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Abstract

Message sequence charts (MSC’s) are a formal language for the specifi-

cation of scenarios in concurrent real-time systems. The thesis addresses the

synthesis of executable object-oriented design-time models from MSC spec-

ifications. The synthesis integrates with the software development process,

its purpose being to automatically create working prototypes from speci-

fications without error and create executable models on which properties

may be validated. The usefulness of existing algorithms for the synthe-

sis of ROOM (Real-Time Object Oriented Modeling) models from MSC’s

has been evaluated from the perspective of an applications programmer ac-

cording to various criteria. A number of new synthesis features have been

proposed to address them, and applied to a telephony call management

system for illustration. These include the specification and construction of

hierarchical structure and behavior of ROOM actors, views, multiple con-

tainment, replication, resolution of non-determinism and automatic coor-

dination. Generalizations and algorithms have been provided. The hier-

archical actor structure, replication, FSM merging, and global coordinator

algorithms have been implemented in the Mesa CASE tool. A comparison

is made to other specification and modeling languages and their synthesis,

such as SDL, LSC’s, and statecharts. Another application of synthesis is to

generate a model with support for the automated validation of safety and

liveness properties. The Mobility Management services of the GSM digi-

tal mobile telecommunications system were specified in MSC’s. A Promela

model of the system was then synthesized. A number of optimizations have

been proposed to reduce the complexity of the model in order to successfully

perform a validation of it. Properties of the system were encoded in Linear

Temporal Logic, and the Promela model was used to automatically validate

a number of identified properties using the model checker Spin. A ROOM

model was then synthesized from the validated MSC specification using the

proposed refinement features.
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Chapter 1

Introduction

1.1 Software engineering

Empirical studies have shown that many software faults occur due to errors

introduced in the requirements and specification phase of software construc-

tion1. This is of concern in real-time telecommunication systems, which are

highly complex in nature and consist of concurrent, communicating pro-

cesses. The accurate specification of protocols and services, and the veri-

fication of fulfillment of these services, are needed to reduce the time and

cost of development.

Software engineering is the discipline of building reliable, cost-effective

software solutions to practical technological problems, usually involving

large and complex systems, by applying scientific knowledge and techniques

[4]. The practitioner must follow a precise methodology to create a working

software system that operates according to user requirements upon com-

pletion, avoiding unnecessary delays and cost overruns in the process. The

steps to follow are outlined in a process model, of which there are several

types according to the characteristics of the project, especially the extent to

1One study, by DeMarco [29], found that 56% of all bugs detected can be traced to

errors made during the requirements stage.
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which risk analysis and client involvement plays a role in the requirements

[1]. For example, the traditional waterfall model2 in figure 1.1, has been

found to be overly documentation-centric and involving the customer to an

insufficient extent, resulting in products not closely meeting his expecta-

tions. More recent derivatives such as the spiral model, depicted in figure

1.2, have been considered more appropriate for large projects of higher risk,

as they incorporate risk analysis at every stage of the development process.

1.2 Requirements specification

The functional and non-functional3 requirements4 of the software system are

first captured through elicitation from the various parties to be involved with

the eventual product, including the customers and actual users. An analysis

is then undertaken to identify possible inconsistencies and omissions. The

updated requirements are next codified in a specification document, either

in natural language, or, preferably, one that uses a standardized language

with formal semantics. Finally, the requirements are validated with the

customer as a final assurance of their correctness and completeness through

a comprehensive test suite5.

The requirements are verified for consistency and completeness using for-

mal techniques, with the aid of automated analysis tools whenever possible.

2An iterative variant exists, in which feedback is obtained from the operations phase,

and any necessary changes to requirements result in a new iteration of development.
3Non-functional requirements include performance constraints and user interfaces.
4The IEEE Standard 729 [28] defines a requirement as a “condition or capability that

must be met or possessed by a system . . . to satisfy a contract, standard, specification, or

other formally imposed document.”
5The terms verification and validation applied in the software engineering context are

treated here as having distinct meaning. Verification refers to a formal (i. e. mathemat-

ical) proof of correctness of a software system model with respect to a set of required

properties, using theorem-proving techniques, for instance. Validation, on the other hand,

is the process of establishing correctness with respect to a set of properties or identifying

errors through experimentation, including testing and model-checking through state space

exploration of a finite state model.

2



Figure 1.1: The waterfall process model [1]. The role of MSC’s in this model,

indicated by the dashed interaction lines, is explained in Section 2.1.

Figure 1.2: The spiral process model [1]. c©Prentice-Hall, 1991.
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Once the requirements have been verified and understood, a design is

drawn to capture an architectural view of the system that illustrates, on a

relatively high level of abstraction, its structure and behaviour. Language-

and machine-specific constructs and syntax are avoided. The structural

component of the design consists of a mapping of the desired properties of the

system onto physically-realizable structures or executing software processes,

while the behaviour modeling is expressed in terms of the interaction of

the structures through signals 6. The description of the interrelationships

between processes in terms of temporal progress through scenarios is called

inter-object specification [14]. An external environmental structure may be

included to act in the capacity of a user, assigning tasks and accepting

output. In general, the design presents a framework for the implementation

of the software system.

1.3 Visual formalisms and scenario-based design

A number of requirements engineering formalisms with visual components

have been standardized. Visual notation is often easier for humans to ana-

lyze, especially non-experts.

1.3.1 UML

UML (Unified Modeling Language) is a standard modeling language for the

specification, visualization, construction, and documentation of the artifacts

of software systems [32]. Behavior can be specified using sequence interac-

tion diagrams, based on those of Booch [45]. Collaboration diagrams that

specify object interaction can also be used. UML 1.1 was produced in 1997

by the UML Partners consortium, including DEC, HP, IBM, Microsoft, Or-

acle, ObjecTime, Rational, and others, in response to an RFP (Request

for Proposal) issued by the OMG (Object Management Group), which has

6The terms signal and message are used interchangeably in the text. Any data content

attached in a signal is irrelevant to the discussion herein.
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approved it as a standard.

