ks

[
(τcs+ 1)− e−θds

] (5.6)

Specifying a controller transfer function in terms of a non-polynomial term (i.e. the ex-
ponential in the denominator above) creates computational difficulty. Thus, to simplify
matters, we use an approximation to the exponential known as the Pade approximation
[42]:

e−θds ≈ 1− 0.5θds

1 + 0.5θds
(5.7)

Substituting the Pade approximation into 5.6 and simplifying, we get:

Gc =
(τ1s+ 1)(τ2s+ 1)(0.5θds+ 1)

K(τc + θd)s2
[

θdτc
2(τc+θd)

s+ 1

] (5.8)

as the final expression for our feedback controller for the SOPTDD models that describe
experiments 3885 and 12430. The second type of process model we found was from ex-
periment 3886, where we determined that a second-order model with time delay and lead
(equation 3.6) was the best descriptor for the experimental results of the system. With
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this model, we found that our IMC controller was given by:

G∗c =
(τ1s+ 1)(τ2s+ 1)

K(τ3s+ 1)(τcs+ 1)
(5.9)

where we have once again set r = 1. From this, the expression for the corresponding
feedback controller is:

Gc =
(τ1s+ 1)(τ2s+ 1)

K(τ3s+ 1)

[
(τcs+ 1)− e−θds

] (5.10)

Applying the Pade approximation, the equation for the feedback controller becomes:

Gc =
(τ1s+ 1)(τ2s+ 1)(0.5θds+ 1)

K(τc + θd)s(τ3s+ 1)

[
θdτc

2(τc+θd)
s+ 1

] (5.11)

The third type of process model, used to describe the results of experiment 12429, is also
a second-order model with time delay and lead (equation 3.6) except now, the lead is neg-
ative (i.e. the zero occupies the right-half plane). In this instance, the G̃+ factor in the
process model becomes:

G̃p+ = (τ3s− 1)e−θds (5.12)

As a result, the expression for the internal model controller is:

G∗c =
(τ1s+ 1)(τ2s+ 1)

K(τcs+ 1)2
(5.13)

where we have now used r = 2 as the filter coefficient. The use of r = 2 is made so that
the controller remains proper and does not have a pure derivative term. This means that
the expression for the equivalent feedback controller is:

Gc =
(τ1s+ 1)(τ2s+ 1)

K

[
(τcs+ 1)2 − (τ3s− 1)e−θds

] (5.14)

Finally, after employing the Pade approximation and simplifying, the feedback controller
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using the IMC formulation for experiment 12429 is given by the following transfer function:

Gc =
(τ1s+ 1)(τ2s+ 1)(0.5θds+ 1)

K

[
1
2
τ 2c θds

3 + (τ 2c + τcθd + 1
2
τ3θd)s2 + (2τc − τ3)s+ 2

] (5.15)

Alternatively, we may also employ an improper IMC for experiment 12429, and in fact, we
will find later that the results from the improper IMC are qualitatively similar to those of
the proper IMC. In this case, a smaller filter coefficient of r = 1 may be used, resulting in
an internal model feedback controller given by:

Gc =
(τ1s+ 1)(τ2s+ 1)(0.5θds+ 1)

K

[
θd
2

(τc + τ3)s2 + (τc − τ3)s+ 2

] (5.16)

after applying the Pade approximation.

5.2 Testing the IMC Controllers for a select few τc

The derived expressions for the IMC Controllers found in the previous section and the
model fitting results from Tables 3.1, 3.3, 3.5, and 3.7, allow us to substitute for the
numerical parameters contained in the controller transfer functions for each batch. After
substitution, we obtain the equations below, which show the transfer functions for all
the IMC controllers. Note that the subscript 1 denotes the controller corresponding to
batch 3885, 2 denotes 3886, 3 denotes 12429, 3-Im denotes the improper form of the 12429
controller, and 4 denotes 12430:

Gc1 =
5838701s3 + 555457.7s2 + 5754s+ 1

24394τcs3 + (48788 + 2033τc)s2
(5.17)

Gc2 =
452506s3 + 56162s2 + 662.8s+ 1

2107τcs3 + (4214 + 237τc)s2 + (5.86 + 0.326τc)s
(5.18)

Gc3 =
11582715s3 + 1109719s2 + 12053s+ 1

9.95τ 2c s
3 + (56892 + 19.9τc + 0.829τ 2c )s2 + (1.66τc − 4741)s+ 1.66

(5.19)

Gc3−Im =
11582715s3 + 1109719s2 + 12053s+ 1

(56892 + 9.95τc)s2 + (0.829τc − 4741)s+ 1.66
(5.20)
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Gc4 =
1866563s3 + 552611s2 + 5562s+ 1

7458τcs3 + (14916 + 2130τc)s2
(5.21)

Fortunately, the quantitative forms of the IMC Controllers chiefly depend on the param-
eters estimated from process model fitting. Because these process model parameters are
known a priori, they can be treated as fixed for an IMC Controller corresponding to a par-
ticular batch. The only variable parameter for the purpose of IMC Tuning is the closed-loop
time constant τc. Therefore, for much of the remaining chapter, we will focus on simulat-
ing the IMC controllers for the 4 batches under multiple process conditions with different
values of τc to assess the quality of the control and eventually determine the optimal τc for
the multiple process conditions.

Before undertaking extensive analysis to find optimal values of τc, we performed a
few runs using select values of τc to gain a better understanding of the five controllers in
equations 5.17 to 5.21. For Gc1, Gc2, and Gc4, four values of τc were initially used: 10, 50,
100, and 500. The responses of all the controllers to the same step change in the dissolved
oxygen set point (i.e. a step change from 0 to 10 at t = 0 and then a step change down to -5
at t = 1000 s until t = 2000 s) were computed via Simulink, using the same process models
that the controllers were originally derived from (e.g. 3885 process model used for Gc1 etc).

Figure 5.2 shows the response of Gc1 to the set-point changes in dissolved oxygen
for all 4 filter time constants. Here, small values of τc result in stable control but with an
overshoot, which is largest when τc = 10. In addition to the overshoot, the stirrer rate
rapidly hits its extreme values corresponding to the specified bounds of 100 and 675 rpm
at low τc. Practically, fast changes in the stirrer rate due to a small τc can potentially
strain the mechanical apparatus and are undesirable.

For larger values of τc, there is no noticeable overshoot and the DO converges neatly to
the set point. The speed of this convergence decreases for larger τc. For instance, τc = 500
gives a slow controller response that does not even reach the set point within the time
of the simulation; however, τc = 50 gives a reasonably quick response that minimizes the
overshoot and mechanical strain at the same time.

This aforementioned pattern is repeated in Figure 5.3, which shows the response of
the IMC for batch 3886 to step changes in the DO set point. Once again, τc = 50 was
capable of quickly responding to set-point changes without exhibiting any significant over-
shoot. Figure 5.6 (corresponding to batch 12430), however, was slightly different. Here,
even τc = 10 did not exhibit an overshoot.
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While Gc1, Gc2, and Gc4 generally exhibit stable, well-behaved dynamics as internal
model controllers for positive τc, the Gc3 and Gc3−Im are largely incapable of catching up
to the set-point in a manner that would be expected by a typical IMC Controller. This is
due to the denominators of the transfer functions from equation 5.19 and 5.20, in which it
is possible for the coefficients of s to be negative provided that τc is sufficiently small.

