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Abstract

Communication applications have diverse network service requirements. For instance,

Voice over IP (VoIP) demands short end-to-end delay, whereas File Transfer Protocol

(FTP) benefits more from high throughput than short delay. However, the Internet delivers

a uniform best-effort service. As a result, much research has been conducted to enhance the

Internet to provide service differentiation. Most of the existing proposals require additional

access-control mechanisms, such as admission control and pricing, which are complicated to

implement and render these proposals not incrementally deployable. Incentive-compatible

Differentiated Scheduling (ICDS) provides incentives for applications to choose a service

class according to their burst characteristics without additional access-control mechanisms.

This thesis investigates the behaviour of ICDS with different types of traffic by analysis

and extensive simulations. The results show some evidences that ICDS can achieve its

design goal. In addition, this thesis revises the initial ICDS algorithm to provide fast

convergence for TCP traffic.

iii



Acknowledgements

First and foremost, I would like to thank my advisor, Professor Martin Karsten. This

thesis would not have been possible without his guidance and patience over the last two

years. I am also grateful to Professor Srinivasan Keshav and Professor Paul Ward for

taking the time to read my thesis.

Thanks to James She, Aaditeshwar Seth for rewarding discussions in research projects.

Suihong Liang, Jun Chen, Sheng Zhang, Zonglin Zhou and many others have helped me

much, and raised my morale. James She, Anand Subramanian, and Bassam Aoun share

a comfort working environment with me and keep me awake at nights. Nicole Keshav has

provided me with a pleasant experience for learning English. Finally, my parents and my

sister still love me.

iv



Contents

1 Introduction 1

2 Related Work and Background 4

2.1 Application Delay Requirements . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Playback Applications . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Elastic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Elevated Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Integrated Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Differentiated Services . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Non-elevated Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Best Effort Differentiated Services . . . . . . . . . . . . . . . . . . . 10

2.3.2 Equivalent Differentiated Services . . . . . . . . . . . . . . . . . . . 12

2.3.3 Alternative Best Effort . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Generalized Processor Sharing . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Router Buffer Size and TCP Traffic . . . . . . . . . . . . . . . . . . 19

v



3 Incentive-compatible Differentiated Scheduling 22

3.1 Arrival-Rate Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Relative Arrival-Rate Estimation . . . . . . . . . . . . . . . . . . . 25

3.1.2 Smoothing Algorithm in Arrival-Rate Estimation . . . . . . . . . . 27

3.1.3 Frequency of Rate Estimation . . . . . . . . . . . . . . . . . . . . . 32

3.2 Service-Rate Adjustment Delay . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Rate Budget for Strict Delay Target . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Division Using Reciprocal . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Minimal Rate Mechanism . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.2 Add-Rate Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Evaluation 51

4.1 Simulation Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Convergence Time of TCP Classes . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Size of the TSW Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Same Updating Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Behaviour of ICDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.1 Long TCP Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.2 Short Web-Like TCP Flows versus Long TCP Flows . . . . . . . . 65

4.5.3 CBR UDP Traffic versus Long TCP Flows . . . . . . . . . . . . . . 67

4.5.4 Self-Similar UDP Traffic versus Long TCP flows . . . . . . . . . . . 71

4.5.5 TFRC Flows versus Long TCP flows . . . . . . . . . . . . . . . . . 72

4.5.6 Optimal Delay Targets . . . . . . . . . . . . . . . . . . . . . . . . . 75

vi



5 Conclusions and Future Work 81

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

vii



List of Tables

4.1 Summary of simulation parameters. . . . . . . . . . . . . . . . . . . . . . 53

viii



List of Figures

2.1 Application delay requirements. . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Delay requirements of some popular applications [35]. . . . . . . . . . . . . 8

2.3 Architecture of BEDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 EDS model [24]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 ABE and the green acceptance test. . . . . . . . . . . . . . . . . . . . . . . 15

2.6 TCP buffer requirement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Architecture of ICDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Relative rate estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Comparison between TSW and ETSW. . . . . . . . . . . . . . . . . . . . . 29

3.4 Arrival-rate estimation in a time interval. . . . . . . . . . . . . . . . . . . 33

3.5 Control delay and packet time. . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Strategies of allocations and releases of the rate budget. . . . . . . . . . . . 37

3.7 Allocation fails, but the link bandwidth is sufficient in the third strategy. . 39

3.8 Value of RS(R1, L1) when L1 = 0. . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 Maximum of RS(R1, L1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 Pseudocode of the rate estimation. . . . . . . . . . . . . . . . . . . . . . . 48

3.11 Pseudocode of the enque operation. . . . . . . . . . . . . . . . . . . . . . . 49

3.12 Pseudocode of the deque operation. . . . . . . . . . . . . . . . . . . . . . . 50

ix



4.1 Standard configuration of the simulations. . . . . . . . . . . . . . . . . . . 52

4.2 Convergence time of the two TCP classes. . . . . . . . . . . . . . . . . . . 56

4.3 TSW window size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 ICDS adjusts the service rates in per-packet processing. . . . . . . . . . . . 59

4.5 Behaviour of long TCP flows under the impact of delay targets. . . . . . . 61

4.6 Behaviour of long TCP flows with a short delay target. . . . . . . . . . . . 62

4.7 Behaviour of long TCP flows under the impact of the add-rate option. . . 63

4.8 Behaviour of long TCP flows under the impact of the number of TCP flows. 64

4.9 Short web-like TCP flows versus long TCP flows. . . . . . . . . . . . . . . 68

4.10 CBR UDP traffic versus long TCP flows. . . . . . . . . . . . . . . . . . . . 70

4.11 Self-similar UDP traffic versus long TCP flows. . . . . . . . . . . . . . . . 73

4.12 TFRC flows versus long TCP flows. . . . . . . . . . . . . . . . . . . . . . . 74

4.13 Long TCP flows versus short web-like TCP flows. . . . . . . . . . . . . . . 77

4.14 Long TCP flows versus CBR UDP traffic. . . . . . . . . . . . . . . . . . . 78

4.15 Long TCP flows versus self-similar UDP traffic. . . . . . . . . . . . . . . . 79

4.16 Long TCP flows versus TFRC flows. . . . . . . . . . . . . . . . . . . . . . 80

x



Chapter 1

Introduction

Currently, the Internet provides a uniform best-effort service for all applications. “Best

effort” means that the Internet transmits packets with no service commitments: packets

entering the Internet are neither guaranteed to arrive at their destination, nor are they

warranted to arrive within a delay bound. Furthermore, the Internet does not provide

different services to packets in different flows. The Internet is highly scalable and simple to

implement because of this uniform best-effort characteristic. The routers in the Internet do

not need to record flow states and the scheduling algorithms employed in routers, such as

FIFO DropTail Queueing, are simple. In addition, the flat-rate type of simple commercial

agreements of the Internet are believed to be one of the reasons for its rapid deployment.

The services provided by the Internet to applications have the characteristics in terms

of throughput, delay, delay jitter, and loss. Applications have diverse service requirements.

For example, Voice over IP (VoIP) prefers short end-to-end delay, whereas File Transfer

Protocol (FTP) is not so sensitive to delay. Much research work has been done to enhance

the best-effort service of the Internet to differentiated services and guaranteed services.

Most existing service-differentiation approaches, called elevated services, attempt to

1



2 Incentive-compatible Differentiated Scheduling for Packet-switched Networks

provide better services than the best-effort service. Additional mechanisms, such as re-

source reservation and admission controls or pricing and policing, are usually required to

implement elevated services. This introduces several deployment issues. (1) The imple-

mentation cost of the additional mechanisms is much higher than the simple best-effort

service. (2) The inter-domain pricing model is not clear. (3) Upgrading the Internet from

a flat-charge model for the best-effort service to elevated services is not incremental.

Recently, a new approach, called non-elevated services, has been developed to provide

“different but equal” services [17, 24, 28]. Such services trade delay for loss or throughput;

that is, a service class with short delay has high loss or low throughput whereas a service

class with long delay has low loss or high throughput. Applications using non-elevated ser-

vices choose a service class based on their preference. For example, VoIP prefers the service

class with short delay and low throughput whereas FTP favours the service class with long

delay and high throughput. Non-elevated services do not require additional access-control

mechanisms or price differentiation because of this “equal” nature. Consequently, there is

no implementation overhead for the additional control mechanisms. Moreover, upgrading

from the best-effort service to non-elevated services can be incremental.

Incentive-compatible Differentiated Scheduling (ICDS) is a new member of the family

of non-elevated services in the sense that it can be used without additional access-control

mechanisms. It is based on the observation that bursty traffic requires more buffer than

smooth traffic to achieve the same loss rate. ICDS provides services with different delays.

A service with a short delay usually means less buffer. Consequently, applications with

smooth traffic and a requirement for short end-to-end delay, such as VoIP, have an incentive

to choose the short-delay service without losing too many packets; applications with bursty

traffic and a preference of high throughput, such as FTP, are more likely to choose the

long-delay service to avoid a high loss rate. Furthermore, ICDS can be used as a building
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block with admission control to provide delay-guaranteed services.

The mechanism of ICDS is simple. It allocates the link bandwidth in proportion to the

arrival rates of the traffic in all service classes in order to provide non-elevated services from

the throughput perspective. The basic idea and a prototype on the Network Simulator [3]

of ICDS are developed by Martin Karsten. The goal of this thesis is to study the behaviour

of ICDS and determine whether ICDS achieves its design goal. The contributions of this

thesis are summarized as follows:

1. This thesis investigates the behaviour of ICDS by analysis and simulations under

different types of traffic. In particular, it provides a model to describe the behaviour

of TCP traffic with ICDS based on an existing model on the behaviour of TCP traffic

with DropTail queueing.

2. The examination of the convergence of TCP traffic in ICDS leads to a clear under-

standing of the effects of the minimal-rate mechanism and the add-rate option.

3. The investigation in this thesis discovers that it is important to adjust service rates

at the same frequency for all the classes in ICDS to achieve a fast convergence for

TCP traffic.

4. This thesis also provides numerical analysis for the bounds of the errors introduced

by the technique to remove division operations, and a simple proof of the decay

property of the Efficient Time Sliding Window (ETSW) algorithm.

The remainder of this thesis starts with an introduction to the background and related

work of ICDS in Chapter 2. Chapter 3 describes the design and implementation of ICDS.

Chapter 4 presents the analysis and simulation results. Chapter 5 concludes this thesis

and suggests future work.



Chapter 2

Related Work and Background

This chapter reviews the background and related work for Incentive-compatible Differen-

tiated Scheduling (ICDS). Section 2.1 introduces the delay requirements of applications.

Section 2.2 and 2.3 review the related work. Section 2.4 presents the background.

2.1 Application Delay Requirements

The delay requirements of applications are not identical. Typically, interactive applica-

tions require shorter delay than non-interactive applications. Elastic applications are more

tolerant to delay than real-time applications [8]. Simply speaking, real-time applications

expect packets to arrive before a certain deadline. If the packets arrive later than expected,

they are useless. On the contrary, elastic applications usually can wait for packets. These

two types of applications are discussed in more detail in the following sections. Figure 2.1

is a summary of the delay requirements of certain applications.

4
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Figure 2.1: Application delay requirements.

2.1.1 Playback Applications

A major type of real-time applications are called playback applications. They replay the

signals from senders at receivers. For example, VoIP replays the speaker’s voice to the

listener; Internet Radio replays the music or the voice of the anchorman to the audience.

A playback application works as follows. The sender encapsulates the encoded digital-

ized signal in packets and transmits them through the Internet to the receiver. When the

packets arrive at the receiver, it decodes the signal from the packets and replays it. To

restore the signal to the receiver at the same rate as it is encoded at the sender, playback

applications usually put the playback time into the packets to indicate the receiver when

to play the contents of the packets.

A playback delay exists between the time when the signal is encoded at the sender and

when it is played back at the receiver. Clearly, if the transmission delay of all the packets is

identical, the playback time carried in them is set at a value such that the playback delay is

the transmission delay. However, the delays of all the packets are not identical in a packet-
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switched network where queueing delays change over time. In playback applications, if the

packets arrive early, their contents are useful to construct the signal; they are stored in a

buffer and replayed later at the playback time. If the packets arrive late, their contents are

useless and they are discarded. Usually, playback applications can tolerant some degree

of packet drops by interpolating the signal in the lost packets from their neighbouring

packets.

Although playback applications expect packets to arrive before the playback time, they

are usually tolerant to some variation of delay. Rigid playback applications estimate a

fixed playback delay by prior knowledge. However, most modern playback applications

detect the appropriate playback delay bound by monitoring the percentage of the packets

that arrive late and need to be discarded. If there are too many of dropped packets, the

quality of the applications degrades and the playback applications increase the estimated

playback delay.

2.1.2 Elastic Applications

Elastic applications are the traditional data applications supported in the best-effort In-

ternet. In contrast to real-time applications, elastic applications do not expect that packet

delays are within a certain range. Nevertheless, this does not mean that packet delays

are irrelevant to the performance of elastic applications. Their performance does degrade

when packet delays are long.

Essentially, elastic applications differ from real-time applications at the time to process

packets at receivers. Elastic applications process the packets immediately when they arrive

whereas real-time playback applications store them in a buffer, and replay their contents

later at the playback time. Furthermore, elastic applications do not usually discard packets

once they arrive at receivers. Although elastic applications are not very sensitive to packet
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delays, they also have a delay preference depending on whether they are interactive or

non-interactive.

