
Encoding XQuery Using System F

by

Yun Xia

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2005

c©Yun Xia 2005

Author’s Declaration for Electronic Submission of a Thesis

I hereby declare that I am the sole author of this thesis. This is a true

copy of the thesis, including any required final revisions, as accepted by my

examiners.

I understand that my thesis may be made electronically available to the

public.

ii

Abstract

Since the World Wide Web Consortium (W3C) has recommended XQuery as

the standard XML query language, the interest in using existing relational

technology to query the XML data has dramatically increased. The most

significant challenge of the relational approach is how to fully support XQuery

semantics in XQuery-to-SQL translation. To eliminate the implicit semantics

of XQuery, an XQuery fragment must be defined with simple syntax and

explicit semantics. XQ [6] is proposed as an XQuery fragment to express

XML queries.

In this thesis, XQ is intensively investigated. It is encoded by System F,

a second-order lambda calculus with a proven expressive power and a strong

normalization property. Since XML data is defined as inductive data types,

XML tree and XML forest, in System F, all basic XML operators in XQ

have been successfully encoded. Also, the semantics of XQ are represented in

System F where XQ’s semantics environment is encoded by an Environment

data type with the corresponding operators. The successful encoding of XQ

by System F ensures the termination of XQ query evaluation.

Moreover, an extension of XQ by a new tree operator Xtree and a vertical

Vfor clause is proposed in this thesis to express the undefinable XQ queries.

It is demonstrated that this extension still allows XQ to retain its XQ-to-SQL

translation property that ensures the polynomial evaluation time complexity,

and its System F encodable property that ensures the termination of query

evaluation.

iii

Acknowledgments

I would like to acknowledge the support of several people who have made

this thesis possible. First and foremost, I am very grateful to Dr. David

Toman, my supervisor, for his great guidance and support during my grad-

uate studies. His patience, valuable suggestions and comments have directly

facilitated the completion of this thesis.

Also, I would like to thank Dr. Richard Trefler and Dr. Grant Weddell

for reviewing my thesis and providing their valuable advice and comments.

I am particularly grateful to my husband, Xin, for his love and under-

standing, and to my son, Steven, for the happiness he has brought to my

heart, and to my parents for their wisdom and encouragement.

iv

Dedication

To Xin for his love

v

Contents

1 Introduction 1

1.1 XQuery . 1

1.2 Challenges . 5

1.3 Related Work . 5

1.4 Contributions . 10

1.5 Thesis Organization . 11

2 Dynamic Interval Method 13

2.1 XQ: An XQuery Fragment . 13

2.1.1 XML Data Model and Operations 14

2.1.2 Syntax of XQ . 18

2.1.3 Semantics of XQ . 18

2.1.4 XQ Translation of XQuery 20

2.2 Dynamic Interval Relational Method 22

2.2.1 Interval Encoding . 22

2.2.2 Dynamic Intervals . 22

2.2.3 XQ-to-SQL Translation 23

vi

3 System F 25

3.1 Lambda Calculus . 25

3.1.1 Syntax . 26

3.1.2 Operational Semantics (Reduction) 28

3.2 Introduction to System F . 32

3.2.1 Syntax of System F . 33

3.2.2 Why System F? . 36

3.3 Expressive Power of System F 36

3.3.1 Inductive Types . 37

3.3.2 Representation of Simple Types 38

4 Encoding XQ in System F 48

4.1 XML data in System F . 48

4.2 Encoding Basic XML Operators 55

4.2.1 General Functions . 55

4.2.2 Horizontal Operators 56

4.2.3 Vertical Operators . 62

4.2.4 Boolean Operators . 66

4.2.5 Application Operators 71

4.3 Translation of XQ to System F 77

4.4 Semantic Analysis . 78

4.4.1 Environment . 78

4.4.2 Operations of the Environment 80

4.4.3 Semantic Functions of XQ 82

vii

5 Extension of XQ 88

5.1 Limitation of XQ: A Case Study 88

5.1.1 An XQ Undefinable Query in SQL 90

5.1.2 Analysis of the XQ Limitations 90

5.2 New Tree Constructor Xtree 92

5.2.1 Representing Xtree in System F 93

5.2.2 SQL Template for Xtree 95

5.3 New Vertical Vfor Clause . 96

5.3.1 Expressing the Semantics of Vfor in System F 97

5.3.2 Expressing the XQ Undefinable Query 99

6 Conclusion and Future Work 102

6.1 Conclusion . 102

6.2 Future Work . 103

viii

Chapter 1

Introduction

Since XML (Extensible Markup Language) has rapidly grown to be the uni-

versal format standard for exchanging data among disparate applications on

the internet, it is crucial to develop a way to query and interact with XML

documents.

1.1 XQuery

“A successful query language can enhance productivity and serves as an

unifying influence in the growth of an industry” [9]. As a programming

language, which depends on the tree structure of XML data, there are many

desirable qualities that an XML query language should exhibit:

• Support the operations on the document order and the axis expressions,

which are used to navigate the tree structure of XML data, and to

retrieve the context of a particular document fragment;

1

Chapter 1: Introduction 2

• Provide the ability to express various combinations of multiple XML

documents and construct new document based on the query result;

• Offer full compositionality so that the XML query operators can be

compose with a full generality; for example, the result of one expression

can be used as the input of another expression

As XML has grown in popularity, there has been significant research in the

area of XML query languages. As a result, XQuery has been defined and

recommended by W3C as the standard of XML query language to support

XML applications, such as data processing, transformation, and querying

tasks.

As a fully compositional and typed functional language, XQuery provides

the ability to flexibly select, recombine, and restructure XML documents and

fragments. XQuery is characterized by the following constituents:

• XPath expression traverses and extracts node sequences from docu-

ment(s);

• FLOWR (for-let-order-where-return) expression binds selected node se-

quences (in order) to variables and expresses joins and filter conditions;

• Expressions that construct new XML documents or values from the

binding variables returned by the FLOWR expressions;

• There is a large library of functions and operators.

To illustrate XQuery, bibliography data is taken from the XML Query

Use Cases in Figure 1.1 [1].

Chapter 1: Introduction 3

<bib>

<book year="1994">

<title>TCP/IP Illustrated</title>

<author><last>Stevens</last><first>W.</first></author>

<publisher>Addison-Wesley</publisher>

<price>65.95</price>

</book>

<book year="1992">

<title>Adv. Programming in the Unix environment</title>

<author><last>Stevens</last><first>W.</first></author>

<publisher>Addison-Wesley</publisher>

<price>65.95</price>

</book>

<book year="1999">

<title>The Economics of Tech. for Digital TV</title>

<editor>

<last>Gerbarg</last><first>Darcy</first>

<affiliation>CITI</affiliation>

</editor>

<publisher>Kluwer Academic Publishers</publisher>

</book>

</bib>

Figure 1.1: Bibliography data

Chapter 1: Introduction 4

The document contains one bib element that contains three book ele-

ments. This document is well formed because each open element tag has a

corresponding closing element tag and the elements are properly nested. A

common querying task is to translate the structure and content of XML data,

which requires the construction of XML values. Suppose our example is in a

file named bib.xml, the following expression, utilizing element constructors

and FLOWR expressions, queries the titles and years of all books published

by Addison-Wesley after 1991 in alphabetical order:

<bib>{

for $b in doc("bib.xml")//book

where $b/publisher = "Addison-Wesley" and $b/@year > 1991

order by $b/title

return

<book>

{ $b/@year }

{ $b/title }

</book>

}</bib>

Figure 1.2: XQuery example for the XML document in Figure 1.1

In the query expression in Figure 1.2, the for clause generates a se-

quence of book elements and binds the variable $b to each element; the

where clause filters the sequence by retaining the books that publisher is

“Addison-Wesley” and the published year is later than 1991; the order by

clause sorts the resulting book sequence; the inner return clause returns a

sequence of new book elements, each containing an attribute year, and an

element title, extracted from the surviving book elements in the ordered

sequence; the results of the entire FLOWR expression are composed in an

Chapter 1: Introduction 5

XML element bib, whose elements are the sequence returned from the inner

return clause.

1.2 Challenges

The XQuery language provides such a strong expressive power that XML

queries are easy to write, but XQuery complex and redundant syntax prevents

an efficient XQuery implementation. Moreover, XQuery has been proven to

be Turing-complete, which means the termination of its query evaluation is

undecidable. A well-defined subset (fragment) of the XQuery language with

a simple syntax and ensuring the query evaluation termination is pivotal to

efficient XQuery implementation and optimization. This XQuery fragment

must describe XML query semantics precisely by defining a data model and a

corresponding set of simple operations. Defining the ideal subset or fragment

of XQuery has proven to be difficult. Many XQuery subset have been pro-

posed, but have problems with one of these requirements. Currently, there

is no universally accepted XQuery subset which holds strong expressive, and

meanwhile, ensures its evaluation termination.

1.3 Related Work

There are two key approaches in designing an XQuery fragment: a set-based

algebra or a iterator-oriented XQuery fragment. The first approach designs

an algebra with operators such as OP(a, b), and the latter approach follows

Chapter 1: Introduction 6

the syntax of XQuery with a format

for $i in a, $j in b return (OP $i, $b)

for the operator, OP. Although the set-based algebra is easier to reason about

algebraically, the iterator-oriented language is generally easier to match to

the existing XQuery syntax and capture its semantics.

A proper XQuery fragment is essential for efficient XML query evaluation,

but what is right for XML Query processing is still an open issue. There are

several good candidates but most of them display shortcomings, such as

not recognizing that XML is an ordered data structure, or not ensuring the

termination of query evaluation.

The rest of this section discusses about several existing XQuery fragments

or XML algebras proposed in XML query research area.

Formal Semantics. The XQuery Core is defined by the W3C XML

Query Working Group as part of XQuery Formal Semantics document [5].

As a proper subset of XQuery, the XQuery Core is proposed in the imple-

mentation of an XQuery processor called Galax [4]. Here, the evaluation

process starts with normalization which translates the XQuery expressions

into the XQuery Core syntax. We illustrate the core mapping with a query

for the bibliography data in Figure 1.1:

doc("book.xml")//book[publisher = "Addison-Wesley"],

which asks for the books whose publisher is “Addison-Wesley”. This query

expression is normalized into the XQuery Core in Figure 1.3.

As an iterator-oriented language, Formal Semantics uses for loops (Line

2, Line 4, and Line 7) to rewrite the path expressions to eliminate the im-

Chapter 1: Introduction 7

1. fs:node-sequence(

2. for $fs:dot in

3. fs:node-sequence(

4. for $fs:dot in doc("bib.xml")

5. return descendant-or-self::node())

6. return

7. for $fs:dot in fs:node-sequence(child::book)

8. return

9. if (some $v1 in fn:data(child::publisher) satisfies

10. fn:boolean(op:equal($v1,"Addison-Wesley")))

11. then $fs:dot

12. else ())

Figure 1.3: XQuery Core expression for the query

doc(“book.xml”)//book[publisher = “Addison-Wesley”]

plicit semantics of XPath. As a functional programming language, Formal

Semantics designs a full semantic mapping for XQuery, and provides a set of

logical optimization rules based on the presence of a schema and static type

inference. Without type information, its rewriting is not feasible and makes

further optimization difficult.

TAX. As a set-based algebra, TAX [8] is a tree-based algebra with a

set of operations similar to the relational algebra operations. TAX algebra

treats the XML document as a labelled order rooted tree, and decomposes

a query into one or more pattern trees, shown in Fig 1.4. Each edge de-

notes a structural inclusion relationship between the elements, represented

by the respective pattern tree nodes. The inclusion relationship can be spec-

ified to be either pc (parent-child relationship) or of ad (ancestor-descendent

relationship). In a pattern tree, there is also a boolean predicate, applied

Chapter 1: Introduction 8

to the nodes in the pattern tree that contains the constrain information for

the nodes in the pattern tree. For example, the query asks for the books

published before 1993 with the publisher “Addison-Wesley”, whose XQuery

expression and corresponding pattern tree are reflected by Figure 1.4.

doc(book.xml)//book[publisher = "Addison-Wesley" AND year < 1993]
$1

$2 $3

pc pc

$1.tag = book &
$2.tag = publisher
$2.content = “Addison-Wesley” &
$3.tag = year &
$3.content < 1993

Figure 1.4: Pattern Tree for Query “doc(book.xml)//book[publisher =

“Addison-Wesley” AND year < 1993]

The pattern tree expresses a projection operation, πP, PL(C), which takes

the collection, C (XML document), as an input, and a pattern tree, P, and

projection list, PL, as parameters, where a projection list is a list of node

labels, appearing in pattern P, which is $1 in Figure 1.4. By using relational

algebra as a guide, TAX defines a set of operators such as selection, projec-

tion, production, or grouping, that takes a collection trees as the input and

produces a set of trees as the output. The query evaluation process involves

a sequence of pattern tree matchings that breaks up the input tree into small

pieces, then reassembles them by grouping and projection. Because of the

semantic mismatching of FLWR and TAX, even TAX is efficient in a sim-

ple XPath query evaluation, the redundant pattern matching is unavoidable

when dealing with complex XQuery queries with a nested structure. An

extract effort has to be taken to combine query results from multiple tree

pattern queries with extra pattern matching and extra joins.

Chapter 1: Introduction 9

XQ. DeHaan et al. [6] propose a dynamic interval method that combines

the relational mapping implementation with presenting an XQuery fragment

XQ1. The most significant challenge of the relational approach in XQuery

evaluation is how to fully support the XQuery semantics in the XQuery-

to-SQL translating process so that the document order is retained. Most

relational methods fail to provide this support, and implement only simple

XPath query evaluations. The dynamic interval method proposes a novel

solution that is based on a XML-specific XQ query language, which captures

most of the semantics of XQuery with a fairly simple syntax. As an iterator-

oriented language, XQ models an XML database as an ordered forest whose

elements are rooted, node-labelled ordered trees. A simple set of operations

is defined to manipulate the XML forest. Moreover, XQ keeps the FLWR

syntax, which is the most powerful and core part of XQuery, and explicitly

expresses its semantics using an environment for the variables defined in let

and for expressions with their resulting values. For example, the query for

the bibliography in Figure 1.1, which returns the books whose publisher is

“Addison-Wesley”, is expressed by XQ in Figure 1.5.

The dynamic interval method describes the interval representation of

XML data and its intermediate query results as relations, which seamlessly

preserve the document order required by XQuery semantics. After the XQuery

expressions are represented by XQ without losing its semantic meaning, a set

of templates that translates the basic operations of XQ into single SQL state-

1 [6] does not give the algebra a formal name. In the thesis, it is called XQ for conve-

nience.

Chapter 1: Introduction 10

for $a = select(’book’, subtreedfs(doc(book.xml))) do

let $b = select(’publisher’, children($a)) in

$c = select("Addison-Wesley", children($b))

where not empty $c

return $a

Figure 1.5: XQ for “doc(book.xml)//book[publisher = “Addison-Wesley”]

ment is proposed based on the interval information of the XML document.