When this is the case, the controller exhibits unstable poles, which can lead to poor
quality control, because even though the poles of the controller ought to cancel with the
zeros of the process model, numerical approximations can lead to imprecision. Thus, even
if the control system does not fully exhibit instability, its performance is significantly hin-
dered, effectively rendering the controller useless. Due to the potential instability inherent
in the IMCs for 12429, an instability whose effect is augmented for low τc and low r, it was
necessary to compare between very large values of τc for the initial analysis.

For example, when simulating the IMC given by equation 5.19, the values of τc used in
the simulation were 1000, 3000, 5000, and 7000 seconds. In all four cases, the system fails
to reach the set-point and responds very slowly to changes in ysp (Figure 5.4). There is
even a massive overshoot for τc = 1000 s of around 90% relative to the dO2 set-point of 10.
Gc3−Im also exhibited very similar behaviour. For Gc3−Im, we selected τc = 10000, 30000,
50000, and 70000 as our 4 values for comparison. Generally, all 4 values of τc exhibit poor,
slow control, in which the controller is incapable of even reaching the desired set points.
While τc = 10000 was the most effective filter time, it was not adequate enough to respond
to changes in the set point, as seen in Figure 5.5.

The results from the performance of Gc3 and Gc3−Im show that in this case, using
a proper transfer function helps the control perform better to a limited extent - by curbing
the rapid variations in stirrer rate and allowing smaller τc to be used. However, it does not
drastically improve the set-point tracking of the controller, since that may inherently be
limited by the unfavourable dynamics of the process. In conclusion, while it was possible
to find good filter time constants for Gc1, Gc2, and Gc4, Gc3 and Gc3−Im presented nu-
merous challenges due to the presence of a potentially negative coefficients which resulted
in numerical issues leading to poor control. This necessitated the use of large filter time
constants which were simply incapable of providing acceptable control performance.
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Figure 5.2: Response of the IMC controller to step changes in the dissolved oxygen
set-point for Batch 3885.

Figure 5.3: Response of the IMC controller to step changes in the dissolved oxygen
set-point for Batch 3886.

5.3 Testing IMC Performance in response to varia-

tions in τc

The simplicity of the IMC is due to the presence of a single variable tuning parameter τc,
whereas every other parameter in the expression for the controller is fixed and depends
only on the estimated plant parameters. This means that it is possible to tune the IMC
controllers for each of the four batches by varying the lone tuning parameter τc. In this
section, we will use 2 well-known controller performance indices - the integral absolute
error (IAE) and the percentage overshoot - to evaluate the performance of each of the five
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Figure 5.4: Response of the IMC controller Gc3 to step changes in the dissolved oxygen
set-point for Batch 12429.

Figure 5.5: Response of the IMC controller Gc3−Im to step changes in the dissolved
oxygen set-point for Batch 12429.

controllers derived in section 5.1.

For each experimental batch/plant model, τc will be varied over a large range and
the values of the two performance indices will be computed as functions of τc. We will use
the same type of simulation as the previous section, in which the set-point is stepped up
from 0 to 10 at t = 0 and then stepped down to -5 at t = 1000 s, where it stays until the
end of the simulation at t = 2000 s. The IAE will be calculated according to equation 4.1,
while the percentage overshoot (ε) will be defined as:
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Figure 5.6: Response of the IMC controller to step changes in the dissolved oxygen
set-point for Batch 12430.

ε =
ymax − ysp max

ysp max
× 100% (5.22)

where ymax is the maximum value of the dissolved oxygen, which usually results when the
set-point is initially stepped up to 10 at time zero, and ysp max is the maximum value of
the set-point (i.e. 10). For batches 3885, 3886, and 12430 - which correspond respectively
to the IMC controllers Gc1, Gc2, and Gc4 - τc was varied from 1 to 1000 seconds. The
IAE and percent overshoot were computed for each τc in this range and the results plotted
using MATLAB.

Figure 5.7 shows the variation in IAE and percent overshoot in response to changes in
the filter time τc for batches 3885, 3886, and 12430. Note that the larger the filter time,
the larger the integral absolute error and the smaller the overshoot. This is because a
larger filter time causes the controller to respond more slowly and gradually, which results
in slower variations in the manipulated variable/stirrer rate. The advantage of a large τc is
that the controller causes less physical strain on the stirrer, while the disadvantage is that
the controller is slower in tracking the set-point.

For good performance, an ideal controller should be able to closely track the set-point
(i.e. low IAE) and also exhibit a small overshoot, since large overshoots can be detrimental
to the organisms growing in the fermenter being controlled. Since optimal overshoot and
optimal set-point tracking exert opposing influences on τc, it is possible to find an optimal
τc in which the dissolved oxygen can track its set-point without a prohibitively large over-
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shoot. From Figure 5.7, a filter time of around 15 seconds is best for batch 3885, because
of the relatively small IAE (almost equal to the minimum IAE which occurs at τc = 10)
and overshoot. Likewise, for 3886 and 12430, the optimal τc’s are at approximately τc = 11
and τc = 9 respectively.

The τc for batch 12429 was also varied and its performance criteria computed, us-
ing both Gc3 and Gc3−Im. Here, however, the range of values that τc took on was different
- from 10 to 10000 seconds for Gc3 and from 10000 to 100000 seconds for Gc3−Im. Figure
5.8 shows the results corresponding to Gc3. Here, we notice that small filter time values
result both excessively large overshoots and IAE, while larger τc tend to reduce the values
of both performance indices. This relationship is not monotonic, however, since there is
an optimal value of around 1500 seconds at which the IAE is minimum and the overshoot
is nearly zero. Nevertheless, the set-point tracking even for τc = 1500 is still too slow for
Gc3 to be considered a good controller.

On the other hand, 5.9 shows the results of the computation corresponding to Gc3−Im.
It indicates that a lower τc of 10000 is the best option, since the ‘overshoot’ (more of an
undershoot here) is closest to zero and the IAE is smallest at this value. It is possible
to opt for even smaller τc but then this causes issues with the stability of the controller
because the plant model for 12429 has a right-half plane zero. Because the performance of
the Gc3−Im controller is slightly better than that of the Gc3 controller, we will choose the
improper controller for our simulations for 12429 in the next section.

One of the problems frequently experienced by the Gc3 and Gc3−Im controllers is that
if the time of the simulation is extended far enough, to say, around 20000 seconds, the
system strangely begins to settle to a value that is the negative of the current set-point.
For example, if the current set-point of dissolved oxygen is -5, then after some time fol-
lowing the initial dive towards -5, the control system settles back up to a dO2 of +5. This
phenomenon is far more egregious for the Gc3 controller, which is another reason we have
set it aside for the remainder of this chapter.

5.4 IMC Robustness Testing

Robustness is an important feature of controllers which pertains to their ability to deal
with uncertainties in the process model parameters and with uncertain disturbances that
may affect the system [43]. Broadly speaking, a robust controller is one whose response
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Figure 5.7: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
plotted as functions of the tuning parameter τc for the IMC controllers corresponding to

batches 3885, 3886, and 12430.

