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Abstract

We consider several radical classes of noncommutative rings. In particular, we provide

new results regarding the radical theory of semigroup-graded rings, monomial algebras,

and Ore extensions of derivation type. In Chapter 2 we prove that every ring graded by

a torsion free nilpotent group has a homogeneous upper nilradical. Moreover, we show

that a ring graded by unique-product semigroup is semiprime only when it has no nonzero

nilpotent homogeneous ideals. This provides a graded-analogue of the classical result that

says a ring is semiprime if and only if it has no nonzero nilpotent ideals. In Chapter 3,

the class of iterative algebras are introduced. Iterative algebras serve as an interesting

class of monomial algebras where ring theoretical information may be determined from

combinatorial information of an associated right-infinite word. We use these monomial

algebras to construct an example of a prime, semiprimitive, graded-nilpotent algebra of

Gelfand-Kirillov dimension 2 which is finitely generated as a Lie algebra. In Chapter 4, the

Jacobson radical of Ore extensions of derivation type is discussed. We show that if R is a

locally nilpotent ring which satisfies a polynomial identity, then any Ore extension of R of

derivation type will also be locally nilpotent. Finally, we show that the Jacobson radical

of any Ore extension of derivation type of a polynomial identity ring has a nil coe�cient

ring.
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Chapter 1

Preliminaries

1.1 Radicals of rings

Let R denote an associative ring which is not necessarily commutative. For now, we shall

also assume thatR is unital. A central and classical problem in noncommutative ring theory

is to be able to describe the structure of rings in the more straight-forward language of

finite dimensional linear algebra. The beauty of such a classification is well-demonstrated

in the case of semisimple rings. We refer the reader to [38] for a more in-depth look at

semisimple rings. A ring R is said to be semisimple if R is isomorphic to a (finite) direct

sum of minimal left ideals of R. The famous Artin-Wedderburn theorem says that any

semisimple ring R is isomorphic to a finite product of matrix rings over division rings.

That is, the structure of semisimple rings may be understood purely through matrix rings

over division rings.

Now define the Jacobson radical of a ring R, denoted by J(R), to be the intersection

of all maximal left ideals of R. Although seemingly unrelated to semisimple rings, it is

indeed the case that a ring is semisimple if and only if it has zero Jacobson radical and

is left artinian (cf. [38]). It then follows from the Artin-Wedderburn theorem that if R is

left artinian then R/J(R) is a finite product of matrix rings over division rings. Note that

for this to hold it is important that J(R) be defined so that J(R/J(R)) = (0). In a sense,
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what we have done is remove “bad” elements from R and, by considering R/J(R) instead,

we have a ring with nice linear algebraic structural properties.

It might also be reasonable for one to consider zero divisors to be “bad” elements of

a ring. Even worse would be a ring which has nonzero nilpotent ideals. That is, a ring

with a nonzero ideal I such that In = (0) for some positive integer n. It is well-known

that R has no nonzero nilpotent ideals if and only if the intersection of prime ideals of R

is zero (cf. [38]). The intersection of prime ideals of R is called the prime radical (also

known as the lower nilradical) of R. We denote it by Nil⇤(R). Moreover, for any ring R it

is the case that Nil⇤(R/Nil⇤(R)) = (0). Similar to the above discussion, if one wishes to

study the structure of a ring R it may be useful to instead consider R/Nil⇤(R).

The idea of using well-behaved ideals of a ring (e.g., the Jacobson radical or the prime

radical) to collect “bad” elements of a ring was first suggested by Wedderburn in 1908 via

the notion of a radical of a ring. This technique was first used in [35] by Köthe in 1930.

An excellent reference for the general theory of radicals is [18]. We shall now give a brief

outline of this theory. At this point, we no longer insist that our rings be unital. With

this in mind, we may consider ideals of a ring to be themselves rings. We use the notation

I ER to mean I is a (two-sided) ideal of R.

Definition 1. A class of rings � is said to be a radical class in the sense of Kurosh and

Amitsur (or radical class, for short) if

1. � is homomorphically closed;

2. For every ring R, the ideal �(R) :=
P

{I ER : I 2 �} is in �;

3. �(R/�(R)) = (0) for every ring R.

Definition 2. Let � be a radical class of rings. The ring �(R) is called the �-radical of R.

Moreover, if R is a ring such that �(R) = R then R is said to be a �-radical ring.

We now discuss the radical classes which have enjoyed the most popularity and which

appear in this thesis.
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1.1.1 The upper nilradical

A ring R is said to be a nil ring if for every a 2 R there exists an n = n(a) 2 N such that

an = 0. That is, every element of R is nilpotent. Now, consider the class N of nil rings.

We first need some lemmas.

Lemma 1.1.1. Let R be a ring and let I be an ideal of R. If I is nil and R/I is nil, then

R is nil.

Proof. Take some a 2 R. Since R/I is nil there exists an n such that an 2 I. Moreover,

since I is nil there exists an m such that (an)m = 0. Therefore anm = 0 and so R is nil.

Lemma 1.1.2. Let I and J be two nil ideals of a ring R. Then I + J is also a nil ideal.

Proof. Notice that (I + J)/J ⇠= I/(I \ J) is nil since I is nil. As J is also nil, it follows

from the above lemma that I + J is nil.

It then inductively follows that any finite sum of nil ideals is also nil. We now prove

that the class of nil rings is indeed a radical class of rings.

Proposition 1.1.1. The class of nil rings is a radical class of rings.

Proof. First assume that R and S are rings, R is a nil ring, and f : R ! S is a surjective

ring homomorphism. Let b 2 S so that there exists an a 2 R such that f(a) = b. Since R

is nil there exists an n such that an = 0. We then easily see that bn = f(a)n = f(an) = 0

so that S is a nil ring and N is homomorphically closed.

Now let R be a ring and let N (R) denote the sum of nil ideals in R. It is straight-

forward to check that N (R) is an ideal of R. We need only show that N (R) is nil.

Consider an element a 2 N (R). By the definition of N (R) there exists finitely many ideals

I1, I2, . . . , Im in N such that a 2 I1 + I2 + · · · + I
m

. By the above lemma and remark we

see that a is then nilpotent. Therefore N (R) 2 N , as required.

Finally, suppose that I is a nil ideal of R/N (R). By correspondence, there is then an

ideal J of R such that N (R) ✓ J and I = J/N (R). Since I is nil and N (R) is nil, from
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above, it again follows from the lemma that J is a nil ideal of R. Therefore J ✓ N (R),

I = (0), and so N (R/N (R)) = (0).

To precisely correspond with our definition of a radical class, if we denote the class

of nil rings by N , then for any ring R we should denote the N -radical of R by N (R).

However, the notation most common in the literature is to denote this radical by Nil⇤(R).

Moreover, this radical is usually called the upper nilradical of R. This was the radical first

used by Köthe in [35] while studying nil one-sided ideals of rings. We now pause to give

some examples of the upper nilradical.

Example 1. Suppose R is a commutative ring. Let S denote the set of all nilpotent

elements of R. We certainly have that Nil⇤(R) ✓ S. Moreover, since R is commutative it

is straightforward to check that S forms a nil ideal of R. It then follows that S ✓ Nil⇤(R)

and so the upper nilradical of a commutative ring R is precisely the set of nilpotent elements

of R.

Example 2. Of course, the above phenomenon need not hold for noncommutative rings.

Consider R = M2(C) and let

a =

"
0 1

0 0

#
, b =

"
0 0

1 0

#
.

Then a2 = b2 = 0 but a+ b is invertible and hence is certainly not nilpotent.

Example 3. Consider the ring

R = Chx, yi/(x2, xy).

We see that (x) is a nil ideal and so (x) ✓ Nil⇤(R). Furthermore, R/(x) ⇠= C[y] is a domain

so that Nil⇤(R/(x)) = (0). It then follows that Nil⇤(R) ✓ (x) and so Nil⇤(R) = (x). Notice

that in this case the upper nilradical is actually nilpotent. In particular, Nil⇤(R)2 = (0).

4



1.1.2 The Jacobson radical

The radical which has enjoyed the most popularity is undoubtably the Jacobson radical.

Its uses in the study of semisimple modules has developed much of modern ring theory.

Concretely, the Jacobson radical of a ring may be defined as follows. Recall that we denote

the Jacobson radical of a ring R by J(R).

Definition 3. Let R be a unital ring. Then the following are equivalent.

1. r 2 J(R);

2. r 2 M for every maximal left ideal M of R;

3. r 2 M for every maximal right ideal M of R;

4. 1 + xr is right-invertible for any x 2 R;

5. 1 + rx is left-invertible for any x 2 R;

6. r right-annihilates any simple right R-module.

7. r left-annihilates any simple left R-module.

Proof. See Lemma 4.1 in [38].

We now define the class of rings which give rise to the Jacobson radical via Definition

1. Moreover, we extend the definition of the Jacobson radical to nonunital rings.

A ring R is said to be right-quasi-regular if for every a 2 R there exists a b 2 R such

that

a+ b+ ab = 0.

Similarly, R is said to be left-quasi-regular if for every a 2 R there exists a b 2 R such that

a+ b+ ba = 0. We say that a ring is quasi-regular if it is both right- and left-quasi-regular.

We call the class of right-quasi-regular rings the Jacobson class and we denote it by J . To

be consistent with the literature, we call the J -radical the Jacobson radical and we denote

it by J(R) instead of J (R).

5



Lemma 1.1.3. Suppose that R is a quasi-regular ring and a 2 R so that there exists

b, c 2 R with a+ c+ ca = a+ b+ ab = 0. Then b = c.

Proof. We see that ab+cb+cab = ca+cb+cab = 0 and so ab = ca. The result follows.

A remarkable property of the Jacobson radical is that all right-quasi-regular right

ideals of a ring are contained in the Jacobson radical. Furthermore, all left-quasi-regular

left ideals of a ring are contained in its Jacobson radical. This greatly simplifies ones

work when trying to prove containment in the Jacobson radical. The analogous statement

involving the upper nilradical is still an open problem. This is the famous Köthe conjecture,

which will be discussed in the next section. We summarize the above paragraph in the

following results.

Lemma 1.1.4. Let R be a ring and let I be a (left-)right-quasi-regular (left) right ideal.

Then I is quasi-regular.

Proof. Suppose that I is a right ideal which is right-quasi-regular and let a 2 I. Then

there exists b 2 I such that a + b + ab = 0. Since I is a right ideal, we have that b 2 I.

Hence there exists a c 2 I such that b+ c+ bc = 0. As in the proof of the above lemma we

have that c = a. Therefore I is quasi-regular.

In particular, we could have defined the Jacobson radical class of rings to be the class

of quasi-regular rings.

Proposition 1.1.2. If R is a ring then all quasi-regular right (left) ideals are contained

in J(R).

Proof. See Chapter 1 of [23].

That is to say,

{a 2 R : aR quasi-regular} = {a 2 R : Ra quasi-regular} = J(R).

6



We remark that if R is a quasi-regular ring and we define the binary operation

a � b := a + b + ab for every a, b 2 R then (R, �) is a group. In fact, R is quasi-regular if

and only if (R, �) is a group (see [18]).

If R is quasi-regular and a, b 2 R such that a + b + ab = 0 then we call b the

quasi-inverse of a.

Proposition 1.1.3. Any nil ring is quasi-regular. Hence Nil⇤(R) ✓ J(R) for any ring R.

Proof. Suppose that R is nil. Take a 2 R so that an+1 = 0 for some n 2 N. Consider

b = �a+ a2 � a3 + · · ·+ (�1)nan.

Then ab+ b = �a and so a+ b+ ab = 0. Therefore R is quasi-regular.

Lemma 1.1.5. Let R be a ring and let I be an ideal of R. If R/I is quasi-regular and I

is quasi-regular then R is quasi-regular.

Proof. Take a 2 R. Since R/I is quasi-regular there exists a b 2 R such that a+b+ab 2 I.

Moreover, since I is quasi-regular there exists c 2 I such that a+b+ab+c+ac+bc+abc = 0.

From this we see that a+ (b+ c+ bc) + a(b+ c+ bc) = 0 so that the quasi-inverse of a is

b+ c+ bc.

Lemma 1.1.6. Let R be a ring. The sum of two quasi-regular ideals of R is again quasi-

regular.

Proof. As in the upper nilradical case, if I and J are quasi-regular ideals then (I + J)/I

and I are quasi-regular so that by the above lemma, I + J is quasi-regular as well.

It now follows that J(R) is quasi-regular, as desired. Moreover, the property of being

quasi-regular is clearly preserved through homomorphic images. Finally, if R is a ring and

I is a quasi-regular ideal of R/J(R) then there exists an ideal A of R containing J(R)

such that I = A/J(R). Since J(R) is quasi-regular and I is quasi-regular, we have by the

above lemma that A is quasi-regular as well. Hence A ✓ J(R) and so I = (0). Therefore

J(R/J(R)) = (0) for any ring R. In conclusion, we have the following proposition.

7



Proposition 1.1.4. The Jacobson class of rings forms a radical class.

We now take a moment to verify that this definition of the Jacobson radical is con-

sistent with the one presented in Definition 3 for unital rings.

Proposition 1.1.5. Let R be a unital ring. Then aR is quasi-regular if and only if 1+ ax

is left-invertible for any x 2 R.

Proof. Let a 2 J(R) so that aR is quasi-regular. Take x 2 R so that ax 2 aR. As aR

is quasi-regular there exists a b 2 R such that ax + b + bax = 0. It then follows that

b(1 + ax) + ax = 0. Now, 1 + ax, ax 2 R(1 + ax) and so 1 2 R(1 + ax) = R. Therefore

there exists r 2 R such that r(1 + ax) = 1. The converse is similar.

1.1.3 Köthe’s conjecture

As discussed above, it is enough to understand quasi-regular one-sided ideals in order to

understand the Jacobson radical. However, the analogous result for the upper nilradical is

only conjectured to be true. That is, it was conjectured by Köthe in [35] that the upper

nilradical of a ring is simply the sum of its nil right ideals. This conjecture is now known as

Köthe’s conjecture. With hope to prove this conjecture true, many equivalent formulations

of the Köthe conjecture have been given. The following equivalent statements can be found

in [3, 37]. An excellent survey of this famous conjecture is given by Smoktunowicz in [60].

Theorem 1.1.1. The following statements are equivalent.

1. For any ring R, Nil⇤(R) = {a 2 R : aR is nil };

2. For any ring R, Nil⇤(R) = {a 2 R : Ra is nil };

3. The sum of two nil right ideals in any ring is nil;

4. For every nil ring R, M2(R) is nil;

5. For every nil ring R, M
n

(R) is nil for every n 2 N;

8



6. For every nil ring R, J(R[x]) = R[x].

For many nice classes of rings, the Köthe conjecture is known to be true. From our

work in the previous section, we certainly know that the conjecture is true whenever the

upper nilradical and Jacobson radical coincide. More specifically, the Köthe conjecture is

true for all rings whose Jacobson radical is nil. This includes:

1. artinian rings (see [23]);

2. a�ne polynomial identity rings, including a�ne commutative rings (see [57]);

3. algebraic k-algebras, where k is a field;

4. k-algebras R, where k is a field, such that dim
k

(R) < |k|.

To see these last two points, suppose that R is a k-algebra such that dim
k

(R) < |k|.

It then follows that for any x 2 J(R)\{0}, the set

�
(1� ↵x)�1 : ↵ 2 k

 

is linearly dependent. By considering a linear dependence and clearing denominators we

see that x is algebraic over k. Therefore it is su�cient to show that J(R) is nil whenever

R is an algebraic algebra.

Suppose R is an algebraic k-algebra where k is a field. Take x 2 J(R). Since R is

algebraic, there exist ↵
i

2 k such that

xm + ↵
m�1x

m�1 + · · ·+ ↵1x+ ↵0 = 0.

Moreover, since J(R) is an ideal ↵0 2 J(R). Since R is unital, we have J(R) 6= R and so

↵0 = 0. Therefore there exists an r < m such that

xm + ↵
m�1x

m�1 + · · ·+ ↵
m�r

xm�r = 0,

9



where ↵
m�r

6= 0. Note that if r = 0 then we are done, so we may assume r > 0. However,

we then see that

↵
m�r

xm�r(1 + yx) = 0,

for some y 2 R. Since x 2 J(R), 1 + yx is invertible. Therefore xm�r = 0, as required.

