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Abstract

Glazing systems with attachments such as shades and insect screens are known as

complex fenestration systems (CFS). The ASHRAE Window Attachment Tool (ASHWAT)

for modeling heat transfer through a CFS are based on a general network of thermal

resistors. In these models, convective heat transfer at the indoor side of a CFS with an

indoor-mounted attachment is represented by a delta resistor-network. The heat transfer

coefficients that characterize this network cannot be calculated using the conventional

methods, i.e. based only on the knowledge of the total heat transfer rates at the

temperature nodes. Currently, approximate relations based on known limits and experience

are used in ASHWAT to estimate the indoor-side convection coefficients.

The CFS problem is part of the broader class of multi-temperature convection, i.e.

problems entailing exclusively isothermal and adiabatic boundary conditions. Driven by

the desire to calculate the convection coefficients of the CFS problem with improved

accuracy, this thesis is devoted to the study of multi-temperature convection. An extension

of the Newton law of cooling is proposed to formulate the multi-temperature convection

problem in terms of multiple driving temperature differences. Consequently, the problem

is characterized by multiple paired heat transfer coefficients. A technique dubbed dQdT

was developed to obtain the paired heat transfer coefficients. The dQdT technique is based

on a baseline solution to the full set of governing equations and subsequent solutions to the

linearized energy equation with perturbed boundary conditions. dQdT can be implemented

in both analytical and numerical solutions. In addition to enabling the extended Newton

formulation, the dQdT technique provides a basis for determining the applicability of the

resistor-network model to a convection problem. The validity of dQdT was demonstrated

in several ways.

The extended Newton formulation and the dQdT technique were applied to a wide range

of convection problems: forced and free convection, internal and external flows, laminar
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and turbulent flows, hydrodynamically developed and hydrodynamically developing flows,

constant- and variable-property flows. The extended Newton formulation was shown

to be advantageous compared to the traditional formulation; it leads to a presentation

of the solution that is more consistent with the physics of the problem while revealing

more detail about the thermal phenomenon. Moreover, using the dQdT results improved

correlations for the classical problems of convection in heated annuli and vertical channels

were developed.

Finally, the dQdT technique was applied to calculate the heat transfer coefficients of

the CFS problem. It was shown that while the current ASHWAT estimates are in good

agreement with the dQdT results for a CFS entailing a roller blind, there is a potential

for improving the ASHWAT estimates for a CFS entailing a venetian blind. Using dQdT,

the convection coefficients of a wide range of CFS configurations can now be accurately

calculated.
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Chapter 1

Introduction

1.1 The ASHWAT Models

In 2009, ASHRAE research project RP-1311 concluded with the ASHRAE Window

Attachment Tool, ASHWAT (Wright et al. 2009): a comprehensive set of energy simulation

models for Complex Fenestration System (CFS), i.e. glazing systems with attachments such

as slat-type shades, drapes, roller blinds and insect screens. The ASHWAT project was in

many aspects a success. ASHWAT predictions of solar transmission and solar heat gain

coefficient (SHGC) have been compared with indoor solar simulator measurements and

good agreement has been obtained (Kotey et al. 2009). The ASHWAT models have been

implemented in the ASHRAE Toolkit (HBX version) and other building energy simulation

software (e.g. Wright et al. 2011, Lomanowski & Wright 2012). Using ASHWAT, an

extensive set of tabulated shade performance data have been generated, now appearing

in the ASHRAE Handbook of Fundamentals (ASHRAE 2013). In addition, projects

undertaken since the completion of RP-1311 have demonstrated that the ASHWAT models

can be used in time-step building energy simulation with little computational cost, while

retaining full design flexibility and the possibility of real-time shade operation (Wright et

al. 2011, Lomanowski & Wright 2012).
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A key element of ASHWAT is a very general thermal-resistor network used to calculate

the overall heat transfer coefficient (U-factor) and SHGC of a CFS for any combination of

indoor/outdoor temperatures (air and mean radiant), and any level/direction of incident

solar flux (beam and diffuse) (Collins & Wright 2006, Wright 2008). In this network, each

layer of the CFS is represented by a node at the corresponding temperature, connected to

other layers (nodes) through radiative and convective thermal resistances. See Figure 1.1.

In the resistor network shown in this figure, a glazing/attachment layer at Ti is connected

to indoor and outdoor air through radiative (r) and convective (c) resistors. The main

feature of this approach is that it allows heat transfer between a node, Ti, and any other

node. The portion of this resistor network corresponding to the indoor side of a CFS is of

interest to the present thesis.

1.2 The Delta Network

The presence of an indoor-mounted attachment adds complexities to heat transfer in a

window system which must be considered in modeling. Many attachments, e.g. venetian

blinds, drapery with open-weave fabric and insect screens, allow transmission of radiation

— solar or longwave. Therefore, radiant exchange can take place directly between the

glazing (Ti) and the indoor surfaces (Tm,in), “bypassing” the attachment layer in between.

Likewise, air may flow through and/or around any attachment, allowing “direct” convective

heat transfer between Ti and Ta,in.

In Figure 1.2, the indoor portion of the resistor network of a CFS with an

indoor-mounted attachment is shown. This network pertains to the “centre-glass” region

of the window, i.e. away from the frame and edge seals, wherein the temperature of the

glazing layer is uniform and heat transfer can be treated as one-dimensional. This network

is comprised of three nodes representing the indoor-side glass surface (Tg), the attachment

(Ts), and the indoor air (Ta). Each pair of nodes is connected through a convective resistor.
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Figure 1.1: The general resistor network of ASHWAT (Wright 2008): A layer at Ti is
connected to indoor and outdoor air through radiative (r) and convective (c) resistors.
Ta: Air temperature, Tm: Mean radiant temperature, Si: Solar radiation absorbed at Ti

In Figure 1.2, the convective resistors are characterized by the respective heat transfer

coefficients. Note that each convective resistor exists in parallel with a radiative resistor.

In other words, a similar delta network describes radiant exchange at the indoor side.

The delta network shown in Figure 1.2 is advantageous in that it reveals detailed

information about the heat transfer phenomenon and provides the possibility of generating

accurate solar-thermal performance data for the CFS. Specifically, the resistor-network

formulation makes it possible to calculate SHGC and U-factor of a CFS for any combination

of environment temperatures and any level of insolation. This is not possible using the

traditional irradiance-radiosity approach for tracking longwave radiant exchange. The

resistor-network model is computationally advantageous too, especially in the context of

time-step building energy simulation. See the papers by Wright (2008) and Foroushani et

al. (2015a) for detailed discussion of these advantages.

The indoor-side network, shown in Figure 1.2, is only a small part of the complex

network of the entire CFS (Figure 1.1). Moreover, heat transfer at the indoor side is usually
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Figure 1.2: The resistor network of convection at the indoor side of a complex
fenestration system (g: glazing, s: shading attachment, a: indoor air)

dominated by radiant exchange. Therefore, the performance of the ASHWAT models

and the whole-building energy simulations is unlikely to be sensitive to the indoor-side

convection coefficients. This was suspected during the development of the ASHWAT

models and later demonstrated through a sensitivity analysis (Foroushani et al. 2016).

Nonetheless, compared to the other components of ASHWAT, the calculation of hgs,

hsa and hga, the heat transfer coefficients that characterize the delta network of Figure

1.2, does not enjoy the same level of fundamental grounding. Currently, approximate

estimates based on known limits and experience are used in ASHWAT to evaluate these

coefficients. These estimates will be discussed and examined in detail in Chapter 10. In

fact, the first suggestion made in the final report of RP-1311 (Wright et al. 2009) for

future research was to develop “more detail and accuracy regarding indoor surface and

glazing/shading layer channel convective heat transfer coefficients”. When the ASHWAT

models were developed the research on the thermal performance of window attachments

was at an early stage. The heat transfer literature yields virtually no information on the

resistor-network modeling of complex convection problems and evaluating the convective

resistances involved. Surprisingly, it was revealed upon further examination that the
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three convection coefficients corresponding to the delta network of Figure 1.2 cannot be

determined using conventional methods. The formulation of this problem and development

of solutions were the original motivation for the research reported in this thesis.

1.3 Multi-Temperature Convection

The problem of convection at the indoor side of a CFS comprises three isothermal

boundaries: the glazing at Tg, the attachment at Ts, and the far-field air at Ta. Moreover,

the isothermal boundaries of the CFS problem are all in thermal “communication”. In

other words, the temperature of each node influences heat transfer at each of the other two

nodes. The success of the ASHWAT models is in large part due to the recognition and

proper modeling of this feature.

But the CFS problem is not unique in these respects. In various heat transfer problems,

the thermal problem entails exclusively isothermal and adiabatic boundary conditions. In

such cases, heat transfer at each isothermal boundary is in general influenced by all the

boundary temperatures. Convection in passages with isothermal walls and over isothermal

surfaces are common examples. Thus, a class of heat transfer problems can be identified

under the title of multi-temperature convection problems. The three-temperature problem

of convection at the indoor side of a CFS is an example of this class.

1.4 Scope

The present research was undertaken to study convection at the indoor side of a complex

fenestration system and calculate the three convection coefficients that characterize the

corresponding delta network with improved detail and accuracy. It was revealed however

that the CFS problem belongs to the broader class of multi-temperature convection

problems. Furthermore, it became clear that the lack of detailed calculation methods
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for the indoor-side convection coefficients in ASHWAT is not merely a weakness of these

models; it is a general shortcoming of the conventional methods used in the study of

convection. The scope of the study was accordingly expanded to the general problem of

multi-temperature convection.

The research reported in this thesis was conducted with three overarching goals:

i) Formulating “the problem of multi-temperature convection” and exploring possible

solutions.

ii) Developing a methodology for calculating the heat transfer coefficients of the CFS

problem.

iii) Assessing the current ASHWAT estimates for the convection coefficients of the CFS

problem.

1.5 Overview

This thesis is organized in eleven chapters. In the following two chapters, the theoretical

basis of the work is presented. An extension of the Newton law of cooling is proposed

as a general formulation of multi-temperature convection (Chapter 2). A new technique,

dubbed dQdT, is developed to calculate the corresponding heat transfer coefficients. The

theory concludes with an examination of the resistor-network model of convection (Chapter

3). In Chapters 4-9, several classical problems are revisited using the extended Newton

formulation and the dQdT technique. In Chapter 10, dQdT is applied to calculate the heat

transfer coefficients of convection at the indoor side of complex fenestration systems and

assess the ASHWAT estimates. In the concluding summary, Chapter 11, highlights of the

work and suggestions for future research are presented. In seven appendices, additional

information such as computer codes, tabulated solution data and a mathematical theorem

are presented.
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A great portion of the results presented in this work is based on numerical solutions.

Effort has been made to present a complete set of information (computational domain,

discretization, solution schemes, validation, etc.) for each numerical solution. However,

depending on the context and purpose of study, such information is presented with different

levels of detail. For instance, due to its simplicity, the finite-difference solution to the

asymmetric Graetz problem (Chapter 2) is not scrutinized in great detail. This solution

is chiefly used for demonstration. On the other hand, the finite-volume solutions to

the problem of free convection in a vertical channel, used to develop new heat transfer

correlations, are examined and validated in much greater detail.

Although effort has been made to maintain consistency throughout this thesis, there are

some differences in notation from one chapter to another. This is because the dQdT results

presented in most chapters are based on, or at least compared to, existing solutions from

the literature. Priority was given to consistency within each chapter. Hence, differences in

the notations and definitions used by different authors have led to minor discrepancies in

the present work. For example, the temperature ratio, rT , is defined differently in Chapters

4 and 8.

Most of the material presented in Chapter 4 on the asymmetric Graetz problem has

been published in the AIAA Journal of Thermophysics & Heat Transfer (Foroushani et al.

2017a). The results presented in Chapters 5 and 6 for the annulus problem along with parts

of the mathematical development presented in Chapter 2 appear in another publication in

the Journal of Thermophysics & Heat Transfer (Foroushani et al. 2017b). The material

on laminar free convection in a vertical channel (Chapter 8) and the full development of

the dQdT technique (Chapter 2) have been published in the third paper of the series in the

Journal of Thermophysics & Heat Transfer (Foroushani et al. 2017c). The dQdT results

for CFS configurations with a roller blind (Chapter 10) were presented at the ASHRAE

Winter Conference 2017 (Foroushani et al. 2017d).
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Chapter 2

Mathematical Formulation of

Multi-Temperature Convection

2.1 The Newton Formulation

According to the Newton law of cooling, the rate of convective heat transfer is directly

proportional to a driving temperature difference. Since most convection problems entail

fluid flow over surfaces, this temperature difference is usually the difference between

surface and fluid temperatures. The Newton law of cooling is expressed mathematically by

introducing a proportionality coefficient, known as the convection heat transfer coefficient,

h, as shown in Equation 2.1. In this equation, Q1 is the heat transfer rate at the surface, A

is the surface area, and T1 and T0 denote the surface and fluid temperatures respectively.

Q1 = hA(T1 − T0) = hA∆T (2.1)

Equation 2.1 is hereinafter called the “Newton formulation”.
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The “direction” of heat transfer is designated by a sign convention. Throughout this

thesis, Q1 > 0 designates heat transfer from the surface, while Q1 < 0 corresponds to heat

transfer to the surface. The heat transfer coefficient is hence never negative; h ≥ 0.

Note that although h is introduced as a proportionality coefficient, it is not necessarily

a constant. In other words, the relation between the heat transfer rate and temperature

difference is not necessarily linear. Any nonlinearity in Q1 with respect to T1 or T0 is

contained in h.

Further note that tacit in the Newton formulation is the assumption that convective

heat transfer occurs in a setting with two representative temperatures, T0 and T1. A

standard example is heat transfer in flow over an isothermal flat plate, shown schematically

in Figure 2.1. In this case, the free-stream temperature and the surface temperature are

the two representative temperatures. Note that the free-stream flow and the plate surface

are two isothermal boundaries; T0 and T1 are boundary temperatures. In connection to

the mathematical formulation of the problem, these two isothermal boundaries constitute

the boundary conditions of the differential energy equation.

Obviously, not all convection problems entail isothermal boundaries — flows or surfaces.

In fact, the isothermal assumption is in most cases an idealization because uniform

temperature distributions are rarely encountered. It is however usual to represent a

non-uniform temperature boundary by some average temperature.

Moreover, in many cases the thermal condition at a surface is determined by the

temperature gradient, i.e. heat flux, rather than temperature. In this case, non-uniform

temperature distributions are usually encountered. In the case of isoflux surface conditions

too, the Newton formulation is typically applied by using an average temperature to

represent the surface.

Even if only prescribed-temperature boundaries are involved and the isothermal

idealization is invoked, many heat transfer problems are described by more than two
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Figure 2.1: Schematic of flow over an isothermal flat plate

isothermal boundaries, hence entailing more than two representative temperatures. A

common example is convective heat transfer in asymmetrically heated passages, e.g. the

parallel-plate channel shown in Figure 2.2. If the flow enters the channel at a uniform

temperature, T0, and the walls are at temperatures T1 and T2, the thermal boundary

conditions entail the set of three independent temperatures: {T0, T1, T2}. Heat transfer in

the channel is hence determined by three boundary temperatures.

The Newton formulation (Equation 2.1) needs be reconciled with the presence of three

representative temperatures. It is conventional to construct a single temperature difference

through a combination of the independent (and sometimes dependent) temperatures. For

example, the mean wall temperature, Twm = (T1 + T2)/2, is used to represent the channel

walls. The total heat transfer in the channel is hence expressed as shown in Equation 2.2.

Q1 +Q2 = hA(Twm − T0) (2.2)

In internal-flow problems, e.g. convection in an isothermal pipe, instead of T0, the mean

fluid temperature, Tm, is usually used to represent the fluid flow. The choice of Tm as a

representative temperature is advantageous because it leads to a constant heat transfer

coefficient which contains important information from the solution of the energy equation,

namely the mean fluid temperature. Note that Tm is a dependent variable.
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Figure 2.2: Schematic of flow in a parallel-plate channel with isothermal walls

Using Tm to represent the flow, the Newton formulation of heat transfer in the channel

shown in Figure 2.2 is expressed as shown in Equation 2.3.

Q1 +Q2 = hA(Twm − Tm) (2.3)

As will be demonstrated in Chapters 4 and 5, using Tm to represent the flow in problems

entailing multiple (more than two) isothermal boundaries can be problematic. Presently,

attention is devoted to a proper extension of the Newton formulation exclusively in terms

of the independent, boundary temperatures.

2.2 The Newton Formulation Extended

It is known from the mathematics of the problem that heat transfer in the configuration

shown in Figure 2.2 is influenced by all the three independent temperatures, i.e. the set

of boundary temperatures, {Ti}. More precisely, the rate of heat transfer at either wall

and the rate of total heat transfer to the fluid are all functions of {Ti}. This observation

is supported by laboratory and numerical experiments. Equation 2.4 is the mathematical

expression of this observation.
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Qi = Qi

(
{Ti}

)
(2.4)

As suggested by the Newton formulation, it is the driving temperature difference,

i.e. the difference between the boundary temperatures, that determines the heat transfer

rate. In the case of multiple boundary temperatures, there are also multiple temperature

differences. In the three-temperature arrangement of Figure 2.2, for example, there are

three temperature differences: ∆T10 = T1 − T0, ∆T20 = T2 − T0 and ∆T12 = T1 − T2.

The functional relation between {Qi} and {Ti} can accordingly be rewritten as shown in

Equation 2.5 to emphasize the role of the temperature differences.

Qi = Qi

(
{∆Tij}

)
(2.5)

Note that obtaining Equation 2.5 from Equation 2.4 mathematically entails merely a

linear change of variables.

To recast Equation 2.5 into a form analogous to the Newton formulation (Equation

2.1), Qi can be expanded into a linearized summation with ∆Tij explicitly factored out of

each term. See Equation 2.6.

Qi =
∑
j

Cij∆Tij =
∑
j

Cij(Ti − Tj) (2.6)

Any nonlinearity with respect to {Ti} is contained in {Cij}. But no assumptions are

made regarding the form of {Cij}. Equation 2.6 is hereinafter called the “extended Newton

formulation”. Equation 2.1 is a special case of Equation 2.6.

The coefficient Cij characterizes the relationship between Qi and the driving

temperature difference ∆Tij. It is hence appropriate to call Cij a “functionality coefficient”.
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The subscript ij is introduced to indicate that Cij corresponds to the dependence of Qi on

a specific temperature difference, ∆Tij.

Applying the extended Newton formulation to the three-temperature example of

convection in an asymmetrically heated channel (Figure 2.2), the rate of heat transfer

at the walls can be written as:

Q1 = C10(T1 − T0) + C11(T1 − T1) + C12(T1 − T2)

= C10(T1 − T0) + C12(T1 − T2)

(2.7)

Q2 = C20(T2 − T0) + C21(T2 − T1) + C22(T2 − T2)

= C20(T2 − T0) + C21(T2 − T1)

(2.8)

Likewise for the rate of total heat transfer from the fluid;

Q0 = C00(T0 − T0) + C01(T0 − T1) + C02(T0 − T2)

= C01(T0 − T1) + C02(T0 − T2)

(2.9)

Note that Q0 is the rate of total heat transfer to the fluid, obtained from an overall

energy balance on the system. Further note that there is no clear area of heat transfer

corresponding to Q0. Therefore, to maintain generality, instead of using heat transfer

coefficients and areas, the extended Newton formulation (Equation 2.6) was postulated by

introducing functionality coefficients, {Cij}.

The traditional formulation relies on an equivalent or effective temperature difference,

which is not unique. Therefore, {Qi} can be formulated in different ways. A possible

formulation is:


Q1 = h1A1(T1 − Tm)

Q2 = h2A2(T2 − Tm)
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Although the existence of multiple heat transfer rates is acknowledged in the traditional

formulation, each heat transfer rate is characterized in terms of a single heat transfer

coefficient. As a result, an amalgam of independent and dependent temperatures is used

to forge an “effective” temperature difference for each heat transfer rate. As mentioned

earlier, such a temperature difference is not unique. In the extended Newton formulation,

on the other hand, only independent temperatures appear. Moreover, the contribution of

each temperature difference is explicitly represented by a separate term.

2.3 Characterizing the Functionalities: The Problem

of Multi-Temperature Convection

After presenting the Newton formulation, Incropera et al. (2007) state that the study of

any convection problem reduces ultimately to “a study of the means by which h may be

determined”. Similarly, with the extended Newton formulation in place, the task will be

the determination of the functions {Cij} to quantitatively characterize the relation between

{Qi} and {Ti}.

The convection heat transfer coefficient, h, is a post-processing parameter. In other

words, in the study of a convection problem, depending on the boundary conditions, Q or

∆T is calculated or measured. Then, h is calculated by rearranging Equation 2.1:

h =
Q

A∆T

Similarly, in a multi-temperature arrangement, {Qi} can be determined for a given

{Ti}. This is, in principle, the only information available to evaluate {Cij}. Applying the

extended Newton formulation, a system of equations is obtained with {Cij} unknown. For

a problem with N isothermal boundaries, this system entails N equations and N(N − 1)

unknowns. Clearly, for N > 2 this is an under-determined problem that cannot be solved
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for {Cij}. This is, in essence, the problem of multi-temperature convection; when more

than two isothermal boundaries exist, the functionality coefficients cannot in general be

determined based on the information available from conventional methods, i.e. from the

heat transfer rates, {Qi}. Consider, for instance, the extended Newton formulation of the

three-temperature problem of flow in a parallel-plate channel with isotherm walls, presented

in Equations 2.7-2.9. These three equations entail six unknowns — the six functionality

coefficients that characterize the problem.

Note that implicit in the resistor-network model used in ASHWAT is the assumption

that the two functionality coefficients pertaining to a pair of isothermal boundaries are

equal, i.e. Cij = Cji. For the CFS problem, this is equivalent to: hij = hji. As

will be discussed in following chapters, this is not necessarily the case; it is only true

under certain conditions. Nevertheless, even with the assumption that Cij = Cji, the

problem of multi-temperature convection persists. Although the number of unknowns

would be reduced to N , the overall energy balance of the system reduces the number of the

independent equations to N − 1. For a three-temperature problem, for example, setting

Cij = Cji in Equations 2.7-2.9 leads to a system of two equations and three unknowns.

2.4 The dQdT Technique

Reconsider Equation 2.7:

Q1 = C10(T1 − T0) + C12(T1 − T2)

Differentiating the expression above with respect to T0, Equation 2.10 is obtained.

∂Q1

∂T0

= −C10 +
∂C10

∂T0

(T1 − T0) +
∂C12

∂T0

(T1 − T2) (2.10)
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Therefore, C10 can be obtained from Equation 2.10, if the second and third terms on the

RHS are driven to zero. This, in turn, is achieved if;

∂C10

∂T0

=
∂C12

∂T0

= 0

For the general nonlinear case, i.e. for most problems, the condition above does not

hold. However, this condition can be forced by treating C10 and C12 as constants when

differentiating Q1 with respect to T0. In mathematical notation:

C10 = −∂Q1

∂T0

∣∣∣∣
Cik=const

(2.11)

Likewise, the functionality coefficient C12 can be obtained by differentiating Equation

2.7 with respect to T2, while treating C10 and C12 as constants;

C12 = −∂Q1

∂T2

∣∣∣∣
Cik=const

(2.12)

In general, the functionality coefficient Cij of a multi-temperature convection problem

can be calculated as:

Cij = −∂Qi

∂Tj

∣∣∣∣
Cik=const

(2.13)

The procedure of evaluating the functionality coefficient Cij in terms of the partial

derivative ∂Qi/∂Tj according to Equation 2.13 is hereinafter called “the dQdT technique”,

or simply “dQdT”. This procedure is demonstrated in the following examples.
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2.4.1 Two-Temperature Example: Convection at an Isothermal

Vertical Flat Plate

Consider the classical problem of laminar convection at an isothermal flat plate. The

problem is described by two boundary temperatures: the plate temperature, T1, and

the free-stream/far-field temperature, T0. It is hence classified as a “two-temperature”

problem.

Equation 2.14 is the Newton formulation of heat transfer at the plate, Q1, obtained by

applying Equation 2.6.

Q1 = C10(T1 − T0) (2.14)

Comparing Equations 2.1 and 2.14, it is evident that in this two-temperature problem,

the functionality coefficient C10 is the product of the heat transfer coefficient, h, and the

plate surface area, A. For a two-temperature problem, once Q1 is known, h or C10 can be

readily calculated by rearranging Equation 2.1 or 2.14; there is no need for dQdT. In this

section, the dQdT technique is nonetheless applied for demonstration and validation.

For forced convection, i.e. in the absence of buoyancy, the average Nusselt number is

obtained using the similarity solution (Blasius 1908) to the hydrodynamic problem. The

result is a function of the Reynolds number, Re, and the Prandtl number, Pr. See Equation

2.15.

Nu =
Q1

k(T1 − T0)
= 0.664 Re1/2 Pr1/3 (2.15)

Therefore, the heat transfer rate (per unit depth) at the plate is:

Q1 = 0.664 Re1/2 Pr1/3 k (T1 − T0) (2.16)
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Comparing Equations 2.14 and 2.16, C10 is obtained;

C10 =
Q1

T1 − T0

= 0.664 kRe1/2 Pr1/3 (2.17)

To obtain C10 using dQdT, Equation 2.16 must be differentiated with respect to T0.

See Equation 2.18.

C10 = −∂Q1

∂T0

∣∣∣∣
C10=const

= 0.664 kRe1/2 Pr1/3 (2.18)

The two approaches produce the same result.

In the presence of buoyancy, i.e. for free convection, the boundary-layer solution by

Ostrach (1953) gives the average Nusselt number based on the plate height (H) as shown

in Equation 2.19. In this equation, Φ is a function of Pr only and Gr = gβ(T1−T0)H3/ν2.

Nu =
Q1

k(T1 − T0)
=

4

3
Φ Gr1/4 (2.19)

Therefore, the heat transfer rate (per unit depth) at the plate is given as shown in Equation

2.20.

Q1 =

[
4

3
Φ Gr1/4 k

]
(T1 − T0) (2.20)

The functionality coefficient C10 can then be obtained as shown in Equation 2.21.

C10 =
Q1

T1 − T0

=
4

3
kΦ Gr1/4 (2.21)
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To obtain C10 using dQdT, Equation 2.20 must be differentiated with respect to T0

while treating the contents of the square brackets as constants ;

C10 = −∂Q1

∂T0

∣∣∣∣
C10=const

= − ∂

∂T0

{[
4

3
kΦ Gr1/4

]
(T1 − T0)

}
Gr=const

=
4

3
kΦ Gr1/4

(2.22)

The validity of dQdT for this two-temperature is confirmed by comparing Equations

2.21 and 2.22.

Note that if the C10 = const constraint is relaxed;

− ∂Q1

∂T0

=
5

3
kΦ Gr1/4 (2.23)

Comparing Equations 2.22 and 2.23, it is seen that relaxing the Cik = const constraint

leads to a bias error of 25%.

Also note that applying the Newton formulation, the rate of heat transfer from the

fluid, Q0, can be written as shown in Equation 2.24.

Q0 = C01(T0 − T1) (2.24)

Nonetheless, the energy balance of this two-temperature arrangement requires: Q0 = −Q1.

Hence, Equations 2.14 and 2.24 lead to: C10 = C01. In other words, this two-temperature

problem is fully characterized by a single functionality coefficient, C10. This argument can
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be extended to any two-temperature convection problem. As stated earlier, it is for N > 2

that the problem of multi-temperature convection arises. A three-temperature example is

therefore in order at this point.

2.4.2 Three-Temperature Example: Hydrodynamically

Developed Laminar Flow in a Parallel-Plate Channel with

Isothermal Walls

Consider the configuration shown in Figure 2.2: a hydrodynamically developed laminar flow

at a uniform temperature, T0, enters the channel formed between two semi-infinite parallel

plates maintained at temperatures T1 and T2, separated by distance H. The thermal

boundary conditions of the problem are described by three independent temperatures:

{T0, T1, T2}. There are also three heat transfer rates of interest: heat transfer rate at the

walls, Q1 and Q2, and the rate of total heat transfer from the fluid, Q0. The extended

Newton formulation (Equation 2.6) yields:



Q0 = C01(T0 − T1) + C02(T0 − T2)

Q1 = C10(T1 − T0) + C12(T1 − T2)

Q2 = C20(T2 − T0) + C21(T2 − T1)

(2.25)

The heat transfer rates, {Qi}, can be determined using analytical or numerical solutions.

Nonetheless, the system of equations above is under-determined with three equations and

six unknowns; it cannot be solved for {Cij}. dQdT is required.

With constant fluid properties, negligible conduction in the x-direction and negligible

viscous dissipation, the energy equation for hydrodynamically developed laminar flow is

reduced to Equation 2.26.
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ρufdcp
∂T

∂x
= k

∂2T

∂y2
(2.26)

The boundary conditions of the problem are:

x = 0 ; T = T0

y = H/2 ; T = T1

y = −H/2 ; T = T2

(2.27)

Hatton & Turton (1962) obtained an analytical solution to Equation 2.26 subject to

the conditions of Equation 2.27 in the form shown in Equation 2.28.

θ = Y −
∞∑
n=1

Bnfn exp
(
− 8

3
λ2
nX
)

(2.28)

In Equation 2.28, θ is the dimensionless temperature defined in Equation 2.29 with

Twm = (T1 + T2)/2, Y is the dimensionless lateral coordinate: Y = 2y/H, and X is the

dimensionless stream-wise coordinate, defined in Equation 2.30 where Re =
[
ρum(2H)

]
/µ.

Bn, fn and λn are, respectively, the eigencoefficients, eigenfunctions and eigenvalues of the

Sturm-Liouville system obtained by applying separation of variables.

θ =
T − Twm

T1 − Twm

(2.29)

X =
2x

H

(
1

Re Pr

)
(2.30)
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The solution by Hatton & Turton (1962) will be discussed in Chapter 4 in more detail.

Here, it is used to derive analytical expressions for {Qi} and demonstrate the dQdT

technique.

With the temperature distribution known from Equation 2.28, heat flux at either wall

can be obtained by differentiation. See Equations 2.31 and 2.32 wherein the sign convention

introduced earlier is observed.

q1 =
k

H
(T1 − T2)

(
∂θ

∂Y

)
Y1

=
k

H
(T1 − T2)

[
1−

∞∑
n=1

Bn

(
∂fn
∂Y

)
Y=1

exp
(
− 8

3
λ2
nX
)] (2.31)

q2 = − k

H
(T1 − T2)

(
∂θ

∂Y

)
Y2

=
k

H
(T1 − T2)

[
1−

∞∑
n=1

Bn

(
∂fn
∂Y

)
Y=−1

exp
(
− 8

3
λ2
nX
)] (2.32)

Heat fluxes can then be integrated from the channel inlet to any location x to calculate

the (per unit depth) heat transfer rates at the walls. See Equation 2.33.

Qi =

∫ x

0

|qi| dx

=
k

H
(T1 − T2)

∫ x

0

[
1−

∞∑
n=1

Bn

(
∂fn
∂Y

)
Yi

exp
(
− 8

3
λ2
nX
)]

dx (i = 1, 2)

(2.33)
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With a change of the integration variable, the summation can be integrated as shown

in Equation 2.34.

∫ [ ∞∑
n=1

Bn

(
∂fn
∂Y

)
exp

(
−8

3
λ2
nX
)]

dx

= Re Pr

(
H

2

) ∞∑
n=1

[
Bn

(
∂fn
∂Y

)∫
exp

(
− 8

3
λ2
nX
)

dX

]

= Re Pr

(
H

2

) ∞∑
n=1

[
− 3Bn

8λ2
n

(
∂fn
∂Y

)
exp

(
− 8

3
λ2
nX
)]

(2.34)

The wall heat transfer rates are therefore obtained as shown in Equations 2.35 and 2.36.

Q1 = Re Pr
k(T1 − T2)

2

{
X −

∞∑
n=1

3Bn

8λ2
n

(
∂fn
∂Y

)
Y=1

[
1− exp

(
− 8

3
λ2
nX
)]}

(2.35)

Q2 = −Re Pr
k(T1 − T2)

2

{
X −

∞∑
n=1

3Bn

8λ2
n

(
∂fn
∂Y

)
Y=−1

[
1− exp

(
− 8

3
λ2
nX
)]}

(2.36)

The rate of total heat transfer from the fluid is then obtained from an energy balance.

See Equation 2.37.

Q0 = −Q1 −Q2

= −Re Pr
k(T1 − T2)

2

{
∞∑
n=1

3Bn

8λ2
n

[(
∂fn
∂Y

)
Y=1

−
(
∂fn
∂Y

)
Y=−1

][
1− exp

(
− 8

3
λ2
nX
)]}
(2.37)
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Equations 2.35-2.37 provide analytical expressions for {Qi}. To evaluate {Cij} using

dQdT, these expressions must be differentiated according to Equation 2.13. It must be

noted in carrying out this operation that, as shown by Hatton & Turton (1962), the even

eigencoefficients, {BE,n}, are directly proportional to the temperature ratio, rT (defined in

Equation 2.38), while the odd eigencoefficients are independent of {Ti}.

rT =
T0 − Twm

T1 − Twm

(2.38)

Applying dQdT, the functionality coefficients C10 and C12, for example, are obtained

as shown in Equations 2.39 and 2.40.