Figure 5.8: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
plotted as functions of the tuning parameter τc for the IMC controller corresponding to

batch 12429, using Gc3 as the controller.

remains effective even in the presence of uncertain or changing Gp parameters and/or
external disturbances. Robustness is one of the key qualities needed in our controllers,
because the make-up and behaviour of the microbial samples change from one batch to
another. Consequently, it is necessary to have a controller which is capable of dealing with
the ensuing uncertainty.
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Figure 5.9: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
plotted as functions of the tuning parameter τc for the IMC controller corresponding to

batch 12429, using Gc3−Im as the controller.

In this section, we will assess the robustness of the IMC controllers determined in
section 5.1. Since the only tuning parameter is τc, our task is to vary τc for each of the
four controllers and check whether the controller of interest maintains a robust response.
We will use two ways to assess robustness. In the first method, we will evaluate the per-
formance metrics of the controllers (i.e. IAE, Overshoot) for changing τc with respect to
disturbance rejection at the input. In the second method, we will randomly generate 500
process models similar to the ones found for 3885, 3886, 12429, and 12430 and check how
the performance metrics of the controllers vary across the generated models.

To test for robustness using the disturbance rejection method, we held the set-point at
zero and stepped up the input disturbance to +20 rpm at t = 0 for a given τc. This added
disturbance was held at the elevated level of +20 rpm until the end of the simulation at
t = 2000. When a given simulation ended, the response of the dO2 was compared to the
set-point (zero), and the resulting error was used to compute the IAE. In addition, the
overshoot εd was calculated according to the following expression:

εd = ymax − ysp max (5.23)

where εd denotes the overshoot for a disturbance rejection control test. The procedure of
calculating the IAE and overshoot for a given τc was repeated for multiple τc ([1,100] for
3885, 3886, 12429, and [10000,100000] for 12429) until full plots of the IAE and εd were
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obtained as functions of τc for all four IMC systems. Figure 5.10 shows the performance
metrics of batches 3885, 3886, and 12430 as functions of τc with respect to input distur-
bance rejection, while Figure 5.11 shows the variation in the controller performance metrics
for batch 12429.

With respect to input disturbance rejection, both figures demonstrate that the lower
the closed-loop time constant τc, the better the abilities of the controllers to respond to
a disturbance at the input. Specifically, a lower τc minimizes both the IAE and the over-
shoot. That a small filter time constant minimizes the effect of input disturbances does
not come as a surprise, mainly because a fast-acting controller can more easily adjust its
output to match the new disturbance affecting it.

A comprehensive technique to check robustness for an IMC Controller involves generat-
ing a series of uncertain models and evaluating how well a given IMC Controller responds
to those uncertain models. Specifically, our second robustness-testing method will require
using the uncertain transfer function capability, where for each batch, we generate a base
(nominal) process transfer function of the form:

Gp(s) = e−θds
p1s+ p2

s2 + p3s+ p4
(5.24)

The nominal transfer function shall correspond to the actual process model for the par-
ticular batch being simulated (e.g. for batch 3885, the nominal transfer function is the
SOPTDD model in Table 3.1). The nominal transfer function for each batch shall be the
basis for generating 500 more models using 500 combinations of the parameters [p1, p2, p3,
p4, θd].

The combinations are generated by supposing that each parameter in [p1, p2, p3, p4, θd]
is uncertain and uniformly distributed on an interval [pmin, pmax], where pmin is the min-
imum value of the parameter p found from using the minimum corresponding parameter
value out of all four process models for batches 3885, 3886, 12429, and 12430. Similarly,
pmax is the maximum value of the parameter p found from using the maximum correspond-
ing parameter value out of all four process models for batches 3885, 3886, 12429, and 12430.
For example, θd will be uniformly distributed on the interval [7,24], since the minimum
value of the time delay is 7, and occurs in the model for batch 12430, while the maximum
value of the time delay in all four batches is 24, and occurs in the model for batch 3885.

Once the intervals for the five uncertain parameters are generated, 500 values are ran-
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domly generated for each parameter from within their interval. The 500 values for each
parameter are then paired up, resulting in 500 parameter quintuplets and, by extension,
500 process models. The 500 process models created are kept the same for all four IMC
controllers for the sake of consistency. Meanwhile, the 501st process model will be the
nominal transfer function for each IMC system. Once all 501 models are generated for a
given IMC Controller, simulations are performed to obtain the IAE and Overshoot perfor-
mance metrics (with respect to set-point tracking) as functions of the model number. This
process is repeated for different τc, ultimately resulting in a surface plot of the IAE or the
overshoot ε as a function of both the model number (1-501) and τc.

The first of these surface plots is shown in Figure 5.12, which shows the IAE and
Overshoot as functions of model number and τc for the 3885 IMC Controller. The figure
indicates that low τc tend to result in less error, but also bring about a greater degree
of overshoot. The same principle applies when the surface plots for the 3886 and 12429
IMC controllers (Figures 5.13 and 5.14) are examined. Figure 5.15, on the other hand,
shows slightly different behaviour for the 12430 IMC controller. Here, both the IAE and
overshoot are very large for small τc in many of the randomly generated model. Only at a
slightly higher τc does the IAE sink back down again.

To better analyse the results of the aforementioned surface plots, we have plotted the
average IAE/overshoot and the standard deviations of the IAE/overshoot for each τc for a
particular controller. Ideally, to determine a robust controller, we wish to select a τc which
yields a small average IAE and overshoot (across all 501 models) and a small standard
deviation for the IAE and overshoot. A small mean would suggest that the controller can
respond effectively to a large range of models (on average), while a small standard devia-
tion would suggest that the controller’s response stays relatively constant when the model
parameters are varied.

Figure 5.16 shows the mean/standard deviation plots for the IAE and overshoot of
batches 3885, 3886, and 12430 in response to changes in τc. The controllers from batches
3885 and 3886 appear to be most effective at around τc = 15, where the mean and standard
deviations of both the IAE and overshoot are relatively low. In contrast, batch 12430 tends
to favor larger τc of around 40 s, primarily because of the surface plot showing large IAEs
for very small τc in most of the 501 randomly generated models.

Finally, figure 5.17 shows the mean/standard deviation plots of IAE and overshoot
for batch 12429. Here it is slightly more difficult to come up with an optimal value for τc.
This is because while the mean IAE and overshoot favour a lower closed-loop time con-
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Figure 5.10: Integral Absolute Error (left panel) and Overshoot εd (right panel) plotted
as functions of the tuning parameter τc for the IMC controllers corresponding to batches

3885, 3886, and 12430 in the presence of an input disturbance.

stant, the standard deviations favour a higher τc. However, since the standard deviations
do not increase as much for low τc as the means decrease, we assert that a τc of 10000
achieves optimal robustness for batch 12429.

To conclude, our analysis of IMC controllers has indicated that lower closed-loop time
constants tend to be favoured, in terms of not only the ability to engage in accurate set-
point tracking but also the ability to reject disturbances and act robustly. For the IMC
controllers for 3885, 3886, and 12430, optimal values of τc were found to be 15, 15, and
40 seconds respectively. On the other hand, for 12429, the optimal value of τc was 10000
seconds, simply because that was the lowest limit possible that would not give rise to poor
control.
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Figure 5.11: Integral Absolute Error (left panel) and Overshoot εd (right panel) plotted
as functions of the tuning parameter τc for the IMC controller corresponding to batch

12429 in the presence of an input disturbance.