For a large period of time Köthe’s conjecture was widely believed to be true. However,

recent examples constructed by Smoktunowicz give evidence that the conjecture may be

false.

Theorem 1.1.2 (Smoktunowicz, 2000). For every countable field F there exists a nil F -

algebra R such that R[x] is not nil.

We note that, had it been true that a ring R is nil if and only if R[x] is nil, then

Köthe’s conjecture would be true. This follows from the characterization Krempa gave in

[37] which is statement 6 in Theorem 1.1.1. Namely, R being nil implying R[x] is nil would

have guaranteed that J(R[x]) = R[x].

1.1.4 Other radicals

In this section we briefly examine some other radicals which have enjoyed popularity

throughout classical and modern ring theory. We begin with the prime radical of a ring,

sometimes refereed to as the lower nilradical or Baer-McCoy radical. An excellent refer-

ence for the theory surrounding the prime radical is chapter 4 of [38]. We now outline the

important theory of this radical.

Given a ring R, we defined the prime radical of R, denoted by Nil⇤(R), to be the

intersection of all prime ideals of R. It is the smallest semiprime ideal of a ring. In the

case of commutative rings, it is well-known that the prime radical of a ring is simply the

set of nilpotent elements of the ring.

While the above definition is the one mostly commonly seen in the literature, we

quickly discuss the class of rings which correspond to the prime radical. Namely, we

discuss the class of strongly nilpotent rings.
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Definition 4. Let R be a ring. An m-sequence in R is a sequence (a
i

)1
i=1 in R such that

a
n+1 2 a

n

Ra
n

for every n 2 N. An element a of R is said to be strongly nilpotent if every

m-sequence in R beginning with a is eventually zero.

Theorem 1.1.3. Let R be a ring. Then a 2 Nil⇤(R) if and only if a is strongly nilpotent.

Proof. First suppose that a is strongly nilpotent. For contradiction suppose that there

exists a prime ideal P such that a 62 P . Since P is prime, aRa 6✓ P . Therefore there exists

an a2 2 R such that aa2a 62 P . Similarly, we get an a3 2 R such that (aa2a)a3(aa2a) 62 P .

Continuing this way we get an m-sequence (a
i

) starting with a such that every term in the

sequence is not in P . However, since a is strongly nilpotent we must have that 0 62 P , a

contradiction. Therefore a 2 Nil⇤(R).

Conversely, suppose a 2 Nil⇤(R) and let (a
i

) be an m-sequence starting with a. Let

S = {a
i

}. For contradiction suppose that 0 does not occur in S. Let I be an ideal such that

I \ S = ;. For instance, (0) satisfies this property. Furthermore, suppose I is chosen to

be maximal with this property. Let J1 and J2 be ideals of R such that J1J2 ✓ I but with

J1 6✓ I and J2 6✓ I. By maximality there exists a
i

2 I + J1 and a
j

2 I + J2. However, we

then see that for large enough `, there exists an a
`

2 I, a contradiction. Therefore I must

be a prime ideal. Since a is in every prime ideal, we must have that a = a1 2 I, yielding

yet another contradiction. Hence 0 2 S so that (a
i

) is eventually zero. We conclude that

a is strongly nilpotent.

Let us say that a ring is strongly nilpotent if each of its elements is strongly nilpotent.

Using the prime ideal characterization we easily see that the class of strongly nilpotent rings

forms a radical class of rings.

Corollary 1.1.1. The class of strongly nilpotent rings forms a radical class of rings. The

radical associated to this class is the prime radical.

One particular consequence of the strongly nilpotent characterization of the prime

radical is that for any ring R, Nil⇤(R) is nil. To see this, observe that for any a 2 Nil⇤(R),

11



(a, a3, a7, . . . ) is an m-sequence. Therefore an = 0 for some n. At this point we now know

that for every ring R

Nil⇤(R) ✓ Nil⇤(R) ✓ J(R).

Recall an ideal P of a ring R is said to be semiprime if whenever a 2 R such that

aRa ✓ P then a 2 P or a 2 P . Moreover, we say that a ring is semiprime if (0) is a

semiprime ideal of R. That is, when a 2 R such that aRa = (0) then a = 0. When

working with the prime radical, the following result is often useful.

Proposition 1.1.6 ([38], Proposition 10.16). For any ring R, the following are equivalent.

1. R is semiprime;

2. Nil⇤(R) = (0);

3. R has no nonzero nilpotent ideal;

4. R has no nonzero nilpotent left (or right) ideal.

The last radical which shall be mentioned in this thesis is the locally nilpotent radical,

often referred to as the Levitzki radical.

Definition 5. A ring R is said to be locally nilpotent if for every finite subset S ✓ R there

is a positive integer N = N(S) such that SN = (0). That is, for every a1, a2, . . . , aN 2 S,

a1a2 · · · aN = 0.

Let us denote the class of locally nilpotent rings by L. Using similar techniques as

in the case of the upper nilradical, it can be shown that the class of locally nilpotent rings

forms a radical class of rings.

Proposition 1.1.7. The locally nilpotent class of rings L forms a radical class of rings.

To be clear, given a ring R, the Levitzki radical of R, L(R), is simply the sum of all

locally nilpotent ideals of R. It contains all nilpotent ideals of the ring. As L(R) is locally

12



nilpotent, it is also nil. Therefore we have that

L(R) ✓ Nil⇤(R) ✓ J(R).

Less clear, however, is that the Levitzki radical contains the prime radical.

Proposition 1.1.8. If R is a ring then Nil⇤(R) ✓ L(R). That is, the prime radical of R

is locally nilpotent.

Proof. By considering R/L(R) we may as well assume L(R) = (0). We must show that

Nil⇤(R) = (0) as well. However, by the characterization in Proposition 1.1.6 we then have

that R has no nonzero nilpotent ideal. Hence Nil⇤(R) = (0), as desired.

Therefore we have the following useful containments:

Nil⇤(R) ✓ L(R) ✓ Nil⇤(R) ✓ J(R).

1.1.5 Honourable mentions

So far, we have considered classes of rings which are quasi-regular, nil, locally nilpotent,

and strongly nilpotent. An obvious class which is missing here is the class of nilpotent

rings. Recall that a ring R is said to be nilpotent if there exists a positive integer n such

that Rn = (0). The number n is called the index of nilpotence of the ring. At first glance,

it seems as though the class of nilpotent rings should form a radical class of rings in a

similar way to the Levitzki radical. However, when considering the Levitzki radical, the

“finiteness” condition in the definition of locally nilpotent rings plays a crucial role in

proving that sum of locally nilpotent ideals of a ring is again locally nilpotent. As for the

upper nilradical, in order to show the infinite sum of nil ideals of a ring is again a nil ideal,

it is extremely important that we are able to consider one element at a time, and consider

the finite sum of nil ideals containing that element. In this thesis, the class of nilpotent

rings shall serve as the first example of a class of rings which is not a radical class of rings.

13



As we will see, considering the sum of nilpotent ideals of a ring can still be useful.

Given a ring R, let us denote the sum of nilpotent ideals of R by W (R). This ideal is often

referred to as the Wedderburn radical, even though it is not itself a radical. Consider the

following example.

Example 4. Let R = C[x
i

: i 2 N] and let I = (xi+1
i

: i 2 N). We then see that for every

n 2 N, (x
n

)n+1
✓ I. Note that we are using commutativity at this step. Let S := R/I.

We then see that (x
n

) ✓ W (S) for every n 2 N. Here, we are abusing notation and writing

(x
n

) + I as (x
n

). It then follows that W (S) = (x
i

: i 2 N). However, we then observe that

for any n 2 N, x1x2x3 · · · xn

6= 0. Therefore W (S) is not nilpotent, even though S is a

commutative ring!

It should be noted that in the above example we still have that W (S/W (S)) = (0).

This always happens for commutative rings. To see this recall that if R is a commutative

ring, then Nil⇤(R) is precisely the set of nilpotent elements of R. Moreover, for every

a 2 Nil⇤(R), (a) is a nilpotent ideal. Therefore a 2 W (R) and so W (R) = Nil⇤(R). In

particular, Nil⇤(R/W (R)) = (0) and so W (R/W (R)) = (0) as well. We record this as a

proposition.

Proposition 1.1.9. If R is a commutative ring then W (R) = Nil⇤(R). Moreover,

W (R/W (R)) = (0).

However, this need not hold for noncommutative rings.

Example 5. Consider the ring R constructed by taking F = Chy, x
i

: i 2 Ni modulo

the relations x
i

Fx
i

= (0), [x
i

, x
j

] = 0, and y2 = x1, for all i, j 2 N. We see that

W (R) =
P1

i=1(xi

). Consider

S := R/W (R) = C[y]/(y2).

Notice that W (S) 6= 0.

14



As every nilpotent ideal of a ring R is contained in each of its prime ideals, we have

the following useful containments:

W (R) ✓ Nil⇤(R) ✓ L(R) ✓ Nil⇤(R) ✓ J(R).

Moreover, by Proposition 1.1.6 we have the following result.

Proposition 1.1.10. If R is a ring then W (R) = (0) if and only if Nil⇤(R) = (0).

Proof. This follows from the facts that W (R) ✓ Nil⇤(R) and Nil⇤(R) = (0) only when R

has no nonzero nilpotent ideal.

Due to this close connection between the Wedderburn radical and the prime radical,

the Wedderburn radical is still a useful object to consider when studying the structure of

a noncommutative ring.

It is clear that being nilpotent is a much stronger property for a ring to have than

being nil. An interesting class of rings lying strictly between the classes of nilpotent and

nil rings is the class of nil rings of bounded index. A ring R is said to be nil of bounded

index if for all r 2 R there exists an n 2 N, not depending on r, such that rn = 0. Clearly

all rings which are nil of bounded index are also nil, as the name indicates. Moreover,

every nilpotent ring is certainly nil of bounded index—just take the index of nilpotence for

the ring. To see that these containments are strict, consider the following two examples.

Example 6. Let R be the positive part of Z2[xi

: i 2 N] with respect to the usual grading.

Let I = (x2
i

: i 2 N). Then S := R/I is nil of bounded index but not nilpotent.

Example 7. Let R again be the positive part of C[x
i

: i 2 N]. Let I = (xi+1
i

: i 2 N).

Then S := R/I is nil but not of bounded index.

Consider the class B of all rings which are nil of bounded index. For any ring R, let

us define

B(R) := {a 2 R : RaR is nil of bounded index}.
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Should this class of rings form a radical class, B(R) would be our corresponding radical.

We call B(R) the bounded nilradical of R, even though it is also not a radical. Similar to

the Wedderburn radical, the boundedness condition does not work well with infinite sums

of rings which are nil of bounded index. An excellent survey on the bounded nilradical can

be found in [45]. Consider the example below.

Example 8. Let R be the positive part of C[x
i

: i 2 N] and let I = (x2
i

: i 2 N). Then

S := R/I is nil but not of bounded index. Moreover, B(S) = S which is not nil of bounded

index.

As in the case of the Wedderburn radical, the bounded nilradical is still an interesting

object of study due to its close relationship with the prime radical. This relationship will

be further described in the next section. For the time being, let us observe the following

useful results.

Proposition 1.1.11. Let R be a ring and let S := {a 2 R : aR is nil of bounded index}.

Then B(R) = S. That is, the bounded nilradical may be defined in terms of right ideals

which are nil of bounded index.

Proof. See [45].

Much as in the case of the Jacobson radical, this makes computations with the

bounded nilradical much easier.

For any ring R we have the following containments:

W (R) ✓ B(R) ✓ Nil⇤(R) ✓ L(R) ✓ Nil⇤(R) ✓ J(R).

To see that B(R) ✓ Nil⇤(R) for any ring R, we consider the following characterization

of the bounded nilradical, first proved by Klein in [34].

Proposition 1.1.12. If R is a ring then

B(R) = {a 2 R : any m-sequence starting with a has bounded length}.
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By the lentgh of an m-sequence we mean the number of its nonzero entries. With

that being said, we can see that B(R) is strongly nilpotent and so B(R) ✓ Nil⇤(R) for any

ring R. Also, since W (R) ✓ B(R) ✓ Nil⇤(R) we have the following.

Proposition 1.1.13. If R is a ring then B(R) = (0) if and only if W (R) = (0) if and

only if Nil⇤(R) = (0).

An even deeper connection between these radicals will be explained in the next sec-

tion.

1.1.6 Radical constructions

In this section we examine a construction of Levitzki in [40] which demonstrates an even

stronger relationship between the Wedderburn and prime radicals. This construction uses

transfinite induction and relies on the fact that the class of all ordinals is too big to be a

set (cf. [39]). Following [39], we consider the following construction.

Let R be a ring and let W1(R) = W (R), the sum of all nilpotent ideals of R. For

each ordinal ↵ we define W
↵

inductively according to the following construction.

1. If ↵ is a limit ordinal then

W
↵

(R) :=
[

�<↵

W
�

(R).

2. If ↵ is a successor ordinal such that � + 1 = ↵ then

W
↵

(R) := {a 2 R : a+W
�

(R) 2 W (R/W
�

(R))}.

We note that each W
↵

(R) is an ideal of R. Moreover, we have the following ordering

result.

Lemma 1.1.7. If ↵ and � are ordinals such that ↵ < � then W
↵

(R) ✓ W
�

(R) for any

ring R. Therefore {W
↵

(R)} forms a well-ordered set under inclusion.
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Proof. See [40].

Now, ifW
↵

(R) 6= W
↵+1(R) for all ordinals ↵ then there is a one-to-one correspondence

between a set (a subset of ideals of R) and the class of all ordinals, which is a contradiction.

We then conclude that there must be an ordinal ↵ such that W
↵

(R) = W
↵+1(R).

The following result describes how the prime radical may be constructed from the

Wedderburn radical.

Proposition 1.1.14. Let R be a ring and ↵ be an ordinal such that W
↵

(R) = W
↵+1(R).

Then R/W
↵

(R) has no nonzero nilpotent ideals and W
↵

(R) = Nil⇤(R).

Proof. Begin by observing that

W
↵+1(R) := {a 2 R : a+W

↵

(R) 2 W (R/W
↵

(R))} = W
↵

(R).

Therefore W (R/W
↵

(R)) = (0) and so R/W
↵

(R) has no nonzero nilpotent ideals. By

the characterization in Proposition 1.1.6 we see that Nil⇤(R) ✓ W
↵

(R). Using transfinite

induction, it can be shown that W
�

(R) ✓ Nil⇤(R) for every ordinal �. Therefore W
↵

(R) =

Nil⇤(R), as desired.

Note that if W (R) = (0) then W
↵

(R) = (0) for any ordinal ↵. From this it easily

follows that Nil⇤(R) = (0) when R has no nonzero nilpotent ideals.

1.2 Rings satisfying a polynomial identity

1.2.1 Preliminaries

A large portion of this thesis is dedicated to the study of polynomial identity rings or

algebras. For this reason, in this section we give a brief introduction to polynomial identity

(algebras) rings and their radical theory. Excellent references for this theory are [15, 57].
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Recall that if R is a commutative ring then A = Rhx1, . . . , xn

i denotes the free R-

algebra generated by {x1, . . . , xn

}. Moreover, a polynomial f(x1, . . . , xn

) 2 A is said to

be homogeneous of degree d if it is a R-linear combination of monomials of length d. A

homogeneous polynomial f(x1, . . . , xn

) 2 A is said to be multilinear if each monomial of

f has degree 1 in x
i

for each 1  i  n.

Example 9. The polynomial

S
n

(x1, . . . , xn

) :=
X

�2Sn

sign(�)x
�(1)x�(2) · · · x�(n),

is a multilinear polynomial called the standard multilinear polynomial of degree n.

This brings us to the definition of a polynomial identity ring.

Definition 6. Suppose that k is a commutative ring and R is a k-algebra. We say that

0 6= f(x1, . . . , xn

) 2 khx1, . . . , xn

i is a polynomial identity (PI) for R if f(a1, . . . , an) = 0

for all a
i

2 R. We say that a polynomial identity for R is proper if at least one coe�cient

of a monomial of highest degree is 1. If a proper polynomial identity exists for R we call

R a polynomial identity algebra (PI algebra, for short) over k. If k = Z and R is a PI

k-algebra then we call R a PI ring.

Note that if f(x1, . . . , xn

) is a multilinear proper polynomial identity for some k-

algebra then f is of the form

f(x1, . . . , xn

) = x1x2 · · · xn

+
X

�2Sn\{1}

c
�

x
�(1)x�(2) · · · x�(n),

where c
�

2 k.