Therefore, the XML queries, with the XQ-to-SQL translation, can be evalu-

ated by using an extended SQL engine to achieve the polynomial evaluation

time complexity. Even the XQuery translation targets a relational imple-

mentation, but its XQ definition can also be used within the native XML

database system. The present work in this thesis continues the work of [6],

and focuses on the XQ language aspect part.

1.4 Contributions

In the thesis, the theoretical aspects of the XQ query language, including

its computability and expressiveness, with respect to its XQ-to-SQL trans-

lation property, are investigated. First, XQ is encoded using System F. As a

second order typed lambda calculus, System F has a considerable expressive

power [7] and a strong normalization property. The successfully encoding

of XQ in System F indicates that the termination of XP query evaluation,

and the decidability of query equivalence. When the expressiveness of XQ are

considered, a new tree operator Xtree and a vertical Vfor clause are proposed

to express the undefinable XQ queries. In the extension of XQ, the intention

Chapter 1: Introduction 11

is to retain its XQ-to-SQL translation property to achieve polynomial time

complexity by utilizing relational query engine, and also its System F encod-

able property to ensure the termination of XQ query evaluation. The main

contributions of the thesis are summarized as follows:

• represents XML data in System F as inductive data types, XML tree

and XML forest, with the corresponding iterators;

• encodes the basic XML operators of XQ by System F, and represents

the semantic equations of XQ by encoding the semantics environment

using an Environment data type with a set of operations;

• analyzes the limitations of XQ, and proposes an extension of XQ with

a vertical constructor Xtree and a Vfor-do clause;

• designs the corresponding XQ-to-SQL templates for the extension in

order to utilize the relational engine to achieve a polynomial evaluation

time complexity;

• encodes the extended XQ in System F to ensure the termination of XQ

query evaluation

1.5 Thesis Organization

This chapter has introduced the framework of XQuery implementation by

both native and relational approaches. The focus is on the challenges and

research work for designing a suitable and simple XQuery fragment. The

rest of the thesis is organized as follows. Chapter 2 reviews the background

Chapter 1: Introduction 12

and techniques of the dynamic interval method, including the XQ syntax

and semantics. A brief introduction to System F, which is a second-order

lambda calculus with an expressive power and a strong formalization prop-

erty, is provided in Chapter 3. Simple data types, such as integer and list, are

illustrated to describe the translation schema. Chapter 4 defines the XML

document as inductive types in System F and represents them as lambda

abstractions. The basic XML operators of XQ are encoded in System F, and

the semantic equations of XQ are represented in System F by encoding the

semantics environment with a set of operations of an Environment data type.

Chapter 5 states the expressive limitations of XQ, and proposes an exten-

sion with a vertical tree constructor Xtree and a new vertical Vfor clause,

which is also XQ-to-SQL translatable and System F encodable. Chapter 6

summarizes the thesis and suggests future work.

Chapter 2

Dynamic Interval Method

In the thesis, XQ, an XQuery fragment proposed for the dynamic inter-

val method [6] is examined. The dynamic interval method aims to imple-

ment XML queries in a relational approach. Its first step is to define the

XQuery fragment, XQ, to eliminate redundant syntax and implicit seman-

tics of XQuery. Not only does XQ capture the core features of XQuery with

a set of basic XML operators, but also it supports successful XQ-to-SQL

translation. Although XQ supports the relational-based XML queries, it can

also be used in the native XML query processors. In this chapter, a brief

overview of the design concept, assumptions, and techniques, on which the

thesis works build, is presented.

2.1 XQ: An XQuery Fragment

As a query language, XQ models an XML database as an ordered forest

whose elements are rooted, labelled and ordered trees; also a simple set of

13

Chapter 2: Dynamic Interval Method 14

operators is presented to manipulate the forest.

2.1.1 XML Data Model and Operations

Definition 1 (XML Forest) An XML document can be described as an

ordered forest XForest, and is defined inductively as

XForest
def
= [] | [<s> XForest </s>] | XForest @ XForest

where s is a string, [] denotes an empty forest, [<s> XForest </s>] signifies

a forest containing a single tree element with a root node labelled s and an

ordered forest XForest as its children, and XForest @ XForest indicates a new

forest concatenated by two forests.

The XML forest describes an XML document without distinguishing be-

tween node identity and node types (element, attribute, and text). However,

such features can be easily added by additional encoding conventions that

relate either to node labelling or to subtree patterns: the text leaf node with

CDATA text can be encoded by labelling the node with “text:”; an element

eleName is encoded by using the label “<eleName>”. An attribute of an ele-

ment can be treated as a subtree of this element, and is labelled “attribute:”,

where as the attribute value is encoded as subtree of its attribute node and

labelled as “text:”. For example, the XML document in Figure 1.1 can be

encoded with node type information to distinguish the element, attribute,

and text nodes. Figure 2.1 depicts part of the converted XML data.

Since XML data is described as an ordered forest, XForest, XQ provides

a set of basic operations to manipulate the forest data model so that it can

navigate the structure of XForest data, retrieving the context of particular

Chapter 2: Dynamic Interval Method 15

<bib>

<book>

<attribute:year> <text:1994> </attribute:year>

<title> <text:TCP/IP Illustrated/></title>

<author>

<last> <text:Stevens/> </last>

<first> <text:W./> </first>

</author>

<publisher> <text:Addison-Wesley/> </publisher>

<price> <text:65.95/> </price>

</book>

...

</bib>

Figure 2.1: Converted bibliography data with encoded node information

XForest fragments, and joining multiple XForest forests to construct a new

XForest document.

Constructors. XForest data (XML forest) can be empty (no tree element).

Also, it can be constructed from a concatenation of two XML forests,

or from an element constructor that adds a labelled root to an XML

forest. The constructors and corresponding types 1are described as

follows:

empty constructor [] : XForest , constructs an XML forest without

elements;

element constructor Xnode : String → XForest → XForest , which

takes a string as a root label and an XML forest as children to

1In the thesis, curried functions is used instead of uncurried functions presented in [6].
The curried function f of type int → int means that the function application f a with an
integer argument a returns a result of integer.

Chapter 2: Dynamic Interval Method 16

construct an XML forest with a single tree node2;

concatenation @ 3: XForest → XForest → XForest , takes two XML

forests as arguments to construct a new XML forest by appending

the second argument to the first one, keeping the inner order of

each argument

Horizontal Operators. XQ defines a set of horizontal operators that ma-

nipulate the XForest data (XML forest) at the top element (tree) level

without recursively traversal into the structure of the trees.

head : XForest → XForest , returns the first element tree from a for-

est. Strictly, the return value should be an XML tree instead of

an XML forest. As a result, a new type XTree (XML Tree), in

Chapter 4, is added;

tail : XForest → XForest , takes an XML forest, and returns a new

forest without the first element. The return forest still keeps the

original order of the input forest;

reverse : XForest → XForest , reverses the element order in an XML

forest and keeps the original structure of each tree element un-

changed;

select : String → XForest → XForest , takes a string, s , and an XML

forest as arguments, and returns sub-forests whose tree elements

2In the thesis, the element constructor is defined to be a tree constructor that takes a
labelled node and a forest as arguments and returns a tree

3In the thesis, another constructor, concat, which takes a tree and a forest to construct
a new forest, is adopted instead of concatenation

Chapter 2: Dynamic Interval Method 17

have the root node labelled s . For example,

select(’bib’, doc(bib.xml))

returns the element trees whose root labels “bib” exists; other-

wise, an empty forest is returned;

distinct : XForest → XForest , filters out duplicate elements in an

XML forest. Although distinct is defined as a horizontal oper-

ator, it still needs an auxiliary boolean function equal that recur-

sively compares two trees’ structural relationships;

sort : XForest → XForest , takes an XML forest and returns a sorted

forest. The sort operator also needs an auxiliary boolean function

less to recursively compare two trees’ structural order

Vertical Operators. In order to navigate the structure of each tree ele-

ment of the forest, XQ provides vertical operations such as children and

subtreedfs to locate the desired sub-element nodes.

roots : XForest → XForest , returns all the tree elements of a forest

at the top level;

children : XForest → XForest , acting as path axis “/”, selects chil-

dren nodes and returns them in the original (document) order;

subtreedfs : XForest → XForest , acting as path axis “//” (descendent-

or-self), selects self and sub-elements, and returns them in an DFS

(document) order as an XML forest

Chapter 2: Dynamic Interval Method 18

Boolean Operators. XQ provides two binary boolean operators, equal

and less, to compare the structural relation of trees. 4

2.1.2 Syntax of XQ

With denoting XML data as an XML forest, dynamic interval method de-

scribes the XML query in a simple syntax, with which explicit or implicit

semantics of an XQuery expression can still be captured.

Definition 2 (XQ) An XML query expression can be expressed by the fol-

lowing BNF rules:

e ::= x

| XFn(e1, . . . , en)

| let x = e1in e2

| where ϕ return e

| for x ∈ e do e ′

where e, e1, . . . , and en are query expressions, XFn is a basic operator defined

in the previous section, x is a variable, and ϕ is a boolean condition.

2.1.3 Semantics of XQ

The semantics of XML queries are expressed by denotational semantics style

equations. The denotational semantics introduces the concept of an Envi-

ronment, which maps each free variable of an expression to its value. Since

the behaviour of a query evaluation is a computation from an initial state to

4[6] denotes equal and less as XML forest operators. Since we intend to compare two
trees’ structural relationship, they are denoted as tree operators in Chapter 4.

Chapter 2: Dynamic Interval Method 19

a final state through a sequence of intermediate states (results), the evalua-

tion denotes as a transformation function [[−]], where E ′ = [[e]]E means the

new state E ′, an instance of Environment, is transformed from state E by

the computation of the expression e. Therefore, the semantics of FLWR-like

expressions is described as semantic equations as follows:

SEM EQ: Variables

[[x]]E
def
= E (x)

The role of variable x is to obtain the value (XML forest) of variable x

from Environment E without changing E ;

SEM EQ: Let-Assignment

[[let x = e in e ′]]E
def
= [[e ′]](E [x = ([[e]]E)])

Expression e ′ is evaluated in E ′, which is a new Environment extended

from E by binding the variable x to the result of e;

SEM EQ: Where-Return

[[where ϕ return e]]E
def
= if ([[ϕ]]E) then ([[e]]E) else []

where ϕ is a boolean condition. If condition ϕ holds, expression e is

evaluated in Environment E ;

SEM EQ: For-Do

[[for x ∈ e do e ′]]E def
= [[e ′]](E [x := v1]) @ . . . @ [[e ′]]E ([x := vk])

where [v1, . . . , vk] = [[e]]E

Chapter 2: Dynamic Interval Method 20

The expression for x ∈ e do e ′ first evaluates expression e in Envi-

ronment E and obtains a list of results [v1, . . . , vk]; and then uses

assignment operation “x ∈” to transform Environment E into a list of

new Environments [E1, . . . , Ek]. Finally expression e ′ is computed in

these new environments, and the results are concatenated.

SEM EQ: XFn

[[XFn(e1, . . . , ek)]]E
def
= XFn ([[e1]]E , . . . , [[ek]]E)

where XFn is an XML operator defined in Section 2.1.1, such as select,

subtreesdfs, with k arguments. The k arguments are evaluated si-

multaneously in Environment E , and the results are fed to the function

XFn.

2.1.4 XQ Translation of XQuery

As an XQuery fragment, XQ captures all the detailed intricate nuances pre-

sented in the XQuery’s FLWR and XPath expressions. Its syntax allows

an arbitrary composition of the basic function invocations, local variable

definitions, filtering by boolean conditions, and iteration over tree elements

in XML forests [6]. Some XQueries are used for the bibliography data in

Figure1.1 to illustrate the XQ translation.

Example 2.1.1 List the books published by Addison-Wesley, including their
year and title.
XQuery expression:

<bib>

{

Chapter 2: Dynamic Interval Method 21

for $b in doc("bib.xml")/bib/book

where $b/publisher = "Addison-Wesley"

return

<book year="{ $b/@year }">

{ $b/title }

</book>

}

</bib>

corresponding XQ expression:

for $b in select(book, children(select(bib,

children(doc(bib.xml))))) do

where not empty (select(Addison-Wesley, children(publisher,

children($b))))

return

let $3 =

let $1 = children($b)

in (let $2 = Xnode(year, (select(year, children($1)))

@ Xnode(title, (select(title, $1)))

in Xnode(book, $2))

in Xnode(bib, $3)

Example 2.1.2 Create a flat list of all the title-author pairs with each pair
enclosed in a “result” element.
XQuery expression:

<results>

{for $b in doc(bib.xml)/bib/book,

$t in $b/title,

$a in $b/author

return

<result>

{$t}

{$a}

</result>}

</results>

corresponding XQ expression:

Chapter 2: Dynamic Interval Method 22

let $2 = for $b in select(book, children(select(bib,

children(doc(bib.xml)))))

do let $1 = children($b) in

Xnode(result, (select(title, $1) @ select(author, $1)))

in Xnode(results, $2)

2.2 Dynamic Interval Relational Method

2.2.1 Interval Encoding

In order to manipulate XML documents in relational database, an interval-

encoding method is proposed to capture enough information about XML

data by encoding an XML document as triples (s , l , r), where s is the string

of the node name (node s), l is the left endpoint of node s , and r is the right

endpoint of node s . The way to generate the interval encoding is to perform

a depth-first traversal of the XML tree by using a counter to mark the l value

of the node when it is visited first time, and to mark its r value when the

node is visited the last time. The interval encoding relation of bibliography

XML data in Figure 1.1 is shown in Figure 2.2.

2.2.2 Dynamic Intervals

To evaluate an FLWR expression by a fixed relational query, a dynamic inter-

val encoding is presented to represent the sequence of environments generated

within an query evaluation process. A detailed definition of dynamic interval

can be found in [6].

Example 2.2.1 Figure 2.3 shows the query results for the path expression,

Chapter 2: Dynamic Interval Method 23

s l r s l r s l r

bib 0 79 book 25 47 book 52 78

book 1 24 year 26 29 year 53 56

year 2 5 1992 27 28 1999 54 55

1994 3 4 title 30 33 title 57 60

title 6 9 Adv. Prog. 31 32 The Economics of 58 59

TCP/IP Illu. 7 8 author 34 43 editor 61 47

author 10 19 last 35 38 last 62 65

last 11 14 Stevens 36 37 Gerbarg 63 64

Stevens 12 13 first 39 42 first 66 69

first 15 18 W. 40 41 Darcy 67 68

W. 16 17 publisher 44 47 affiliation 70 73

author 10 19 Addison-Wesley 45 46 CITI 71 72

price 20 23 price 48 51 publisher 74 77

65.95 21 22 65.95 49 50 Kluwer Academic 75 76

Figure 2.2: encoded Bibliography data

Ttitle = doc(bib.cml)/bib/book/title, with the index relation I , repre-

senting the initial environment with i = 0.

2.2.3 XQ-to-SQL Translation

Based on the semantics of XQ expressions, SQL translation templates, in-

cluding the templates for basic operations and those for FLWR patterns, are

adopted to translate an XQ-syntax query expression into a relational query

statement by composing SQL templates from the sub-query fragments. The

detailed XQ-to-SQL translation can be found in [6].