C10 = −∂Q1

∂T0

∣∣∣∣
Cik=const

= Re Pr k

{
∞∑
n=1

3

8λ2
n

(
∂Bn

∂θ0

)(
∂fn
∂Y

)
Y=1

[
1− exp

(
− 8

3
λ2
nX
)]} (2.39)

C12 = −∂Q1

∂T2

∣∣∣∣
Cik=const

= Re Pr k

{
X −

∞∑
n=1

3Bn

8λ2
n

(
∂fn
∂Y

)
Y=1

[
1− exp

(
− 8

3
λ2
nX
)]

−
∞∑
n=1

3

8λ2
n

(
∂Bn

∂θ2

)(
∂fn
∂Y

)
Y=1

[
1− exp

(
− 8

3
λ2
nX
)]}

(2.40)

This is a constant-property forced convection problem. Therefore, the energy equation

is linear and the Cik = const constraint is automatically satisfied. The implementation
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Figure 2.3: dQdT results for hydrodynamically developed laminar flow
in a parallel-plate channel with isothermal walls

of this constraint, which is crucial to the dQdT technique, in the case of variable fluid

properties and/or free convection will be discussed in following sections.

A closer examination of the dQdT results for C10 and C12 helps demonstrate the utility

and validity of the extended Newton formulation, i.e. characterizing heat transfer in terms

of {Cij}. The dQdT results are plotted in Figure 2.3 using the eight eigencoefficients,

eigenvalues and eigenfunction derivatives given by Hatton & Turton (1962).

Recall that Cij characterizes the effect of ∆Tij on Qi. More specifically, Cij quantifies

the sensitivity of Qi to the boundary temperature Tj. Moreover, note that C10 and C12

include the area of the heat-transfer surface, A1, which increases linearly withX. Therefore,

the slope of the curves shown in Figure 2.3 is a better representation of the thermal
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development of the flow. In this light, the curves shown in Figure 2.3 have a clear physical

interpretation. Near the channel inlet, T2 has almost no impact on Q1, reflected by C12 =

∂C12/∂X = 0 for X . 0.1. However, moving downstream, as the boundary layers thicken

and the flow approaches the thermally developed limit, the effect of T2 on Q1 increases.

In other words, as the boundary layer developed along the wall at T2 starts to interact

with the boundary layer along the wall at T1, the effect of T2 on Q1 increases. As the flow

reaches thermal development, C12 approaches to a straight line. In the thermally developed

limit, heat transfer in the channel is dominated by conduction between the walls.

The evolution of the temperature profile and variation of heat transfer in the channel

are also reflected in the trend of C10. In the thermally developing region, particularly

for X . 0.2, Q1 is significantly influenced by the inlet temperature, T0. Therefore C10

has a very large slope for X . 0.2. In the thermally developed limit (essentially for

X & 0.6), C10 becomes nearly horizontal; the effect of T1 reaches its maximum and remains

constant. As noted earlier, heat transfer in the thermally developed region is dominated

by conduction between the walls – across the flow – and hence Q1 is independent of T0.

2.5 Numerical Implementation of dQdT

In Section 2.4, the dQdT technique was developed and demonstrated assuming analytical

expressions for {Qi} can be obtained. In other words, the development presented earlier is

only useful when an analytical solution to the energy equation is at hand. But analytical

solutions are rarely available. Numerical solutions, on the other hand, can be obtained

for a wide range of configurations and flow conditions. The dQdT technique is therefore

of limited utility unless it can be applied numerically, i.e. the partial differentiation of

Equation 2.13 evaluated based on numerical solutions.

Reconsider Equation 2.13:
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Cij = −∂Qi

∂Tj

∣∣∣∣
Cik=const

The derivative ∂Qi/∂Tj can be approximated as shown in Equation 2.41.

∂Qi

∂Tj
≈ δQi

δTj
(2.41)

In Equation 2.41, δTj denotes a finite perturbation in the boundary temperature Tj,

and δQi is the resulting change in the heat transfer rate Qi. The accuracy of Equation 2.41

depends on the curvature of the Qi(Tj) function and the size of δTj. See Equation 2.42.

∂Qi

∂Tj
=
δQi

δTj
− ∂2Qi

∂T 2
j

(δTj) + O(δT 2
j ) (2.42)

According to Equation 2.42, Equation 2.41 is a close approximation if the perturbation

δTj is small. The effect of the Cik = const constraint on the accuracy of this approximation

remains to be examined.

Deriving the extended Newton formulation, no assumptions were made regarding the

form of the functionality coefficients {Cij}. It is helpful at this point to examine the nature

of {Cij}more closely. The rate of convective heat transfer is a function of geometry, velocity

field, fluid properties and boundary temperatures. This can be established by examining

the governing equations. Hence, for a given geometry, {Qi} is function of the velocity

field, fluid properties and boundary temperatures. The extended Newton formulation is

thus, in a sense, grouping the effects of velocity field and fluid properties in {Cij} on

the one hand, and those of the boundary temperatures in {∆Tij} on the other hand.

Note that this grouping is not a “separation” of the effects; {Ti} can influence {Cij}

through thermal effects on the velocity field, i.e. buoyancy, or temperature-dependent
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fluid properties. But the Cik = const constraint suppresses this influence. In other words,

the Cik = const constraint removes the nonlinearities of the energy equation. Therefore,

dQdT is, in essence, the procedure of linearizing Qi and then differentiating the result with

respect to Tj.

If Qi is linearized, i.e. when the Cik = const constraint is enforced, the curvature term

becomes zero; ∂2Qi/∂T
2
j = 0. Equation 2.42 then becomes:

∂Qi

∂Tj

∣∣∣∣
Cik=const

=
δQi

δTj

∣∣∣∣
Cik=const

(2.43)

In a numerical solution, the linearization of the energy equation, i.e. suppressing the

temperature dependence of the velocity field and fluid properties, can be done by “fixing”

the velocity field and fluid properties. In order to do this, a “baseline” solution is first

obtained to the full set of the governing equations for the given boundary conditions, {Ti},

and the heat transfer rate Qi is calculated. Next, the boundary temperature Tj is changed

to T ∗j = Tj + δTj and a new solution to the energy equation only is obtained using the

velocity and fluid-property fields of the baseline solution. The new heat transfer rate Q∗i

and its change with respect to the baseline case are calculated; δQi = Q∗i − Qi. The

functionality coefficient Cij is then obtained as shown in Equation 2.44.

Cij = −δQi

δTj

∣∣∣∣
Cik=const

(2.44)

Alternatively, Equation 2.44 may be derived based on the interpretation of dQdT as a

tool for generating additional equations to close the under-determined system of equations

resulting from the extended Newton formulation. The dQdT technique was originally

conceived using this approach, as described below.
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The extended Newton formulation of the heat transfer rate Qi, obtained from the

baseline solution, gives:

Qi =
∑
k

Cik(Ti − Tk)

Likewise, Q∗i , the heat transfer rate obtained from solving the energy equation with

perturbed boundary conditions, {T ∗k }, while retaining the velocity field and fluid properties

of the baseline solution, can be written as:

Q∗i =
∑
k

C∗ik(T
∗
i − T ∗k )

However, because the velocity field and fluid properties of the baseline solution are

retained, i.e. the Cik = const constraint is enforced; Cik = C∗ik. Therefore:

δQi = Q∗i −Qi

=
∑
k

C∗ik(T
∗
i − T ∗k )−

∑
k

Cik(Ti − Tk)

=
∑
k

Cik
[
(T ∗i − Ti) + (Tk − T ∗k )

]

Hence, by choosing {T ∗k } = {Tk + δTk
∣∣ ∀k 6= j ; δTk = 0};

δQi = Cij(Tj − T ∗j )

And therefore:

Cik = −δQi

δTj

∣∣∣∣
Cik=const
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2.5.1 Numerical dQdT — Examples

Free Convection at an Isothermal Vertical Flat Plate

In Section 2.4.1, dQdT was applied to an analytical solution to the two-temperature

problem of laminar free convection at an isothermal vertical flat plate. In this section,

the same problem is used to demonstrate the numerical implementation of dQdT.

To apply dQdT numerically, a baseline solution to the full set of governing equations

must first be obtained. The commercial CFD code ANSYS Fluent 14.0 (ANSYS 2011a,b)

was used to obtain second-order finite volume solutions to the mass, momentum and energy

equations in the computational domain shown in Figure 2.4. The PRESTO! algorithm for

pressure discretization, SIMPLE scheme for handling the pressure-velocity coupling and

the Boussinesq approximation for density were used. The boundary conditions used in the

CFD solution are shown in Figure 2.4.

After the baseline numerical solution was obtained, the total heat transfer rate (per

unit depth) at the plate, Q1, was calculated. For a two-temperature problem, once Q1 is

known, C10 can be directly calculated as shown in Equation 2.45.

C10 =
Q1

T1 − T0

(2.45)

Next, to apply dQdT, the ambient temperature, T0, was changed by δT0 and a new

solution was obtained by updating the temperature field only, while retaining the velocity

field of the baseline solution. In Fluent, this can be easily done by selecting only the energy

equation in the “Equations” section, under “Solution Controls”. The new heat transfer

rate at the plate, Q∗1, and the change, δQ1 = Q∗1 − Q1, were calculated. C10 was then

obtained as shown in Equation 2.44.
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Figure 2.4: Computational domain for free convection at an isothermal vertical flat plate

At Ra = 105, for example, with H = 0.1 m, T1 = 310 K, T0 = 300 K, and k = 0.0255

W/(mK), the baseline CFD solution yielded a heat transfer rate of Q1 = 2.3681 W/m.

Therefore, based on Equation 2.45;

C10 =
Q1

T1 − T0

=
2.3681

310− 300
= 0.2368

W

mK

Then, T0 was changed to T ∗0 = 299 K and the solution to the energy equation only was

updated using the velocity field of the baseline solution. The new rate of heat transfer at

the plate was calculated: Q∗1 = 2.6050 W/m. Hence, based on Equation 2.44;
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C10 = −δQ1

δT0

∣∣∣∣
C10=const

=
2.6050− 2.3681

300− 299
= 0.2369

W

mK

When the far-field temperature was perturbed to T ∗0 = 299 K and an updated solution

was obtained to the full set of the governing equations, i.e. with the Cik = const constraint

relaxed, the new heat transfer rate was Q∗1 = 2.6649 W/m. Therefore:

δQ1 = Q∗1 −Q1 = 0.2968
W

m

And;

C10 = −δQ1

δT0

= 0.2968
W

mK

Hence, for this problem, relaxing the Cik = const constraint leads to a 25.3% error, which

is in agreement with the analytical result derived in Section 2.4.1.

In Figure 2.5, the results of Equations 2.44 and 2.45 are compared to the boundary-layer

solution by Ostrach (1953) (Equation 2.19) for 102 ≤ Ra ≤ 109 and Pr = 0.7. The

results are reported in the dimensionless form, C10/k, which is, in this two-temperature

case, equivalent to the traditional average Nusselt number. To evaluate Equation 2.19

the approximate curve-fit relation proposed by Oosthuizen & Naylor (1999) was used

to calculate Φ. The dQdT results match the algebraic results (Equation 2.45) exactly,

while in close agreement with the boundary-layer solution. Note that the dQdT and

algebraic results are based on solutions to the full elliptic energy equation, hence the small

discrepancy with the parabolic boundary-layer solution. This discrepancy is pronounced

for lower flow rates (Ra < 103) where diffusion in the y-direction becomes significant. The

close agreement between the results validates Equation 2.44.

It was stated earlier that the accuracy of Equation 2.42 depends on the size of the

perturbation, δTj. Nevertheless, since fixing the velocity field and the fluid properties

32



Figure 2.5: The functionality coefficient of laminar free convection
at an isothermal vertical flat plate (Pr=0.7)

linearizes the energy equation, i.e. ∂2Qi/δT
2
j = 0, the size of δTj does not matter

when performing dQdT. Note however that numerical considerations preclude very small

perturbations; given the numerical errors of the solution, δTj must be large enough that

δQi can be reliably calculated. This can be seen from Table 2.1 wherein C10 obtained by

using different values of δT0 in the dQdT operation are presented for the example discussed

earlier
[
H = 0.1 m, T1 = 310 K, T0 = 300 K, and k = 0.0255 W/(mK)

]
. The error was

calculated based on the algebraic results (Equation 2.45): C10 = 0.2368 W/(mK). For

δT0 ≥ 0.01, dQdT yields nearly identical results regardless of the size of δT0.
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Table 2.1: Results of dQdT with different perturbations sizes[
Free convection at an isothermal flat plate (Ra = 105,Pr = 0.7)

]
T ∗0 [K] δT0 [K] Q∗1 [W/m] C10/k [-] Error [%]

305.000 5.000 1.1841 9.2868 0.00

302.000 2.000 1.8945 9.2868 0.00

301.000 1.000 2.1313 9.2867 0.00

299.000 -1.000 2.6050 9.2869 0.00

300.500 0.500 2.2497 9.2866 0.00

300.100 0.100 2.3445 9.2856 -0.01

300.010 0.010 2.3658 9.2749 -0.13

300.001 0.001 2.3679 9.1765 -1.19

Hydrodynamically Developed Laminar Flow in a Parallel-Plate Channel

with Isothermal Walls

Also examined in Section 2.4 as an example was the problem of hydrodynamically

developed laminar flow in an asymmetrically heated parallel-plate channel. As noted

earlier, because this is a forced-convection problem with constant fluid properties, the

Cik = const constraint is automatically satisfied. Therefore, to obtain {Cij} using

numerical dQdT, it is sufficient to obtain a solution to the mass and momentum equations;

then the energy equation must be solved with the original boundary conditions, {Ti}, as

well as with perturbed boundary conditions,
{
Ti + δTi

∣∣∀i 6= j ; δTi = 0
}

. No special

measures are necessary to enforce the Cik = const constraint. Moreover, since the flow

enters the channel hydrodynamically fully developed, the procedure is reduced to obtaining

solutions to the energy equation.

Introducing the non-dimensional variables shown in Equation 2.46, the parabolic energy

equation (Equation 2.26) can be expressed in non-dimensional form as shown in Equation

2.47.
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

U =
ufd

um

θ =
T − T0

T1 − T0

X =
2x

H

(
1

Re Pr

)

Y =
2y

H

(2.46)

U

4

(
∂θ

∂X

)
=

∂2θ

∂Y 2
(2.47)

The 1/4 factor appears in Equation 2.47 since the Reynolds number based on the

channel hydraulic diameter (2H) is used to define X.

The non-dimensional boundary conditions are:

X = 0 ; θ = θ0 = 0

Y = 1 ; θ = θ1 = 1

Y = −1 ; θ = θ2 =
T2 − T0

T1 − T0

(2.48)

Using the finite-difference formulation, the PDE of Equation 2.47 becomes:

Um,n
θm,n − θm−1,n

4(∆X)
=
θm,n+1 − 2θm,n + θm,n−1

(∆Y )2
(2.49)
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The explicit formulation then gives the temperature of the node (m,n), with first- and

second-order accuracy in X and Y respectively, as shown in Equation 2.50. The superscript

(k) denotes the iteration number.

θ(k)
m,n =

[
Um,n

4(∆X)
+

2

(∆Y )2

]−1[θ(k−1)
m,n+1 + θ

(k−1)
m,n−1

(∆Y )2
+

Um,n
4(∆X)

θ
(k−1)
m−1,n

]
(2.50)

A MATLAB code was developed to obtain a numerical solution to Equation 2.47 using

a forward-marching iteration scheme based on Equation 2.50. See Appendix A. Solutions

were obtained for the boundary conditions shown in Equation 2.48 as well as for two

additional cases with δθ0 = 0.1 and δθ2 = 0.1. The functionality coefficients were then

calculated using Equation 2.44.

The results are plotted in Figure 2.6. It can be seen that the numerical dQdT results for

C10 and C12 are in good agreement with the analytical dQdT results. The small discrepancy

between the results is due to the truncation error in evaluating the series expressions of the

analytical solution as well as the discretization error in the numerical solution. The overall

agreement of the numerical and analytical results indicates the validity of numerical dQdT

(Equation 2.44).

2.6 Characterizing the Functionalities: Special Cases

It was stated in Section 2.3 that for an N -temperature problem, the extended Newton

formulation leads to a system of N equations with the N(N − 1) functionality coefficients,

{Cij}, unknown. For N > 2, this system is under-determined. The dQdT technique was

developed to address this problem. In special cases, however, the number of unknowns

may be reduced and the original system of equations solved.
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2.6.1 Special Case: Symmetry

A functionality coefficient depends on geometry, velocity field and fluid properties.

Therefore, if there is symmetry in geometry, velocity field and fluid properties, some

functionality coefficients must be equal. In the parallel-plate channel (Figure 2.2), for

example, with the fluid properties assumed to be constant and the velocity profile known

to be symmetric about the channel centerline (y = 0), there is symmetry in the thermal

interaction of the two walls. Therefore, the influence of T2 on Q1 is expected to be the

same as the influence of T1 on Q2. Recalling that Cij quantifies the sensitivity of Qi to

Tj, the preceding argument leads to: C12 = C21. Moreover, symmetry indicates that the

two wall temperatures must have the same influence on the rate of total heat transfer to

fluid; C01 = C02. Finally, heat transfer at the walls must be similarly influenced by the

inlet temperature; C10 = C20.

Note that dQdT can be utilized to confirm the observations above regarding symmetry.

For example, compare the analytical expression found for C10 in Section 2.4.2 (Equation

2.39) to Equation 2.51, the dQdT result for C20. It is shown in Chapter 4, using the

eigencoefficients and eigenfunction derivatives given by Hatton & Turton (1962), that these

two expressions are equivalent.

C20 = −δQ2

δT0

∣∣∣∣
Cik=const

= −Re Pr k

{
∞∑
n=1

3

8λ2
n

(
∂Bn

∂θ0

)(
∂fn
∂Y

)
Y=−1

[
1− exp

(
− 8

3
λ2
nX
)]} (2.51)

In the following, the symmetry between the walls will be used to obtain the functionality

coefficients algebraically.

Rewriting the Newton formulation of the channel problem (Equation 2.25) while taking

note of symmetry between the walls, equations below are obtained:
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Figure 2.6: Functionality coefficients of hydrodynamically developed laminar flow in a
channel with isothermal walls – Analytical and numerical dQdT results



Q0 = C01(T0 − T1) + C01(T0 − T2)

Q1 = C10(T1 − T0) + C12(T1 − T2)

Q2 = C10(T2 − T0) + C12(T2 − T1)

(2.52)

These equations form a system of three equations with three unknowns: C01, C10 and

C12. Rearranging the first equation, C01 can be obtained as shown in Equation 2.53.

C01 = C02 =
Q0

2T0 − T1 − T2

(2.53)
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Summing the second and third equations, C10 is obtained as shown in Equation 2.54.

C10 = C20 =
Q1 +Q2

T1 + T2 − 2T0

(2.54)

Finally, with C10 known, the second equation can be solved for C12. See Equation 2.55.

C12 = C21 =
Q1 − C10(T1 − T0)

T1 − T2

(2.55)

Equations 2.53-2.55 can be used in conjunction with the expressions found for {Qi} in

Section 2.4.2 to derive analytical expressions for {Cij}. Using Equations 2.35, 2.36 and

2.54, for instance, C10 is obtained as shown in Equation 2.56.

C10 =
Q1 +Q2

T1 + T2 − 2T0

= −Re Pr
k

2

(
T1 − T2

T1 + T2 − 2T0

)

×

{
∞∑
n=1

3Bn

8λ2
n

[(
∂fn
∂Y

)
Y=1

−
(
∂fn
∂Y

)
Y=−1

][
1− exp

(
− 8

3
λ2
nX
)]}

= Re Pr
k

2rT

{
∞∑
n=1

3Bn

8λ2
n

[(
∂fn
∂Y

)
Y=1

−
(
∂fn
∂Y

)
Y=−1

][
1− exp

(
− 8

3
λ2
nX
)]}

(2.56)

Denoting the even and odd eigenfunctions by subscripts “E” and “O” respectively, the

relations below can be written by definition:
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

∂fE,n

∂Y

∣∣∣∣
Y=1

= −∂fE,n

∂Y

∣∣∣∣
Y=1

∂fO,n

∂Y

∣∣∣∣
Y=1

=
∂fO,n

∂Y

∣∣∣∣
Y=1

Therefore, Equation 2.56 leads to:

C10 = Re Pr
k

rT

{
∞∑
n=1

3BE,n

8λ2
E,n

(
∂fE,n

∂Y

)
Y=1

[
1− exp

(
− 8

3
λ2

E,nX
)]}

(2.57)

In Section 2.4.2 (Equation 2.39) the expression below was obtained for C10 by applying

dQdT:

C10 = Re Pr k

{
∞∑
n=1

3

8λ2
n

(
∂Bn

∂θ0

)(
∂fn
∂Y

)
Y=1

[
1− exp

(
− 8

3
λ2
nX
)]}

Examining the expressions given by Hatton & Turton (1962) for {Bn}, it can be shown

that:



∂BE,n

∂θ0

=
BE,n

rT

∂BO,n

∂θ0

= 0

Therefore, Equations 2.39 and 2.57 are equivalent. The symmetry argument presented in

this section is hence verified.
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2.6.2 Special Case: Linearity

A functionality coefficient depends on geometry, velocity field and fluid properties.

Therefore, in a linear problem, i.e. in the absence of thermal effects on the velocity field and

fluid properties, {Cij} is independent of {Ti}. This means that in linear problems, {Cij}

evaluated for a certain set of boundary temperatures, {Ti}, is the unique and universal set

applicable to any {Ti}. Therefore, to find the functionality coefficient Cij, it is sufficient

to obtain the heat transfer rate Qi for
{
Tk
∣∣ ∀k 6= j ; Tk = Ti

}
. Applying Equation 2.6, Qi

can then be written as:

Qi =
∑
k

Cik(Ti − Tk) = Cij(Ti − Tj) (∀k 6= j ; Tk = Ti)

Hence, Cij can be calculated as:

Cij =
Qi

Ti − Tj
(∀k 6= j ; Tk = Ti) (2.58)

The numerical scheme developed earlier for hydrodynamically developed laminar flow

in a parallel-plate channel with isothermal walls can be used to demonstrate Equation 2.58.

For instance, C10 can be obtained by setting θ1 = θ2 = 1 and θ0 = 0. In this case, the

numerical solution yielded the non-dimensional heat transfer rate at X = 0.5 to be:

(
1

Re Pr

)
Q1

k(T1 − T0)
= 0.4934

According to Equation 2.58, C10 in this case is:

C10

Re Pr k
=

0.4934

1− 0
= 0.4934
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The analytical and numerical dQdT results (Figure 2.6) for C10/(Re Pr k) at X = 0.5

were respectively 0.5149 and 0.4938. Equation 2.58 is thus validated.

Similarly, to obtain C12 using Equation 2.58, a numerical solution was obtained for

θ1 = θ0 = 1, θ2 = 0. In this case, Q1 at X = 0.5 was:

(
1

Re Pr

)
Q1

k(T1 − T0)
= 0.3056

Therefore:

C12

Re Pr k
=

0.3056

1− 0
= 0.3056

As a further check on Equation 2.58, compare the result above to the analytical and

numerical dQdT results (Figure 2.6) for C12/(Re Pr k) at X = 0.5: 0.3047 and 0.3054. The

close agreement of these results, again, verifies Equation 2.58.

2.7 Summary

In multi-temperature convection problems, heat transfer takes place between more than

two isothermal boundaries. In this case, the Newton law of cooling must be reconciled

with the presence of multiple boundary temperatures. Traditionally, this is done by

combining various independent (and sometimes dependent) temperatures of the problem

to construct an effective temperature difference. In this chapter, an extension of the

Newton law of cooling was proposed to formulate a multi-temperature convection problem

exclusively in terms of the independent, boundary temperatures. This formulation leads to

additional parameters, dubbed functionality coefficients, each characterizing the effect of

one boundary temperature on the heat transfer rate at another isothermal boundary. The

dQdT technique was developed and validated to calculate the functionality coefficients.
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This technique entails a baseline solution to full set of governing equations and subsequent

solutions to the energy equation with perturbed boundary conditions. dQdT can be

implemented in both analytical and numerical solutions.
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Chapter 3

The Resistor-Network Model

Steady, one-dimensional heat conduction with no internal generation and constant

thermophysical properties is often modeled using a network of thermal resistors. This

approach is sometimes extended to cases of convective or radiative heat transfer, usually

at the boundaries of a domain in which heat conduction is of interest. A common example

is the composite wall, shown schematically in Figure 3.1 along with the corresponding

resistor network.

In a unique extension of the resistor-network approach, the ASHWAT models for

heat transfer through complex fenestration systems were developed based on a general

network of thermal resistors (Wright 2008, Wright et al. 2009, Barnaby et al. 2009).

The general resistor-network used in ASHWAT was briefly introduced in Chapter 1. The

ASHWAT resistor-network is unique in two aspects. First, the network is used to model

convection and radiation. Second, the problem of convection at the indoor side of a CFS

is particularly unique in that heat transfer can take place between all the isothermal

boundaries. Consequently, in the corresponding resistor network, also introduced in

Chapter 1, all the temperature nodes are connected, forming a delta network. Contrast

the resistor network of Figure 3.1 with the one shown in Figure 1.2; in Figure 3.1 there is
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Figure 3.1: The thermal-resistor network of heat transfer in a composite wall
with convection at the boundaries

no connection between non-adjacent nodes (e.g. T0 and T2), “bypassing” the intermediate

layers (T1).

The resistor-network model used in ASHWAT has been successful in predicting the

energy performance of fenestration systems as well as characterizing the solar/thermal

performance of different shading attachments. It is also computationally advantageous

in time-step building energy simulation (Wright et al. 2011, Lomanowski & Wright

2012). Motivated by the notable success and advantage of ASHWAT, the extension of the

resistor-network model to the general problem of multi-temperature convection is explored

in this chapter.

3.1 The Electrical Analogy

The concept of thermal resistance, and by extension using arrays of thermal resistors to

represent a heat transfer problem, is based on the analogy between the diffusion of electrical
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charge and diffusive heat transfer. An important feature of electrical current, and therefore

a criterion for the validity of the electrical analogy, is that it is a scalar. This has two

important implications: 1) electrical current obeys the rule of algebraic summation, and

2) there is reciprocity of current between any two nodes directly connected in an electrical

circuit. In other words, the current from node i to j is equal in magnitude to the current

in reverse direction, from j to i.

Therefore, the validity of the electrical analogy, and hence the resistor-network model,

can be determined by examining the algebraic summation and reciprocity of heat transfer.

These requirements do not impose any restrictions on the mode of heat transfer.

3.2 Resistor-Network Model of Convection

Consider a fluid flow entering with a uniform temperature the channel formed between two

parallel isothermal plates. As discussed in Chapter 2, the extended Newton formulation of

the problem gives:



Q0 = C01(T0 − T1) + C02(T0 − T2)

Q1 = C10(T1 − T0) + C12(T1 − T2)

Q2 = C20(T2 − T0) + C21(T2 − T1)

(3.1)

In Chapter 2, dQdT was applied to find C10 and C12 of the channel problem. As will

be shown in Chapter 4, applying dQdT to obtain the other functionality coefficients of the

problem, it can be shown that: Cij = Cji. Alternatively, the algebraic relations derived

in Chapter 2 (Section 2.6.1) based on the symmetry argument can be used to confirm

Cij = Cji.
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For example, consider the relations for C01 and C10 (Equations 2.53 and 2.54):

C01 =
Q0

2T0 − T1 − T2

C10 =
Q1 +Q2

T1 + T2 − 2T0

Recalling the overall energy balance of the channel;

Q0 = −Q1 −Q2

It is shown that: C01 = C10.

With Cij = Cji Equation 3.1 can be rewritten as:



Q0 = C10(T0 − T1) + C20(T0 − T2)

Q1 = C10(T1 − T0) + C12(T1 − T2)

Q2 = C20(T2 − T0) + C12(T2 − T1)

(3.2)

The equations above constitute the nodal current (energy) balances of the delta

resistor-network shown in Figure 3.2. In this network, the nodes at T1 at T2 represent

the isothermal channel walls. The third node, at T0, represents the fluid flow.1 Note

that T0 is the only independent (boundary) temperature corresponding to the flow. The

temperature nodes are connected through three convective resistances, characterized by

the functionality coefficients, {Cij}. To borrow the electrical-circuit terminology, Cij is the

conductance of the leg connecting Ti and Tj. The term Cij(Ti − Tj) is then the “thermal

current” through this leg, i.e. between Ti and Tj. Introducing Qij = Cij(Ti−Tj), Equation

3.2 can be written in the general form shown in Equation 3.3.

1Although T0 is the inlet temperature, this node does not correspond to a specific physical location; it
represents the fluid flow throughout the channel.
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Figure 3.2: The resistor network of flow in a channel with isothermal walls

Qi =
∑
j

Cij(Ti − Tj) =
∑
j

Qij (3.3)

Hence, the extended Newton formulation ensures that the thermal current at each

isothermal boundary does obey the rule of algebraic summation. With Cij = Cji,

there is reciprocity of thermal current between the nodes; |Qij| = |Qji|. Therefore the

resistor-network model is applicable.

It is helpful at this point to examine a multi-temperature convection problem that

cannot be represented by a network of convective resistors, i.e. a problem wherein algebraic

summation or reciprocity of thermal currents is not satisfied. Consider cross flow over two

parallel cylinders with isothermal surfaces, in “tandem” arrangement. See Figure 3.3.

The flow is characterized by the Reynolds number, Re, defined in Equation 3.4 wherein

u0 denotes the free-stream velocity.

Re =
ρu0D1

µ
(3.4)
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Figure 3.3: Schematic of cross flow over a pair of isothermal cylinders in tandem

Equation 3.1 gives the Newton formulation of heat transfer also for this

three-temperature problem. Therefore, the algebraic summation of thermal currents is

satisfied. The reciprocity of current is however contingent on the condition that Cij = Cji.

It is known from the physics of the problem that (in the subsonic regime), due to the

position of the cylinders in the flow, the influence of T1 on {Qi} is larger than the influence

of T2, simply because T1 is upstream of T2. Recalling that Cij quantifies the sensitivity of

Qi to Tj, it is hence expected that: C21 > C12. dQdT can be used to verify this result.

The commercial solver ANSYS Fluent was used to implement dQdT numerically and

calculate the functionality coefficients of the problem. Solutions were generated for D1 =

D2 = L/2, Pr = 0.7 and 0 ≤ Re < 60. This range of Re was chosen in order to maintain

the flow laminar and steady, and the numerical solutions straightforward. The detailed

discussion of the CFD solutions is deferred to Chapter 7. Presently, attention is focused

on the dQdT results.

The dQdT results for the cylinder-cylinder functionality coefficients, C12 and C21, are

plotted in Figure 3.4. At Re = 0, i.e. for pure conduction between the cylinders, the

coefficients correspond to the conduction shape factor of two parallel cylinders of equal

diameter in an infinite medium and at the given spacing; C21/k = C12/k = S = 2.3. For

Re > 0, however; C21 > C12. In other words, in the presence of advection, the effect of T1

on Q2 is larger than the effect of T2 on Q1. Therefore, the reciprocity of thermal currents
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Figure 3.4: Cylinder-cylinder functionality coefficients of cross flow over cylinders
Tandem alignment (D1 = D2 = L/2, Pr = 0.7)

does not exist; the configuration shown in Figure 3.3 cannot be represented by a network

of convective resistors.

Consider now the cylinders in side-by-side arrangement, shown in Figure 3.5.

The numerical dQdT results for the cylinder-cylinder functionality coefficients of this

configuration are shown in Figure 3.6. In this case, C12 = C21. This results was expected

due to the symmetric position of the cylinders in the flow field. Likewise, it can be shown

that: C10 = C01 and C20 = C02. Therefore, the reciprocity of thermal currents is satisfied

and the multi-temperature problem can be represented by the delta resistor network of

Figure 3.2.
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Figure 3.5: Schematic of cross flow over a pair of side-by-side isothermal cylinders

The examples above show the utility of the dQdT technique in establishing the validity

of the resistor-network model for a multi-temperature convection problem.

3.3 The “Split” of Heat Transfer

In earlier publication, e.g. Foroushani et al. (2017b,c), the thermal current Qij = Cij(Ti−

Tj) in the resistor-network model was dubbed a “paired” heat transfer rate and interpreted

as the rate of heat transfer between the nodes at Ti and Tj. Nevertheless, “splitting”

convective heat transfer into paired components, i.e. breaking Qi into components {Qij},

may not be completely valid. An important distinction between electrical current and heat

transfer must be emphasized. Electrical current is the process of the transport of electrons

— an entity. Heat transfer, on the other hand, is a process with no corresponding entity.

Note that this is also a point of departure between heat transfer and mass transfer. At a

conceptual level, therefore, the analogy between the diffusion of electrical charge and heat

transfer seems incomplete.

An implication of this phenomenological distinction is that the paired thermal current

Qij may not have a clear physical meaning, especially in convective heat transfer where the
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Figure 3.6: Cylinder-cylinder functionality coefficients of cross flow over cylinders
Side-by-side alignment (L = 2D1 = 2D2, Pr = 0.7)

fluid flow acts as an intermediate medium between solid surfaces. Note that this ambiguity

does not exist in radiation. In fact, the classical theory of thermal radiation is centered

on tracking and resolving the split of heat transfer between different surfaces and media.

Likewise, heatlines provide a graphical tool for tracking heat transfer in the conduction

regime and resolving the split of heat transfer.