Figure 5.12: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
surfaces plotted as functions of the tuning parameter τc and the model number for the

IMC controller corresponding to batch 3885.
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Figure 5.13: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
surfaces plotted as functions of the tuning parameter τc and the model number for the

IMC controller corresponding to batch 3886.

Figure 5.14: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
surfaces plotted as functions of the tuning parameter τc and the model number for the

IMC controller corresponding to batch 12429.
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Figure 5.15: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
surfaces plotted as functions of the tuning parameter τc and the model number for the

IMC controller corresponding to batch 12430.
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Figure 5.16: Top Left: Model-averaged IAE plotted against τc. Top Right:
Model-averaged overshoot plotted against τc. Bottom Left: Standard deviation of IAE
plotted against τc. Bottom Right: Standard deviation of overshoot plotted against τc.

Figures all correspond to the IMC controllers for batches 3885, 3886, and 12430.
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Figure 5.17: Top Left: Model-averaged IAE plotted against τc. Top Right:
Model-averaged overshoot plotted against τc. Bottom Left: Standard deviation of IAE
plotted against τc. Bottom Right: Standard deviation of overshoot plotted against τc.

Figures all correspond to the IMC controller for batch 12429.
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Chapter 6

Model Predictive Control and
Nonlinear PID Control

In this chapter, we will implement two separate control techniques. The first technique,
known as Model Predictive Control (MPC) is based on a discrete model of the control
system. The second technique, dubbed Nonlinear PID Control, is based on obtaining the
optimal PID settings for different ranges of the scheduling variable - in this case, the stirrer
rate.

6.1 Theory of Model Predictive Control

With the emergence of digital control strategies and sophisticated techniques for feedback
regulation, we believe it is important to examine in depth one such technique: Model Pre-
dictive Control (MPC) [13, 23]. Model Predictive Control relies on using a process model
(i.e. Gp in Figure 2.2) to make predictions of future values of the output, or controlled
variables (i.e. Dissolved Oxygen). These predictions are used to inform subsequent alter-
ations to the manipulated variables, or inputs (i.e. Stirrer Rate).

While MPC does not typically propose a closed-form transfer function for the con-
troller, it proposes a series of control moves that optimize the control response such that
the discrepancy between the output variable and its corresponding set-point is minimized.
Generally, MPC is used for multiple-input, multiple-output (MIMO) control systems, but
here, we apply it to a single-input, single-output (SISO) control system.
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For our work, the MPC controller designed uses a discrete formulation of the process
model Gp, expressing it in terms of a step-response model. This model relates the value of
the controlled variable y at a single sampling instant k + 1 to changes in the manipulated
variable u occurring at previous instants, and is given by the following relationship. Note
here that as i increases, we move forward with the step response coefficients but backward
with the change in the manipulated variable:

y(k + 1) = y(0) +
N−1∑
i=1

Si∆u(k − i+ 1) + SNu(k −N + 1) (6.1)

where y(0) is the initial value of y, ∆u(k − i+ 1) = u(k − i+ 1)− u(k − i), and S1, ..., SN
are the step-response coefficients, which represent the value of y at any sampling instant
as a result of a step change in u from the sampling instant -1 to the sampling instant 0.
For such a step change, since ∆u(0) = 1 and all other ∆u are zero, only the i = k+ 1 term
is non-zero. Hence:

y(k + 1) = y(0) + Sk+1 (6.2)

so the value of y(k + 1) is simply the initial value summed with the step-response coef-
ficient corresponding to that time instant. The step-response coefficients can easily be
derived from the process transfer function Gp by taking the inverse Laplace transform of
Y (s) = GpU(s) for a unit-step input and applying the definition of the step-response coeffi-
cients by equating them to the value of the transformed function y at a particular sampling
instant i. Note that here, we assume that the step-change is applied when y(0) = 0.

Model predictive control is a control strategy which uses step-response models, and
is based on a receding horizon approach [13]. This approach makes use of 3 horizon quan-
tities, described below:

1. Model Horizon (N): This describes the number of step-response coefficients used to
calculate the process model. In other words, a model horizon of N means that the
manipulated variable from N steps back is being used to compute the value of y at
a sampling instant k.

2. Control Horizon (M): This parameter forms the basis for the MPC approach. If the
current sampling instant is k, then the MPC approach computes a sequence of future
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input changes (control moves) from k to k+M − 1 (i.e. M control moves, including
the present control move at k). Beyond k +M − 1, the input u is made constant.

3. Prediction Horizon (P ): The prediction horizon denotes the extent to which the
model is predicted. In particular, the MPC calculation computes a series of control
moves from k to k +M − 1 such that the output predicted from k to k + P reaches
the set point in the most optimal fashion.

The fundamentals of MPCs and step-response models discussed above allow the derivation
of the MPC approach for our controllers. Suppose that y(0) = 0 and that k is the current
sampling instant. The value of y at a future sampling instant k+ j (denoted by ŷ(k+ j)),
where j is a number from 1 to the prediction horizon P , can be deduced from equation
6.1:

ŷ(k + j) =
N−1∑
i=1

Si∆u(k − i+ j) + SNu(k −N + j) (6.3)

We can split up the summation term into two parts, with one going from i = 1 to i = j
and the other going from i = j + 1 to i = N − 1:

ŷ(k + j) =

j∑
i=1

Si∆u(k − i+ j) +
N−1∑
i=j+1

Si∆u(k − i+ j)+

SNu(k −N + j)

As mentioned earlier, the larger the value of i in the summation, the further back we are in
time with respect to the change in the manipulated variable. If k is our current sampling
instant, that means we know the value of y and u until y(k) and u(k) respectively, but
anything after that represents future values of y and u.

Thus, the first summation (from 1 to j) denotes the impact of future (correspond-
ing to i = 1 to j − 1) and current (corresponding to i = j) control actions. On the other
hand, the second summation (from j + 1 to N − 1) and the term outside involving SN
denote the impact of past control actions on the output y, where ‘past’ and ‘future’ are
defined with respect to the current sampling instant k. Because the past control actions
are fully known and the current and future control actions need to be computed, it is useful
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to condense our writing by defining:

ŷo(k + j) ≡
N−1∑
i=j+1

Si∆u(k − i+ j) + SNu(k −N + j) (6.4)

An interpretation of ŷo is that is represents the value of y that would result if all future
and current control moves were zero. In other words, if the future and present input values
were held constant, the value of y would simply be ŷo. Using this definition of ŷo, our
expression for ŷ(k + j) becomes:

ŷ(k + j) = ŷo(k + j) +

j∑
i=1

Si∆u(k − i+ j) (6.5)

For the purpose of computing our MPC, we will now define a vector of future predicted
responses, denoted by Ŷf , given by:

Ŷf =


ŷ(k + 1)
ŷ(k + 2)

...
ŷ(k + P )


The vector describing the contribution of past control actions to the future responses is
denoted by Ŷ o

f :

Ŷ o
f =


ŷo(k + 1)
ŷo(k + 2)

...
ŷo(k + P )


In order to write a vector equation for Ŷf in terms of the manipulated variable and the
contribution of the past control actions, it is necessary to define a P ×M matrix of step
response coefficients which will multiply the manipulated variables in the vector equation:
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S =



S1 0 · · · 0

S2 S1 0
...