Sequence diagrams are used to specify the dynamic structure of a sys-

tem, or how it behaves, rather than how it is structured [41, 42, 43]. A

sequence diagram shows the interaction of objects in terms of the messages

that they exchange arranged in time sequence [33]. Sequence diagrams re-

semble MSC’s, in which the vertical dimension represents time, while objects

are arbitrarily arranged horizontally. The duration of existence of an object

is represented by a vertical, dashed lifeline. An activation is a period during

which a process is active and performing an operation, and is represented

by a thin rectangle. The activation represents the focus of control in the

system. A process activation is triggered by the receipt of a message and

comprises the subsequent processing that needs to take place. An example

of a UML sequence diagram appears in figure 1.3.

Variations on the symbology are possible, if required. For instance, an

asynchronous message can be drawn with a half-arrowhead, and activations

can overlap in time. An asynchronous message can create a new thread,

create a new object, or communicate with a thread that is already run-

ning. A (synchronous) procedure call can be drawn as a full arrowhead,

with a return shown as a dashed arrow, and activations cannot overlap in

time. Branches are indicated by multiple arrows leaving a single point, each

labeled by a guard condition. The branch represents conditionality if the

guard conditions on all the messages are mutually exclusive, in which case

only one message is sent. On the other hand, the branch represents con-

currency if the guard conditions on the messages are mutually inclusive, so

that multiple messages are sent. It is also possible to show features such as

process creation, destruction (indicated by an x), and recursion. Iteration,

in which a message is sent multiple times to multiple receiver objects, is

indicated by an asterisk followed by square brackets containing an iteration

expression specifying the number of iterations.
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Figure 1.3: A UML sequence diagram [33]. The [x > 0] and [x < 0] condi-

tions are guards. The result of the [x > 0] operation results in the creation of

the ob2 class role object. The doit() labels specify operations. The ob4 role

splits into two side-by-side lifelines, each track being a conditional branch,

depending on which message from ob3 or ob2 is received. The more() pro-

cedure is executed in a nested thread, and is termed a self-call. The ob1

and ob2 class role objects are destroyed at the end of the sequence.
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1.3.2 FSM’s

FSM’s (Finite State Machines), also known as DFA’s (Deterministic Finite

Automata) can be used to specify control in systems that are in one of a

finite set of possible states, and where state transitions are triggered by

events. They are the underlying automaton for many formal languages and

models. They consist of:

• A finite set of states, Q.

• A finite set of inputs, I.

• A finite set of outputs, O.

• A transition function f : Q× I → Q×O where f is a total or partial

function.

FSM’s are a synchronous model in that the system must be in one global

state at any time, and only a single transition can occur. Thus, a basic FSM

cannot model a concurrent and asynchronous system, as can an MSC.

Two equivalent models for state machines exist:

Mealy. The outputs are a function of both the present state and the input.

Moore. The outputs are associated with the states of the system.

1.3.3 OMT

OMT (Object Modeling Technique) is a modeling methodology with rich

notation that addresses object-oriented concepts such as classification, poly-

morphism, and inheritance. The technique is divided into three parts: anal-

ysis, system design, and object design. The latter is the refinement of object

structure towards efficient implementation. The system is described in ag-

gregate from three different views:
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Object model. Utilizes object diagrams to describe the structure of the

objects in the system and their interrelationships.

Functional model. Utilizes data flow diagrams to describe process com-

putations.

Dynamic model. Utilizes state diagrams for every class to describe the

control flow in the system. Event flow diagrams are first drawn to

identify events, states, and transitions.

A state diagram consists of entry/exit actions, guarded transitions, ac-

tions (instantaneous operations performed on transitions), output events on

transitions, and internal actions (where an event does not cause a state

to change). State diagrams provide aggregation and generalization using

the concept of inheritance. States can be decomposed in sub-state dia-

grams, where the transitions of the super-state are inherited by each of its

sub-states. An event hierarchy is also provided to generalize or specialize

events. Sub-events inherit attributes from super-events. The state diagram

of a subclass is usually an independent orthogonal concurrent addition to

the state diagram.

1.4 Real-time systems

Rapid advances in the telecommunications industry have precipitated an

increased interest in distributed, reactive real-time systems. These main-

tain an ongoing interaction with the environment by responding to stimuli

and operating in an event-driven fashion. Tasks are executed in parallel for

greater efficiency and throughput, and protocols are defined for the com-

munication necessary to co-ordinate all activities in the system. Processing

is done by interacting concurrent processes or threads. Real-time systems

are characterized by their stringent timing requirements to satisfy specified

deadlines for every task. The constraints consist of the service time for a

request and the latency, the delay before processing begins on the input.
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Figure 1.4: An example of an OMT dynamic and functional model [34].

State diagrams can be nested. The states in the nested diagram are all

refinements of the state in the high-level diagram. The states in a nested

diagram can interact with other states, even outside of the diagram. Actions

can be associated with the entry and exit of a state. Concurrency is modeled

by an object split into multiple sub-diagrams. The forked transitions into

and merged transitions out of the sub-diagrams entail synchronization of

activities. The merging of concurrent control occurs when the target state

becomes active due to all transition conditions being satisfied, in any order.

The functional model can show the flow of data between objects. An actor

is an active object that produces or consumes data values, acting as a source

or a sink. A data store, on the other hand, is a passive object that stores

data for later access [44].
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Reactive systems do not terminate under normal circumstances; they con-

tinuously respond to stimuli from the environment. Real-time systems are

frequently found in embedded technologies. Examples of real-time applica-

tions are: operating systems, communication devices and their protocols,

and robotics.

Transformational systems, on the other hand, are different in that they

transform a set of input data into a set of output data in a finite computation,

then terminate. No constraint is placed on the response or execution time,

and no interaction with the environment is present. Examples of transfor-

mational applications are: numeric computations in engineering, compilers,

and financial bookkeeping.

Real-time systems often use asynchronous communication, in which the

sender of a signal continues its execution immediately after the signal is

dispatched, rather than blocking and waiting for a reply. Thus, the send

operation is non-blocking, in that the sending process is allowed to proceed

as soon as the message has been copied to a local buffer and the transmission

of the message proceeds in parallel with the sending process [30]. Each

process maintains a buffered message input queue from which it retrieves

its incoming requests. The receive operation can be of a blocking or non-

blocking variant. In the non-blocking variant, the receiving process proceeds

with its program after issuing a receive operation, which causes a buffer to be

filled in the background, but it must separately receive notification that its

buffer has been filled through polling or an interrupt. The blocking variant,

assumed in this thesis, is simpler in that a process blocks until a message

arrives. Although non-blocking communication can be more efficient, it

does involve extra complexity in the receiving process due to the need for

acquiring an incoming message out of its flow of control.