But splitting convective heat transfer is not as straightforward. In the channel problem,

for example, there is heat transfer at the channel walls (Q1 and Q2) and there is heat

transfer to the fluid (Q0). Near the channel inlet, before the thermal boundary layers

merge, heat transfer takes place between either wall and the fluid. Conversely, in the

thermally developed limit, there is no net heat transfer to the fluid; heat transfer occurs
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between the walls. In general, however, it seems impossible to track the heat transfer at a

wall to determine where it “ends up” — the fluid or the other wall.

Aside from conceptual difficulty, resolving the split of heat transfer entails also a difficult

practical problem which is, in essence, equivalent to the problem of multi-temperature

convection, discussed in Chapter 2. The extension of heatlines for visualizing convective

heat transfer (Kimura & Bejan 1983) seemed, at first sight, a viable option for tracking

heat transfer. However, because of their dependence on a reference temperature (in the

advection term), convection heatlines are not unique (Trevisan & Bejan 1987). This limits

the utility of the heatline method significantly.

The dQdT technique resolves the practical aspect of the split of heat transfer; with

{Cij} known, the paired heat transfer rates, {Qij}, can be easily calculated. The conceptual

question must nonetheless be considered carefully. In other words, separating convective

heat transfer into paired components, e.g. wall-to-wall, Q12 = C12(T1−T2), or wall-to-fluid,

Q10 = C10(T1 − T0), may not be valid outside the context of the resistor-network model,

i.e. beyond the metaphor of paired thermal currents.

3.4 Summary

Some multi-temperature convection problems may be represented by a network of

convective resistors. The dQdT technique provides a means for assessing the validity of

this model. If there is reciprocity between the functionality coefficients, i.e. Cij = Cji, the

resistor-network model is applicable; the multi-temperature problem can be modeled as a

network of temperature nodes representing the isothermal boundaries. The functionality

coefficients, {Cij}, are the conductances of this network. However, the paired thermal

current through the legs of this network may not have a clear physical interpretation.
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Chapter 4

The Asymmetric Graetz Problem

Revisited

Flow in heated passages has been a classical topic of interest in heat transfer due mainly to

its application in the design and analysis of heat exchangers. For fluids with a high Prandtl

number (oils, organic liquids, etc.) or cases where the fluid passes through an unheated

section first, hydrodynamic development may occur well before thermal development. In

this case, the thermal analysis of the flow is done assuming a fully developed velocity

profile.

In 1882, Graetz published a solution to the problem of heat transfer in an isothermal

pipe for a hydrodynamically developed laminar flow with negligible axial conduction and

viscous dissipation (Graetz 1882). This solution is considered to be the first analytical

solution to a convection problem. Accordingly, the problem of convective heat transfer in

hydrodynamically developed laminar flow in a passage with isothermal walls is known as

the Graetz problem.

In recent years, the emergence of such devices as microchannels and fuel cells has

renewed the interest in the Graetz problem. Numerous variations and extensions of the
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Figure 4.1: Schematic of hydrodynamically developed flow
in a parallel-plate channel with isothermal walls

problem have been studied; several analytical and numerical solutions have been published.

Recent reviews of the Graetz-problem literature can be found in the papers by Ryzhkov

(2013) and Haddout & Lahjomri (2015). A classical solution from the literature is of

particular interest in this chapter.

Consider a hydrodynamically developed laminar flow at a uniform temperature, T0,

entering the channel formed between two semi-infinite parallel plates maintained at

temperatures T1 and T2, separated by distance H. See Figure 4.1. In general, the walls

may be heated “asymmetrically”, i.e. T1 6= T2. Hence, the problem of calculating the

rate of heat transfer in the configuration shown in Figure 4.1 is known as the asymmetric

Graetz problem.

4.1 The Analytical Solution

With constant fluid properties, negligible conduction in the x-direction and negligible

viscous dissipation, the energy equation for laminar flow is reduced to Equation 4.1.

ρufdcp
∂T

∂x
= k

∂2T

∂y2
(4.1)
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The fully developed laminar velocity profile, ufd, is given by Equation 4.2.

ufd = − 1

2µ

(
dp

dx

)(
H2

4
− y2

)
(4.2)

The boundary conditions of the problem are:

x = 0 ; T = T0

y = H/2 ; T = T1

y = −H/2 ; T = T2

(4.3)

The problem is described by three isothermal boundaries. It is hence a

three-temperature problem. A temperature ratio is often used to specify the ordering

of {Ti}. Equation 4.4 shows a common definition (Hatton & Turton 1962) with Twm =

(T1 + T2)/2.

rT =
T0 − Twm

T1 − Twm

(4.4)

Hatton & Turton (1962) applied separation of variables to obtain an analytical solution

to Equation 4.1 subject to the conditions of Equation 4.3. See Equation 4.5.

θ = Y −
∞∑
n=1

Bnfn exp
(
− 8

3
λ2
nX
)

(4.5)

In Equation 4.5, θ is the dimensionless temperature defined in Equation 4.6 and Y is

the dimensionless lateral coordinate: Y = 2y/H. X is the inverse Graetz number, defined

in Equation 4.7, representing the stream-wise coordinate.

θ =
T − Twm

T1 − Twm

(4.6)
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X =
2x

H

(
1

Re Pr

)
(4.7)

The flow is characterized by the Reynolds number defined in Equation 4.8.

Re =
ρum(2H)

µ
(4.8)

The first term of the solution shown in Equation 4.5, Y , is the linear, fully developed

temperature profile. The second term is the series solution to a Sturm-Liouville system,

with Bn, fn and λn denoting the eigencoefficients, eigenfunctions and eigenvalues,

respectively. Hatton & Turton (1962) have presented the first eight eigenvalues of the

problem.

Hatton & Turton (1962) used the solution to the temperature field, θ(x, y), to derive a

series expression for the mean fluid temperature, Tm. The evolution of T and Tm along the

channel is shown in Figure 4.2 for a sample case with T0 < T1 < T2. This figure reveals

important aspects of the thermal development of the flow. At the channel inlet the fluid

temperature is uniform: T (x = 0) = T0. Moving downstream, due to heat transfer from

the walls the temperature profile evolves, approaching a linear profile in the x→∞ limit.

The variation of heat flux at the walls, q1 and q2, can be determined by examining the

temperature gradient, ∂T/∂y, at the walls. In the thermally developed limit;

i) The temperature profile becomes linear with:

lim
x→∞

∂T

∂y
=
T1 − T2

H
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Figure 4.2: Evolution of temperature profile and mean fluid temperature (Tm)
in the asymmetric Graetz problem (rT = 3)

ii) The mean fluid temperature reaches the mean wall temperature:

lim
x→∞

Tm = Twm

iii) The net heat flux to the fluid decays to zero:

lim
x→∞

(q1 + q2) =
k

H
(T1 − T2)− k

H
(T1 − T2) = 0

Attention is usually focused on the thermally developing region where the temperature

profile evolves and the net heat transfer to the fluid takes place.
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4.2 Traditional Formulation

In the paper by Hatton & Turton (1962), results are presented in terms of local Nusselt

numbers, Nu1 and Nu2, defined in Equation 4.9.

Nui =
qi

Ti − Tm

(
2H

k

)
(i = 1, 2) (4.9)

The expressions presented by Hatton & Turton (1962) for Nu1 and Nu2 are reproduced

in Equations 4.10 and 4.11. Note the emergence of rT in these expressions.

Nu1 =

{
1− 2rT

∞∑
n=1

1

λEn

[
(∂fEn/∂y)Y=1

(∂fEn/∂λEn)Y=1

]
exp(−8λ2

EnX/3)

+ 2
∞∑
n=1

1

λOn

[
(∂fOn/∂y)Y=1

(∂fOn/∂λOn)Y=1

]
exp(−8λ2

OnX/3)

}/
{

1

4
− 3rT

4

∞∑
n=1

1

λ3
En

[
(∂fEn/∂y)Y=1

(∂fEn/∂λEn)Y=1

]
exp(−8λ2

EnX/3)

}
(4.10)

Nu2 =

{
1 + 2rT

∞∑
n=1

1

λEn

[
(∂fEn/∂y)Y=1

(∂fEn/∂λEn)Y=1

]
exp(−8λ2

EnX/3)

+ 2
∞∑
n=1

1

λOn

[
(∂fOn/∂y)Y=1

(∂fOn/∂λOn)Y=1

]
exp(−8λ2

OnX/3)

}/
{

1

4
+

3rT
4

∞∑
n=1

1

λ3
En

[
(∂fEn/∂y)Y=1

(∂fEn/∂λEn)Y=1

]
exp(−8λ2

EnX/3)

}
(4.11)

In Figure 4.3, a plot of {Nui} for various temperature ratios is reproduced from the

work of Hatton & Turton (1962). Several important observations can be made about this
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plot. First, even though q1 is both continuous and finite for X > 0, Nu1 has a singularity

at some finite distance downstream of the channel (X > 0) if rT > 1. This singularity is in

addition to the singularity at the channel inlet (X = 0) which is caused by the singularity

in the heat flux. The extra singularity arises because the driving temperature difference

used to define Nu1 (Equation 4.9) is based on Tm. When T0 < T1 < T2, for instance, Nu1

becomes indefinite in the location where Tm = T1. Moreover, Nu1 changes sign through this

singularity, which is non-physical; q1 does not change sign until the temperature gradient

normal to the wall becomes zero, i.e. at a local adiabatic point where Nu1 = 0. As shown

by Mitrović et al. (2006), the singularity point where Tm = T1 (dashed curve in Figure

4.2), is distinct from the local adiabatic point (dotted curve). As pointed out in different

sources, e.g. Nield (2004), the singularities seen in Figure 4.3 reduce the utility of the

results. To address this deficiency, Nield (2004) proposed a Nusselt number based on the

total heat flux, (q1 + q2), and the difference between the mean wall and fluid temperatures,

(Twm−Tm). Both (q1+q2) and (Twm−Tm) decay continuously to zero as the flow approaches

its thermally developed limit. Therefore, the extra singularity is eliminated.

The second, and more important, observation about Figure 4.3 is that {Nui} depends

on rT . This is unexpected. In the two-temperature case of symmetrically heated walls, i.e.

for T1 = T2, the Nusselt number can be expressed as Nu = Nu(Re,Pr). Given that the only

difference between the asymmetric and symmetric cases is an additional non-homogeneous

(but linear) boundary condition, the nature of the solutions should be the same. In other

words, it is expected that in the case of T1 6= T2 too the solution could be expressed in

terms of Nusselt numbers that are independent of rT . The results presented by Hatton &

Turton (1962) exhibit this feature only in the thermally developed limit:

lim
X→∞

Nu1 = lim
X→∞

Nu2 = 4
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Figure 4.3: Local Nusselt numbers of the asymmetric Graetz problem (Hatton & Turton
1962) [Reproduced with permission; labels modified to match current nomenclature]
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The modified Nusselt number proposed by Nield (2004) is also independent of rT only in

the thermally developed limit.

Finally, Figure 4.3 may be misleading by suggesting that the thermal development

length of the flow is a function of rT . As will be demonstrated, this is not the case.

4.3 Extended Newton Formulation

The foregoing discussion demonstrates shortcomings of using a single heat transfer

coefficient for a multi-temperature convection problem — the traditional formulation. Now

consider the extended Newton formulation of the problem:

Qi =
∑
j

Cij(Ti − Tj)

Each of the three heat transfer rates is characterized by two functionality coefficients.

In Chapter 2, dQdT was applied to obtain C10 and C12:

C10 = Re Pr k

{
∞∑
n=1

3

8λ2
n

(
∂Bn

∂θ0

)(
∂fn
∂Y

)
Y=1

[
1− exp

(
− 8

3
λ2
nX
)]}

C12 = −Re Pr k

{
X −

∞∑
n=1

3Bn

8λ2
n

(
∂fn
∂Y

)
Y=1

[
1− exp

(
− 8

3
λ2
nX
)]

−
∞∑
n=1

3

8λ2
n

(
∂Bn

∂θ2

)(
∂fn
∂Y

)
Y=1

[
1− exp

(
− 8

3
λ2
nX
)]}
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4.3.1 Average Paired Nusselt Numbers

An average paired Nusselt number may be defined as shown in Equation 4.12 to express

{Cij} in dimensionless form. The term “paired” emphasizes the idea that Nuij corresponds

to a specific pair of isothermal boundaries and distinguishes it from the traditional “total”

Nusselt number.

Nuij =
Cij
k

(
2H

x

)
(4.12)

Using the expressions obtained on Chapter 2 and Equation 4.12, Nu10 and Nu12, the

paired Nusselt numbers characterizing heat transfer at the upper wall (Q1), are:

Nu10 =
4

X

∞∑
n=1

3

8λ2
n

(
∂Bn

∂θ0

)(
∂fn
∂Y

)
Y=1

[
1− exp

(
− 8

3
λ2
nX
)]

(4.13)

Nu12 = − 4

X

{
X −

∞∑
n=1

3Bn

8λ2
n

(
∂fn
∂Y

)
Y=1

[
1− exp

(
− 8

3
λ2
nX
)]

−
∞∑
n=1

3

8λ2
n

(
∂Bn

∂θ2

)(
∂fn
∂Y

)
Y=1

[
1− exp

(
− 8

3
λ2
nX
)]} (4.14)

dQdT can be used to obtain expressions for all Nuij. See Equations 4.15-4.18.

Nu20 =
C20

k

(
2H

x

)

=
1

k

(
2H

x

)[
− ∂Q2

∂T0

]
Cik=const

=
4

X

∞∑
n=1

3

8λ2
n

(
∂Bn

∂θ0

)(
∂fn
∂Y

)
Y=−1

[
1− exp

(
− 8

3
λ2
nX
)]

(4.15)
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Nu21 =
C21

k

(
2H

x

)

=
1

k

(
2H

x

)[
− ∂Q2

∂T1

]
Cik=const

= − 4

X

{
X −

∞∑
n=1

3Bn

8λ2
n

(
∂fn
∂Y

)
Y=−1

[
1− exp

(
− 8

3
λ2
nX
)]

−
∞∑
n=1

3

8λ2
n

(
∂Bn

∂θ1

)(
∂fn
∂Y

)
Y=−1

[
1− exp

(
− 8

3
λ2
nX
)]}

(4.16)

Nu01 =
C01

k

(
2H

x

)

=
1

k

(
2H

x

)[
− ∂Q0

∂T1

]
Cik=const

= − 4

X

{
∞∑
n=1

3

8λ2
n

(
∂Bn

∂θ1

)[(
∂fn
∂Y

)
Y=1

−
(
∂fn
∂Y

)
Y=−1

][
1− exp

(
− 8

3
λ2
nX
)]}

(4.17)

Nu02 =
C02

k

(
2H

x

)

=
1

k

(
2H

x

)[
− ∂Q0

∂T2

]
Cik=const

=
4

X

{
∞∑
n=1

3

8λ2
n

(
∂Bn

∂θ2

)[(
∂fn
∂Y

)
Y=1

−
(
∂fn
∂Y

)
Y=−1

][
1− exp

(
− 8

3
λ2
nX
)]}

(4.18)
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Note that as discussed in Chapter 2, the symmetry in the geometry, velocity field

and the fluid properties can be used to reduce the number of unknowns in the system of

equations resulting from the extended Newton formulation. The functionality coefficients

can then be obtained algebraically, without dQdT. This approach was taken in an earlier

work (Foroushani et al. 2017a) to derive the functionality coefficients of the asymmetric

Graetz problem.

As shown in Chapter 3 (Section 3.2), there is reciprocity between the functionality

coefficients of the asymmetric Graetz problem: Cij = Cji. Therefore: Nuij = Nuji.

Furthermore, it was shown in Chapter 2 that due to symmetry: C10 = C20. Therefore:

Nu10 = Nu20. These results were confirmed by evaluating Equations 4.13-4.18 using

the eigencoefficients, eigenfunction derivatives and eigenvalues given by Hatton & Turton

(1962).

Reciprocity and symmetry of the functionality coefficients mean:

i) The problem can be represented by a delta network of three convective resistances.

See Figure 4.4. In this context, Qij, the thermal current between Ti and Tj, can be

calculated as:

Qij = Cij(Ti − Tj) =

(
kx

2H

)
Nuij(Ti − Tj)

ii) The heat transfer problem is fully characterized by two paired Nusselt numbers: a

“wall-fluid” Nusselt number (Nu10 = Nu20 = Nu01 = Nu02) and a “wall-wall” Nusselt

number (Nu12 = Nu21).

Using the eigencoefficients, eigenfunction derivatives and eigenvalues given by Hatton

& Turton (1962), the analytical expressions shown in Equations 4.19 and 4.20 were derived

for {Nuij}. As expected, no dependence on {Ti} is observed. The paired Nusselt numbers

depend only on X, i.e. a combination of geometry, flow rate and fluid properties.

65



Figure 4.4: The resistor network of the asymmetric Graetz problem

Nu10 =
1

X

[
1− 0.9104 exp(−7.54X)− 0.0532 exp(−85.73X)

− 0.0152 exp(−249.27X)− 0.0068 exp(−498.15X)

− 0.0038 exp(−832.39X)− 0.0024 exp(−1251.93X)

− 0.0016 exp(−1756.80X)− 0.0012 exp(−2347.03X)

]
(4.19)
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Nu12 =
1

X

[
2X − 0.4 + 0.4552 exp(−7.54X)− 0.0733 exp(−35.96X)

+ 0.0266e exp(−85.73X)− 0.0131 exp(−156.83X)

+ 0.0076 exp(−249.27X)− 0.0049 exp(−363.04X)

+ 0.0034 exp(−498.15X)− 0.0025 exp(−654.59X)

+ 0.0019 exp(−832.39X)− 0.0001 exp(−1031.47X)

+ 0.0012 exp(−1251.93X)− 0.0009 exp(−1493.69X)

+ 0.0007 exp(−1756.80X)− 0.0007 exp(−2041.25X)

+ 0.0006 exp(−2347.03X)− 0.0005 exp(−2674.81X)

]

(4.20)

Equations 4.19 and 4.20 are plotted in Figure 4.5. The evolution of the temperature

field in the channel can be used to explain this plot. As shown in Figure 4.2, near the

inlet there is a core of fluid flowing at T0 which is not affected by heat transfer from the

walls. Downstream where the thermal boundary layers merge, this core shrinks and the

temperature profile eventually evolves into a linear profile which is independent of T0.

Accordingly, Nu10 starts from infinity at the inlet, reflecting the singularity in heat flux,

and decays to zero in the thermally-developed limit where there is zero net heat transfer to

the fluid. The variation of Nu12 follows a different trend. Near the inlet where the boundary

layers are thin, the walls do not “communicate” thermally; Nu12 ≈ 0 for 0 ≤ X ≤ 0.05. On

the other hand, for X > 0.05, as the two thermal boundary layers become thicker, Nu12

increases, approaching the pure-condition limit. Since the channel hydraulic diameter, 2H,

was used to define Nuij (Equation 4.12);

lim
X→∞

Nu12 = 2
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Figure 4.5: Average paired Nusselt numbers of the asymmetric Graetz problem

In addition to having better consistency with the physics of the problem, the paired

Nusselt numbers are also easier to use compared to the total Nusselt numbers. Equations

4.19 and 4.20 can be readily evaluated in a spreadsheet. Moreover, these expressions can

be used for any {Ti}, including the two-temperature case (T1 = T2). In Section 4.4, the

utility of these results is demonstrated in sample calculations.

Calculations can be further simplified by using only the first series term (n = 1) to

approximate {Nuij}. See Equations 4.21 and 4.22.

Nu10 ≈
1− 0.9104 exp(−7.54X)

X
(4.21)
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Nu12 ≈ 2− 0.4− 0.4552 exp(−7.54X)

X
(4.22)

The expressions above are also plotted in Figure 4.5. It can be seen that the

first-exponential approximation to Nu10 replicates Equation 4.19 for essentially all X > 0.

The first-exponential approximation to Nu12 shows significant deviation from Equation

4.20 near the inlet (X < 0.05), but very close agreement for X > 0.05.

4.3.2 Local Paired Nusselt Numbers

For direct comparison with the local Nusselt numbers reported by Hatton & Turton (1962),

a local functionality coefficient may be defined as shown in Equation 4.23, characterizing

the influence of Tj on the heat flux qi at location x.

cij = − ∂qi
∂Tj

∣∣∣∣
Cik=const

(4.23)

Accordingly, a local paired Nusselt number, Nuij, may be defined as shown in Equation

4.24.

Nuij =
cij
k

(
2H
)

(4.24)

The relation between cij and Cij is shown in Equation 4.25.
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cij = − ∂qi
∂Tj

∣∣∣∣
Cik=const

= −
[
∂

∂Tj

(
∂Qi

∂x

)]
Cik=const

=
∂

∂x

(
− ∂Qi

∂Tj

∣∣∣∣
Cik=const

)

=
∂ Cij
∂x

(4.25)

Thus, Nuij and Nuij are related as shown in Equation 4.26.

Nuij =
d

dX

(
NuijX

)
(4.26)

Using Equations 4.13, 4.14 and 4.26, expressions below were found for {Nuij}.

Nu10 =
d

dX

(
Nu10X

)
= 4

∞∑
n=1

1

λ2
n

(
∂Bn

∂θ0

)(
∂fn
∂Y

)
Y=1

exp
(
− 8

3
λ2
nX
) (4.27)

Nu12 =
d

dX

(
Nu12X

)
= 4

{
∞∑
n=1

1

λ2
n

(
∂Bn

∂θ2

)(
∂fn
∂Y

)
Y=1

exp
(
− 8

3
λ2
nX
)

− 1−
∞∑
n=1

Bn

λ2
n

(
∂fn
∂Y

)
Y=1

exp
(
− 8

3
λ2
nX
)}

(4.28)
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Figure 4.6: Local paired Nusselt numbers of the asymmetric Graetz problem

Comparing {Nuij} (Equations 4.27 and 4.28) to {Nui} (Equations 4.10 and 4.11), it can

be seen that the local paired Nusselt numbers are a simpler presentation of the solution.

This is better seen by comparing the results presented Hatton & Turton (Figure 4.3) and

the dQdT results shown in Figure 4.6. The two curves shown in Figure 4.6 replace the entire

family of rT -dependent curves of Figure 4.3. The local paired Nusselt numbers are also

a better representation of the thermal development of the flow. According to Figure 4.6,

thermal development is a function of X only; regardless of rT , the flow becomes essentially

thermally developed by X ≈ 0.6.

The utility and accuracy of the dQdT results are demonstrated in the following example.

71



4.4 Example: No-Slip Flow in a Microchannel

Consider a flow of water (Pr = 6.7) at ṁ = 0.048 kg/(m·s) and T0 = 10◦C in a microchannel

with H = 60 µm, T1 = 20◦C and T2 = 30◦C. The rate of heat transfer in the channel from

the entrance (x = 0) to x = 3 mm is of interest.

First, calculations using the traditional formulation are presented. The rate of total

heat transfer from the fluid per unit channel width, Q0, can be calculated using an overall

energy balance:

Q0 = ṁcp
[
T0 − Tm(x)

]
The mean fluid temperature, Tm, is given in the solution by Hatton & Turton (1962):

Tm = Twm +
3

2
(T1 − T2)θm

= Twm +
3

2
(T1 − T2)

[
0.303 exp(−7.54X) + 0.0177 exp(−85.73X)

+ 0.0051 exp(−249.27X) + 0.0023 exp(−498.15X)

+ 0.0012 exp(−832.39X) + 0.0008 exp(−1251.93X)

+ 0.0005 exp(−1756.80X) + 0.0004 exp(−2347.03X)

]

With ṁ = 0.048 kg/(m · s) and µ = 9.6× 10−2 (Ns/m2), the Reynolds number is:

Re =
ρum(2H)

µ
=

2ṁ

µ
= 100

Therefore, at x = 3 mm, the inverse Graetz number is:

X =
2x

H

(
1

Re Pr

)
=

2(0.003)

6× 10−5

(
1

100

)(
1

6.7

)
≈ 0.15
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At X = 0.15, the expression for Tm yields: Tm = 20.58◦C. Therefore, with cp =

4.182 J/(kg K), the energy balance leads to:

Q0 = (0.048)(4182)(10− 20.58) = −2124
W

m

Heat transfer at either wall can be obtained by integrating the local Nusselt numbers

given by Hatton and Turton (1962). With k = 0.6 W/(mK);

Q1 =

∫ 0.003

0

q1 dx

=
k

2
Re Pr(T2 − T1)

∫ 0.15

0

Nu1

(
1− θm

4

)
dX

= 657
W

m

Q2 =

∫ 0.003

0

q2 dx

=
k

2
Re Pr(T2 − T1)

∫ 0.15

0

Nu2

(
1 + θm

4

)
dX

= 1450
W

m

It is evident from Equations 4.10 and 4.11 that integrating Nui is not straightforward.

Furthermore, since both {Nui} and θm are function of rT , the tedious task of evaluating

the integral must be repeated for every new rT .

With the wall heat transfer rates known, the total heat transfer rate to the fluid can

also be calculated as:

Q0 = −Q1 −Q2 = −2107
W

m
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The slight difference between the result above and the energy-balance calculation is the

truncation error caused by evaluating the series expressions for θm and {Nui} using the

first eight terms.

Alternatively, the paired Nusselt numbers may be used to calculate {Qi}. Substituting

X = 0.15 in Equations 4.19 and 4.20 (or from Figure 4.5), the average Nusselt paired

numbers are: Nu10 = 4.68, Nu12 = Nu21 = 0.30. The first-exponential approximations

(Equations 4.21 and 4.22) give: Nu10 = 4.71, Nu12 = 0.31. Note that these values can be

used for any rT . The heat transfer rates are therefore:

Q0 =
kx

2H

[
Nu01(T0 − T1) + Nu02(T0 − T2)

]

=
0.6(0.003)

2(3× 10−5)

[
4.68(10− 20) + 4.68(10− 30)

]

= −2105
W

m

Q1 =
kx

2H

[
Nu10(T1 − T0) + Nu12(T1 − T2)

]

=
0.6(0.003)

2(3× 10−5)

[
4.68(20− 10) + 0.30(20− 30)

]

= 655
W

m

Q2 =
kx

2H

[
Nu20(T2 − T0) + Nu21(T2 − T1)

]

=
0.6(0.003)

2(3× 10−5)

[
4.68(30− 10) + 0.30(30− 20)

]

= (T2 − T1) = 1450
W

m
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The close agreement of the calculations above with the results obtained using the

traditional formulation validates the dQdT results. The overall energy balance in the

channel can be used as to further check the dQdT results;

∑
i

Qi = Q0 +Q1 +Q2 = −2105 + 655 + 1450 = 0

4.5 Summary

The extended Newton formulation of the asymmetric Graetz problem was discussed. The

formulation of the problem in terms of paired Nusselt numbers has several advantages over

the traditional formulation:

i) The extra singularities observed in the traditional formulation are eliminated.

ii) The paired Nusselt numbers are independent of temperature (and temperature ratio).

iii) The paired Nusselt numbers are a better representation of the physics of the problem;

the wall-wall Nusselt numbers start from zero at the entrance and approach the

pure-conduction limit in the thermally developed limit, while the wall-fluid Nusselt

number starts from infinity at the inlet and smoothly decays to zero in the thermally

developed limit.

iv) Two universal Nusselt numbers are obtained that can be applied to any fluid, any

laminar flow rate and any temperature ratio.

Furthermore, it was shown due to reciprocity between the functionality coefficients of

the problem, the asymmetric Graetz problem can be represented by a network of convective

resistors.
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Chapter 5

Convection in Hydrodynamically

Developed Laminar Flow in an

Annulus with Isothermal Walls

Convective heat transfer in concentric annuli is encountered in various applications, most

importantly the tube-in-tube heat exchanger. The annulus is therefore a geometry that is

extensively studied in the heat transfer literature. Bibliographies of the annulus problem

can be found in most advanced heat transfer textbooks, e.g. those by Kays & Crawford

(2005) and Kakaç et al. (2014). Recently, the development of microtubes has renewed the

interest in this problem.

For fluids with a high Prandtl number (oils, organic liquids, etc.) or cases where the

fluid passes through an unheated section first, hydrodynamic development may occur well

before thermal development. In this case, the thermal analysis of the flow is performed

assuming a fully developed velocity profile.

Hydrodynamically developed laminar flow in a concentric annulus was examined in

this work for several reasons. First, the case of isothermal boundary conditions at the
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walls constitutes a three-temperature convection problem. Second, this problem has an

analytical solution to which the dQdT technique can be applied. Finally, the annulus

problem provides an opportunity for validating the results presented in Chapter 4 for the

channel problem: in the limit as the curvature of the annulus walls approaches zero, the

functionality coefficients of the annulus must approach the functionality coefficients of the

parallel-plate channel. This will be demonstrated.

5.1 The Analytical Solution

Consider a hydrodynamically developed laminar flow at a uniform temperature, T0,

entering the annulus formed between two concentric circular pipes of radii r1 and r2 with

isothermal walls at temperatures T1 and T2. This configuration is shown schematically in

Figure 5.1.

With constant fluid properties, negligible conduction in the x-direction and negligible

viscous dissipation, the energy equation in cylindrical coordinates is reduced to Equation

5.1, subject to the boundary conditions shown in Equation 5.2.

ρufdcp
∂T

∂x
= k

(
∂2T

∂r2
+

1

r

∂T

∂r

)
(5.1)

x = 0 ; T = T0

r = r1 ; T = T1

r = r2 ; T = T2

(5.2)

The fully developed laminar velocity profile, ufd, is given in Equation 5.3.
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Figure 5.1: Schematic of hydrodynamically developed flow
in a concentric annulus with isothermal walls

ufd = − 1

4µ

(
dp

dx

)[
r2

1 − r2 + (r2
1 − r2

2)
ln(r1/r)

ln(r2/r1)

]
(5.3)

The flow is characterized by the Reynolds number defined in Equation 5.4. In this

equations, Dh denotes the hydraulic diameter of the annulus: Dh = 2(r1 − r2).

Re =
ρumDh

µ
(5.4)

Lundberg et al. (1963) obtained a solution to Equation 5.1 for the special case where

one of the annulus walls is maintained at the same temperature as the inlet flow, i.e. for the

case of only one non-homogeneous boundary condition. Similar to the solution by Hatton

& Turton (1962) for the channel problem, this solution is expressed as the superposition

of a one-dimensional solution for the non-homogeneous boundary conditions, i.e. the fully

developed solution, θfd, and a series solution for the homogeneous boundary conditions.

See Equation 5.5.

78



θi = θfd,i −
∞∑
n=1

Bn,ifn exp(−λ2
nX) (5.5)

In Equation 5.5, θ is dimensionless temperature defined in Equation 5.6 and X is

the inverse Graetz number, defined in Equation 5.7. Bn, fn and λn are respectively the

eigencoefficients, eigenfunctions and eigenvalues of the series solution. The subscript i

denotes the heated wall: θ2, for example, is the solution to the case where the outer wall

is at the same temperature as the inlet flow (T1 = T0), while the inner wall is heated

to a different temperature (T2). The fully developed temperature profile, θfd, is given by

Equation 5.8 wherein the subscript j designates the unheated wall.

θi =
T − T0

Ti − T0

(5.6)

X =
x

2(r1 − r2)

(
1

Re Pr

)
(5.7)

θfd,i =
ln(r/rj)

ln(ri/rj)
(5.8)

Given the linearity of the energy equation, a solution to the general case where neither

wall is at the same temperature as the inlet flow, i.e. for two non-homogeneous boundary

conditions, can be constructed using superposition. See Equation 5.9 and Figure 5.2 where

the generic solution, T (x, r), is expressed as the sum of “fundamental” solutions, T
(1)
1 and

T
(1)
2 . In accordance with the notation used by Lundberg et al. (1963), the superscript

(1) denotes a fundamental solution of the “first kind,” i.e. for Dirichlet conditions on all

boundaries.
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T (x, r) = T
(1)
1 (x, r) + T

(1)
2 (x, r) (5.9)

T
(1)
i is known in dimensionless form, θi, from the work of Lundberg et al. (1963).

Furthermore, with T ′i and T ′′i denoting the boundary conditions of the subproblems,

superposition requires:

T ′i + T ′′i = Ti

Hence, the generic solution is obtained as shown in Equation 5.10.

T = (T1 − T0)θ1 + (T2 − T0)θ2 + 2T0 (5.10)

Lundberg et al. (1963) have presented their solution in terms of the local Nusselt

number defined in Equation 5.11.

Nui =
qi

Ti − Tm

(
Dh

k

)
(i = 1, 2) (5.11)

Extensive tables are presented, listing the local Nusselt numbers and the mean fluid

temperature at different axial locations and for various radius ratios. These tables have

become a benchmark in the calculation of heat transfer in concentric annuli and widely

cited in prominent references, e.g. Handbook of Single-Phase Convective Heat Transfer

(Kakaç et al. 1987) and Handbook of Heat Transfer (Rohsenow et al. 1998).

The shortcomings of the traditional formulation, i.e. presenting the results in terms

of a Nusselt number based on Ti − Tm, were discussed in Chapter 4 for flow in an

asymmetrically heated parallel-plate channel. The same problems arise if the traditional

formulation is applied to the asymmetrically heated annulus; the Nusselt numbers depend

on a temperature ratio and, in some cases, exhibit non-physical singularities for X > 0. See
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for example the plots of temperature-dependent Nusselt numbers presented by Mitrović &

Baletić (2005) and the singularities in the results presented by Mitrović & Baletić (2005)

and Coelho & Pinho (2006). See also the plots of fully developed Nusselt numbers in

Handbook of Heat Transfer (Rohsenow et al. 1998) where different curves are presented

for the symmetric (T1 = T2) and asymmetric (T1 6= T2) heating of the annulus walls.