Proposition 1 For each XQ expression, there is a corresponding SQL query

statement, such that all XQ queries can be implemented in the relational

Chapter 2: Dynamic Interval Method 24

I Ttitle

i s l r

0 title 6 9

TCP/IP Illustrate 7 8

title 30 33

Advanced Programming in the Unix environment 31 32

title 57 60

The Economics of Technology and Content for Digital TV 58 59

Figure 2.3: Titles in an initial environment

query engine.

By defining a simple XQuery fragment, XQ, to capture the core features of

XQuery, and a set of XQ-to-SQL translation templates, the dynamic intervals

method successfully evaluates the XML queries using the relational query

engine, which ensures the evaluation polynomial time complexity.

Chapter 3

System F

In the thesis, System F, a second order lambda calculus, is adopted to rep-

resent XQ presented in [6]. In this chapter, we introduce System F, whose

generality and strong expressive power supports faithful encoding of arbitrary

composition of XQ expressions. To understand System F, lambda calculus,

which underlies all functional languages and the procedural facilities of many

more general languages, is introduced.

3.1 Lambda Calculus

Originally developed and investigated in the 1930’s by logicians such as

Church, Curry, and Rosser, lambda calculus has influenced the design of

programming languages. Many problems of language design and implemen-

tation, especially those concerning procedure mechanisms or type structures,

can be posed and investigated more easily by the lambda calculus than in

25

Chapter 3: System F 26

more complex languages. For example, for the long and repetitive expression,

(5 × 4 × 3 × 2 × 1) + (7 × 6 × 5 × 4 × 3 × 2 × 1) − (3 × 2 × 1)

we rewrite it to be factorial 5 + factorial 7 − factorial 3, where

factorial n = if n = 0 then 1 else n × (factorial n − 1)1

For each nonnegative number n, instantiating the function factorial with

the argument n yields the factorial of n as a result. If “λ n. . . . ” is an

abbreviation for “the function that, for each n, yields . . . ”, the definition of

factorial is restated as:

factorial = λ n.if n = 0 then n × (factorial n − 1)

where the subexpression, λ n. . . ., is called an abstraction or lambda expres-

sion. The function application factorial 0 refers to “the result when the

argument variable n in the function body (λ n.if n = 0 then . . .) is replaces

by 0”; that is, 1.

In lambda calculus, a function is defined in the abstraction form, which

does not specify the name of the function. The capability of denoting func-

tions without giving them names makes abstractions particular useful for

describing functions that are arguments for other “higher order” functions.

3.1.1 Syntax

The syntax of lambda calculus is comprised of three types of expressions

(terms). A variable x by itself is a term; an abstraction of a variable x from

1 Here the curried form “factorial n” is used instead of the uncurried form
“factorial (n)” to deal with the higher order function that can treat functions as argu-
ments.

Chapter 3: System F 27

a term t1, written λ x .t1, is a term; and the application of a term t1 to another

term t2, written t1 t2, is a term. These ways of forming terms are summarized

in the following abstract syntax:

t ::= x variable

| λ x .t1 abstraction

| t1 t2 application

It is assumed that the application is left associative, that is,

t1 t2 t3 . . . tn ≡ (. . . ((t1 t2) t3) . . . tn)

and in λ x .t , the subterm t extends the first stop symbol or to the end of the

enclosing phrase. For example,

λ x .(λ y .xyx)x ≡ λ x .((λ y .((xy)x))x)

Definition 3 (Bound and Free Variable) In the term λ x .t , the occur-

rence of x is a binder with scope t . An occurrence of variable x is said to

be bound, when it occurs in body t of an abstraction λ x .t . An occurrence

of x is free if it appears in a position where it is not bound by an enclosing

abstraction of x .

Example 3.1.1 The occurrence of x in xy and λ y .xy are free, whereas the

ones in λ x .x and λ z . λ x . λ y .x (y z) are bound. In (λ x .x) x , the first occur-

rence of x is bound and the second one is free.

The set of free variables in term t , denoted as FV (t), is defined as

FV (x) = {x}
FV (t1t2) = FV (t1) ∪ FV (t2)

FV (λ x .t) = FV (t) − {x}

and term t is said to be closed, if and only if FV (t) = ∅.

Chapter 3: System F 28

Definition 4 (α-conversion) α-conversion is the operation of replacing an

occurrence of a bound variable by

λ x .t ≡α λ y .t [x �→ y]

where y /∈ FV (t)

Terms t and t ′ are α-equivalent with t ≡α t ′, if t ′ results from t by a series of

changes of the bound variables. The α-conversion states that the renaming

should preserve the semantic meaning.

3.1.2 Operational Semantics (Reduction)

The computation in lambda calculus is a sequence of applications of function

to its arguments (which themselves are functions). Each step in the compu-

tation is a term rewriting that substitutes the arguments for bound variables

in the abstraction’s body.

Definition 5 (Substitution) For the arbitrary terms t1, t2 and variable x ,

t1[x �→ t2] is defined as the result of substituting t2 for each free occurrence

of x in t1.

Definition 6 (Redex and β-reduction) A term matching the form

(λ x .t1) t2

is called redex (a reducible expression), and the operation of rewriting a

redex,

(λ x .t1) t2 � t1[x �→ t2]

is called a β-reduction.

Chapter 3: System F 29

According to the definitions, simple β-reductions are shown as follows:

(λ x .x) y � x [x �→ y] � y

(λ x .x (λ x .x)) (uv) � x (λ x .x)[x �→ uv] � uv (λ x .x)

If t ′ is obtained from t by zero or more β-reductions (or just by renam-

ing), then t reduces to t ′, and is written as t �∗ t ′. In lambda calculus, the

reduction sequence is a type of execution, and the obvious computation ter-

mination is defined by the reduction sequence reaching a term that contains

no redexes.

Definition 7 (Normal Form) A term t is in a normal form if it does not

have a redex as a subexpression. Moreover, if t is reduced to the normal

form t ′, then t ′ is called a normal form of term t .

The following are examples of reduction sequences, terminating in normal

forms:

(λ x .y)(λ z .z) � y

(λ x .x)(λ z .z) � λ z .z

(λ x .xx)(λ z .z) � (λ z .z)(λ z .z) � (λ z .z)

(λ x .(λ y .yx)z)(t v) � (λ x .zx)(t v) � z (t v)

(λ x .(λ y .yx)z)(t v) � (λ y .y(t v)) z � z (t v)

Any redexes can be reduced at any time. At each step, some redexes (denoted

by underlining) are chosen. The last two reduction sequences begin with

the same expression and move in different directions (by reducing different

redexes), but eventually return to the same normal form. The following

theorem confirms that this is a general phenomenon for lambda calculus.

Chapter 3: System F 30

t

t0 t1

t'

Theorem 1 (Church-Rosser (Confluence) Property) If t �∗ t0 and

t �∗ t1, then there is a term t ′ such that t0 �∗ t ′ and t1 �∗ t ′ [2].

This property states the uniqueness of the normal form, independent of the

existence of normal form. As a special case, since normal forms can be

reduced only by renaming, and if t0 and t1 are normal forms, then both must

be α-equivalent to t ′, and therefore, to each other.

Theorem 2 If a term t exists a normal form n, then in α-equivalence, the

normal form, n, is unique.

Unfortunately, untyped lambda calculus terms may not have a normal form

is false. In the following examples of β-reductions:

(λ x .xx)(λ x .xx) � (λ x .xx)(λ x .xx) � . . .

(λ x .f (x x))(λ x .f (x x)) � f ((λ x .f (x x))(λ x .f (x x))) � . . .

the β-reduction sequences never terminate. For each initial term, there are

no other reduction sequences, so that these initial terms have no normal

form. Meanwhile, there are cases where both terminating and nonterminating

Chapter 3: System F 31

sequences begin with the same term by different redexes. For example,

(λ y .c)((λ x .xxx)(λ x .xxx)) � c

(λ y .c)((λ x .xxx)(λ x .xxx)) � (λ y .c)((λ x .xxx)(λ x .xxx)) � . . .

For untyped lambda calculus, the existence of normal form is undecidable [7],

which is immediate corollary of the undecidability of the β-equivalence of two

lambda terms.

In summary, two important facts of untyped lambda calculus should be

stated:

• any reduction sequence terminating in a normal form produces the same

result. Computationally, it means that every expression describes an

unique computation if it exists.

• not all reduction sequences end in a normal form even choosing the

reduction strategy; the existence of normal form is undecidable.

So far, untyped lambda calculus, which is a solid core of functional pro-

gramming languages, has been examined. Lambda calculus is known to be

computationally equivalent in power to many other models for computation

(including Turing machines); that is, any calculation that can be accom-

plished in any of these other models can be expressed in the lambda cal-

culus, and vice versa [11]. But without type constraints, lambda calculus

causes problems: the termination of the evaluation without type constraints

is undecidable.

Due to the limitation of untyped lambda calculus, researchers have been

investigating type systems for lambda calculus. In simply typed-lambda cal-

culus, type constraints are imposed on terms to prevent self-application, and

Chapter 3: System F 32

to ensure its strong normalization property. But simple typed-lambda calcu-

lus has very little expressive power [7], and it is too weak to represent the XQ

data types and operations. However, System F, a second-order lambda calcu-

lus, guarantees the termination of all computations, while retaining sufficient

expressive power to encode XQ.

3.2 Introduction to System F

System F was first discovered by Girard [7], in 1971 as a system for construc-

tive proofs in PA2, and by Reynolds [11] in 1974 in the area of programming

language. It is a extension of simple untyped lambda with treating types as

variables and allowing new forms of type abstractions and type applications.

Let us start with the ordinary untyped lambda calculus and add the capa-

bility to pass types as parameters. In untyped lambda calculus, the lambda

abstraction, (λ x .t), is used to abstract variables out of terms, and applica-

tion is used to supply values for the abstracted parts without considering

type constraints.

Example 3.2.1 The abstraction λ f . λ x .f (f x) [10], in untyped lambda cal-

culus, denotes the function double, which accepts a function as an argument,

and yields the composition of this function to itself. To extend this definition

with type variable T , we rewrite it as:

λ f T→T . λ xT .f (f x)

denoting the function double for type T . By abstracting on type variable T

Chapter 3: System F 33

with the symbol “Λ”, a polymorphic function double is defined as

ΛT . λ f T→T . λ xT .f (f x)

that can be applied to any type to obtain the corresponding “double” function

for that type.

3.2.1 Syntax of System F

After extending lambda calculus with type variables, types become type ex-

pressions [7]:

• type variables X , Y , Z , . . . are types;

• if U and V are types, then function type U → V is a type, which

denotes the set of functions that return a value of type V when applied

to a value of type U ;

• if V is a type and X is a type variable, then the polymorphic type

∀X .V is a type, which denotes the type of polymorphic function that,

when applied to a type X , yields a result of type V

Therefore, there are five ways to form terms :

• a variable x of type T is a term;

• an abstraction λ xU .v is a term of type U → V , where x is a variable

of type U and v is of type V ;

• an application t u is a term of type V , where t is of type U → V , and

u is type of U ;

Chapter 3: System F 34

Type ::= X type variable

| U → V function type

| ∀X .V polymorphic type

Term ::= x variable

| λ xU .v abstraction

| t u application

| ΛX .v type abstraction

| t [U] type application

Figure 3.1: Syntax definition of System F

• a type abstraction ΛX .v is a term of type ∀X .V , where v is a term of

type V ;

• a type application t [U] is a term of type V [X �→ U], where t is a term

of type ∀X .V , and U is a type

The syntax definition of System F is presented in Figure 3.1. As well as the

usual conversion, the → associates to the right, where

T1 → T2 → · · · → Tn → α stands for(T1 → (T2 → · · · → (Tn → α)))

and application associates to the left, where

f t1 t2 . . . tn stands for (. . . ((f t1) t2) . . .) tn

The β reduction “�” is extended to denote a new rule regarding the type

applications.

Chapter 3: System F 35

Definition 8 (β-reduction)

(λ x .t1) t2 � t1[x �→ t2] (3.1)

(ΛX .t)[U] � t [X �→ U] (3.2)

where t1, t2 are terms, x is a term variable, and X is a type variable.

During an evaluation, the first rule denotes the usual β-reduction; that is,

when a function, in the abstraction form of λ x .t1, is applied to term t2, the

pair forms a redex, and term t2 will substitute for all the occurrences of the

bound variable x in t1. The second rule states that, when a function, which

is a type abstraction, ΛX .t , is applied to a type value U , the pair is also a

redex and type U will substitute for the occurrences of type variable X in

term t .

Example 3.2.2 The double function ΛT . λ f T→T . λ xT .f (f x)

for type int becomes

(ΛT . λ f T→T . λ xT .f (f x)) [int]

� (λ f T→T . λ xT .f (f x))[T �→ int]

� λ f int→int. λ x int.f (f x)

and for the complex function type real → real, becomes

(ΛT . λ f T→T . λ xT .f (f x)) [real → real]

� (λ f T→T . λ xT .f (f x))[T �→ (real → real)]

� λ f (real→real)→(real→real). λ x real→real.f (f x)

Chapter 3: System F 36

3.2.2 Why System F?

It was mentioned in Section 3.1.2 that in lambda calculus, untyped terms can

not guarantee to have a normal form; that is, the termination of computation

is undecidable. But when we considering types in the lambda calculus, the

things have changed. It is the case that the typed-terms always possess

normal forms [3]. This property also holds for System F [7].

Theorem 3 (Strong Normalization Theorem) All the well-typed terms

of System F have normal forms. Moreover, all the terms are strongly nor-

malizable, and there are no infinite reduction sequences, regardless of the

evaluation strategy.

For languages in which each expression describes a terminating computation,

such as simple typed lambda calculus, there must be computable functions

that cannot be expressed [3]. Indeed we are used to taking this fact as

evidence that such language are uninteresting for practical computation. Yet

System F is such a language, in which one can express “almost everything”

that one might actually want to compute. Indeed, Girard has shown that

System F provides a surprising degree of expressiveness for the computations

for a variety of data types [7].

3.3 Expressive Power of System F

In this section, it is demonstrated that a variety of primitive data types such

as boolean, number, and list can be encoded in System F. These encodings

are interesting for two reasons. First, they exemplify type abstraction and

Chapter 3: System F 37

application. Secondly, they demonstrate that System F is, computationally,

a very rich language, in the sense that the pure system can express a large

range of data and control structures. This means that, when we later design

a full-scale language with System F as its core, we can add these features

as primitives (for efficiency, and so that we can equip them with a more

convenient concrete syntax) without disturbing the fundamental properties

of the core language.

3.3.1 Inductive Types

The expression power of System F allows the representation of basic types

such as integers, lists, and trees by defining the inductive types.

Definition 9 (Inductive Type) An inductive type Θ is a data type that

can be constructed by a set of constructors f1, f2, . . . , fk , with corresponding

types:

f1 : T1 with T1 = T11 → · · · → T1n1 → Θ

f2 : T2 with T2 = T21 → · · · → T2n2 → Θ

...

fk : Tk with Tk = Tk1 → · · · → T1nk
→ Θ

where Θ occurs positively in any Tij , and each term of Θ can be represented

by constructor fi uniquely [7].