The advantage of asynchronous communication is that the interval dur-

ing which the behavior of a process is unresponsive is short, and the com-

munication mechanism required to support it is relatively simple, making it

suitable in situations where a rapid response is critical [3]. In synchronous

communication, the sending process is blocked until it receives a reply, and
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during this interval, it cannot respond to any other inputs. Although this

increases the control over ordering of activities, it can be less efficient than

asynchronous communication.

One example of a major distributed telecommunications system using

the real-time approach is that of the mobility management service of the

GSM (Global System for Mobile Communications) cellular phone system in

Europe, where base stations co-ordinate seamless hand-offs of calls due to

the physical relocation of phones [2].

1.5 Synthesis

Synthesis, in this context, is the transformation from a requirements spec-

ification to an architectural design, from one language to another. One

form of synthesis comprises the problem of computationally constructing

a structurally and behaviorally equivalent (or determinable) state-based

model from scenarios7, a decidedly non-trivial task given the rich syntax

and semantics of present-day specification languages. Both the source and

destination models are formalized, and the translation is often complex and

tedious even when applying it to software systems of low complexity. It is

desirable to utilize a CASE (Computer-Aided Software Engineering) tool

to automatically generate a model from a specification that is useful to a

programmer for purposes of refinement and testing, using well-defined trans-

lation rules. Such a productivity tool can be essential to the increasingly

common rapid development project8 [7].

The purpose of synthesis is two-fold:

1. To create a design consistent with the requirements for use as a pro-

totype or as a framework for the implementation.

7Scenarios describe the possible event sequences that the system may execute.
8Rapid development emphasizes development speed using schedule-oriented practices.

CASE tools, with sufficient training and experience, can decrease the time and risks

associated with the transition to the design phase.
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2. Translate the requirements to an executable model for the purpose of

verifying whether it satisfies functional requirements.

In this thesis, Section 4 addresses the first area, while Section 5 investi-

gates the second. A process model incorporating synthesis is suggested in

Section 5.6.

1.6 Scope & methodology

1.6.1 ROOM synthesis

The underlying methodology of a synthesis process requires a well-defined

approach, terminology capturing conceptual constructs, a suitable notation

describing the syntax and semantics of the modeling language, and a process

being prescribed, including activities, outputs, and any heuristics [18]. The

synthesis process will thus be described.

A popular way of describing message interaction between parallel pro-

cesses is through an MSC (Message Sequence Chart) specification. This

language, comprised of a pictorial and equivalent textual form, was stan-

dardized in ITU-T (International Telecommunications Union) Recommen-

dation Z.120. MSC’s specify scenarios consisting of message-passing activ-

ities between system components. Components are instances of software

processes, and are represented by vertical lines, while message transmissions

are denoted by directed arrows joining the process constructs along a verti-

cal time axis, as shown in Fig. 1.5. MSC’s are useful for concisely specifying

scenarios in communication protocols. A scenario is an ordered sequence

of actions relating to external and internal requirements. Each MSC repre-

sents a possible execution trace, and it is possible to combine multiple charts

into a cohesive system description containing all possible execution paths,

although some limitations to expressivity exist, as discussed later. A more

in-depth discussion of MSC’s is found in Section 2.1, and a comparison with

a related state machine formalism called SDL is covered in Section 3.1.
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Figure 1.5: An example of a bMSC (basic MSC), defining signal transmis-

sions between three process instances and an environment [8].

Although there exist executable semantics for MSC specifications that

rely on universal assumptions, 9 such as SDL [25] (discussed in Section 3.1),

a useful byproduct of software development is an early working prototype

with which to test functional and approximated performance requirements,

and to demonstrate progress to customers for their feedback. Also, it is

beneficial to advance to the design stage and create a realizable architecture

using tool automation to minimize errors and save time.

At least two different views of the continuity of the design process exist:

Continuous. A requirements specification model is refined into a design

model. Although this process can save time, minimize errors, and

result in high traceability, the design will closely resemble the require-

ments model, even though the two can theoretically be built quite dif-

ferently. The requirements model may need to anticipate and conform

to design-related parameters. For example, a design synthesized from

9The system must always follow a specified behavior whenever a set of specific condi-

tions is satisfied, regardless of the history. Universal conditions are given more treatment

in the discussion on LSC’s in Section 3.3.
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an MSC specification may assume an asynchronous system requiring

the presence of a context-switching process model and independent

message buffers.

Discontinuous. A requirements specification model is discarded before the

design model is built from scratch. This approach may result in a de-

sign that is better optimized for a target computer system, but is more

time-consuming, resulting in a design that can be difficult to verify,

and be more prone to errors. For instance, a synchronous protocol

specified in an MSC may be built most efficiently by adopting a one-

process layered design using function invocation and global variables

for inter-layer communication, rather than message-passing and ex-

pensive context-switching. However, functional testing would need to

be relied on for validation, rather than model-checking of the require-

ments.

The application of the continuous design process is advocated in this the-

sis, because automation of the software development process is one of the

goals of the work. A design-time model can be synthesized automatically

from an MSC specification. This thesis is based on the process of synthe-

sizing design models in the ROOM (Real-Time Object-Oriented Modeling

Chart) [3] language, also known as ROOMcharts10, first investigated by

Leue, Mehrmann, and Rezai [5, 6]. ROOM models are a useful technique in

capturing software designs of concrete software engineering problems, as a

step in the software process model following the formal requirements phase.

ROOM allows the expression of domain knowledge and design ideas, with

emphasis on the ability to describe real-time systems. It can capture high-

level system properties, such as communication ports and process structures,

in addition to the low-level abstractions inherent in procedural programming

languages, such as variables and timers. ROOM supports an event-based

asynchronous communication model, so that it is appropriate for describing

communication protocols specified in MSC’s.