...
...

. . . 0
SM SM−1 · · · 0
SM+1 SM · · · 0

...
...

. . .
...

SP SP−1 · · · SP−M+1


If the vector denoting the future changes in the manipulated variables is ∆Uf :

∆Uf =


∆u(k)

∆u(k + 1)
...

∆u(k +M − 1)


then we can write the expression for the future output predictions in vector form as:

Ŷf = Ŷ o
f + S∆Uf (6.6)

There are two unknowns in this equation, the future control action ∆Uf , and the resulting

behaviour of the predicted future output Ŷf . The goal of MPC is to compute an optimal
∆Uf which satisfies any lower and upper bounds placed upon the system. Generally, this is
done with an optimization process which seeks to minimize a cost function (or performance
index) containing the predicted error vector Êf = Yr − Ŷf , where Yr is the reference tra-
jectory. Usually, the reference trajectory represents the desired set point of the controlled
variable y, or ysp. For an MPC in which the input and output are not constrained, the
performance index is given by:

J = ÊT
f QÊf + ∆UT

f R∆Uf (6.7)

where Q and R are weighting matrices. Q is chosen as a positive-definite (i.e. positive
eigenvalues) P ×P matrix and R is chosen as a positive semi-definite M ×M matrix (i.e.
non-negative eigenvalues). Q and R are selected in order to balance between the need for
ensuring good set-point tracking (i.e. a low predicted error) and the need for smoother,
less aggressive control (i.e. low magnitude of the control moves ∆Uf ). The MPC control
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scheme is obtained by minimizing the performance index J with respect to ∆Uf . Using
analytical techniques, it can be shown that the series of control moves which minimizes
the performance index is given by:

∆Uf opt = (STQS + R)−1STQÊo
f (6.8)

where Êo
f is the error vector which results from when no further control action is taken

at and beyond the sampling instant k. In other words, Êo
f = Yr − Ŷ o

f . It is possible to
re-express the vector of future control moves in terms of a gain matrix Kc multiplying
Êo
f , if we define Kc ≡ (STQS + R)−1STQ. It should be noted that Kc depends only

on static quantities and tuning parameters, provided that the step response matrix S is
independent of time, a rule which applies in our case.

While the optimal control moves ∆Uf apply for the M sampling instants, accord-
ing to the definition of the control horizon, only the first (current) move is used for the
actual control. When this control move is carried out at an instant k, the next M control
moves are then computed using equation 6.8, starting at the time instant k + 1. Once
computed, only the move at k+ 1 is implemented and the process continues. Because only
the first control move is implemented out of the M computed, the ‘end’ of the control hori-
zon can be seen as moving forward with the sampling instant, giving rise to the receding
horizon approach inherent to Model Predictive Control.

One of the advantages of MPC is that it is capable of using hard inequality constraints
for the input variable u. In our case, this is especially useful because of the mechanical
constraints of 100 (lower limit) and 675 (upper limit) rpm on the stirrer rate for the mi-
crobial fermenter. The main difference between a constrained MPC and its unconstrained
counterpart would be the additional terms assigning a steep penalty to control moves that
venture into the ‘out-of-bounds’ region in the expression for the performance index (equa-
tion 6.7). In addition to these inequality constraints, the design of an MPC incorporates
multiple tuning parameters, which include the model horizon N , the control horizon M ,
the prediction horizon P , as well as the weighting matrices Q and R.

Though there are no hard and fast rules for MPC tuning and ensuring the closed-
loop stability of MPC controllers, some guidelines exist which may inform the selection of
the aforementioned tuning parameters. For example, the model horizon is usually selected
so that the product between the model horizon and the sampling time Ts equals the set-
tling time τ of the process (i.e. N = τ/Ts). Furthermore, the control horizon typically
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lies between one-third and one-half of the model horizon, while the prediction horizon is
typically selected as the sum of the model and control horizons.

For a SISO model, the elements of Q and R are selected according to performance
criteria for the controller. For instance, the matrix Q contributes to the error term in
the performance index in equation 6.7. Thus, larger entries in Q tend to make the MPC
more aggressive in reaching the set point. In contrast, the matrix R, oft dubbed the ‘move
suppression matrix’, ensures that the control moves are kept at low levels, leading to less
aggressive control.

For our MPC simulations in section 6.2, we will develop MPC controllers for each
experimental batch, and use multiple values of the tuning parameters (i.e. the horizons
and the weighting matrices) to compare the quality of the control with respect to the
IAE and overshoot. Then, in section 6.3, we will perform similar testing to determine the
combination of tuning parameters which best maximize the robustness of control, using a
combination of disturbance rejection and plant-model mismatch simulations.

6.2 Implementing MPC

To begin, we will set our model horizon equal to the larger time constant of the Gp cor-
responding to a given batch rounded up to the nearest 100. For example, in batch 3885’s
SOPTDD model, the larger time constant is τ2 = 5656 seconds, while the sample time for
the experimental data is 6 seconds. Therefore, the model horizon for this example will be
N = 5656/6 = 942.67 rounded up to the nearest 100, meaning that the model horizon is
N = 1000 for this experimental batch.

For all our MPC simulations, we will use the same procedure to compute the model
horizon. By default, the control horizon equals 40% of the model horizon, and the pre-
diction horizon equals the sum of the model horizon and the control horizon. In addition,
the weighting matrices Q and R are specified as diagonal matrices with the same entry
throughout the diagonal (henceforth referred to as the weight).

By default, the weight on Q (WQ) is set to 1 while the weight on R (WR) is
set to 0.1. Since the relative ratio between the weight on Q to the weight on R is more
indicative of the emphasis placed on set point tracking vs less aggressive control, we will
vary this ratio because that is the main quantity of interest. To vary the weight ratio, WR
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Figure 6.1: Response of the default MPC controller to step changes in the dissolved
oxygen setpoint for Batch 3885. MPC Parameters:
N = 1000, P = 1400, M = 400, WQ = 1, WR = 0.1.

Figure 6.2: Response of the default MPC controller to step changes in the dissolved
oxygen setpoint for Batch 3886. MPC Parameters:
N = 100, P = 140, M = 40, WQ = 1, WR = 0.1.

will be kept constant while WQ will be varied. Figures 6.1, 6.2, and 6.3 show the responses
of the default MPC controllers for the process models in batches 3885, 3886, and 12430
respectively. Once again, the stimulus being tested is a step change in the set point of
dissolved oxygen by 10 units upwards followed by a downward step change to a relative
dissolved oxygen of -5 at 1000 seconds.
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Figure 6.3: Response of the default MPC controller to step changes in the dissolved
oxygen setpoint for Batch 12430. MPC Parameters:
N = 1000, P = 1400, M = 400, WQ = 1, WR = 0.1.

Figure 6.4: Response of the default MPC controller to step changes in the dissolved
oxygen setpoint for Batch 12429. MPC Parameters:
N = 2000, P = 2800, M = 800, WQ = 1, WR = 0.1.