Definition 10 (Representation of the Inductive Type) An inductive type,

Θ, which is described by the constructors f1, f2, . . . , fk in Definition 9, is rep-

Chapter 3: System F 38

resented by

Θ = ∀X . (T11 → · · · → T1n1 → Θ)[Θ �→ X]

→ (T21 → · · · → T2n2 → Θ)[Θ �→ X]

...

→ (Tk1 → · · · → Tknk
→ Θ)[Θ �→ X]

→ X

where Ti [Θ �→ X] denotes Ti , where all the occurrences of Θ are replaced by

a type variable X .

The most interesting part of System F is its expressive power to define the

common types. Now that the general schema of the representation of type

and the corresponding iterator function have been introduced, some examples

are provided.

3.3.2 Representation of Simple Types

In this section, the general schema, defined in Section 3.3.1, is applied to

describe the common types such as boolean, product type, natural number,

and list.

Example 3.3.1 (Boolean) The boolean type, Bool, has two functions: True

and False, 0-ary functions of type Bool. According the Definition 9, the

boolean type is defined as

Bool
def
= ∀X .X → X → X

Chapter 3: System F 39

and the two 0-ary constructors are

True
def
= ΛX . λ xX . λ yX .x

False
def
= ΛX . λ xX . λ yX .y

For e, e ′ of type U , and b of type Bool, the condition expression can be

defined as an iterator function:

if b then e else e ′ def
= b [U] e e ′

and the following reductions prescribe the right behaviour:

if True then e else e ′ def
= (ΛX . λ xX . λ yX .x)[U] e e ′

� (λ xU . λ yU .x) e e ′

� (λ yU .e) e ′

� e

if False then e else e ′ def
= (ΛX . λ xX . λ yX .y)[U] e e ′

� (λ xU . λ yU .y) e e ′

� (λ yU .y) e ′

� e ′

Moreover,

not
def
= λ aBool.ΛX . λ xX . λ yX .b [X] y x

and
def
= λ aBool. λ bBool.ΛX . λ xX . λ yX .a [X] (b [X] x y)y

where the boolean function not has the type Bool→ Bool, and the function

and has type Bool → Bool → Bool.

Chapter 3: System F 40

Example 3.3.2 (Integer) The integer type, Int, has two constructors: one

is the zero function, zero, with type Int; the other is the successor function

succ of type Int → Int. Therefore, type Int is defined as

Int
def
= ∀X .X → (X → X) → X

and we have the integer numbers as

0
def
= ΛX . λ xX . λ f X→X .x

1
def
= ΛX . λ xX . λ f X→X .f x

2
def
= ΛX . λ xX . λ f X→X .f (f x)

...

n
def
= ΛX . λ xX . λ f X→X .f nx

where f nx denotes f (f (f . . . (f x))) with n occurrences of f . The two basic

constructors are defined as

zero
def
= ΛX . λ xX . λ f X→X .x

succ t
def
= ΛX . λ xX . λ f X→X .f (t [X] x f)

Clearly, zero = 0 and succ n = n + 1.

Also, there is an iterator function, Itint, with type Int → U ,

ItInt t = t [U] g1 g2

Chapter 3: System F 41

where g1 : U and g2 : Int → U 2, and now

ItInt zero
def
= zero [U] g1 g2

def
= (ΛX . λ xX . λ f X→X .x)[U] g1 g2

� (λ xU . λ f U→U .x) g1 g2

� (λ f U→U .g1) g2

� g1

ItInt succ t
def
= (succt) [U] g1 g2

def
= (ΛX . λ xX . λ f X→X .f (t [X] x f))[U] g1 g2

� (λ xU . λ f U→U .f (t [U] x f)) g1 g2

� (λ f U→U .f (t [U] g1 f)) g2

� g2(t [U] g1 g2)

= g2(ItInt t)

Based on the iterator, ItInt, in order to define a function h : Int → U , it is

necessary to decide the corresponding g1 : U and g2 : Int → U , considering

the results, when function h is inductively applied to the constructor of type

Int:

h 0 = g1 (3.3)

h (succ n) = g2(h n) (3.4)

Then h is defined by using g1 and g2:

h n
def
= n [U]g1 g2 that is h

def
= λ n Int.n [U] g1 g2

2“:” means “has the type of”

Chapter 3: System F 42

The addition function, add : Int → Int → Int, which adds two integer

numbers, with the case:

add m zero = m

add m (succ n) = succ (add m n)

and matches the format of Equation 3.3 and 3.4, is defined as:

add m n
def
= n [Int] m succ

or more abstractly by

add
def
= λm Int. λ n Int.n [Int] m succ

Example 3.3.3 (Product Type(×)) The expressive power of System F

not only allows us to represent the primitive type, but also provides the ca-

pability to describe the various type constructors. In this thesis, the product

type, U × V , is demonstrated, allowing the construction of the pair (a, b),

where a has the type U and b has the type V . The only constructor function

for the product type is the pair function,

f : U → V → U × V

which takes two arguments of type U and V , and returns a pair of type

U × V . Therefore, by Definition 9, a product type is signified as

U × V
def
= ∀X .(U → V → X) → X

and, given a : U , b : V , the pair (a, b) is defined as

(a, b)
def
= ΛX . λ f U→V→X .f a b

Chapter 3: System F 43

Given a pair (a, b), the project functions are defined as

(a, b).0
def
= (a, b) [U] (λ xU . λ yV .x)

(a, b).1
def
= (a, b) [V] (λ xU . λ yV .y)

The project function (a, b).0 is calculated by the β-reduction,

(a, b).0
def
= (ΛX . λ f U→V→X .f a b) [U] (λ xU . λ yV .x)

� (λ f U→V→U .f a b) (λ xU . λ yV .x)

� (λ xU . λ yV .x) a b

� (λ yV .a) b

� a

which obtains the first element of the pair (a, b), and (a, b).1 returns the

second element, since

(a, b).1
def
= (ΛX . λ f U→V→X .f a b) [V] (λ xU . λ yV .y)

� (λ f U→V→V .f a b) (λ xU . λ yV .y)

� (λ xU . λ yV .y) a b

� (λ yV .y) b

� b

Example 3.3.4 (List) A list is a finite sequence of elements. Typical lists

are [2, 5, 6] and [“good”, “better”, “best”]. The empty list, [], has no el-

ements. For a given list, the order of elements is significant, and elements

may appear more than once. For instance, the following lists are different:

[3, 5, 9] [3, 5, 9, 9] [3, 9, 5]

Chapter 3: System F 44

Each element in a list must have the same type. If the element u0, u1, . . . , un

are elements of type U , the list [u0, u1, . . . , un] has a type U list. The empty

list, [], has a polymorphic type α list, which is regarded as a list with any

type of elements.

A list of type U list is constructed by the following two functions:

• nil : U list, a synonym of the empty list, [];

• construct function, cons : U → U list → U list, returns a new list by

inserting an element of type U in front of an existing list of type U list

Therefore, each list is either nil, if empty, or has the form cons u l , where u

is the head of type U and l is the tail of type U list. For the given elements

u0, u1, . . . , un , the list [u0, u1, . . . , un] is constructed as follows:

nil = []

cons un nil = [un]

cons un−1 [un] = [un−1, un]

...

cons u0 [u1, . . . , un] = [u0, u1, . . . , un−1, un]

With the schema of Definition 9, the type list U is defined as:

U list
def
= ∀X .X → (U → X → X) → U

and the individual list [u0, u1, . . . , un] is

cons u0 (cons u1 . . . (cons un nil) . . .)
def
=

ΛX . λ xX . λ f U→X→X .f u0 (f u1 . . . (f un x))

Chapter 3: System F 45

In addition, two constructor functions are denoted as:

nil
def
= ΛX . λ xU . λ f U→X→X .x

cons t ts
def
= ΛX . λ xU . λ f U→X→X .f t (ts [X] x f)

where t is an element of type U , and ts is a list of type list U .

Definition 11 (Iterator on List) The iterator function on lists Itlist :

U list → W takes an argument of type U list and returns the result of type

W , and is denoted as

Itlist ts
def
= ts [W] g1 g2 (3.5)

where g1 : W and g2 : U → W → W , and Itlist satisfies,

Itlist nil
def
= nil[W] g1 g2

def
= (ΛX . λ xU . λ f U→X→X .x)[W]g1 g2

� (λ xU . λ f U→W→W .x) g1 g2

� (λ f U→W→W .g1) g2

� g1

and

Itlist (cons t ts)
def
= (cons t ts) [W] g1 g2

def
= (ΛX . λ xU . λ f U→X→X .f t (ts [X] x f)) [W]g1 g2

� (λ xU . λ f U→W→W .f t (ts [W] x f)) g1 g2

� (λ f U→W→W .f t (ts [W] g1 f)) g2

� g2 t (ts [W] g1 g2)

= g2 t (Itlist ts)

Chapter 3: System F 46

The iterator definition provides a schema to define a function f : U list → W

by determining the corresponding g1 : W and g2 : U list → W → W , which

satisfy

f nil = g1 and f (cons t ts) = g2 t (f ts) (3.6)

such that function f is defined by Definition 11 as

f ts
def
= ts [W] g1 g2 that is, f

def
= λ tsU list.ts [W] g1 g2 (3.7)

The length function length : U list → Int calculates the number of elements

in a given list, and it is known that

length nil = 0

length (cons t ts) = 1 + (length ts) = (λ tU . λ cInt.1 + c) t (length ts)

that is, g1 = 0 with type Int and g2 = λ tU . λ cInt.1 + c with type U → Int →
Int.

Therefore, the function length is defined using Equation 3.7 such that,

length
def
= λ tsU list.ts [Int] 0 (λ tU . λ cInt.1 + c)

where type variable W is replaced by Int.

Now that the expressive power of System F has been illustrated. In fact, all

the functions, which are System F representable, have the common property:

Proposition 2 The functions representable in System F are exactly those

which are provably total in PA2
3.

3A detained definition and proof can be found in [7]

Chapter 3: System F 47

In this chapter, the expressive power of System F has been demonstrated.

The definition schema allows the representation of XQ and its basic opera-

tions in System F, as detailed in the following chapter.

Chapter 4

Encoding XQ in System F

Now that the expressive power of System F has been illustrated by simple

data types, System F will presented as the core of XQ, to improve the gener-

ality and power of XQ. In this chapter, System F is adopted to represent the

XML data model that has been defined as an ordered forest whose elements

are rooted labelled trees [6]. By the representation of XML tree and forest

data types in System F, all the basic operators of XQ are encoded by iterators

defined on the XML tree and forest structures. Also a general XQ syntax is

proposed inSystem F format, and the semantics are described by defining an

Environment data type in System F with the corresponding operators.

4.1 XML data in System F

The dynamic interval method presents an XML document as an ordered for-

est whose elements are rooted labelled trees, shown in Definition 1. Without

a tree definition, the XML forest constructors are not primitive, which means

48

Chapter 4: Encoding XQ in System F 49

that the empty node([]), single node forest (<s> XF </s>), and concatena-

tion constructor (@) are not independent. For example, a single node forest

can be constructed by using an empty forest and a tree; the concatenation of

two forests can also be represented recursively in a more primitive way with

a new constructor cons, which will be described in Section 4.2.2. In order to

precisely describe XML document, XML forest and XML tree are considered

separately.

Definition 12 (XML Tree)

XTree
def
= Xnode String XForest

where an XML tree is constructed a String s as its root and an XML forest

ts as its children.

In this chapter, Xnode s ts is used, instead of <s>ts </s>, to express an XML

tree whose root is string s . An XML forest is described as a list of ordered

XML trees.

Definition 13 (XML Forest)

XForest
def
= nil | Cons XTree XForest

where nil denotes an empty forest without elements, and Cons signifies the

construction of an XML forest by putting an XML tree t in front of an

existing XML forest ts , written as ts ′ = Cons t ts .

Simultaneous inductions occur in the XTree and XForest definitions: build-

ing an object of one type involves the object of another. For example, con-

structor Cons builds tree t by employing a forest, ts ; Xnode takes tree t and

Chapter 4: Encoding XQ in System F 50

forest ts to build a new forest, ts ′. In order to solve this problem, a new

new type, Xtf , which is a combination of type XTree and type XForest , con-

taining constructors of both types, to solve the simultaneous construction

inherently.

To describe type Xtf , a general type, called Sum type, is introduced.

Definition 14 (Sum Type) If U and V are types, the Sum of U and V ,

denoted as U + V , is defined as

U + V
def
= (U → α) → (V → α) → α1

Sum type denotes an alternative construction, where different values are

paired with tags, with which the values can be processed by branch. For

example, ι1u is a term of u of type U paired with tag 1. If t has type U and

f1, f2 are functions, then (f1, f2) ι1t results in applying function f1 to t .

For u : U , v : V , two constructors for the Sum type are defined as follows:

ι1 u
def
= λ xU→α. λ yV→α. x u

ι2 v
def
= λ xU→α. λ yV→α. y v

For functions f1 : U → R, f2 : V → S , and t of type U + V ,

(f1, f2) t
def
= t [R + S] f1 f2

and for terms u : U and v : V , (f1, f2) t satisfies

(f1, f2) ι1 u = f1 u (4.1)

(f1, f2) ι2 v = f2 v (4.2)

1The primitive types α and β (denoted by Greek letter) are employed to implicitly
express the type polymorphism instead of using the universal type expression ∀α.T , which
binds the occurrences of α in T . For example, (U → α) → (V → α) → α ≡ ∀α.(U →
α) → (V → α) → α.

Chapter 4: Encoding XQ in System F 51

where

(f1, f2) ι1 u
def
= (λ xU→α. λ yV→α. x u)[R + S] f1 f2

� (λ xU→R+S . λ yV→R+S . x u) f1 f2

� (λ yV→R+S . f1 u) f2

� f1 u

and similarly, (f1, f2) ι2 v �∗ f2 v

The problem of the simultaneous induction of types XTree and XForest

can be solved by using the concept of Sum. A new type Xtf , which is a

Sum type that combines types XTree and XForest , is built. When a function

is recursively applied to an argument, its action depends on the element

type it visits. For example, when the boolean operation equal compares the

equality of two trees, at the top level, equal is a tree operator, comparing

two root labels. Then equal becomes a forest operator recursively applied to

the root’s children. For the elements of the children forests, equal behaves

as a tree operator, and so on.

Definition 15 (Xtf Type) Xtf is defined as an Sum of XTree and XForest ,

which is represented as follows:

Xtf
def
= XTree + XForest

and as a polymorphic type in System F denoted as:

Xtf
def
= α → (String → β → α) → β → (α → β → β) → (α + β)

The new type Xtf has three constructors, which are inherited from XTree

and XForest :

Chapter 4: Encoding XQ in System F 52

• the function, Xnode: String → β → α, builds a new tree with String s

and forest ts in XNode s ts ;

• the empty forest, nil : β

• the function, Cons: α → β → β, constructs a forest by inserting tree t

before forest ts with Cons t ts

With the general scheme of System F, the constructors of type Xtf are treated

as certain abstractions.