10The terms ROOM and ROOMcharts are used interchangeably in the text.
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“ObjecTime Developer,” henceforth referred to as OTD, is a software

development suite produced by ObjecTime Ltd. in Canada. It permits a

software engineer to enter designs consistent with the requirements, refine

them, and build executable models to run animated simulations. A sample

session is shown in Figure 1.6. OTD is a commercial-grade CASE tool,

first developed in the late 1980’s, and successfully utilized in a number of

large industrial projects, including the OAM (Operations, Administration,

and Maintenance) software of Nortel Networks’s 10 Gb/s S/DMS OC-192

TransportNode network element [31].

The synthesis process accepts as its input a complete MSC specification,

entered into another CASE tool called Mesa (Message Sequence Chart Ed-

itor, Simulator and Analyzer) [21] 11. This tool enables the user to compose

a system model conforming to the MSC standard, and automatically run

syntactic analysis on it to detect any errors in the construction. Potential

problems such as timing inconsistencies, non-local choice, and process di-

vergence are automatically detected through static model-based analysis. A

sample open project Mesa session is shown in figure 1.7.

One of the reasons for standardizing MSC’s was to support the cre-

ation of such tools. Synthesis algorithms have already been implemented in

Mesa that translate MSC specifications into ROOM models. The synthesis

involves a translation from an MSC specification graph stored in memory

to a so-called linear form file that contains a complete description of the

generated ROOM model. This file is then imported into OTD. An example

of a linear form file appears in Appendix A.

Although the theoretical groundwork for this type of synthesis has al-

ready been laid out, there is ample room to refine the generation to produce

a design-time model that is more practical and useful to a typical developer.

One of the goals of the research is to create accessible and practical tools for

11
Mesa is available under a research license from Prof. Stefan Leue of the Albert-

Ludwigs-Universität in Germany. The SunOS 5.x and Linux i386 2.2.x platforms are

supported. Mesa is a C++ application with Tcl/Tk GUI components, and a Tcl/Tk 8.x

installation is required. For more information, visit http://fee.uwaterloo.ca/˜mesa
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Figure 1.6: A sample screen-shot of an ObjecTime Developer session, with

the hand-coded PBX project being displayed (discussed later, in Section

4.1.1).
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Figure 1.7: A sample screen-shot of a Mesa session, with static analysis be-

ing run on the PBX specification. Non-local branches have been discovered

in the highlighted bMSC’s. Non-local choice is discussed later in Section

4.5.5.
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solving real problems in the engineering field. Hence, an analysis has been

undertaken of the synthesis results produced so far in an effort to identify

areas of improvement for further study. The process involved composing an

MSC specification conforming to the ITU-T Z.120 standard using Mesa,

formally recording the requirements of a sample system of sufficient com-

plexity to observe any shortcomings in the end product of the synthesis,

including structural layout, connectivity, branching, etc. A ROOM design

model was synthesized from the MSC specification by application of syn-

thesis algorithms. The result was compared to a ROOM model of the same

system entered from scratch by hand, using the facilities provided within

OTD.

Automatic synthesis confers a number of advantages onto a software

developer:

• Shorter development time through easy-to-use interfaces and automa-

tion, and, as a result, lower cost.

• Fewer or no errors in the translation of the specification to a high-level

design.

• Documentation for the purposes of maintenance and test plan creation.

• Easy modification through automatic re-generation of a model when

a change, however significant, is made in the specification.

• Demonstrability of a working C++ prototype to a customer for early

feedback.

1.6.2 Promela synthesis & validation

Another important application of synthesis is to enable safety and liveness

requirements to be validated, something that is not possible with MSC’s

alone. This requires the specification and validation of the properties in

a suitable temporal language such as LTL (Linear Temporal Logic). The
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Spin Model Checker is a tool that supports the validation of LTL properties

on Promela design models, and so a synthesis feature has been added to

Mesa to generate Promela code. The system under study in this thesis is

the Mobility Management service of the GSM cellular telecommunications

system, responsible for call management and handover. MSC’s were used

to specify the high-level requirements of operational behaviour derived from

the GSM standard. The specification was entered and verified using the

Mesa editor and analyzer tool, and a model in the Promela design language

was automatically synthesized. Various safety and liveness properties were

encoded in Linear Temporal Logic, and automatically proven to hold true of

the Promela model using Spin. The validation process and results obtained

are fully discussed.

1.7 Overview

The objective of the thesis is to understand the need and methodology for

the synthesis of real-time systems from requirements specifications, and the

underlying theory of the languages involved in the process.

1.7.1 Summary of Chapters 2-3

The first chapter presents background on MSC’s and ROOMcharts, the

source and target of the synthesis work explored in the thesis. The second

chapter discusses and compares related work on specification languages and

their synthesis, including Live Sequence Charts.

1.7.2 Summary of Chapter 4

Chapter 4 of the thesis concerns the synthesis of ROOM design models to

create working design-time prototypes from MSC specifications. The system

under study is the call management service of a small telephone exchange.

Hand-coded and automatically generated models using the synthesis facili-
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ties in the Mesa CASE tool were enhanced using proposed new techniques.

The content is as follows:

• The communication protocols in today’s telecommunication software

systems are characterized by high complexity. The need for a rigorous

development process, including formal specification, verification, and

design synthesis, can prevent errors in the development process, as

discussed in Section 1.1.

• A number of specification and design languages are presented in Sec-

tion 2, and their theoretical basis and support for synthesis are ex-

plained. The focus of the thesis is on mapping MSC specifications to

ROOMchart designs, and both models, as well as the synthesis process

itself, are described in detail.

• In Section 4.1, an evaluation was first undertaken of current synthe-

sis results, and what improvements were necessary to adapt a proof-

of-concept result to one with high potential for commercial use. A

number of criteria to satisfy were identified.

• The first area investigated was the support for multiple views of a

system component, as discussed in Section 4.2.

• The use of replication, as suggested in Section 4.3, permits population

of actors and interfaces in the system.

• Next, a construction for a hierarchical structural layout of the system

is described in Section 4.4.1. Various options for the specification

of hierarchical behavior are described in Section 4.4.2. Generalized

algorithms for all ROOM-compliant models are provided. The use of

hierarchy aids in organizing the knowledge of the system.