The values of the delay requirements of a few applications are given as follows. The

quality of VoIP (an interactive real-time application) becomes annoying when its end-

to-end delay exceeds 150ms [32]. The end-to-end delay consists of network delay and

processing delay (packetization, encoding and decoding delay). Therefore, the required

network delay is less than 150ms. Figure 2.2 illustrates the delay requirements of some

popular applications (most of them are elastic TCP applications).

Currently, the Internet offers only a uniform best-effort service which is not sufficient

to accommodate the diverse service requirements of applications. Service differentiation

has been an active research topic for more than a decade. The existing approaches can

mainly be classified as elevated services and non-elevated services. Elevated services pro-

vide service classes better than the best-effort service. To control the use of privileged

service classes, the implementation of elevated services requires control-plane mechanisms

(e.g., resource reservation, charging, and policing) in addition to the necessary upgrades for

data-plane mechanisms (packet schedulers employed in the router data-forwarding path).

Elevated services are difficult to deploy because of the high implementation complexity of

the control-plane mechanisms and non-incrementally deployable property (i.e., the control-

plane mechanisms usually need to be deployed everywhere to operate or avoid denial-of-

service attacks [40]). Non-elevated services provide “different but equal” service classes.

Therefore, no control-plane mechanisms are required for implementation and the deploy-

ment can be incremental. The representative approaches in both categories are now re-

viewed.
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Figure 2.2: Delay and bandwidth requirements of some popular applications. Courtesy of
Noureddine and Tobagi [35].
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2.2 Elevated Services

Elevated services include resource-reservation models and priority models. The following

describes the two representative approaches discussed in the IETF working groups.

2.2.1 Integrated Services

Integrated Services (IntServ) [8] are a resource-reservation model. IntServ provides end-

to-end service guarantees (e.g., end-to-end delay and bandwidth) to individual flows via

resource reservation and admission controls. IntServ is not scalable because core routers

must maintain per-flow state which imposes large computational costs. IntServ is not

deployed currently, possibly due to the limited scalability, the implementation complexity

of the control-plane mechanisms such as the signalling protocol, management, accounting,

and the all-or-nothing upgrade from the best-effort Internet.

2.2.2 Differentiated Services

The basic design of Differentiated Services (DiffServ) [7] is a priority approach. It provides

per-hop service differentiation to aggregates of flows (called classes). Therefore, DiffServ

is more scalable than IntServ. In the DiffServ architecture, packets are marked with class

identifiers at the border routers of a DiffServ domain. After packets enter the domain, core

routers forward them with the service rules associated with their class identifiers. Two

per-hop services have been standardized in the DiffServ architecture: Premium service

[11] and Assured service [26]. Premium packets experience low queueing delay and low loss

rate in the Premium service. Packets in different classes have different drop rates in the

Assured service. DiffServ provides better services to some classes than others. It controls

the resource allocation of the privilege classes by charging their users more.
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DiffServ can also be used to provide service guarantees. For example, the QBone

Premium Service (QPS) [4] offers a virtual leased-line service model by the Expedited

Forwarding [11] per-hop service.

However, charging and access control are complex to be implemented and render Diff-

Serv not incrementally deployable. QPS is suspended and may never be continued because

the cost for deployment is higher than the benefits [40]. The top reasons are “poor incre-

mental deployment properties, intimidating new complexity for network operators, missing

functionality on routers, and serious economic challenges” [40].

2.3 Non-elevated Services

Non-elevated services provide “different but equal” services; that is, they provide services

that are a trade-off between delay and loss (or between delay and throughput). Because

different service classes are “equal”, control-plane mechanisms such as price differentiation

and admission control are not required. Therefore, non-elevated services can be incremen-

tally deployed from the best-effort service of the Internet. Furthermore, these services

retain the best effort, flat-rate type of commercial agreements which are believed to be

one of the reasons for the rapid deployment of the Internet. This section is organized as

follows. Sections 2.3.1, 2.3.2, and 2.3.3 describe the three existing proposals. Section 2.3.4

compares them and discusses their potential weaknesses.

2.3.1 Best Effort Differentiated Services

Best Effort Differentiated Services (BEDS) [17] trades delay for loss. It provides two service

classes. The service class for UDP traffic (the traffic of delay-sensitive applications) has

a short delay and a high loss rate whereas the service class provided for TCP traffic (the
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Figure 2.3: Architecture of BEDS.

traffic of throughput-sensitive application) has a long delay and a low loss rate. BEDS

enforces the ratio of the delay and loss of TCP traffic to UDP traffic. The delay ratio and

the loss ratio are two configuration parameters.

Figure 2.3 illustrates the architecture of BEDS. It puts TCP traffic into the Random

Early Detection (RED)[22] queue and UDP traffic into the FIFO DropTail queue. BEDS

employs Weighted Fair Queueing (WFQ) [12] to dynamically adjust the ratio of the service

rate of the TCP queue to the UDP queue.

BEDS uses the Backlog-Proportional Rate [14] algorithm to maintain a fixed ratio of

queueing delays; that is, BEDS adjusts the weight of the TCP queue wTCP and the weight

of the UDP queue wUDP in the WFQ scheduler as follows:

wUDP

wTCP

= δ ∗ qUDP

qTCP

, (2.1)

where qUDP and qTCP are the current queueing delays of the TCP queue and the UDP

queue respectively. δ is the delay ratio.

The drop rate pTCP of the TCP traffic is calculated by a RED control function [16]

with the characteristic of a low drop rate and a long delay. The drop rate pUDP of UDP
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traffic is determined by

pUDP = λpTCP , (2.2)

where λ is the drop-rate ratio.

If the UDP traffic is TCP-friendly and complies to TCP Friendly Rate Control (TFRC)

[20], it has the same response function as TCP traffic. The average throughput T (p,R) is

a function of the drop rate p and the round trip time R as expressed follows [36]:

T (p,R) =
M

R

√
3

2bp
+ o(

1√
p
) ≈ C

1

R
√

p
, (2.3)

where M is the average packet size and b is a constant. The throughput ratio of the TCP

traffic and the TFRC traffic can be controlled by the delay ratio and the loss ratio. For

example, given (2.1), (2.2), and (2.3), the average throughput of the TCP traffic and the

TFRC traffic is equal if the delay ratio δ and loss ratio λ are set as δ =
√

λ (assuming that

the propagation delay is short enough to be neglected such that the ratio of the queueing

delays approximately equals to the ratio of the round trip times).

2.3.2 Equivalent Differentiated Services

Equivalent Differentiated Services (EDS) [24] trades delay for loss similar to BEDS. EDS

provides service classes either with a short delay and a high loss rate or a long delay and

a low loss rate as shown in Figure 2.4. The delay ratios and loss ratios of the multiple

classes are configurable. EDS is implemented by the Waiting-Time Priority scheduler [14]

(a proportional-delay scheduler) and the Proportional Loss Dropper [13].

In EDS, delay-sensitive applications adaptively choose the service class that meets the

delay requirement and has the minimal possible loss rate by monitoring the end-to-end

delay. Assume EDS provides N service classes with delays di < dj in ascending order and
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Figure 2.4: EDS model with eight classes. The thick line is a class with a loss rate higher
than the average loss rate and a lower delay than the average delay. Courtesy of Gaidioz
and Primet [24].

loss rates pi > pj in descending order, where 1 ≤ i < j ≤ N . Then the service class for an

application with the delay requirement of D is class k with k = max(j), where dj < D.

Although the implementation of EDS and BEDS differs, their service models are simi-

lar. Both BEDS and EDS deliver proportional delay differentiation and proportional loss

differentiation. Therefore, like BEDS, EDS can adjust the delay ratio and the loss ratio

to control the throughput ratio between service classes if the traffic of different classes is

TCP-friendly.

2.3.3 Alternative Best Effort

Alternative Best Effort (ABE) [28] provides two service classes. One is a fixed short-delay

service class for delay-sensitive applications, called green service; the other is a service class

with no delay guarantee for throughput-sensitive applications, called blue service. ABE

trades delay for throughput. Green service provides fixed short delay and low throughput

whereas blue service has long delay and high throughput.
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Green traffic does not hurt blue traffic in ABE; that is, ABE provides blue traffic local

transparency and throughput transparency. Local transparency guarantees that the blue

packets experience the same or shorter delay in ABE than the delay they would experience

when all traffic is served by a best-effort service (e.g., FIFO DropTail queueing). If a blue

packet is not dropped in the best-effort service, it is not dropped in ABE. Throughput

transparency ensures that the throughput of blue traffic is not less than the throughput of

green traffic when both of them are TCP-friendly.

ABE is implemented by the packet scheduler, Duplicate Scheduling with Deadlines

(DSD), which is a variant of Earliest Deadline First schedulers [44]. Figure 2.5 illustrates

DSD. The green and blue packets are enqueued in two queues. A virtual queue (e.g., FIFO

DropTail queueing) implementing the flat best-effort service is used to drop packets when

the buffer is full and tag timestamps for the blue packets. Each arrival packet is virtually

duplicated. The duplicate is enqueued into the virtual queue.

A blue packet is dropped if its duplicate is dropped in the virtual queue. Otherwise,

it is accepted into the blue queue. The timestamps of the blue packet is t + vd, where t

is the current time and vd is the queueing delay of its duplicate in the virtual queue. A

green packet and its duplicate are admitted into the green queue and the virtual queue

respectively, if the green packet passes the green acceptance test, which accesses whether

the green packet can be transmitted with a queueing delay shorter than d as illustrated

in Figure 2.5. If assuming at time t that the queueing delay of the green queue is lg and

the time to transmit the blue packets with deadlines less than t + d is lb, a green packet is

accepted into the green queue if d > lg + lb. The deadline of a green packet is t + d. DSD

guarantees the delay bound of the green packets and the local-transparency property for

the blue packets by serving the green packets and the blue packets within their deadlines.

The response function of TCP, Equation (2.3) [36] on page 12, indicates that the average
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Figure 2.5: ABE and the green acceptance test.

throughput of TCP is approximately inverse proportional to the round trip time. If the

green traffic is TCP-friendly with the same response function as TCP, then the green

packets with a shorter queueing delay (thus a small round trip time) would get higher

throughput than the blue packets, if there are no other mechanisms. This is not desired

because the green service is better than the blue service. ABE therefore enforces that

the throughput of the blue traffic to be larger than the green traffic (i.e., the throughput

transparency for the blue traffic). ABE monitors the delay and loss ratio of green to blue

traffic and uses a feed-back controller to dynamically adjust the probability g to serve the

green packet, when both the green packet and the blue packet at the head of queue can

wait (their deadlines are both larger than the current time). Clearly, if g is large, green

packets are favoured and vice versa. If ABE does not always serve a green packet (g < 1),

some green packets can violate their deadline even though they pass the green acceptance

test. Therefore, ABE has to search and drop all the stale green packets in the dequeue

operation. The feed-back controller adaptively adjusts g to a reasonable small value to

increase the drop rate of green traffic. Consequently, the throughput of the green traffic

suffers and can be less than the blue traffic.
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2.3.4 Discussion

The existing approaches of non-elevated services fall into two categories. BEDS and EDS

are proportional delay and loss models whereas ABE is an absolute delay model. Two ad-

vantages make ABE more attractive. The maximal queueing delay experienced by packets

varies when traffic load changes in BEDS and EDS. Therefore, applications must adopt

an adaptive mechanism to choose the service class that meets the end-to-end delay re-

quirement as proposed in EDS. ABE does not require this additional mechanism. The

second advantage of ABE is that it needs to configure only an absolute delay which is rel-

atively clear given the application delay requirements. In contrast, BEDS and EDS need

to configure delay ratios and loss ratios. Reasonable delay ratios and loss ratios are not so

obvious.

However, ABE has its own weaknesses. It provides only two delay classes which are

not flexible. As shown in Figure 2.2 on page 8, the delay requirements of applications are

more diverse than two values. Furthermore, ABE has high implementation complexity.

The worst-case complexity of searching the stale green packets in the dequeue operation of

ABE is in proportion to the length of the green queue. The worst-case complexity of the

green acceptance test is in proportion to the length of the blue queue.

Another argument is about ABE’s definition of throughput transparency. ABE enforces

the aggregate throughput of the blue traffic to be always larger than the green traffic at

any time, ignoring the number of flows within them. This may not be reasonable. For

example, 1000 TFRC flows and 1 TCP flow compete for a bottleneck link. If the throughput

of the TCP traffic is enforced to be larger than the throughput of the TFRC traffic, the

performance of an individual TFRC flow is significantly worse than the case when all the

traffic is served by the best-effort service. A more reasonable definition of throughput

transparency may be that the throughput of an individual TCP flow is larger than an



Related Work and Background 17

individual TFRC flow. In such a case, the complicated feed-back controller to adaptively

adjust the probability g to transfer green packets would not be necessary. A fixed g which

renders the throughput of one TCP flow larger than the throughput of one TFRC flow

may be sufficient.

Dr. Martin Karsten proposes a new service-differentiation approach: Incentive-compatible

Differentiated Scheduling (ICDS). ICDS provides absolute delay services similar to ABE

while addressing its deficiencies. ICDS provides multiple delay classes and its implemen-

tation is more efficient than ABE. ICDS (or a generalized ABE which provides multiple

delay service classes) can be used either as a type of non-elevated services or as a building

block combined with admission control mechanisms to provide guaranteed delay services.