Consider a ring R of characteristic p. We do not want all such rings to be considered

as polynomial identity rings just because they satisfy the identity f(x) = px 2 Zhxi. This
is why the polynomial identity is required to be proper in the above definition. Note that

if k is a field then there is no need to insist that the polynomial identity is proper.

19



Example 10. We now give some examples and non-examples of PI algebras.

1. Every commutative ring satisfies the identity xy�yx so that every commutative ring

is a PI ring.

2. If k is a field then M2(k) satisfies S5(x1, x2, x3, x4, x5). We will prove this shortly.

3. For any commutative ring k, the free algebra khx1, x2, . . . , xn

i, where n > 1, is not a

PI algebra.

4. The Weyl algebra khx, yi/(xy�yx�1) is not PI whenever k is a field of characteristic

zero.

As one can see, PI algebras have nice structural properties resembling a generalization

of commutativity. The class of PI algebras is a large class of algebras so that it is often of

interest to examine the structure of PI algebras and extend results from commutative ring

theory.

Let k be a field. We now set a temporary goal of proving why M2(k), for instance,

satisfies the standard polynomial of degree 5. As it turns out, the only information about

M2(k) being used here is the fact that it is finite dimensional over k.

Proposition 1.2.1. Let k be a field and let R be an n-dimensional k-algebra. Then R

satisfies the standard polynomial of degree n+ 1.

Proof. LetS denote the standard polynomial of degree n+1. AsS is multilinear, it su�ces

to show that S vanishes on a basis for R over k. Let B = {a1, . . . , an} be a k-basis for R.

Then for any i
j

2 {1, 2, . . . , n} we see that two of the arguments of S(a
i1 , ai2 , . . . , ain+1)

must be equal so that S(a
i1 , ai2 , . . . , ain+1) = 0 for all a

ij 2 B.

In particular, we then have the following corollary which achieves our above goal.

Corollary 1.2.1. If k is a field then M
n

(k) satisfies S
n

2+1(x1, . . . , x
n

2+1).
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It should be noted that the degree of the polynomial identity in the corollary is not as

small as possible. In fact, if k is a commutative ring then M
n

(k) satisfies S2n(x1, . . . , x2n)

and no polynomial identity of smaller degree (see Theorems 2.7 and 2.8 in [15]).

In the proof of the above proposition, the multilinearity of the standard identity

greatly simplified our computations. With that being said, a very useful fact in PI theory

is the following reduction.

Proposition 1.2.2. If A satisfies a proper polynomial identity of degree d then it satisfies

a proper multilinear (homogeneous) polynomial identity of degree d.

Proof. See Lemma 1.14 of [15].

We now outline two of the biggest results in PI theory (cf. [15]) which demonstrate

the beautiful ring theory of polynomial identity algebras. First, recall that a ring R is said

to be (left) primitive if it has a faithful simple left R-module.

Theorem 1.2.1 (Kaplansky’s theorem). If R is a primitive PI algebra then R is isomor-

phic to M
n

(D), where D is a division algebra which is finite dimensional over its centre.

That is, R is a central simple algebra which is finite dimensional over its centre.

Theorem 1.2.2 (Posner’s theorem). Let R be a semiprime PI algebra with centre Z. If I

is a nonzero ideal of R then I \ Z 6= (0).

1.2.2 Radicals of PI algebras

We now focus on the radical theory of PI algebras. In this section we assume throughout

that k is a field. This theory will be used a great deal throughout this thesis. While

information on this topic can be found in [15] and [23], the best reference for this material

is Rowen’s book [57]. As we shall see, polynomial identity algebras have a very nice radical

structure. In particular, for any PI algebra R, Nil⇤(R) = L(R). As the Levitzki radical

behaves more nicely than the upper nilradical with respect to one-sided ideals in general,

we have that the upper nilradical of PI algebras has additional structure.
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We now present a famous theorem resulting from the combined works of Braun,

Kemer, and Razmyslov in [13], [33], and [56], respectively. This theorem describes the

Jacobson radical of a finitely generated polynomial identity algebra.

Theorem 1.2.3 (Braun-Kemer-Razymoslov Theorem). Let k be a field. The Jacobson

radical of a finitely generated PI k-algebra is nilpotent.

With respect to the upper nilradical of PI rings, we have the following structural

result.

Theorem 1.2.4 (cf. [57]). Every nil, multiplicatively closed subset of a PI algebra is locally

nilpotent.

Clearly the sum of two locally nilpotent one-sided ideals is again locally nilpotent.

In particular, the Köthe conjecture has a positive solution for the class of PI algebras!

Theorem 1.2.5. Let R be a PI algebra. If I and J are nil right ideals of R then I + J is

also nil.

1.3 Graded rings

Let R be an associative ring with unity. Many well-known rings have a natural notion

of degree. Therefore, to describe radicals of such rings, we have an additional tool (the

degree) at our disposal. For instance, when working with a polynomial ring, it is useful to

know when an ideal is generated by homogeneous polynomials, or even better, monomials.

We generalize this idea when considering semigroup-graded rings.

Definition 7. If X is a semigroup, we say that R is X-graded if there exists additive

subgroups R
x

of R such that

R =
M

x2X

R
x

,

and such that R
x

R
y

✓ R
xy

for all x, y 2 X. Each nonzero r 2 R can be written uniquely

as r =
P

r
x

, where r
x

2 R
x

, and r
x

= 0 for almost all x 2 X. The elements of each R
x
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are called homogeneous elements. Moreover, we say that an ideal of R is homogeneous if

it is generated by homogeneous elements.

For r 2 R, define the support of r to be the set {x 2 X : r
x

6= 0}. We then define

the length of r, denoted `(r), to be the number of elements in the support of r.

Example 11. Let R be a ring. Consider the polynomial ring S = R[x1, . . . , xm

]. Now,

assign each x
i

a degree d
i

2 Z and define the degree of a monomial x↵1
1 · · · x↵m

m

to be

↵1d1 + ↵2d2 + · · ·+ ↵
m

d
m

.

Letting R
n

denote the R-module spanned by the set of monomials of degree n, for each

n 2 Z, we see that

S =
M

n2Z

R
n

,

is a natural Z-grading on S. If we consider the grading of S given by monomial length (i.e.

d
i

= 1, i = 1, 2, . . . ,m) then I = (x2
1x2 + x3

4, x
19
3 ) is homogeneous whereas J = (x1x2 + x3)

is not.

Example 12. A similar grading to the above can be given to the free R-algebra generated

by {x1, . . . , xm

}.

Example 13. Any ring R can be given a trivial X-grading, for any monoid X, by defining

R1 := R and R
x

= (0) for any x 2 X\{1}. Here 1 denotes the monoid identity element of

X.

Example 14. For any semigroup X and ring R the semigroup algebra R[X] may be given

an X-grading by defining

R
x

:= {rx : r 2 R},

for each x 2 X.

Example 15. Let R be a ring and let S = Rhx1, . . . , xm

i. By considering S as a semigroup

algebra of the free semigroup hx1, . . . , xm

i we see that an ideal of S is homogeneous if and

only if it generated by monomials!
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In graded-ring radical theory, the goal is to prove that certain radicals are homoge-

neous, for then their structure may be better understood. A common style of question

appearing in this area of study is the following.

For which semigroups X does any X-graded ring have a homogeneous C-radical?

A particular class of semigroups which has been useful in answering the above style

of question is the class of unique-product semigroups.

1.3.1 Semigroups with the unique-product property

There has been extensive study on radicals of rings graded by unique-product semigroups

(u.p.-semigroups) and two-unique-product semigroups (t.u.p.-semigroups). For a survey

of these results, see [25] and [30]. These semigroups have been particularly useful with

respect to the Kaplansky unit and zero divisor conjectures (see [54]).

Conjecture 1 (Kaplansky unit conjecture). If G is a torsion-free group and k is a field

then the only units of the group ring k[G] are of the form ↵g, where ↵ 2 k⇥ and g 2 G.

Conjecture 2 (Kaplansky zero divisor conjecture). If G is a torsion-free group and k is

a field then the group ring k[G] is a domain.

These famous conjectures are currently major open problems in ring theory. However,

it is known that the unit conjecture implies the zero divisor conjecture (cf. [54]). The

relevance of u.p.-semigroups to these conjectures is contained in the following result.

Theorem 1.3.1. If X is a u.p.-semigroup then the semigroup algebra K[X] is a domain.

Moreover, if X is a t.u.p.-semigroup then K[X] has only the trivial units.

The definition of this important class of semigroups is as follows.

Definition 8. A semigroup X is said to be a u.p.-semigroup (resp., t.u.p.-semigroup) if

for any two non-empty finite subsets A,B ✓ X such that |A| + |B| � 3, there exists one

(resp., two) elements of X which can be uniquely written as ab, where a 2 A and b 2 B.
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Easily every t.u.p.-semigroup is a u.p.-semigroup, but it was shown by Krempa (cf.

[47]) that not every u.p-semigroup is a t.u.p.-semigroup.

Example 16. Let T be the free semigroup generated by {x1, x2, x3, y1, y2, y3} subject to

the following relations:

1. x1y1 = x2y3;

2. x1y2 = x3y1;

3. x1y3 = x2y2;

4. x3y2 = x2y1;

Then T is a u.p.-semigroup which is not a t.u.p.-semigroup.

However, it was shown in [64] that every u.p.-group is a t.u.p.-group. Furthermore,

every u.p.-semigroup which can be embedded into a u.p.-group is a t.u.p.-semigroup (cf.

[30]). It is easy to see that every u.p.-semigroup is torsion-free. However, not every torsion-

free group is a u.p.-group (cf. [55]). Moreover, every u.p-semigroup is cancellative.

A semigroup X is said to be right-ordered if there exists a total ordering  on X

such that a  b implies ac  ac for all a, b, c 2 X. It is well-known that every right-ordered

semigroup is a t.u.p.-semigroup (cf. [30]). Since every infinite cyclic group and every free

group are right-ordered, these are two common examples of u.p.-groups.

We now remark that torsion-free nilpotent groups are also u.p.-groups. To see this,

let G be a torsion-free nilpotent group. By ([30, Theorem 31.5]) if G has a finite subnormal

series

1 = G0 EG2 E · · ·EG
n

= G,

such that each G
i+1/Gi

is torsion-free and abelian, then G is right-ordered. However, it is

then su�cient to consider the upper central series of G, and so G is right-ordered and hence

a u.p.-group. We make special note that if G is torsion-free and nilpotent then G/Z(G),

25



where Z(G) is the centre of G, is also torsion-free and nilpotent, and hence right-ordered

([30, Lemma 30.16]).

We now consider a class of semigroups which have a nilpotent group of fractions.

Using this fact, we may extend many results known about the homogeneity of radicals of

rings graded by torsion-free nilpotent groups. The following definitions are due to [42].

Let X be a semigroup and let x, y, w1, w2, w3, . . . 2 X. Consider the elements x0 = x and

y0 = y and then inductively define

x
n

= x
n�1wn

y
n�1 and y

n

= y
n�1wn

x
n�1,

for all n � 1. We say that X satisfies the identity X
n

= Y
n

if x
n

= y
n

for all x, y, w
i

2 X.

It was proved in [42] that if G is a group then X
n

= Y
n

is satisfied by G if and only if G

is a nilpotent group of index n. With this result in mind, we say that a semigroup X is

weakly nilpotent of index n if X satisfies X
n

= Y
n

and n is the least positive integer with

this property. It is known that any cancellative weakly nilpotent semigroup of index n has

a group of fractions which is nilpotent of index n [42].

Theorem 1.3.2 ([47], Theorem 6/Proposition 9). Let X be a cancellative weakly nilpotent

semigroup so that X has a nilpotent group of fractions G. Then the following conditions

are equivalent:

1. X is a u.p.-semigroup

2. X is a t.u.p.-semigroup

3. G is a u.p.-group

4. X is an ordered semigroup

5. X is torsion-free.
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1.4 Skew polynomial extensions

In this section we briefly introduce the work of Ore in [51] on the theory of noncommu-

tative polynomials. For now, let R be a domain. Consider the additive abelian group of

polynomials R[x]. Suppose we want to equip R[x] with a multiplication so that it forms

an associative ring with the following desirable polynomial-like properties:

1. If f(x) = a
n

xn+· · ·+a1x+a0 2 R[x] and r 2 R then rf(x) = ra
n

xn+· · ·+ra1x+ra0.

2. If f(x), g(x) 2 R[x] then deg(f(x)g(x)) = deg(f(x)) + deg(g(x)).

A natural question to ask at this point is

“How many ways could we define such a multiplication on R[x]?”

By distributivity and associativity it su�ces to define the multiplication xr for r 2 R. By

our degree requirement, we must have that

xr = �(r)x+ �(r),

for some �(r), �(r) 2 R. Using distributivity and associativity we must have that for all

a, b 2 R,

�(a+ b)x+ �(a+ b) = x(a+ b) = xa+ xb = (�(a) + �(b))x+ �(a) + �(b)

and

�(ab)x+ �(ab) = xab = (�(a)x+ �(a))b = �(a)�(b)x+ �(a)�(b) + �(a)b.

It then follows that

1. �(a+ b) = �(a) + �(b);

2. �(a+ b) = �(a) + �(b);
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3. �(ab) = �(a)�(b);

4. �(ab) = �(a)�(b) + �(a)b;

for all a, b 2 R.

With this motivation in mind, we make the following definitions for all k-algebras,

where k is a commutative domain.

Definition 9. Let k be a commutative domain and let R be a k-algebra. Let � be a

k-endomorphism of R.

1. We call a k-linear map � : R ! R a �-derivation of R if �(ab) = �(a)�(b) + �(a)b.

This condition is often called the Leibniz rule. In the case when � = 1, we simply

call � a derivation of R.

2. If � is a �-derivation of R then we define the skew polynomial ring R[x; �; �] by

starting with the abelian group R[x] and defining a multiplication by

xr := �(r)x+ �(r),

and then extending by linearity, associativity, and distributivity.

3. In the case when � = 0 we denote R[x; �; �] by R[x; �] and call it a skew polynomial

ring of endomorphism type or Ore extension of endomorphism type.

4. In the case when � = 1 we denote R[x; �; �] by R[x; �] and call it a di↵erential

polynomial ring, or skew polynomial ring of derivation type, or Ore extension of

derivation type.

Example 17. Any polynomial ring is a skew polynomial ring with � = 1 and � = 0.

Example 18. Let k be a field and let � denote the ordinary derivative on R = k[y]. Then

R[x; �] is a di↵erential polynomial ring. Moreover, we see that this ring is precisely the

ring khx, yi modulo the relation xy = yx + �(y) = yx + 1. Therefore, this di↵erential

polynomial ring is the Weyl k-algebra.
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Skew polynomial rings still have many nice polynomial-like properties.

1. A ring R is a domain if and only if R[x; �; �] is a domain, for every � and �.

2. (Skew Hilbert Basis Theorem) If R is a left Noetherian ring then R[x; �; �] is also left

Noetherian.

3. If R is a division ring then R[x; �; �] is a principal ideal domain.

We are especially interested in the ideal theory of di↵erential polynomial rings. Let

R be a ring and let � be a derivation on R. We say that an ideal I of R is a �-ideal if

�(I) ✓ I. These ideals are particularly useful for the following result.

Proposition 1.4.1. Let R be a k-algebra, � a derivation on R, and I a �-ideal of R. Then

I[x; �] is an ideal of R[x; �].

Example 19. Let R be a k-algebra and � a derivation on R. Suppose I is an ideal of

R[x; �] Then A = I \ R is a �-ideal of R. Clearly A is an ideal of R. Now take a 2 A.

Then

xa� ax = �(a) 2 I,

so that �(a) 2 A.

In particular, if C is any radical of R and � is a derivation on R then C(R[x; �]) \R

is a �-ideal of R. In particular, (C(R[x; �]) \ R)[x; �] is an ideal of R[x; �]. Specifying to

the Jacobson radical and the upper nilradical, we see that J(R[x; �])\R is a quasi-regular

ideal of R and Nil⇤(R[x; �]) \R is a nil ideal of R. It then follows that

(J(R[x; �]) \R)[x; �] ✓ J(R)[x; �]

and

(Nil⇤(R[x; �]) \R)[x; �] ✓ Nil⇤(R)[x; �].