• Non-determinism can exist in a scenario-based model. Various con-

structions for synchronization and simulation of system processes are

suggested in Section 4.5.
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• The simulation of ROOM models in Section 4.6 enables implementa-

tion-time MSC validation to be performed.

1.7.3 Summary of Chapter 5

The topic of Chapter 5 of the thesis is the synthesis of a model not for the

purpose of creating a design for refinement, but to formally capture and

automatically validate safety and liveness properties specified in a language

called Linear Temporal Logic.

The content of the section is as follows:

• Section 5.2 presents an overview of the GSM system and the Mobil-

ity Management services, defining the operational requirements under

study. An informal explanation of the handover procedure is also in-

cluded.

• Next, in Section 5.3, a brief introduction to the Message Sequence

Charts specification language and Mesa tool is provided, as well as

the Promela design language and Spin tool.

• In Section 5.4, the Promela model for GSM that was synthesized from

the MSC specification is described in detail.

• In Section 5.5, Linear Temporal Logic (LTL) is explained, and the

formulæ for high-level requirements and the validation results are pre-

sented, including the memory and processing resources required.

• Finally, in Section 5.6, a brief conclusion and some future research

directions are presented.

1.7.4 Summary of Chapter 6

The GSM system of Chapter 5 was synthesized using the features proposed

in Chapter 4. Thus, this system was first validated through Promela syn-
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thesis and LTL formulæ, then synthesized into a ROOM design-time model,

following the suggested development process.

1.7.5 Summary of Chapter 7

The purpose and process of synthesis is summarized with concluding notes

and directions for future research.

1.8 Contribution

I have presented the need for the synthesis of real-time software systems from

Message Sequence Chart specifications, and researched and explained the

underlying theory of various languages and synthesis processes, identifying

features of importance and performing a comparison. I have suggested the

benefits of synthesis in the software development cycle, and explained its role

in design-time prototyping and property validation. I have undertaken an

analysis of the existing synthesis techniques and evaluated their usefulness

from an application programmer’s perspective based on criteria that I have

identified.

Next, I have suggested several new improvements to the synthesis of

ROOM models, providing examples and generalized inter-compatible algo-

rithms for implementation. The hierarchical actor structure allows for plan-

ning of the system layout. Views and replication assist in the composition

of multiple processes. The global co-ordination model allows for automatic

execution of the model with resolution of non-local choice branches. Im-

provements to hierarchical state machines in the behaviour of ROOM ac-

tors has also been investigated. The advantages conferred by these extension

features include the following:

• The addition of structural object-based concepts to the system for

improved decomposition and understanding.
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• The automation of decision-making in the model for the purpose of

hands-free simulation.

• The ability to create multiple views and instances of processes in-

creases the support for more complex scenarios.

I implemented, and verified through simulation, four synthesis algo-

rithms, including: hierarchical actor structure, replication, finite state ma-

chine merging, and a global coordinator. The algorithms were implemented

in the ROOM synthesis engine of the Mesa CASE tool [5, 6], an ongoing de-

velopment project in our software requirements engineering research group.

I drew, verified, and synthesized all MSC’s using this tool. I also performed

various development and maintenance activities on it throughout the work.

The synthesis techniques presented have been successfully verified to

work on a reasonably complex telephony system which I partially built.

I have also investigated the synthesis of Promela models from MSC’s and

shown how to validate safety and liveness properties of the original speci-

fication within the constraints of limited available memory. Improvements

to existing algorithms have been suggested and implemented, using a GSM

system that I built from scratch as a testbed, and of which I identified a

number of properties to prove. The system was then synthesized into a

ROOM model using the ideas of the previous chapter.
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Chapter 2

Background

Models are a way of capturing the knowledge of a system. They describe its

elements and their interrelationships. Control and data flow is clearly spec-

ified. An important characteristic of models is precision, attained through

rigorous mathematical semantics. Models can present multiple views of the

system, including its physical structure and behavior, and define its causal-

ity of events, concurrency, and synchronization [18]. Several modeling lan-

guages are prominent in the software engineering field, and are summarized

below.

2.1 MSC’s

MSC’s (Message Sequence Charts) are a popular and easily understand-

able visual specification language for system engineering. They consist of

a graphical and equivalent textual language for the specification of func-

tional requirements for concurrent, reactive and real-time systems. MSC’s

are standardized by the International Telecommunication Union in Recom-

mendation Z.120 [55, 56]. They were specially invented to describe signal

exchanges between system components executing in parallel [8], and are to

a large extent design-independent in that they can be implemented through
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many software architectures. MSC’s can also be used to describe software

architectures; for example, through patterns 1.

Figure 2.1: An example of a basic MSC, defining signal transmissions be-

tween three process instances and the environment. The counter initial-

ization block is only treated as a comment and has no syntactic meaning

[8].

The MSC-92 standard [35], approved at the ITU meeting in Geneva

in 1992, introduced instances, messages, events, and conditions to simple

sequence charts. The synthesis work herein is primarily based on the MSC-

96 [36] version of the specification, approved at the conclusion of the last

study period in April 1996, which added features such as hMSC’s, references,

1A pattern is a recurring solution to a design problem [38]. It consists of a set of

rules describing how to accomplish certain tasks. The rules express a relation between a

context, a system of opposing forces that occur repeatedly in that context, and a software

configuration where these forces are resolved. The forces must balance, or trade-off. Pat-

terns reflect the knowledge of and experience in software development. While patterns

are the instructions for implementing solutions in software, frameworks are the physical

realization of multiple software pattern solutions. Architectural patterns, in particular,

address software architecture. Architectural patterns express a structural organization

schema, provide a set of predefined subsystems, specifying their responsibilities, and in-

clude rules and guidelines for organizing the relationships between them. MSC’s can be

used to specify the communication between subsystems as part of a pattern.
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general ordering, and in-line expressions. The very recent MSC-2000 [37]

recommendation, approved by the ITU-T Study Group in November 1999,

has introduced improved structural concepts and object-orientation, data,

time observations and constraints, and synchronizing method calls [66, 37].