From these figures, the MPCs appear to respond very quickly to step changes in the
dissolved oxygen set points and exhibit minimal overshoot. Generally, the model predic-
tive controllers are superior to their internal model control counterparts, exhibiting smaller
IAE and smaller overshoot. One notable exception to this rule is figure 6.4, which shows
the response of the MPC for batch 12429 to step changes in the set-point for batch 12429.
Because the MPC response is so poor - since it is in the opposite direction of the set-point
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Figure 6.5: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
plotted as functions of the tuning parameter M for the MPC controllers corresponding to

batches 3885, 3886, and 12430.

changes - we will henceforth ignore the MPC for 12429. A possible reason for this poor
performance is that like the IMC Controller for 12429, a specifically designed MPC Con-
troller is incapable of dealing with the right-half plane zero in the Gp for 12429.

While default parameter configurations offer us sound model predictive controller ob-
jects, it is necessary to go one step further and modify the tuning parameters to examine
the variations in the performance of the MPC with respect to different tuning parameter
values. Here, the tuning parameters varied include the control horizon M , the prediction
horizon P , and the ratio between the weights WQ and WR (denoted by γ).

First, the control horizon was varied from 5 sampling intervals (i.e. a time of 30 seconds
given the sampling time of 6 seconds) to 0.5N for batches 3885, 3886, and 12430. The
IAE and percentage overshoot were calculated for each control horizon value between 5
and 0.5N , keeping the other tuning parameters (P and γ) constant at their default values.
The results for all batches are plotted in Figure 6.5.

From the figure, larger control horizons tend to result in smaller error across all
three process models. The reason for this is that large control horizons allow the controller
to plan the control moves several intervals in advance. Earlier planning results in more
precise control which aids the ability of the MPC controller to perform set-point tracking.

For overshoot, larger control horizons give rise to a non-monotonic response. At very
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Figure 6.6: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
plotted as functions of the tuning parameter P for the MPC controllers corresponding to

batches 3885, 3886, and 12430.

low control horizons, the overshoot increases drastically as the control horizon is raised (to
7-8%), but for slightly higher control horizons, the overshoot tends to decrease as M rises
to about 4-5%. A possible reason for the decreasing phase in the overshoot plot is that
larger control horizons make the controller less hasty and more precise when it comes to
approaching the set-point. As a result, the system approaches the set-point more gradually
instead of drastically shooting up and then being forced to come back down.

The second parameter varied was the prediction horizon, which was changed from
the default control horizon M to 2N , with the IAE and overshoot corresponding to the
prediction horizons within this range plotted in Figure 6.6, for batches 3885, 3886, and
12430. Given default values of M and γ, the prediction horizon has very little effect on
the performance of the MPC controller.

This is especially true for batches 3885 and 12430, where the IAE and overshoot stay
relatively constant for the entire range over which P is varied. However, batch 3886 shows
slightly different behaviour, with both the IAE and overshoot rising slightly as P is in-
creased. A possible reason for the lack of a non-constant response is that the prediction
horizon for 3885 and 12430 is already large enough at 400 that increasing it further does
not add much to the ability of the MPC controller to track the set-point.

The next parameter varied for the MPC was the weight ratio γ = WQ/WR. This
ratio was varied from 0.1 to 100 with WR held constant at 0.1. In other words, only the
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weight on the error WQ was varied from 0.01 to 10. Nonetheless, the absolute values of WQ

and WR are largely irrelevant, since as described earlier, the ratio between these weights
matters most. Figure 6.7 shows the variations in IAE and overshoot when γ is varied from
0.1 to 100, with M and P held constant at their default values.

As the weight ratio increases, the IAE for all 3 batches drops, while the overshoot
undergoes ‘oscillatory’ changes - rising, falling, and rising again. The reason for this be-
haviour is that a greater ratio results in more emphasis being placed on the error term of
the performance index J . This causes the controller to be more aggressive and match the
set point more closely. A more aggressive controller results in a smaller IAE.

However, because the manipulated variable U changes more rapidly as a result of ag-
gressive control, there is a greater degree of overshoot for larger γ. Nonetheless, a greater
overshoot also contributes to a larger IAE, which is why the overshoot exhibits a rising
and falling pattern - it rises because of more aggressive control changing the manipulated
variable very quickly, but it also falls because more aggressive control makes the measured
value of Y track its set-point more effectively.

While Figure 6.7 generally points to a larger weight ratio for better control, just as
Figures 6.5 and 6.6 point to larger control and prediction horizons, it should be noted that
a larger weight ratio will result in more rapid changes to the manipulated variable (stirrer
rate). These rapid changes may not be ideal for the mechanical well-being of the system,
but are acceptable here because the mechanical well-being cannot be fully ascertained from
in silico simulations.

A wider examination of the effects of the control and prediction horizons can be per-
formed using IAE and overshoot surface plots (or heat maps). To generate these surface
plots, a vector of control horizons is generated in which M is varied from 2 to 0.4N . Ad-
ditionally, a vector of prediction horizons is generated, where P is varied from 3 to 1.4N
(i.e. N + 0.4N) for each batch model. Then, MPCs are generated using the prediction
and control horizon vectors, such that every control horizon is paired with every prediction
horizon greater than or equal to it.

Each generated MPC is used in the set-point tracking simulation, where the IAE and
overshoot are computed for specific values of the control and prediction horizons. Then,
the IAE and overshoot of the MPCs for that particular batch are plotted against the pre-
diction and control horizons, generating a 3-D surface plot. The first of these surface plots
is shown in Figure 6.8, which corresponds to the IAE and overshoot for batch 3885. Most
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Figure 6.7: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
plotted as functions of the tuning parameter γ for the MPC controllers corresponding to

batches 3885, 3886, and 12430.

of the error and overshoot difficulties occur only when the control horizon is very small
and the prediction horizon is relatively large. In contrast, for large control and prediction
horizons, the IAE and overshoot are generally well-behaved because the controller can ‘see
further ahead’, allowing it to make control moves more precisely.

A similar pattern is repeated with batches 3886 (Figure 6.9) and 12430 (Figure 6.10),
where large control and prediction horizons result in better IAEs and overshoots for set-
point tracking simulations. Because the IAE and overshoot stay relatively constant over
such a large range of M and P , there is a considerable degree of freedom in selecting a
combination of M and P control and prediction horizons. For instance, we can choose to
select relatively small M and P , such as (M,P ) = (50, 100) for batch 3885 in order to save
time and memory during computation.

6.3 Robust Model Predictive Control

Robustness is an essential feature of controllers which pertains to their ability to respond
to external disturbances and uncertain process models. Determining the robustness of an
MPC controller for a particular process model will involve varying the control horizon,
prediction horizon, and weight ratio. That three tuning parameters need to be varied to
determine the most robust combination is rather cumbersome, since having to change three
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Figure 6.8: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
surfaces plotted as functions of the tuning parameters M and P for the MPC controller

corresponding to batch 3885.

Figure 6.9: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
surfaces plotted as functions of the tuning parameters M and P for the MPC controller

corresponding to batch 3886.

parameters across multiple models and evaluating the IAE/overshoot will be extremely ex-
pensive computationally.

Fortunately, the results from the previous section pave the way for a much simpler
analysis of MPC robustness which will achieve a similar objective of finding a robust pa-
rameter combination without the computational load. Using the principles derived from
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Figure 6.10: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
surfaces plotted as functions of the tuning parameters M and P for the MPC controller

corresponding to batch 12430.

Design of Experiments [44], we will select four points on the (M ,P ) surface plots for each
batch where the IAE and Overshoot are minimized (i.e the uniformly coloured region).