The reverse containments, however, are unclear and relate to the content of Chapter 4.
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Chapter 2

Radicals of semigroup-graded rings

2.1 Preliminaries

In this chapter let R always denote a unital ring. Suppose X is a u.p-semigroup and R is an

X-graded ring. It was shown in [27] that all minimal prime ideals of R are homogeneous.

In particular, it is then clear that the prime radical of R is homogeneous. It was also shown

that the Levitzki radical of R is homogeneous.

The Jacobson radical of semigroup-graded rings is much less understood. It is known

that if G is a free group, a finitely generated torsion-free nilpotent group, a free solvable

group, or a residually finite p-group for two distinct primes p, then J(R) is homogeneous for

any G-graded ring R [28]. It should be noted that each torsion-free group of the previously

listed group types is a particular type of u.p.-group. If X is a commutative semigroup then

it was shown in [32] that J(R) is homogeneous for any X-graded ring R if and only if X can

be embedded in a torsion-free abelian group. It was asked in [25] if J(R) is homogeneous,

where R is graded by a u.p.-semigroup.

Even less is known about the upper nilradical of R, where R is graded by some

semigroup X. By [61] and [43] it is known that if X is an infinite cyclic group or a

commutative and torsion-free group, then Nil⇤(R) is homogeneous. Jespers asked [25] if
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Nil⇤(R) is homogeneous provided that X is a u.p.-semigroup. Moreover, Smoktunowicz

asked [61]: Which groups G are such that every G-graded ring R has a homogeneous upper

nilradical?

The main theorems of this chapter are as follows.

Theorem 2.1.1. Let G be a torsion-free nilpotent group. Then for every G-graded ring

R, Nil⇤(R) is homogeneous.

Theorem 2.1.2. Let X be a semigroup such that any X-graded ring has a homogeneous

prime radical. Let R be any X-graded ring. If W (R) has no non-zero homogeneous ele-

ments then Nil⇤(R) = (0). In particular, if W (R) has no non-zero homogeneous elements

then W (R) = (0) as well.

2.2 Rings graded by torsion-free nilpotent groups

In [28] it was shown that the Jacobson radical of any ring graded by a finitely generated

torsion-free nilpotent group is homogeneous. We now provide an analogue of this result

for the upper nilradical. Moreover, we relax the assumptions by not requiring that G be

finitely generated.

Let X be a semigroup and let R be an X-graded ring. Let us define Nil⇤
g

(R) to be the

sum of all nil homogeneous ideals of R. Note that Nil⇤
g

(R) ✓ Nil⇤(R) and Nil⇤
g

(R) = Nil⇤(R)

if and only if Nil⇤(R) is homogeneous. To show that Nil⇤(R) is homogeneous we can then

show that Nil⇤(R/Nil⇤
g

(R)) = (0) so that Nil⇤(R) ✓ Nil⇤
g

(R). In particular, it is su�cient

to assume that Nil⇤
g

(R) = (0) and show that Nil⇤(R) = (0).

Theorem 2.2.1. Let G be a torsion-free nilpotent group. Then for every G-graded ring

R, Nil⇤(R) is homogeneous.

Proof. Let R =
L

R
g

be a G-graded ring. We prove this by induction on the index of

nilpotence of G, N . Using the above remark, let us assume throughout the proof that

Nil⇤
g

(R) = (0).
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If N = 1 then G is abelian and so this follows by [43]. We give their elegant argument

now, as it will be referenced later in the proof. Assume for contradiction that there exists

an a = a
n1 + · · ·+ a

nk
2 Nil⇤(R) such that a is nonzero and of minimal length (at least 2)

in Nil⇤(R), where a
ni 2 R

ni and n
i

6= n
j

for i 6= j. Let r
g

2 R
g

be homogeneous, for some

g 2 G. We see that ar
g

a
nk

� a
nk
r
g

a has fewer homogeneous components than a and so by

minimality and our assumption we have that ar
g

a
nk

� a
nk
r
g

a = 0. Here the assumption

that G is abelian is used, since we use the fact that n
k

gn
i

= n
i

gn
k

for every i = 1, 2, . . . , k.

But since this holds for every homogeneous element, we have that ara
nk

� a
nk
ra = 0 for

every r 2 R. Now, since a
nk

62 Nil⇤(R) there exists p
i

, q
i

2 R such that ↵ :=
P

b

i=1 piank
q
i

is not nilpotent. However, since a 2 Nil⇤(R),
⇣P

b

i=1 piaqi
⌘
m

= 0 for some m 2 N. We

observe that

(↵mRaR)m ✓ ↵m(RaR)m =
⇣X

p
i

a
nk
q
i

⌘
m

(RaR)m

✓

⇣X
p
i

aq
i

⌘
m

(Ra
nk
R)m = 0.

Now, if P is a minimal prime ideal of R we must have that ↵m

2 P or RaR ✓ P .

If RaR ✓ P then a 2 P . As noted in Chapter 1, G is a u.p.-group. Then by [25], P

is homogeneous and so a
nk

2 P . Therefore, in any case, we have that ↵m

2 P . But

then ↵m is in the prime radical and so ↵m is nilpotent. Hence ↵ is nilpotent, which is a

contradiction. Therefore no such a exists and so Nil⇤(R) = (0), as required.

Assume that every H-graded ring has a homogeneous upper nilradical provided that

H is torsion-free and has index of nilpotence less than N . Now let G be a torsion-free

nilpotent group with index of nilpotence N . Then G/Z(G) has index of nilpotence N � 1

and there is a natural G/Z(G)-grading of R. Moreover, by the remark made in chapter 1,

G/Z(G) is torsion-free. As above, assume a 2 Nil⇤(R) is nonzero of minimal length. By

induction and minimality of k, we must have that each n1, n2, . . . , nk

are in the same coset

of Z(G). Say n
i

= gz
i

for some g 2 G and z
i

2 Z(G), for each 1  i  k. However, since

n
i

hn
j

= n
j

hn
i

, for every 1  i, j  k, h 2 G, we get as above that ara
nk

� a
nk
ra = 0 for

every r 2 R. Moreover, every torsion-free nilpotent group is a u.p.-group, and so we may

reproduce the abelian-case argument to get that Nil⇤(R) = (0).
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Corollary 2.2.1. Let X be a torsion-free, cancellative, and weakly nilpotent semigroup.

Then any X-graded ring will have a homogeneous upper nilradical.

Proof. Suppose X is a torsion-free, cancellative, and weakly nilpotent semigroup and let

R =
L

x2X R
x

be an X-graded ring. By Theorem 1.3.2 we see that X is a u.p.-semigroup

with a nilpotent group of fractions G which also satisfies the unique-product property. In

particular, G is a torsion-free nilpotent group. We consider R as a G-graded ring by setting

R
g

= R
x

if g = x 2 X and R
g

= {0}, otherwise. It then follows from Theorem 2.2.1 that

Nil⇤(R) is homogeneous with respect to the G-grading and is therefore also homogeneous

with respect to the original X-grading.

2.3 Nilpotent homogeneous ideals

Recall the following construction of the prime radical of a ring R which was outlined in

§1.1.6. Define W1(R) := W (R), and for any ordinal ↵ inductively define

W
↵

(R) := {a 2 R : a+W
�

(R) 2 W (R/W
�

(R)},

provided ↵ is the successor ordinal of � and

W
↵

(R) :=
[

�<↵

W
�

(R),

provided ↵ is a limit ordinal. Levitzki [40] proved that this sequence stabilizes to the prime

radical of R.

We now use this radical construction to provide a graded analogue of Proposition

1.1.6.

Theorem 2.3.1. Let X be a semigroup such that any X-graded ring has a homogeneous

prime radical. Let R be any X-graded ring. If W (R) has no non-zero homogeneous ele-

ments then Nil⇤(R) = (0). In particular, if W (R) has no non-zero homogeneous elements

then W (R) = (0) as well.
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Proof. Suppose R is an X-graded ring such that W (R) has no nonzero homogeneous el-

ements. Suppose Nil⇤(R) 6= (0). By assumption, Nil⇤(R) has a non-zero homogeneous

element. By the construction of Levitzki we have that there exists an ordinal ↵ such that

W
↵

(R) has a nonzero homogeneous element. Since membership well-orders the class of

ordinals, we may assume ↵ is the smallest ordinal such that W
↵

(R) contains a nonzero

homogeneous element. By assumption, ↵ > 1. Say 0 6= a 2 W
↵

(R) is homogeneous. If ↵

is a limit ordinal than we see that

a 2

[

�<↵

W
�

(R),

so that a 2 W
�

(R) for some ordinal � < ↵. This is a contradiction so that ↵ must be

a successor ordinal. Say � + 1 = ↵ for some ordinal �. By minimality of ↵ we have

that a := a + W
�

(R) 6= 0. Moreover, a 2 W (R/W
�

(R)). Since (a) ✓ W (R/W
�

(R)) is

finitely generated we have that (a) is nilpotent. Therefore there exists an n 2 N such

that (a)n ✓ W
�

(R). Since (a)n is homogeneous and W
�

(R) has no non-zero homogeneous

elements we must in fact have that (a)n = (0). Therefore a 2 W1(R) = W (R), which is a

contradiction. Therefore Nil⇤(R) = (0) and so W (R) = (0) as well.

We then get the following immediate corollaries.

Corollary 2.3.1. Let X be a semigroup such that any X-graded ring has a homogeneous

prime radical. Let R be any X-graded ring. If I is an ideal of R such that W (R) ✓ I then

if I has no nonzero homogeneous elements then Nil⇤(R) = (0).

Corollary 2.3.2. Let X be a semigroup such that any X-graded ring has a homogeneous

prime radical. Let R be any X-graded ring. If B(R) has no nonzero homogeneous elements

then B(R) = Nil⇤(R) = (0).

By [25] we may take X to be any u.p.-semigroup in the above results.
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Chapter 3

Iterative Algebras

In this chapter we introduce a new class of monomial algebras, which we call iterative

algebras, to solve various problems involving graded-nilpotent rings. This chapter is based

on the content of [6]. The author’s main contribution to this chapter is the original con-

struction of an algebra R which is just infinite, graded-nilpotent, semiprimitive, and has

quadratic growth. Working with Dr. Jason Bell, this result was strengthened to the

following.

Theorem 3.0.1. There exists an algebra R such that R is just infinite, graded-nilpotent,

has quadratic growth, has trivial Jacobson radical, and is finitely generated as a Lie algebra.

This theorem answers several questions of Greenfeld, Leroy, Smoktunowicz, and Ziem-

bowski [21].

We first recall the definition of a monomial algebra.

Definition 10. Let k be field. We say that an algebra A is a monomial algebra if there

exists an m 2 N such that

A ⇠= khx1, x2, . . . , xm

i/I,

where I is an ideal generated by monomials.
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We note that every monomial algebra may be graded by length of monomial. An

ideal of a monomial algebra is said to be a monomial ideal if it is generated by monomials.

Notice that every monomial ideal is a homogeneous ideal with respect to the usual grading,

but the converse is not true.

Example 20. Consider A = Chx1, x2i/(x2
1x2). Then A is a monomial algebra which is

N-graded by length. We observe that (x1 + x2) is a homogeneous ideal of A which is not

a monomial ideal.

The structure of monomial algebras has been studied extensively in [4,8]. Monomial

algebras serve as an important class of Z-graded rings. As monomial algebras have more

refined structure than graded rings, in general, they serve as a useful tool for example or

counterexample constructions. With regards to the Jacobson radical, we begin by making

the following observation.

Proposition 3.0.1. Let A be a monomial k-algebra, where k is a field. Then J(A) is a

monomial ideal. That is, J(A) is generated by monomials in A.

Proof. Suppose A = k{x1, . . . , xm

}/I, for some monomial ideal I of the free algebra

k{x1 . . . , xm

}. Then A is naturally graded by the free group F = hx1, . . . , xm

i. Namely,

A =
M

x2F

A
x

,

where A
x

= {↵x : ↵ 2 k}. By [28], J(A) is a homogeneous ideal with respect to the

F -grading on A. However, the homogeneous elements of A with respect to the F -grading

are precisely the monomials of A. Therefore J(A) is a monomial ideal.

Moreover, we have the following result of Beidar and Fong (see [4]).

Theorem 3.0.2 ([4], Theorem 1). The Jacobson radical of a monomial algebra over a field

is locally nilpotent.
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In particular, the Levitzki radical, upper nilradical, and Jacobson radical of a mono-

mial algebra coincide. In order to introduce further results in the structural theory of

monomial algebras, we must first discuss some preliminary notions from combinatorics on

words.

3.1 Combinatorics on words

A large part of this chapter on monomial algebras involves tools from combinatorics on

words. There is a very rich and well-developed theory of combinatorics on words for which

we now give a brief introduction. For a more in-depth look, we refer the reader to [1]. This

theory has many applications to algebra, combinatorics, number theory, and computer

science.

Combinatorics on words is the study of finite and infinite sequences, called words, with

entries from a finite set, called the alphabet. Unlike in real analysis, one is not interested

in sequences for their convergence-like properties. Instead, one is interested in studying

patterns within the sequence and patterns which the sequence avoids.

3.1.1 Finite and right-infinite words

Definition 11. Let ⌃ be a non-empty finite set, which we call an alphabet. A (finite) word

w over ⌃ is simply a finite sequence

w = a1a2 · · · an,

where each a
i

2 ⌃. We define the length of w, denoted by |w|, to be n. We denote the set

of finite words over ⌃ by ⌃⇤. This includes the empty word ". A right-infinite word w over

⌃ is a infinite sequence

w = a1a2a2 · · · ,

where a
i

2 ⌃ for every i 2 N. We denote the set of right-infinite words over ⌃ by ⌃N.
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Definition 12. Let w be a word, finite or infinite, over the alphabet ⌃. We say that a

finite word u is a subword of w if there exists a finite word x and a possibly infinite word

y such that

w = xuy.

If w is a word and u is a non-empty word over ⌃ then any subword of w of the form uu

is called a square. Any subword of w of the form uuu is called a cube. In general, any

subword of w of the form uk is called a k-power in w.

Example 21. Words (finite or right-infinite) are called binary if they are over an alphabet

of size 2. Usually, the alphabet is taken to be ⌃ = {0, 1}. For instance, u = 0110 2 ⌃⇤

and 11 is a square in u. Moreover,

w = 01001000100001 · · ·

is a right-infinite binary word.

A special type of subword which we shall make use of is known as a prefix.

Definition 13. Let w be a right-infinite word. A (finite) word u is said to be a prefix of

w if there exists a right-infinite word w0 such that w = uw0. Similarly, a finite word is said

to be a prefix of a word v if there is a (possibly empty) word v0 such that v = uv0.

Throughout this thesis we will make reference to some special types of right-infinite

words.

Definition 14. Let w be a right-infinite word over the alphabet ⌃.

1. We say that w is periodic if there exists a non-empty word v such that w = v! :=

vvvv · · · .

2. We say that w is eventually periodic if there exists a non-empty word v and a word

u (possibly empty) such that w = uv! := uvvvv · · · .

3. We say that w is recurrent if every subword of w occurs infinitely many times in w.
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4. We say that w is uniformly recurrent if for every subword v of w there exists an

N = N(v) 2 N such that every subword of w of length N contains v as a subword.

Easily, one has that

{ periodic words } ✓ { uniformly recurrent words } ✓ { recurrent words }.

Example 22. It is easily seen that w = 0111 · · · is an eventually periodic word which is

not recurrent.

Example 23. An example of a recurrent word which is not uniformly recurrent is

w = v10v200v3000v40000 · · · ,

where v1, v2, . . . is an enumeration of all finite words over {0, 1}.

The following propositions give some useful equivalent statements of being recurrent

or uniformly recurrent.

Proposition 3.1.1. Let w be a right-infinite word. Then w is recurrent if and only if

every subword of w occurs at least twice.

Proposition 3.1.2. Let w be a right-infinite word. Then w is uniformly recurrent if and

only if every subword of w occurs infinitely many times with bounded gaps.

Throughout subsequent chapters, we shall hereby make the following technical as-

sumption:

When we say that w is a right-infinite word over ⌃ we assume that every letter of ⌃

occurs in w.

3.1.2 Morphisms and pure morphic words

Let ⌃ be an alphabet. Observe that the set of finite words ⌃⇤ is precisely the free monoid

generated by ⌃. Therefore if � is another alphabet, then it makes sense to define a
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morphism ' : ⌃⇤
! �⇤ to simply be a monoid morphism. For instance, if a, b 2 ⌃ then

'(ab) = '(a)'(b).