MSC’s have a number of uses:

• The documentation of system requirements or message exchange

among concurrent objects.

• The description of test scenarios.

• The expression of properties verified against SDL specifications.

• The capture of observed behavior of a working system or a simulation

of the system specification or design-time model.

The first area is of primary interest in this work, as it constitutes the

input to the synthesis and design work of the system. Figure 1.1 on page 3

illustrates how MSC’s are integrated into the waterfall development process

[5]. They are created based on requirements elicited from the customer, and

analyzed for correctness. They imply the process topology and communi-

cation protocols required for drafting an architecture of the system. MSC’s

can also be used to generate test cases to validate correct operational behav-

ior of the final implementation by comparing execution traces to the original

specification. Message sequence charts are useful for the documentation of

functional and interface requirements. They have found use in the design of

both software and hardware systems.

MSC’s consist of a set of individual system traces called scenarios that de-

scribe partial ordering of input and output events: message sending and re-

ceiving actions. The scenarios rely on existential quantification2 [22]. MSC’s

are inappropriate for the specification of data storage and manipulation, as

2i. e. The scenarios depict events that can occur in the system, rather than all of the

events that must occur.
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well as processing logic. Although extensions exist, MSC’s are specifically

intended to address message events.

Although this is not part of the Z.120 standard, MSC’s can be used to

describe exceptional and mandatory occurrences, those that must or must

not occur in all runs. Such extensions are supported in annotated MSC

languages such as Live Sequence Charts, described in 3.3.

The fundamental chart in the language is a basic (existential) Message

Sequence Chart (bMSC), which essentially depicts a partial description of

behavior of a set of process instances. An example appears in Figure 2.1.

The process instances run in parallel and exchange messages in a one-to-one,

asynchronous manner. Processes are represented by vertical lines, such as

the Initiatior in the example, while the ends of the arrows denote message

send and receive events. SDL systems, blocks, processes, or services can

map directly to MSC process instances. The environment is an entity that

is represented by the enclosing rectangular frame on the MSC diagram. It is

treated much like a process instance, and can also send or receive messages,

with the exception that no ordering of communication events is assumed.

A system which interacts with the environment is characterized as an open

system.

MSC’s can specify just one sample system execution, illustrating a pos-

sible run. They can also specify all valid and invalid behaviors. Applying

the closed-world assumption to MSC’s, it would be theorized that any MSC

not included in the system description as an allowed or disallowed behav-

ior cannot occur. However, this assumption does not hold true of MSC

specifications, as unspecified traces may still be possible.

Processes communicate through message exchanges, indicated by con-

necting arrows along a vertical time axis, such as the ICONreq message sent

by the environment. Time is represented down the length of each process

axis, and so a total ordering of communication events is shown from top

to bottom in a single chart. In addition to message exchanges, processes

can individually execute internal actions, use timers to express timing con-
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straints, and create and terminate process instances. Timers can be used

to specify timing constraints for hard real-time systems. Co-regions can

also be specified, where the ordering of the actions within the boundaries of

the region is undefined. Conditions, defined for one, some, or all processes

(local, non-global, or global conditions) are special marker states that can

be optionally specified for the purpose of composition (combination) and

decomposition of MSC’s.

MSC’s do not inherently assume a communications channel and buffer

for transporting and storing messages, hence no properties of the communi-

cation medium can be asserted. The Mesa tool does allow for the definition

of channels, but not in compliance with the Z.120 standard. An underlying

error-recovery protocol, such as one that uses timeouts and acknowledg-

ments, is normally assumed to be present for most networking protocols but

is left unspecified, so that messages are assumed to always arrive correctly.

A construct for a lost message can be used if required, though.

It is possible to refine a process instance by a set of instances defined

in another MSC, which is then called a subMSC. Messages addressed to the

refined instance appear internally as messages connected to the subMSC’s

border, with the order preserved. This concept makes it easier to manage

highly populated specifications by grouping process instances together.

Although the textual and graphical formats of MSC’s contain the same

information, the representation of MSC’s is different in the following respects

[20]:

Textual representation of MSC’s is instance-oriented. All events are de-

fined as being ordered per instance. Each message input is not directly

identified with an output.

Graphical representation is event-oriented. Message inputs and outputs

are always depicted as being connected, so that it is easier to visually

interpret the protocols.

A number of basic MSC’s can be connected in a directed graph in order

28



to describe parallel, sequential, iterating, and non-deterministic execution.

The resulting diagram is called a high-level message sequence chart (hMSC),

as shown in figure 2.2. An hMSC is a digraph, where all nodes can refer

to bMSC’s, and the edges indicate execution sequences possible along the

nodes. The nodes can also describe a system in a hierarchical fashion by

combining multiple, connected hMSC’s within a single hMSC. An hMSC

has exactly one start node (▽) to denote the beginning of the specification,

and optional end nodes (△) to denote the termination of the specification.

A directed line between two nodes of an hMSC indicates that they are

composed vertically, and more than one outgoing line from a node implies

a non-deterministic branching choice, where the successors are alternatives.

A cycle connecting a number of nodes implies a possible repetition, or loop.

Service_req

Authorization

ConversationLoc_update

Loc_up_Req

Authorization_loc

Chan_alloc

Failure

Call_setup
Chan_deallocChan_dealloc

Chan_alloc

Failure

Loc_update

msc GSM

Figure 2.2: An hMSC of the GSM Promela Model from Chapter 5.

Mesa, the Message Sequence Chart Editor Simulator and Analyzer, is a
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CASE tool that provides an environment for the composition of system mod-

els using the MSC syntax and semantics, supporting syntactic and model-

based analysis. Mesa, developed in the Dept. of Electrical & Computer

Engineering at the University of Waterloo, was used for the entry of the

PBX and GSM models described in the text. Non-local branchings and pro-

cess divergence were identified by the tool, and its synthesis features was

used to translate the MSC’s to ROOM and Promela code.

2.2 ROOMcharts

ROOMcharts (Real-Time Object-Oriented Modeling) methodology was de-

veloped as an aid in the design of distributed real-time systems, and is based

on an object-orientation paradigm [3]. ROOM actually uses a variation of

the visual formalism of basic statecharts (discussed in Section 3.2) called

ROOMcharts. It is implementation-focused, in the sense that careful at-

tention has been given to the definition of features that can are directly

realizable in a software engineering design tool.