These four points will be situated near the corners (extremities) of the surface where
the IAE is relatively small and uniform. Then, for each of these four pairs of (M ,P ) val-
ues, 500 randomly generated process transfer functions will be simulated and for the same
set-point change, the mean and standard deviation of the IAE and overshoot of the MPC
controllers will be evaluated. For consistency, these 500 generated transfer functions are
the same as those used for the IMC Controllers.

After this process is carried out for all three batches, the best (M ,P ) pair is selected
and used for the remainder of the robustness analysis. Using the optimal (M ,P ) pair for
each batch, the weight ratio is varied from 0.1 to 40 for 500 randomly generated process
transfer functions. Then, the resulting mean and standard deviations of the IAE and over-
shoot are plotted together for each batch to get a stronger idea of which weight ratio is
most optimal for a well-designed, robust MPC controller.

The four points selected for the initial (M ,P ) robustness tests for each of the three
batches are shown in Table 6.1. Each of these four points was selected from the extreme
ends of the IAE surface plots. In addition, the differences between the IAEs of all four
points for every batch is less than 1%, making these points roughly equivalent in terms of
control accuracy for their particular process models.
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Batch ID Point 1 Point 2 Point 3 Point 4

3885 (18,19) (18,1387) (394,395) (394,1387)
3886 (9,10) (9,140) (40,41) (40,140)
12430 (18,19) (18,1387) (394,395) (394,1387)

Table 6.1: Four pairs of horizons (M ,P ) selected for each batch in order to perform
robustness analysis.

A bar graph of the mean and standard deviation of the IAE and overshoot for batch 3885
in response to multiple randomly generated Gp’s is shown in Figure 6.11. Here, the mean
and standard deviations of the IAE are almost equal regardless of the control/prediction
horizon pair chosen. The only differences appear in the overshoot bar graph, where points
1, 3, and 4 seem to have the lowest mean overshoots. Because point 3 represents the pair
of lowest IAE from the surface plot (Figure 6.8), we will select point 3 as the control-
prediction horizon pair when varying γ across the randomly generated models to obtain
an optimally robust controller.

The corresponding bar graphs for batches 3886 and 12430 are shown in Figures 6.12
and 6.13 respectively. Repeating the pattern from batch 3885, the 4 points do not appear
to have a significant effect on changing the IAE and overshoot. Because we cannot differ-
entiate between the 4 horizon pairs using this technique, we will once again choose point 3
for both batches 3886 and 12430 as it gives the lowest IAE according to the error surfaces
plotted earlier (Figures 6.9 and 6.10).

With point 3 serving as the chosen point for batch 3885, we then plotted the aver-
aged IAE and overshoot as functions of the weight ratio in Figure 6.14. Here, the averaged
IAE is very high for small weight ratios, but then sinks back down and rises back up again
as the weight ratio increases. The mechanism underlying this is as follows: when the weight
ratio is very small, the system is simply unable to keep up with changes in the set-point,
a problem which persists through multiple plants.

In consequence, the IAE is large, even though the overshoot is small because the
controller is fairly conservative in calculating its moves. Moreover, as the weight ratio
increases, the controller becomes more aggressive for all randomly generated transfer func-
tion processes, and so results in a smaller IAE, even though the overshoot increases very
slightly. However, for very large weight ratios, the controller becomes so aggressive that it
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Figure 6.11: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
bars plotted for each Control/Prediction Horizon Point, for batch 3885. Error bars

denote the standard deviation.

begins to lose its robustness, which often requires more conservative control action in the
face of uncertainty.

As a result, both the IAE and overshoot undergo a dramatic increase for larger weight
ratios, a pattern which is repeated by batches 3886 and 12430 as well (Figures 6.15 and
6.16). Thus, analysis of MPC controllers has demonstrated that large control horizons,
along with large prediction horizons (but not too much larger than the control horizons)
are ideal for tight, robust control. As far as the weight ratio of the MPC is concerned,
a balance needs to be kept at around a weight ratio of approximately 10-15 across all 3
batches to ensure an acceptable combination of robustness and effective set-point tracking.

6.4 Nonlinear Model and PID Control

In this section, we will shift away from Model Predictive Control and focus on a gain-
scheduling control strategy which takes into account the nonlinearities in the system. In
Chapter 4, we showed that process models estimated over a range of between 400 and 500
rpm for 4 different batches provided us with a set of optimized settings that worked well
in controlling the dissolved oxygen of the biological fermenter. However, in reality, it has
been observed that while the system behaves linearly over a small range of stirrer rates
(e.g. from 400-500 rpm), there is a possibility that the system is nonlinear over the entire
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Figure 6.12: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
bars plotted for each Control/Prediction Horizon Point, for batch 3886. Error bars

denote the standard deviation.

Figure 6.13: Integral Absolute Error (left panel) and Percent Overshoot (right panel)
bars plotted for each Control/Prediction Horizon Point, for batch 12430. Error bars

denote the standard deviation.

range of mixing speeds, from 100 to 675 rpm.

To check for the presence of an appreciable nonlinearity, step response experiments
are performed in which the stirrer rate is varied in increments of 50 rpm from 100 to 650
rpm with the controller switched off while the dissolved oxygen is recorded. The results
from two such experiments are shown in Figures 6.17 and 6.18.
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Figure 6.14: Averaged Integral Absolute Error (left panel) and Percent Overshoot (right
panel) plotted against weight ratio for batch 3885. Errorbars represent standard

deviation.

Figure 6.15: Averaged Integral Absolute Error (left panel) and Percent Overshoot (right
panel) plotted against weight ratio for batch 3886. Errorbars represent standard

deviation.

Both experimental recordings demonstrate extensive nonlinearity. Step changes in
the stirrer rate from 300 to 600 rpm clearly show different gains in the dissolved oxygen
level, even though all step changes are of the same magnitude (50 rpm). Moreover, for
stirrer rates below 200 rpm, the response of the dissolved oxygen to step changes in the
input is small and difficult to characterize. Finally, a step change in u from 200 to 250
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Figure 6.16: Averaged Integral Absolute Error (left panel) and Percent Overshoot (right
panel) plotted against weight ratio for batch 12430. Errorbars represent standard

deviation.

Figure 6.17: First step response experiment conducted over stirrer rates from 100 to 650
rpm, with stirrer rate changed in increments of 50 rpm.

rpm results in unstable oscillations in the dissolved oxygen content, a characteristic not
observed for other stirrer speeds.

In order to account for the nonlinear behaviour inherent to the system, it is helpful
to refine our tuning methods. This is done by implementing a gain scheduling method
[45], in which we determine the 3 PID parameters (Kp, Ti, Td) as functions of the stirrer
rate u. For each range of 50 rpm, a best-fit process model Gp is determined (using the
AIC and F-test tools detailed in chapter 3) and used to obtain the PID settings using an
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Figure 6.18: Second step response experiment conducted over stirrer rates from 100 to
650 rpm, with stirrer rate changed in increments of 50 rpm.

optimization algorithm similar to the one described in chapter 4. We will ignore stirrer
speeds below 200 rpm in the determination of the PID settings, due to the lack of a DO
response which can properly be described by our transfer function estimation techniques.