The existing approaches of non-elevated services provides incentives for applications

to choose their service class according to their delay and throughput preference. Delay-

sensitive applications prefer a short-delay service with some losing in throughput, whereas

throughput-sensitive applications favour a high-throughput service with a relative long

delay. It is argued that ICDS provides a new kind of incentive for applications to choose

a service class in accordance with the burst characteristics of their traffic. A common

observation is that bursty traffic needs more buffer, whereas smooth traffic needs less

buffer to attain the same loss rate. More buffer normally means a larger queueing delay

and vice versa. Therefore, applications with smooth traffic have no disincentive to choose

the short-delay service without the fear of losing too many packets, whereas applications

with bursty traffic have an incentive to choose the long-delay service to avoid a high loss

rate.
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2.4 Background

ICDS adopts a rate scheduler, a packet version of the Generalized Processor Sharing (GPS)

[12, 37]. The evaluation of ICDS with TCP traffic is principally related to the research on

TCP traffic with the size of router buffers. The following two sections briefly introduce

these background material of ICDS.

2.4.1 Generalized Processor Sharing

The Generalized Processor Sharing (GPS) algorithm is a generalization of the uniform pro-

cessor sharing algorithm [31] to share a service among multiple users. The work presented

in [37] studies the properties of GPS in the context of link-bandwidth sharing. A link

with a speed r is served by GPS. Session i is assigned a weight φi. A busy session i (with

packets waiting for transmission) is guaranteed to be served with the rate ri = rφi

Σj∈B(t)φj
,

the fraction of the link speed determined by its relative weight among all the busy sessions

B(t).

GPS is an idealized fluid model with the following assumptions: traffic can be divided

infinitely; the link can serve multiple sessions simultaneously. However, in a packet network,

the minimal traffic unit is one packet; a link can transmit one packet from only one session

at a time. Much research work has been done to emulate GPS with a packet algorithm.

The performance of a packet GPS algorithm is evaluated by accuracy and complexity. The

state-of-the-art packet GPS algorithm is L-WF2Q [41] with O(1) deviation from GPS in

terms of packet times and O(log(n)) complexity in terms of the number of sessions served.
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2.4.2 Router Buffer Size and TCP Traffic

Internet routers contain buffers to absorb the temporary imbalances between the traffic

load and the link capacity. The optimal size of a router buffer is not obvious. A large buffer

size potentially generates a long queueing delay whereas a small buffer size can cause too

many packet losses. Because the major type of traffic in the Internet is TCP traffic, the

buffer size of a router is mainly related to the behaviour of TCP traffic. TCP traffic is

generated by both long TCP flows (with a large amount of data such as FTP traffic) and

short TCP flows (with limited data such as interactive web traffic). The measurements

on commercial networks [23] suggest that over 90% of the traffic is from long TCP flows

in the Internet. Therefore, router buffer sizes are principally determined by long TCP

flows [6]. Two performance characteristics are related to the size of a router buffer under

TCP traffic: the utilization of the bottleneck link and the fairness among TCP flows. The

following is presented with the assumption that there is only one bottleneck router in a

data path.

First, the buffer size of the bottleneck router should be large enough to fully utilize the

bottleneck link. In the scenario where a single TCP flow transmits data on a bottleneck

link, if a packet is lost, TCP’s sending rate is roughly reduced by half through the congestion

avoidance algorithm [5] such that the sending rate is less than the link capacity. During the

following period until the sending rate climbs back to the link bandwidth, only the data in

the buffer are available to be transmitted. A router needs a buffer with a size B at least the

delay-bandwidth product (B = RTT × C, where RTT is the average end-to-end two-way

propagation delay and C is the link capacity) to hold sufficient data to keep the link busy

[6, 42]. It turns out that a small number of TCP flows (synchronization is common when

the number of flows is fewer than 100 [6]) synchronize and exhibit the same behaviour as a

single TCP flow such that they also need a buffer with a size at lease the delay-bandwidth
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product to fully utilize the link.

If a large number of TCP flows share a bottleneck link, the size of the router buffer B

should be larger than (RTT × C)/
√

n (n is the number of TCP flows) to fully utilize the

bottleneck link [6]; that is, the required router buffer size decreases when the number of

TCP flows grows. TCP flows desynchronize if the number of TCP flows is large [6] (in-phase

synchronization is very rare above 500 concurrent flows [6]). So the the congestion window

sizes of different TCP flows are independent. The probability distribution of the sum of all

the congestion window sizes is a normal distribution and its standard deviation is 1/
√

n of

the standard deviation of the probability distribution of one individual congestion window

size by the central limit theorem. As a result, the aggregate traffic of a large number of

TCP flows is less bursty than a small number of synchronized TCP flows. Consequently,

the required size of the router buffer decreases.

The size of the router buffer should be large enough to maintain the fairness among

multiple TCP flows [34, 38]. TCP’s throughput is adversely affected if fast retransmit

[5] cannot detect most of the packet losses. Fast retransmit requires that the size of the

congestion window of a TCP flow is larger than three in terms of the number of packets. If

the average size of congestion windows is less than three, some TCP flows are transmitting

data smoothly with most packet losses detected by fast retransmit whereas others are

always idle in the TCP retransmit timeouts [38]. Hence, the size of a router buffer should

be large enough such that the average size of congestion window of all TCP flows is larger

than three.

The sum (B + RTT × C) of the size of the bottleneck router buffer B and the delay-

bandwidth product RTT × C limits the amount of data (i.e., the sum of the congestion

window sizes of all TCP flows) that can be injected into the network. Therefore, the average

congestion window size w is (B+RTT×C)/n, where n is the number of TCP flows. Because
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Figure 2.6: TCP buffer requirement combining the impact of the link utilization require-
ment and fairness. The round trip propagation delay is 100ms.

of the fairness requirement of w ≥ 3MSS, where MSS is the size of a segment, the size B

of the router buffer should satisfy the following relation: B = nw ∗MSS − RTT × C ≥
3n ∗MSS −RTT × C.

Figure 2.6 shows the minimal acceptable buffer size of a router combining the impact

of the link utilization and fairness among flows. The required buffer size increases in two

scenarios: (1) When the link capacity is large and the number of flow is small (i.e., the

aggregate traffic is bursty), a large buffer is needed to hold sufficient data to fully utilize

the link bandwidth; (2) When the link capacity is small and the number of TCP flows is

large, a large buffer is required to guarantee the fairness among flows.



Chapter 3

Incentive-compatible Differentiated

Scheduling

Dr. Martin Karsten contributes to a large part of this chapter. His work is included here

because it is the background and base of this thesis. The contribution from this thesis in

this chapter is stated as follows. As presented in Section 3.1.2, this thesis proves that the

Efficient Time Sliding Window (ETSW) algorithm has the same long-term decay property

as the Time Sliding Window (TSW) algorithm. As shown in Section 3.1.3, this thesis

discovers that ICDS must adjust at the same frequency. In presented in Section 3.4, this

thesis analyzes the error bound of the technique to remove the division operation. Finally,

this thesis also provides the clear understanding of the functionality of the minimal-rate

mechanism and the add-rate option as illustrated in Section 3.5.

This chapter presents the design and implementation of Incentive-compatible Differ-

entiated Scheduling (ICDS). ICDS provides multiple service classes with different delays.

The service class with a long delay normally means a larger buffer. A common observation

is that smooth traffic needs a smaller buffer than bursty traffic to achieve the same loss

22
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rate. ICDS provides incentives for applications to choose a service class according to their

burst characteristics. The applications with smooth traffic have no disincentive to choose

a short-delay service without the fear of losing too many packets, whereas the applications

with bursty traffic have an incentive to choose a long-delay service to avoid a high loss

rate. In order to provide non-elevated services from the throughput perspective, ICDS

adjusts the service rates of the applications in different service classes in proportion to

their sending rates.

Figure 3.1 illustrates the conceptual architecture of ICDS. It separates the traffic with

different delay requirements into different queues. The traffic with the same delay require-

ment and entering the same queue is called a traffic class or simply a class in the remainder

of this thesis. The maximal queueing delay (called delay target) of a class is configurable.

ICDS measures the arrival rates of all the classes. It uses a packet GPS scheduler to allo-

cate the link bandwidth in proportion to the arrival rates of traffic classes and estimates

the queueing delay of a packet by dividing the queue length by the service rate. If the

queueing delay of the packet does not exceed the delay target, it is admitted. Otherwise,

it is dropped.

One of the design goals of ICDS is efficiency. Because ICDS uses a component of a

packet GPS scheduler, it is at least as complex as the packet GPS algorithm employed.

The complexity of ICDS is O(1) if the complexity of the packet GPS algorithm is excluded.

This chapter is organized as follows. Section 3.1 presents the design of the arrival-

rate estimator. Section 3.2 illustrates the time lag between the arrival-rate estimation

and the service-rate adjustment. Section 3.3 introduces the mechanism for strict delay

target guarantees. Section 3.4 describes the technique to remove the division operation in

the calculation of the queueing delays of packets. Section 3.5 presents the techniques to

guarantee and accelerate the convergence of TCP traffic with ICDS.
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Figure 3.1: Architecture of ICDS.

3.1 Arrival-Rate Estimation

ICDS estimates the arrival rates of traffic classes and use them to determine the service-

rate allocation. The value of the service rate is used to calculate the queueing delay of

a packet by dividing the queueing length by the service rate. Because the packet GPS

scheduler allocates an amount of link bandwidth to a class as the fraction of its weight

(its arrival rate) among the total weights (the total arrival rate), the value of the service

rate is actually results of the relative arrival rate of this class multiplying with the link

capacity. Therefore, ICDS needs to get the relative arrival rates of all the classes. Section

3.3.1 describes the approach used in ICDS.

The second issue with an arrival-rate estimator is that it should smooth out the in-

stantaneous bursts of traffic to avoid the oscillation of the system on a small time scale

while provide a fast response when the arrival rate changes on a medium or large time

scale. Section 3.3.2 presents the smoothing algorithm adopted in the arrival-rate estimator

of ICDS. A by-product of this smoothing algorithm removes the division operation in the

rate estimation.
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Finally, the update frequencies of the rate estimators of all the classes should be identical

and independent of their arrival rates to be fair. Section 3.3.3 addresses this issue.

3.1.1 Relative Arrival-Rate Estimation

The most straightforward way to acquire the relative arrival rates is to estimate the absolute

arrival rates of all the classes at the same time, and calculate the relative arrival rate of a

class by dividing its absolute arrival rate by the total absolute arrival rate of all the classes.

This operation must be done periodically to adapt to the change of the traffic load. Such a

method may be expensive because it requires timer support and division operations which

are significantly slower than addition and multiplication operations [39]. Furthermore, the

timer handler has O(n) complexity in terms of the number of traffic classes.

Although timer support may not be very expensive and the timer handler is not directly

on the critical path (per-packet processing), ICDS uses an alternative approach to avoid

the O(n) complexity and divisions in the first place. ICDS performs the computation of

the arrival-rate estimation in per-packet processing. Each class estimates only its relative

arrival rate independent of other classes. Therefore, although the total computation cost

of rate estimation is not reduced, ICDS distributes the O(n) computation cost in the timer

handler to the per-packet processing of each class. The complexity of the arrival-rate

estimation is O(1) per packet independent of the number of classes.

ICDS estimates the relative arrival rate directly instead of estimating the absolute

arrival rate of each class and calculating the relative arrival rates based on it. The average

relative arrival rate r of a class in a time interval is calculated by dividing the amount of

the arrival data l by the total arrival data s of all the classes in this time interval which is
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expressed as

r =
l

s
. (3.1)

A division operation exists here. However, this division operation is replaced by an efficient

shift operation in the version of algorithm with smoothing as shown in Section 3.1.2.

Because ICDS calculates the average arrival rate in per-packet processing, naturally,

the time interval for calculating the average relative arrival rate can be the time period

between two continuous receptions of packets in this class. Clearly, the raw instant rate

in such a small time interval is very unstable. Section 3.1.2 addresses this problem by

applying a smoothing algorithm on the relative arrival-rate estimation.

Figure 3.2 shows an example to illustrate this idea. The arrival rates of the three

classes are identical and constant. Obviously, the relative arrival rates of them are all

1/3. All packets have the same size. The packet from class 2 follows the packet from

class 1; the packet from class 3 follows the packet from class 2. Equation (3.1) calculates

the relative arrival rate of class 1 between the receptions of the two packets in class 1 by

l/s = l/(3 ∗ l) = 1/3, which is the expected correct value.

If all traffic classes transmit data in a constant rate, Equation (3.1) obtains the precise

relative arrival rate for all the classes. The sum of all the relative arrival rates is 1. However,

if some classes transmit data at a varying rate, Equation (3.1) gets the average relative

arrival rate in a time interval. The sum of all the relative arrival rates may not be 1 because

the time intervals of the arrival-rate estimations in different classes are not identical.
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Figure 3.2: Relative rate estimation. Each rectangle represents a packet. The relative
arrival rate is calculated by l/s.