The extended Newton formulation in terms of functionality coefficients is now an

alternative approach which, as shown in Chapter 4, addresses the shortcomings of the

traditional formulation. In the following, the solution by Lundberg et al. (1963) is used to

derive the functionality coefficients of the problem.

5.2 Extended Newton Formulation

Differentiating Equation 5.10, the heat flux at either wall can be calculated as shown in

Equations 5.12 and 5.13. In these equations, r = r/r1 denotes dimensionless radial location

and φ = r2/r1 is the radius ratio, characterizing the annulus geometry.

q1 = k

(
∂T

∂r

)
r=r1

=
k

r1

[
(T1 − T0)

(
∂θ1

∂r

)
r=1

+ (T2 − T0)

(
∂θ2

∂r

)
r=1

] (5.12)

q2 = −k
(
∂T

∂r

)
r=r2

= − k
r1

[
(T1 − T0)

(
∂θ1

∂r

)
r=φ

+ (T2 − T0)

(
∂θ2

∂r

)
r=φ

] (5.13)
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Equations 5.12 and 5.13 must then be integrated along the walls to obtain the heat

transfer rate at each wall. See Equation 5.14.

|Qi| =
∫ x

0

|qi|(2πri) dx

=

∫ x

0

k

r1

[
(T1 − T0)

(
∂θ1

∂r

)
ri

+ (T2 − T0)

(
∂θ2

∂r

)
ri

]
(2πri) dx

=2πrik

[
(T1 − T0)

∫ x

0

(
∂θ1

∂r

)
ri

dx+ (T2 − T0)

∫ x

0

(
∂θ2

∂r

)
ri

dx

]
(i = 1, 2)

(5.14)

Differentiating Equation 5.5, the gradient terms can be written as shown in Equations

5.15 and 5.16.

∂θ1

∂r
=

1/r

ln(1/φ)
−
∞∑
n=1

Bn,1

(
∂fn
∂r

)
exp(−λ2

nX) (5.15)

∂θ2

∂r
=

1/r

ln(φ)
−
∞∑
n=1

Bn,2

(
∂fn
∂r

)
exp(−λ2

nX) (5.16)

Therefore:

∫ x

0

(
∂θ1

∂r

)
dx =2(r1 − r2)Re Pr

∫ X

0

(
∂θ1

∂r

)
dX

=2(r1 − r2)Re Pr

{
X/r

ln(1/φ)
−
∞∑
n=1

Bn,1

λ2
n

(
∂fn
∂r

)[
1− exp(−λ2

nX)

]} (5.17)
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∫ x

0

(
∂θ2

∂r

)
dx =2(r1 − r2)Re Pr

∫ X

0

(
∂θ2

∂r

)
dX

=2(r1 − r2)Re Pr

{
X/r

ln(φ)
−
∞∑
n=1

Bn,2

λ2
n

(
∂fn
∂r

)[
1− exp(−λ2

nX)

]} (5.18)

Hence, the heat transfer rates are:

Q1 = 4πk(r1 − r2)Re Pr×{
(T1 − T0)

[
X

ln(1/φ)
−
∞∑
n=1

Bn,1

λ2
n

(
∂fn
∂r

)
r=1

(
1− exp(−λ2

nX)

)]

+(T2 − T0)

[
X

ln(φ)
−
∞∑
n=1

Bn,2

λ2
n

(
∂fn
∂r

)
r=1

(
1− exp(−λ2

nX)

)]}
(5.19)

Q2 =− 4πφk(r1 − r2)Re Pr×{
(T1 − T0)

[
X/φ

ln(1/φ)
−
∞∑
n=1

Bn,1

λ2
n

(
∂fn
∂r

)
r=φ

(
1− exp(−λ2

nX)

)]

+(T2 − T0)

[
X/φ

ln(φ)
−
∞∑
n=1

Bn,2

λ2
n

(
∂fn
∂r

)
r=φ

(
1− exp(−λ2

nX)

)]}
(5.20)
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Q0 =−Q1 −Q2

= 4πk(r1 − r2)Re Pr×{
(T1 − T0)

∞∑
n=1

Bn,1

λ2
n

[(
∂fn
∂r

)
r=1

− φ
(
∂fn
∂r

)
r=φ

][
1− exp(−λ2

nX)

]

+(T2 − T0)
∞∑
n=1

Bn,2

λ2
n

[(
∂fn
∂r

)
r=1

− φ
(
∂fn
∂r

)
r=φ

][
1− exp(−λ2

nX)

]}
(5.21)

To find {Cij}, Equations 5.19-5.21 must be differentiated with respect to {Ti}.

This operation is straightforward because, unlike the asymmetric Graetz problem, the

eigencoefficients, {Bn}, of the present solution do not depend on {Ti}. See Equations

5.22-5.27.

C10 =− ∂Q1

∂T0

∣∣∣∣
Cik=const

=− 4πk(r1 − r2)Re Pr
∞∑
n=1

Bn,1 +Bn,2

λ2
n

(
∂fn
∂r

)
r=1

[
1− exp(−λ2

nX)

] (5.22)

C12 =− ∂Q1

∂T2

∣∣∣∣
Cik=const

=− 4πk(r1 − r2)Re Pr

{
X

ln(φ)
−
∞∑
n=1

Bn,2

λ2
n

(
∂fn
∂r

)
r=1

[
1− exp(−λ2

nX)

]} (5.23)
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C20 =− ∂Q2

∂T0

∣∣∣∣
Cik=const

= 4πkφ(r1 − r2)Re Pr
∞∑
n=1

Bn,1 +Bn,2

λ2
n

(
∂fn
∂r

)
r=φ

[
1− exp(−λ2

nX)

] (5.24)

C21 =− ∂Q2

∂T1

∣∣∣∣
Cik=const

= 4πkφ(r1 − r2)Re Pr

{
X/φ

ln(1/φ)
−
∞∑
n=1

Bn,1

λ2
n

(
∂fn
∂r

)
r=φ

[
1− exp(−λ2

nX)

]} (5.25)

C01 =− ∂Q0

∂T1

∣∣∣∣
Cik=const

=− 4πk(r1 − r2)Re Pr
∞∑
n=1

Bn,1

λ2
n

[(
∂fn
∂r

)
r=1

− φ
(
∂fn
∂r

)
r=φ

][
1− exp(−λ2

nX)

]
(5.26)

C02 =− ∂Q0

∂T2

∣∣∣∣
Cik=const

=− 4πk(r1 − r2)Re Pr
∞∑
n=1

Bn,2

λ2
n

[(
∂fn
∂r

)
r=1

− φ
(
∂fn
∂r

)
r=φ

][
1− exp(−λ2

nX)

]
(5.27)

Lundberg et al. (1963) presented λn and Bn,i(∂fn/∂r) for n = 1, 2, 3, 4 and various

values of φ. The eigencoefficients and eigenfunction derivatives, Bn and ∂fn/∂r, are given

by Lundberg et al. (1963) in terms of the group: 2(1− φ)Bn,i(∂fn/∂r). See Appendix B.
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These values can be used in conjunction with Equations 5.22-5.27 to evaluate {Cij} and

show that:

Cij = Cji

For example, the results of Lundberg et al. (1963) demonstrate that:

Bn,2

(
∂fn
∂r

)
r=1

= −φBn,1

(
∂fn
∂r

)
r=φ

(5.28)

Therefore, Equations 5.23 and 5.25 are equivalent; C12 = C21.

Furthermore, the data presented by Lundberg et al. (1963) can be used to confirm the

relations below, leading to: C10 = C01, C20 = C02.

(
Bn,1 +Bn,2

)(∂fn
∂r

)
r=1

= Bn,1

[(
∂fn
∂r

)
r=1

− φ
(
∂fn
∂r

)
r=φ

]
(5.29)

(
Bn,1 +Bn,2

)(∂fn
∂r

)
r=φ

= Bn,2

[
− 1

φ

(
∂fn
∂r

)
r=1

+

(
∂fn
∂r

)
r=φ

]
(5.30)

As discussed in Chapter 3, Cij = Cji means the problem can be represented by a network

of convective resistances, in this case a delta network of three resistances connecting three

nodes at T0, T1 and T2. See Figure 4.4.

5.3 Average Paired Nusselt Numbers

An average paired Nusselt number may be defined to present the results in dimensionless

form. See Equation 5.31.
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Nuij =
2(r1 − r2)

Ai

(
Cij
k

)
(i = 1, 2) (5.31)

Note that in the limit as φ→ 1, the definition above is equivalent to the average paired

Nusselt number defined in Chapter 4 (Equation 4.12) for the parallel-plate channel.

Further note that:

C12 = C21 ⇒ Nu12

Nu21

=
A2

A1

= φ

Replacing the results obtained in Equations 5.22-5.27 into Equation 5.31, the wall

paired Nusselt numbers are obtained as shown in Equations 5.32-5.34.

Nu10 =
2(φ− 1)

X

∞∑
n=1

Bn,1 +Bn,2

λ2
n

(
∂fn
∂r

)
r=1

[
1− exp(−λ2

nX)

]
(5.32)

Nu20 =
2(1− φ)

X

∞∑
n=1

Bn,1 +Bn,2

λ2
n

(
∂fn
∂r

)
r=φ

[
1− exp(−λ2

nX)

]
(5.33)

Nu12 = φNu21

=
2(1− φ)

ln(1/φ)
+

2(1− φ)

X

∞∑
n=1

Bn,2

λ2
n

(
∂fn
∂r

)
r=1

[
1− exp(−λ2

nX)

] (5.34)

The tabulated data presented by Lundberg et al. (1963) can be used to evaluate

Equations 5.32-5.34. For instance, at φ = 0.5;

Nu10 =
1

X

[
0.2127− 0.1959 exp(−29.65X)− 0.0047 exp(−142.3X)

− 0.0113 exp(−339.6X)− 0.0008 exp(−621.6X)

] (5.35)
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Nu20 =
1

X

[
0.2973− 0.2889 exp(−29.65X) + 0.0070 exp(−142.3X)

− 0.0166 exp(−339.6X) + 0.0012 exp(−621.6X)

] (5.36)

Nu12 = 1.44− 1

X

[
0.0723− 0.0831 exp(−29.65X) + 0.0132 exp(−142.3X)

− 0.0048 exp(−339.6X) + 0.0023 exp(−621.6X)

] (5.37)

The expressions above are plotted in Figure 5.3. The trends are similar to those

observed in Chapter 4 for the asymmetric Graetz problem. Nu10 and Nu20 are infinitely

large at the annulus inlet, corresponding to the heat-flux singularity at X = 0. As the flow

develops thermally, with the temperature profile approaching the fully-developed profile of

Equation 5.8, Nu10 and Nu20 decay continuously. It is clear from Equations 5.32 and 5.33

that:

lim
X→∞

Nu10 = lim
X→∞

Nu20 = 0

The asymmetry in geometry, i.e. the different curvature of the inner and outer walls, leads

to a difference between the two wall-fluid Nusselt numbers; Nu10 < Nu20. 1

As thermal boundary layers thicken, the wall-wall Nusselt number, Nu12, increases from

zero at the inlet to the pure-conduction limit:

lim
X→∞

Nu12 =
2(1− φ)

ln(1/φ)

For φ = 0.5 this limit is: Nu12 → 1.44.

1Although the problem of hydrodynamically developed laminar flow in a parallel-plate channel with
walls at different temperatures is known in the heat transfer literature as the “asymmetric” Graetz problem,
it was demonstrated in Chapter 4 that the asymmetry observed in the traditional Nusselt numbers is
superficial and problematic. If properly formulated, the problem leads to temperature-independent paired
Nusselt numbers which are not affected by the asymmetry in the boundary conditions; the two wall-fluid
Nusselt numbers are identical. On the other hand, the asymmetry of geometry in the annulus problem
herein examined leads to a difference between the wall-fluid Nusselt numbers. In this light, it is perhaps
more suitable to refer to the annulus problem as the asymmetric Graetz problem.
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Figure 5.3: Average paired Nusselt numbers of hydrodynamically developed flow
in a concentric annulus (φ = 0.5)

Note that this limiting value can be independently established based on the conduction

shape factor of two concentric cylinders, S, shown in Equation 5.38, and noting that:

lim
X→∞

C12 = Sk

S =
2πx

ln(1/φ)
(5.38)
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The deviation of the Nu12 curve in Figure 5.3 from zero atX = 0 is due to the truncation

error caused by evaluating the summation in Equation 5.34 using the first four terms only.

This truncation error is pronounced near the inlet, i.e. for small X.

If the curvature of both annulus walls approaches zero (φ → 1), the solution must

approach the solution to the flat-plate channel problem. In Figure 5.4, the dQdT results

for the outer-fluid Nusselt number are plotted for various radius ratios. Note that non-zero

values are reported by Lundberg et al. (1963) for 2(1−φ)Bn,i(∂fn/∂r) in the φ→ 1 limit.

See Appendix B. The sign convention observed in the present work must also be taken

into account when using the data presented by Lundberg et al. (1963). Further note the

difference in the characteristic lengths used to define X in the papers by Hatton & Turton

(1962) and Lundberg et al. (1963); compare Equations 4.7 and 5.7. This difference leads

to:

lim
φ→1

X =
XCh

4

In the equation above the subscript “Ch” designates the channel problem, discussed in

Chapter 4.

It can be seen from Figure 5.4 that:

lim
φ→1

Nu10 =
(
Nu10

)
Ch

=
(
Nu20

)
Ch

Similarly, it can be shown that:

lim
φ→1

Nu20 =
(
Nu20

)
Ch

The outer-inner Nusselt number, Nu12, is plotted in Figure 5.5 for various radius ratios.

It is clear from this figure that:

lim
φ→1

Nu12 =
(
Nu12

)
Ch
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Figure 5.4: Outer-fluid paired Nusselt number of hydrodynamically developed laminar
flow in a concentric annulus (φ = r1/r2)

The slight discrepancy between the φ → 1 curve and the channel-flow curve (dashed) in

Figures 5.4 and 5.5 is due to the slight difference between the two sets of eigenvalues
[
from

Hatton & Turton (1962) and Lundberg et al. (1963)
]

used to generate these curves.

5.4 Curve-Fit Correlations

The accuracy of the series solution shown in Equation 5.5 and the dQdT results obtained

using this solution depends on the number of the series terms evaluated. However, since

the eigenvalues of the system increase monotonically, the higher-order exponentials become

rapidly insignificant as X increases and a very good approximation may be obtained by
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Figure 5.5: Outer-inner paired Nusselt number of hydrodynamically developed laminar
flow in a concentric annulus (φ = r1/r2)

retaining only the first exponential term. Note that the solution of interest is based on

the assumption of negligible axial diffusion which is valid only for large values of X. In

Chapter 4, it was shown that the first-exponential approximation to the series expressions

for {Nuij} of the channel problem is of good accuracy, especially for X > 0.05.

Evaluating only the first exponential terms of the summation components of Equations

5.32-5.34, the average paired Nusselt numbers of the annulus problem can be approximated

as:
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Nu10 ≈ −2(1− φ)

{
4∑

n=1

(
Bn,1 +Bn,2

λ2
nX

)(
∂fn
∂r

)
r=1

−
(
B0,1 +B0,2

λ2
1X

)(
∂f0

∂r

)
r=1

exp(−λ2
1X)

} (5.39)

Nu20 ≈ 2(1− φ)

{
4∑

n=1

(
Bn,1 +Bn,2

λ2
nX

)(
∂fn
∂r

)
r=φ

−
(
B0,1 +B0,2

λ2
1X

)(
∂f0

∂r

)
r=φ

exp(−λ2
1X)

} (5.40)

Nu12 ≈
2(1− φ)

ln(1/φ)
+ 2(1− φ)

{
4∑

n=1

(
Bn,2

λ2
nX

)(
∂fn
∂r

)
r=1

−
(
B0,2

λ2
1X

)(
∂f0

∂r

)
r=1

exp(−λ2
1X)

} (5.41)

The coefficients and exponents of Equations 5.39-5.41 are all functions of the annulus

radius ratio, φ. Evaluating these coefficients and exponents for every given φ requires

solutions to the characteristic differential equation of the Sturm-Liouville system obtained

by applying separation of variables to Equation 5.1. Hence the approximate expressions

of Equations 5.39-5.41 are of little utility unless the calculation of the coefficients and

exponents is simplified. In order to do this, it was first noted that Equations 5.39-5.41 are

each comprised of:

i) a fully developed limit which depends only on φ,

ii) an “offset” term corresponding to X = 0,
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iii) an exponential function of X.

This general form is shown in Equation 5.42. The coefficients, Eij, Fij and Gij, are given

in Equations 5.43-5.45.

Nuij = Eij +
1

X

[
Fij −

Gij

λ2
1

exp(−λ2
1X)

]
(5.42)


E10 = E20 = 0

E12 =
2(1− φ)

ln(1/φ)

(5.43)



F10 = 2(φ− 1)
4∑

n=1

(
Bn,1 +Bn,2

λ2
n

)(
∂fn
∂r

)
r=1

F20 = 2(1− φ)
4∑

n=1

(
Bn,1 +Bn,2

λ2
n

)(
∂fn
∂r

)
r=φ

F12 = 2(1− φ)
4∑

n=1

(
Bn,2

λ2
n

)(
∂fn
∂r

)
r=1

(5.44)



G10 = 2(φ− 1)
(
B0,1 +B0,2

)(∂f0

∂r

)
r=1

G20 = 2(1− φ)
(
B0,1 +B0,2

)(∂f0

∂r

)
r=φ

G12 = 2(1− φ)B0,2

(
∂f0

∂r

)
r=1

(5.45)

Analytical expressions were then obtained for λ2
1, {Fij} and {Gij} by fitting curves to

data points obtained using the results of Lundberg et al. (1963). See Equations 5.46-5.48
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Table 5.1: Coefficients and exponents of the curve-fit relations (Eqs. 5.47-5.48)

ij f1 f2 f3 f4 g1 g2 g3

10 0.173 -0.041 0.067 0 3.221 0.554 3.634

20 0.073 -0.842 0 0.175 2.420 -0.751 4.709

12 0.072 0.665 0 -0.027 2.928 0.569 0.500

and Table 5.1. The coefficient of determination in all these curve-fit relations is 0.99.

Further details can be found in Appendix C.

λ2
1 ≈ 28.96 exp(0.042φ)− 7.62 exp(−9.240φ) (5.46)

Fij = f1φ
f2 + f3φ+ f4 (5.47)

Gij = g1φ
g2 + g3 (5.48)

To use Equation 5.42, Eij is first calculated using Equation 5.43; Equation 5.46 is used

to estimate λ2
1; Fij and Gij are then calculated using Equations 5.47 and 5.48 respectively,

with constants from Table 5.1. With {Nuij} known, Q1 and Q2 can be calculated as shown

in Equation 5.49 and Q0 as: Q0 = −Q1 −Q2. This procedure is demonstrated in Section

5.5.

Qi =
∑
j

Cij(Ti − Tj)

=
Aik

2(r1 − r2)

∑
j

Nuij(Ti − Tj) (i = 1, 2)

(5.49)
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5.5 Sample Calculations

The application of the paired Nusselt numbers in heat transfer calculations and the utility

and accuracy of the proposed curve-fit correlations are demonstrated in the following

examples.

Consider a flow of engine oil (µ = 5.13 × 10−2 Ns/m2, k = 0.139 W/mK, cp = 2.076

kJ/kgK) at a flow rate of ṁ = 0.05 kg/s in an annulus with D1 = 100 mm and D2 = 50

mm and a length of x = 1.6 m. The inlet temperature is T0 = 40◦C and the annulus walls

are at T1 = 60◦C and T2 = 90◦C.

In this case, Dh = 0.05 m, Pr = 793 and Re = 8. Therefore, at x = 1.6 m, the inverse

Graetz number is:

X =

(
x

Dh

)
1

Re Pr
=

(
1.6

0.05

)
1

8× 793
= 0.005

Because X is very small, relatively large errors are expected when the first-exponent

approximations and the proposed curve-fit correlations are used. For larger values of X,

i.e. farther from the annulus inlet, the error will be smaller.

The rate of total heat transfer from the fluid can be obtained from an overall energy

balance:

Q0 = ṁCp
(
T0 − Tm

)
The change in the mean fluid temperature, Tm−T0, can be calculated by super-imposing

two fundamental solutions, θm,1 and θm,2:

T0 − Tm = (T0 − T1)θm,1 + (T0 − T2)θm,2
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According to tabulated data from Handbook of Heat Transfer (Rohsenow et al. 1998);

φ = 0.5, X = 0.005 ⇒


θm,1 = 0.1280

θm,2 = 0.0782

Therefore:

Q0 = ṁcp

[
(T0 − T1)θm,1 + (T0 − T2)θm,2

]
= −672 W

Alternatively, Q0 may be calculated using Equation 5.49:

Q0 = −Q1 −Q2

= − πr1xk

(r1 − r2)

[
Nu10(T1 − T0) + φNu20(T2 − T0)

]

At φ = 0.5 and X = 0.005, dQdT results (Equations 5.39 and 5.40) yield: Nu10 = 7.88,

Nu20 = 9.72. Therefore:

Q0 =− πxk

(1− φ)

[
Nu10(T1 − T0) + φNu20(T2 − T0)

]

=− π(1.6)(0.139)

(1− 0.5)

[
(7.88)(20) + (0.5)(9.72)(50)

]

=− 560 W

The dQdT result differs from the energy-balance calculation by 17%. This error is large

since X is small.

Using the first exponential terms of Equations 5.39 and 5.40, the wall-fluid Nusselt

numbers are: Nu10 = 8.77, Nu20 = 9.64. The rate of total heat transfer to the fluid is then:

Q0 = −π(1.6)(0.139)

(1− 0.5)

[
(8.77)(20) + (0.5)(9.64)(50)

]
= −582 W
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The result above differs from the energy-balance calculation by 13%.

Estimates of Nu10 and Nu20 now may also be obtained using the proposed curve-fit

relations. According to Equation 5.43:

E10 = E20 = 0

With φ = 0.5, Equations 5.46-5.48 yield:

λ2
1 = 28.96 exp

[
0.042(0.5)

]
− 7.62 exp

[
− 9.24(0.5)

]
= 29.50

F10 = 0.173(0.5)−0.041 + 0.067(0.5) = 0.2122

F20 = 0.073(0.5)−0.842 + 0.175 = 0.3066

G10 = 3.221(0.5)0.554 + 3.634 = 5.8279

G20 = 2.420(0.5)−0.751 + 4.709 = 8.7818

Therefore, at X = 0.005 Equation 5.42 gives:

Nu10 =
1

0.005

{
0.2122−

(
5.83

29.50

)
exp

[
− 29.5(0.005)

]}
= 8.33

Nu20 =
1

0.005

{
0.3066−

(
8.78

29.50

)
exp

[
− 29.5(0.005)

]}
= 9.96

Hence:

Q0 = −581 W

Note that the result is virtually the same as the value calculated using the first-exponent

approximations of {Nuij}.
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Next, consider a radius ratio for which tabulated data for Bn, ∂fn/∂r̄ and λn are not

available, e.g. φ=0.3. There is no handbook entry corresponding to φ = 0.3. In this case,

to evaluate the paired Nusselt numbers using Equations 5.32-5.34 (or Equations 5.39-5.41),

Bn, ∂fn/∂r̄ and λn must first be calculated. The calculation of the eigenvalues specifically

is iterative and cumbersome. Alternatively, dQdT may be applied numerically as described

in Chapter 2. But this entails at least three numerical solutions to the energy equation.

The curve-fit relations developed in this chapter (Equation 5.42) are now a considerably

simpler option.

In Figure 5.6 the curve-fit relations for φ=0.3 are compared to the results of numerical

dQdT based on a finite-volume solution to the energy equation. The curve-fit results were

generated in a spreadsheet. The two sets of results for wall-fluid Nusselt numbers are in

good agreement, especially for X & 0.05, while the wall-wall results are virtually identical

for X & 0.02. Note that the dQdT results are based on a numerical solution to the full,

elliptic energy equation while the correlations were developed based on a solution to the

parabolic energy equation. Therefore, the discrepancy between the results decreases as X

increases.

5.6 Summary

The extended Newton formulation of hydrodynamically developed laminar flow in a

concentric annulus with isothermal walls leads to functionality coefficients (paired Nusselt

numbers) which are independent of temperature, do not have extra singularities and can be

applied to any laminar flow rate, any fluid and any set of boundary temperatures. dQdT

was applied to obtain analytical expressions for these functionality coefficients. It was

shown that there is reciprocity between the functionality coefficients, hence the problem

can be represented by a delta network of convective resistors.
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Figure 5.6: Average paired Nusselt numbers of hydrodynamically developed
laminar flow in a concentric annulus (φ=0.3)

Furthermore, it was shown that as the curvature of the annulus walls approaches zero,

i.e. the annulus turns into a parallel-plate channel, the results approach the dQdT results

obtained in Chapter 4 for the channel problem. Single-exponent approximations along

with curve-fit correlations for the solution constants were developed which may be used to

estimate the paired Nusselt numbers with considerable simplicity and reasonable accuracy

for any given geometry, i.e. radius ratio.
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Chapter 6

Convection in Hydrodynamically

Developing Flow in an Annulus with

Isothermal Walls

In Chapters 4 and 5, convection in channels and annuli with isothermal walls was

examined under hydrodynamically fully developed flow conditions. The assumption of

hydrodynamically developed flow reduces the problem to solving the energy equation.

Classical analytical solutions from the literature were used in the two preceding chapters to

apply dQdT analytically and obtain the functionality coefficients of the multi-temperature

problem.

If the flow enters the heated section before reaching full hydrodynamic development, the

thermal analysis also entails solution of the momentum equation. No analytical solution

was found in the literature for hydrodynamically developing flow in an annulus. Numerical

solutions are, nevertheless, relatively easy to obtain. As discussed in Chapter 2, the dQdT

technique can also be applied numerically given a valid baseline solution to the problem

of interest. In this short chapter, the application of numerical dQdT to CFD solutions of
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simultaneously developing flow in an annulus with isothermal walls is demonstrated. Both

laminar and turbulent regimes are considered.

Consider the configuration shown in Figure 6.1: fluid flow entering at uniform velocity

and temperature, u0 and T0, the annulus formed between two concentric circular pipes of

radii r1 and r2 with isothermal walls at temperatures T1 and T2. The flow is characterized

by the Reynolds number introduced in Chapter 5:

Re =
ρu0Dh

µ

The ordering of the boundary temperatures, T0, T1 and T2, is characterized by a

temperature ratio, defined in Equation 6.1.

rT =
T1 − T0

T2 − T0

(6.1)

Heat transfer in the annulus is traditionally formulated in terms of the local wall Nusselt

number defined in Equations 6.2. In this equation, Tm denotes the mean fluid temperature.

Nui =
qi

Ti − Tm

(
Dh

k

)
(i = 1, 2) (6.2)

6.1 Baseline Solutions

6.1.1 Solution Method

The commercial CFD solver ANSYS Fluent 14.0 (ANSYS 2011a,b) was used to obtain

second-order finite volume solutions in an axisymmetric model of the annulus. The
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Figure 6.1: Schematic of flow in a concentric annulus with isothermal walls

Standard algorithm for discretizing pressure and the SIMPLE scheme for handling the

pressure-velocity coupling were used. The Shear Stress Transformation variation of the

k-ω model was used to resolve turbulence.

6.1.2 Computational Domain, Boundary Conditions &

Discretization

A rectangular computational domain was used as an axisymmetric model of the annulus.

See Figure 6.1. Velocity and temperature were specified at the inlet (x = 0). For the

turbulent cases, the turbulence intensity and the annulus hydraulic diameter were also

specified at the inlet. The other end of the domain was designated a pressure outlet. The

annulus walls were modeled as impermeable, no-slip, isothermal solid boundaries.

The computational domain was discretized into a non-uniform rectangular grid of

53,000 control volumes. A Richardson-extrapolation technique (Celik et al. 2008) was

used to assess grid dependence of the solutions. Using two additional grids with 28,000

and 200,000 control volumes, and based on the rate of total heat transfer to the fluid
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(Q0), grid convergence indices of 1% and 2% respectively were calculated for Re = 50 and

Re = 10, 000. The apparent order of the solutions was calculated to be 2.1.

6.1.3 Validation

Two validation studies were performed. In the laminar regime, the baseline CFD solutions

were validated against the calculations using the “influence coefficients” derived by Kakaç

& Yücel (1974). Unfortunately, details of the solution by Kakaç & Yücel (1974) are not

available.1 Tabulated data from this solution, available in Handbook of Heat Transfer

(Rohsenow et al. 1998), were used in the present study.

For hydrodynamically developing flows, the axial location in the annulus is customarily

reported in dimensionless form as x/Dh. However, the solution by Kakaç & Yücel (1974)

is given in terms of the inverse Graetz number, defined in Equation 5.7:

X =
x

Dh

(
1

Re Pr

)

In Figure 6.2 the CFD predictions for
{

Nui
}

are compared to calculations performed

using tabulated data from the Handbook for φ = r2/r1 = 0.5, rT = 0.5 and Pr = 0.7. It

can be seen that, except in the vicinity of the singularity in Nu1 (caused by Tm = T1 at

X ≈ 0.035), the two sets of results are nearly identical. The CFD solutions for laminar

flow are thus validated.

In the turbulent regime, the CFD solutions were validated against the measurements

of Roberts & Barrow (1967) for simultaneously developing flow of air (Pr = 0.7) at Re =

55, 000 in an annulus with φ = 0.476, while the inner wall was heated with a uniform

heat flux and the outer wall was insulated. In Figure 6.3, the present CFD predictions of

Nu2 using two different turbulence models are compared to the experimental data. The

present SST k-ω solution is in generally good agreement with the measurements of Roberts

1The thesis by Yücel (1972) is not publicly available and personal correspondence with Professor Kakaç
did not reveal further details of the solution.
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Figure 6.2: Local Nusselt numbers of laminar developing flow in an annulus with
isothermal walls (φ = 0.5, rT = 0.5, Pr = 0.7)

& Barrow (1967). Away from the inlet (x > 5Dh) the present numerical results are less

than 10% higher than the experimental data. Also shown in Figure 6.3 are the results of

an earlier numerical study by Malik (1978) compared to which the present k-ω solution

seems to be in better agreement with the experimental data.

Unfortunately, Roberts & Barrow (1967) have not reported the turbulence intensity at

the inlet. It is stated that the flow is ensured to be fully turbulent by the use of tripping

devices at the annulus entrance. Nevertheless, the inlet turbulence is not quantified, merely
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Figure 6.3: Local Nusselt number of turbulent developing flow in an annulus. Inner wall
heated with uniform flux, outer wall insulated (φ = 0.476, Re = 55, 000, Pr = 0.7)

reported to be “small” (Roberts & Barrow 1967). In the CFD study by Malik (1978) an

inlet turbulence intensity of 0.02% has been used. In the present solutions, inlet turbulence

intensities between 0.02% and 1% were tested leading to less than 1% difference in the

average Nusselt number from x = 0 to x = 15Dh. Results shown in Figure 6.3 are for an

inlet intensity of 1%.

Furthermore, the uncertainty in the measurements of the wall Nusselt number are not

reported by Roberts & Barrow (1967). Therefore the comparison between the numerical

and experimental results is incomplete. But no better instance of experimental data was
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found in the literature. The general agreement between the numerical results and the

experimental data was taken as validation of the present CFD solutions.

6.2 Numerical dQdT

For each value of Re, numerical dQdT was implemented following the procedure below:

i) A baseline numerical solution was obtained to the full set of governing equations.

ii) The baseline heat transfer rates, {Qi}, were obtained; Q1 and Q2 were calculated by

integrating the heat flux at the walls, while Q0 was calculated based on the overall

energy balance of the annulus: Q0 = −Q1 −Q2.

iii) The boundary temperature Tj was perturbed by a finite amount, δTj.

iv) The solution to the energy equation was updated.

v) The new heat transfer rates, {Q∗i }, and the respective changes were calculated; δQi =

Q∗i −Qi.

vi) The functionality coefficients corresponding to Tj were calculated using Equation

2.44; Cij = −δQi/δTj.

vii) Steps iii-vi were repeated for j = 0, 1, 2.

Note that since this is a constant-property forced-convection problem, the Cik = const

constraint is automatically satisfied. Furthermore, the functionality coefficients obtained

for a specific set of boundary temperatures apply to any {Ti}.

Obtaining the full set of functionality coefficients in an N -temperature problem entails

a baseline solution to the full set of governing equations and N subsequent solutions to

the energy equation with perturbed boundary conditions. However, because the energy

equation is linear, the N additional solutions do not impose significant computational cost.
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6.3 Average Paired Nusselt Numbers

Sample dQdT results are shown in Table 6.1 for the flow of air (Pr = 0.7) at various

flow rates, 10 ≤ Re ≤ 104, in a concentric annulus with x = 25Dh and φ = 0.5. An

inlet turbulent intensity of 15% was used to generate the fully turbulent results. As can

be seen in this table, there is reciprocity between the functionality coefficients; Cij ≈ Cji.