To determine a table of PID settings for each 50 rpm range in the stirrer rate, we
isolated the open-loop input-output data from experiments 12501 and 12502 for the stir-
rer rate and dissolved oxygen from 300 to 600 rpm. In addition, we also isolated the
open-loop input-output data from experiment 12501 for the first step response from 250
to 300 rpm. This resulted in 4 sets of input-output data for each 50 rpm input range (i.e.
[300, 350], [350, 400], [400, 450], [450, 500], [500, 550], [550, 600]), and 1 set of input-output
data corresponding to the range [250, 300] rpm.

Overall, we obtained 25 sets of input-output data and estimated the best transfer
functions Gp corresponding to each data set, using the techniques described in chapter 3.
Specifically, we found the best-fit Gp for each input-output data set, calculated the AIC
value for 5 possible transfer function fits (FOP, SOP, SOPLD, SOPTDD, SOPTDLD), and
selected the model with the lowest AIC as the best-fit model.

When the 25 best-fit models were fully determined, the models were grouped according
to the stirrer rate range they corresponded to. For each range, the group of models was
then plugged into 1 or 4 Simulink block diagrams and the PID parameters were estimated
by the ‘fmincon’ algorithm in MATLAB, which outputs PID settings that minimize the
integral absolute error. This algorithm is slightly different from the nonlinear least-squares
method used in the previous section, and was selected due to its ability to converge faster
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Stirrer Rate Range
(rpm)

Proportional Gain
(Kp)

Integral Gain
(Ki = Kp/Ti)

Derivative Gain
(Kd = KpTd)

[250, 300] 0.45 0.00328 1.0
[300, 350] 1.49 0.00705 10
[350, 400] 0.67 0.00415 6.9
[400, 450] 0.67 0.00583 5.7
[450, 500] 1.09 0.0108 8.2
[500, 550] 0.56 0.0114 1.3
[550, 600] 0.62 0.0140 0.14

Table 6.2: Determining the PID settings by accounting for the nonlinearities in the
process model.

and perform a global search of the PID parameters. Unlike the least-squares method, a
global search allows a wider range of PID parameters to be sampled so that the true min-
imum is more likely to be reached. Using this technique, we determined the PID settings
for all stirrer rate ranges from 250-600 rpm. The results are shown in Table 6.2.

From the table, we observe no significant, monotonic trend in the PID settings, but we
have determined a set of values which could be used for each range of stirrer speeds. Thus,
this table can serve as a basis should the need arise to take into account the nonlinearity
of the system.
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Chapter 7

Conclusions and Recommendations

At a fundamental level, the micro-organism fermenter system presents a classical process
control problem: the variable to be controlled (dO2) is unable to be properly regulated by
the stirrer speed so alternative control strategies need to be devised to ensure adequate
regulation. The purpose of this work was to test multiple control techniques, both practical
and theoretical, in order to ensure that the dissolved oxygen in the fermenter was effec-
tively maintained at desired levels. To achieve this goal, our industrial partners conducted
step-response experiments which allowed the estimation of the process transfer function -
the relation between the manipulated variable u and the controlled variable of interest dO2.

Following the estimation of the process transfer functions using the results of 4 step-
response experiments (identified as 3885, 3886, 12429, 12430), the first step was to deter-
mine a practical control strategy that would allow our industrial partners to meet their
goals of removing the DO oscillations. The control strategy needed to be reproducible,
applicable to a PID controller, and systematic, so that it could be employed for multiple
systems that may exhibit different behaviour from one batch to another. To satisfy this
objective, we used the foundation developed by Madhuranthakam et al [21] to create an
algorithm which utilized the process transfer functions to calculate optimized PID settings
based on least-squares minimization.

Our PID optimization algorithm provided settings that, when applied to the micro-
bial experimental setup, were capable of controlling the dissolved oxygen levels adequately
and ensuring that the DO levels do not oscillate violently. Given the success of our method-
ology in achieving the control objectives of our industrial partners, we set up MATLAB
programs in order to implement a more automated strategy of determining the PID control
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settings for any biological fermenter. With this automated strategy, the ideal PID settings
for a given batch can be estimated during experimental operation automatically using the
following steps:

1. Start the fermentation with the controller turned off and the stirrer rate fixed at 400
rpm. Allow the system to reach steady state (should take approximately 30 minutes).

2. Once at steady state, step up the stirrer rate automatically to 450 rpm and allow the
system to reach steady state. Record and write the data of the step experiment to a
csv file.

3. With MATLAB, estimate the best plant model Gp among the five models proposed
in section 3, using a combination of the AIC and/or F-tests.

4. With the plant model determined, use the PID optimization algorithm to determine
the best possible settings for that particular experimental batch. Write the PID
settings to the csv file which is then read by the controller.

5. Implement the settings determined and turn on the controller. The system should
reach the desired DO steady state without undergoing erratic behaviour.

So far, we have created MATLAB code that will automatically detect the presence of a csv
file containing open-loop stirrer rate/dO2 data, use that to estimate Gp, and use the Gp

to find the optimal PID settings. Overall, the process is generic and easily implemented
with the framework we have created, as long as the software for performing these actions
automatically can be integrated with the fermenter system.

While the practical approaches to controlling dO2 were demonstrated to be sound and
effective, it was necessary to develop and test theoretical approaches to dO2 control. To
this end, we created internal model controllers for each of the four process models. These
IMC controllers underwent extensive testing to find the optimal value of the closed-loop
time constant τc - the lone tuning parameter - which ensured robust and precise control.
The extensive testing included varying τc and determining the two main controller perfor-
mance metrics - the integral absolute error and overshoot - as functions of τc for a particular
IMC controller. Ultimately, we found that lower τc typically yielded the best results, and
proposed optimal τc values for each of the four IMC controllers.

Another theoretical strategy that we developed for controlling the microbial fermen-
tation was Model Predictive Control (MPC). This strategy is based on employing a dis-
cretized version of the process model Gp to generate a set of future control moves which
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ensure that a cost function - based partly on the error between the desired set-point and
the actual value of the controlled variable - was minimized. MPC Controllers for each of
the four batches (3885, 3886, 12429, 12430) were generated and the tuning parameters
(control horizon, prediction horizon, weight ratio) were varied for all but 12429 to find
the optimal combination that would ensure robustness and good set-point tracking. Ul-
timately, we determined that a large weight ratio and large prediction/control horizons
provided optimal set-point tracking, control, and robustness.

The last control technique used to regulated the dO2 was based on a non-linear model
of the fermentation process, in which the transfer function relationship between dO2 and
stirrer speed varied according to the range of stirrer speed which the system occupied.
The nonlinearity was verified via experimental analysis and modelled in MATLAB, so that
optimal PID settings for each stirrer rate range could be determined.

Overall, this thesis lays out a framework for a generic and satisfactory control strategy
which has been demonstrated to work for the biological fermentation process. In addi-
tion, it proposes and implements multiple theoretical control strategies and maximizes the
effectiveness of those strategies with respect to various controller performance metrics, in-
cluding robustness, set-point tracking, and overshoot minimization. More analysis could
be undertaken by examining and optimizing with respect to other control system metrics,
such as frequency response and stability margins; however, the foundation laid by our work
is sufficient enough to ensure that both our control objectives and our industrial partner’s
control objectives are met and will continue to be met in the future.
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