3.1.2 Smoothing Algorithm in Arrival-Rate Estimation

This section presents the smoothing algorithm adopted in ICDS to smooth out the in-

stantaneous burst of traffic on a small time scale to avoid the instability of the system.

In addition, the smoothing algorithm must estimate the average relative arrival rate of

each class roughly in the same time interval both in the position and the length, because

ICDS uses the estimated arrival rates to adjust the service-rate allocation. This section

investigates two common smoothing algorithms: weight-based estimations and time-based

estimations. The distinction between them is that the correlation between the estimated

moving average and the rate history is dependent on the traffic rate in weight-based estima-

tions, whereas the correlation is independent on the traffic rate in time-based estimations.

Therefore, essentially, for the classes with different arrival rates, weight-based estimators

calculate arrival rates in the time intervals with different lengths, whereas time-based es-

timators estimates arrival rates in the time intervals with the same length. They are

discussed in more detail in the following.

The smoothing algorithm of the rate estimator is discussed on absolute rates in this

section. First, weight-based estimators are presented. The representative approach, the

Exponentially Weighted Moving Average (EWMA) algorithm measures the moving average



28 Incentive-compatible Differentiated Scheduling for Packet-switched Networks

rate Ri when the ith packet arrives:

Ri = αRi−1 + (1− α)ri, (3.2)

where ri is the current instantaneous rate measured when the ith packet arrives; α (0 <

α ≤ 1) is a constant representing the depth of EWMA’s memory. ri is calculated by li/δi

where li is the size of the ith arrival packet and δi is the time between the (i − 1)th and

the ith packet.

The decay of the estimated rates depends on the packet arrival rates in weight-based

estimators because the estimate rate is updated for each packet. If the traffic source sends

data fast, the decaying of the rate estimation is also fast, and vice versa. Consequently,

the weight-based estimator of a high-speed source forgets the rate history more quickly

than a low-speed source.

ICDS allocates service rates based on the estimated arrival rates. The moving averages

of arrival rates in different traffic classes need to be in the same time window. Therefore,

it is important to guarantee that the decaying speeds of the rate estimators in different

classes are identical and independent of the arrival rates.

The second approach, the Time Sliding Window (TSW) algorithm [9] decays the rate

history over time independent of the arrival rates. The average rate Ri when packet i

arrives in TSW is calculated by

Ri =
Ri−1W + li

W + δi

, (3.3)

where W is the size of the time window (a constant). ICDS chooses the TSW algorithm

to smooth the estimation of the arrival rates.

The TSW algorithm has an indispensable division operation over an arbitrary value
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Figure 3.3: Comparison between TSW and ETSW.

W + δi. ICDS modifies the TSW algorithm to remove the expensive division operation as

follows:

Ri =
Ri−1(W − δi) + li

W
, (3.4)

when W > δi; that is, some packets arrive in the last time window). If no packet arrives

in the last time window (i.e., W <= δi), Ri is set to a small constant Rc . By choosing the

constant W with a power of 2, such as 2w, the division over W can be implemented as a

shift operation,

Ri = (Ri−1((1¿ w)− δi) + li)À w. (3.5)

where W = 2w = 1 ¿ w. This variant of the TSW algorithm is called the Efficient-TSW

(ETSW).

Clearly, ETSW is only an approximation of TSW. Figure 3.3 illustrates the difference

between them. The per-step difference between them can be estimated by comparing the

right-hand sides of Equation (3.4) and Equation (3.3) as follows:
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Ri−1(W − δi) + li
W

− Ri−1W + li
W + δi

=
(li −Ri−1δi)δi

W (W + δi)
.

This result indicates that the difference between ETSW and TSW is small in each step,

if the ratio of the packet inter-arrival time δi to the size of the time window W is small.

Furthermore, it is necessary to know whether the accumulated discrepancy between

ETSW and TSW breaks the time decaying property in the long run. In the following, a

proof similar to the one in [15] confirms that the embedded decaying function in ETSW is

independent of the traffic rate, the same as TSW when δi is small enough.

Proof : The moving average rate after a time window is evaluated here. Assume all

the packets are equal in size. Let l denote the packet size. Assume the rate is constant.

Let δ denote the inter-arrival time between the packets. Ri denotes the estimated moving

average rate in ETSW when the ith packet arrives. R0 denotes the initial rate estimation.

W denotes the window size. After the first packet arrives, the rate estimation R1 is updated

by

R1 = R0

(
W − δ

W

)
+

l

W
.

After the second packet arrives,

R2 = R1

(
W − δ

W

)
+

l

W

=

(
R0

(
W − δ

W

)
+

l

W

)(
W − δ

W

)
+

l

W

= R0

(
W − δ

W

)2

+
l

W

(
W − δ

W

)
+

l

W
.
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By induction, after the nth packet arrives,

Rn = R0

(
W − δ

W

)n

+
l

W

(
W − δ

W

)n−1

+
l

W

(
W − δ

W

)n−2

+ ... +
l

W

= R0

(
W − δ

W

)n

+
l

W

n−1∑
i=0

(
W − δ

W

)i

.

The last n items are a geometric sequence (Σn−1
i=0 qi = 1−qn

1−q
). Recall that the value of

the moving average R after one TSW window W is to be investigated. Let W = nδ.
(

W−δ
W

)n
turns to be

(
1− 1

n

)n
. Then,

Rn = R0

(
W − δ

W

)n

+
l

W

(
1− (

W−δ
W

)n

1− (
W−δ

W

)
)

= R0

(
1− 1

n

)n

+
l

W

(
1− (

1− 1
n

)n

1− (
W−δ

W

)
)

= R0

(
1− 1

n

)n

+
l

δ

(
1−

(
1− 1

n

)n)
.

Clearly, 0 <
(
1− 1

n

)n
< 1. Let α =

(
1− 1

n

)n
, then,

Rn = R0α +
l

δ
(1− α). (3.6)

The above equation shows that ETSW decays the original rate R0 by a factor of α after

a window length of time W independent of the arrival rate1. ¥
1Equation (3.6) of ETSW is similar to Equation (3.2) of the EWMA algorithm. The difference is that

Equation (3.6) is executed every time window and the result is independent of the arrival rate, whereas
Equation (3.2) is operated when each packet arrives and the result depends on the arrival rate.
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If the ETSW algorithm is applied to relative arrival rates, similar to the simple relative

rate estimator (shown in Equation (3.1) on page 26), the variables denoting real time in

ETSW (shown in Equation (3.4) on page 29) change to the amount of the received data

for all the classes. Conceptually, ICDS does not keep track of real time but uses the total

received data as time (in terms of bytes and called byte time). W is the size of the byte-

time window. δi is the received data of all the classes (i.e., the elapsed byte time) between

the receptions of the ith packet and the (i− 1)th packet.

Because ETSW is operating on byte time instead of real time, the decaying of ETSW is

dependent on the total arrival rate (rather than the individual arrival rate of a class). If the

total arrival rate is high, ETSW forgets the rate history faster, and vice versa. However,

this is different from weight-based estimators because the ETSW estimators of all the

classes forget their rate histories at the same speed. Therefore, the ETSW estimators

estimate the average relative arrival rates in the time windows with the same size even

when the traffic rates are different.

3.1.3 Frequency of Rate Estimation

ICDS can adjust the service rates of the classes in proportion to their arrival rates at

per-packet processing. One drawback with such an approach is that a class with a higher

arrival rate adjusts its service rate more frequently than a class with a lower arrival rate

does. In such scenario, the low-speed class can miss the chance to increase its rate (a

simulation result illustrating the consequence is shown in Section 4.4 on page 57). A fair

approach is to estimate arrival rates and adjust service rates with the same time interval

(called update interval) for all the classes.

To avoid timer support, ICDS estimates relative rates and adjusts service rates every few

packets. The elapsed time between the two packet arrivals with service-rate adjustments is
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if t− Tk−1 < C then
Lk = Lk + li

else
Tk = t
∆k = Tk − Tk−1

if ∆k ≥ W then
Rk = Rc

else
Rk = Rk−1(W−∆k)+Lk

W

end if
end if

Rk the kth estimated relative rate
t current byte time
Tk the byte time when the service rate

is adjusted the kth time.
Lk the amount of data received from

Tk−1 to Tk

∆k the byte-time interval between Tk−1

and Tk

C the update interval, a constant

Figure 3.4: Arrival-rate estimation in a time interval.

approximately equal to the configured update interval C by the following simple approach.

ICDS maintains the elapsed time ∆ since the last service-rate adjustment. When a packet

arrives, ICDS compares ∆ with C. If ∆ is larger than C, ICDS updates the estimation of

the arrival rate and adjusts the service rate of this class. Otherwise ICDS does nothing.

Figure 3.4 shows the revised per-packet processing algorithm in each traffic class. The

rate estimator (Equation 3.4 on page 29) is modified to the version with a update interval:

the packet inter-arrival time δi is replaced by the elapsed time between the adjacent rate

adjustments ∆k; the size li of the ith packet is replaced by Lk, the amount of data received

in ∆k.

The update interval C should not be larger than the size of the time window W , because

ETSW requires C < ∆k < W most of the time (otherwise, the relative arrival rate is set to

a constant Rc as shown Figure 3.4). C should not be too small either. Ideally, each class

adjusts its service rate with the update interval C. However, C is approximated by ∆k in

this algorithm. The error between C and ∆k increases when C decreases. For an extreme

example, if C is set to be less than the packet inter-arrival time, this algorithm degrades

to the original version which adjusts service rates when each packet arrives.
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Figure 3.5: Control delay and packet time.

3.2 Service-Rate Adjustment Delay

When a packet arrives, ICDS estimates the queueing delay of this packet and places it at

the end of the queue if this packet can be transmitted within the delay target. Otherwise,

ICDS drops this packet. If the arrival rate changes, ICDS adjusts the service rate. Ideally,

ICDS adjusts the service rate immediately after the arrival rate change. However, if the

queue is not empty, ICDS has to delay the service-rate adjustment from the time when

the arrival rate is estimated (i.e., a packet arrives) to the time when this packet is served

(i.e. when the packet goes to the head of the queue). The reason is that a service rate

change (in particular, a service rate decrease) when a new packet arrives would break the

previous service-rate allocation for the accepted packets in the queue, thereby violate the

delay guarantee of these packets. Figure 3.5 illustrates that ICDS allocates the service rate

of each packet when it arrives at the head of the queue.

Intuitively, ICDS can estimate the queueing delay of a class by dividing the queue
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length by the service rate. However, the estimated arrival rate, and therefore, the service

rate for calculating the service time can change within the time interval of the queueing

delay. ICDS maintains the service time of a packet, called packet time, and calculates the

queueing delay as the sum of the packet times of all the packets in the queue. Figure 3.5

shows an example where the estimated arrival rates of packets differ. Obviously, it is not

necessary to maintain the service time in a granularity finer than a packet time because

the estimated arrival rates only change when ICDS processes the packets.

ICDS can be viewed as a control system. The arrival rates are the input; the service-

rate adjustments are the feedback. For each class, the delay of the feedback introduces a

control delay with a value of the current queueing delay. This delay is inevitable, but the

simulation results in Chapter 4 prove that the overall behaviour is acceptable.

3.3 Rate Budget for Strict Delay Target

In ICDS, the delay experienced by packets can violate the delay target without a service-

rate allocation check. Why? The sum of the estimated relative arrival rates of all the

classes may exceed 1.0 because different classes measure the relative arrival rates at different

time intervals. Therefore, the allocated service rates could temporarily exceed the total

bandwidth offered by the link. The fairness property of the packet GPS scheduler ensures

that all the classes receive a service rate less than what is expected if the link bandwidth

cannot accommodate the total arrival rate. Therefore, the calculated service time of a

packet (by dividing the packet length by the estimated service rate) would be less than

the real service time. The estimated queueing delay (the sum of the service times of the

packets in the queue) would be less than the real queueing delay. This would result in

that ICDS admits this packet which should be dropped, because although the estimated
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queueing delay does not exceed the delay target, the real queueing delay does.

From the previous discussion, it is clear that the sum of the service rates to be allocated

should be less than the link bandwidth, if strict delay targets are desired. ICDS guarantees

this by maintaining a variable to record the value of the available link bandwidth, called the

rate budget. If the service rate (i.e., the estimated relative arrival rate) of a class decreases,

ICDS releases the rate difference to the rate budget. If a class requests more service rate

and sufficient rate budget exists, ICDS allocates the rate difference from the rate budget.

Otherwise, ICDS does not increase the service rate allocation.

Because the control delay exists between the arrival-rate estimation and the service-

rate adjustment, it is not obvious when to allocate the rate difference from the rate budget

(called allocation) and when to release the rate difference to the rate budget (called release).

Three strategies are now considered to guarantee that the sum of the allocated service rates

is less than the link bandwidth at any time.

1. Allocation and release when ICDS estimates arrival rates. If the arrival rate

of a class decreases, the rate difference is released to the rate budget. However, the

allocated service rates does not change until all the packets in the queue are served.