Example 24. Let ⌃ = {0, 1} and � = {a, b, c}. Consider the word 0110 2 ⌃⇤ and the

morphism ' : ⌃⇤
! �⇤ given by

0 7! abc

1 7! a2.

We then see that

'(0110) = '(0)'(1)'(1)'(0) = abca5bc.

Example 25. Let ⌃ = {a, b, c} and define a morphism ' : ⌃⇤
! ⌃⇤ by '(a) = abc,'(b) =

b2, and '(c) = a. Observe that

'2(a) = abcb2a,

'3(a) = abcb2ab4abc,

and

'4(a) = abcb2ab4abcb8abcb2a.

Continuing this way we see that 'n(a) is a prefix of 'm(a) whenever n  m. Moreover,

it makes sense to consider the right-infinite word obtained by repeatedly applying our

morphism to a. This happens because '(a) begins with a and the length of 'n(a) increased

with n.

This brings us to two definitions which play a central role in the construction of

iterative algebras.

Definition 15. Let ⌃ be an alphabet and let ' : ⌃⇤
! ⌃⇤ be a morphism. We say that

' is prolongable on a 2 ⌃ if '(a) = av, where v 2 ⌃⇤ such that 'i(v) 6= " for all i 2 N.
We denote the right-infinite word obtained by repeatedly applying this morphism to a by

'!(a).

Definition 16. We say that a right-infinite word w over the alphabet ⌃ is pure morphic

if there exists a morphism ' : ⌃⇤
! ⌃⇤, prolongable on some a 2 ⌃, such that w = '!(a).
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Let ' : ⌃⇤
! ⌃⇤ be a morphism which is prolongable on a 2 ⌃. Say '(a) = av,

where v 2 ⌃⇤. We see that

'!(a) = av'(v)'2(v)'3(v) · · · .

Moreover, if we extend ' to ⌃N letter-by-letter then we see that '('!(a)) = '!(a). In

fact, '!(a) is the unique right-infinite fixed point of ' starting with the letter a (cf. [1]).

We now define some special classes of pure morphic words.

Definition 17. Let w = '!(a) be a pure morphic word over the alphabet ⌃.

(i) We say that w is a d-uniform pure morphic word if |'(b)| = d for every letter b 2 ⌃.

(ii) We say that w is primitive if for every b 2 ⌃ there exists m = m(b) 2 N such that a

appears in 'm(b).

The motivation for the name “primitive” comes from the following object. Given a

pure morphic word on an alphabet ⌃ = {x1, . . . , xm

}, we can associate an m⇥m matrix,

M(w), called the incidence matrix of w. The (i, j)-entry of M(w) is defined to be the

number of occurrences of x
i

in '(x
j

). Given a word u 2 ⌃⇤, we can then define an m⇥ 1

integer vector ✓(u) whose j-th coordinate is the number of occurrences of x
j

in u. By

[1, Proposition 8.2.2] we have that

✓('n(u)) = M(w)n✓(u). (3.1)

Now, recall that a matrix A 2 M
n

(R) is said to be primitive if for some k 2 N, Ak

is positive. Otherwise stated, every entry of Ak is positive. We then have the following

proposition (cf. [12]) which explains our choice of notation.

Proposition 3.1.3. Let w = '!(x1) be a pure morphic word over the alphabet {x1, . . . , xn

}.

Then w is primitive if and only if M(w) is a primitive matrix.
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Proof. Suppose M(w) is a primitive matrix such that M(w)m is positive for some m 2 N.
Then for any letter x

j

we have that

✓('m(x
j

)) = M(w)me
j

,

where e
j

denotes the standard j-th basic vector. As M(w)m is positive, we see that every

entry of ✓('m(x
j

)) is positive. In particular, x1 occurs in 'm(x
j

) for every letter x
j

. Hence

w is primitive. Similarly, if x1 occurs in every 'm(x
j

), 1  j  n, then M(w)m is positive.

Therefore M(w) is primitive.

It is often the case that pure morphic words are primitive exactly when they are

uniformly recurrent. Let us say that a morphism ' : ⌃⇤
! ⌃⇤ is growing if |'n(x)| ! 1

as n ! 1 for every x 2 ⌃.

Example 26. The morphism ' sending 0 7! 01 and 1 7! 1 is not growing. Moreover,

w = '!(0) = 01111 · · · ,

is not uniformly recurrent and not primitive.

Proposition 3.1.4 (cf. [12]). Let w = '!(a) be a pure morphic word generated by a

growing morphism '. Then w is primitive if and only if w is uniformly recurrent.

Proof. Suppose w is uniformly recurrent. In particular, there exists a positive integer N

such that the first letter a of w occurs in every subword of w of length N . Then for any

letter b 2 ⌃, |'m(b)| > N for m su�ciently large since ' is growing. Therefore a occurs in

'm(b) and so w is primitive.

Now suppose that w is primitive. Notice that it su�ces to show that a occurs infinitely

many times in w with bounded gaps. To see this, suppose a occurs with bounded gaps

and take any subword v of w. Note that v is a subword of 'm(a) for m su�ciently large.

As 'm(w) = w, we have that 'm(a), and hence v, occurs in w with bounded gaps. Now, if

arbitrarily long subwords of w do not contain the letter a then arbitrarily long subwords of
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the form 'm(b), where b is a letter and m 2 N, do not contain the letter a. This contradicts

that w is primitive.

Example 27. Define ' : {a, b, c}⇤ ! {a, b, c}⇤ by a 7! abc, b 7! b, and c 7! a. Then

w := '!(a) = abcbababcbabcba · · · .

is uniformly recurrent but not primitive.

3.1.3 Subword complexity

Let w be a right-infinite word. In the next chapter we will be considering all subwords of

w as a basis for a particular algebra. For dimension purposes, we will need to investigate

counting all subwords of length n of w. This brings us to the following definition.

Definition 18. Let w be a right-infinite word over a finite alphabet ⌃. For any non-

negative integer n we define ⇢
w

(n) to the the number of distinct subwords of w of length

n. The function

⇢
w

: N�0 ! N

is known as the subword complexity function of w.

Note that the empty word " is the unique word in ⌃⇤ of length 0 so that for any

right-infinite word w, ⇢
w

(0) = 1. Moreover, by our assumption we have that ⇢
w

(1) = |⌃|.

Let us now consider two drastically di↵erent subword complexity functions associated to

binary words.

Example 28. Let w1 := 010101010101 · · · . Observe that ⇢
w1(1) = 2, ⇢(2) = 2, and

⇢
w1(n) = 2 for any n � 3. We then see that

⇢
w1 = O(1).
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Now let v1, v2, v3, · · · be an enumeration of the words in {0, 1}⇤ and consider the right-

infinite word

w2 := v1v2v3 · · · .

We then see that every possible binary word is a subword of w2. Therefore ⇢
w2(n) = 2n

for every n 2 N. In conclusion, ⇢
w2 grows exponentially while ⇢

w1 is bounded.

The behaviour of ⇢
w1 can be explained through the following proposition.

Proposition 3.1.5. Let w = vu! be an eventually periodic word. Suppose |u| = n � 1

and that no power of u is a power of a shorter word. Then ⇢
w

is bounded and ⇢
w

(n) = |vu|

for all n � |vu|. Moreover, for any right infinite word x, either ⇢
x

is strictly increasing or

x is eventually periodic.

Proof. See Proposition 4.2.2 and Theorem 4.3.1 of [12].

In general, computing the subword complexity of an arbitrary right-infinite word can

be extremely di�cult. However, the behaviour of ⇢
w

is much more predictable when w is

a pure morphic word. For this, we follow the work found in Chapter 4 of [12]. We recall

that given two maps f, g : N�0 ! R+, we say that f(n) = ⇥(g(n)) if there exist positive

constants C1 and C2 such that

C1g(n)  f(n)  C2g(n)

for all n su�ciently large.

The subword complexity function of pure morphic words is described through the

following famous result of Pansiot in [52].

Theorem 3.1.1. If w is a pure morphic word then ⇢
w

is either

O(1),⇥(n),⇥(n log log n),⇥(n log n), or ⇥(n2).
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At this point, it is natural to ask what properties of the morphism corresponding to

a pure morphic word determine which class its subword complexity function belongs to.

To answer this question, consider the following technical definitions.

Definition 19. Let ' : ⌃⇤
! ⌃⇤ be a growing morphism. We say that ' is

1. quasi-uniform if there exists an ↵ 2 R, ↵ � 1, such that |'n(a)| = ⇥(↵n) for any

a 2 ⌃;

2. polynomially diverging if there exists an ↵ 2 R, ↵ > 1, and a nonzero function

f : ⌃ ! N such that |'n(a)| = ⇥(nf(a)↵n) for any a 2 ⌃;

3. exponentially diverging if there exist a, b 2 ⌃, p, q 2 N, and distinct ↵1,↵2 2 R with

↵1,↵2 > 1, such that |'n(a)| = ⇥(np↵n

1 ) and |'n(b)| = ⇥(nq↵n

2 ).

Example 29. Any d-uniform morphism is quasi-uniform.

Example 30 (Example 4.7.42 of [12]). For r 2 N define '
r

: {0, 1}⇤ ! {0, 1}⇤ by '
r

(0) =

010r and '
r

(1) = 11. For r = 1 we see that

|'n

1 (0)| =

✓
1

2
n+ 1

◆
2n

and

|'n

1 (1)| = 2n.

It is then clear that |'n

1 (a)| = ⇥(n2n) and so '1 is polynomially diverging. For any r � 2

we have that

|'n

r

(0)| =
r

r � 1
(r + 1)n �

1

r � 1
2n,

and so '
r

is exponentially diverging.

It is important to note that every growing morphism fits into one of the above three

categories (cf. [12], Theorem 4.7.43).

Theorem 3.1.2. Let ' be a growing morphism and let w = '!(a) be a pure morphic word.
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1. If ' is quasi-uniform then ⇢
w

(n) = O(n).

2. If ' is polynomially diverging then ⇢
w

(n) = ⇥(n log log n).

3. If ' is exponentially diverging then ⇢
w

(n) = ⇥(n log n).

Note that by Proposition 3.1.5, If ' is quasi-uniform then ⇢
w

(n) is either ⇥(n) or

O(1).

Corollary 3.1.1. If w is a pure-morphic word generated by a d-uniform morphism then

⇢
w

(n) = O(n).

As for the case of morphisms which are not growing, the following theorems (cf. [12])

describe the situation. Let us define a word v 2 ⌃⇤ to be bounded, relative to a morphism

' : ⌃⇤
! ⌃⇤, if |'n(v)| = O(1) as n goes to infinity.

Theorem 3.1.3. If w is a pure morphic word with finitely many bounded subwords then

⇢
w

is either

O(1),⇥(n),⇥(n log log n), or ⇥(n log n).

Theorem 3.1.4. Let w be a pure morphic word. If w is not eventually periodic and

infinitely many subwords of w are bounded then ⇢
w

(n) = ⇥(n2).

Example 31. Let ' be a binary morphism defined by '(0) = 001 and '(1) = 1. Then

w := '!(0) is not eventually periodic since 01n0 is a subword of w for every n 2 N. By the

above theorem, we have that ⇢
w

(n) = ⇥(n2).

3.2 Combinatorial monomial algebras

We now define some classes of monomial algebras which shall be used extensively through-

out this chapter. These are new notions which were first introduced in [6].
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Definition 20. Let k be a field, let ⌃ = {x1, . . . , xm

} be a finite alphabet, and let w be

a right-infinite word over ⌃. We define the monomial algebra A
w

associated with w to be

the quotient khx1, . . . , xm

i/I, where I is the ideal generated by all finite words over ⌃ that

do not appear as a subword of w. In the case when w is a pure morphic word, we call A
w

the iterative algebra associated with w.

These algebras form a subclass of the monomial algebras studied in [8, Chapter 3].

Example 32. Consider the right-infinite binary word

w = abaabaaabaaaabaaaaab · · ·

We then see that b2 = 0 in A
w

. Moreover, J(A
w

) = Nil⇤(A
w

) = (b) and A
w

/J(A
w

) ⇠= k[x].

Example 33. Consider the famous Thue-Morse word w, which may be defined as the pure

morphic word generated by the morphism T : {a, b}⇤ ! {a, b}⇤, prolongable on a, such

that T (a) = ab and T (b) = ba. That is, w = T !(a). We see that

w = abbabaabbaababba · · · .

It is well-known (cf. [1]) that w is cube-free. Therefore, every nonempty monomial v in

A
w

is nilpotent of index 3.

We note that monomial algebras of the form A
w

are infinite-dimensional because w

has arbitrarily long subwords. A natural question is:

Is every monomial algebra of the form A
w

, for some right-infinite word w?

The answer to this question is “no”. In particular, by the above remark no finite-

dimensional monomial algebra can be of the form A
w

. Furthermore, consider the following

example.

Example 34. Let A = Cha, bi/I, where I is the ideal generated by all br, where r is a

homogeneous element in the positive part of A. Then b is nonzero in A, but bv = 0 for every
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nonempty word v 2 {a, b}⇤. Therefore A cannot be of the form A
w

for any right-infinite

word w.

However, the answer to this question is “yes” for a large class of well-behaved mono-

mial algebras. In particular, every prime monomial algebra looks like A
w

, for some right-

infinite word w. Recall that a ring R is prime if whenever a, b 2 R such that aRb = (0)

then a = 0 or b = 0.

Proposition 3.2.1. If A is a prime monomial algebra then there exists a right-infinite

word w such that A = A
w

.

Proof. Let v1, v2, . . . be an enumeration of the nonzero words/monomials in A. Since A

is prime there exists a monomial u1 in A such that v1u1v2 6= 0. Similarly, there exists a

monomial u2 2 A such that v1u1v2u2v3 6= 0. Continuing in this way we have the right-

infinite word

w = v1u1v2u2v3u3 · · · .

Therefore A = A
w

, as required.

The benefit of being able to describe a monomial algebra as a monomial algebra of

the form A
w

is that much of the combinatorial information about w, which may be easily

computed, can give you deep ring-theoretical results about monomial algebras. We now

survey some of the recent results where combinatorial monomial algebras have been used.

1. In [8], Belov showed that J(A
w

) is the ideal of A
w

generated by subwords of w which

occur with a bounded gap in arbitrarily long subwords of w.

2. In [7], Bell and Smoktunowicz proved that prime monomial algebras of quadratic

growth have finitely many prime ideals of co-GKdimension 1. Moreover, they proved

that all prime ideals of co-GKdimension 1 are monomial ideals.

3. Again in [7], Sturmian words (right-infinite words w such that ⇢
w

(n) = n + 1) were

used to construct the first example of a finitely generated prime monomial algebra

of GK dimension 2 and with unbounded matrix images.
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4. In [50], Okninski used monomial algebras of the form A
w

to show that every prime

monomial algebra either satisfies a polynomial identity, is primitive, or has a nonzero

locally nilpotent Jacobson radical.

We now begin our investigation of iterative algebras and how they may be used to

study graded-nilpotent rings.

3.2.1 Gelfand-Kirillov dimension

In this section, we discuss the growth of iterative algebras, showing that their Gelfand-

Kirillov dimension is either 1, 2, or 3.

Let k be a field and let A be a finitely generated k-algebra. The Gelfand-Kirillov

(GK) dimension of A, denoted GKdim(A), is given by

GKdim(A) := lim sup
n!1

log dim(V n)

log n
,

where V is a finite-dimensional subspace of A that contains 1 and generates A as a k-

algebra. As A is assumed to be finitely generated, certainly such a V exists. Remarkably,

this quantity does not depend upon the choice of subspace V . For more information on

Gelfand-Kirillov dimension, we refer the reader to the book of Krause and Lenagan [36].

We note that being GK dimension one is equivalent to dim(V n) = ⇥(n) (i.e., linear growth)

by Bergman’s gap theorem [36, Theorem 2.5] and that an important subclass of algebras

of GK dimension two are given by those of quadratic growth. An algebra is said to be of

quadratic growth if it contains a generating subspace V such that dim(V n) = ⇥(n2).