Therefore, the resistor-network model is applicable. The small (relative) difference between

the functionality coefficient pairs is due to numerical error.

The functionality coefficients were converted to dimensionless form using the average

paired Nusselt number defined in Equation 6.3.

Nuij =
2(r1 − r2)

Ai

(
Cij
k

)
(i = 1, 2) (6.3)

In Figures 6.4-6.6, {Nuij} are plotted versus axial location along the annulus. Three

key observations can be made regarding the results presented in these figures. First,

no dependence on temperature or a temperature ratio is observed. Moreover, the extra

singularities of the traditional formulation are eliminated. Finally, the trends of {Nuij}

are consistent with the physics of the problem.

Wall-fluid Nusselt numbers, Nu10 and Nu20, shown in Figures 6.4 and 6.5, start from

singularities at the annulus inlet and decay as the flow develops thermally. The general

trend is similar to the hydrodynamically-developed case, studied in Chapter 5. Here

too, the inner wall has a larger wall-fluid Nusselt number; Nu20 > Nu10. Transition

to turbulence (dashed curves) significantly enhances wall-fluid heat transfer, leading to

significant increases in Nu10 and Nu20.

The wall-wall Nusselt number, Nu12, plotted in Figure 6.6, starts from Nu12 = 0 at

X = 0 and approaches the pure-conduction limit. In Chapter 5, this limit was shown to
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Table 6.1: Sample dQdT results for developing flow in an annulus with isothermal walls +

(x = 25Dh = 25 m, φ = 0.5, Pr = 0.7)

Re C12 C21 C10 C01 C20 C02

10 5.67× 103 5.68× 103 6.29× 102 6.25× 102 3.70× 102 3.74× 102

100 4.96× 103 4.99× 103 2.74× 103 2.72× 103 1.82× 103 1.85× 103

500 2.26× 103 2.32× 103 1.14× 104 1.14× 104 7.72× 103 7.78× 103

1000 8.21× 102 8.77× 102 1.78× 104 1.78× 104 1.18× 104 1.18× 104

5000 2.03× 103 1.99× 103 6.56× 104 6.57× 104 3.80× 104 3.79× 104

10000 2.61× 103 2.56× 103 1.14× 105 1.14× 105 6.39× 104 6.39× 104

+All values of Cij are in [W/K].

Figure 6.4: Average outer-wall-fluid Nusselt number in developing flow
(φ = 0.5, Pr = 0.7)
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Figure 6.5: Average inner-wall-fluid Nusselt number in developing flow
(φ = 0.5, Pr = 0.7)

be Nu12 = 1.44 for laminar flow in an annulus with φ = 0.5. dQdT results also reveal that,

similar to the case of hydrodynamically developed flow;

Nu12

Nu21

= φ = 0.5

As the flow rate increases, the thermal development is pushed farther downstream and,

therefore, Nu12 at any given location decreases. In the fully turbulent cases (dashed curves),

Nu12 is enhanced by turbulent mixing. Therefore:

Nu12(Re = 10, 000) > Nu12(Re = 5000) > Nu12(Re = 1000) (x/Dh > 5)
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Figure 6.6: Average outer-inner Nusselt number in developing flow
(φ = 0.5, Pr = 0.7)

6.4 Summary

The application of numerical dQdT was demonstrated for sample cases of hyrodynamically

developing flow in a concentric annulus with isothermal walls. Both laminar and turbulent

regimes were considered. It was shown that formulating the multi-temperature problem

in terms of paired Nusselt numbers leads to the same advantages as in the case of

hyrodynamically developed flow. Further, it was shown that similar to the case of

hydrodynamically developed flow, the functionality coefficients of the hydrodynamically

developing flow have reciprocity and hence the resistor-network model is applicable.

Numerical dQdT results based on RANS baseline solutions were shown to be consistent

with the physics of the problem.
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Chapter 7

Convection in Laminar Cross Flow

over a Pair of Isothermal Cylinders

The problems examined in Chapters 4-6 all entailed internal flow. It was shown in

those chapters that the extended Newton formulation of multi-temperature convection

problems, made possible by the dQdT technique, is advantageous. In the present chapter,

the application of the extended Newton formulation and the dQdT technique to an

external-flow multi-temperature convection problem is demonstrated.

Another common feature of the problems studied in Chapters 4-6 is the reciprocity of

functionality coefficients: Cij = Cji. However, as briefly discussed in Chapter 3, this is not

necessarily the case. In the present chapter, a case where Cij 6= Cji is demonstrated and

discussed.

Consider a uniform isothermal flow with velocity u0 and temperature T0 approaching a

pair of parallel, horizontal cylinders of the same diameter, D1 = D2, with a center-to-center

spacing of L and uniform surface temperatures of T1 and T2. Two alignments of the

cylinders are considered: a) side by side, and b) tandem. See Figure 7.1. These
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configurations were briefly discussed in Chapter 3. In the present chapter, they are

examined in greater detail.

The flow is characterized by the Reynolds number, Re, defined in Equation 7.1. Heat

transfer at the cylinders is typically characterized by total Nusselt numbers, {Nui}, defined

in Equation 7.2. In this equation, Qi denotes heat transfer per unit length of the cylinder

at Ti.

Re =
ρu0D1

µ
(7.1)

Nui =
Qi

πk(Ti − T0)
(i = 1, 2) (7.2)

In the traditional formulation of external-flow problems, the fluid flow is represented by

the free-stream temperature, T0, i.e. the corresponding boundary condition. Therefore, the

extra singularities observed in the traditional Nusselt numbers of internal-flow problems do

not occur. Nevertheless, other limitations of the traditional formulation remain unresolved

– even with T0 representing the flow. For example, if one of the cylinders is at the

same temperature as the free-stream flow, say T2 = T0, the corresponding total Nusselt

number, Nu2, becomes indefinite; Nu2 → ∞. Note that the respective heat transfer

rate, Q2, remains finite for any {Ti}. Moreover, as discussed earlier, heat transfer in a

constant-property forced-convection problem is best characterized by “universal” Nusselt

numbers that are temperature-independent. The singular behavior of Nu2 in the special

case of T2 = T0 contradicts the physics of the problem. The extended Newton formulation

offers an opportunity to address such shortcomings while presenting more details about

the heat transfer phenomenon.
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Figure 7.1: Schematic of cross flow over a pair of isothermal cylinders
a) side-by-side alignment, b) tandem alignment

7.1 Extended Newton Formulation

Cross flow over a pair of isothermal cylinders entails three isothermal boundaries: the

free-stream flow at T0 and the two cylinders at T1 and T2. Consequently, there are three

heat transfer rates of interest: Q0, Q1 and Q2. Each Qi is in turn characterized by two

functionality coefficients. The rate of total heat transfer from the fluid, for instance, can

be written as:

Q0 = C01(T0 − T1) + C02(T0 − T2)
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The functionality coefficients of the problem, {Cij}, can be obtained using numerical

dQdT.

7.2 Baseline Solutions

7.2.1 Governing Equations

The governing equations under steady laminar flow are shown in Equations 7.3-7.6. These

equations are based on the assumption of steady-state, two-dimensional incompressible

flow with constant fluid properties and negligible viscous dissipation.

∂u

∂x
+
∂v

∂y
= 0 (7.3)

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
(7.4)

ρu
∂v

∂x
+ ρv

∂v

∂y
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
(7.5)

ρucp
∂T

∂x
+ ρvcp

∂T

∂y
= k

(
∂2T

∂x2
+
∂2T

∂y2

)
(7.6)

7.2.2 Solution Method

The commercial CFD solver ANSYS Fluent 14.0 (ANSYS 2011a,b) was used to obtain

second-order finite volume solutions to Equations 7.3-7.6. The Standard algorithm for
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discretizing pressure and the SIMPLE scheme for handling the pressure-velocity coupling

were used.

7.2.3 Computational Domain, Boundary Conditions &

Discretization

A schematic of the computational domain is shown in Figure 7.2. The free-stream

velocity and temperature were specified at the domain inlet (1), while the outlet (2) was

designated a pressure outlet. The other two sides of the domain (3-4) were designated

“symmetry” boundaries. The cylinders were modeled as impermeable, no-slip, isothermal

solid boundaries.

The domain was discretized into a non-uniform grid of approximately 84,000

triangular control volumes. Solutions were also obtained using two additional grids with

approximately 27,000 and 335,000 control volumes. Based on the Richardson-extrapolation

technique proposed by Celik et al. (2008) and the rate of total heat transfer to the fluid

(Q0), a grid convergence index of 1% was calculated for the medium mesh which was used

to generate the baseline solutions for dQdT.

7.2.4 Validation

No experimental data on cross flow over cylinder pairs in the steady laminar regime

were found in the literature. The existing studies are devoted to unsteady flow –

particularly vortex shedding past the cylinders – and turbulent flow. See, for example,

the work of Bearman & Wadcock (1973) and Zdravkovich (1977, 1987). Therefore a

proper validation of the baseline solutions against measurements was not possible. The

CFD solutions were, nonetheless, scrutinized by qualitative inspection of the pressure and

shear-stress distributions on the cylinders. This was deemed sufficient verification of the
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baseline solutions since the dQdT results presented in this chapter are intended mainly for

demonstration and qualitative discussion.

7.3 Numerical dQdT

Numerical dQdT was implemented as outlined in Section 6.2.

7.4 Average Paired Nusselt Numbers

The functionality coefficients were converted to dimensionless form using the average paired

Nusselt number defined in Equation 7.7.

Nuij =
Cij
πk

(7.7)

Recall that Qi denotes the heat transfer rate per unit length of the cylinders.

Accordingly, Cij has units of W/(mK).

Sample dQdT results are presented in Tables 7.1-7.2 and Figures 7.3-7.6. These results

are very similar to those presented in earlier publication on cross flow over a pair of

isothermal spheres (Foroushani et al. 2015b) and free convection from a pair of horizontal

isothermal cylinders (Foroushani et al. 2015c).

7.4.1 Side-by-Side Alignment

The paired Nusselt numbers of the side-by-side alignment are listed in Table 7.1. Note

that the dQdT results show reciprocity between the functionality coefficients; Nuij = Nuji.

As discussed in Chapter 3, reciprocity between the functionality coefficients indicates that
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Table 7.1: Average paired Nusselt numbers of laminar forced convection over a pair of
isothermal cylinders – Side-by-side alignment (D1 = D2 = L/2, Pr = 0.7)

Re Nu12 Nu21 Nu10 Nu01 Nu20 Nu02

0 0.7321 0.7321 0.0000 0.0000 0.0000 0.0000

5 0.3590 0.3591 1.1406 1.1406 1.1405 1.1406

11 0.1559 0.1558 1.8977 1.8978 1.8977 1.8976

22 0.0236 0.0236 2.7456 2.7455 2.7456 2.7457

34 0.0038 0.0038 3.3308 3.3310 3.3311 3.3310

52 0.0007 0.0007 3.9858 3.9858 3.9856 3.9857

the problem can be represented by a network of convective resistances — in this case a

delta network of three resistances.

In Figure 7.3, the cylinder-cylinder Nusselt number of the side-by-side alignment (Figure

7.1a) is plotted for D1 = D2 = L/2, Pr = 0.7 and 0 ≤ Re < 60. At Re=0, i.e. when

there is no flow, Nu12 characterizes conduction between two parallel cylinders in an infinite

medium. Therefore: Nu12 = S/π.

For Re > 0, as Re (representing the flow rate) increases, the thermal boundary layers

around the cylinders become thinner and the thermal interaction between the cylinders

diminishes. Hence, Nu12 decreases.

In the side-by-side configuration, the cylinders are positioned symmetrically in the flow

field. Therefore the paired Nusselt numbers must be symmetrical. The dQdT results

confirm this observation; Nu12 = Nu21.

The cylinder-fluid Nusselt numbers, plotted in Figure 7.4, start from Nu10 = Nu20 = 0

at Re = 0 and increase as the flow rate increases. As seen in Figure 7.4, the cylinder-fluid

Nusselt numbers are symmetrical; Nu10 = Nu20. Note also that the curves of Figure 7.4

closely follow the general expression for the total Nusselt number in external flow, shown

in Equation 7.8.
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Figure 7.3: Average cylinder-cylinder Nusselt number – Side-by-side alignment
(D1 = D2 = L/2, Pr = 0.7)

Nui = cRem (i = 1, 2) (7.8)

Since this is a constant-property forced convection problem, i.e. the energy equation

is linear, the functionality coefficients can be obtained using “numerical experiments”

as described in Section 2.6.2. Further note that in case of D1 = D2, the functionality

coefficients can also be obtained using the algebraic expressions derived in Section 2.6.1

for the special case of symmetry. Using these alternative methods, results identical to the

dQdT results were obtained, confirming the validity of the dQdT results.
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Figure 7.4: Average cylinder-fluid Nusselt number – Side-by-side alignment
(D1 = D2 = L/2, Pr = 0.7)

7.4.2 Tandem Alignment

In the tandem configuration (Figure 7.1b), there is symmetry in both the geometry and the

flow field with respect to the y = 0 line. Nevertheless, the cylinders are not symmetrically

positioned with respect to the flow field ; the upstream cylinder (T1) is exposed to the

undisturbed free-stream flow while blocking the flow in front of the downstream cylinder

(T2). Therefore, the thermal interaction of the isothermal boundaries – the cylinders and

the free-stream flow – is expected to be asymmetrical.

The paired Nusselt numbers of the tandem alignment with D1 = D2 = L/2, Pr = 0.7

and 0 ≤ Re < 60 are listed in Table 7.2. As can be seen from these results; Nuij 6=
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Table 7.2: Average paired Nusselt numbers of laminar forced convection over a pair of
isothermal cylinders – Tandem alignment (D1 = D2 = L/2, Pr = 0.7)

Re Nu12 Nu21 Nu10 Nu01 Nu20 Nu02

0 0.7321 0.7321 0.0000 0.0000 0.0000 0.0000

5 0.2072 0.7141 1.4531 0.9462 0.7576 1.2645

10 0.1490 0.8017 1.9469 1.2941 0.9487 1.6015

22 0.1201 0.9206 2.6094 1.8089 1.2084 2.0089

34 0.1296 1.0108 3.1481 2.2669 1.4210 2.3023

58 0.1958 1.1392 3.9147 2.9713 1.7264 2.6698

Nuji. Hence, the resistor-network model is not applicable to the tandem configuration.

Interestingly, the difference Cij − Cji for each Re is a constant. In Appendix D, a

mathematical proof for this observation is presented.

Consider the cylinder-cylinder Nusselt numbers, plotted in Figure 7.5. For Re=0, i.e.

in the absence of fluid flow, the symmetry of geometry leads to symmetry of the paired

Nusselt numbers; Nu12 = Nu21 = S/π. However, as the flow rate increases, Nu12 and

Nu21 become considerably different, even in the creeping flow regime (Re ≈ 1). This

difference can be explained by recalling that the functionality coefficient Cij characterizes

the sensitivity of the heat transfer rate Qi to the boundary temperature Tj. In this light,

Nu21 > Nu12 is due simply to the fact that T1 is upstream of T2; whereas T1 has a strong

impact on the temperature field and hence the rate of heat transfer downstream, T2 can

barely impact heat transfer at the upstream cylinder – only through diffusion.

Note that for 0 ≤ Re . 25, Nu12 (characterizing the effect of T2 on Q1) decreases

with the increase of the flow rate. However, with the onset of flow recirculation between

the cylinders at Re ≈ 25, this trend is reversed. Note also the slight slight drop in Nu21

between Re = 0 and Re = 5 which is likely due to the formation of boundary layers around

the cylinders.

The cylinder-fluid Nusselt numbers of the tandem alignment are plotted in Figure 7.6.

Similar to the side-by-side alignment, the curves of Figure 7.6 follow the general expression
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Figure 7.5: Average cylinder-cylinder Nusselt numbers – Tandem alignment
(D1 = D2 = L/2, Pr = 0.7)

of Equation 7.8. Four distinct curves were obtained for Nu10, Nu01, Nu20 and Nu02. Recall

that in the side-by-side arrangement, the cylinder-fluid Nusselt numbers collapsed to a

single curve.

All four curves shown in Figure 7.6 exhibit a monotonic increase with Re; as the

flow rate increases, advection enhances the influence of each boundary temperature on

heat transfer. The discrepancy between each pair of cylinder-fluid Nusselt numbers also

increases with Re. Moreover, since T1 is upstream of T2, its corresponding heat transfer

rate, Q1, is more sensitive to the free-stream temperature (T0) than Q2 is; Nu10 > Nu20.

But the influence of the cylinder temperatures on the rate of total heat transfer to the
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Figure 7.6: Average cylinder-fluid Nusselt numbers – Tandem alignment
(D1 = D2 = L/2, Pr = 0.7)

fluid is not as straightforward. For Re . 35, T2 has a stronger influence; Nu02 > Nu01. In

contrast, for Re & 35, the influence of T1 is larger; Nu02 < Nu01.

The lack of reciprocity between the functionality coefficients means that the

multi-temperature problem cannot be represented by a network of convective resistors.

Nonetheless, as discussed above, the paired Nusselt numbers obtained using dQdT provide

a means of quantifying the thermal interaction of the cylinders and the flow. Moreover,

the average paired Nusselt numbers can be used to calculate the heat transfer rates for any

set of boundary temperatures:
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Qi =
∑
j

Cij(Ti − Tj) = π k
∑
j

Nuij(Ti − Tj)

The rate of heat transfer at the upstream cylinder, for example, can be calculated using

Nu10 and Nu12;

Q1 = π k

[
Nu10(T1 − T0) + Nu12(T1 − T2)

]

Likewise, to calculate the rate of total heat transfer to the fluid, Nu01 and Nu02 must be

used;

Q0 = π k

[
Nu01(T1 − T0) + Nu02(T0 − T2)

]

7.5 Local Paired Nusselt Numbers

A local functionality coefficient, cij, may also be defined to characterize the influence of

the boundary temperature Tj on the heat flux qi. See Equation 7.9.

cij = − ∂qi
∂Tj

∣∣∣∣
cik=const

(i = 1, 2) (7.9)

Accordingly, a local paired Nusselt number may be defined as shown in Equation 7.10.

Nuij =

(
cij
k

)
D1 (i = 1, 2) (7.10)

Sample dQdT results for {Nuij} are plotted in Figures 7.7-7.11 for D1 = D2 = L/2,

Pr = 0.7 and Re = 10. The following discussion aims to demonstrate the meaning of local

paired Nusselt numbers and their utility in understanding multi-temperature convection,

even in the absence of reciprocity and failure of the resistor-network model.
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7.5.1 Side-by-Side Alignment

The local cylinder-cylinder Nusselt number of the upper cylinder (T1) in the side-by-side

arrangement (Figure 7.1a) is plotted in Figure 7.7. The dashed curve corresponds to the

lower half, facing the lower cylinder. As expected, Nu12 is larger on the lower half, while

almost a third of the upper half (the solid curve, 30 . θ . 90◦) is thermally isolated from

the lower cylinder; Nu12 = 0. Note also that Nu12 is larger on the “leeward” side of the

cylinder, i.e. for 90◦ ≤ θ ≤ 180◦. In other words, the thermal interaction of the cylinders

is enhanced in the wake behind the cylinders. Interestingly, at least for this particular

spacing and flow rate, Nu12 > 0 around the stagnation point (0 ≤ θ . 30◦).

dQdT confirms that in the side-by-side alignment, the local Nusselt numbers too are

symmetric; Nuij = Nuji. Therefore, Figure 7.7 also depicts the circumferential distribution

of Nu21, with the dashed curve corresponding to the upper half of the lower cylinder (T2).

The distribution of the local cylinder-fluid Nusselt number on the upper cylinder is

plotted in Figure 7.8. Again, the dashed curve corresponds to the lower half, facing the

lower cylinder. As expected, Nu10 is largest at the stagnation point (θ = 0) and decreases

monotonically over both sides. Due to the acceleration of the flow between the cylinders,

for 0 < θ . 110◦, Nu10 is larger on the lower half than on the upper half. For θ & 110◦,

however, as the flow expands, i.e. decelerates, Nu10 on the the lower half (dashed curve)

is smaller.

7.5.2 Tandem Alignment

The local cylinder-cylinder Nusselt numbers of the tandem alignment are plotted in Figure

7.9. As discussed earlier, in the tandem configuration there is asymmetry in the paired

Nusselt numbers. Therefore, two distinct curves are obtained for Nu12 and Nu21.

The windward side of the upstream cylinder (0◦ ≤ θ < 90◦) is isolated from the

downstream cylinder; Nu12 = 0. On the leeward half, however, q1 is influenced by T2 and
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Figure 7.7: Local cylinder-cylinder Nusselt number
Upper cylinder, Side-by-side alignment (D1 = D2 = L/2, Pr = 0.7, Re = 10)

therefore: Nu12 > 0. Heat flux at all circumferential positions on the downstream cylinder,

q2, on the other hand, is influenced by T1; Nu21 > 0. As expected, Nu21 is maximum at

θ = 0 and decreases smoothly as θ increases. It is interesting, however, that Nu21 > 0 even

at θ = 180◦.

In Figure 7.10, the variation of Nu12 with the flow rate is illustrated. Note that on

the windward side of the upstream cylinder, 90◦ ≤ θ ≤ 180◦, Nu12 decreases as the flow

rate increases from Re=5 to Re=10 due to the dominance of advection and weakening

of upstream diffusion — the only mechanism for influence of T2 on q1. As Re further

increases, however, a region of flow recirculation is formed between the cylinders. In this

case, T2 impacts q1 also through advection. Therefore, Nu12 increases. Note that for
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Figure 7.8: Local cylinder-fluid Nusselt numbers
Upper cylinder, Side-by-side alignment (D1 = D2 = L/2, Pr = 0.7, Re = 10)

175◦ . θ ≤ 180◦, Re=45 has the largest Nu12. This is further evidence that recirculating

flow between the cylinders enhances the influence of T2 on q1.

Finally, the local cylinder-fluid Nusselt numbers of the tandem alignment are plotted

in Figure 7.11. Nu10 starts from a maximum at the stagnation point (θ = 0) and decays

smoothly as θ increases. Note that Nu10 of the tandem alignment is almost identical to the

solid curve in Figure 7.8. The variation of Nu20 on the downstream cylinder is significantly

different, with its maximum occurring at θ ≈ 80◦. Interestingly, for 150◦ ≤ θ ≤ 180◦, q2 is

more sensitive to T0 than q1 is; Nu20 > Nu10.
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Figure 7.9: Local cylinder-cylinder Nusselt numbers – Tandem alignment
(D1 = D2 = L/2, Pr = 0.7, Re = 10)

7.6 Summary

Numerical dQdT was utilized to calculate the functionality coefficients of the

three-temperature problem of convection in cross flow over a pair of isothermal cylinders.

Cylinders of the same size placed in side-by-side alignment, i.e. with their centers aligned

along a line normal to the free-stream flow, are symmetric with respect to the flow.

Therefore, as shown by dQdT, there is symmetry and reciprocity between the functionality

coefficients. Consequently, the problem can be represented by a network of three convective

resistors. Two universal paired Nusselt numbers fully characterize the three-temperature

problem.
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Figure 7.10: Local upstream-downstream Nusselt number at different flow rates
Tandem alignment (D1 = D2 = L/2, Pr = 0.7, Re = 10)

In tandem alignment, i.e. when the cylinder centers are aligned along a line parallel to

the free-stream flow, the cylinders are asymmetrically positioned in the flow. Therefore,

there is asymmetry between the functionality coefficients. dQdT yields six distinct

functionality coefficients. Although the tandem configuration cannot be represented

by a resistor network, the functionality coefficients are still physically meaningful,

while revealing important details about the heat transfer phenomenon. Moreover, the

functionality coefficients obtained using dQdT can be used to calculate the heat transfer

rates, {Qi}, for any set of boundary temperatures.
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Figure 7.11: Local cylinder-fluid Nusselt numbers – Tandem alignment
(D1 = D2 = L/2, Pr = 0.7, Re = 10)
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Chapter 8

Laminar Free Convection in a

Vertical Channel with Isothermal

Walls

In Chapters 4-7, the extended Newton formulation and the dQdT technique were presented

for constant-property forced convection problems, i.e. cases where the energy equation is

linear. In Chapters 8-10, examples of free convection, i.e. nonlinear, multi-temperature

problems will be examined.

Free-convective heat transfer in vertical channels is encountered in various applications,

e.g. electronics cooling, nuclear reactors, solar collectors and building envelope assemblies.

In building science, specifically, free convection in vertical heated passages is encountered

in building-integrated photovoltaic systems and windows with attachments such as roller

blinds. With its broad application in energy systems, this problem has seen great interest

from researchers, especially with the growing demand and attention to renewable energy

in the past two decades. Many studies have been published of the different variations of

the problem – isoflux or isothermal conditions at the channel walls, laminar or turbulent

flow regimes, different aspect ratios, etc.
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The case of isoflux heating of the walls in channels of low aspect ratio has been the

subject of the majority of published studies. This is because most applications – electronic,

nuclear and solar – entail relatively short channels with walls heated in a way best modeled

as isoflux. Moreover, compared to the isothermal boundary condition, the isoflux condition

is easier to produce experimentally. Furthermore, the local heat transfer coefficient at an

isoflux surface can be simply measured with only a thermocouple. But free convection in

tall vertical channels with isothermally heated walls too has been the subject of several

studies, e.g. the work of Roeleveld et al. (2009, 2014).

Extensive bibliographies on free convection in vertical channels can be found in the

papers by Yilmaz & Fraser (2007) and Lau et al. (2011). Roeleveld (2013) presents a

brief review of free convection in vertical channels with walls at different temperatures. An

overview of numerical studies of free convection in vertical channels is provided by Manca

et al. (2000).

In this chapter, numerical dQdT is applied to calculate the functionality coefficients of

laminar free convection in a vertical channel with walls heated to uniform temperatures.

It is shown that the extended Newton formulation of the problem is advantageous over the

traditional formulation and leads to improved heat transfer correlations.

8.1 Traditional Formulation

Consider buoyancy-driven flow in a vertical channel with isothermal walls, shown in Figure

8.1. The flow is characterized by the modified channel Rayleigh number, Ra, defined in

Equation 8.1. In this equation, Twm = (T1 + T2)/2.

Ra =
gβ(Twm − T0)W 3

ν2

(
W

H

)
Pr (8.1)
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Figure 8.1: Schematic of a vertical channel with isothermal walls

A temperature ratio, rT , is typically used to characterize the heating of the walls. A

common definition is given in Equation 8.2.

rT =
T2 − T0

T1 − T0

(8.2)

It is assumed in this chapter that the channel walls are hotter both than the ambient

air; T1 ≥ T2 ≥ T0. The proceeding analysis and results are nonetheless applicable also to

the general case of rT ≥ 0, including the case of both walls colder than the ambient air.

The case of rT < 0 has been excluded from the present study. In this case, two “opposing”

boundary layers develop along the channel which may lead to complex flow structures and

instability.
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Convection in isothermal channels is traditionally formulated in terms of local and

average wall Nusselt numbers, defined in Equations 8.3 and 8.4. Note that Qi denotes heat

transfer rate per unit depth of the channel.

Nui =
qi

Ti − T0

(
W

k

)
(i = 1, 2) (8.3)

Nui =
Qi

H(Ti − T0)

(
W

k

)
(i = 1, 2) (8.4)

It was discussed in Chapters 4 and 5 that forced convection in heated passages is

traditionally formulated using the mean fluid temperature to represent the fluid flow and

construct effective temperature differences. Note however that the definitions presented

in Equations 8.3 and 8.4 are based on the representation of the fluid by the “ambient”

or “far-field” temperature, i.e. the corresponding boundary condition. As a result, the

extra singularities discussed in Chapters 4 and 5 do not arise in the traditional Nusselt

numbers, Nui and Nui. See for example the overview of heat transfer correlations for

open-ended channels in Handbook of Heat Transfer (Rohsenow et al. 1998) and the more

detailed review by Roeleveld (2013). Credit is due to Aung (1972) who recognized T0

as the appropriate temperature to represent the fluid and used Twm − T0 as the effective

temperature difference for characterizing free convection in a channel with isothermal walls.

Moreover, the dependence of the traditional Nusselt numbers on rT is not problematic;

it is consistent with the physics of a free-convection problem. The rate of flow in the

channel, the development of hydrodynamic and thermal boundary layers and their relative

size are all functions of the boundary temperatures. Therefore, it is expected that the

Nusselt numbers depend on rT .
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Nonetheless, the formulation of the multi-temperature problem in terms of “total”

Nusselt numbers based on effective temperature differences, i.e. a combination of T0, T1

and T2, is problematic. For example, although numerical and experimental results are often

presented in terms of average wall Nusselt numbers, Nu1 and Nu2, separate correlations

for heat transfer at each wall are rare. Such correlations are needed for building-energy

calculations, e.g. in modeling heat transfer in complex fenestration systems. Instead,

correlations are often developed for the overall heat transfer in the channel. See for instance

Equation 8.5, recommended by Raithby & Hollands (1998) for air (Pr = 0.7).

Nu0 =
Q1 +Q2

2H(Twm − T0)

(
W

k

)

=

[(
Nufd

)−1.9

+
(

0.618 Ra1/4
)−1.9

]− 1
1.9

(8.5)

The two terms comprising the correlation shown in Equation 8.5 represent two limiting

cases of the problem:

i) The thermally fully developed limit (Ra → 0) where maximum heat transfer to the

fluid has been achieved and heat transfer from one wall is conducted across the fluid

layers to the other wall. An expression for this limit is given by Aung (1972) as

shown in Equation 8.6.

lim
Ra→0

Nu0 = Nufd =

[
4r2

T + 7rT + 4

90(1 + rT )2

]
Ra (8.6)

ii) The limit of Ra → ∞ (infinitely wide channel or infinitely large flow rate),

corresponding to two “isolated” isothermal flat plates. The respective term in

Equation 8.5 is based on the boundary-layer solution by Ostrach (1953) for free

convection at an isothermal vertical flat plate;
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lim
Ra→∞

Nu0 = 0.618 Ra1/4

As pointed out by Roeleveld et al. (2009), a possible reason for the lack of separate

correlations for Nu1 and Nu2 is that Q1 and Q2 do not correlate “conveniently” with

Twm − T0. A main reason for this difficulty is that the asymptotic values of Nu1 and Nu2

for Ra → 0 and Ra → ∞ depend on rT . The sign change of Nu2 also poses a challenge.

These features are apparent in Figure 8.2, where the wall Nusselt numbers, Nu1 and Nu2,

are plotted for various rT . These results were generated using the CFD solutions described

in Section 8.3.

Recognizing the importance of the representative temperatures, Roelveled et. al (2009)

tried two alternative effective temperature differences in search of Nu and Ra that would

be easier to correlate. See Equations 8.7 and 8.8.

∆Twalls = T1 − T2 (8.7)

∆Tmax = T1 − T0 (8.8)

Nevertheless, even Nusselt numbers based on ∆Twalls or ∆Tmax do not collapse to the

same asymptotes for all rT . To obtain universal, i.e. rT -independent, asymptotes at the

Ra→ 0 and Ra→∞ limits, Roelveled et. al (2009) eventually constructed an “effective”

temperature difference by introducing a weighting function, α. See Euaqtion 8.9.

∆Teff = α(∆Twalls) + (1− α)(∆Tmax) (8.9)

Based on ∆Teff, Roeleveld et al. (2009) defined an effective Nusselt number as shown

in Equation 8.10.
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Figure 8.2: Average Nusselt numbers of laminar free convection
in a vertical channel with isothermal walls (Pr = 0.7)
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Nueff,i =
Qi

H ∆Teff

(
W

k

)
(i = 1, 2) (8.10)

An expression for α was also presented based on a best least-square fit to numerical

data (Roeleveld et al. 2009);

α =
38.583[

Ra
(

2
1+rT

)]1.128

+ 38.583
(8.11)

The correlations developed by Roeleveld et al. (2009) are reproduced in Equations 8.12

and 8.13. Recall that the subscript 1 denotes the largest temperature (T1 ≥ T2 ≥ T0).

Further, note that Equation 8.12 correlates Nueff,1 (based on ∆Teff) with Ra which is based

on Twm − T0.

Nueff,1 =

[
1 +

(
0.618 Ra1/4

)3.011
] 1

3.011

(8.12)

Nu2 = 2Nu0 − 2Nueff,1

[
α(∆Twalls) + (1− α)(∆Tmax)

1 + rT

]
(8.13)

Roelveled et al. (2009) have reported good accuracy for the correlations above: a

standard deviation of ±5% and a maximum RMS error of ±10% compared to CFD

solutions. Nevertheless, with α incorporated in Nueff,1, Equations 8.12 and 8.13 are complex

in form, while lacking physical significance or meaning. As will be shown, the complexity

of these equations is merely an artifact of formulating the three-temperature problem in

terms of total Nusselt numbers, which requires the construction of an effective temperature

difference. The extended Newton formulation of the problem in terms of paired Nusselt
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numbers has the potential to simplify the solution and eliminate the extra parameters,

∆Teff and α.

8.2 Extended Newton Formulation

The problem of free convection in a channel with isothermal walls entails three boundary

temperatures: the far-field ambient at T0 and the two channel walls at T1 and T2.

Accordingly, there are three heat transfer rates of interest: Q0, Q1 and Q2. Each heat

transfer rate Qi is characterized by two functionality coefficients Cij and Cik. The full set

of functionality coefficients, {Cij}, can be obtained using numerical dQdT.