In the time period between the release and the realization of the rate decrease, ICDS

may falsely admit a new allocation as shown in Figure 3.6(a). The queueing delays

of queue 1 and queue 2 are 100ms and 36ms respectively. ICDS releases 0.2 from

class 1 at 10ms and allocates 0.1 to class 2 at 60ms. The sum of the allocated rates

exceeds the link bandwidth after ICDS serves the end of queue 2. The reason is that

the sum of allocated service rates does not decrease at 10ms, whereas the rate budget

increases at that time. ICDS falsely admits the allocation of Queue 2 at 60ms because

the rate budget indicates that the available bandwidth is sufficient. This strategy

does not guarantee that the sum of the allocated rates is less than or equal to the
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(a) Allocation and release when rates
are estimated. The initial rate bud-
get is 0 and the initial sum of allo-
cated rates is 1.

(b) Allocation and release when ser-
vice rates are allocated. The initial
rate budget is 0.2 and the initial sum
of allocated rates is 0.8.

(c) Allocation at rate estimation; release
at rate adjustment.

(d) Allocation at rate estimation; release at
rate adjustment.

Figure 3.6: Strategies of allocations and releases of the rate budget. A(r) represents that
ICDS allocates r from the rate budget. D(r) represents that ICDS releases r to the rate
budget. (c) and (d) are the operations of the third strategy on the examples of (a) and (b)
respectively.
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bandwidth at all time.

2. Allocation and release when ICDS adjusts service rates. The availability

of the rate budget is used to judge whether to rate increase should be accepted. If

allocation and release are both delayed to the time when ICDS adjusts service rates,

the rate budget does not contain the information of the most recent allocations.

Figure 3.6(b) gives an example. ICDS accepts the rate allocation of both class 1 and

2. The sum of the allocated rates increases to 1.1 at 110ms. The reason is that ICDS

falsely accepts the allocation of class 2 because ICDS does not detect the allocation

of class 1 is already made at 60ms. This strategy does not guarantee the sum of the

allocated rates is less than or equal to the bandwidth at all time either.

3. Allocation at arrival-rate estimation and release at service-rate adjust-

ment. This strategy addresses the problems of the first two strategies. Allocation

at the time of arrival-rate estimation memorizes any potential increase of the sum

of the allocated rates. Release at the time of the service-rate adjustment guarantees

that the decrease of the sum of the allocated rates is realized. Figure 3.6(c) and (d)

illustrate the operations of this strategy on the examples of Figure 3.6(a) and (b)

respectively. The sum of the allocated rates never exceeds the link bandwidth.

ICDS uses the third strategy. It may delay some rate allocations, although the available

bandwidth is sufficient because of the control delay. The allocation is deducted from

the rate budget at the time of rate estimation whereas the actual service-rate allocation

is made when the packet becomes the head of the queue. Figure 3.7 provides such an

example. Although the available bandwidth is sufficient, the allocation of queue 3 fails. The

allocation of queue 3 is delayed to a later rate-adjustment opportunity after the release of

queue 1 is realized. The first several packets of class 3 are dropped unnecessarily. However,
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Figure 3.7: Allocation fails, but the link bandwidth is sufficient in the third strategy.

such packet drops are few because the sum of the estimated relative arrival rates is close

to 1.0.

As discussed above, the benefit of the rate-budget mechanism have a price. With

the rate-budget mechanism, ICDS sacrifices some utilization for strict delay guarantee.

A better variant of ICDS is an hybrid system that provides both strict delay classes for

delay-sensitive applications and loose delay classes (the long-term average delay is within

the delay target whereas the instantaneous delay can exceed the delay target) for TCP

applications without loosing utilization. This is left for future work.

3.4 Division Using Reciprocal

ICDS could calculate the packet time by dividing the packet length by the estimated

relative arrival rate. Because division operations are expensive, alternatively, the packet

time can be computed by multiplying the packet length by the reciprocal of the estimated



40 Incentive-compatible Differentiated Scheduling for Packet-switched Networks

relative arrival rate. ETSW estimates the reciprocal of the arrival rate R′ similarly to

estimate the arrival rate in Equation (3.4) on page 29 with li and δi switched as follows:

R′
i =

R′
i−1(W − li) + δi

W
. (3.7)

If no packets arrive in the last window W , R′
i is set at a constant 1/Rc where Rc is the

constant used in the arrival-rate estimator under the same condition (described in Equation

(3.4) on page 29). If the arrival rate is constant, the reciprocal R′
i is always the same as

1/Ri, because the smoothing algorithm does not have an impact on a constant. However,

if the arrival rate varies, they are not identical.

Another usage of R′ is to adjust the service rates. A packet GPS scheduler estimates

the service time of a packet by dividing its length by the service rate [12, 37]. This dividing

operation should also be replaced with a multiplication operation for efficiency in the real-

world implementation. The packet time of a packet is calculated by multiplying its packet

length by the reciprocal of the service rate in the packet GPS scheduler of ICDS.

Because ICDS uses R′ to adjust service rates, the total allocated service rate is
∑

1/R′
i.

However, to avoid any division operations, ICDS uses R to calculate the rate budget (1−
∑

Ri) such that the total estimated allocated rates is
∑

Ri. If the estimated total service

rate
∑

Ri is less than the allocated total service rate
∑

1/R′
i, the allocated total service

rate
∑

1/R′
i is larger than the link bandwidth (the rate budget mechanism essentially

makes
∑

Ri equal to the link bandwidth). Consequently, as shown in the discussion of

the design goal of the rate budget (Section 3.3), some packets will experience a queueing

delay longer than the delay target. Similarly, if the estimated total service rate
∑

Ri is

larger than the allocated total service rate
∑

1/R′
i, the queueing delay will be shorter than

expected.

The maximal difference between
∑

1/R′
i and

∑
Ri is shown on the case of two classes
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in the following discussion. R1 and R2 denote the original relative rates (R1 + R2 = 1

holds) of class 1 and class 2 respectively. L1 and L2 denote the amount of the received

data in class 1 and class 2 in the next update interval ∆ respectively (L1 + L2 = ∆ holds).

At the next rate estimation, the sum of the estimated relative arrival rates S(R1, L1) is

defined as a function of R1 and L1:

S(R1, L1) =
R1(W −∆) + L1

W
+

R2(W −∆) + L2

W
. (3.8)

Similarly, the total allocated service rate RS(R1, L1) is defined as a function of R1 and L1:

RS(R1,L1) =
1

1/R1(W−L1)+∆
W

+
1

1/R2(W−L2)+∆
W

, (3.9)

where R1 ranges between 0 and 1 and L1 ranges between 0 and ∆. S(R1, L1) is always 1

by the following simple algebra manipulation:

S(R1, L1) =
R1(W −∆) + L1

W
+

R2(W −∆) + L2

W

=
(R1 + R2)(W −∆) + (L1 + L2)

W

=
W −∆ + ∆

W
= 1.

Therefore, to find the maximal difference between RS(R1, L1) and S(R1, L1) is equiv-

alent to find the maximum or the minimum of RS(R1, L1). A necessary condition where

the maximum or the minimum of RS(R1, L1) locates is that all the partial derivatives of

RS(R1, L1) vanish (the stationary point) as follows:



42 Incentive-compatible Differentiated Scheduling for Packet-switched Networks

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 0  0.2  0.4  0.6  0.8  1

R
S

(R
1,

 L
1=

0)

R1

Figure 3.8: The value of RS(R1, L1) when L1 = 0. (W = 20, ∆ = 4).

∂RS(R1, L1)

∂R1

= 0,

∂RS(R1, L1)

∂L1

= 0.

The analytical solution of the system of these two equations is R1 = 1
2

and L1 = ∆
2

as solved by Maple [2]. The value of RS(R1, L1) at (1
2
, ∆

2
) is 1. Clearly, it is neither the

maximum nor the minimum of RS(R1, L1). Therefore, the maximum and the minimum fall

on the boundaries (the lines: L1 = 0, L1 = ∆, R1 = 0 and R1 = 1). After these boundaries

are examined, it turns out that the maximum falls on the line L1 = 0 or L1 = ∆. Figure

3.8 shows the value of RS(R1, L1) on the line L1 = 0.

If the ratio of the TSW window size W and to update interval ∆ is σ (i.e., σ = W
∆

),

then the maximum of RS(R1, L1) is the following (the value where dRS(R1,1)
dR1

= 0 on the
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Figure 3.9: The maximum of RS(R1, L1) as a function of σ (the ratio of W to ∆).

line L1 = 0 ) as solved by Maple:

f(σ) =
σ

1
2σ−1−2

√
σ2−σ

+ 1
+

σ
σ−1

1−(2σ−1−2
√

σ2−σ)σ
+ 1

, (3.10)

when R1 =
(
2σ − 1− 2

√
σ2 − σ

)
σ and L1 = 0 .

Figure 3.9 illustrates that f(σ) decreases and approaches 1 infinitely close (i.e., the

error of (RS(R1, L1)− S(R1, L1)) decreases) when σ grows. For a numerical example, if

σ = 5, the value of f(σ) is 1.028; R1 = 0.279 and L1 = 0; that is, if the rate changes

from 0.279 to 0, the sum of the estimated relative arrival rates may be 2.8% less than the

sum of the allocated service rates. Some packets can experience a queueing delay longer

than the estimated queueing delay by 2.8%. To guarantee a strict delay bound, a simple

solution is to reduce the total available rate budget by 2.8/102.8 = 2.7%; that is, the total

rate budget is 97.3%.

Similarly, the minimum of RS(R1, L1) falls on (0, ∆) or (1, 0) (when the rate of one
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class changes from 0 to 1 or from 1 to 0). The limit of the minimum as a function of σ is

g(σ) =
σ

σ + 1
. (3.11)

Clearly, given σ > 1, g(σ) < 1; g(σ) grows and approaches 1 when σ →∞. g(σ) is 0.83

if σ = 5. The error in most cases is smaller because the minimum of RS(R1, L1) can be

reached only when the relative rate of a traffic class changes dramatically from 0 to 1 or

vice versa. Some packets may be dropped unnecessarily because the real queueing delay is

less than the estimated queueing delay.

3.5 Convergence

It is important to investigate the behaviour of ICDS with TCP traffic because TCP traffic

dominates the Internet. This section discusses the design mechanisms to improve the con-

vergence of TCP traffic on ICDS. A new TCP flow uses congestion control algorithms (i.e.,

slow start and congestion avoidance [5]) to detect its fair share of the available bottleneck

link bandwidth and determine its sending rate. Furthermore, all the other TCP flows

need to re-detect their fair shares and adjust their sending rates when a TCP flow joins

the competition for the link bandwidth. Consequently, there exists a time interval (called

convergence time) between the time when a TCP flow starts (or ends) its transmission and

the time when the sending rates of all the TCP flows are stable again in the ICDS system.

TCP traffic converges fast for FIFO DropTail queueing (Section 4.2 shows the simula-

tion result) which is widely deployed in the Internet. One of the design goal of ICDS is to

achieve a convergence time comparable to DropTail queueing. Two mechanisms help the

convergence of TCP traffic in ICDS. They are described in the flowing.
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3.5.1 Minimal Rate Mechanism

The initial sending rate of a TCP traffic class2 is zero at the moment when it starts to

transmit data in ICDS. Consequently the initial service rate is zero for this class because

ICDS allocates the link bandwidth in proportion to the arrival rates of all the classes. A

zero service rate prevents the first packet (or several packets) of TCP to be transmitted.

Recall that TCP is a feedback congestion control protocol. If no ACK is received for the

first packet, TCP is unable to send subsequent packets. Therefore, a new TCP class would

never succeed to transmit any data, if ICDS strictly obeys the rate allocation rule. The

convergence time would be infinite.

Configuring a minimal rate c for each class addresses this problem. The value of c must

be large enough to transmit the packets in the initial congestion window of TCP within

the delay target.

The number of TCP flows that start transmission can have a large range of values.

However, the minimal rate c is a constant. A relative small c is acceptable in practice

because TCP flows in one class are not likely to begin transmission at the same time.

However, the packets in the initial congestion windows have a higher chance of being

dropped, if the number of flows that start transmission within a short time interval becomes

significantly large, which results in a slow convergence.

3.5.2 Add-Rate Option

ICDS reduces convergence time by another simple mechanism called the add-rate option.

The following requirements are necessary to boost convergence:

1. The mechanism should be biased to allocate more service rates to a class that needs

2A TCP traffic class contains single or multiple TCP flows. Its sending rate is the aggregate sending
rates of all the TCP flows in it.
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to increase rate to reach the stable state, but allocate less service rates to a class that

needs to decrease its rate to reach the stable state.

2. The mechanism should not be biased when the system is stable.

The add-rate option reduces the convergence time by allocating the service rate si of class

i in proportion to the sum of the arrival rate ri and a constant e as follows:

si

sj

=
ri + e

rj + e
, (3.12)

where sj and rj are the service rate and the relative arrival rate of class j respectively.

The following discussion describes an example to illustrate the effectiveness of the add-

rate option in a ICDS system with two TCP classes. Initially, the traffic from TCP class 1

occupies all the link bandwidth. Now the flows of TCP class 2 enter the system and start

transmission. The system begins to shift to a stable state in which each TCP class receives

one half of the link bandwidth, if the delay targets of these two TCP classes are the same.

In the transition stage, the arrival rate of TCP class 2 is less than the arrival rate of TCP

class 1 (i.e., r1 > r2). TCP class 2 needs to increase its rate, whereas TCP class 1 should

decrease its rate.