ROOMcharts consist of hierarchical communicating extended finite state

machines. They ensure consistency and clarity in the design model by spec-

ifying a formal conceptual base. ROOMcharts permit efficient implemen-

tations while still retaining significant expressive power [11]. ROOMcharts

expand on statecharts by formally defining structural boundaries and inter-

faces. In addition, ROOMcharts make use of a message-passing paradigm,

which can be implemented in a distributed system, rather than the more

vaguely defined and less practical broadcast system suggested in Statecharts,

in which a change of state can be conveyed to any component instanta-

neously.

With respect to orthogonal (concurrent) states, ROOMcharts do not

incorporate them, as they can usually be replaced by concurrent and con-

nected communicating actors. This avoids extra complexity and potential

undesirable couplings between states.
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ROOM models are multi-faceted. They are composed of the following

distinct views of a system:

Structural The physical layout of the system is expressed in terms of the

instantiation of concurrent actors (active system components, usually

software processes) and the statically defined interfaces between them.

The interfaces consist of ports, through which all messages must be

exchanged. A protocol is an attribute of a port, and consists of a

set of valid message types that can pass through a port. Bindings

specify the connectivity of interfaces between actors. Each process

possesses exactly one input queue for all incoming messages destined

for it. Classes of actors and protocols may be defined, inheritance

relationships may be specified, and a hierarchical topography may be

introduced into the structure, as well. The decomposition structure of

the system can be regarded as being an architectural view of it. An

example of the structure of a ROOMchart is shown in Figure 2.3.

Behavioral The description of the actions undertaken by each actor in the

system is described in a state-based behavioral view. Two approaches

to message communication are supported: synchronous (in which the

sender blocks waiting for a reply to its message before proceeding) and

asynchronous (in which the sender immediately continues processing

after sending a message without waiting for a reply). An actor is

event-driven, in that it normally sleeps waiting for input then immedi-

ately responds to it. Each actor possesses a single thread of execution,

and run-to-completion semantics3 are utilized. If a new event occurs

3An event is said to occur when a message is received by an actor. In the run-to-

completion approach, the processing performed by an actor that occurs due to an event

cannot be interrupted by an event of higher priority, i. e. while an actor is busy handling

a message, the arrival of a message of higher priority than that of the current one cannot

interrupt the actor — it will be queued up and handled later, on completion of the current

event. This is opposite from the preemptive model, in which the arrival of a higher-priority

message causes the processing of the current event to be suspended and commenced with

the new event. The complication with the latter method is that it leads to a concurrency

problem with respect to internal variables. In the run-to-completion approach, a higher-
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while an actor is still busy processing the previous one, the new event

is queued by the receiving end port and will be resubmitted once all

prior messages have been processed. Messages can be prioritized, but

this is treated as an implementation issue. The behavior within ac-

tors is specified by hFSM’s (Hierarchical Finite State Machines), with

a complete description of all states, including the actions taken on

transitions, in the form of executable code. A memory is maintained

for states so that execution returns to the most recent state when an

actor is re-entered during execution. Trigger and guard definitions de-

termine how each transition is enabled. Provisions for inheritance of

behaviour by refining the leaf states of a parent class are also available.

An example of the behavior of a ROOMchart is shown in figure 2.4.

It is unwieldy to represent all of the transitions in the entire system in

one monolithic actor, and so, through the process of modularization and

encapsulation, all of the tasks are usually divided into coordinated actor

components, with the internal finite state machines of actors also assuming

a hierarchical arrangement.

The communications model makes the following assumptions that are

common to channels in Communicating Finite State Machines (CFSM’s)4:

full-duplex, error-free, first-in first-out (FIFO), and unbounded capacity.

priority event can, however, claim the processor and cause a context-switch if the recipient

actor is waiting for a message to arrive when the new event occurs rather than processing

one.
4CFSM’s [23] introduce the concept of communicating channels to finite state machines

(FSM’s). Each FSM represents a communicating, concurrent process, with a finite number

of control states.
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Figure 2.3: An example of the structure of a ROOMchart [3] for a fabric dye-

ing system, containing the class definition for DyeingSoftware. The square

shapes on the rectangular actors denote end ports (known precisely as port

service access points, or port SAP’s), as they are attached to the ultimate

producers or consumers of the messages. The hollow squares on the bound-

ary are relay ports, allowing the encapsulated components to export their

interfaces. The relay ports simply act as intermediaries to pass messages.

The arrows denote communication through an alternate mechanism called

system service access points (system SAP’s), supporting message-sending

across vertical structural layers, with the arrowhead pointing towards the

lower layer.

c©John Wiley & Sons, 1994.
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Figure 2.4: An example of the behavior of a ROOMchart [3] for a fabric

dyeing system, with its finite state machine shown. The annotations have

the following meanings:

t: enabling transition

a: action taken during transition

e: action taken during entry into state

x: action taken during exit from state

The arc from the circled I is the initial transition.

c©John Wiley & Sons, 1994.
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Chapter 3

Related work

The following sections present related work on specification languages and

synthesis.

3.1 SDL

SDL (Specification and Description Language) [25] is a high-level formal

programming language represented in graphical (SDL-GR) or textual syntax

(SDL-PR), standardized by the ITU-T in Recommendation Z.100 [19]. It

is an industry-caliber language used in the development of network and

telecommunications systems, where it is considered the de facto standard.

SDL is presented here as it is often used in close combination with MSC’s,

where MSC’s can be used to express and verify properties of SDL specifica-

tions, and for other purposes described below. SDL complements MSC’s in

producing a full system description.

SDL describes a system as a collection of concurrent communicating

processes, each modeled as an extended, hierarchical finite state machine

(EFSM). It is richer than MSC’s in that it supports structural concepts

such as processes contained within blocks and connected by channels and
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signal routes. It supports abstract data types, inheritance, instantiation,

and parameter passing. The content of tasks and decisions may consist

of knowledge within the scope of the problem domain, but not necessarily

defined within the context of the SDL specification itself, and as a result

is not parsed. MSC’s have no concept of data flow or processing activities,

other than a process’s behavior being dictated by what message is next

expected in a specific chart. Both models do support the notion of non-

determinism.