Definition 16 (Constructors for Type Xtf)

Xnode s ts
def
= λ x String→β→α

1 . λ yβ
1 . λ yα→β→β

2 .

x1 s (ts [β] x1 y1 y2) (4.3)

nil
def
= λ x String→β→α

1 . λ yβ
1 . λ yα→β→β

2 . y1 (4.4)

Cons t ts
def
= λ x String→β→α

1 . λ yβ
1 . λ yα→β→β

2 .

y2 (t [α] x1 y1 y2)(ts [β] x1 y1 y2) (4.5)

where (4.3) is a constructor from XTree, (4.4) and (4.4) are inherited from

XForest.

With type Xtf and its constructors, an individual XML tree and forest can

be represented by a function in abstraction form, shown in Example 4.1.1.

Example 4.1.1 An XML tree in Fig 4.1 is represented as

t
def
= λ x String→β→α

1 . λ yβ
1 . λ yα→β→β

2 .

x1 a (y2 (x1 b (y2 (x1 c y1) y1)) (y2 (x1 d y1) y1))

Chapter 4: Encoding XQ in System F 53

a

c

d

b

Figure 4.1: An XML tree

we recognize that, with replacing x1 by Xnode, y2 by Cons, and y1 by nil, t

becomes

Xnode a (Cons (Xnode b (Cons (Xnode c nil) nil))

(Cons (Xnode d nil) nil))

which is obtained by reducing t [XTree] Xnode nil Cons.

As an Sum type, Xtf combines the properties of both XTree and XForest .

Therefore, Xtf ’s induction function, iterator It, can also manipulates both

Xtree and XForest data.

Definition 17 (Iterator for type Xtf) Given object v of type V , func-

tions fT : String → V → U and fXF : U → V → V , with the definition

Xtf = XTree + XFroest , for an object m of type Xtf , its iterator, It, is

defined as

It m
def
= m [U + V] fT v fXF

Chapter 4: Encoding XQ in System F 54

where the resulting type of It depends on its arguments. For object t of

type XTree,

It t 2 def
= t [U] fT v fXF

with the result type U . For object ts of type XForest ,

It ts
def
= ts [V] fT v fXF

resulting in type V .

Proposition 3 Given an object v : V , functions fT : String → V → U ,

and fXF : U → V → V , the iterator It satisfies

It (Xnode s ts) = fT s (It ts) (4.6)

It nil = v (4.7)

It (Cons t ts) = fXF (It t) (It ts) (4.8)

Proof: From the definition of iterator It, for an object m of type Xtf , It

is expressed as:

It m
def
= m [U + V] fT v fXF

2Here, the sum symbol, ι, is omitted for convenience.

Chapter 4: Encoding XQ in System F 55

since

It (Xnode s ts)
def
= (Xnode s ts) [U] fT v fXF

� (λ x String→β→α
1 . λ yβ

1 . λ yα→β→β
2 . x1

s (ts [β] x1 y1 y2)) [U] fT v fXF

� (λ x String→β→U
1 . λ yβ

1 . λ yU→β→β
2 . x1

s (ts [β] x1 y1 y2)) fT v fXF

� (λ yβ
1 . λ yU→β→β

2 . fT s (ts [β] fT y1 y2)) v fXF

� (λ yU→V→V
2 . fT s (ts [V] fT v y2)) fXF

� fT s (ts [V] fT v fXF)

� fT s (It ts)

The following can be proved similarly:

It nil = v

It (Cons t ts) = fXF (It t) (It ts)

�

With iterator It, all the basic XML operators in XQ are represented in

System F.

4.2 Encoding Basic XML Operators

4.2.1 General Functions

Two general functions, select first : α → β → α and select second :

α → β → β, where α and β are primitive types that can be instantiated to

Chapter 4: Encoding XQ in System F 56

concrete types, are introduced. The first function returns the first argument,

and the second function returns the second argument as follows:

select first = λ xα. λ yβ. x

select second = λ xα. λ yβ. y

4.2.2 Horizontal Operators

Simple horizontal operators, head, tail, concat, reverse and select, are

defined. These operators deal only with elements at the XML forest top level

(horizontal), and never recur in the tree structure (vertical) of each element.

In this case, iterator It is simplified to a horizontal iterator Ith as

Ith (Xnode s ts) = Xnode s ts (4.9)

= let f1 = λ sString . λ bV .Xnode s ts in f1 s (Ith ts)

Ith nil = c2 (4.10)

Ith (Cons t ts) = f2 t (Ith ts) (4.11)

= f2 (Ith t) (Ith ts)

When Ith traversals along the structure of object m of type Xtf , for m

an XML tree, Ith returns m without recurring through m’s tree structure.

For m an XML forest, Cons t ts , function f2 : Xtf → V → V takes two

arguments: the first element tree t and the result returned by Ith recursively

applied to the remaining forest ts . Equations (4.9-4.11) are rewritten (the

second line of each equation) to fit the form of the standard iterator Equations

(4.6-4.8). For object m of type Xtf , function Ith is defined as

It
def
= λmXtf . m [V] (λ sString . λ bV . Xnode s ts) c2 f2 (4.12)

Chapter 4: Encoding XQ in System F 57

With defining the corresponding functions c2, f2 and proper types V , a spec-

ified horizontal operator is expressed by Ith Equation (4.12).

head This operator obtains the first tree element from an XML forest, and

has type head : Xtf → Xtf :

head nil = default

head (Cons t ts) = t

= (λ tXtf . λ zXtf . t) t (head ts)

In the case of empty forest, nil, head returns a unit type value default

meaning nothing, where type unit is consistent with any other type.

Using Equation (4.12) with V being Xtf , head is defined as

head
def
= λmXtf .m (λ sString . λ bXtf .Xnode s ts) default

(λ tXtf . λ zXtf . t)

tail This operator returns all but the first tree element from an XML forest

with type tail : Xtf → Xtf . In the case of empty forest, nil, tail

returns only nil.

tail nil = nil

tail (Cons t ts) = ts

The second equation does not match the form of Equation (4.11). This

case is treated by a new approach.

Chapter 4: Encoding XQ in System F 58

Let m : Xtf , h : Xtf → Xtf × Xtf , and h m = (m, tail m), then

h nil = (nil, tail nil)

= (nil, nil)

h (Cons t ts) = (Cons t ts , tail (Cons t ts))

= (Cons t ts , ts)

= (Cons t ts , select first ts (tail ts))

= let f2 = λ tXtf . λ(k , z)Xtf×Xtf . (Cons t k ,

select first k z)

in f2 t (h ts)

which fits the forms of Equations (4.10-4.11) with V as Xtf × Xtf .

With tail (Xnode s ts) = Xnode s ts , h has

h Xnodes ts = (Xnode s ts , Xnode s ts)

= λ sString . λ(k , z)Xtf×Xtf .(Xnode s k ,

Xnode s k) s (ts , tail ts)

= let f1 = λ sString . λ(k , z)Xtf×Xtf . (Xnode s k ,

Xnode s k)

in f1 s (h ts)

By applying Equation (4.12), the following is defined:

h
def
= λmXtf . m [Xtf × Xtf]

let f1 = λ sString . λ(k , z)Xtf×Xtf .(Xnode s k , Xnode s k)

f2 = λ tXtf . λ(k , z)Xtf×Xtf .(Cons t k , select first k z)

in f1 (nil, nil) f2

Chapter 4: Encoding XQ in System F 59

and tail is the second element in the pair of type [Xtf ×Xtf]. There-

fore,

tail
def
= λmXtf . (m [Xtf × Xtf]

let f1 = λ sString . λ(k , z)Xtf×Xtf . (Xnode s k , Xnode s k)

f2 = λ tXtf . λ(k , z)Xtf×Xtf .(Cons t k , select first k z)

in f1 (nil, nil) f2).1

concat (@) For two XML forest ts1 and ts2, concat ts1 ts2
3 concatenates t1

and t2 with type of concat : Xtf → Xtf → Xtf , represented by

concat nil y = y

concat (Cons t ts) y = Cons t (concat ts y)

These equations can be written more abstractly as

concat nil = λ yXtf . y

concat (Cons t ts) = Cons t (concat ts)

which matches the forms of Equations(4.10-4.11) with type V as Xtf →
Xtf so that the following can be defined:

concat
def
= λmXtf . m [Xtf → Xtf] (λ sString . λ bXtf . Xnode s ts)

(λ yXtf . y) Cons

reverse This operator reverses an XML forest on the top level with type

reverse : Xtf → Xtf . For example, reverse [t1, t2, t3] returns

3Its infix form is @, represented by ts1 @ ts2.

Chapter 4: Encoding XQ in System F 60

[t3, t2, t1].

In order to define reverse, a subsidiary function, rappend : Xtf →
Xtf → Xtf , is presented, such that

rappend [a, b, c] [3, 2, 1] = [1, 2, 3, a, b, c]

If the first argument is nil, rappend reverses the second argument so

that

rappend y nil = y

rappend y (Cons t ts) = Cons t (rappend y ts)

With Equation (4.12) and type V as Xtf , function rappend is denoted

as

rappend y
def
= λmXtf . m [Xtf] (λ sString . λ bXtf . Xnode s ts) y

(λ tXtf . λ zXtf . Cons t z)

or

rappend
def
= λ yXtf . λmXtf .m [Xtf] (λ sString . λ bXtf .Xnode s ts) y

(λ t . λ z . Cons t z)

With rappend, reverse is expressed as follows:

reverse nil = nil

reverse (Cons t ts) = rappend (Cons t nil) (reverse ts)

= (λ tXtf . rappend Cons t nil) t (reverse ts)

which fit the recursive forms of Equations (4.10-4.11). By Equation

Chapter 4: Encoding XQ in System F 61

(4.12),

reverse
def
= λmXtf . m [Xtf] (λ sString . λ bXtf . Xnode s ts) nil

(λ tXtf . rappend Cons t nil)

select For XML forest ts , and string s , select : String → Xtf → Xtf

extracts the tree elements whose roots are labelled s .

First a function rootLabel: Xtf → String is defined to extract the

roots label as follows:

rootLabel (Xnode s ts) = s

= select first s (rootLabel ts)

rootLabel nil = default

rootLabel (Cons t ts) = (λ x String . λ yString . default)

(rootLabel t) (rootLabel ts)

When rootLabel applies to an XML forest, it returns default which

means nothing. The function rootLabel is then signified as

rootLabel
def
= λmXtf . m [String] select first default

(λ x String . λ yString . default)

Chapter 4: Encoding XQ in System F 62

With function rootLabel, select is described as

select s nil = nil

select s (Cons t ts) = if s == (rootLabel t) then

Cons t (select s ts) else select s ts

= if s == (rootLabel t) then

let f = λ zXtf . Cons t z

in f t (select s ts)

else select second t (select s ts)

where “==” is a boolean operator comparing strings equality, and can

also be represented in System F : when a string is represented as a list

of characters, the operator “==” is defined as a polymorphic function

on list. Evidently, the previous equations fit (4.10-4.11) with type V

as Xtf . Therefore, select is defined as

select
def
= λ sString . λmXtf . m [Xtf]

let f1 = λ sString . λ bXtf .Xnode s ts

f2 = λ tXtf .(if s == (rootLabel t) then

λ zXtf .Cons t z else λ zXtf .select second t z)

in f1 nil f2

4.2.3 Vertical Operators

Vertical operators are considered to be the operators that recursively deal

with the tree structure of each tree in an XML forest. For example, perform-

Chapter 4: Encoding XQ in System F 63

ing a depth-first traversal for tree t attains a forest, including t ’s subtrees,

in a DFS order. Now we show how vertical operators roots, children,

subtreesdfs are represented by polymorphic functions in System F.

roots The operator roots : Xtf → Xtf returns all the root nodes, indicating

one node for each tree, and a list of root nodes for a forest,

roots (Xnode s ts) = Xnode s nil

= let f1 = λ sString . λ bXtf . Xnode s nil in

f1 s (roots ts)

roots nil = nil

roots (Cons t ts) = Cons (roots t) (roots ts)

fits Equations (4.6-4.8) with U and V as type Xtf , and roots is defined

as

roots
def
= λmXtf . m [Xtf] (λ sString . λ bXtf . Xnode s nil)

nil Cons

children For XML forest m, children : Xtf → Xtf recursively obtains

children ci : Xtf for each tree element ti , and concatenates all ci , and

is expressed as

children (Xnode s ts) = ts

children nil = nil

children (Cons t ts) = concat (children t) (children ts)

where the first equation does not match the form of Equation (4.6),

but can be treated by the approach used for the tail function.

Chapter 4: Encoding XQ in System F 64

Let g : Xtf → Xtf × Xtf , such that g m = (m, children m), then

g (Xnode s ts) = (Xnode s ts , ts)

= λ sString . λ(k , z)Xtf×Xtf . (Xnode s k , k) s (g ts)

= let fT = λ sString . λ(k , z)Xtf×Xtf . (Xnode s k , k)

in fT s (g ts)

g nil = (nil, children nil)

= (nil, nil)

g (Cons t ts) = (Cons t ts , children (Cons t ts))

= (Cons t ts , concat (children t) (children ts))

= λ(k1, z1)
Xtf ×Xtf . λ(k2, z2)

Xtf ×Xtf .

(Cons k1 k2, concat z1 z2) (g t) (g ts)

= let fXF = λ(k1, z1)
Xtf ×Xtf . λ(k2, z2)

Xtf ×Xtf .

(Cons k1 k2, concat z1 z2)

in fXF (g t) (g ts)

which fit the forms of Equation (4.6-4.8), and function g is defined as

follows:

g
def
= λmXtf . m [Xtf × Xtf]

let fT = λ sString . λ(k , z)Xtf×Xtf . (Xnode s k , k)

fXF = λ(k1, z1)
Xtf ×Xtf . λ(k2, z2)

Xtf ×Xtf .

(Cons k1 k2, concat z1 z2)

in fT (nil, nil) fXF

and children is the second element in the pair of type [Xtf × Xtf],

Chapter 4: Encoding XQ in System F 65

expressed as

children
def
= let g = λmXtf . m [Xtf × Xtf]

let fT = λ sString . λ(k , z)Xtf×Xtf . (Xnode s k , k)

fXF = λ(k1, z1)
Xtf ×Xtf . λ(k2, z2)

Xtf ×Xtf .

(Cons k1 k2, concat z1 z2)

in fT (nil, nil) fXF

in g .1

subtreesdfs For object m of type Xtf , and if m is an XML tree, subtreesdfs :

Xtf → Xtf performs a depth-first traversal and returns all the subtrees

of m, including itself; if m is an XML forest, subtreesdfs traverses

each tree element ti of m, obtains subtrees for each ti , and concatenates

them, such that:

subtreesdfs (Xnode s ts) = Cons (Xnode s ts) (subtreesdfs ts)

subtreesdfs nil = nil

subtreesdfs (Cons t ts) = concat (subtreesdfs t)

(subtreesdfs ts)

where the second equation does not fit iterator Equation(4.6). The

approach in children is adopted by defining g : Xtf → Xtf ×Xtf such

Chapter 4: Encoding XQ in System F 66

that g m = (m, subtreesdfs m). For Xnode s ts ,

g (Xnode s ts) = (Xnode s ts , Cons (Xnode s ts) (subtreesdfs ts))

= λ(k , z)Xtf×Xtf . (Xnode s k , Cons (Xnode s k) z)

(ts , subtreesdfs ts)

= let fT = λ sString . λ(k , z)Xtf×Xtf .