The service share r2+e
r1+r2+2e

of TCP class 2 with the add-rate option is larger than its

share r2

r1+r2
without the add-rate option as follows:

r2 + e

r1 + r2 + 2e
− r2

r1 + r2

=
(r1 + r2)(r2 + e)− r2(r1 + r2 + 2e)

(r1 + r2 + 2e)(r1 + r2)

=
(r1 − r2)e

(r1 + r2 + 2e)(r1 + r2)
> 0. (3.13)
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Similarly, the service share of TCP class 1 is less than its share without the add-rate option.

The add-rate option also satisfies the second requirement for a fast convergence. If r1 = r2,

both TCP classes receive half of the link bandwidth and no bias exists. Similar examples

can be provided to show that the add-rate option also works for multiple TCP classes.

In addition, Equation (3.13) shows that, if e grows, the bias is larger. Therefore, the

convergence time is reduced more. However, as e becomes larger, ICDS deviates more from

its original design: allocating bandwidth proportional to the arrival rates. Consequently,

e should be a trade-off between fast convergence and the original design goal.

ICDS merges the add-rate option into the relative-rate estimator. The rate estimator

in Figure 3.4 on page 33 is changed to

Rk =
Rk−1 (W − (∆k + Ne)) + (Lk + e)

W
, (3.14)

where N is the number of active classes. The estimator of the reciprocals of relative arrival

rates is modified similarly.

Figures 3.10, 3.11, and 3.12 provide the pseudocode of the rate estimation, the enqueue

operation, and the deque operation of ICDS.
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if (now-last[i]) < updateInterval then
data[i] ← data[i] + size

else
if (now-last) > (1¿ w) then

rate[i] ← minRate
recipRate[i] ← recipMinRate {recipMinRate = 1/minRate}

else
rate[i] ← (rate[i] * ( (1¿w) − (now - last[i] + n ∗ e) ) + (data[i] + e) ) À w
recipRate[i] ← (recipRate[i] * ((1 ¿w) − (data[i] + e) ) + (now − last[i] + n ∗ e)
)) À w

{if rate is less than the minimal rate, set to it.}
if rate[i] < minRate then

rate[i] ← minRate
recipRate[i] ← recipMinRate

end if
last[i] ← now
data[i] ← 0

end if
end if

Figure 3.10: Pseudocode of the rate estimation: procedure rateEstimate(i, now, size),
where “i” is the classID, “now” is the current byte time, and “size” is the size of the packet
received. The TSW window size is 2w (i.e., (1¿ w)), e is the add-rate constant, and n is
the number of active classes.
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now ← now + packet.size
i ← packet.classID
oldRate ← rate[i]
recipOldRate ← recipRate[i]

{Update rate[i] and recipRate[i].}
rateEstimate(i, now, packet.size)

rateDelta ← rate[i] − oldRate

{If rateBudget is not sufficient, revert to the old rate.}
if rateDelta> 0 and rateDelta > rateBudget then

rate[i] ← oldRate
recipRate[i] ←recipOldRate
rateDelta ← 0

end if

{Calculates the packet service time by multiplication by the reciprocal}
packetTime ← packet.size * recipRate[i]

{Drop this packet if it cannot be served within the delay target.}
if (que[i].delay + packetTime) > delayTarget[i] then

drop(packet)
else

que[i].delay ← que[i].delay + packetTime

{Carry information with packet.}
packet.time ← packetTime
packet.rateDelta ← rateDelta
packet.rate ← rate[i]
que[i].enque(packet)

{ ”Allocation” the rate difference from the rate budget when estimate the arrival rates.}
if rateDelta ¿ 0 then

rateBudget ← rateBudget − rateDelta
end if

end if

Figure 3.11: Pseudocode of the enque operation: procedure enque(packet).
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i ← nextClassID() {Get the id of next class to serve.}
packet ← que[i].deque()
que[i].delay ← que[i].delay − packet.time

{”Release” the rate difference to the rate budget when adjust service rates.}
if packet.rateDelta < 0 then

rateBudget ← rateBudget − packet.rateDelta
end if

{Delay the adjustment of the service rate until this packet becomes the head of the queue.}
GPSClass[i].setRate(packet.rate)
send(packet)

Figure 3.12: Pseudocode of the deque operation: procedure deque().



Chapter 4

Evaluation

This chapter presents the analysis and experiments to investigate the behaviour of ICDS.

These analysis and simulations try to answer the following questions. Can ICDS provide

separation between smooth traffic and bursty traffic? Does bursty traffic need more buffer-

ing, therefore a larger delay target, than smooth traffic? Does an optimal delay target exist

for a special type of traffic? These simulations also support the arguments in Chapter 3,

such as the effect of the add-rate option and the frequency of service-rate adjustment.

This chapter is organized as follows. Section 4.1 introduces the simulation configuration.

Section 4.2 shows the impact of the min-rate mechanism and the add-rate option on the

convergence time of TCP traffic in ICDS. Section 4.3 illustrates the proper TSW window

size. Section 4.4 presents the experiments to show that it is important to update the

rate estimations and adjust the service rates for all the classes at the same frequency in

ICDS. Section 4.5 presents the analysis and simulation to study the behaviour of ICDS

with different types of traffic.

51
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Figure 4.1: The standard configuration of the simulations. Two classes that contain mul-
tiple flows compete for a bottleneck link.

4.1 Simulation Configuration

The simulations in this thesis use the Network Simulator (ns-2) [3]. All experiments employ

a standard configuration to study how ICDS differentiates two traffic classes as shown in

Figure 4.1. The topology of this configuration is the dumbbell topology. Two classes that

contain multiple flows compete for a bottleneck link.

Table 4.1 summarizes the frequent used simulation parameters. The exceptions of them

are pointed out in each simulation. All the simulation results shown in this chapter use

TCP Newreno [27]. Several experiments are conducted with other TCP variants. It is

found the throughput of TCP Sack [33] is smoother than TCP Newreno in the simple

two-class case, whereas the throughput of TCP Reno [30] and TCP Tahoe [29] is burstier.

However, no significant differences are currently found on the average throughput and

loss rates between TCP Sack, TCP Reno and TCP Newreno in the context of following

studies. Some differences on throughput and loss rates exists between TCP Tahoe and

TCP Newreno. But with the rapid deployment of TCP Newreno [18] and TCP Sack [19],
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Packet size 1000 bytes
Propagation delay from A to B 10ms

Bandwidth from A to B 20Mbps
Propagation delay from Si to A, B to Ri 10ms

Bandwidth from Si to A, B to Ri 20Mbps
Number of flows for each traffic class 10

Simulation Length 200 seconds
TSW window size the maximal delay target
Update interval 1/5 of the TSW window size
Minimal Rate 3MSS/(the minimal delay target)

Table 4.1: Summary of simulation parameters. The size of a Maximum Segment Size
(MSS) is set to 1500 bytes in the simulations.

the behaviour of TCP Tahoe with ICDS is not relevant.

TCP Flows are started randomly to avoid deterministic phenomena that never happen

in the real world. Random processing time is added to the sender to avoid the traffic phase

effect of TCP as suggested in [21].

In this chapter, some simulation results are shown with only one replication because

they are relatively deterministic and the confidential interval of multiple replications is very

small. For example, the simulation results with TCP traffic and CBR UDP traffic. Other

simulations are conducted with 10 replications with different random seeds; the average

value and the 95% confidential interval are shown because there exists at least one random

component with a strong impact on the simulation result. For example, the simulation

results of self-similar traffic and short web-like TCP traffic.
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4.2 Convergence Time of TCP Classes

As defined in Section 3.5, the convergence time is the time interval between the time when

the flows in a TCP class start or stop transmission to the time when the system is stable

again. This section presents the experiments to study the convergence behaviour of TCP

traffic in ICDS. The simulation result of DropTail Queueing in the same environment is

shown as a benchmark.

In these simulations, the standard simulation configuration of Figure 4.1 is employed.

Two TCP classes with 10 TCP flows share a bottleneck link. The TCP flows in class 1

start randomly between 0 and 5 seconds; the TCP flows in class 2 begin randomly between

10 and 15 seconds. The rule-of-thumb buffer size for a router is the delay-bandwidth

product (i.e., 2Tp ∗ C, where Tp is the one way propagation delay and C is the bottleneck

link capacity) [42]. Therefore, the buffer size for DropTail queueing is set at 150 packets

(60ms*20Mbps/1000bytes). The delay targets of the two TCP classes in ICDS are both

set to the round trip propagation delay (60ms) such that the total buffer size for them is

the delay-bandwidth product if they share the bottleneck link bandwidth equally.

Figure 4.2 shows the throughput of two classes between 0 and 100 secs. Each point in

the figures represents the average throughput in 0.5 seconds. The convergence time of a

simulation is the time interval from roughly 10 seconds (i.e., when the flows in class 2 start

transmitting data) to the time that the throughput of the two classes are relative stable.

Figure 4.2(a) shows the behaviour of DropTail queueing. The two TCP classes converges

quickly with a convergence time of less than 5 seconds. Without the minimal mechanism,

the flows in class 1 can not start transmission. The simulation result is not shown here.

Figure 4.2(b) demonstrates the behaviour of ICDS with only the minimal-rate mechanism.

The throughput of the two traffic classes converges. However, the convergence time (ap-

proximately 40 seconds) is much larger than the DropTail Queueing. Figure 4.2(c) displays
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the behaviour of ICDS with both the min-rate mechanism and the add-rate option. The

add-rate constant is set at 200kbps, 1MSS/(the minimal delay target). The convergence

time is reduced to about 10 seconds which is comparable to the convergence time of the

DropTail Queueing.

These experiments show that the add-rate option does reduce the convergence time of

the TCP traffic in ICDS to a value that is comparable to the one on DropTail Queueing.

If there is TCP traffic, the minimal-rate mechanism is indispensable. If fast convergence

is preferred, it is better to enable the add-rate option.

4.3 Size of the TSW Window

The size of the TSW window is a trade-off between a fast response and the stability of

the system. If the window size is too large, ICDS responds slowly to the varying arrival

rates; if the window size is too small, the system is not stable. The time length of TCP’s

feedback loop is the round trip time (RTT). Therefore, if TCP traffic exists, the size of the

TSW window in ICDS must be comparable to the average round trip time of all the TCP

classes. Figure 4.3(a) shows that the convergence time is large if the size of TSW window is

5 times the average RTT; Figure 4.3(b) shows that the two TCP classes do not converge if

the TSW window size is 1/10 of the average RTT. Figure 4.3(c) show the simulation result

when the RTT of different flows are different. In this experiment, the backbone link delay

is 1ms. The access link delays are generated from a uniform random distribution between

the time interval [1ms, 20ms]. Therefore, the round trip propagation delays of different

flows are randomly distributed between 4ms and 82ms. The size of the TSW window is

1/2 of the average RTT. The simulation result shows that the throughput of TCP flows

converges. These three experiments verify the analysis that the TSW window must be
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Figure 4.2: Convergence time of the two TCP classes.
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comparable to the average RTT of all TCP classes.

4.4 Same Updating Frequency

The TCP classes update their arrival rates and adjust their service rates at the same

frequency independent of the arrival rates in the previous experiments. These experiments

have demonstrated that the rates of the TCP classes converges. Figure 4.4 shows the

results when the TCP classes adjust their service rates in per-packet processing with both

the minimal-rate mechanism and the add-rate option. The result is that the TCP traffic

does not converge to the ideal state where each class shares half of the link bandwidth

within 100 seconds. This occurs because high speed traffic has more chance to adjust its

service rate than low speed traffic. Consequently, low speed traffic cannot capture all the

chances to increase its service rate, when the bandwidth is available. ICDS must update

rate estimation and adjust service rates for all the classes in a same frequency.

4.5 Behaviour of ICDS

This section studies the behaviour of ICDS with different types of traffic.

4.5.1 Long TCP Flows

TCP’s throughput equation, Equation (2.3) on page 12, indicates that the throughput of

TCP is inversely proportional to its RTT and the square root of its loss rate. The number

of TCP flows determines how aggressive the aggregate TCP traffic is [34]. However, it is

unclear how the “single-class” TCP behaviour with DropTail queueing is related to the

TCP behaviour with ICDS where multiple TCP classes exist. The case of two TCP classes
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within 100 seconds.

with a small number of flows can be modelled and analyzed numerically. A system of

non-linear equations are derived from several observations when the system is stable.

First, the sum of the service rates (i.e., the throughput) is the capacity of the bottleneck

link C,

r1 + r2 = C, (4.1)

where r1 and r2 are the service rate of TCP class 1 and TCP class 2 respectively.

Secondly, ICDS allocates the service rate ri in proportion to the sum of the arrival rates

(i.e., the sending rate si of class i) and a constant e (the add-rate option) for each class as

computed by the following:
r1

r2

=
s1 + e

s2 + e
. (4.2)

Thirdly, the aggregate TCP congestion windows (the amount of data in transmission)

is equal to the size of the network pipe (the sum of the router buffer size and the delay-

bandwidth product), when a packet is dropped. At this time, all the TCP flows reach
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the same maximal congestion window wi because of the synchronization among a small

number of TCP flows [6, 38] within a TCP class. Therefore, the following is true:

niwi = (2Tp + di)ri, (4.3)

where ni is the number of TCP flows. The delay-bandwidth product of class i is the

product of the round trip propagation delay 2Tp and its service rate ri. The buffer size of

class i is the product of its delay target di and its service rate ri.