In the case of combinatorial monomial algebras, the GK dimension of A
w

may be

calculated using the subword complexity function of w, ⇢
w

(n). This is particularly easy

to do for iterative algebras. In fact, this is one of the main reasons iterative algebras were

introduced.
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Recall that for a pure morphic word w, p
w

(n) is either

O(1),⇥(n),⇥(n log log n),⇥(n log n), or ⇥(n2).

Moreover, each of these possibilities can be realized by some purely morphic word and

p
w

(n) = O(1) if and only if w is eventually periodic.

If A
w

is the combinatorial monomial algebra corresponding to the word w, and if

V = k+
P

a2⌃ ka in A
w

, then V n has a basis consisting of subwords of w of length at most

n. In particular, dim(V n) =
P

n

j=0 pw(j). Now suppose that w is a pure morphic word.

If p
w

(n) = ⇥(n),⇥(n log n), or ⇥(n log log n), then
P

n

j=0 pw(j) = ⇥(n2),⇥(n2 log n), or

⇥(n2 log log n), and so
log dim(V n)

log n
! 2

as n ! 1. On the other hand, if p
w

(n) = ⇥(n2) then

log dim(V n)

log n
! 3

as n ! 1. Finally, if p
w

(n) = O(1) then dim(V n) grows at most linearly with n and since

A
w

is infinite-dimensional, we see that the GK dimension of A
w

is one in this case. Putting

these observations together we obtain the following result.

Theorem 3.2.1. Let k be a field and let A
w

be an iterative k-algebra. Then GKdim(A
w

) 2

{1, 2, 3} and the Gelfand-Kirillov dimension is equal to one if and only if w is eventually

periodic.

3.2.2 Combinatorial correspondences to ring theory

The benefit of considering combinatorial monomial algebras is that interesting ring the-

oretical information may be obtained by studying some combinatorics of the associated

right-infinite word w. We remind the reader that a k-algebra A is said to be just infinite

if dim
k

(A) = 1 but for all nonzero I ER, dim
k

(A/I) < 1.
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Theorem 3.2.2. Let k be a field and let w be a right-infinite word over the alphabet ⌃.

Let A = A
w

be the associated combinatorial monomial k-algebra. We have the following

correspondences.

1. A is semiprime if and only if w is recurrent;

2. A is just infinite if and only if w is uniformly recurrent;

3. A is PI if and only if w is eventually periodic;

4. A is noetherian if and only if w is eventually periodic.

Proof. Let A be as above.

1. Suppose A is semiprime. Then for any subword v of w, (v) is a nonzero ideal of A

which is not nilpotent. Therefore, for any n 2 N, there exists subwords w1, . . . , wn

of w such that

vw1vw2v · · · vwn

6= 0.

Therefore v occurs infinitely often in w and so w is recurrent.

Now suppose that w is recurrent. As above, A has no nonzero nilpotent monomial

ideals. Let X be the free semigroup generated by ⌃ so that X is a u.p.-semigroup.

By Theorem 2.3.1 we have that Nil⇤(A) = (0) and so A is semiprime.

2. By [8, Theorem 3.2], A
w

is just infinite if and only if w is a uniformly recurrent word.

3. Note that if w is eventually periodic, then A has Gelfand-Kirillov dimension one by

Theorem 3.2.1 and hence is PI [58]. Conversely, suppose that A satisfies a polynomial

identity. If we take the ideal I of A generated by the images of all subwords of w that

only appear finitely many times in w then by construction the algebra B = A/I is a

prime monomial algebra and satisfies a polynomial identity. It is straightforward to

show that there is some recurrent word w0 such that the images of the subwords of w0

in B form a basis for B. By [8, Remark, page 3523], we then have that w0 is periodic

since B satisfies a polynomial identity. We let q(n) denote the collection of subwords

51



of w of length n that appear infinitely often in w. Then by construction q(n) is

precisely the number of distinct subwords of w0 of length n and so q(n) = O(1). In

particular, there is some d such that q(d)  d. Let v1, . . . , vm denote the distinct

subwords of w of length d. By assumption, at most d of these words occur infinitely

often and so we may write w = vw0 where v is finite and w0 has at most d subwords

of length d. We then have that w0 is eventually periodic [1, Theorem 10.2.6] and so

w is eventually periodic.

4. Finally, by [8, Corollary 5.40], A
w

is noetherian if and only if A
w

has GK dimension

one. But this occurs if and only if w is eventually periodic by Theorem 3.2.1.

Specializing to iterative algebras, we get the following correspondences.

Theorem 3.2.3. Let k be a field, let w = '!(a) be a pure morphic word over an alphabet

⌃, and let A
w

be the iterative k-algebra associated with w. The following results hold.

1. A
w

is semiprime if and only if the first letter of w occurs at least twice in w;

2. A
w

is just infinite if and only if w is uniformly recurrent;

3. A
w

satisfies a polynomial identity if and only if w is eventually periodic;

4. A
w

is noetherian if and only if w is eventually periodic;

Proof. The only thing that is left to prove is that a pure morphic word w = '!(a) is

recurrent if and only if a occurs at least twice w. Clearly, if w is recurrent then a occurs

infinitely many times in w. So suppose a occurs infinitely many times in w. For any n 2 N
we see that 'n(w) = w and so 'n(a) occurs infinitely many times in w. Since each subword

of w occurs in 'n(a), for some n depending on the subword, we see that w is recurrent.
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3.3 Graded-nilpotent rings

In this section, we give an example of an iterative algebra, which answers several questions

of Greenfeld, Leroy, Smoktunowicz, and Ziembowski [21]. (In particular, Question 31 and

36 have the answer ‘no’ and Question 32 has the answer ‘yes’.) The questions we consider

deal with graded-nilpotent algebras. These are graded algebras A with the property that

if S is a subset of A consisting of homogeneous elements of the same degree, then there

is some natural number N = N(S) such that SN = (0). We will show how one can use

iterative algebras to construct such rings. Iterative algebras are unital and thus will not

be graded-nilpotent without some alteration. However, by taking the positive part of an

iterative algebra then in certain cases one can find a grading that gives a graded-nilpotent

algebra. Questions 31 and 32 of [21] ask respectively whether a graded-nilpotent algebra

must be Jacobson radical and whether it can have GK dimension two; Question 36 asks

whether a graded-nilpotent algebra that is finitely generated as a Lie algebra must be

nilpotent. We give answers to these questions with a single example. Specifically, we

construct a graded-nilpotent algebra of quadratic growth that is finitely generated as a Lie

algebra and whose Jacobson radical is trivial.

Let ⌃ = {x1, . . . , x6, y1, . . . , y6} and let ' : ⌃⇤
! ⌃⇤ be the morphism given by

x1 7! x1x2y1y2 x2 7! x1x3y1y3 x3 7! x1x4y1y4

x4 7! x1x5y1y5 x5 7! x1x6y1y6 x6 7! x2x3y2y3

y1 7! x2x4y2y5 y2 7! x2x5y3y4 y3 7! x2x6y2y6

y4 7! x3x4y3y5 y5 7! x3x5y3y6 y6 7! x3x6y4y5.

Let w be the unique right infinite word whose first letter is x1 and that is a fixed point of

'. We note that w is 4-uniform.

Then a straightforward computer computation shows that the incidence matrixM(w)

has characteristic polynomial

P
w

(x) := x12
� x11

� 8x10
� 16x9

� 2x8 + 5x7 + 5x6 + 21x5 + 31x4
� 10x3

� 8x2. (3.2)
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We now put a grading on A
w

by declaring that x1 has degree one and that all other

letters in ⌃ have degree two. We let W
n

denote the degree of 'n(x1). We then have that

W
n

= uM(w)n✓(x1), (3.3)

where u = [1, 2, . . . , 2]. A straightforward computer calculation shows that for n =

0, 1, . . . , 7, we get the sequence of values

1, 7, 30, 120, 483, 1935, 7733, 30945 (3.4)

for W
n

.

Proposition 3.3.1. Let d be a positive integer. Then with the grading described above,

the algebra A
w

has the property that the homogeneous piece of degree d is nilpotent.

Proof. We let S = {s0, s1, s2, . . .} denote the subset of N0 constructed as follows. We define

s0 = 0 and for i � 1, we define s
i

= s
i�1 + deg(a

i

), where a
i

2 ⌃ is the i-th letter of w.

Then since w = x1x2y1y2x1x3y1y3 · · · , we see that S = {0, 1, 3, 5, 7, 8, 10, 12, 14, . . .}. We

now let (A
w

)
d

denote the homogeneous piece of A
w

of degree d, in which x1 has degree one

and all other elements of ⌃ have degree two. Since (A
w

)
d

is spanned by subwords of w of

degree d, we see that if (A
w

)
d

is not nilpotent, then for every r � 1 there must exist some

subword of w of the form u1u2 · · · ur

where u1, . . . , ur

are words of degree d. In particular,

S must contain an arithmetic progression of the form i, i + d, i + 2d, . . . , i + (r � 1)d for

every r � 1.

We now show that this cannot occur. We suppose, in order to obtain a contradiction,

that there is some d � 1 such that S contains arbitrarily long arithmetic progressions of

the form

{i, i+ d, i+ 2d, . . . , i+ bd},

where i, b 2 N. Then for every n � 2 there exists a subword u = u1u2 · · · ur

of w such that

each u
i

is a subword of w of degree d and r > 4n+1. Now u has length at least 4n+1 and

since w is a fixed point of ', we then see that u must have a subword of the form 'n(a) for
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some a 2 ⌃. It follows that there exist natural numbers i and j with i > 1 and i + j < r

such that 'n(a) = vu
i

· · · u
i+j

v0, where v is a su�x of u
i�1 and v0 is a prefix of u

i+j

. Every

a 2 ⌃ has the property that '2(a) begins with x1 and so 'n(a) begins with 'n�2(x1). In

particular, since 'n�2(x1) is a prefix of w of length 4n�2 and it begins vu
i

u
i+1 · · · , we see

that S contains a progression of the form t, t+d, t+2d, . . . t+sd with t < d and t+(s+1)d

strictly greater than the length of 'n�2(x1). By assumption, S contains arbitrarily long

arithmetic progressions of length d and so there are infinitely many natural numbers n for

which 'n(x1) contains a progression of the form t, t+d, t+2d, . . . t+ sd for some t < d and

t+(s+1)d strictly greater than the length of 'n(x1). In particular, there is some fixed t < d

for which there are infinitely many natural numbers n with this property. Thus we see S

contains arbitrarily long arithmetic progressions of the form t, t+d, t+2d, . . . , t+rd for some

fixed t < d. It follows that S contains an infinite arithmetic progression t, t+ d, t+2d, . . ..

Now

'n+2(x1) = 'n+1(x1x2y1y2) = 'n+1(x1)'
n(x1x3y1y3)'

n+1(y1y2).

Thus 'n+1(x1)'n(x1) is a prefix of w for every n � 1.

Without loss of generality d 2 N is minimal with respect to having the property that

S has an infinite arithmetic progression of the form a+ dN, where a < d. Define

T := {i : 0  i < d, {i+ dn : n � 0} ✓ S}.

We write T = {i1, i2, . . . , ip}, where i1 < i2 < · · · < i
p

. Notice that there exists a positive

integer N such that if j 2 {0, . . . , d� 1} \T then there is some m, depending upon j, such

that j +md  N and j +md 62 S.

Now let a
j

:= i
j+1 � i

j

for j = 1, . . . , p, where we take i
p+1 = i1 + d. Consider

a := (a1, a2, . . . , ap) 2 Np.

Let � = (1, 2, 3, . . . , p) 2 S
p

, the symmetric group on p letters. For ⇡ 2 S
p

, we let ⇡(a)

denote (a
⇡(1), a⇡(2), . . . , a⇡(p)).
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We claim that no non-trivial cyclic permutation of a can be equal to a. Assume, in

order to obtain a contradiction, that �m(a) = a for some m 2 {1, . . . , p� 1}. Let ⇡ = �m

so that we then have that a
i

= a
⇡(i). We see that, by definition, S contains the set

{i1, i2, . . . , ip, i1 + d, i2 + d, . . . , i
p

+ d, i1 + 2d, . . . }

Moreover, the di↵erences between successive terms of this sequence are given by the se-

quence

(a1, a2, . . . , ap, a1, a2, . . . , ap, a1, . . . ).

By repeatedly applying the identity �m(a) = a, we have that

(a1, a2, . . . , ap, a1, a2, . . . , ap, a1, . . . ) = (a1, a2, . . . , am, a1, a2, . . . , am, a1, . . . ).

Therefore S contains an infinite arithmetic progression of the form j + (a1 + · · · + a
m

)N,
and a1+ · · ·+a

m

< d. Moreover, by the argument we used earlier, where we observed that

'n(x1) occurs infinitely often in w for every n, we see that we can take j < a1 + · · ·+ a
m

.

But this contradicts the minimality of d. Therefore �m(a) 6= a for any m 2 {1, . . . , p� 1},

as claimed.

Now for every n � 2, we have 'n+1(x1)'n(x1) is a prefix of w. Moreover, by assump-

tion the infinite arithmetic progressions in S with di↵erence d all appear in the subset

X := {i1, i2, . . . , ip, i1 + d, i2 + d, . . .}.

Let W
m

denote the degree of 'm(x1) for each m � 0. Then given a positive integer

n > N , there exists a unique s 2 {1, . . . , p} and a unique r � 0 such that i
s

+ dr is the

largest positive integer in the set {i
q

+ d` : 1  q  p, ` � 0} that is less than W
n

. Since

'n(x1)'n�1(x1) is a prefix of w, we see that the part of the set

{i1, i2, . . . , ip, i1 + d, i2 + d . . . , i
s

+ dr,W
n

+ i1,Wn

+ i2, . . . ,Wn

+ i
p

,W
n

+ i1 + d, . . .}

in [0,W
n

+W
n�1] is entirely contained in S.
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For j = 1, . . . , p, define i
s+j

to be i
s+j�p

+ d if s+ j > p. Then by definition of T , we

have that {i
s+1 + dr, i

s+2 + dr, . . . , i
s+p

+ dr, i
s+1 + d(r+ 1), . . .}\ [0,W

n

+W
n�1] ✓ S and

so subtracting W
n

, the degree of 'n(x1), and using the fact that the prefix 'n(x1) in w is

then followed by 'n�1(x1) in w, we see that

{i
s+1 + dr �W

n

, i
s+2 + dr �W

n

, . . .} \ [0,W
n�1] ✓ S.

Since n�1 � N and i
s+j

+dr�W
n

2 {0, . . . , d} for j = 0, . . . , p, we see from the definition

of N that i
s+j

+ dr � W
n

= i
j

for j = 1, . . . , p. Notice also that (i
s+j

+ dr � W
n

) �

(i
s+j�1 + dr � W

n

) = a
s+j

for j = 1, . . . , p and since i
s+j

+ dr � W
n

= i
j

, we see that

(i
s+j

+ dr � W
n

) � (i
s+j�1 + dr � W

n

) = a
j

for j = 1, . . . , p. Since no non-trivial cyclic

permutation of a is equal to a, we see that s = p and so i1+dr+d�W
n

= i1. In particular,

W
n

⌘ 0 (mod d) for all n > N .

We now show that there is no d > 1 such that d|W
n

for all su�ciently large n, and we

will then obtain the desired result since S cannot contain an infinite arithmetic progression

with di↵erence one.

Using Equation (3.2) and the Cayley-Hamilton theorem, we have that W
n

satisfies

the recurrence

W
n

�W
n�1 � 8W

n�2 � 16W
n�3 � 2W

n�4 + 5W
n�5 + 5W

n�6 + 21W
n�7

+31W
n�8 � 10W

n�9 � 8W
n�10 = 0 (3.5)

for n � 12. In particular, W
n

⌘ W
n�1 + W

n�5 + W
n�6 + W

n�7 + W
n�8 (mod 2) for all

n � 12. We can now show that there are infinitely many n for which W
n

is not divisible by

2. To see this, suppose that this were not the case. Then there would exist some largest

natural number ` such that W
`

is odd. From Item (3.4), we see that ` � 4 and so `+8 � 12.