Because this is a free convection problem, it is expected that {Cij} be a function of

{Ti}. Moreover, because the velocity field is temperature-dependent, the asymmetry in the

temperature field (rT 6= 1) is expected to cause asymmetry in the functionality coefficients;

Cij 6= Cji. Finally, the two wall-fluid functionality coefficients are expected to be different

except in the case of the symmetric heating of the walls (rT = 1). These features will all

be explored using dQdT.

8.3 Baseline Solutions

In order to perform the dQdT operation to evaluate {Cij}, baseline solutions to the

full set of governing equations must first be obtained and validated. Assuming steady,

incompressible and two-dimensional flow with negligible viscous dissipation, the equations

governing free convection in a vertical channel are as shown in Equations 8.14-8.17.

∂u

∂x
+
∂v

∂y
= 0 (8.14)
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ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p̄

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
(8.15)

ρu
∂v

∂x
+ ρv

∂v

∂y
= −∂p̄

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
+ (ρ0 − ρ)g (8.16)

ρucp
∂T

∂x
+ ρvcp

∂T

∂y
= k

(
∂2T

∂x2
+
∂2T

∂y2

)
(8.17)

In deriving these equations the fluid properties were assumed to be constant except for

density which was handled by the Boussinesq approximation. In Equations 8.15 and 8.16,

p̄ denotes the pressure “defect” between the local pressure in the channel and the ambient

pressure:

p̄ = p− p0

8.3.1 Solution Method

The commercial CFD solver ANSYS Fluent (ANSYS 2011a,b) was utilized to obtain

second-order finite volume solutions to Equations 8.14-8.17 using the PRESTO! algorithm

for discretizing pressure and SIMPLE scheme for handling the pressure-velocity coupling.

8.3.2 Computational Domain, Boundary Conditions &

Discretization

Different computational domains have been used in the CFD modeling of free convection

in heated channels. The channel with no extensions, the channel with upstream and/or

downstream extensions of different shapes (rectangular, semicircular, etc.) and the channel
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within an “infinite” extension (channel in a cavity) are most common. A review of the

typical computational domains used for free convection in vertical channels is given by

Manca et al. (2000). In the present study, based on the work of Naylor et al. (1991),

semicircular inlet and outlet sections of the same size were added to the channel. See

Figure 8.3.

The channel walls (1-2) were modeled as impermeable, no-slip, isothermal solid

boundaries. The four horizontal segments of the inlet/outlet extensions (3-6) were modeled

as impermeable, no-slip, adiabatic solid boundaries. The semicircular segments (7-8) were

designated pressure boundaries at the ambient pressure and temperature. The inlet flow

direction was specified as normal to the boundaries (7-8).

If the channel is tall (H/W & 10), axial diffusion of heat can be neglected and heat

transfer in the channel is nearly independent of the channel aspect ratio. The present

numerical results were generated for an aspect ratio of H/W = 50, except for cases with

rT = 0 and Ra ≥ 500 which were solved in a shorter computational domain (H/W = 20)

to facilitate convergence. The results are, however, generally applicable for H/W ≥ 10.

The domain was discretized into approximately 100,000 non-uniform rectangular

control volumes. A structured grid was generated in the rectangle representing the

channel while unstructured cells were generated in the inlet and outlet extensions. A

Richardson-extrapolation-based technique (Celik et al. 2008) was used to assess the grid

dependence of the solutions. Using two additional grids with 4,400 and 27,600 control

volumes and the same pattern, and based on the rate of total heat transfer to the fluid
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Figure 8.3: Computational domain for laminar free convection in a vertical channel
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Figure 8.4: Local Nusselt numbers of laminar free convection in a vertical channel with
isothermal walls (Ra = 24, Pr = 0.7, rT = 0.33)

(Q0), a grid convergence index of 3% was calculated for the fine grid which was used to

generate the results. The apparent order of the solution was found to be 1.9.

8.3.3 Validation

The baseline CFD solutions were validated against the experimental data of Aung et al.

(1972). In Figure 8.4, the local wall Nusselt numbers (defined in Equation 8.3) are shown

for Ra = 24, Pr = 0.7 and rT = 0.33.

Away from the channel inlet (y/H & 0.1), the present numerical results are in very

close agreement with the measurements. Aung et al. (1972) have reported a drop in

the channel wall temperature near the inlet “due to the construction of the apparatus”.
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This experimental error explains the pronounced discrepancy between numerical and

experimental results near the inlet (y/H < 0.1).

At higher Rayleigh numbers, Aung et al. (1972) have only reported average Nusselt

numbers. At Ra = 2000, for example, and with the walls heated symmetrically (rT = 1),

the measured average wall Nusselt number is: Nu1 = Nu2 = 4.27. The current CFD

solutions predict Nu1 = Nu2 = 3.93, within 8% of the measurements.

Unfortunately, the uncertainty in the measured Nusselt numbers is not reported by

Aung et al. (1972). Therefore, the comparison is incomplete. The general agreement

shown in Figure 8.4 was nonetheless taken as validation of the baseline CFD solutions.

8.4 Numerical dQdT

For each combination of Ra and rT , numerical dQdT was implemented as follows:

i) A baseline solution was obtained by solving the full set of governing equations

numerically.

ii) The baseline heat transfer rates, {Qi}, were calculated; Q1 and Q2 were calculated

by integrating the heat flux at the walls, while Q0 was calculated based on the overall

energy balance in the channel: Q0 = −Q1 −Q2.

iii) The boundary temperature Tj was perturbed by a finite amount, δTj.

iv) The solution to the energy equation only was updated by retaining the velocity field

of the baseline solution. In Fluent, this can be readily done by selecting the energy

equation only in the “Equations” section, under “Solution Controls”.

v) The new heat transfer rates, {Q∗i }, and the respective changes were calculated; δQi =

Q∗i −Qi.
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vi) The functionality coefficients corresponding to Tj were calculated using Equation

2.44; Cij = −δQi/δTj.

vii) Steps iii-vi were repeated for j = 0, 1, 2.

The functionality coefficients thus obtained apply to the original set of boundary

temperatures, {Ti}.

The implementation of steps ii-vi in Fluent was automated using “journal” files. A

sample journal routine can be found in Appendix E.

Note that by retaining the velocity field of the baseline solution (step iv), the Cik =

const constraint in Equation 2.44 was satisfied. Since the fluid properties were assumed to

be constant, no action was necessary to fix the fluid properties. Imposing the Cik = const

constraint for cases of variable fluid properties will be discussed in Chapter 9.

Further note that obtaining the full set of functionality coefficients in an N -temperature

problem entails a baseline solution to the full set of governing equations and N subsequent

solutions to the energy equation with perturbed boundary conditions. Nevertheless,

because the N additional solutions are sought only for the linearized energy equation,

the additional computational cost is insignificant.

8.5 Average Paired Nusselt Numbers

An average paired Nusselt may be defined to present the results in dimensionless form.

See Equation 8.18.

Nuij =

(
Cij
k

)
W

H
(8.18)
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Sample dQdT results are reported in Table 8.1 for rT = 0.5, and in Appendix F for

several other rT . dQdT results confirm that:

rT 6= 1 ⇒ Nuij 6= Nuji

As mentioned earlier, the asymmetry in the temperature field leads to asymmetry in

the flow field. The asymmetrical position of the channel walls within the flow field leads

to Cij 6= Cji and hence, Nuij 6= Nuji. When rT = 1, on the other hand, the flow field

is symmetrical with respect to the channel centerline (x = 0). Therefore, the walls are

symmetrically positioned in the flow field and hence: Nuij = Nuji.

Note that because the difference between Nuij and Nuji is very small, it is reasonable

to assume Nuij = Nuji. Consequently, the resistor-network model is applicable.

In Figure 8.5 numerical dQdT results are plotted for Pr = 0.7, 0 < rT ≤ 1 and

0.01 ≤ Ra ≤ 2000. The curves of Figure 8.5 have a clear physical interpretation. The

trends are similar to those observed for the forced-convection problems studied in Chapters

4-6. For low flow rates, Ra . 1, heat transfer in the channel is dominated by conduction

between the walls, leading to Nu12 ≈ Nu21 ≈ 1. As the flow rate increases, the thermal

boundary layers become thinner and the thermal interaction between the walls diminishes.

Therefore:

lim
Ra→∞

Nu12 = lim
Ra→∞

Nu21 = 0

Note that the wall-wall Nusselt number Nu12 is nearly independent of rT .

At low flow rates (Ra < 1), there is almost zero net heat transfer to the fluid, reflected

by:

lim
Ra→0

Nu10 = lim
Ra→0

Nu20 = 0

The slight departure of the numerical results for Nu10 and Nu20 from zero in the low-Ra

limit is due to the axial diffusion of heat out of the channel inlet.
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Table 8.1: Sample dQdT results for laminar free convection in a vertical channel
with isothermal walls (rT = 0.5, Pr = 0.7)

Ra Nu12 Nu21 Nu10 Nu01 Nu20 Nu02

0.01 1.0010 1.0010 0.0206 0.0206 0.0206 0.0205

0.1 1.0007 1.0007 0.0213 0.0213 0.0212 0.0212

1 0.9896 0.9891 0.0462 0.0467 0.0456 0.0452

10 0.8642 0.8614 0.3616 0.3644 0.3488 0.3460

100 0.3875 0.3691 1.6939 1.7122 1.5818 1.5634

1000 0.0404 0.0297 3.5269 3.5376 3.0867 3.0759

The wall-fluid Nusselt numbers, Nu10 and Nu20, both increase with Ra. Since this is

a free-convection problem, the asymmetry in the temperature field leads to asymmetry

between the paired Nusselt numbers. Heat transfer at the hotter wall is more sensitive

to the inlet temperature; Nu10 > Nu20. Moreover, the difference between Nu10 and Nu20

increases as Ra increase and as rT decreases. Note that in the limiting case of symmetric

heating of the walls (rT = 1) there is symmetry between the wall-fluid Nusselt numbers;

Nu10 = Nu20.

With the channel aspect ratio incorporated in the channel Rayleigh number (see

Equation 8.1), Ra is also an indication of the thermal development length of the flow.

In this interpretation, small values of Ra (Ra → 0) correspond to essentially thermally

developed flow wherein the net heat transfer rate to the fluid is zero; heat transfer at one

wall is entirely conducted to the other wall. Large values of Ra (Ra → ∞) represent the

entrance region wherein there is enhanced heat transfer between the channel walls and

the fluid, while because the thermal boundary layers are thin, there is very little thermal

interaction between the walls.

To further establish the validity of the dQdT results, two limiting cases may be

examined. First, as explained in Chapter 2, if the walls are symmetrically heated (rT = 1),

the functionality coefficients can be obtained algebraically — without using dQdT. In
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Figure 8.5: Average paired Nusselt numbers of laminar free convection in a vertical
channel with isothermal walls (Pr = 0.7)
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Section 2.6.1, an algebraic expression was obtained for C10 of a symmetric problem as

shown in Equation 8.19.

C10 = C20 =
Q1 +Q2

T1 + T2 − 2T0

(8.19)

In Table 8.2 the dQdT results for C10 and C20 are compared to the algebraic results

(Equation 8.19) for various Rayleigh numbers. The two sets of results are identical,

indicating the validity of the dQdT results. For clarity, results in Table 8.2 are presented

in dimensional form. Note the small discrepancy between Q1 and Q2 which is due to

numerical errors. This error, however, does not propagate to the dQdT results.

The second limiting case is the case of thermally developing flow, i.e. heat transfer in

the entrance region; Ra→∞. In this limit, the thermal boundary layers are separated by

a core of fluid flow at T0 and do not thermally communicate. Hence, as shown earlier:

lim
Ra→∞

Nu12 = 0

Therefore, the wall-fluid functionality coefficients can be calculated as:

Ci0 =
Qi

Ti − T0

(Ra→∞ ; i = 1, 2)

For rT = 0.5, Pr = 0.7 and Ra = 2000, for example, dQdT gives: Nu10 = 4.18. Using

the equation above, an identical result is obtained, again indicating the validity of the

dQdT technique.

Alternatively, adopting the resistor-network model, the functionality coefficients C10

and C20 can be obtained by considering the thermal current in the legs connecting T1 and

T2 to T0;

151



Table 8.2: Wall-fluid functionality coefficients of laminar free convection in a vertical
channel with isothermal walls – The special case of symmetry[

rT = 1, Pr = 0.7, H/W = 50, k = 0.0255 W/(mK)
]

Ra i Ti Qi Ci0 (Eq. 8.19) T ∗i Q∗i Ci0 (dQdT)

[K] [W/m] [W/(mK)] [K] [W/m] [W/(mK)]

0 300 0.5240 – 301 0.4716 –

0.01 1 310 0.2622 0.0262 310 0.2360 0.0262

2 310 0.2618 0.0262 310 0.2356 0.0262

0 300 0.5426 – 301 0.4883 –

0.1 1 310 0.2713 0.0271 310 0.2442 0.0271

2 310 0.2713 0.0271 310 0.2441 0.0271

0 300 1.1703 – 301 1.0533 –

1 1 310 0.5849 0.0585 310 0.5265 0.0585

2 310 0.5854 0.0585 310 0.5268 0.0586

0 300 9.0791 – 301 8.1712 –

10 1 310 4.5395 0.4540 310 4.0856 0.4540

2 310 4.5396 0.4540 310 4.0856 0.4540

0 300 42.0002 – 301 37.8002 –

100 1 310 21.0000 2.1000 310 18.9000 2.1000

2 310 21.0002 2.1000 310 18.9002 2.1000

0 300 85.3232 – 301 76.7909 –

1000 1 310 42.6616 4.2662 310 38.3954 4.2662

2 310 42.6616 4.2662 310 38.3955 4.2662

Ci0 =
Qi0

Ti − T0

To use the preceding equation, the paired thermal currents Q10 and Q20 can be

estimated by evaluating the enthalpy change inside the respective boundary layers;

Qi0 =

∫ δi

xi

ρvcp(T − T0) dx (Ra→∞ ; i = 1, 2)

152



In the equation above, δi denotes the thickness of the thermal boundary layer developed

along the wall at Ti, and v is the velocity in the y-direction. Q10, for instance, can be

estimated as:

Q10 =

∫ δ1

−W
2

ρvcp(T − T0) dx (Ra→∞)

For the example examined earlier (rT = 0.5, Pr = 0.7 and Ra = 2000), using the

boundary-layer integral to estimate Q10 leads to Nu10 = 4.24. In this calculation, δ1 was

estimated as the lateral location where T1− T = 0.99 (T1− T0). The close agreement with

the dQdT result (Nu10 = 4.18) indicates, again, the validity of the dQdT technique.

8.5.1 The Special Case of rT = 0

When both channel walls are hotter than the ambient temperature, T1 ≥ T2 > T0, two

boundary layers develop along the channel walls. The development and interaction of these

boundary layers determine heat transfer in the channel. As discussed earlier, the paired

Nusselt numbers are a good representation of this physics.

The case of rT = 0, i.e. when one of the channel walls is unheated (T2 = T0), is a special

case. For rT = 0, a hydrodynamic boundary layer is developed along the heated wall. As

a result of the induced flow, a “secondary” hydrodynamic boundary layer develops along

the unheated wall. Nevertheless, only one thermal boundary layer is formed — along

the heated wall. The development of this boundary layer and its interaction with the

unheated wall, i.e. a physical boundary, determine heat transfer in the channel. Moreover,

CFD results indicate that for rT = 0 and Ra & 500, some fluid is drawn into the channel

from the top, near the unheated wall. In other words, there is some back-flow at the top

of the channel. These features are in several ways apparent in the paired Nusselt numbers

of the case of rT = 0. See Table 8.3.

First, the difference between Nuij and Nuji can be considerable, especially when there

is back-flow at the top, i.e. for Ra & 500. Recall that for rT > 0, this difference was
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Table 8.3: Sample dQdT results for laminar free convection in a vertical channel with
isothermal walls (Pr = 0.7) – The special case of rT = 0

Ra Nu12 Nu21 Nu10 Nu01 Nu20 Nu02

0.01 1.0010 1.0010 0.0206 0.0206 0.0206 0.0206

0.1 1.0007 1.0007 0.0213 0.0213 0.0213 0.0212

1 0.9901 0.9887 0.0467 0.0482 0.0452 0.0437

10 0.8684 0.8600 0.3716 0.3800 0.3331 0.3248

100 0.4413 0.3816 1.7358 1.7955 1.4032 1.3434

500 0.2240 0.1177 2.9995 3.1057 1.9603 1.8540

1000 0.1861 0.0654 3.5826 3.7033 2.1043 1.9836

2000 0.1748 0.0336 4.2266 4.3678 2.2828 2.1416

negligibly small. Clearly, in the case of rT = 0, there is notable asymmetry in the flow

field. The onset of back-flow at the top of the channel enhances this asymmetry, leading to

increased disparity between Nuij and Nuji. Note that, as observed in flow over cylinders in

tandem, for a given flow rate, the difference between each pair is a constant. See Appendix

D.

Second, for rT = 0 and Ra ≥ 100, the wall-wall Nusselt number Nu12 is significantly

larger than the rT > 0 cases. This is apparent in Figure 8.6 where Nu12, Nu10 and Nu20

are plotted for rT = 0 and rT = 0.5. Recall that, as shown in Figure 8.5, the variation of

Nuij with Ra is qualitatively the same for all rT > 0. Hence the rT = 0.5 curves shown

in Figure 8.6 are representative of rT > 0. The other wall-wall Nusselt number Nu21,

however, follows a trend very similar to that of the rT > 0 cases. It was noted earlier that,

for rT > 0, the wall-wall Nusselt numbers, Nu12 and Nu21, closely follow a “universal”

curve which is independent of rT . For rT = 0, Nu21 follows the same curve.

Finally, the variation of the wall-fluid Nusselt number Nu20 with Ra for rT = 0 is

notably different from the rT > 0 cases. On the other hand, as seen in Figure 8.6, Nu10, is

similar to the rT > 0 cases.
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Figure 8.6: Average paired Nusselt numbers of laminar free convection in a vertical
channel with isothermal walls (Pr = 0.7) – The special case of rT = 0

It is noteworthy that the traditional Nusselt number does not reflect the peculiarities

of the rT = 0 case; although Q2 is finite and non-zero, Nu2 becomes indefinite because

T2 = T0. See Equation 8.4. This is a non-physical feature and another shortcoming of the

traditional total Nusselt numbers in characterizing multi-temperature convection.

8.6 Alternative Correlations

Comparing Figures 8.2 and 8.5, important differences between {Nui} and {Nuij} are

observed:
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i) Whereas the total wall Nusselt numbers, Nu1 and Nu2, have distinct, rT -dependent

asymptotic values at both ends (Ra→ 0 and Ra→∞), the paired wall-fluid Nusselt

numbers, Nu10 and Nu20, approach the same rT -independent limit as Ra→ 0.

ii) Contrary to the total Nusselt number of the colder wall (Nu2), the paired Nusselt

numbers do not change sign; Nuij ≥ 0.

iii) The wall-wall paired Nusselt number, Nu12, is nearly independent of rT .

These features offer an opportunity for developing improved correlations which are free

of the extra parameters of the existing correlations discussed in Section 8.1, while having

clear physical interpretations.

8.6.1 Asymptotes

Wall-Fluid Nusselt Numbers

The limiting values of Nu10 and Nu20 were discussed in Section 8.5. The asymptotic

behavior of Nu10 and Nu20 in approaching those limits is better seen in Figure 8.7 where

the dQdT results for the wall-fluid Nusselt numbers a sample case (rT = 0.3) are plotted in

log-log scale. According to Figure 8.7, in thermally developed limit, Nu10 and Nu20 both

follow the same asymptote1:

lim
Ra→0

Nu10 = lim
Ra→0

Nu20 = Nufd

Note that as can be seen from Equation 8.6, for 0 ≤ rT ≤ 1, Nufd is very weakly

dependent on rT and can be approximated as shown in Equation 8.20. For a detailed

discussion of the fully developed limit, see the work of Martin et al. (1991).

1As mentioned earlier, due to axial diffusion at the channel inlet, the numerical results for Nu10 and
Nu20 deviate from the asymptote, Nufd, for Ra < 1. Numerical results obtained in a domain with an
infinitely large inlet section would closely follow this asymptote all the way to Ra = 0.
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Nufd ≈
Ra

24
(0 ≤ rT ≤ 1) (8.20)

In the other limit (Ra→∞), Nu10 and Nu20 approach the respective isothermal plate

limits, Nup1 and Nup2;

lim
Ra→∞

Nui0 = Nupi

To obtain Nupi, the boundary-layer solution to the isothermal flat plate problem (Ostrach

1953) was evaluated at the respective Rayleigh number, Rai. See Equations 8.21 and 8.22.

Rai =
gβ(Ti − T0)W 3

ν2

(
W

H

)
Pr (8.21)

Nupi = 0.618 Ra
1/4
i (8.22)

Wall-Wall Nusselt Numbers

As discussed in Section 8.5, the wall-wall Nusselt number, Nu12, varies between the

following limits:

lim
Ra→0

Nu12 = 1

lim
Ra→∞

Nu12 = 0

In the thermally developed limit, Nu12 describes conduction between parallel plates,

following the constant function: Nu12 = 1. In the other limit (Ra→∞), the dQdT results

seem to follow a function of the form: Nu12 = a12/Ra, with a12 = const.
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Figure 8.7: Average wall-fluid Nusselt numbers of laminar free convection in a vertical
channel with isothermal walls (rT = 0.33, Pr = 0.7)

158



8.6.2 Correlations

With the asymptotic behavior of {Nuij} established, the method of asymptotes (Churchill

& Usagi 1972) was applied to correlate the dQdT results. See Equations 8.23-8.25.

Nu10 =

[(
Nufd

)−1.3

+
(

0.618 Ra
1/4
1

)−1.3
]− 1

1.3

(8.23)

Nu20 =

[(
Nufd

)−1.3

+
(

0.618 Ra
1/4
2

)−1.3
]− 1

1.3

(8.24)

Nu12 =

(
1 + 0.0165 Ra

)−1

(8.25)

The fully developed limit, Nufd, can be evaluated using Equation 8.6 or simply

approximated using Equation 8.20. The relation between the wall Rayleigh numbers, Ra1

and Ra2, and the channel Rayleigh number, Ra, is shown in Equation 8.26. The constant

a12 = 0.0165 in Equation 8.25 was obtained from a curve-fit to the numerical dQdT results

reported in Section 8.5.


Ra1 =

2 Ra

1 + rT

Ra2 =
2 Ra

1 + 1/rT

(8.26)

For 0 < rT ≤ 1, Equations 8.23-8.25 fit the numerical dQdT results notably well, with

a maximum RMS error of ± 5%.

With Nu10, Nu20 and Nu12 obtained from Equations 8.23-8.25, and recalling that for

rT > 0; Nuij ≈ Nuji, the individual heat transfer rates, {Qi}, can be obtained as shown in

Equation 8.27.
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Qi =
∑
j

Cij(Ti − Tj)

= k

(
H

W

)∑
j

Nuij(Ti − Tj)

(8.27)

Note that Equation 8.27 is applicable for all three heat transfer rates, including Q0.

Alternatively, Q1 and Q2 can be calculated using Equation 8.27, and Q0 using the overall

energy balance of the channel:

Q0 = −Q1 −Q2

The proposed correlations can hence replace Equations 8.5, 8.12 and 8.13, while

simplifying the calculations by eliminating the intermediate parameters, ∆Teff and α.

8.6.3 The Special Case of rT = 0: Extension of the Correlations

It was discussed in Section 8.5.1 that if one of the channel walls in unheated, i.e. rT =

0, the physics of the problem changes considerably. Consequently, the paired Nusselt

numbers, particularly Nu12 and Nu20, exhibit trends that are different from the rT > 0

cases. Nevertheless, introducing a few corrections, the correlations presented in Section

8.6.2 can be extended to the special case of rT = 0.

One of the difficulties of the rT = 0 case is the unusual trend of Nu20. See Figure

8.6. Nevertheless, since ∆T20 = 0, the paired Nusselt number Nu20 is not required for the

calculation of {Qi}. Therefore, no adjustments were introduced in Equation 8.24.

The other difficulty arises from the notable deviation of Nu12 from the universal curve

obtained for rT > 0. Again, see Figure 8.6. This was remedied by noting that if rT = 0;
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Q1 = k

(
H

W

)[
Nu10(T1 − T0) + Nu12(T1 − T2)

]
(rT = 0)

= k

(
H

W

)(
Nu10 + Nu12

)
(T1 − T0)

(8.28)

Furthermore, although Nu12 shows a different trend when rT = 0, Nu21 is virtually the

same for rT = 0 and rT > 0. See the tabulated data in Appendix F. Equation 8.28 was

thus rewritten as:

Q1 = k

(
H

W

)(
Nu10 + Nu12

)
(T1 − T0) (rT = 0)

= k

(
H

W

)[
Nu10 +

(
Nu12 − Nu21

)
+ Nu21

]
(T1 − T0)

(8.29)

The dQdT results for Nu10 were then adjusted to: Nu10 +
(
Nu12 − Nu21

)
. In other

words, the deviation of Nu12 from the universal wall-wall curve of Figure 8.5 was at one

point neglected, but then compensated by adjusting Nu10. This is permissible since the

driving temperature differences are equal; ∆T10 = ∆T12. Fortunately, the modified group(
Nu10 + Nu12 − Nu21

)
follows Equation 8.23 very closely, with an RMS error of ± 5%.

Therefore, Equations 8.23 and 8.25 can also be used for rT = 0. It must be

re-emphasized however that Equations 8.23 and 8.25 are applicable to the case of rT = 0

only for calculating the total heat transfer rates using Equation 8.27; they do not reproduce

the dQdT results for Nu10 and Nu12.
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8.7 Summary

Numerical dQdT was implemented in CFD solutions of laminar free convection in a vertical

channel with isothermal walls. The functionality coefficients of the problem were calculated

for various flow rates and heating scenarios. Due to asymmetry in the flow field, the

functionality coefficients do not have perfect reciprocity. However, the difference between

each pair is very small and hence the resistor-network model can be applied.

The dQdT results were used to developed new correlations for the individual heat

transfer rates at the channel walls. These correlations are applicable to laminar flow of air

for the case of both channel walls heated or cooled isothermally (rT ≥ 0). Such correlations

are needed in building energy simulation, particularly in the modeling convective heat

transfer in complex fenestration systems. Excellent agreement between these correlations

and numerical dQdT results was achieved. The proposed correlations are notably simpler

than the existing correlations while having a clear physical meaning.
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Chapter 9

Turbulent Free Convection in a

Vertical Channel with Isothermal

Walls

In Chapter 8, the extended Newton formulation of laminar free convection in a vertical

channel with isothermal walls was presented. Numerical dQdT was applied to obtain the

functionality coefficients of the problem; the results were used to develop improved heat

transfer correlations.

Compared to the laminar case, less attention has been devoted to turbulent free

convection in vertical channels with isothermal walls. Examples include the work of Yilmaz

& Fraser (2007), Ayinde et al. (2008) and Roeleveld (2013). The shortcomings of the

traditional formulation, discussed in the previous chapter, are relevant also in the case of

turbulent flow. In this chapter, the three-temperature problem of turbulent free convection

of air in a tall vertical channel with isothermal walls is studied using the dQdT technique.

The application of numerical dQdT to turbulent free convection and the implementation

of the Cik = const constraint in the case of variable fluid properties are demonstrated.

163



9.1 Baseline Solutions

Consider buoyancy-driven flow in a vertical channel with walls at uniform temperatures T1

and T2, both greater than the far-field ambient temperature, T0.

The flow was assumed to be steady, incompressible and two-dimensional. Viscous

dissipation was neglected. Except for density, the fluid properties were assumed to be

constant. Instead of invoking the Boussinesq approximation, the variation of density

with temperature was considered in all of the governing equations. There were two

reasons for adopting this approach. First, the numerical solutions were to be validated

against experimental data entailing large temperature differences, far beyond the range

established by Gray & Giorgini (1976) for the validity of the Boussinesq approximation.

Second, the present study was intended partly to demonstrate the application of dQdT to

a variable-property problem. The ideal-gas equation was used to evaluate the variation of

the density with temperature. Turbulence was resolved using the k-ε model.

The problem was thus formulated in terms of the Reynolds-averaged governing

equations shown in Equations 9.1-9.7. With the introduction of the turbulence kinetic

energy, k, in this chapter thermal conductivity is denoted by λ.

ρ =
p0

RairT
(9.1)

∂(ρu)

∂x
+
∂(ρv)

∂y
= 0 (9.2)

u
∂(ρu)

∂x
+ v

∂(ρu)

∂y
= −∂p̄

∂x
+

∂

∂x

[
(µ+ µt)

∂u

∂x

]
+

∂

∂y

[
(µ+ µt)

∂u

∂y

]
(9.3)
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u
∂(ρv)

∂x
+ v

∂(ρv)

∂y
= −∂p̄

∂y
+

∂

∂x

[
(µ+ µt)

∂v

∂x

]
+

∂

∂y

[
(µ+ µt)

∂v

∂y

]
− (ρ− ρ0)g (9.4)

ucp
∂(ρT )

∂x
+ vcp

∂(ρT )

∂y
=

∂

∂x

[
(λ+

cpµt
σt

)
∂T

∂x

]
+

∂

∂y

[
(λ+

cpµt
σt

)
∂T

∂y

]
(9.5)

u
∂(ρk)

∂x
+ v

∂(ρk)

∂y
=

∂

∂x

[
(µ+

µt
σk

)
∂k

∂x

]
+

∂

∂y

[
(µ+

µt
σk

)
∂k

∂y

]
+Gk +Gb − ρk (9.6)

u
∂(ρε)

∂x
+ v

∂(ρε)

∂y
=

∂

∂x

[
(µ+

µt
σε

)
∂ε

∂x

]
+

∂

∂y

[
(µ+

µt
σε

)
∂ε

∂y

]
+B1ε

ε

k
Gk −B2ερ

ε2

k
(9.7)

In the equations above, Rair = 287 J/(kg K) is the gas constant of air and p̄ is

the pressure defect, introduced in Chapter 8. The turbulence (eddy) viscosity, µt, was

calculated using the low-Reynolds differential relation of the k-ε model (ANSYS 2011a).

The energy, turbulence kinetic energy and turbulence dissipation rate Prandtl numbers

are respectively: σt = 0.85, σk = 1 and σε = 1.3. These values are empirical constants in

the turbulence model. The source terms Gk and Gb represent respectively the generation

of turbulence kinetic energy due to mean velocity gradients and buoyancy. Other model

constants are B1ε = 1.44 and B2ε = 1.92. Further details of the low-Reynolds k-ε model

used in the present solutions can be found in the ANSYS Fluent documentation (ANSYS

2011a).
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9.1.1 Solution Method

The commercial solver ANSYS Fluent (ANSYS 2011a,b) was used to obtain second-order

finite volume solutions to Equations 9.1-9.7. The PRESTO! algorithm for discretizing

pressure and the SIMPLE scheme for handling the pressure-velocity coupling were used.

The ideal-gas model for density and the low-Reynolds k-ε model for turbulence were

utilized. No special criterion for transition to turbulence was adopted. The k-ε transport

equations were solved throughout the domain.

The k-ω turbulence model and various models for the variation of the fluid properties

with temperature were also tested, as discussed in Section 9.1.3.

9.1.2 Computational Domain, Boundary Conditions &

Discretization

The computational domain is an important factor in the numerical solutions of turbulent

free convection. The boundaries of the domain must ideally be locations at which some

data regarding the “background” turbulence (turbulence intensity, kinetic energy, etc.) is

available. Furthermore, as discussed by Desrayaud et al. (2013), the inlet geometry can

significantly influence the solution.

The present solutions were to be validated against cases for which measurements of the

turbulence kinetic energy at the channel inlet are available. These measured turbulence

parameters were used to set the inlet boundary conditions in the numerical solution.

Therefore, a rectangular computational domain confined to the channel, as shown in Figure

9.1, was used. Similar domains are used by other researchers, e.g. Fedorov & Viskanta

(1997), Yilmaz & Fraser (2007) and Yilmaz & Gilchrist (2007).

The channel walls (1-2) were treated as no-slip, impermeable solid boundaries at

uniform temperatures. In some of the cases examined in the validation study, constant
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Figure 9.1: Computational domain for turbulent free convection in a vertical channel

heat flux was prescribed at the walls. Pressure and temperature were set to the far-field

values, p0 and T0, at the channel inlet (3). In Fluent, the temperature gradient normal to

the inlet boundary is, by default, set to zero. In the following validation study, turbulence

kinetic energy and dissipation rate were used to specify the inlet turbulence conditions.

See Section 9.1.3. But to generate the baseline solutions for dQdT, i.e. in the “production”

runs, a turbulence intensity of 10% and the hydraulic diameter were specified as the inlet

turbulence conditions. Back-flow parameters matching the inlet conditions were set at the

channel outlet (4).

Note that in the present model, the axial diffusion of heat at the channel inlet was

neglected. On the other hand, if an upstream extension were considered (as in Chapter
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8), matching the turbulence kinetic energy at the channel inlet would become an iterative

process and, due to the nonlinearities involved, cumbersome. Numerical tests showed that

despite errors arising from the omission of axial heat diffusion at the inlet, a rectangular

domain with matched turbulence kinetic energy at the inlet yields acceptable agreement

with experimental data.