Fourthly, the loss rate li of a TCP flow, which is also the loss rate of traffic class i

because of the synchronization, is a function of the maximal congestion window wi [38],

represented by

li =
8

3w2
i + 21wi + 8

. (4.4)

Finally, the following is true:

li =
si − ri

si

. (4.5)

The numerical values of si, ri, and li can be calculated by solving the system of nonlinear

equations with (4.1), (4.2), (4.3), (4.4) and (4.5) (by the GNU Scientific Library [1]).

A series of simulations with different parameters are conducted to verify the analysis.

In each simulation, the data collected before the system is stable (100 seconds in the

simulations) is discarded. Each point in Figure 4.5 is the average value of the throughput

and the loss rate of one simulation between 100 and 200 seconds .

The first series of experiments study the impact of the delay targets on throughput and

loss rates. The add-rate constant e is set at 0 to show the behaviour of the original ICDS

without the add-rate option. The delay target of class 1 is fixed and set at 60ms (the two
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Figure 4.5: Behaviour of long TCP flows under the impact of delay targets.

way propagation delay); the delay target of class 2 is changed from 10ms to 120ms.

Figure 4.5 compares the simulation results with the numerical results of the analytical

model. The simulation and analysis results match, if the delay target of class 2 is larger than

45 ms. Figure 4.5 shows that the class with a longer delay target receives less throughput,

and the loss rates of the two traffic classes are equal. However, the model is not correct,

when the delay target of class 2 is less than 45 ms. Class 2 is short of buffer, and its

throughput decreases. The reason is that the assumption of Equation (4.4) no longer

holds. Equation (4.4) is true only when the buffer is sufficient to guarantee the average

congestion window size of TCP flows in terms of packets is larger than 3 [38].

The delay target of class 1 is 60 ms (the round trip propagation delay) in the previous

experiments. Several similar experiments when the delay target of class 1 is less than or

larger than 60 ms are conducted. The experiment results fall into two categories. (1) When

the delay target of class 1 is larger than 45 ms, the experiment results are similar to the

previous experiment results (the delay target of class 1 is 60 ms and the analysis model fits
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Figure 4.6: Behaviour of long TCP flows when the delay target of class 1 is 30ms.

with the simulation results in most areas). (2) When the delay target of class 1 is less than

45ms, the experiment results are different from the results when the delay target is 60ms.

Figure 4.6 shows the results when the delay target of class 1 is 30 ms. The throughput

of class 1 is smaller than class 2 and the loss rate of class 1 is larger than class 2, when

the delay target of class 2 is larger than 30 ms although the queueing delay of class 1 is

smaller than class 2. These observations violate the rule that TCP’s throughput is inverse

proportional to the round trip time. The reason is that the delay target of class 1 is so

small that it is short of buffer. The throughput of class 1 is damaged and its loss rate is

high. The analytical model does not fit the simulation results in this case (the analytical

result is not shown in Figure 4.6) because the delay target of class 1 is so small that it

lacks buffer and the assumption of Equation (4.4) does not hold.

Secondly, the impact of the add-rate constant e is studied. The delay target of class

1 and class 2 are set at 60 ms and 240 ms respectively. The add-rate constant e varies

from 0 to 600kbps (transmitting 3MSS within the minimal delay target). Figure 4.7 shows

the simulation results. When e increases, the difference between throughput decreases; the
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Figure 4.7: Behaviour of long TCP flows under the impact of the add-rate option.

loss rate of class 1 is larger than class 2, and the difference between them increases.

These observations can be explained as follows. The add-rate option e is identical in

all the classes. The class with the low throughput r1 benefits more from the add-rate

option than the class with the high throughput r2 because e
r1

> e
r2

, if r1 < r2. Therefore,

the loss rate of the low-throughput class (class 2) decreases whereas the loss rate of the

high-throughput class (class 1) increases; the throughput difference between them reduces.

Thirdly, the impact of the number of TCP flows in a class is investigated. Class 1

contains 10 TCP flows. The number of TCP flows in class 2 changes from 10 to 90. The

delay targets of both classes are set at 60ms. Figure 4.8 shows the experiment results. The

aggregate throughput of the class with more TCP flows is larger than the class with fewer

TCP flows because the aggregate traffic of more flows is more aggressive. However, the

loss rates of the two TCP classes are close even the number of flows in them are significant

different. Therefore, in addition with the fact that the round trip time of the TCP flows in

the two classes are identical, the throughput of one TCP flow in class 1 is the same as class

2 by TCP’s throughput equation (Equation (2.3) on page 12); that is, ICDS allocates the
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Figure 4.8: Behaviour of long TCP flows under the impact of the number of TCP flows.

amount of the service rate to a TCP class in proportion to the number of flows it contains.

The loss rates of both classes increase when the total number of TCP flows in the system

increases, because the total traffic is more aggressive.

Several experiments for a large number of desynchronized TCP flows are conducted.

The experiment results are not shown here. The first observation is that the convergence of

TCP traffic is fast even without the add-rate option. The possible reasons are the aggregate

traffic is more aggressive with more number of flows and there is no synchronization effect.

The numerical model for the small number of synchronized TCP flows does not match the

simulation result of a large number of TCP flows because Equation (4.4), the foundation of

the model, is derived under the assumption that TCP flows are synchronized and no longer

holds. The loss rate of the simulation result is lower than the prediction of the model of a

small number of TCP flows because the aggregate traffic of a large number of TCP flows

is less bursty.

The analysis and the experiment results in this section demonstrate that ICDS preserves

the properties of TCP traffic on DropTail queueing: the TCP flows with a smaller delay
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target, therefore, a smaller round trip time, have higher throughput, and the TCP traffic

with more flows is more aggressive. In other words, ICDS provides some degree of isolation

for the TCP traffic of different classes. Furthermore, the analytical model is useful to

understand and predict the performance characteristics of the TCP traffic in ICDS, given

the value of the delay targets and the add-rate constant e.

After examining Figure 4.5 on page 61 again, it can be observed that when the delay

target of class 2 is 45ms, the throughput of class 2 is at its maximum. If the delay target

of class 2 is decreased to less than 45ms, the loss rate of class 2 increases dramatically.

Clearly, the optimal delay target for the TCP flows in class 2 is 45ms.

4.5.2 Short Web-Like TCP Flows versus Long TCP Flows

Short web-like TCP flows arrive according to a Poisson process, and their file sizes comply

to a Pareto distribution with an average of 30 packets [10] (the shape parameter of the

Pareto distribution is 1.35 in the following simulations). This section studies the competi-

tion between a class with short web-like TCP flows and a class with long TCP flows.

Figure 4.9 shows that short web-like TCP flows use the fraction of link bandwidth cor-

responding to their aggregate load, while long TCP flows share the remaining bandwidth.

The loss rate of short web-like TCP flows is higher than the long TCP flows because short

web-like TCP flows stay in slow start [5] most of time, whereas long TCP flows always stay

in congestion avoidance stage [5]. Slow start is more bursty than congestion avoidance.

Figure 4.9(b) shows that the loss rate of class 2 decreases slightly when its delay target

is less than 30ms. This is a side effect of the minimal-rate mechanism. The minimal-

rate mechanism sets a minimal rate for a class to guarantee that three packets can be

transferred within the delay target (i.e., the minimal rate is calculated by 3MSS/ (the

minimal delay target) ); that is, if the delay target is smaller, the minimal rate is higher.
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Consequently, the loss rate decreases if the traffic load is comparable to the minimal rate.

In the following presentation, the data points affected by the side effect of the minimal-rate

option are either not displayed in figures or are explained by simply referring to the side

effect of the minimal-rate mechanism.

In addition, the experiments with the add-rate option enabled are conducted. Because

the results are only slightly different, they are not shown here. A TCP class with a light

load benefits more from the add-rate option than the one with a heavy load. Therefore, if

the traffic load of the short web-like TCP class is 9.6% of the link bandwidth, its loss rate

will decrease.

Figure 4.9 also shows the simulation result of DropTail queueing with the buffer size set

at the delay-bandwidth product. The equivalent configuration in ICDS is that the delay

targets of both classes are set at the round trip propagation delay (60ms). The throughput

of the two classes are almost identical in ICDS and DropTail queueing. The loss rates are

somewhat different. The reason is that ICDS provides some degree of isolation between

long TCP flows and short web-like TCP flows, whereas DropTail queueing offers none.

For example, in Figure 4.9(b), the loss rate of the short-web like TCP flows is significant

higher than the long TCP flows in ICDS because ICDS cannot increase the service rate of

the short TCP flows immediately if their arrival rate jumps up. However, with DropTail

queueing, the long TCP flows are affected by the bursts of the short TCP flows immediately.

Therefore, their loss rates are closer.

An interesting observation from Figure 4.9(b) to (d) is that the difference of loss rates

between long TCP flows and short TCP flows with ICDS decreases. Furthermore, when

the load of short TCP flows is 9.6%, the loss rate of short flows is higher than long flows in

DropTail queueing, whereas their loss rates are similar, when the load of short TCP flows is

48%. The reason may be that low-load traffic tends to have higher loss rate than high-load
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traffic. This seems true for both ICDS and DropTail queueing. Similar observations exist

in the later simulations.

There is no clear point indicating the optimal delay target for short web-like TCP flows.

The loss rate of short flows smoothly goes up when the delay target is decreased. One can

argue that short web-like TCP flows must make a trade-off between a low loss rate and

short queueing delay.

4.5.3 CBR UDP Traffic versus Long TCP Flows

In the following experiments, a CBR UDP class shares the bottleneck link bandwidth with

a TCP class (containing 10 TCP flows). The delay target of the TCP class is set at 60

ms, and the delay target of the UDP class increases from 15 ms to 120 ms. The add-rate

option is disabled to study the behaviour of the plain ICDS. Figure 4.10 shows that the

CBR UDP class receives a share approximately equal to its sending rate (excluding the

bandwidth wasted by the lost packets), whereas the TCP traffic occupies the remaining

bandwidth. If the load of the UDP class is 20% of the bottleneck link, the loss rate of the

UDP class increases when its delay target is less than 30ms. If the load of the UDP class

is 80% of the bottleneck link, the loss rate of the UDP class stays low even when its delay

target is small.

The different observations between the cases when the UDP load is 20% and 80% is due

to the degree that the TCP traffic affects the CBR UDP traffic. Routers would not need

buffers if only CBR UDP traffic exists. However, if it shares a bottleneck link with TCP

traffic, its relative arrival rate sUDP /(sUDP + sTCP ) (sUDP and STCP denote the absolute

arrival rates of CBR UDP and TCP respectively) is also bursty; that is, although the

absolute arrival rate of the CBR UDP traffic is constant, the service rate (equalling to the

relative arrival rate) is bursty. How bursty the service rate of the CBR UDP traffic depends
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Figure 4.9: Short web-like TCP flows versus long TCP flows. The flow arrival rate of short
web-like flows is 8/sec (i.e., the load is 9.6% of the link bandwidth) in (a) and (b). The
flow arrival rate is 40/sec (i.e., the load is 48% of the link bandwidth) in (c) and (d).
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on the fraction of its load in the total traffic. If the load SUDP of CBR UDP is larger, its

service rate is approaching 1. Therefore, the CBR UDP traffic has a near-constant service

rate and less buffer is required. On the contrary, if the load of the CBR UDP traffic is

small, its service rate is bursty and more buffer is needed.

If ICDS can isolate the CBR UDP traffic completely from the TCP traffic, then the

delay target of the CBR UDP class can be arbitrarily small. The experiment results in

Figure 4.10(b)) shows that ICDS cannot isolate different traffic completely because traffic

classes share the link bandwidth.

Figure 4.10 also shows the throughput and the loss rates of the TCP class and the CBR

UDP class in DropTail queueing. The throughput of two classes in ICDS is identical with

that of DropTail queueing. However, the loss rates are different. The reason is that ICDS

uses ETSW, a smoothing algorithm, to smooth the estimation of arrival rates. Because

the TSW window size is tuned for TCP traffic, the bursts of TCP traffic is effectively

removed. Therefore, the difference of the loss rates between the CBR UDP traffic and the

TCP traffic is small. For DropTail queueing, there is no such smoothing such that the loss

rate difference between the two classes is larger.

Also, the simulation with the add-rate option is conducted but not shown here. When

the load of the CBR UDP traffic is 20% of the link capacity, the add-rate option plus the

minimal-rate mechanism is comparable to the load of the CBR UDP traffic. The result

is that the CBR UDP traffic does not lose packets any more. When the load of the CBR

UDP traffic is 80% of the link capacity, the loss rate of the CBR UDP traffic is higher than

the TCP traffic, because the add-rate option has no impact on the non-responsive UDP

flows, whereas the TCP traffic benefit from the add-rate option.

When the load of UDP traffic is 20% of the link capacity, the optimal delay target

seems at the 50ms, whereas when the load of UDP traffic is 80% of the link capacity, the
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Figure 4.10: CBR UDP traffic versus long TCP flows.
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optimal delay target is less than 20ms.