But now Equation (3.5) gives that W
`+8 + W

`+7 + W
`+3 + W

`+2 + W
`+1 ⌘ W

`

(mod 2),

which is a contradiction since the left-hand side is even and the right-hand side is odd. It

follows that d must be odd. Now suppose that some odd prime p divides d. Then we have

p|W
n

for all n su�ciently large. Let ` be the largest natural number for which p does not
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divide W
`

. Then since gcd(W5,W6) = 1, we see that ` � 5. But now, since ` + 10 � 12,

Equation (3.5) gives that 8W
`

is a Z-linear combination of elements of the form W
`+i

with

i = 1, . . . , 10 and so we see that if p|W
n

for n > ` then p|8W
`

. Since p is odd and p does

not divide W
`

we get a contradiction. It follows that d = 1 and so S must contain the

progression {0, 1, 2, 3, . . .}, but this is clearly false. The result follows.

We next show that the algebra A
w

is finitely generated as a Lie algebra.

Lemma 3.3.1. Let v be a subword of w of length at least two. Then some cyclic permu-

tation of v is not a subword of w.

Proof. Let d denote the length of v. We prove this by induction on d. Our base cases are

when d = 2, 3, 4. We consider each of these cases separately. In each case, we suppose to-

wards a contradiction that there exists a word v of length d all of whose cyclic permutations

are subwords of w and we derive a contradiction.

Case I: d=2. For the case when d = 2, observe that a subword of w of length two

is either of the form x
i

x
j

with i < j or y
i

y
j

with i < j or of the form x
k

y
`

or y
`

x
k

. It is

immediate that if our subword of length two is of the form x
i

x
j

or y
i

y
j

then i < j and

so x
j

x
i

and y
j

y
i

cannot be subwords of w in this case. Thus for the case when d = 2, it

only remains to show that if x
i

y
j

is a subword of w then y
j

x
i

cannot be. Observe that any

subword of w of length two is either a subword of '(a) for some a 2 ⌃ or it is a subword of

'(ab), with a, b 2 ⌃, consisting of the last letter of '(a) followed by the first letter of '(b).

In the case that we have a word of the form x
i

y
j

, then we see that it must be the second

and third letters of '(a) for some a 2 ⌃. We are also assuming that y
j

x
i

is a subword of

w. In this case, we have that there are letters b, c 2 ⌃ such that bc is a subword of w and

y
j

is the last letter of '(b) and x
i

is the first letter of '(c).

Since the second letter of any '(a) must be in {x2, x3, x4, x5, x6}, we see that i 6= 1.

Similarly, the first letter of any '(c) must be in {x1, x2, x3} and so i 6= 4, 5, 6. Thus

i 2 {2, 3}. Notice that the last letter of '(b) can never be y1 and so j 2 {2, 3, 4, 5, 6}. By

assumption, there exists some a 2 ⌃ such that x
i

y
j

is a subword of '(a) with i 2 {2, 3}

and j > 1. Looking at the map ', we see that the only possibility is i = 3, j = 2 coming
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from a = x6. But then y
j

x
i

= y2x3. By assumption, there exist b and c in ⌃ such that bc is

a subword of w and such that y2 is the last letter of '(b) and x3 is the first letter of '(c).

But x1 is the only letter in ⌃ with the property that applying ' to it gives a four-letter

word ending in y2. Thus b = x1. Similarly, since '(c) begins with x3 we see c 2 {y4, y5, y6}.

But this then means that x1yk is a subword of w for some k � 4, which is impossible since

x1 is always followed by an element from {x2, . . . , x6} in w.

Case II: d=3. Since we can never have three consecutive letters from {x1, . . . , x6}

occurring in w, we see that there are at most two letters from x1, . . . , x6 in v. Similarly,

there are at most two letters from y1, . . . , y6 occurring in v. Thus either v has exactly two

letters from {x1, . . . , x6} and one letter from {y1, . . . , y6} or it has exactly two letters from

{y1, . . . , y6} and one letter from {x1, . . . , x6}. We consider the first case, as the other case is

identical. In the first case, v has some cyclic permutation of the form x
i

y
j

x
k

, which cannot

be a subword of w since we must always have a block of two consecutive y
j

’s between

blocks of x
i

’s.

Case III: d=4. In this case, we can argue as in Case II to show that some cyclic

permutation of v is of the form x
i

x
j

y
k

y
`

. Any subword of w of the form x
i

x
j

y
k

y
`

must be

'(a) for some a 2 ⌃. In particular, i < j and k < `. But by assumption y
k

y
`

x
i

x
j

is also a

subword of w and so there exist b, c 2 ⌃ such that bc is a subword of w, y
k

y
`

are the last

two letters of '(b) and x
i

x
j

are the last two letters of '(c). But the first two letters of

'(d) for d 2 ⌃ completely determine d, and similarly for the last two letters. In particular,

b = c = a and so bc = a2 is a subword of w. But we now see this is impossible from Case I.

We now complete the induction argument. Suppose that d � 5 is such that if m 2

{2, . . . , d � 1} then any subword u of w of length m has the property that some cyclic

permutation of u is not a subword of w. Let v be a word of length d. Then arguing as

in Case II, we have that some cyclic permutation v0 of v is of the form x
i1xi2yj1yj2xi3 · · · .

Notice that if d is 1 or 2 mod 4, then v0 ends with some x
k

and so if we move this x
k

to

the beginning of v0 then we get a cyclic permutation of v with three consecutive letters

x
k

x
i1xi2 , which cannot be a subword of w. If d is 3 mod 4, then the last two letters of

v0 are of the form x
i

y
j

and so if we shift these two letters to the beginning of v0 we see
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that v has a cyclic permutation with three consecutive letters x
i

y
j

x
i1 , which cannot be a

subword of w. Thus we have d = 4m with m � 2. Also v0 = '(a1) · · ·'(am) for some

a1, . . . , am 2 ⌃. But then if u = a1 . . . am and u0 is a cyclic permutation of u then '(u0) is a

cyclic permutation of '(u) = v0. Moroever, since '(u0) begins with two consecutive letters

from x
i

and x
j

, we see that '(u0) is a subword of w if and only if u0 is a subword of w. In

particular, if all cyclic permutations of v are subwords of w then all cyclic permutations of

u are subwords of w. But u has length m 2 {2, . . . , d� 1} and so we see that this cannot

occur by the induction hypothesis. The result now follows.

Proposition 3.3.2. The algebra A
w

is finitely generated as a Lie algebra.

Proof. Let B denote the Lie subalgebra of A
w

that is generated by the elements

{1, x1, . . . , x6, y1, . . . , y6}.

Since A
w

is spanned by the images of all subwords of w, it su�ces to show that the image

of every subword of w is in B. Suppose that u is a subword of w whose image is not in B.

We may assume that we pick u of minimal length d with respect to having this property.

Since all subwords of w of length  1 have images in B, d must be at least two. By Lemma

3.3.1, u has some cyclic permutation that is not a subword of w. In particular, we may

decompose u = ab so that a and b are subwords of w but such that ba is not a subword of

w; i.e., ba has zero image in A
w

. Then u = [a, b] 2 A
w

. But now a and b have length less

than d and so by minimality of d, we have that the images of a and b are in B and so the

image of u = [a, b] is in also in B, a contradiction. The result follows.

We need one last result to obtain our example.

Lemma 3.3.2. The word w is uniformly recurrent.

Proof. It is straightforward to check that ' is a growing morphism. Moreover, x1 is a

subword of '2(a) for every a 2 ⌃. By Proposition 3.1.4 w is uniformly recurrent, as

required.
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Putting these results together, we obtain the following result, which answers questions

31, 32, and 36 of [21].

Theorem 3.3.1. Let R denote the positive part of the algebra A
w

with the grading described

above. Then R is just infinite, graded-nilpotent, has quadratic growth, has trivial Jacobson

radical, and is finitely generated as a Lie algebra.

Proof. The fact that R is graded-nilpotent follows from Proposition 3.3.1. To show the

remaining claims, we first show that A
w

does not satisfy a polynomial identity. To see

this, by Theorem 3.2.3 it su�ces to show that w is not eventually periodic. However, by

Lemma 3.3.1, w is square-free, and so w cannot be eventually periodic. Thus A
w

is not PI.

Since w is not eventually periodic, we now see that R has quadratic growth since w

is 4-uniform. By Lemma 3.3.2 and Theorem 3.2.3 (2), we see that A
w

is just infinite and

hence R is just infinite.

Since w is uniformly recurrent and w is not eventually periodic, Corollary 3.11 and

Proposition 3.8 of [8] then give that the Jacobson radical of A
w

is zero. Finally, R is finitely

generated as a Lie algebra by Proposition 3.3.2. This completes the proof.

In fact, since A
w

is just infinite, it is prime and so by a result of Okniński [49], the

algebra A
w

must be primitive, since it is not PI and has zero Jacobson radical.
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Chapter 4

Skew polynomial extensions of

derivation type

In this chapter we explore the radical theory of di↵erential polynomial rings. The main

results of this chapter are as follows.

Theorem 4.0.1. Let R be a locally nilpotent ring satisfying a polynomial identity and let

� be a derivation of R. Then R[x; �] is locally nilpotent.

Theorem 4.0.2. Let R be a polynomial identity ring and let � be a derivation of R. Then

S := J(R[x; �]) \R is a nil �-ideal of R.

Theorem 4.0.2 is original work of the author of this thesis. Theorem 4.0.2 is a result

from joint work with Dr. Jason Bell and Mr. Forte Shinko. The author’s most significant

contributions regarding Theorem 4.0.2 are Lemma 4.3.1 and the techniques used in the

proof of Theorem 4.0.2 involving k-valid words and b-bounded sequences. Sections 4.2

and 4.3 are based on the work in [5] and Section 4.4 is based on the work in [41].
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4.1 Radical properties of skew polynomial extensions

of derivation type

Let R be a ring and let � be a derivation of R. Recall that we define the di↵erential

polynomial ring R[x; �] to be the set all polynomials of the form a
n

xn + · · · + a1x + a0

with n � 0, a0, . . . , an 2 R equipped with usual polynomial addition and multiplication

given by xa = ax + �(a) for a 2 R. There has been a lot of interest in studying the

Jacobson radical of the ring R[x; �] [2, 17, 29]. In the case when � is the zero derivation,

R[x; �] = R[x]. It was shown in [2] that J(R[x]) = N [x], where N is a nil ideal of R given

by N = J(R[x]) \ R. Extending this work, Ferrero, Kishimoto, and Motose [17] proved

the following result.

Theorem 4.1.1 ([17], Theorems 3.2 and 3.3). Let R be a ring and let � be any derivation

on R. Then, J(R[x; �]) = (J(R[x; �]) \ R)[x; �]. Moreover, if R is commutative then

J(R[x; �]) \R is a nil ideal of R.

Moreover, they proved the analogue of the above theorem for the prime radical.

Theorem 4.1.2 ([17], Corollary 2.2). If R is a ring and � is any derivation on R then

Nil⇤(R[x; �]) = (Nil⇤(R[x; �]) \R)[x; �].

In Section 4.4 we extend Theorem 4.1.1 to the class of polynomial identity rings.

Namely, we show that if R is a PI ring and � is any derivation on R then J(R[x; �])\R is

a nil ideal of R. Very recently, Smoktunowicz constructed an example in [62] which shows

that J(R[x; �]) \R need not be nil in general.

A natural question stemming from the above considerations is with regards to the be-

haviour of the locally nilpotent (Levitzki) radical of di↵erential polynomial rings. Recently,

Smoktunowicz and Ziembowski negatively answered a question of Sheshtakov [63, Ques-

tion 1.1], by constructing an example of a locally nilpotent ring R such that R[x; �] is not

equal to its own Jacobson radical. In then follows that their example R[x; �] was not lo-

cally nilpotent. They asked [63, Page 2] whether Sheshtakov’s question has an a�rmative
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answer if one assumes, in addition, that R satisfies a polynomial identity. We answer this

question in the a�rmative by showing that if R is a locally nilpotent PI ring and � is any

derivation on R then R[x; �] is locally nilpotent. In particular, R[x; �] is Jacobson radical.

We note that our theorem need not hold if we instead consider a skew polynomial

extension of R of automorphism type.

Example 35. Let R be the positive part of C[t
n

: n 2 Z] modulo the relations t2
n

= 0 for

every n 2 N. Moreover, let � be the automorphism of R given by �(t
i

) = t
i+1. Then R is

commutative and locally nilpotent but t0x 2 R[x; �] is not nilpotent.

4.2 Relevant combinatorics on words

In this section, we give some results on combinatorics on words that will be useful to us.

We begin by recalling some of the basic notions we will use.

Let A be a (not necessarily finite) alphabet. For any word u 2 A⇤, we let u
i

2 A

denote the i-th letter of u. We will be interested in the case when A = N := {0, 1, . . .}.

Let S
n

be the symmetric group on n letters. Define weight : N⇤
! N as follows. If

u 2 N⇤ is a word of length n then we define

weight(u) := min

(
nX

i=1

(n+ 1� i)u
�(i) | � 2 S

n

)
.

For a natural number k and a word u 2 N⇤ of length n, we say that u is k-valid if

weight(u)  k
�
n+1
2

�
. Roughly speaking, this says that the average letter of u is not too

large compared to k. Let b = (b0, b1, b2, . . .) be a sequence of natural numbers. We say

that u 2 N⇤ is b-bounded if for each m 2 N, every subword of length b
m

contains at least

one letter greater than m.

Let (B,<) be a poset. We place a partial order � on B⇤ as follows. Let u, v 2 B⇤.

Then u and v are incomparable if one is a prefix of the other. Otherwise, we compare them
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lexicographically using the order from B. We will be most interested in this when B is the

natural numbers and we will make use of this induced order on N.

We say that a finite sequence of words {v
i

}

d

i=1 ✓ B+ is d-decreasing if

v1 � v2 � · · · � v
d

.

We say that a word u 2 B⇤ has a d-decreasing subword if we can express u = vw1w2 · · ·wd

x

where {w
i

}

d

i=1 is a d-decreasing subsequence. We observe that every word trivially contains

a 0-decreasing subsequence.

Proposition 4.2.1. Let b = (b0, b1, . . .) be a sequence of natural numbers, let d and k

be positive integers, and let " 2 (0, 1]. Then there exist natural number constants M =

M(d,b, k, ") and N = N(d,b, k, ") such that if u 2 N⇤ is a k-valid, b-bounded word of

length n � N , then the subword of u consisting of the last b"nc letters contains a d-

decreasing subsequence {w
i

}

d

i=1 where the first letter of w
i

is less than M for i = 1, . . . , d.

Proof. We proceed by induction on d. The case when d = 0 is vacuous and we may take

M = M(0, b, k, ") = N(0, b, k, ") = 1.

Suppose now that the proposition is true for all nonnegative integers  d. We take

M1 = M (d,b, k, "/2) and N1 = N (d,b, k, "/2) . (4.1)

We pick a positive integer M2 satisfying:

(i) M2 > M1;

(ii) M2 > 8b2
M1

k"�2.

We have

M2

✓
("n/2� 1)/b

M1

2

◆
⇠ M2"

2b�2
M1

n2/8 � kn2.
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It follows that there is a natural number N2 > N1 such that whenever n > N2 we have

M2

✓
("n/2� 1)/b

M1

2

◆
> k

✓
n+ 1

2

◆
. (4.2)

Let u 2 N⇤ be a k-valid, b-bounded word of length n � N2. We write u = vwx,

where wx is of length b"nc and x is of length b"n/2c. We decompose w into subwords of

length b
M1 as follows. We write w = y1 · · · yjyj+1 where each of y1, . . . , yj has length b

M1

and y
j+1 has length less than b

M1 (possibly zero). By construction,

j =

�
b"nc � b"n/2c

b
M1

⌫
. (4.3)

Since y
i

has length b
M1 for i 2 {1, . . . , j}, it must contain a letter a

i

with a
i

� M1.

We claim that there exists some i 2 {1, . . . , j} such that a
i

< M2. To see this,

suppose that this is not the case. Then u contains at least j letters that are each at least

M2. Since u contains j letters that are at least M2, we have

weight(u) � jM2 + (j � 1)M2 + · · ·+M2 = M2

✓
j + 1

2

◆
� M2

✓
("n/2� 1)/b

M1

2

◆
.

But Equation (4.2) gives that this contradicts the fact that u is a k-valid word.

We conclude that w must contain a letter a with M1  a < M2. We write w = bc

where c is a word whose first letter is a.

By the inductive hypothesis, we can write x = pv1 · · · vdq where v1 � · · · � v
d

and the first letter of v
i

is strictly less than M1 for i 2 {1, . . . , d}. We then have that

wx = bcpv1 · · · vdq, and by construction

cp � v1 � · · · � v
d

is a (d + 1)-decreasing subsequence where the first letter of each word in the sequence is
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less than M2. The result now follows taking

N(d+ 1,b, k, ") = N2 and M(d+ 1,b, k, ") = M2.