(Xnode s k , Cons (Xnode s ts) z)

in fT s (g ts)

Then we define subtreesdfs is

subtreesdfs
def
= let g = λmXtf . m [Xtf × Xtf]

let fT = λ sString . λ(k , z)Xtf×Xtf .

(Xnode s k , Cons (Xnode s ts) z)

fXF = λ(k1, z1)
Xtf ×Xtf . λ(k2, z2)

Xtf ×Xtf .

(Cons k1 k2, concat z1 z2)

in fT (nil, nil) fXF

in g .1

4.2.4 Boolean Operators

XQ defines two structural boolean operators, equal and less, that define

structural relationships of the forests. Also, operator empty is introduced to

check the emptiness of a forest.

empty This operator tests the emptiness of an XML forest 4 with empty :

4When empty is applied to an XML tree, it is assumed that False is returned.

Chapter 4: Encoding XQ in System F 67

Xtf → Bool, and represented as

empty (Xnode s ts) = False

= (λ aString . λ bBool . False) s (empty ts)

empty nil = True

empty (Cons t ts) = False

= (λ xBool . λ yBool . False) (empty t) (empty ts)

For object m : Xtf , functions fT : String → Bool → Bool , and

fXF : Bool → Bool → Bool , the boolean condition empty is defined

by Equations(4.6-4.8) as follows:

empty
def
= λmXtf . m [Bool]

let fT = λ x String . λ yBool . False

fXF = λ xBool . λ yBool . False

in fT True fXF

equal The operator, equal, tests whether two objects of type Xtf are struc-

turally equal.

Definition 18 (Structural Equality) Two objects ts1 and ts2 of type

Xtf are structurally equal, if and only if they have the same constructor

at the top level, and all the substructures are inductively equal.

Thus: ts1 and ts2 are structurally equal if and only if one of the following

conditions holds:

• ts1 and ts2 are trees with the same root label, and their children

nodes are recursively equal ;

Chapter 4: Encoding XQ in System F 68

• ts1 and ts2 are nil;

• ts1 and ts2 are forests with constructor Cons, and their tree ele-

ments are recursively structural equals

The operator, equal, recursively tests two forests with type equal :

Xtf → Xtf → Bool. The definition of equal needs two functions that

have been defined: rootLabel : Xtf → String , which extracts the root

label of a tree; and empty : Xtf → Bool , which checks the emptiness

of a forest. Operator equal can be expressed by using rootLabel and

empty as follows:5:

equal (Xnode s ts) m = (s == rootLabel m) and

(equal ts (children m))

equal nil m = empty m

equal (Cons t ts) m = (equal t (head m)) and (equal ts (tail m))

These equations are then written more abstractly as

equal (Xnode s ts) = λmXtf . (s == rootLabel m) and

(equal ts (children m))

= let fT = λ sString . λ zXtf→Bool . λ mXtf .

(s == rootLabel m) and (z (children m))

in fT s (equal ts)

equal nil = empty

5Boolean operators and and or have been represented in System F [7].

Chapter 4: Encoding XQ in System F 69

equal (Cons t ts) = λmXtf . (equal t (head m)) and

(equal ts (tail m))

= let fXF = λ xXtf→Bool . λ yXtf→Bool . λmXtf .

(x (head m)) and (y (tail m))

in fXF (equal t) (equal ts)

which matches the forms of Equations(4.6-4.8) with

fT : String → (Xtf → Bool) → Xtf → Bool

fXF : (Xtf → Bool) → (Xtf → Bool) → Xtf → Bool

leading to

equal
def
= λ nXtf . n [Xtf → Bool]

let fT = λ sString . λ zXtf→Bool . λ mXtf .

(s == rootLabel m) and (z (children m))

fXF = λ xXtf→Bool . λ yXtf→Bool . λmXtf .

(x (head m)) and (y (tail m))

in fT empty fXF

less The boolean operator less examines the structural ordering of XML

trees or forests.

Definition 19 (Structurally Less) For two objects m and n of type

Xtf , m is structurally less than n, if and only if one of the following

conditions recursively holds:

Chapter 4: Encoding XQ in System F 70

• m and n are trees, and one of the following conditions exclusively

holds:

– their root nodes satisfy the less6 condition: rootLabel m is

a string that is literally less than rootLabel n;

– children m is structurally less than children n

• m and n are forests, and one of the following conditions exclusively

holds,

– m is nil, and n has at least one tree element;

– their first element satisfies the structurally less ordering; that

is, head m is less than head n;

– their remaining elements satisfy the structurally less ordering,

that is, tail m is less than tail n

From the definition of structurally less, for two objects of type Xtf , m and

n, the function less is expressed in System F by

less (Xnode s ts) n = (s < rootLabel n) or (less ts (children n))

less nil n = not (empty n)

less (Cons t ts) n = (less t (head n)) or (less ts (tail n))

6The boolean operator less,“<”, for strings can also be defined in System F.

Chapter 4: Encoding XQ in System F 71

where not, or are boolean operators defined in System F. The previous func-

tions are rewritten as

less (Xnode s ts) = λ nXtf . (s < rootLabel n) or (less ts (children n))

= let fT = λ sString . λ zXtf→Bool . λ nXtf .

(s < (rootLabel n)) or (z (children n))

in fT s (less ts)

less nil = not empty

less (Cons t ts) = λ nXtf . (less t (head n)) or (less ts (tail n))

= let fXF = λ xXtf→Bool . λ yXtf→Bool . λ nXtf .

(x (head n)) or (y (tail n))

in fXF (less t) (less ts)

By using Equation(4.12), less is defined as follows:

less
def
= λmXtf . m [Xtf → Bool]

let fT = λ sString . λ zXtf→Bool . λ nXtf . (s < rootLabel n) or

(z (children n))

fXF = λ xXtf→Bool . λ yXtf→Bool . λ nXtf . (x (head n)) or

(y (tail n))

in fT (not empty) fXF

4.2.5 Application Operators

Since XML trees, forests, and their basic operators are represented by System

F polymorphic functions, the focus is now on some complex functions such

Chapter 4: Encoding XQ in System F 72

as sort: Xtf → (Xtf → Xtf → Bool) → Xtf , which sorts an XML forest

using a tree structural boolean condition, and distinct : Xtf → Xtf , which

filters out all the duplicate tree elements from an XML forest.

sort For object ms of type Xtf and tree boolean condition f , sort ms f

reorders ms by using tree structural order function f , where sort re-

cursively selects current tree element m in forest ms , compares m with

the remaining elements of ms , and then inserts m into an appropriate

position.

In order to express sort, a subsidiary function is required,

insert : Xtf → (Xtf → Xtf → Bool) → Xtf → Xtf

where insertm f ts inserts tree element m into an appropriate position

of forest ts by tree boolean condition f . By using insert, sort is

described as:

sort f nil = nil

sort f (Cons t ts) = insert t (sort f ts)

= let fXF = λ kXtf . λ zXtf . insert k z

in fXF (sort f t) (sort f ts)

sort is defined as a forest operator, which returns its second argument

back when applied to a tree. These equations match the forms of the

horizontal iteration Equations(4.10-4.11) with fXF : Xtf → Xtf → Xtf .

Chapter 4: Encoding XQ in System F 73

sort is defined by Equation (4.12) as follows:

sort
def
= λ f Xtf→Xtf→Bool . λmXtf . m [Xtf]

let fT = λ sString . λ zXtf . Xnode s ts

fXF = λ kXtf . λ zXtf . insert t z

in fT nil fXF

The remaining task is to program the function

insert : Xtf → (Xtf → Xtf → Bool) → Xtf → Xtf

where insert m f n inserts tree m into forest n when boolean condition

f is satisfied. insert behaves like a horizontal operator on forests, and

is expressed as:

insert m f nil = Cons m nil

insert m f (Cons t ts) = if f m t then Cons m (Cons t ts)

else Cons t (insert m f ts)

where the second equation does not match (4.11), and the same ap-

proach holds for the definition of tail. Let

g : Xtf → (Xtf → Xtf → Bool) → Xtf → (Xtf × Xtf)

Chapter 4: Encoding XQ in System F 74

such that g m f ts = (ts , insert m f ts),

g m f nil = (nil, Cons m nil)

g m f (Cons t ts) = (Cons t ts , if f m t then Cons m (Cons t ts)

else Cons t (insert m f ts))

= λ(k , z)Xtf×Xtf .(Cons t k , if f m t then Cons m

(Cons t k) else Cons t z) (ts , insert m f ts))

= let fXF = λ xXtf×Xtf . λ(k , z)Xtf×Xtf . (Cons t k ,

if f m t then Cons m (Cons t k) else Cons t z)

in fXF (g m f t) (g m f ts)

These fit Equations (4.10-4.11). By employing (4.12), the following is

defined:

g
def
= λmXtf . λ f Xtf→Xtf→Bool . λ nXtf . n [Xtf × Xtf]

let fT = λ sString . λ(k , z)Xtf×Xtf . (Xnode s k , Xnode s k)

fXF = λ xXtf×Xtf . λ(k , z)Xtf×Xtf .(Cons t k ,

if f m t then Cons m (Cons t k) else Cons t z)

in fT (nil, Cons m nil) fXF

and therefore, insert is the second element in the pair of type [Xtf ×

Chapter 4: Encoding XQ in System F 75

Xtf], and

insert
def
= let g = λmXtf . λ f Xtf→Xtf→Bool . λ nXtf . n [Xtf × Xtf]

let fT = λ sString . λ(k , z)Xtf×Xtf.(Xnode s k , Xnode s k)

fXF = λ xXtf×Xtf . λ(k , z)Xtf×Xtf .(Cons t k ,

if f m t then Cons m (Cons t k) else Cons t z)

in fT (nil, Cons m nil) fXF

in g .1

distinct For XML forest ts , distinct ts eliminates all the duplicate tree

elements with Xtf → Xtf . Given a function, filter : (Xtf → Xtf →
Bool) → Xtf → Xtf → Xtf , where filter f m ts eliminates all tree

elements t that satisfy boolean condition f m t , the horizontal function

distinct is then expressed by filter so that

distinct nil = nil

distinct (Cons t ts) = Cons t (distinct (filter equal t) ts)

= let shift = λ hα→β. λ gβ→γ. λ xα. g h x in

Cons t shift (filter equal t) distinct ts

= let shift = λ hα→β. λ gβ→γ. λ xα.g h x in

let f Xf = λ kXtf . λ zXtf .

Cons k shift (filter equal k) z

in fXF (distinct t) (distinct ts)

When distinct is applied to tree t , distinct returns t . Also, a general

purpose function shift is needed to switch the order of the arguments

Chapter 4: Encoding XQ in System F 76

such that

shift (filter equal t) distinct ts

= (λ hα→β. λ gβ→γ. λ xα. g h x) (filter equal t) distinct ts

� distinct (filter equal t) ts

With switch, distinct is signified as

distinct
def
= λmXtf . m [Xtf]

let fT = λ sString . λ zXtf . Xnode s ts

fXF = let shift = λ hα→β. λ gβ→γ. λ xα. g h x in

λ kXtf . λ zXtf . Cons k shift (filter equal k) z

in fT nil fXF

The definition of distinct still requires operator filter : (Xtf →
Xtf → Bool) → Xtf → Xtf → Xtf , where filter f m ts elimi-

nates the tree elements that satisfy boolean condition f m t . Operator

distinct is then described as,

filter f b nil = nil

filter f b (Cons t ts) = if f b t then filter f b ts

else Cons t (filter f b ts)

let fXF = λ kXtf . λ zXtf . if f b k then z

else Cons k z

in fXF (filter f b t) (filter f b ts)

As a horizontal forest operator, filter returns only the second argu-

ment, if it is a tree. The previous equations match (4.10-4.11), and are

Chapter 4: Encoding XQ in System F 77

defined by Equation (4.12) with type fXF : Xtf → Xtf → Xtf such

that

filter
def
= λ f Xtf→Xtf→Bool . λ bXtf . λmXtf . m [Xtf]

let fT = λ sString . λ zXtf . Xnode s ts

fXF = λ kXtf . λ zXtf . if f b k then z

else Cons k z

in fT nil fXF

4.3 Translation of XQ to System F

After the XML tree and forest are represented in System F, the syntax defini-

tion of XQ expressions is rewritten into more general form, where the FLWR

keyword allows the arbitrary composition of query expressions; and also, all

the basic operators on XML data are presented in System F. Encoded in

System F, a complex XML query expression can be expressed as a sequence

of function applications without any special purpose operators. The syntax

of XQ in System F is defined in Figure 4.2, where XFn expresses the basic

XML operators defined as polymorphic function abstractions, x is a variable,

ϕ is a boolean expression, U is a type, and e1SF
, e2SF

, . . . , ekSF
denote XQ

expressions encoded in System F. For example,the head is represented in

System F as

head m
def
= m [Xtf] (λ sString . λ bXtf .Xnode s ts) default

(λ tXtf . λ zXtf . t)

Chapter 4: Encoding XQ in System F 78

XQexp ::= x

| let x = eSF in e ′
SF

| for x in e1SF
do e2SF

| where ϕ return eSF

| XFn e1SF
. . . ekSF

Boolexp ::= True | False

| empty eSF

| less eSF e ′
SF

| equal eSF e ′
SF

XFn e1SF
e2SF

. . . ekSF
::= eSF [U] eT enil eXF

Figure 4.2: XQ in System F

where “[Xtf]” denotes the resulting type of head, and the following three

terms, eT , enil , and eXF , correspond iterators inductively applied to Xnode,

nil and Cons.

4.4 Semantic Analysis

Since XQ has been encoded in System F, the semantics of XQ query expres-

sions are described as semantic equations, and encoded in System F.

4.4.1 Environment

To understand the semantics of XQ expressions, it is defined semantic equa-

tions that map XQ expressions to the meanings that these phrases denote.

Clearly, XQ expressions have corresponding values which are XML forests,

Chapter 4: Encoding XQ in System F 79

similar to those of boolean expressions that have boolean values True or False.

However, the meanings or denotations of XQ expressions are much more com-

plex than the values, because the values of XQ expressions depend on the

values of the variables of the XQ expressions. More abstractly, the values de-

pend on an environment, Env, which maps each variable to its corresponding

value.