4.5.4 Self-Similar UDP Traffic versus Long TCP flows

This section studies the behaviour of ICDS when self-similar UDP traffic shares link band-

width with TCP traffic. The self-similar traffic is generated by ON/OFF heavy-tail sources

[43]. 32 Pareto sources [25] (a typical self-similar generator) with the shape parameter 1.4

are used in these experiments. The add-rate option is disabled to show the behaviour of

plain ICDS. Figure 4.11 shows the experiment result. Self-similar UDP traffic is much

more bursty than TCP traffic. Therefore, the self-similar UDP traffic’s loss rate is much

higher than the TCP traffic no matter whether its traffic load is high or low. The loss rate

of class 2 decreases, when the delay target is less than 25ms in Figure 4.11(b) because of

the side effect of the minimal-rate mechanism.

Figure 4.11 also shows the experiment result of DropTail queueing. The loss rates of

the self-similar UDP traffic is very close to the TCP traffic in DropTail queueing, whereas

they are significantly different in ICDS. The throughput in ICDS are also different from

DropTail Queueing. The reason is that ICDS provides some isolation to protect the TCP

traffic from the bursts of the self-similar traffic, whereas DropTail queueing does not isolate

them at all. When the arrival rates of the self-similar traffic increases significantly in a

very short time period, ICDS cannot adjusts the service rate of the self-similar traffic

immediately because of the smoothing component in the rate estimator and the control

delay. Therefore, the self-similar traffic looses packets whereas the TCP traffic is not

affected. On the contrary, the increase of the self-similar traffic affects the TCP traffic

immediately in DropTail queueing. Consequently, their loss rates are similar.

The simulation results of self-similar UDP traffic competing with TCP long flows in

ICDS with the add-rate option enabled are almost the same as the previous results with
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the add-rate disabled. They are not shown in here.

It seems that there is no clear indication on where the optimal delay target for the

self-similar traffic. If the load of self-similar traffic is 20% of the link capacity, the optimal

delay target can be very small because the loss rate is always high. The self-similar traffic

has to choose a delay target as a trade-off between a low loss rate and a short queueing

delay, when the load of the self-similar traffic is 80% of the link capacity.

4.5.5 TFRC Flows versus Long TCP flows

This section examines the behaviour of ICDS, when TFRC traffic shares a bottleneck link

with TCP traffic. The number of the TCP flows and the TFRC flows are both 10 in

the experiments. The delay target of the TFRC class increases from 8 ms to 120 ms.

Figure 4.12 shows that the throughput of the TFRC traffic is slightly higher than the

TCP traffic when their delay targets are both 60ms. The loss rate of the TCP traffic is

slightly higher than the TFRC traffic when the delay target of class 2 changes from 14ms

to 60ms. Furthermore, the required buffer size of the TFRC traffic is less than the TCP

traffic as inferred by comparing the ranges of delay targets at which the loss rates of them

increase dramatically. The loss rate of the TFRC traffic increases dramatically when its

delay target is less than 14ms from Figure 4.12(b). However, the loss rate of TCP traffic

increases dramatically when its delay target is less than 45ms from Figure 4.5(b). All these

observations indicate that the TFRC flows have a slight advantage (a lower loss rate and

higher throughput) than long TCP flows in the same simulation configuration. This occurs

because TFRC traffic is smoother than TCP traffic although they have the same response

function [20].

Figure 4.12 also shows that the throughput and the loss rates of the TFRC traffic

and TCP traffic on DropTail queueing are almost the same with ICDS. Similarly, the
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Figure 4.11: Self-similar UDP traffic versus long TCP flows.
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Figure 4.12: TFRC flows versus long TCP flows.

throughput of the TFRC traffic is slightly higher than the TCP traffic and the loss rate of

the TFRC traffic is slightly lower than the TCP traffic because TFRC traffic is smoother

than TCP traffic.

For TFRC traffic competing with TCP traffic, the add-rate option has an impact similar

to the case when long TCP flows compete with long TCP flows as shown in Figure 4.7 on

page 63; that is, the throughput difference is reduced and the loss-rate difference increases.

The loss rate of the low-throughput traffic is less than the loss rate of the high-throughput

traffic because the low-throughput traffic benefits more from the add-rate option.

The experiment results in this section show that ICDS preserves the characteristics of

TFRC traffic and TCP traffic. The optimal delay target of TFRC flows exists at 16ms

from Figure 4.12.
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4.5.6 Optimal Delay Targets

Most of the previous experiments in this chapter change the delay target of the class

competing with long TCP flows. The simulation results indicate that an optimal delay

target usually exists. If the delay target of a class is less than the optimal delay target, its

loss rate increases significantly. Moreover, these simulation results reveal that this optimal

delay target are usually related to the burst characteristics of this traffic. Smooth traffic

has a small optimal delay target, whereas bursty traffic has a large optimal delay target.

For example, the optimal delay target of TFRC flows is less than the optimal delay target

of TCP flows.

The experiments in this section are an attempt to answer questions from the opposite

perspective. When one special type of traffic (long TCP flows) competes with other dif-

ferent types of traffic, does an optimal delay target exist for this special traffic? How is

this optimal delay target related to the burst characteristics of this traffic and the traffic

it competes with?

Figure 4.5 on page 61 shows the experiment results when long TCP flows competes

with long TCP flows. Figures 4.13, 4.14, 4.15, and 4.16 show the results when long TCP

flows competes with other different types of traffic. These experiments change the delay

target of the long TCP flows.

These simulations demonstrate that when decreasing the delay target of long TCP

flows, the loss rate of TCP flows sometime increases as shown in Figure 4.14(b), sometime

keeps near constant and the loss rate of the other traffic decreases as shown in Figure

4.15(b). These observations can be explained by the degree of bursts between long TCP

flows and the other type of traffic. If the TCP traffic is more bursty than the other traffic

(CBR UDP traffic in Figure 4.14(b)), decreasing the delay target of TCP traffic increases

its loss rate. If TCP is less bursty than the other traffic, decreasing the delay target of the
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TCP traffic is detrimental to it but the effect is exhibited at the more bursty traffic: the

loss rate of the bursty traffic decreases because it benefits when TCP traffic is damaged

by short of buffer.

When the delay target of the TCP traffic decreases, the loss rate of the long TCP

flows does not increase dramatically if the other traffic is more bursty. A new metric is

used to define the optimal delay target. If the delay target is less than the optimal delay

target, the throughput decreases. Most of the simulation results show that an optimal

delay target for the long TCP flows exist with two exceptions. (1) Figure 4.14(c) shows

that the throughput of the TCP traffic keeps constant when its delay targets is decreased.

However, Figure 4.14(d) shows that the loss rate of the TCP traffic is higher than the

UDP traffic, when its delay target is less than 25ms. It seems reasonable to consider this

value as the optimal delay target. (2) Figure 4.15(a) exhibits that the throughput of the

TCP traffic degrades, when its delay target decreases in the whole range between 5ms and

120ms. There is no clear turning point on the curve for the optimal delay target. It is

argued that in such scenario, the TCP class must choose an “optimal” delay target as a

trade-off between high throughput with a long queueing delay and low throughput with a

short queueing delay.

These simulation results do not clearly indicate where the optimal delay target exists

for the TCP traffic, but it is clear that the optimal delay target is not only determined

by the burst characteristic of the TCP traffic but also the characteristic of the traffic with

which the TCP traffic competes.
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Figure 4.13: Long TCP flows versus short web-like TCP flows. The delay target of class 1
(traffic of long TCP flows) increases from 5 ms to 120 ms.
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Figure 4.14: Long TCP flows versus CBR UDP Traffic. The delay target of TCP traffic
increases from 10 ms to 120 ms.
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Figure 4.15: Long TCP flows versus self-similar UDP traffic. The delay target of TCP
traffic increases from 5 ms to 120 ms.
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Figure 4.16: Long TCP flows versus TFRC flows. The delay target of TCP traffic increases
from 10 ms to 120 ms.



Chapter 5

Conclusions and Future Work

5.1 Conclusion

This thesis presents the implementation and the evaluation of Incentive-compatible Differ-

entiated Scheduling (ICDS). The evaluation of ICDS for different types of traffic demon-

strates that ICDS can mostly isolate and preserve the characteristics of different traffic

classes. The results of the simulation and analysis are summarized as follows:

1. The minimal-rate mechanism is critical for TCP traffic to start transmitting data.

2. The add-rate option can boost the convergence of a small number of synchronized

TCP flows. A TCP class with low throughput benefits more from the add-rate option

than a TCP class with higher throughput because the value of the add-rate option

is identical for all the classes. However, the add-rate option has no impact on non-

responsive UDP flows. Furthermore, desynchronized TCP flows converge fast even

without the add-rate option.

3. The appropriate TSW window size with fast convergence and no oscillation is the

81
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average round trip propagation delay for TCP traffic.

4. ICDS must adjust the service rates of different classes in the same frequency to

provide the same chance to increase service rate for the traffic with different rates.

This is important for the convergence of TCP traffic.

5. This thesis provides a numerical model for long TCP flows. This model verified by

simulations indicates that ICDS preserve the behaviour of TCP traffic. The long

TCP flows in a class with a smaller delay target has higher throughput than a class

with a larger delay target. ICDS allocates service rates in proportion to the number

of flows in each class. This numerical model is useful to predict the throughput and

the loss rate of a class given the delay target and the number of flows.

6. If the background traffic is the same, a bursty traffic class needs more buffer than a

smooth traffic class does.

7. In most cases, an optimal delay target exists for a certain type of traffic. However,

the value of this optimal delay target is related not only to the characteristic of this

traffic, but also to the characteristic of the background traffic.

8. ICDS provides some isolation between different types of traffic. For example, ICDS

protects TCP traffic from the extremely bursty self-similar UDP traffic. The rea-

son is that ICDS smooths the estimated arrival rate and a time lag exists between

the arrival-rate estimation and the service-rate adjustment. Consequently, if the ex-

tremely bursty traffic increases its arrival rate dramatically, ICDS cannot ajust the

service rate so quickly such that the bursty traffic loses packets. On the contrary,

DropTail queueing does not offer such protections because it serves smooth traffic

and burst traffic together. Smooth traffic is affected if bursty traffic increases its
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sending rate dramatically.

The evidences from the simulation and analysis demonstrate that it is likely that ICDS

can satisfy its design goal. Applications can choose the service classes according to the

burst characteristics of their traffic. ICDS does not require admission control and charging

mechanisms. Consequently, it does not have the high implementation overhead of control

plane mechanisms and can be deployed incrementally.

5.2 Future Work

As illustrated in Section 3.3, to provide strict delay guarantee to traffic classes, ICDS

loses some link utilization. In addition, many applications, such as the interactive web

applications, are not very sensitive to instantaneous increase of packet delay as long as the

majority of the packet delays are within the delay target. A future variant of ICDS is to

provide service classes with loose delay guarantee and increase the link utilization.

The numerical model for TCP traffic with ICDS in thesis is applicable for only a small

number of synchronized long TCP flows. It would be interesting to exploit the model to

describe the behaviour of a large number of desynchronized long TCP flows in ICDS. Also,

the numerical model cannot depict the behaviour of TCP traffic, when the delay target is

very small. The buffer of this class is not large enough to provide full utilization of the

allocated service rate or fairness among the TCP flows. Clearly, a model manifests the

case of the small delay target is desirable.

The current simulations are all conducted on the standard dumbbell topology. The

simulations on other type of topologies, such as multihop topology, are planed to investigate

the behaviour of ICDS in different scenarios.

In addition, ICDS can be used as a per-hop service in the architecture of DiffServ.
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Such systems provide end-to-end delay guarantee. Consider a network composed by ICDS

routers with admission control employed on the gateways at the edge. If the total load

of all the input traffic is guaranteed to be less than the capacity of the interval network

by the admission control, the total end-to-end queueing delay may be the delay target of

the service class that is chosen for the applications, independent of the number of hops

of the data path. This is similar to how a network composed of GPS routers provides

guaranteed delay services to the traffic shaped by token buckets. The difference is that

the GPS approach requires end-to-end signalling and rate reservation, whereas the ICDS

approach requires admission control only at the edge router with automatic rate allocation;

that is, for ICDS, the service rates are adjusted in proportion to the arrival rates of the

traffic classes). This application of ICDS requires further investigation.

Finally, a variant of ICDS can similarly be used for other non-elevated services in which

delay is traded for throughput. A throughput penalty, such as allocating the service rate

at 90% of the relative arrival rate, can be applied to the short-delay classes. By tuning

the parameter of the penalty, the short-delay class has lower throughput and a higher loss

rate, whereas the long-delay class has higher throughput and a lower loss rate.

5.3 Contributions

The basic idea of ICDS is conceived by Dr. Martin Karsten. The contributions of this

thesis are restated as follows.

1. This thesis investigates the behaviour of ICDS by analysis and simulations under

different types of traffic. In particular, it provides a model to describe the behaviour

of TCP traffic with ICDS based on an existing model on the behaviour of TCP traffic

with DropTail queueing. It shows some evidences that ICDS can achieve its design



Conclusion and Future Work 85

goal.

2. The examination of the convergence of TCP traffic in ICDS leads to a clear under-

standing of the effects of the minimal-rate mechanism and the add-rate option.

3. The investigation in this thesis discovers that it is important to adjust service rates

at the same frequency for all the classes in ICDS to achieve a fast convergence for

TCP traffic.

4. This thesis also provides numerical analysis for the bounds of the errors introduced

by the technique to remove division operations, and a simple proof of the long-term

decay property of the Efficient Time Sliding Window (ETSW) algorithm.
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