The computational domain was discretized into a non-uniform grid of approximately

300,000 rectangular control volumes. The grid dependence of the solutions was assessed

based on the Richardson-extrapolation technique proposed by Celik et al. (2008). Using

two finer grids with about 600,000 and 800,000 control volumes, and based on the rate of

total heat transfer to the fluid (Q0), a grid convergence index of 4% was obtained for the

coarse mesh which was used to generate the results.

9.1.3 Validation

The numerical solutions were validated against the experimental data of Yilmaz & Fraser

(2007). To perform the validation study, a numerical solution was obtained for a channel

with H/W = 30 and one wall heated to T1 = 100◦C. In the experiments conducted

by Yilmaz & Fraser (2007) the thermal condition at the other wall was uncontrolled;

the temperature of this wall was reported to rise 2-5◦C above the inlet temperature, T0 =

22.5◦C (Yilmaz & Fraser 2007). In the numerical solutions, radiant exchange was neglected

and the unheated wall was assumed to be adiabatic. The low-Reynolds-number (LR)

variations of the k-ε and k-ω models were used to resolve turbulence. The inlet kinetic

turbulence energy was set as the average of the values measured by Yilmaz & Fraser (2007)

at y/H = 0.03. A solution was also obtained by specifying a profile for the inlet turbulence

kinetic energy using the experimental data points and a user-defined function (UDF). The

turbulence dissipation rate at the inlet was calculated based on the relation given by

Yilmaz & Fraser (2007). The fluid properties were assumed to be constant, evaluated at

(T1 +T0)/2, except for density which was evaluated using the ideal-gas equation. Solutions
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were also obtained using variable fluid properties based on the linear interpolation of data

compiled by Hilsenrath (1955) and Touloukian (1970, 1975).

In Table 9.1 the predictions of the CFD solutions for the induced mass flow rate

and the average wall heat flux are compared with the measurements of Yilmaz & Fraser

(2007). Results of a numerical solution from the literature (Yilmaz & Fraser 2007) are

also presented in Table 9.1. The uncertainty in the experimental data are reported from

the source (Yilmaz & Fraser 2007). The errors in the numerical results are calculated

based on the experimental data. It can be seen that the various schemes used for handling

turbulence and variation of the fluid properties all yield results within the experimental

uncertainty of the measurements (∼ 10%). This is in agreement with the conclusion of

Yilmaz & Fraser (2007) that, despite considerable discrepancy in the local results such

as temperature and velocity profiles, different RANS models predict the overall heat and

mass flow rates within 10-15% of the measurements.

In Figure 9.2, the temperature profile near the channel outlet (y/H = 0.98) is shown in

terms of the excess temperature, T − T0. Solution “CFD-2” (see Table 9.1) was compared

to experimental and numerical (CFD-1) data from the literature. The uncertainty in the

temperature measurements by Yilmaz & Fraser (2007) has been reported to be respectively

0.2◦C and 0.9◦C for the flow and surface temperatures. As can be seen in Figure 9.2,

solutions using both k-ε and k-ω models are in good agreement with the benchmark data.

Based on the results presented in Table 9.1 and Figure 9.2, the low-Reynolds k-ε

turbulence and ideal-gas models for turbulence and density were chosen to generate baseline

solutions for dQdT.
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Table 9.1: Induced mass flow rate and average wall heat flux
(H = 30W = 3 m, T1 = 100◦C, q2 = 0, T0 = 22◦C, p0 = 1 atm)

Study Turbulence Inlet Fluid ṁ Error q Error

Model Turbulence Properties [gr/s] [W/m2]

Exp+ — — — 85.4 10.0%++ 360.3 7.0%++

CFD-1+ LR k-ε constant Ideal gas ρ 91.4 7.0% 331.5 8.0%

CFD-2 LR k-ε constant Ideal gas ρ 89.7 5.0% 361.0 0.2%

CFD-3 LR k-ω constant Ideal gas ρ 86.5 1.3% 337.6 6.3%

CFD-4 LR k-ε k0 = k0(x) Ideal gas ρ 89.3 4.6% 359.7 0.2%

CFD-5 LR k-ε constant Linear 82.1 3.9% 353.8 1.8%

+ Yilmaz & Fraser (2007)
++ Estimate of experimental uncertainty (Yilmaz & Fraser 2007)

Figure 9.2: Temperature distribution near the channel outlet (y/H = 0.98)
(H = 30W = 3 m, T1 = 100◦C, q2 = 0, T0 = 22◦C, p0 = 1 atm)
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9.2 Numerical dQdT

If the Boussinesq approximation for density were invoked, the variation of density in the

energy equation would be neglected and hence the Cik = const constraint would be satisfied

by retaining only the velocity field of the baseline solution. As mentioned in Chapter 8,

this can be readily done in Fluent. In the present solutions, however, the variation of

density with temperature is considered in all terms of the energy equation (Equation 9.5).

Therefore, to enforce the Cik = const constraint, the density field of the baseline solution

too must be retained when obtaining subsequent solutions to the energy equation with

perturbed boundary conditions.

9.2.1 Fixing the Fluid Properties

Retaining the fluid properties in Fluent is not straightforward; none of the default features

of the solver provide control over the updating of the fluid properties in the course of a

solution. In principle, the fluid properties can be retained by extracting the property fields

of the baseline solution, e.g. in the form of an ASCII file, and then importing this data when

obtaining subsequent solutions to the energy equation, e.g. through a user-defined function.

Nevertheless, this approach is complicated and computationally expensive. Instead, a

custom finite-difference solver was used to obtain baseline and subsequent solutions to the

energy equation using the velocity and property fields of the elliptic baseline solutions

obtained in Fluent.

To further simplify the procedure, the energy equation was parabolized by dropping

the axial diffusion terms. This is a close approximation since the problem involves large

Peclet numbers (Pe ≈ 1500). Hence a simple, forward-marching solution scheme could be

utilized to solve the energy equation. The MATLAB code developed for this purpose can

be found in Appendix G. The error introduced by parabolizing the energy equation was

up to 3% in the total heat transfer rates. Less than 1% difference in results was observed
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when dQdT was carried out based on solutions to elliptic and parabolic energy equations

using the Boussinesq approximation for density.

9.2.2 The dQdT Procedure

Numerical dQdT was implemented following the steps below:

i) A baseline solution to the full set of governing equations was obtained in Fluent.

ii) The velocity, density and turbulent viscosity1 fields were interpolated at the grid

nodes (control volume corners) and exported into the finite-difference solver (FDS).

iii) A baseline solution to the parabolic energy equation was obtained using FDS.

iv) The baseline heat transfer rates, {Qi}, were calculated.

v) The boundary temperature Tj was perturbed by a finite amount, δTj.

vi) The FDS solution to the parabolic energy equation was updated using the baseline

velocity and property fields, obtained in step (ii).

vii) The new heat transfer rates, {Q∗i }, and the respective changes were calculated; δQi =

Q∗i −Qi.

viii) The functionality coefficients corresponding to Tj were calculated; Cij = −δQi/δTj.

ix) Steps v-viii were repeated for j = 0, 1, 2.

The functionality coefficients thus obtained apply to the original boundary

temperatures, {Ti}.

To verify the enforcement of the Cik = const constraint, the results obtained for a

sample laminar case (Ra = 400, rT = 0.5, Pr = 0.7) following the procedure above were

1Turbulent viscosity is needed for calculating the effective thermal conductivity when solving the energy
equation. See Equation 9.5.
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compared to dQdT results based on a parabolic solution to the energy equation while

invoking the Boussinesq approximation in the baseline solution, i.e. with no need to fix

the density field. Less than 1% difference between the results was observed, indicating that

the Cik = const constraint was properly implemented.

9.3 Average Paired Nusselt Numbers

The functionality coefficients were converted to dimensionless form using the average paired

Nusselt number introduced in Chapter 8:

Nuij =

(
Cij
λ

)
W

H
(9.8)

The modified channel Rayleigh number, defined in Equation 9.9, and the temperature

ratio defined in Equation 9.10 were used to characterize respectively the flow and the

ordering of boundary temperatures.

Ra =
gβ(Twm − T0)W 3

ν2

(
W

H

)
Pr (9.9)

rT =
T2 − T0

T1 − T0

(9.10)

Obtaining baseline solutions to turbulent free convection is computationally very

expensive. Therefore, sample results were obtained in a narrow range of Ra: 104 ≤

Ra ≤ 2× 105. In the numerical solutions. Ra was modified by changing the gravitational

acceleration, g.
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Similar to the laminar case, discussed in Chapter 8, the asymmetry in the temperature

field leads to asymmetry in the velocity and density fields, and hence: Nuij 6= Nuji.

According to the results presented in Table 9.2, for a given value of Ra, the difference

Nuij − Nuji is a constant;

Nu12 − Nu21 = Nu01 − Nu10 = Nu20 − Nu02

This is in agreement with the results reported in Chapters 7 and 8, and the theorem

presented in Appendix D.

Note however that the difference between Nuij and Nuji is very small. Consequently,

it is a close approximation to assume Nuij = Nuji. Therefore, the resistor-network model

is applicable and the problem can be represented by a delta network.

dQdT results for rT = 0.5 and Pr = 0.7 are plotted in Figure 9.3. Since Nuij ≈ Nuji,

only three of the paired Nusselt numbers were plotted. Note that the channel geometry

affects the complex turbulence structures of the flow. For instance, the size of turbulent

eddies is restricted by the length scale of the channel. Hence, a very small channel width

may prohibit the formation and propagation of eddies, suppressing turbulent heat transfer.

As a result, heat transfer in the turbulent regime depends on the channel geometry (aspect

ratio). The results presented in Figure 9.3 are for a sample aspect ratio of H/W = 30.

The wall-fluid Nusselt numbers, Nu10 and Nu20, increase as Ra increases. Also

plotted in Figure 9.3 are the predictions of the correlations developed in Chapter 8

(Equations 8.23-8.24). Although these correlations were extrapolated beyond their range of

applicability, i.e. the laminar regime, they are helpful in demonstrating the enhancement of

heat transfer due to turbulence; both Nu10 and Nu20 are larger than the laminar predictions.

Note that similar to the laminar case, the hotter wall has a larger wall-fluid Nusselt number;

Nu10 > Nu20. Nevertheless, the difference between Nu10 and Nu20 decreases as Ra increases.
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Table 9.2: Sample dQdT results for turbulent free convection in a vertical channel
with isothermal walls (H/W = 30, rT = 0.5, p0 = 1 atm)

Ra Nu12 Nu21 Nu10 Nu01 Nu20 Nu02

104 0.0319 0.0122 6.7993 6.8190 5.9139 5.8944

2× 104 0.0418 0.0145 8.3105 8.3379 7.3218 7.2945

5× 104 0.0632 0.0215 11.0155 11.0570 9.9259 9.8841

105 0.0838 0.0296 13.7125 13.7666 12.7233 12.6690

2× 105 0.1074 0.0398 17.3020 17.3696 17.0410 16.9735

Recall that in the laminar regime, the difference between the wall-fluid Nusselt numbers

increases with Ra (see Figure 8.5).

In Figure 9.3, the wall-wall Nusselt number, Nu12, is plotted versus the scale shown

on the right. Similar to the laminar case, Nu12 is much smaller than Nu10 and Nu20.

However, contrary to the laminar case, Nu12 increases as Ra increases. In other words, the

thermal interaction between the walls is enhanced as the flow rate increases. The universal

wall-wall correlation developed for laminar flow gives: Nu12,lam = 0 for Ra ≥ 104. This was

attributed to the thinning of the thermal boundary layers with the increase of the flow.

The reverse trend of Nu12 in the turbulent regime can be attributed to the increase in the

effective thermal conductivity of the fluid due to turbulent mixing. Similar results were

observed in Chapter 6 for turbulent flow in an annulus.

9.4 Summary

dQdT was applied to calculate the functionality coefficients of turbulent free convection

of air in a vertical channel with isothermal walls. The implementation of the Cik = const

constraint in the case of variable fluid properties was demonstrated. Since Fluent does

not have a built-in feature which can be used to retain the property fields of the baseline

solution, a separate finite-difference solver was developed for solving the energy equation

using the baseline velocity and property fields of the baseline finite-volume solution
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Figure 9.3: Average paired Nusselt numbers of turbulent free convection in a vertical
channel with isothermal walls (H/W = 30, rT = 0.5, Pr = 0.7)
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obtained in Fluent. The proper implementation of the Cik = const constraint in this

dual-scheme solution was verified. The dQdT results thus obtained show that:

i) There is reciprocity between the functionality coefficients; Nuij ≈ Nuji. Therefore, a

delta resistor network can be used to model the three-temperature problem.

ii) The paired Nusselt numbers are all enhanced by transition to turbulence.

iii) Due to turbulent mixing, the wall-wall fluid Nusselt numbers of turbulent flow

increase as the flow rate increases.
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Chapter 10

Free Convection at the Indoor Side

of Complex Fenestration Systems

In Chapter 1, the ASHWAT models for heat transfer in glazing systems with attachments

were introduced. The combination of glazing layers and attachments, i.e. shades and

insect screens, is known as a Complex Fenestration System (CFS). The thermal-resistor

network used in ASHWAT for modeling convection at the indoor side of a CFS was also

introduced in Chapter 1. See Figure 10.1. Calculating the paired heat transfer coefficients

that characterize the delta network of Figure 10.1 was the original motivation for the body

of work presented in this thesis.

In Chapters 2-9, the class of multi-temperature convection problems was investigated

using a general formulation based on an extension of the Newton law of cooling. The

dQdT technique was developed for calculating the multiple functionality coefficients that

characterize heat transfer in a multi-temperature setting. Advantages of the extended

Newton formulation and validity of the dQdT technique were demonstrated and discussed

for several classical problems.
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Figure 10.1: The resistor network of convection at the indoor side of a complex
fenestration system (g: glazing, s: shading attachment, a: indoor air)

In this chapter, the dQdT technique is applied to obtain the functionality coefficients

of the multi-temperature problem of convection at the indoor side of a CFS. In light of the

developments reported in the preceding chapters, the present study was conducted mainly

to answer two questions:

i) Is the resistor-network model applicable to the three-temperature problem of

convection at the indoor side of complex fenestration systems? In other words, is

there reciprocity between the functionality coefficients of the problem?

ii) How good are the approximate relations currently used in ASHWAT for the paired

heat transfer coefficients of the delta network of Figure 10.1?

10.1 Current ASHWAT Estimates

Currently, estimates of the three convection coefficients that characterize the delta network

of Figure 10.1 are used in ASHWAT. Based on known limits and experience, correlations
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have been developed that give the indoor convection coefficients as functions of the

glass-shade spacing, b (Wright et al. 2009, Barnaby et al. 2009).

The glass-shade convection coefficient, hgs, is estimated assuming laminar flow in the

channel formed between the glass and attachment. Furthermore, assuming a relatively

short thermal development length, heat transfer is assumed to be dominated by conduction

across the vertical flow. Equation 10.1 is therefore taken as a reasonable estimate for hgs

(Wright et al. 2009).

hgs =
k

b
(10.1)

Equation 10.1 is plotted in Figure 10.2. As can be seen in this figure, when the

shading attachment is spaced well away from the window, hgs will be small and its influence

unimportant.

The glass-air and shade-air convection coefficients, hga and hsa, are evaluated based

on a user-specified “run-off” value, hc. This approach allows for the effects of different

flow conditions, e.g. forced or free convection, to be taken into account by adjusting hc.

To incorporate the effect of b, two limiting cases were considered. When b → ∞, the

convective heat transfer at one layer, glass or shade, will not be influenced by the presence

of the other layer and mimics convection at an isolated flat plate. When b → 0, on the

other hand, the thermal communication between the glass and the indoor air is blocked,

while one side of the attachment layer remains exposed, hence thermally communicating

with air. An exponential function was introduced to represent this behavior and make a

smooth transition between the limits. This transition was scaled by assuming that the

boundary layers at the glass and shading layer surfaces will not interfere for b > 0.1 m

(Wright et al. 2009). See Equations 10.2 and 10.3.
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hga = hc

{
1− exp

[
− 4.6

( b

0.1

)]}
(10.2)

hsa = hga + hc

= hc

{
2− exp

[
− 4.6

( b

0.1

)]} (10.3)

Note that hsa is based on Ag = As/2. Further note that the attachment layer is exposed

to air on both sides. In developing Equation 10.3, it has been assumed that the right side

of the shading attachment (the side facing the indoors) has a heat transfer coefficient of

hc, unaffected by the glazing layer.

In Figure 10.2, Equations 10.2 and 10.3 are plotted using the run-off value recommended

in the ASHWAT documentation (Wright et al. 2009): hc = 3.5 W/(m2K) — “a typical

value for natural convection”.

In the case of venetian blinds (VB), the glass-shade spacing is defined as distance from

the glass to a point on the slat that is 70% of the way from the slat center to the slat tip

(Wright et al. 2008):

bVB = L− 0.7
(w

2

)
cosφ

Moreover, an adjustment has been introduced to take into account the enhanced

buoyancy-driven flow through the slats (Wright et al. 2009) and allow for up to 20%

increase in hsa. See Equation 10.4 where φ denotes the slat angle, measured from horizontal.

hsa,VB = hc

{
2− exp

[
− 4.6

(bVB

0.1

)]}[
1 + 0.2

∣∣ sin(2φ)
∣∣] (10.4)

Although no difficulty has been reported regarding the ASHWAT three-resistor

network and the approximate correlations above, Equations 10.1-10.4 do not have the
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Figure 10.2: ASHWAT estimates for the indoor-side convection coefficients of a complex
fenestration system (Wright et al. 2009)

[
hc = 3.5 W/(m2K)

]
same level of fundamental grounding as the other components of ASHWAT. At the

time of the development of ASHWAT, virtually no information was available on the

resistor-network modeling of multi-temperature convection problems and the evaluation of

the corresponding paired heat transfer coefficients. The dQdT technique is now a powerful

tool for the accurate calculation of {hij}.

10.2 Extended Newton Formulation

Convection at the indoor side of a CFS comprises three isothermal boundaries: the glazing

surface, the attachment and the ambient air. Accordingly, the problem is characterized by
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six functionality coefficients. These functionality coefficients are converted to the paired

heat transfer coefficients discussed above through division by the reference heat-transfer

surface area.

As discussed in Chapter 3, the validity of the resistor-network model is contingent

on reciprocity of the functionality coefficients; Cij = Cji. As shown in Chapters 7-9,

reciprocity exists in multi-temperature configurations where the isothermal surfaces are

positioned symmetrically in the flow field. The existence of reciprocity, and hence validity

of the resistor-network model, can be explored using dQdT.

10.3 Baseline Solutions

10.3.1 Solution Method

The commercial solver ANSYS Fluent (ANSYS 2011a,b) was used to obtain second-order

finite volume baseline solutions. The PRESTO! algorithm for discretizing pressure and the

SIMPLE scheme for handling the pressure-velocity coupling were used. The Boussinesq

approximation for density was invoked, while other thermophysical properties of air were

assumed to be constant, evaluated at Ta (Pr = 0.7). The Shear Stress Transformation

(SST) k-ω model with low-Reynolds-number correction was used for resolving turbulence.

10.3.2 Computational Domain, Boundary Conditions &

Discretization

A schematic of the computational domain is shown in Figure 10.3. The glazing (1) and

shading layer (2) were modeled as impermeable, no-slip, isothermal solid boundaries. The

venetian blind slats were assumed to be flat and infinitesimally thin. The window glazing

was assumed to be flush-mounted, i.e. the window “setback” was ignored. Two adiabatic
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walls (3-4) were added at the top and bottom of the window, each the same height as the

window. The blinds (2) were “hanging” in the domain, i.e. not attached to the domain

boundaries.

Pressure, temperature, and turbulent parameters (kinetic energy, k, and specific

dissipation rate, ω) were specified at the far-field boundaries (5-7). The solver’s default

values were used for the far-field turbulence boundary conditions: k = 1 m2/s2 and

ω = 1 s−1. Numerical tests were performed to ensure the far-field boundaries (5-7) are

placed sufficiently far to have negligible effect on the solutions.

Depending on the CFS aspect ratio, the domain was discretized into a non-uniform

unstructured mesh of approximately 345,000-590,000 control volumes. The mesh was

constructed with a higher density in the vicinity of the glazing and the shading layer.

The difference between the number of control volumes used for different configurations

corresponds to the difference in b as well as the attachment type — roller or venetian

blind.

The grid dependence of the solutions was assessed using the Richardson-extrapolation

technique proposed by Celik et al. (2008). Using three grids with approximately 140,000,

355,000 and 590,000 control volumes for a CFS entailing a venetian blind with H/L = 17,

and based on the rate of total heat transfer to the air (Qa), a convergence index of 5% was

calculated for the fine grid.

10.3.3 Validation

To validate the baseline solutions, the present CFD solutions were compared to an

experimental study from the literature. Machin et al. (1998) used interferometry to

measure the local heat transfer coefficient, hg, at an isothermal flat plate (representing

the glazing layer) with an adjacent venetian blind. The plate had a height of H = 380 mm.

The blind consisted of 17 slats of width w = 25.4 mm at an angle of φ = 45◦, and was

mounted at a distance of L = 14.5 mm from the plate. The plate was maintained at
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Figure 10.3: Computational domain for a flush-mounted glazing (1)
with an indoor-mounted roller OR venetian blind (2)
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Tg = 41◦C, about 20◦C above the ambient temperature. The thermal condition at the

blind slats was uncontrolled in the experiments by Machin et al. (1998). Consequently, in

the CFD solutions, the slats were set as conjugate (“coupled”) walls with zero thickness.

Thermal radiation was ignored in the CFD solutions.

In Figure 10.4, the FVM solution is compared to the measurements of Machin et

al. (1998) and a laminar FEM solution from the literature (Ye et al. 1999). Due to

experimental restrictions, Machin et al. (1998) have reported hg only up to y/H ≈ 0.71.

Therefore, in Figure 10.4 the results were plotted for 0 ≤ y/H ≤ 0.8.

The present CFD solution captures the overall trend of hg along the plate. Nevertheless,

the CFD solution under-predicts hg, especially away from the leading edge (y/H > 0.5).

This is likely due to the neglect of radiation in the CFD solutions. The radiant blind

performs as a “heat sink” in the flow field, lowering the temperature of the air flowing

along the plate and hence increasing hg. In the experiments by Machin et al. (1998), the

plate was polished to achieve a low emissivity and reduce radiation to the blind. The blind

slats, on the other hand, were painted and hence had a significantly higher emissivity. As

a result, the blind slats radiated heat to the essentially “black”, cold environment. Thus,

a no-radiation CFD solution would over-predict the equilibrium temperature of the blind

slats, hence under-predicting hg.

Compared to the laminar solution by Ye et al. (1999), the present turbulent solution is

in better agreement with the measurements, especially for y/H > 0.5. Note that Ye et al.

(1999) too have ignored radiation. The overall agreement of the current CFD predictions

with the data from the literature indicates validity of the baseline solutions.

10.4 Numerical dQdT

Numerical dQdT was implemented following the procedure described in Section 8.4.
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Figure 10.4: Heat transfer coefficient of a glazing with an adjacent venetian blind
(Tg − Ta = 20◦C, H = 380 mm, L = 14.5 mm, φ = 45◦)

10.5 dQdT Results

Two configurations were studied: a flush-mounted glazing with 1) a roller blind and 2) a

venetian (louver) blind. A window height of H = 1.65 m and different glass-shade distances

in the range 25-150 mm were considered. In the case of venetian blinds, the distance, L,

was measured from the center of the slats, as shown in Figure 10.3. The venetian blind

consisted of 75 uniformly spaced flat slats of width w = 2.54 mm, at an angle of φ = 45◦.

Because the effects of shading attachments are usually of interest in calculating cooling

loads, results were generated for boundary temperatures of a typical double-glazing window

with a low-ε coating, under the design summer condition. Using the window simulation
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software VISION5 (Wright & Sullivan 1987, Wright 2011), the following temperatures

were obtained: Tg = 35◦C, Ts = 28◦C and Ta = 24◦C.1 In this case, the average Rayleigh

number based on (Tg + Ts)/2− Ta and H is: Ra = 3.9× 109.

10.5.1 CFS with a Roller Blind

The dQdT results for the complex fenestration system with a roller blind (RB) are shown

in Table 10.1. As can be seen in this table, Cij ≈ Cji for the RB configuration. Recall

that in Chapters 8 and 9 too, small differences between Cij and Cji were observed in the

case of free convection in a vertical channel. Since Cij ≈ Cji, the resistor-network model

is valid for the three-temperature problem.

Note that as observed in Chapters 8 and 9 and proven in Appendix D, in a

three-temperature setting, the difference between each pair, Cij − Cji, is constant. So

the relative difference can be quite large when Cij and Cji are small. For instance, see the

entries in Table 10.1 for Cgs and Csg at b = 150 mm.

Further note that when performing the dQdT operation, both sides of the blind were

treated as a single isothermal surface. Therefore: As = 2Ag. The substantial difference

between Cga and Csa, and Cag and Cas is therefore partly due to the difference between

the surface areas. However, since heat transfer at the right side of the blind is almost not

affected at all by the presence of the glazing2, the difference between Ag and As does not

lead to as large a difference between Cgs and Csg.

In Figure 10.5, the dQdT results are compared to the ASHWAT estimates (Equations

10.1-10.3). Instead of using the default value of hc = 3.5 W/(m2K) (Wright et al. 2009),

hc was calculated using the correlation shown in Equation 10.5 (Churchill & Chu 1975) for

1Note that these temperatures depend on the glass-shade spacing. Representative values are used here.
2This can be confirmed by treating the two sides of the roller blind (denoted by L and R) as separate

isothermal surfaces when applying dQdT. For example, at b = 75 mm: CsLg = 0.2418 and CsRg = 0.0184.
Note that: CsLg > CsRg and CsLg + CsRg = Csg
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Table 10.1: dQdT results for the CFS with a roller blind
(Tg = 35◦C, Ts = 28◦C, Ta = 24◦C, H = 1.65 m)

b [mm] Cgs Csg Cga Cag Csa Cas

25 1.3642 1.2902 3.6336 3.7077 13.3296 13.2569

50 0.5357 0.4244 4.7560 4.8673 14.8091 14.6978

75 0.3892 0.2602 5.3012 5.4298 15.1606 15.0312

97 0.3101 0.1901 5.3094 5.4294 14.9718 15.1236

127 0.2672 0.1502 5.5295 5.6475 15.4907 15.3779

150 0.2533 0.1395 5.8463 5.9605 15.5504 15.4393

free convection at an isothermal flat plate. At Ra = 3.9×109 and Pr = 0.7, this correlation

yields: hc = 2.81 W/(m2K).

Nuc =
hcH

k
=

{
0.825 +

0.387 Ra1/6[
1 + (0.492/Pr)9/16

]8/27

}2

(10.5)

The functionality coefficients were converted to paired heat transfer coefficients using

Equation 10.6.



hga =
Cga
Ag

hsa =
Csa
As

hgs =
Cgs
Ag

(10.6)

As seen in Figure 10.5, there is good agreement between Equation 10.1 and the dQdT

results for hgs. Recall that Equation 10.1 was developed based on the assumption of

laminar flow. In the turbulent regime, the thermal boundary layers are thinner and hence

the thermal interaction between the glazing and the blind is weaker. Thus, Equation 10.1

overestimates hgs, especially for small spacings, b < 60 mm. Recall that in Chapter 9, the
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wall-wall functionality coefficients of free convection in a vertical channel were reported to

be enhanced due to turbulent mixing. However, such enhancement is not observed in the

results presented in Figure 10.5 because the flow is only mildly turbulent.

The discrepancy between the dQdT results and ASHWAT estimates for hga and hsa is

significant; compared to the dQdT results, Equation 10.2 underestimates hga and Equation

10.3 overestimates hsa.

Note that in Equations 10.2 and 10.3, the same run-off value is assigned to hga and

hsa. Taking note of the asymptotic limits observed in Chapter 8 for the wall-fluid Nusselt

numbers of free convection in a vertical channel, a correction was introduced in Equations

10.2 and 10.3: the run-off values were calculated separately, by evaluating Equation 10.5

with the respective Rayleigh numbers based on Tg − Ta and Ts − Ta. Hence, replacing

Raga = 5.8× 109 and Rasa = 1.9× 109 in Equation 10.5;

lim
b→∞

hga = 3.29 W/(m2K)

lim
b→∞

hsa = 2.33 W/(m2K)

Note that the default value of hc = 3.5 W/(m2K) used in ASHWAT overestimates both

limits, especially that of hsa.

The ASHWAT estimates modified with the correction above are also plotted in Figure

10.5; excellent agreement with the dQdT results is obtained, with the exception of hga at

b = 150 mm.

It is noteworthy that preliminary results (Foroushani et al. 2015a) obtained based

on laminar baseline solutions to a shorter CFS with a roller blind had indicated notable

discrepancy between the dQdT results and the ASHWAT estimates.
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Figure 10.5: Paired heat transfer coefficients of the CFS with a roller blind
(Tg = 35◦C, Ts = 28◦C, Ta = 24◦C, H = 1.65 m)

191



10.5.2 CFS with a Venetian Blind

The dQdT results for the complex fenestration system with a venetian blind (VB) are

shown in Table 10.2. Again, the difference between the surface areas must be noted when

interpreting these results; Ag = H and As = 2× 75w. Most notably, the results presented

in Table 10.2 show a lack of reciprocity between the functionality coefficients of the VB

configuration: Cij 6= Cji. In the VB configuration, especially for φ < 90◦, there is significant

asymmetry in the position of the glazing and the slats with respect to the buoyancy-driven

flow. As discussed in Chapter 7, asymmetric position of the isothermal surfaces with

respect to the flow field precludes reciprocity.

In Figure 10.6, sample streamlines for the VB configuration are shown; air is drawn

towards the glazing from the bottom and right boundaries. Therefore, the blind slats

are, in a sense, “upstream” of the the glazing. It is therefore expected that the upstream

temperature Ts have a significant impact on the temperature field and hence the heat

transfer rates. For instance, as can be seen in Table 10.2; Cgs > Csg. This result is similar

to the results presented in Chapter 7 for cylinders in tandem: C21 > C12, with subscripts

1 and 2 denoting respectively the upstream and downstream cylinders.

In Figure 10.7, the dQdT results for the six paired heat transfer coefficients of the VB

configuration are compared to the ASHWAT estimates with and without the correction

introduced in Section 10.5.1 for hc. The dQdT results for functionality coefficients were

converted to paired heat transfer coefficients using Equation 10.7.



hga =
Cga
Ag

, hag =
Cag
Ag

hga =
Csa
As

, has =
Cas
As

hgs =
Cgs
Ag

, hsg =
Csg
As

(10.7)
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Figure 10.6: Streamlines of free convection in a CFS with a venetian blind
(Tg = 35◦C, Ts = 28◦C, Ta = 24◦C, H = 11L = 1.65 m, φ = 45◦)
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Table 10.2: dQdT results for the CFS with a venetian blind
(Tg = 35◦C, Ts = 28◦C, Ta = 24◦C, H = 1.65 m, φ = 45◦)

L [mm] Cgs Csg Cga Cag Csa Cas

25 2.5633 1.1212 1.2587 2.7632 12.7115 11.2768

50 2.0735 0.1752 2.7760 4.6735 18.8556 16.8978

75 1.3925 0.0428 3.3906 4.7405 21.5207 20.1728

97 1.0751 0.0345 3.7303 4.7711 23.1315 22.0925

127 0.8223 0.0262 4.0597 4.8558 24.0857 23.2902

150 0.7460 0.0295 4.3430 5.0595 26.3522 25.6354

The shade-air heat transfer coefficients, hsa and has, are closer to the corrected ASHWAT

curve for b < 100 mm. The air-glass coefficient, hga, on the other hand, is closer to the

ASHWAT curve [hc = 2.81 W/(m2K)]. The glass-air coefficient is significantly lower than

the predictions of both ASHWAT curves, except at b = 150 mm where there is good

agreement between the dQdT results and the ASHWAT estimate.

Finally, while the overall trend of variation of the dQdT results for hgs and hsg is in

agreement with the ASHWAT curve, the actual values are, respectively, notably higher

and lower than the ASHWAT estimate.

Note that in the b → ∞ limit, the three-temperature problem degenerates into two

independent two-temperature problems: free convection from a vertical isothermal flat

plate and free convection from a set of inclined isothermal flat plates. Therefore, the

difference between hij and hji decreases as b increases;



lim
b→∞

hgs = lim
b→∞

hsg = 0

lim
b→∞

hga = lim
b→∞

hag

lim
b→∞

hsa = lim
b→∞

has

The ASHWAT estimates (Equations 10.1-10.4) are based on a significantly simplified

model, assuming laminar flow and one-dimensional heat transfer, leaving out many details
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Figure 10.7: Paired heat transfer coefficients of the CFS with a venetian blind
(Tg = 35◦C, Ts = 28◦C, Ta = 24◦C, H = 1.65 m, φ = 45◦)
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of physics of the problem. For example, the current ASHWAT models predict that as

b→ 0, heat transfer at the glazing is totally “blocked” by the shading layer and hence:

lim
b→0

hga = 0

This is obviously not the case for an open venetian blind (φ < 90◦).

Therefore, it is not surprising that the ASHWAT estimates have large errors for a complex

problem such as turbulent free convection in the VB configuration.