Definition 20 (Environments) An environment, Env, denotes the map-

ping of each variable with its value, and is described as a list of paired

variables and values with the following definitions:

Env
def
= (Var × Xtf) list

Var × Xtf
def
= (Var → Xtf → Pair) → Pair

For v : Var , ts : Xtf , pair (v , ts) : Var × Xtf is expressed by the following

polymorphic function:

(v , ts)
def
= λ f Var→Xtf→Pair . f v ts

and the project operations are

(v , ts).0 = (v , ts) [Var] (λ xVar . λ yXtf . x)

(v , ts).1 = (v , ts) [Xtf] (λ xVar . λ yXtf . y)

Chapter 4: Encoding XQ in System F 80

where .0 returns the first element, variable v , in the pair, and .1 receives

value ts , shown as

(v , ts).0
def
= (v , ts) [Var] (λ xVar . λ yXtf . x)

= (λ f Var→Xtf→Pair . f v ts) [Var] (λ xVar . λ yXtf . x)

� (λ f Var→Xtf→Var . f v ts) (λ xVar . λ yXtf . x)

� (λ xVar . λ yXtf . x) (λ xVar . λ yXtf . x) v ts

� (λ yXtf . v) ts

� v

and similarly,

(v , ts).1 �∗ ts

4.4.2 Operations of the Environment

The environment describes the mapping of variable v to its corresponding

value ts . In order to operate the values stored in the environment, two

operations must be defined to manipulate the environment.

put Operation put v ts env mapping value ts to variable v in environment

env . If v already exists and stores value ts ′, ts ′ is replaced by new value

ts ; otherwise, a new mapping (v , ts) is added to env . The operation

put : Var → Xtf → Env → Env is expressed as

put v ts nil = Cons (v , ts) nil

put v ts (Cons a as) = if v == a.0 then Cons (v , ts) as

else Cons a (put v ts as)

Chapter 4: Encoding XQ in System F 81

where env is the type of (Var ×Xtf) list. To define the function put,

a function g ,

g : Var → Xtf → Env → (Env × Env)

with g v ts m = (m, put v ts m), is introduced.

For variable v : Var and value ts : Xtf , g is expressed as

g v ts nil = (nil, Cons (v , ts) nil)

g v ts (Cons a as) = (Cons a as , if v == a.0

else Cons a (put v ts as))

= λ(k , z)Env×Env . (Cons a k , if v == a.0

then Cons (v , ts) k else Cons a z)

a (as , Cons a (put v ts as))

= let f = λ aVar×Xtf . λ(k , z)Env×Env . (Cons a k ,

if v == a.0 then Cons (v , ts) k else Cons a z

in f a (g v ts as)

and matches the forms of list Equation (3.6), and is defined as

g
def
= λ vVar . λ tsXtf . λmEnv . m [Env × Env]

let f = λ aVar×Xtf . λ(k , z)Env×Env . (Cons a k , if v == a.0

then Cons (v , ts) k else Cons a z

in (nil, Cons (v , ts) nil) f

and function put is the second element of g , so put
def
= g .1

Chapter 4: Encoding XQ in System F 82

get Operation get v env retrieves the value of variable v stored in the

environment env if v exists; otherwise, get returns nil, where get has

type get : Var → Env → Xtf , and is described as follows:

get v nil = nil

get v (Cons a as) = if v == a.0 then a.1 else get v as

= let f = λ aVar×Xtf . λ zXtf . if v == a.0 then a.1

else z

in f a (get v as)

which fits the iterator form of list in Definition 11. Consequently, get

is denoted as

get
def
= λ vVar . λmEnv . m [Xtf]

let f = λ aVar×Xtf . λ zXtf . if v == a.0 then a.1 else z

in nil f

4.4.3 Semantic Functions of XQ

With defining Env and its operations in System F, an XQ query evaluation

can be described as a set of computations from the initial state (environment)

to the final stat(environment) by using state-transformation functions 7,

[[−]]XQexpE = XQexp → Env → Xtf

[[−]]BoolexpE = Boolexp → Env → Bool

where E is an environment of type Env .

The semantics of XQ expressions are indeed a sequence of operations that

7The expression type is added to the semantic functions.

Chapter 4: Encoding XQ in System F 83

change the environments. In this thesis, the intention is to represent these

semantic functions and describe them in System F.

SEM EQ: Variables

[[v]]XQexpE
def
= E v = get v E

which means that the variable expression returns its value in environ-

ment E .

SEM EQ: Let-Assignment

[[let x = e in e ′]]XQexpE
def
= [[e ′]]XQexp(E [x := ([[e]]XQexpE)]

= (λE ′Env . [[e ′]]XQexpE
′) (λ f Env→Env . f E)

(put x [[e]]XQexpE)

= let v ′ = [[e]]XQexpE

f = λ v ′Xtf . put x v ′

in [[e ′]](f v ′ E)

The meaning of let x := e in e ′ is that, after e is evaluated in E obtaining

a value v ′, put x v ′ changes environment E to E ′ by mapping x to v ,

and then expression e ′ is evaluated in new environment E ′.

SEM EQ: Boolean Condition

[[equal e e ′]]BoolexpE
def
= equal ([[e]]XQexpE) ([[e ′]]XQexpE)

[[less e e ′]]BoolexpE
def
= less ([[e]]XQexpE) ([[e ′]]XQexpE)

[[empty e]]BoolexpE
def
= empty ([[e]]XQexpE)

Chapter 4: Encoding XQ in System F 84

The purpose of the boolean condition is to evaluate each XQexp ex-

pression in environment E , and then check the boolean relationship of

results.

SEM EQ: Where-Return

[[where ϕ return e]]XQexpE
def
= if ([[ϕ]]BoolexpE) then ([[e]]XQexpE)

else nil

where ϕ is a boolean condition whose semantic equation is defined

above. If condition ϕ holds, XQexp expression e is evaluated in envi-

ronment E , and the result of type Xtf is returned.

SEM EQ: For-Do

[[for x ∈ e do e ′]]XQexpE
def
= [[e ′]]XQexp(E [x := v1]) @ . . . @

[[e ′]]XQexpE ([x := vk])

where [v1, . . . , vk] = [[e]]E

The semantic function of For-Do is complex. The operation for x ∈
e do e ′ first evaluates expression e in environment E , returning a re-

sulting list [v1, . . . , vk], and then ‘x ∈” transfers environment E to

be a list of new environments [E1, . . . , Ek]. Finally expression e ′ is

evaluated on the list of the new environments.

In order to encode the For-Do semantic equation, a mapping function

is employed which has

mapf : (θ → θ′) → θ list → θ′ list

Chapter 4: Encoding XQ in System F 85

whose definition is

mapf
def
= λ f θ→θ′ . λ x θ list.x [θ′ list] nil (λ tθ. λ z θ′ list.Cons (f t) z)

which applies function f to each element in list x .

For the For-Do clause, there are a set of state-transformation actions:

• the evaluation of expression e in environment E creates a Xtf list

for x

newVals = [[e]]E : Xtf list

• mapPut x newVals E creates a list of new environments newEs by

applying put x e E to value e in the newVals list, where

mapPut = λ xVar .mapf (put x)

= λ xVar . λ newValsXtf list. λEEnv . newVals [Env list]

nil (λ eXQexp . λ zEnv list. Cons (put x e E) z)

mapPut : Var → Xtf list → Env → Env list

• mapSem e ′ E ′ evaluates e ′ in each environment in newEs list, and

concatenates the results:

mapSem = λ e ′XQexp . mapf ([[e ′]])

= λ e ′. λ newEsEnv list. newE [Xtf list] nil

(λEEnv . λ z list Xtf . Concat ([[e ′]]E) z)

mapSem : XQexp → Env list → Xtf list

Chapter 4: Encoding XQ in System F 86

With these functions, the semantic equation for For-Do is defined as

[[for x ∈ e do e ′]]XQexpE
def
=

let newVals = [[e]]E

mapPut = λ xVar . λ newValsXtf list. λEEnv . newVals [Env list]

nil (λ eXQexp . λ zEnv list. Cons (put x e E) z)

mapSem = λ e ′XQexp . λ newEsEnv list. newE [Xtf list]

nil (λEEnv . λ zXtf list. Concat ([[e ′]]E) z)

in mapSem e ′ (mapPut x newVals)

SEM EQ: XFn

[[XFn(e1, . . . , ek)]]E
def
= XFn ([[e1]]E , . . . , [[ek]]E)

where XFn is an XML operator, such as select, subtreesdfs, with k

arguments. [e1, . . . , ek] is a expression list, es , where ei is an XQexp

expression. The argument list, es , is first evaluated in environment E ,

and the resulting list vs is supplied to XFn as arguments. First, mapArg

is defined as

mapArg = mapf (λ eXQexp . λEEnv .[[e]]E)

= (λ f θ→θ′ . λ x θ list.x [θ′ list] nil (λ tθ. λ z list θ′ .Cons (f t) z))

(λ eXQexp . λEEnv .[[e]]E)

= λ argListXQexp list. λEEnv .argList [Xtf list]

nil (λ eXQexp. λ zXtf list. Cons ([[e]]E) z)

mapArg : XQexp list → Env → Xtf list

Chapter 4: Encoding XQ in System F 87

where mapArg es E creates an Xtf list by applying [[e]]E to each XQexp

expression e in expression list es . Finally, the semantic meaning of XFn

is defined as

[[XFn(e1, . . . , ek)]]E
def
=

let argList = [e1, . . . , ek]

mapArg = λ argListXQexp list. λEEnv . argList [Xtf list]

nil (λ eXQexp . λ zXtf list.Cons ([[e]]E) z)

in XFn(mapArg argList E)

So for, the XML data and all the basic operators defined in XQ are

represented successfully by System F. As a query language, XQuery has been

proved to be turing complete, which means its query evaluation termination

is undecidable. As an XQuery fragment, XQ has been shown to be System

F representable, which gives XQ a very important computability property.

Theorem 4 Any XQ query evaluation terminates and the equivalence of

XQ queries is decidable.

This property is supported by the strong normalization property of System F

shown in Chapter 3. As an XML query language, XQ query’s computation

decidability does not contradict the undecidability of the relational query

language because an XML document is ordered.

Chapter 5

Extension of XQ

The principal purpose of the dynamic interval method is to implement the

XML query by a relation query engine, which ensures the polynomial time

complexity in the query evaluation. After this is achieved, it is time to

discuss the expressiveness of XQ language. Not only is its expressiveness

investigate, but also its limitations are studied by examining simple queries.

Although they cannot be defined in XQ language, they still can be expressed

in relational SQL statements, leading us to the extension. In this chapter,

first a simple query that is XQ undefinable is given, then an extension is

presented to overcome this limitation, and retain XQ’s System F encodable

property to guarantee the strong query evaluation termination.

5.1 Limitation of XQ: A Case Study

As an XQuery fragment, XQ captures the core feature presented in XQuery/XPath

expressions. XQ’s simple syntax allows arbitrary compositions of basic func-

88

Chapter 6: Extension of XQ 89

tion invocations, local variable definitions, conditional selections, and itera-

tions over XML data. Although XQ is powerful, it still cannot express certain

simple queries.

Figure 5.1 illustrates two XML queries, where query Q1 asks to flat a

multilevel list-like XML tree1 A into a two-level XML tree B , and query Q2

conversely transforms XML tree B back to tree A.

a

b

c

d

Q1

Q2 a b c d

Figure 5.1: Two XML queries examples

The query Q1 is represented in XQ syntax as

roots (subtreesdfs A)

where subtreedfs puts all the sub-self trees of A into a forest in the docu-

ment(tree) order, and the roots extracts the root nodes for all the sub-trees.

The purpose of function composition roots ◦ substreedfs is to flat a com-

plex multilevel hierarchical tree into a forest with each node at the same top

level. In addition, the XQ expression of query Q1 can be translated into

an SQL statement with the XQ-to-SQL templates of subtreedfs, roots,

defined in [6], and evaluated by a relational query engine. Now query Q2

picks up all the nodes of tree B and constructs a deep tree without sibling

relationships. However, Q2 cannot be expressed by XQ , even though the

1Tree and forest are used to describe the XML document in this chapter.

Chapter 6: Extension of XQ 90

s l r

a 0 1

b 2 3

c 4 5

d 6 7

Figure 5.2: Table TB

s l r

a 0 14

b 2 12

c 4 10

d 6 8

Figure 5.3: TverticalTree from Tree B

query still can be expressed by the SQL statement after tree B is interval

encoded into a relation.

5.1.1 An XQ Undefinable Query in SQL

The implementation of query Q2 by the relational method includes two steps:

• encoding XML tree B into an interval relation by performing a depth

first traversal on the tree B and marking each node’s left and right end

points, as depicted in Figure 5.2;

• constructing a tree by linking all the nodes of tree B using the parent-

child relationship with the document order, shown in Figure 5.4.

5.1.2 Analysis of the XQ Limitations

The reason of Q2 is definable in relational SQL queries is that, when tree

B is encoded into relation, the node tuples can be accessed arbitrarily, and

their parent-children, ancestor-descendent, and sibling relationship can be

reassembled by changing the value of interval attributes l and r . For tree B

[a, b, c, d] (expressed simply), by using a SQL statement, query Q2 can be

implemented by extending the right interval value of c to contain the right

Chapter 6: Extension of XQ 91

SELECT u.s AS s , u.l AS l , 2 ∗ v .r − u.l AS r

FROM TB u,

(SELECT v .s , v .l , v .r

FROM TB v

WHERE NOT EXISTS(

SELECT ∗
FROM TB m

WHERE m.l > v .r) v

Figure 5.4: SQL Expression for Constructing a Vertical Tree

interval of node d to obtain a new tree with c being the parent of d , and so

on. With the interval relation, the vertical tree is successfully constructed

without sibling relationship.

After the XQ undefinable query is expressed in SQL statements, we would

discuss the limitations of XQ language, that is, why can XQ not express such

a query as Q2? With analyzing the syntax of XQ in Chapter 2, we find that

only a horizontal tree constructor Xnode is defined, which creates a new tree

using string s and forest ts , denoted as <s> ts </s>. The Xnode expresses

only the tree construction on the top level, with wrapping up a list of of

XML elements by tag s .

Fact 1 Only with the tree constructor Xnode, XQ cannot express the nesting

queries whose results are much deeper than the original document, except

enumerating each individual element.

In the thesis, the objective is to extend XQ by adding a new tree operator

Chapter 6: Extension of XQ 92

that constructs a tree in vertical direction.

5.2 New Tree Constructor Xtree

c e

t1^ t2

t2

a

d

b

c

a

d

b

e

t1

x

y z

x

y z

x

y zyz

x

Figure 5.5: The operation of Xtree t1 t2

An example of a vertical tree construction is offered in Figure 5.5. The

new tree operator is named Xtree, where Xtree t1 t2 appends tree t2 to each

leaf node of tree t1. After extending XQ syntax by Xtree, Xtree will be

represented in System F to ensure this extension retains the strong normal-

ization property of XQ.

Chapter 6: Extension of XQ 93

5.2.1 Representing Xtree in System F

As a vertical tree operation, Xtree t1 t2 constructs a new tree by appending

t2 to each leaf node of tree t1 as

Xtree (Xnode s ts) t2 = if empty ts then Xnode s t2

else Xnode s (Xtree ts t2) (5.1)

Xtree nil t2 = nil (5.2)

Xtree (Cons t ts) t2 = Cons (Xtree t t2) (Xtree ts t2) (5.3)

If t1 is a tree as Xnode s ts , and if ts is [], then t2 is directly appended as the

children of root s as <s> t2 </s>; otherwise, the iterator visits t1 children’s

level, which is XML forest ts , and applies operator Xtree to each tree element

of ts .