Corollary 4.2.1. Let b = (b0, b1, . . .) be a sequence of natural numbers and let d and k be

positive integers. Then there exists a natural number N = N(d,b, k) such that if u 2 N⇤

is a k-valid, b-bounded word of length n � N , then u contains a d-decreasing subword.

Proof. We take N(d,b, k) = N(d,b, k, 1) from Proposition 4.2.1.

4.3 Di↵erential polynomial extensions of locally nilpo-

tent rings

We begin with a simple lemma that will allow us to apply our combinatorial results from

the preceding section.

Lemma 4.3.1. Let R be a ring, let T = {a1, . . . , am} be a finite subset of R, and let � be

a derivation of R. If n and k are natural numbers and p1, . . . , pn+1  k then the product

a
i0x

p1a
i1x

p2
· · · a

inx
pn+1

in R[x; �] can be written as a Z-linear combination of of elements of the form

a
i0�

j1(a
i1)�

j2(a
i2) · · · �

jn(a
in)x

M ,

where M is a nonnegative integer and j1j2 · · · jn 2 N⇤ is k-valid.

Proof. Using the formula

xda =
dX

j=0

✓
d

j

◆
�j(a)xd�j, (4.4)
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for d � 0 and a 2 R, it is straightforward to see that

a
i0x

p1a
i1x

p2a
i3x

p2
· · · a

inx
pn+1

can be expressed as a Z-linear combination of elements of the form

a
i0�

j1(a
i1) · · · �

jn(a
in)x

p1+p2+···+pn+pn+1�j1�···�jn

where we have j
i

 p1 + · · ·+ p
i

� j1 � · · ·� j
i�1 for i = 1, . . . , n. In particular, we have

j1 + · · ·+ j
i

 p1 + · · ·+ p
i

 ki

for i = 1, . . . , n. Summing over all i then gives

nX

i=1

(n+ 1� i)j
i



nX

i=1

ki = k

✓
n+ 1

2

◆
.

Thus the word j1j2 · · · jn 2 N⇤ is necessarily k-valid. The result follows.

Theorem 4.3.1. Let R be a locally nilpotent ring satisfying a polynomial identity and let

� be a derivation of R. Then R[x; �] is locally nilpotent.

Proof. Let S = {p1(x), . . . , pm(x)} be a finite subset of R[x; �]. We wish to show that

there is a natural number N = N(S) such that SN+1 = 0; i.e., every product of N + 1

elements of S is equal to zero. Then there is a finite subset T = {a1, . . . , at} of R and a

natural number k such that S ✓ T + Tx+ · · ·+ Txk. Let S0 = T [ Tx [ · · · [ Txk. Then

every element of Sn can be expressed as a sum of elements of the form Sn

0 and hence it is

su�cient to show that there is a natural number N such that SN+1
0 = 0.

To show that SN+1
0 = 0, it is enough to show that

Txp1Txp2
· · ·TxpN+1 = 0

for every sequence (p1, . . . , pN+1) 2 {0, . . . , k}N+1. For each n � 0, we let T
n

= T [ �(T )[
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· · · [ �n(T ) ✓ R. Then since R is locally nilpotent, there exists a natural number b
n

such

that T bn
n

= 0. We let b = (b0, b1, b2, . . .).

By Lemma 4.3.1, if (p1, . . . , pN+1) 2 {0, . . . , k}N+1 then we have that

Txp1Txp2
· · ·TxpN+1

can be written as a Z-linear combination of elements of the form

a
i0�

j1(a
i1) · · · �

jN (a
iN )x

M

where M is a nonnegative integer and j1j2 · · · jN is a word that is k-valid. Moreover,

whenever j1j2 · · · jN is not b-bounded we trivially have

a
i0�

j1(a
i1) · · · �

jN (a
iN ) = 0,

since it necessarily contains a factor from T bn
n

for some n � 0. In particular, it is su�cient

to show that there is some natural number N such that all elements of R of the form

a
i0�

j1(a
i1) · · · �

jN (a
iN ),

with j1j2j3 · · · jN 2 N⇤ a k-valid and b-bounded word, are zero.

Let d be the PI degree of R and let N = N(d,b, k) be as in the statement of

Corollary 4.2.1. We claim that whenever j1j2j3 · · · jN a k-valid and b-bounded word we

have a
i0�

j1(a
i1) · · · �

jN (a
iN ) = 0. To see this, suppose towards a contradiction that this is

not the case and let j1 · · · jN be the lexicographically smallest (i.e., the smallest word with

respect to �) k-valid and b-bounded word of length N such that a
i0�

j1(a
i1) · · · �

jN (a
iN ) is

not zero.

Given a subword y = j
s

j
s+1 · · · js+r

of j1 · · · jN , we define

f(y) = �js(a
is) · · · �

js+r(a
is+r) 2 R.
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By Corollary 4.2.1, we can write j1 · · · jN = uw1w2 · · ·wd

v with

w1 � w2 � · · · � w
d

.

Furthermore, we have that R satisfies a homogeneous multilinear polynomial identity of

degree d:

x1 · · · xd

=
X

�2Sd
� 6=id

c
�

x
�(1) · · · x�(d)

with c
�

2 Z for each � 2 S
d

\ {id}. Taking x
i

= f(w
i

) for i = 1, . . . , d we see that

f(w1)f(w2) · · · f(wd

) =
X

�2Sd
� 6=id

c
�

f(w
�(1)) · · · f(w�(d)).

Hence

a
i0�

j1(a
i1) · · · �

jN (a
iN ) =

X

�2Sd
� 6=id

c
�

a
i0f(u)f(w�(1)) · · · f(w�(d))f(v). (4.5)

By construction, for � 2 S
d

with � 6= id we have a
i0f(u)f(w�(1)) · · · f(w�(d))f(v) is an

element of the form a
i0�

j⌧(1)(a
i⌧(1)

) · · · �j⌧(N)(a
i⌧(N)

) with ⌧ 2 S
N

such that j
⌧(1) · · · j⌧(N) is

lexicographically less than j1 · · · jN . We note that, by definition, permutations of k-valid

words are again k-valid. Thus if we also have that if j
⌧(1) · · · j⌧(N) is b-bounded then we

must have a
i0�

j⌧(1)(a
i⌧(1)

) · · · �j⌧(N)(a
i⌧(N)

) = 0 by minimality of j1 · · · jN . On the other hand,

if j
⌧(1) · · · j⌧(N) is not b-bounded then a

i0�
j⌧(1)(a

i⌧(1)
) · · · �j⌧(N)(a

i⌧(N)
) contains a factor that

lies in T bn
n

for some n � 0 and hence it is zero. Thus we have shown that in either case we

have a
i0�

j⌧(1)(a
i⌧(1)

) · · · �j⌧(N)(a
i⌧(N)

) is zero for all applicable ⌧ , and so from Equation (4.5)

we see

a
i0�

j1(a
i1) · · · �

jN (a
iN ) = 0,

a contradiction. It follows that SN+1 = 0.
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4.4 On the Jacobson radical of di↵erential polynomial

extensions of polynomial identity rings

In this section we extend the work of Ferrero, Kishimoto, and Motose in [17] by extending

Theorem 4.1.1 to polynomial identity rings, of which commutative rings are a special case.

Theorem 4.4.1. Let R be a polynomial identity ring and let � be a derivation of R. Then

S := J(R[x; �]) \R is a nil �-ideal of R.

As a direct consequence of our main result, we also get a result of Tsai, Wu, and

Chuang [65], which says that if R is a PI ring with zero upper nilradical then R[x; �] is

semiprimitive. Namely, if we additionally make the assumption that Nil⇤(R) = (0) then

we get that S = (0) and so J(R[x; �]) = (0). We note that in general one cannot deduce

the work of Tsai, Wu, and Chuang [65] from our result because the upper nilradical of a

ring is not in general closed under the action of a derivation. Thus one cannot hope to

obtain our result as a consequence by passing to a semiprimitive homomorphic image.

We note that other work on this topic has been done by other authors [9, 10, 29, 44].

In fact, a similar result to Theorem 4.4.1 can be found in [10].

Theorem 4.4.2 ([10], Corollary 3.5.). Let L be a Lie algebra over a field K which acts

as K-derivations on a K-algebra R. This action determines a crossed product R ⇤ U(L)

where U(L) is the enveloping algebra of L. Assume that L 6= 0 and that R is either right

Noetherian, a PI algebra, or a ring with no nilpotent elements. Then J(R ⇤ U(L)) =

N ⇤ U(L) where N is the largest L-invariant nil ideal of R. Furthermore J(R ⇤ U(L)) is

nil in this case.

While the above result is in a way more general than our result, we do not require

that R be a PI algebra over a field. Our result concerns PI rings and the proof given is

purely ring theoretical.

Proof of Theorem 4.4.1. It is clear that S is an ideal of R. Now let a 2 S. Then xa, ax 2

J(R[x; �]) and xa = ax + �(a). Therefore �(a) 2 J(R[x; �]) and so �(a) 2 S. This shows

that S is a �-ideal.
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It is left to show that S is nil. To do this we consider the ring L := (S + N)/N ,

where N = Nil⇤(R). We begin by noting that L is an ideal of R/N , which is a polynomial

identity ring with zero upper nilradical.

If L is the zero ideal of R/N we have that S ✓ N and so S is nil. Suppose, towards

a contradiction, that L is not the zero ideal. Thus by Posner’s theorem we have that L

intersects the centre of R/N nontrivially. Let a 2 S such that a+N 6= N and a+N is in

the centre of R/N . We have that xa 2 J(R[x;D]) and so by quasi-regularity there exists

f(x) 2 J(R[x; �]) such that

f(x) + xa� f(x)xa = 0, (4.6)

and

f(x) + xa� xaf(x) = 0. (4.7)

Write

f(x) =
nX

i=0

xib
i

.

From (4.7) we immediately get that b0 = 0. Now, from (4.6) we see that

nX

i=0

xib
i

+ xa�
nX

i=0

�
xib

i

xa
�
=

nX

i=0

xib
i

+ xa�
nX

i=0

�
xi(xb

i

� �(b
i

))a
�

=
nX

i=0

xib
i

+ xa�
nX

i=0

xi+1b
i

a+
nX

i=1

xi�(b
i

)a = 0.

Upon equating coe�cients we get that

b
n

a = 0; (4.8)

b
i

� b
i�1a+ �(b

i

)a = 0, for i = 2, . . . , n; (4.9)

b1 + a+ �(b1)a = 0. (4.10)
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We have J(R[x; �]) = S[x; �] (see [17]) and so f(x) 2 S[x; �]. Therefore each b
i

2 S.

We claim that b
n�j+1aj 2 N for j = 1, . . . , n. We prove this by induction on j.

If j = 1 we clearly have that 0 = b
n

a 2 N . Now assume the result is true for j < k

with k 2 {2, . . . , n} and consider the case when j = k. In particular, we have that

b
n�k+2ak�1

2 N . Now, post-multiplying (4.9), taking i = n� k + 2, by ak�1 we have by

the induction hypothesis that

b
n�k+2a

k�1
� b

n�k+1a
k + �(b

n�k+2)a
k

⌘ �b
n�k+1a

k + �(b
n�k+2)a

k (mod N)

⌘ 0 (mod N).

(4.11)

To prove the claim it is left to show that �(b
n�k+2)ak 2 N . From (4.6) and (4.7) we also

get that xaf(x) = f(x)xa. Recall that we have the identity

axr =
rX

`=0

(�1)`
✓
r

`

◆
xr�`�`(a),

for any r 2 N. But then we have that

0 = f(x)xa� xaf(x) =
nX

i=0

xi+1b
i

a+
nX

i=1

xi�(b
i

)a�
nX

i=0

xaxib
i

=
nX

i=0

xi+1b
i

a+
nX

i=1

xi�(b
i

)a�
nX

i=0

iX

`=0

(�1)`
✓
i

`

◆
xi�`+1�`(a)b

i

.

(4.12)

Equating coe�cients of xn�k+2 in (4.12) we have that

b
n�k+1a+ �(b

n�k+2)a+ (�1)k
✓

n

k � 1

◆
�k�1(a)b

n

+ (�1)k�1

✓
n� 1

k � 2

◆
�k�2(a)b

n�1

+ · · ·+

✓
n� k + 2

1

◆
�(a)b

n�k+2 � ab
n�k+1 = 0.

(4.13)
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Notice that since a is central modN , the first and last term of the left-hand-side of (4.13) are

identical mod N . Also, by the induction hypothesis b
n

ak�1, b
n�1ak�1, . . . , b

n�k+2ak�1
2 N .

Therefore by post-multiplying (4.13) by ak�1 and considering this equation modulo N we

have

�(b
n�k+2)a

k

2 N.

Using this and (4.11) we get that b
n�k+1ak 2 N . The claim is then true by induction.

By the above claim with j = n we have that b1an 2 N and so by (4.10)

0 ⌘ b1a
n + an+1 + �(b1)a

n+1
⌘ an+1 + �(b1)a

n+1 (mod N). (4.14)

To see that �(b1)an+1
2 N we equate coe�cients of x in (4.12). From doing so we get that

�(b1)a+ (�1)n+1�n(a)b
n

+ (�1)n�n�1(a)b
n�1 + · · ·+ �(a)b1 = 0.

Post-multiplying this by an+1 and using our claim we observe that �(b1)an+1
2 N . Com-

bining this with (4.14) we get that an+1
2 N and so a is nilpotent. But then, using the

fact that a is central mod N , we see that (aZ + aR + N)/N is a nil ideal of R/N . Since

N is a nil ideal of R, we see that aZ + aR + N is also a nil ideal of R. But N is the

upper nilradical and so we see that a 2 N and so we have that a + N = N , which is a

contradiction. We conclude that L = (0) and so S is nil.

We get the following immediate corollary, which is part of the main result of [65].

Corollary 4.4.1. Let R be a PI ring with Nil⇤(R) = (0). Then R[x; �] is semiprimitive

for any derivation � of R.
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Chapter 5

Future Directions

While work has been done in this thesis to extend what is known regarding the homogeneity

of the Jacobson radical and upper nilradical of rings graded by unique-product semigroups,

the two biggest open questions in the area remain open.

Question 1. If X is a unique-product semigroup then does any X-graded ring have a

homogeneous Jacobson radical?

Question 2. If X is a unique-product semigroup then does any X-graded ring have a

homogeneous upper nilradical?

There has been much work done on how combinatorial information of a right-infinite

word w translates to ring-theoretical information of A
w

. It would be interesting to in-

vestigate which Hopf algebra structures may be placed on the algebra A
w

. For instance,

it would be interesting to investigate which right-infinite words admit a cancellation-free

formula for all possible antipodes on A.

Question 3. Given a right-infinite word w over a finite alphabet, when can A
w

be endowed

with the structure of a Hopf algebra?

In [24], Holdaway and Smith were able to describe the module structure of finitely

presented monomial algebras through a categorical equivalence involving quiver algebras.
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It would be interesting to investigate if something similar to this technique could be applied

to iterative algebras.

Question 4. Let C denote the category of Z-graded right A
w

-modules modulo the full

subcategory consisting of modules that are the sum of finite dimensional submodules. Can

one give a concrete description of C for an iterative algebra A
w

?

It would also be interesting to investigate if the possible subword complexities of

pure morphic words demonstrated in [52] could be described/determined through ring-

theoretical information about the associated iterative algebras.

Question 5. Can one give purely ring-theoretic characterizations that determine which of

the five possible growth types an iterative algebra has?

Given a right-infinite word w, consider the power series

H(t) =
1X

n=0

⇢
w

(n)tn.

It would be interesting to investigate when the power series H(t) is simply a rational

function in disguise. Without providing the intermediate definitions, we are actually asking

the following question.

Question 6. Let A
w

be an iterative algebra. Can one characterize the words for which A
w

has rational Hilbert series with the standard grading? Can one characterize the words for

which A
w

is finitely presented?

Finally, after considering the behaviour of di↵erential polynomial extensions of lo-

cally nilpotent rings, it would be very interesting to consider the behaviour of di↵erential

polynomial extensions over strongly nilpotent rings. The following question was asked in

[46].

Question 7. If R is a strongly nilpotent ring and � is a derivation on R then is R[x; �]

Jacobson radical?
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