However, it must be noted that the results presented here are limited to a single slat

angle, a single window height and a simplified CFS geometry. Further investigation is

needed before a conclusive assessment of the ASHWAT estimates; dQdT provides the

means. Moreover, it is noteworthy that, as shown by Foroushani et al. (2016), the solar

heat gain coefficient and the overall heat transfer coefficient of typical complex fenestration

systems are almost insensitive to the indoor-side convection coefficients, {hij}. Therefore,

the large differences observed between the ASHWAT estimates and the dQdT results can

be expected to have a small effect on the overall performance of whole-building energy

models.

Aside from the accuracy of the ASHWAT estimates, the observation that Cij 6= Cji

raises an important question regarding the validity of the resistor-network model. With

Cij 6= Cji, this model must be used cautiously. In particular, a modeling decision must be

made regarding the resistance (conductance) between Ti and Tj. The arithmetic mean of

the two corresponding functionality coefficients, Cij and Cji, is one possibility:

Ciji =
Cij + Cji

2
(10.8)
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In Table 10.3, heat transfer calculations using the energy balance of a delta

resistor-network with {Ciji} as its conductances (Equation 10.9) and the current ASHWAT

estimates are compared to the CFD results. The error in each case is calculated based on

the CFD results.

Qi =
∑
j

Ciji(Ti − Tj) (10.9)

The ASHWAT calculations were performed using Equations 10.10-10.12, with the

paired heat transfer coefficients evaluated based on Equations 10.1, 10.2 and 10.4 with

hc = 2.81 (W/m2K).

Qg = hgaAg(Tg − Ta) + hgsAg(Tg − Ts) (10.10)

Qs = hsa
As

2
(Ts − Ta) + hgs

As

2
(Ts − Tg) (10.11)

Qa = hgaAg(Tg − Ta) + hsa
As

2
(Ts − Ta) (10.12)

Recall that hsa given by Equation 10.4 corresponds to both sides of the blind. Hence,

in Equations 10.11 and 10.12, As is divided by 2.

As can be seen in Table 10.3, Equation 10.9 gives a good estimate of {Qi}, especially

for b ≥ 75 mm.3 The current ASHWAT estimates, on the other hand, lead to significant

errors, especially for Qs. Therefore:

3The heat transfer rates calculated using the full set of functionality coefficients, {Cij}, are identical to
the CFD results.
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Table 10.3: Heat transfer rates in the CFS with a venetian blind+

(Tg = 35◦C, Ts = 28◦C, Ta = 24◦C, H = 1.65 m, φ = 45◦)

L [mm] — CFD Res net Error ASHWAT Error

Qg 32.13 35.02 9.0% 45.17 40.6%

25 Qs 43.00 35.08 -18.4% 22.29 -48.2%

Qa 75.13 70.10 -6.7% 69.85 -7.0%

Qg 45.05 48.84 8.4% 50.91 13.0%

50 Qs 74.28 63.64 -14.3% 40.06 -46.1%

Qa 119.32 112.48 -5.7% 91.99 -22.9%

Qg 47.05 49.74 5.7% 53.12 12.9%

75 Qs 85.78 78.36 -8.6% 45.23 -47.3%

Qa 132.83 128.11 -3.6% 99.00 -25.5%

Qg 48.56 50.64 4.3% 53.46 10.1%

97 Qs 92.28 86.56 -6.2% 47.12 -48.9%

Qa 140.84 137.21 -2.6% 101.07 -28.2%

Qg 50.41 52.01 3.2% 53.24 5.5%

127 Qs 96.16 91.78 -4.6% 48.34 -49.6%

Qa 146.57 143.79 -1.9% 101.95 -30.4%

Qg 53.00 54.43 2.7% 52.98 0.0%

150 Qs 105.21 101.26 -3.7% 48.85 -53.6%

Qa 158.20 155.69 -1.6% 102.14 -35.4%

+All values of Qi are in [W/m].

i) A delta resistor-network with {Ciji} as its conductances is a reasonable engineering

model for calculating the total heat transfer rates.

ii) Using the dQdT results for the VB configuration, the accuracy of the heat transfer

calculations can be notably improved.

In Figure 10.8, the mean heat transfer coefficients, hgsg, hgag and hsas, are compared

to the ASHWAT estimates with and without the correction of hc. While neither of the

ASHWAT curves are in reasonable proximity of the dQdT results for hsas, there is good

overall agreement between the original ASHWAT curve [hc = 2.81 W/(m2K)] and the
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dQdT results for hgag. For b > 40 mm, very good agreement is observed between the

ASHWAT estimate and the dQdT results for hgsg.

10.6 Summary

Numerical dQdT was applied to calculate the functionality coefficients of free convection

at the indoor side of complex fenestration systems comprised of a flush-mounted glazing

and two types of indoor-mounted attachments: 1) a roller blind (RB) and 2) a venetian

blind (VB). The dQdT results show that:

i) There is reciprocity between the functionality coefficients of the RB configuration.

The use of a delta resistor network to represent the three-temperature problem is

therefore justified.

ii) The ASHWAT estimates are in very good agreement with the dQdT results for the

RB configuration after a minor correction: using a correlation for free convection at

an isothermal vertical flat plate, separate run-off values for hga and hsa were evaluated.

iii) The functionality coefficients of the VB configuration do not show reciprocity. This

is due to the asymmetric position of the gazing and blind with respect to the flow

iv) A delta resistor network with (Cij +Cji)/2 as its conductances is a reasonable model

for calculating the total heat transfer rates of the VB configuration, especially for

L ≥ 75 mm.

v) For the VB configuration, there is significant difference between the ASHWAT

estimates and the dQdT results for {hij} and the heat transfer rates calculated

accordingly.
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Figure 10.8: Mean paired heat transfer coefficients of the CFS with a venetian blind
(Tg = 35◦C, Ts = 28◦C, Ta = 24◦C, H = 1.65 m, φ = 45◦)
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vi) There is a potential for improving the current ASHWAT estimates using dQdT.

However, further investigation of various CFS configurations is needed before

comprehensive corrections can be developed.
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Chapter 11

Conclusion

11.1 Summary of Findings

Many convection heat transfer problems entail exclusively isothermal and adiabatic

boundary conditions. Moreover, in many cases, heat transfer takes place between more than

two isothermal boundaries. This class was identified under the title of multi-temperature

convection problems.

In the ASHWAT models for heat transfer in a complex fenestration system (CFS),

convection at the indoor side is modeled as a three-temperature problem, characterized by

three heat transfer coefficients. Motivated by the desire to calculate these coefficients with

improved accuracy, the research reported in this thesis was devoted to the study of the

general problem of multi-temperature convection.

The Newton law of cooling formulates the rate of convective heat transfer in terms of

a temperature difference. For multi-temperature convection problems, this formulation

must be reconciled with the presence of more than two representative temperatures.

Traditionally, this is done by constructing an effective temperature difference, i.e. a

combination of the independent, and sometimes dependent, temperatures of the problem.
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It was shown in this thesis that the traditional formulation based on a single driving

temperature difference is not a proper representation of the multi-temperature problem

mainly because:

i) It leads to non-physical peculiarities (singularities, etc.) in the presentation of the

solution.

ii) It does not reflect the thermal phenomenon in full detail.

An extension of the Newton formulation was proposed to address these shortcomings.

The principal idea of the extended Newton formulation is the representation of the multiple

driving temperature differences in separate terms. Hence, instead of using an amalgam

of independent and dependent temperatures to construct a single effective temperature

difference, the extended Newton formulation is based on a linearized summation of multiple

terms, each entailing a distinct driving temperature difference. Consequently, heat transfer

is characterized by multiple “functionality coefficients”, each characterizing the thermal

interaction between a specific pair of isothermal boundaries.

In general, the functionality coefficients that characterize a multi-temperature

convection problem cannot be calculated based only on the knowledge of total heat transfer

rates; an under-determined system of equations is encountered. The dQdT technique was

developed to overcome this difficulty.

In the rare occasion that an analytical solution for the energy equation is available,

the dQdT technique can be implemented by differentiating analytical expressions for

the total heat transfer rates with respect to the boundary temperatures. This was

demonstrated for classical convection problems: convection at an isothermal flat plate

and in hydrodynamically developed laminar flow in channels and annuli with isothermal

walls.

The dQdT technique can also be implemented numerically. This entails a baseline

solution to the full set of governing equations and subsequent solutions to the linearized
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energy equation with perturbed boundary conditions. The unique opportunity that

numerical methods, specifically CFD, provide for the numerical implementation of dQdT

must be highlighted. In a numerical study, solutions to the energy equation can be

obtained using any desired velocity and property field. In numerical dQdT, this capacity

is utilized to obtain solutions to the energy equation with perturbed boundary conditions,

while retaining the velocity and property fields of the solution for the original boundary

conditions. With the velocity and property fields fixed, the energy equation is linearized

and hence the heat transfer coefficients are held constant. The following procedure

summarizes the numerical implementation of dQdT:

i) A baseline solution to the full set of governing equations is obtained.

ii) The heat transfer rates are calculated.

iii) One of the boundary temperatures is perturbed by a finite amount.

iv) Retaining the velocity and property fields of the baseline solution (step i), the solution

to the energy equation only is updated.

v) The new heat transfer rates are calculated. The change in each heat transfer rate

gives a corresponding functionality coefficient.

vi) Steps iii-v are repeated for all boundary temperatures.

Numerical dQdT was verified against the analytical technique and then applied to

CFD solutions to different multi-temperature convection problems: hydrodynamically

developing flow in an annulus with isothermal walls, cross flow over isothermal cylinders,

and free convection in a vertical channel with isothermal walls.

As demonstrated for various examples, the extended Newton formulation has several

advantages over the traditional formulation. For instance, the superficial, non-physical

singularities of the classical analytical solution to the asymmetric Graetz problem were
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eliminated when the extended Newton formulation was applied. In the case of laminar free

convection in a vertical channel with isothermal walls, the extended Newton formulation

led to heat transfer correlations which are both more accurate and more physically

meaningful than the existing correlations. In general, compared to the traditional

formulation, the extended Newton formulation is a better representation of the physics

of a multi-temperature convection problem, while revealing more detail about the thermal

phenomenon.

The accurate calculation of the heat transfer coefficients of convection at the indoor side

of a CFS was the original motivation for the research reported in this thesis. Currently,

estimates based on known limits and experience are used to evaluate the convection

coefficients of the CFS problem. However, with dQdT these coefficients can now be

calculated more accurately. Sample dQdT results for a CFS entailing a roller blind

demonstrated the good accuracy of the existing ASHWAT estimates. For a CFS with

a venetian blind, however, dQdT results revealed potential for the improvement of the

ASHWAT estimates.

In addition to giving the functionality coefficients of a multi-temperature convection

problem and hence enabling the extended Newton formulation, the dQdT technique also

provides a basis for assessing the resistor-network model of convection. As discussed for

several examples, when the two functionality coefficients corresponding to each pair of

isothermal boundaries are equal (or reasonably close), the multi-temperature problem can

be represented by a network of convective resistors. Otherwise, the resistor-network is

not applicable. Nonetheless, the functionality coefficients can still be used to quantify

the thermal interaction between the isothermal boundaries and to calculate the total heat

transfer rates.
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11.2 Highlights

In relation to the general goals defined in Chapter 1, the highlights of this thesis can be

summarized as follows:

i) The Newton law of cooling was extended to formulate the general problem of

multi-temperature convection.

ii) The dQdT technique was developed and validated to calculate the paired heat

transfer coefficients of a multi-temperature convection problem, including the CFS

problem.

iii) The dQdT technique provides a basis for assessing the current ASHWAT estimates

for the convection coefficients of the CFS problem. The dQdT results presented in

this thesis suggest that while the ASHWAT estimates are remarkably accurate for a

CFS with a roller blind, there is a potential for improving the estimates for a CFS

with a venetian blind.

11.3 Future Work

The promising performance of the extended Newton formulation and the dQdT technique

for the examples examined in this thesis encourage the application of this new approach

to other multi-temperature convection problems. Examples include free convection in a

vertical channel with one wall colder and one wall hotter than the ambient (rT < 0),

the CFS problem with forced convection (e.g. with a diffuser) and jets impinging on an

isothermal surface in an isothermal medium.

The mathematical development of the extended Newton formulation and the dQdT

technique was presented for the general case of an N -temperature problem. However,

the examples studied in this thesis were all two- or three-temperature problems. The

206



application of dQdT to cases of N > 3, e.g. flow over more than two isothermal cylinders,

is a natural step forward.

In some of the cases presented in this thesis, the numerical accuracy of the dQdT results

seemed to be (slightly) better than the numerical accuracy of the baseline solution. This

observation calls for further investigation. The formal accuracy of numerical dQdT, i.e.

the relation between the numerical accuracy of the baseline solution and the accuracy of

numerical dQdT results, is a subject for future research.

Finally, there is evidence in support of the idea that the split of heat transfer at an

isothermal boundary can be resolved using the functionality coefficients. Calculations using

the boundary-layer integral at early stages of thermal development and conduction shape

factors in the thermally developed limit, and the asymptotic behavior of the wall-fluid

Nusselt numbers of free convection in a vertical channel are examples of such evidence.

Nevertheless, since there are currently no alternative methods that can be used to calculate

(or measure) the split of heat transfer, the calculations based on functionality coefficients

have not been verified for the general case. Moreover, the physical meaning of the split

of convective heat transfer remains to be further examined. Is it meaningful, particularly

from a thermodynamic point of view, to interpret the thermal current between two nodes

of a resistor network as the paired convective heat transfer, i.e. the exchange of thermal

energy, between the respective isothermal boundaries?
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Appendix A

MATLAB Code for the Asymmetric

Graetz Problem

1 X=1; % Domain s i z e

2 Y=2;

3 % D i s c r e t i z a t i o n :

4 Nx=1001; % Number o f nodes

5 Ny=21;

6 dX=X/(Nx−1) ; % Grid s i z e

7 dY=Y/(Ny−1) ;

8 % I n i t i a l i z a t i o n :

9 T=ones (Nx,Ny) ;

10 % Boundary c o n d i t i o n s :

11 T( 1 , : ) =1; % T0=0 @ X=0

12 T( : , Ny) =0; % T1=1 @ Y=1

13 T( : , 1 ) =1; % T2=rT @ Y=−1

14 % Forward−marching scheme :

15 f o r i =2:Nx
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16 n=1; % I t e r a t i o n counter

17 r e s =1; % Res idual

18 whi le res >0.0001 % Convergence c r i t e r i o n

19 n=n+1;

20 Tn=T;

21 f o r j =2:Ny−1

22 Y=(j−1)∗dY;

23 U=1.5∗Y∗(2−Y) ;

24 a=U/4/dX+2/dYˆ2 ;

25 b=(Tn( i , j +1)+Tn( i , j−1) ) /dYˆ2+U∗Tn( i −1, j ) /4/dX;

26 T( i , j )=b/a ;

27 end

28 r e s=max( abs (T( : , j )−Tn ( : , j ) ) ) ;

29 end

30 end

31 Ty1=−(T( : , Ny)−T( : , Ny−1) ) /dY; % Calcu la te g rad i en t at wa l l s

32 Ty2=(T( : , 2 )−T( : , 1 ) ) /dY;

33

34 f o r i =1:Nx

35 % I n t e g r a t e q to f i n d Q ( wa l l s ) :

36 Q1( i , 1 )=−sum(Ty1 ( 1 : i ) ) ∗dX;

37 Q2( i , 1 )=−sum(Ty2 ( 1 : i ) ) ∗dX;

38 % Energy balance g i v e s Q0 :

39 Q0( i , 1 )=Q1( i )+Q2( i ) ;

40 end
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Appendix B

Parameters of the Solution to the

Annulus Problem: Eigencoefficients,

Eigenvalues and

Eigenfunction-Derivatives
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Table B.1: Parameters of the fundamental series solution of the first kind
for the annulus problem (Lundberg et al. 1963)

φ n λn λ2
n 2(1− φ)Bn,2× 2(1− φ)Bn,2× 2(1− φ)Bn,1× 2(1− φ)Bn,1×

(∂fn/∂r)r2 (∂fn/∂r)r1 (∂fn/∂r)r2 (∂fn/∂r)r1

0.02 0 4.748 22.54 -10.22 0.8076 -40.25 3.179

1 10.87 118.2 -6.392 -0.5494 27.37 2.353

2 16.99 228.8 -5.065 0.4524 -22.55 2.014

3 23.10 533.8 -4.353 -0.3978 19.82 1.811

0.05 0 4.939 24.39 -6.697 1.038 -20.77 3.221

1 11.18 125.0 -4.457 -0.7306 14.62 2.397

2 17.40 303.0 -3.647 0.6117 -12.24 2.053

3 23.62 538.3 -3.200 -0.5437 10.88 1.848

0.1 0 5.105 26.06 -5.171 1.297 -12.97 3.255

1 11.43 130.7 -3.618 -0.9387 9.389 2.435

2 17.75 315.3 -3.029 0.7956 -7.958 2.090

3 24.07 579.4 -2.694 -0.7122 7.124 1.883

0.25 0 5.323 28.33 -5.056 1.829 -7.317 3.299

1 11.75 138.2 -3.008 -1.370 5.480 2.496

2 18.19 331.0 -2.513 1.176 -4.703 2.149

3 24.63 606.6 -2.315 -1.059 4.237 1.938

0.5 0 5.445 29.65 -3.636 2.465 -4.931 3.343

1 11.75 142.3 -2.770 -1.881 3.762 2.554

2 18.19 339.6 -2.388 1.622 -3.245 2.204

3 24.93 621.6 -2.156 -1.465 2.930 1.990

1 0 5.492 30.16 -3.432 3.432 -3.432 3.432

1 11.99 143.8 -2.608 -2.608 2.608 2.608

2 18.51 342.9 -2.277 2.277 -2.277 2.277

3 25.04 627.3 -2.058 -2.058 2.058 2.058
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Appendix C

Curve Fits for the Correlation

Constants of the Annulus Problem

Equations C.1-C.7 show the curve-fit relations developed for the first eigenvalue of the

annulus problem, discussed in Chapter 5, and the coefficients of the correlations presented

in Section 5.4. In Figures C.1-C.7, these relations are compared to the numerical data

presented by Lundberg et al. (1963). The quality of the fits are reported in the figure

captions in terms of the coefficient of determination (R2) and the RMS error (RMSE).

λ2
1 = 28.96 exp(0.042φ)− 7.62 exp(−9.240φ) (C.1)

F10 = 0.1734φ−0.0413 + 0.0676φ (C.2)

F20 = 0.0734φ−0.8417 + 0.175 (C.3)

F12 = 0.07164φ0.6647 + 0.0271 (C.4)
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G10 = 3.221φ0.5536 + 3.634 (C.5)

G20 = 2.420φ−0.7511 + 4.709 (C.6)

G12 = 2.928φ0.5691 + 0.4996 (C.7)
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Figure C.1: Curve-fit vs. numerical data for the first eigenvalue of the annulus problem
Goodness of the fit: R2 = 0.99, RMSE = 0.2208
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Figure C.2: Curve-fit vs. numerical data for the correlation constant F10

Goodness of the fit: R2 = 0.99, RMSE = 0.0004
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Figure C.3: Curve-fit vs. numerical data for the correlation constant F20

Goodness of the fit: R2 = 0.99, RMSE = 0.0176
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Figure C.4: Curve-fit vs. numerical data for the correlation constant F12

Goodness of the fit: R2 = 0.99, RMSE = 0.0006
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Figure C.5: Curve-fit vs. numerical data for the correlation constant G10

Goodness of the fit: R2 = 0.99, RMSE = 0.0203
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Figure C.6: Curve-fit vs. numerical data for the correlation constant G20

Goodness of the fit: R2 = 0.99, RMSE = 0.5356
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Figure C.7: Curve-fit vs. numerical data for the correlation constant G10

Goodness of the fit: R2 = 0.99, RMSE = 0.0091
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Appendix D

Theorem: In Three-Temperature

Problems Cij − Cji = const

The results presented in Chapters 7-10 reveal that, for a three-temperature problem, even in

the absence of reciprocity between the functionality coefficients (Cij 6= Cji), the difference

between each pair is a constant value for a given combination of geometry, flow and fluid

properties. In this appendix, a mathematical proof is presented for this observation.1

Consider, for instance, the results presented in Chapter 7 for flow over isothermal

cylinders. According to these results;

C20 − C02 = C01 − C10 = C12 − C21 (D.1)

Next, consider the extended Newton formulation of a three-temperature problem:

1The contribution of Dr. Marilyn Lightstone to the material presented in this appendix is hereby
gratefully acknowledged.
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
Q0 = C01(T0 − T1) + C02(T0 − T2)

Q1 = C10(T1 − T0) + C12(T1 − T2)

Q2 = C20(T2 − T0) + C21(T2 − T1)

(D.2)

The overall energy balance of the problem requires:

Q0 +Q1 +Q2 = 0

Therefore:

C01(T0 − T1) + C02(T0 − T2)

+C10(T1 − T0) + C12(T1 − T2)

+C20(T2 − T0) + C21(T2 − T1) = 0

(D.3)

Equation D.3 can be rearranged to obtain Equation D.4.

(
C01 − C10 + C02 − C20

)
T0

+
(
C10 − C01 + C12 − C21

)
T1

+
(
C20 − C02 + C21 − C12

)
T2 = 0

(D.4)

Because T0, T1 and T2 are independent variables, Equation D.4 is valid if and only if

the individual terms on the LHS are zero;
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(
C01 − C10 + C02 − C20

)
T0

=
(
C10 − C01 + C12 − C21

)
T1

=
(
C20 − C02 + C21 − C12

)
T2 = 0

(D.5)

Furthermore, because Equation D.4 is valid for any {Ti}, Equation D.5 leads to:


C01 − C10 + C02 − C20 = 0

C10 − C01 + C12 − C21 = 0

C20 − C02 + C21 − C12 = 0

(D.6)

Hence:

C20 − C02 = C01 − C10 = C12 − C21 (Q.E.D)
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Appendix E

Journal File for the implementation

of Numerical dQdT in Fluent

1 r epo r t / sur face−i n t e g r a l s / i n t e g r a l l e f t r i g h t

2 heat−f l u x n

3 d e f i n e /boundary−c o n d i t i o n s / wa l l l e f t 0 n 0 n n n 311 n n

4 d e f i n e /boundary−c o n d i t i o n s / wa l l r i g h t 0 n 0 n n n 305 n n

5 d e f i n e /boundary−c o n d i t i o n s / pres sure−i n l e t btm y n 0 n 0 n 300 n y

6 d e f i n e /boundary−c o n d i t i o n s / pres sure−o u t l e t top n 0 n 300 n y n n

7 d e f i n e / operat ing−c o n d i t i o n s / operat ing−temperature 300

8 s o l v e / s e t / equat ions / f low n

9 s o l v e / monitors / r e s i d u a l / check−convergence n

10 s o l v e / i t e r a t e 100

11 r epo r t / sur face−i n t e g r a l s / i n t e g r a l l e f t r i g h t

12 heat−f l u x n
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Appendix F

dQdT Results for Laminar Free

Convection of Air in a Vertical

Channel with Isothermal Walls
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Table F.1: dQdT results for laminar free convection in a vertical channel
with isothermal walls (rT = 0, Pr = 0.7)

Ra Nu12 Nu21 Nu10 Nu01 Nu20 Nu02

0.01 1.0010 1.0010 0.0206 0.0206 0.0206 0.0206

0.1 1.0007 1.0007 0.0213 0.0213 0.0213 0.0212

1 0.9901 0.9887 0.0467 0.0482 0.0452 0.0437

10 0.8684 0.8600 0.3716 0.3800 0.3331 0.3248

100 0.4413 0.3816 1.7358 1.7955 1.4032 1.3434

500 0.2240 0.1177 2.9995 3.1057 1.9603 1.8540

1000 0.1861 0.0654 3.5826 3.7033 2.1043 1.9836

2000 0.1748 0.0336 4.2266 4.3678 2.2828 2.1416

Table F.2: dQdT results for laminar free convection in a vertical channel
with isothermal walls (rT = 0.25, Pr = 0.7)

Ra Nu12 Nu21 Nu10 Nu01 Nu20 Nu02

0.01 1.0010 1.0010 0.0206 0.0206 0.0206 0.0206

0.1 1.0007 1.0007 0.0213 0.0213 0.0212 0.0212

1 0.9898 0.9889 0.0464 0.0473 0.0455 0.0446

10 0.8655 0.8605 0.3665 0.3715 0.3433 0.3383

100 0.4033 0.3697 1.7179 1.7514 1.5156 1.4821

500 0.1255 0.0860 3.0080 3.0474 2.4120 2.3726

1000 0.0588 0.0333 3.6196 3.6451 2.7891 2.7636

2000 0.0216 0.0096 4.3039 4.3159 3.2560 3.2440

Table F.3: dQdT results for laminar free convection in a vertical channel
with isothermal walls (rT = 0.3, Pr = 0.7)

Ra Nu12 Nu21 Nu10 Nu01 Nu20 Nu02

0.01 1.0010 1.0010 0.0206 0.0206 0.0206 0.0206

0.1 1.0007 1.0007 0.0213 0.0213 0.0212 0.0212

1 0.9898 0.9890 0.0463 0.0470 0.0455 0.0448

10 0.8649 0.8607 0.3649 0.3691 0.3456 0.3414

100 0.3967 0.3690 1.7103 1.7380 1.5419 1.5142

500 0.1141 0.0833 2.9893 3.0201 2.4994 2.4686

1000 0.0499 0.0312 3.5910 3.6097 2.9139 2.8952

2000 0.0166 0.0090 4.2648 4.2724 3.3783 3.3707
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Table F.4: dQdT results for laminar free convection in a vertical channel
with isothermal walls (rT = 0.5, Pr = 0.7)

Ra Nu12 Nu21 Nu10 Nu01 Nu20 Nu02

0.01 1.0010 1.0010 0.0206 0.0206 0.0206 0.0205

0.1 1.0007 1.0007 0.0213 0.0213 0.0212 0.0212

1 0.9896 0.9891 0.0462 0.0467 0.0456 0.0452

10 0.8642 0.8614 0.3616 0.3644 0.3488 0.3460

100 0.3875 0.3691 1.6939 1.7122 1.5818 1.5634

500 0.1006 0.0817 2.9433 2.9622 2.6224 2.6035

1000 0.0404 0.0297 3.5269 3.5376 3.0867 3.0759

2000 0.0123 0.0083 4.1765 4.1805 3.5975 3.5936

Table F.5: dQdT results for laminar free convection in a vertical channel
with isothermal walls (rT = 0.67, Pr = 0.7)

Ra Nu12 Nu21 Nu10 Nu01 Nu20 Nu02

0.01 1.0010 1.0010 0.0206 0.0206 0.0206 0.0206

0.1 1.0007 1.0007 0.0213 0.0213 0.0213 0.0213

1 0.9895 0.9892 0.0461 0.0464 0.0457 0.0454

10 0.8633 0.8616 0.3598 0.3614 0.3521 0.3504

100 0.3815 0.3705 1.6773 1.6882 1.6101 1.5991

500 0.0927 0.0818 2.8998 2.9106 2.7086 2.6977

1000 0.0357 0.0297 3.4628 3.4687 3.2018 3.1958

2000 0.0103 0.0083 4.0907 4.0928 3.7438 3.7417

Table F.6: dQdT results for laminar free convection in a vertical channel
with isothermal walls (rT = 1, Pr = 0.7)

Ra Nu12 Nu21 Nu10 Nu01 Nu20 Nu02

0.01 1.0010 1.0010 0.0206 0.0206 0.0205 0.0205

0.1 1.0007 1.0007 0.0213 0.0213 0.0213 0.0213

1 0.9894 0.9894 0.0459 0.0459 0.0459 0.0459

10 0.8624 0.8624 0.3560 0.3560 0.3560 0.3560

100 0.3747 0.3747 1.6471 1.6471 1.6471 1.6471

500 0.0852 0.0852 2.8148 2.8150 2.8148 2.8150

1000 0.0314 0.0314 3.3460 3.3461 3.3460 3.3461

2000 0.0088 0.0088 3.9331 3.9331 3.9332 3.9332
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Appendix G

Finite-Difference Solver for the

Parabolic Energy Equation in

Turbulent Free Convection: The

MATLAB Code

G.1 Forward-Marching Solution Scheme

1 % Read Fluent data f i l e and normal ize s o l u t i o n

2 s o r t d a t a ; % See Sec t i on G. 2

3 % I n i t i a l i z e

4 T=ze ro s (Nx,Ny) ;

5 % Boundary c o n d i t i o n s

6 T( 1 , 1 :Ny) =1;

7 T(Nx , : )=rT ;

8 T( : , 1 ) =0;
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9 % Forward−marching scheme :

10 f o r j =2:Ny

11 n=1; % I t e r a t i o n counter

12 whi le n<200 % Convergence c r i t e r i o n

13 n=n+1;

14 Tn=T;

15 f o r i =2:Nx−1

16 dX=DX( i ) ;

17 b=g ( i , j ) ∗(Tn( i +1, j )+Tn( i −1, j ) ) /dXˆ2 ;

18 c=(rho ( i , j ) ∗U( i , j )−gx ( i , j ) ) ∗(Tn( i +1, j )−Tn( i −1, j ) ) /2/dX;

19 a=(rho ( i , j ) ∗V( i , j )−gy ( i , j ) ) /dY+2∗g ( i , j ) /dXˆ2 ;

20 d=(rho ( i , j ) ∗V( i , j )−gy ( i , j ) ) ∗Tn( i , j−1)/dY;

21 T( i , j )=(b−c+d) /a ;

22 end

23 end

24 end

25 Tx1=(T( 2 , : )−T( 1 , : ) ) /dX; % Calu l ca te g rad i en t at wa l l s

26 Tx2=−(T(Nx , : )−T(Nx−1 , : ) ) /dX;

27 Q1=sum(−Tx1) ∗dY∗0 .02865∗ (T1−T0) % I n t e g r a t e q to f i n d Q ( wa l l s )

28 Q2=sum(−Tx2) ∗dY∗0 .02865∗ (T1−T0)

29 Q0=Q1+Q2 % Energy balance to f i n d Q0

G.2 Importing Fluent Data

1 % Dimensional boundary c o n d i t i o n s −− change these f o r dQdT:

2 T1=310;

3 T2=305;
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4 T0=300;

5 rT=(T2−T0) /(T1−T0) ;

6 % Read Fluent data f i l e :

7 D=importdata ( ’ data Ra=5e+5 ’ ) ;

8 D=D. data ;

9 % So lut i on parameters :

10 W=0.1; % C h a r a c t e r i s t i c l ength

11 A=30;

12 mu=2.01e−05; % V i s c o s i t y

13 rho 0 =1.1769; % Density @ T=T 0

14 k =0.02865; % Conduct iv i ty ( molecu lar )

15 Pr =0.707; % Molecular Prandtl number

16 Pr t =0.85; % Turbulence Prandtl number ( energy )

17 U re f=mu/ rho 0 /W; % Ref v e l o c i t y

18 % D i s c r e t i z a t i o n :

19 Nx=100;

20 Ny=3000;

21 % Normalize s o l u t i o n data :

22 D( : , 1 ) = [ ] ; % Erase c e l l number

23 D( : , [ 1 , 2 ] )=D( : , [ 1 , 2 ] ) /W; % Normalize x , y wrt W

24 D( : , 3 )=D( : , 3 ) / rho 0 ; % Normalize rho

25 D( : , [ 4 , 5 ] )=D( : , [ 4 , 5 ] ) / U re f ; % Normalize u , v

26 D( : , 6 ) =(D( : , 6 )−T0) /(T1−T0) ; % Normalize T

27 % Sort data f i l e by coord ina te (x , y ) :

28 [ Z , I ]= s o r t (D( : , 2 ) ) ; % Sort by y

29 D=D( I , : ) ;

30 [ Z , I ]= s o r t (D( : , 1 ) ) ; % Sort by x
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31 D=D( I , : ) ;

32 c l e a r Z I ;

33 % Grid s i z e :

34 dY=D(2 ,2 )−D(1 ,2 ) ;

35 % Sort ing data −− nonuniform g r i d s :

36 [ Z , I ]= s o r t (D( : , 2 ) ) ; % Sort by y

37 B=D( I , : ) ;

38 % Grid s i z e −− nonuniform g r i d s :

39 f o r i =2:Nx % Sort by x

40 DX( i )=B( i , 1 )−B( i −1 ,1) ;

41 end

42 DX(1)=DX(Nx) ;

43 % Generate rho , u , v , 1/ Pr m a t r i c i e s

44 f o r i =1:Nx

45 f o r j =1:Ny

46 rho ( i , j )=D( ( i −1)∗Ny+j , 3 ) ;

47 U( i , j )=D( ( i −1)∗Ny+j , 4 ) ;

48 V( i , j )=D( ( i −1)∗Ny+j , 5 ) ;

49 % E f f e c t i v e conduc t i v i ty :

50 g ( i , j )=1/Pr+D( ( i −1)∗Ny+j , 7 ) /mu/ Pr t ;

51 end

52 end

53 % Calcu la te k e f f g rad i en t

54 gx ( [ 1 ,Nx ] , 1 ) =0;

55 gy ( [ 1 ,Nx ] , 1 ) =0;

56 f o r j =2:Ny

57 f o r i =2:Nx−1
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58 gx ( i , j )=(g ( i +1, j )−g ( i −1, j ) ) /2/DX( i ) ;

59 gy ( i , j )=(g ( i , j )−g ( i , j−1) ) /dY;

60 end

61 end
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