Equation (5.1) does not match (4.9) because of ts is employed as an

argument of empty. It is necessary to define a pair function g to store the

input argument and the corresponding result of Xtree as follows:

g t1 t2
def
= (t1, Xtree t1 t2)

with the following details:

g (Xnode s ts) t2 = (Xnode s ts , if empty ts then Xnode s t2

else Xnode s (Xtree ts t2)) (5.4)

g nil t2 = (nil, nil)

g (Cons t ts) t2 = (Cons t ts , Cons (Xtree t t2) (Xtree ts t2))

In order to match the form of (4.9), with g t1 t2 = (t1, Xtree t1 t2), (5.4) is

Chapter 6: Extension of XQ 94

rewritten as

g (Xnode s ts) t2 = (λ sstring . λ(k , z)Xtf×Xtf .(Xnode s k , if empty k

then Xnode s t2 else Xnode s z)) s (ts , Xtree ts t2)

= let fT = λ sString . λ(k , z)Xtf×Xtf .(Xnode s k ,

if empty k then Xnode s t2 else Xnode s z)

in fT s (g ts)

which matches the form of Equation (4.9). Function g is defined as

g
def
= λ tXtf

1 . t1 [Xtf × Xtf]

let fT = λ tXtf
2 . λ sString . λ(k , z)Xtf×Xtf . (Xnode s k , if empty k

then Xnode s t2 else Xnode s z)

fXF = λ tXtf
2 . λ(k , z)Xtf×Xtf .(Cons t k , Cons (Xtree k t2)

(Xtree z t2))

in fT (λ tXtf
2 .(nil, nil)) fXF

and operator Xtree is defined as follows:

Xtree
def
= g .1

= (λ tXtf
1 . t1 [Xtf × Xtf]

let fT = λ tXtf
2 . λ sString . λ(k , z)Xtf×Xtf . (Xnode s k ,

if empty k then Xnode s t2 else Xnode s z)

fXF = λ tXtf
2 . λ(k , z)Xtf×Xtf .(Cons k z , Cons (Xtree k t2)

(Xtree z t2))

in fT (λ tXtf
2 .(nil, nil)) fXF).1

Chapter 6: Extension of XQ 95

1 CREATE VIEW Xtree(T1, T2) AS

2 (SELECT u.s AS s , u.l ∗ wT2 AS l , u.r ∗ wT2 AS r

3 FROM T1 u)

4 UNION ALL

5 (SELECT m.s AS s , m.l + u.l ∗ wT2 AS l ,m.r + u.l ∗ wT2 AS r

6 FROM

7 (SELECT u.s , u.l , u.r

8 FROM T1 u

9 WHERE NOT EXISTS

10 (SELECT ∗
11 FROM T1 v

12 WHERE u.l < v .l AND u.r > v .r),

13 (SELECT m.s , m.l , m.r

14 FROM T2 m

15 WHERE EXISTS

16 (SELECT ∗
17 FROM T2 p

18 WHERE p.l < m.l AND p.r > m.r)

Figure 5.6: The relational template (View) for Xtree

5.2.2 SQL Template for Xtree

After the new operator Xtree has been successfully represented in System F,

indicating that the extended XQ still exhibits the strong normalization prop-

erty, this thesis attempts to show that a corresponding SQL template exists

for Xtree, ensuring the polynomial time complexity of XQ query evaluation.

The Xtree template is signified in Figure 5.6.

First, the interval values of each node of tree t1, encoded in table T1, are

extended by the width of tree t2 (Line 2, Line 3) to confirm that each node

has enough interval space to contain tree t2 as its children, and then each

leaf nodes of tree t1 has been picked up (Line 7 to Line 12) and attached to

Chapter 6: Extension of XQ 96

the children nodes of tree t2 (Line 13 to Line 18) by a cross-product (Line 6

to Line 18), where the intervals of children nodes of t2 have been adjust to

fit the interval of each leaf node (Line 5). Finally, the tree nodes of t1 with

the extended interval and appended t2 nodes, are returned as the result of

view Xtree.

5.3 New Vertical Vfor Clause

XQ syntax defines FLWR-like clauses, where the for clause for x ∈ e do e ′

has the following semantic meaning:

[[for x ∈ e do e ′]]E def
= [[e ′]](E [x := v1]) @ . . . @ [[e ′]]E ([x := vk])

where [v1, . . . , vk] = [[e]]E

The expression for x ∈ e do e ′ first evaluates expression e in Environment E ,

and obtains a list of result [v1, . . . , vk], and then the assignment operation

“x ∈” translates Environment E to a list of new Environments [E1, . . . , Ek].

Finally, the expression e ′ is evaluated in the list of new environments, and the

results are concatenated. The concatenating operation @ has been defined

as an infix operator in [6], and expressed as a prefix operator concat in this

thesis by

concat ts1 ts2 ≡ ts1 @ ts2

where ts1 and ts2 are XML forests.

With the concatenating operator @, the semantics of the for clause is easy

to express. The idea of evaluating a for XQ expression with concatenating a

Chapter 6: Extension of XQ 97

sequence of individual result is used and extended to represent the semantics

of vertical construction. A new vertical Vfor clause is proposed as

Vfor x ∈ e do e ′

and its semantic equation is expressed, with the infix form ∧ of Xtree, as

[[Vfor x ∈ e do e ′]]E def
= [[e ′]](E [x := v1]) ∧ · · · ∧ [[e ′]]E ([x := vk])

where [v1, . . . , vk] = [[e]]E (5.5)

where the expression e ′ is first evaluated in Environment E , returning a list

of result [v1, . . . , vk], and then the assignment operation “x ∈” translates

Environment E into a sequence of new Environments [E1, . . . , Ek]. Finally,

the expression e ′ is evaluated in these new environments, and the sequence

of results are combined by the vertical tree operation “∧”, where

Xtree t1 t2 ≡ t1 ∧ t2

with ts1 and ts2 being XML trees.

5.3.1 Expressing the Semantics of Vfor in System F

With the extension of Xtree operator and Vfor clause, XQ has become more

powerful to express the queries that are undefinable in the original XQ syn-

tax. The focus is still on XQ’s computational properties in the attempt to

represent the vertical “for” clause Vfor in System F, which ensures that the

extended XQ language still holds the strong normalization property.

The semantic equation (5.5) of Vfor is similar to that of For-Do. Also,

it is necessary to use the general list mapping function mapf, defined in

Chapter 6: Extension of XQ 98

Section 4.4.3, which applies the function f to each element in the list ts with

type

mapf : (θ → θ′) → θ list → θ′ list

First, the expression Vfor x ∈ e do e ′ evaluates expression e in environ-

ment E and obtains a list of Xtf results, [v1, . . . , vk], defined as an Xtf list,

newVals , such that

newVals = [[e]]E : Xtf list

Next, the assignment operation “x ∈” transfers the given environment E into

a list of new environments [E1, . . . , Ek] by inserting each x value into a dif-

ferent environment. This transformation is implemented by a mapping func-

tion mapPut, where mapPut x newVals E creates a list of new environments,

newEs . This is achieved by utilizing put x ej E , defined in Section 4.4.3, to

insert each value, ej , j = 1 . . . k , in the newVals list into environment E :

mapPut = λ xVar . mapf (put x)

= λ xVar . λ newValsXtf list. λEEnv . newVals [Env list] nil

(λ eXQexp . λ zEnv list. Cons (put x e E) z)

mapPut : Var → Xtf list → Env → Env list

After expression e ′ is evaluated in the list of environments, newEs , the results

are combined by the vertical tree operator Xtree, and expressed as

[[e ′]]E1 ∧ · · · ∧ [[e ′]]Ek

The function, semVfor, expresses the evaluation of e ′ in the environment list,

Chapter 6: Extension of XQ 99

newEs :

semVfor [[e ′]] nil = nil

semVfor [[e ′]] (Cons E Es) = Xtree ([[e ′]]E) (semVfor [[e ′]] Es)

and semVfor is defined as

semVfor = λ([[e ′]])Env→Xtf . λ newEsEnv list. newEs [Xtf]

nil (λEEnv . λ zXtf . Xtree ([[e ′]]E) z)

semVfor : (XQexp → Env → Xtf) → Env list → Xtf

Finally, the semantic equation for Vfor can be defined as

[[Vfor x ∈ e do e ′]]XQexpE
def
=

let newVals = [[e]]E

mapPut = λ xVar . λ newValsXtf list. λEEnv . newVals [Env list]

nil (λ eXQexp . λ zEnv list. Cons (put x e E) z)

semVfor = λ([[e ′]])Env→Xtf . λ newEsEnv list. newEs [Xtf]

nil (λEEnv . λ zXtf . Xtree ([[e ′]]E) z)

in semVfor [[e ′]] (mapPut x newVals)

5.3.2 Expressing the XQ Undefinable Query

With the syntax of the vertical Vfor clause and corresponding semantic mean-

ing, the extended XQ can easily express query Q2 in Figure 5.1, which trans-

forms forest B into a linked-list deep tree that has no sibling relationships:

Vfor $1 = B do $1

Chapter 6: Extension of XQ 100

where variable $1 is bound to each tree element of B , which are trees a,

b, c, and d (here the trees are simply expressed by their root labels), as

seen in Figure 5.7(a); the Vfor clause utilizes operator Xtree to append all

trees bound by 1 in a vertical direction to a deeply linked tree, shown in

Figure 5.7(b).

The relational implementation of the Vfor x ∈ e do e ′ is similar to the imple-

(b) vfor $1 do $1

cba d
^

b

a

c
^

d

a

b

c

d

c db

(a) $1 = B

a

^ ^ ^ ^

a

b

c

d

Figure 5.7: The illustration of query Q2 with the Vfor clause

mentation of for x ∈ e do e ′, except in the last step, the for-do horizontally

concatenates, with operator @, of all the results evaluated in the sequence

of environments created by x ∈ e; the Vfor applies the vertical tree opera-

tor, Xtree, to append the results evaluated in the sequence of environments

vertically.

With the new tree operator Xtree and the new Vfor clause, XQ has been

successfully extended to be more expressive. Also, the extended XQ has been

Chapter 6: Extension of XQ 101

shown to be System F definable and XQ-to-SQL translatable, which ensure

this extension keeps the polynomial time complexity of query evaluation and

strong termination property.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis System F is shown to be able to express queries in the core of

XQ, an XQuery fragment proposed in [6]. As a second order typed lambda

calculus, System F holds a proven expressive power [7] and a strong nor-

malization property. Therefore, the XML data is represented in System F

as inductive data types, XML tree and XML forest, with the corresponding

iterators. Also, all the basic XML operators of XQ are encoded into System

F. The semantics of XQ are expressed in System F by encoding the semantic

environment using an Environment data with a set of operations. The suc-

cessful encoding of XQ in System F guarantees the termination of XQ query

evaluation and the decidability of query equivalence.

After XQ is represented in System F, an extension of XQ is investigated.

Due to the limitations of XQ, a new tree operator, XTree, and a vertical

Vfor clause are proposed to express some of the undefinable XQ queries. It

102

Chapter 6: Conclusion and Future Work 103

is demonstrated that this extension still retains the XQ-to-SQL translation

property to achieve polynomial evaluation time complexity by utilizing the

relation query engine, and also XQ’s System F encodable property to ensure

the termination of XQ query evaluation.

6.2 Future Work

The suggestions for future work include the followings:

• to further extend XQ towards its completeness with keeping its XQ-to-

SQL translatable and System F encodable properties, along with proof

of the completeness of the extended XQ;

• an XQ-to-SF parser to translate XQ queries into System F syntax

terms; also, an XQ System F processor should be implemented by

a functional language to perform XQ query normalization and detect

the query equivalence;

• to evaluate System F normalized XQ queries with a relational evalua-

tion engine, an SF-to-SQL translator should be implemented to trans-

late the System F syntax fragments to SQL statements.

Bibliography

[1] The XML Query Use Cases, Available from

http://www.w3.org/TR/2005/WD-xquery-use-cases-20050404/.

[2] H.P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, vol-

ume 103 of Studies in Logics and the Foundations of Mathmatics. North-

Holland, 1981.

[3] H.P. Barendregt. The Lambda Calculus with Types. Handbook of Logic

in Computer Science. Oxford University Press, 1990.

[4] M. Fernández B.Choi and J. Siméon. The XQuery Formal Semantics:

A Foundation for Implementation and Optimization. Technical report,

2002.

[5] M. Fernández A. Malhotra K. Rose M. Rys D. Draper, P. Fankhauser

and J. Siméon. XQuery 1.0 and XPath 2.0 Formal Semantics, Available

from http://www.w3.org/TR/query-semantics/, 2002.

[6] D. DeHaan, D. Toman, M. Consens, and M. Ozsu. A Comprehensive

XQuery to SQL Translation Using Dynamic Interval Coding, 2003.

104

105

[7] Y. Lafont J.-Y.Girard and P.Taylor. Proof Theory and Types. Cambridge

Tracts in Theorectical Computer Science 7. Cambridge University Press,

1989.

[8] H. V. Jagadish, Laks V. S. Lakshmanan, Divesh Srivastava, and Keith

Thompson. Tax: A tree algebra for xml. In DBPL ’01: Revised Pa-

pers from the 8th International Workshop on Database Programming

Languages, pages 149–164, London, UK, 2002. Springer-Verlag.

[9] Howard Katz. XQuery from the Experts. Addison-Wesley, 2004.

[10] J. C. Reynolds. Polymorphic Lambda-Calculus: Introduction. In Logical

Foundations of Functional Programming, pages 77–86. Addison-Wesley,

Reading, MA, 1990.

[11] J.C. Reynolds. Theories of Programming Languages. Cambridge Uni-

versity Press, 1998.

	Introduction
	XQuery
	Challenges
	Related Work
	Contributions
	Thesis Organization

	Dynamic Interval Method
	XQ: An XQuery Fragment
	XML Data Model and Operations
	Syntax of XQ
	Semantics of XQ
	XQ Translation of XQuery

	Dynamic Interval Relational Method
	Interval Encoding
	Dynamic Intervals
	XQ-to-SQL Translation

	System F
	Lambda Calculus
	Syntax
	Operational Semantics (Reduction)

	Introduction to System F
	Syntax of System F
	Why System F?

	Expressive Power of System F
	Inductive Types
	Representation of Simple Types

	Encoding XQ in System F
	XML data in System F
	Encoding Basic XML Operators
	General Functions
	Horizontal Operators
	Vertical Operators
	Boolean Operators
	Application Operators

	Translation of XQ to System F
	Semantic Analysis
	Environment
	Operations of the Environment
	Semantic Functions of XQ

	Extension of XQ
	Limitation of XQ: A Case Study
	An XQ Undefinable Query in SQL
	Analysis of the XQ Limitations

	New Tree Constructor Xtree
	Representing Xtree in System F
	SQL Template for Xtree

	New Vertical Vfor Clause
	Expressing the Semantics of Vfor in System F
	Expressing the XQ Undefinable Query

	Conclusion and Future Work
	Conclusion
	Future Work