The communications model is well-defined, consisting of each process

responding to a bounded first-in first-out input message queue. A maximum

number of instances of each process type must be statically defined, although

dynamic allocation and deallocation is allowed. MSC’s, however, are more

generic, with no such physical limits being defined, at least in MSC-96.

Unlike SDL, MSC’s in general are not entirely adequate for use as a com-

plete system description. Indeed, part of the motivation behind the creation

of MSC’s was for their anticipated adoption as a language complementary

to SDL, in fact standardized by the same ITU-T study group. MSC’s may

be used in the automatic generation of skeleton SDL specifications, as well

as for the simulation and consistency verification of SDL.

An example of a structural and a behavioral SDL diagram appears in

Figures 3.1 and 3.2.

3.2 Statecharts

Statecharts are a generalization of state transition diagrams [10, 15, 18].

They integrate three concepts: transition diagrams, depth, and orthogo-

nality. Depth involves the clustering of states into higher entities called

superstates, a process referred to as multilevel decomposition, and hiding

the illustration of internal details, through a technique called zoom-out. By

incorporating such graphical constructs for finite state machines, the ap-

parent complexity of the system is reduced. An example appears in figure
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Figure 3.1: SDL structural example of a candy vending machine [25]. In-

stances of process types communicate through signal routes and channels,

and are laid out in hierarchical fashion in layered blocks. The environment

is denoted by the enclosing frame.

c©Prentice-Hall, 1991.
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Figure 3.2: SDL behavioral example of a candy vending machine [25]. The

various constructs denote states, signal transmissions and receptions, pro-

cedure calls, decision points, timer activity, and tasks. Every variable used

must be declared.

c©Prentice-Hall, 1991.
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3.3, illustrating the state machine of a statechart and the semantics of its

transitions.

As explained in Section 3.3, orthogonality is the concept of a process

instance being in two states at one time, each state defined in an orthogonal

component. It is possible for a statechart to be split into multiple state

machines, with the encapsulating state representing the orthogonal product

of the components. That is, each component consists of independent sub-

states, and it is possible for a single event to trigger simultaneous transitions

within the state’s components.

Module-charts are used as a form of data flow diagram. They describe

modules that constitute the implementation of the system, including the

decomposition of the system into software and hardware components, and

the messages exchanged between them.

A history is maintained for each component so that the most recently

visited state is immediately entered on a new transition into the component.

Thus, the behavior of a system is not memoryless. MSC’s, however, do not

support transitions across levels inside of charts, so that history is not a

concept that is applicable to MSC’s. As a consequence, the intermediate

exiting of a chart, in which a higher-level transition triggers an immediate

exit from all sub-components of a state, is also not supported. All events

in a bMSC must always run to completion, until the end of the bMSC is

reached, and no interrupts are possible. Also, the system may only be in

one bMSC at a time, unlike the orthogonal components of statecharts.

The communications model consists of a form of event broadcasting.

Internally generated events are immediately reacted to by all orthogonal

components of a state. However, the mechanism is limited to the scope of

a single statechart, and thus takes no part in inter-object communication.

MSC’s do not support the notion of a broadcast at all. Each message must

have a single, explicit recipient.

Non-determinism occurs when several transitions that cannot be taken

simultaneously are enabled, and no added criterion has been given for se-
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Figure 3.3: A statechart of a rail-car system [15]. The transition arrows are

adorned with reactions of the form: trigger[condition]/action. Events

always run-to-completion, as in ROOMcharts (see Section 2.2 on page 30).

The initial transition appears in the top left-hand corner (•). The @ symbol

prefixing a state name indicates that it is decomposed into another sub-chart.

Consider the transition labeled [stopsAt->isEmpty()]: if the car stops at

all stations, it will be removed from the stopsAt list (through the remove

command specified inside of the operating sub-chart). Control will exit

from the operating sub-chart and into the idle state, regardless of which

state the operating sub-chart was in when the condition was satisfied. The

sub-chart does not constitute an orthogonal component, which is indicated,

instead, by a sub-chart being divided by a dotted line into parallel state

machines. No history is defined for the charts shown, as evidenced by the

lack of a circled H symbol. If it were present, and the transition labeled

tm(90) pointed to this symbol, then whenever the operating sub-chart

would be re-entered from the higher-level Car chart, control would return

to the most recently visited state. In this case, such a change would be

illogical. c©IEEE Press, 1996.
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lecting one of the available choices. Tools that execute the model must make

an arbitrary decision or ask the user to decide. Unlike in MSC’s, however,

prioritization can cause certain (but not all) situations to be deterministic.

For instance, a higher-level transition has priority over an internal transi-

tion within a substate. MSC’s do not support the concept of signals being

prioritized.

Transitions are more general than those in MSC’s — they can depend

on whether the system is in another specified state, and can be triggered by

the entry or exit to and from another state.

The Statemate toolset provides a graphical editor for the entry of stat-

echart models. It checks for syntax, consistency, and completeness. It allows

external code to be attached to the model. Models can be executed and an-

imated, and liveness properties are validated through exhaustive execution

of models. The models can be translated to either Ada or C code, and a

variant is available for translation to VHDL/Verilog. Statemate supports

rapid throw-away prototyping1.

Executable object modeling is supported under C++, where the com-

munication between statecharts assumes an event-queued client-server envi-

ronment [16]. The support tool is called Rhapsody ModelerTMand Develop-

erTM, available from I-Logix. A single-threaded approach is taken, so that

only a single reaction to an event can occur at a time, i.e. a transition cannot

take effect until all orthogonal components are waiting in states. Full broad-

cast is supported, accomplished by addressing an event to the system object.

Both synchronous and asynchronous communication is supported. Classes

are specified in the object model, and the notion of instantiation of objects

is included with additional notation denoting the number of instances. In-

stantiation of typed statechart behavior is supported with limited refinement

1Throw-away prototyping is a methodology whereby code is developed to explore fac-

tors critical to the system’s success, such as the ability to meet performance constraints,

and then that code, usually not produced in a maintainable state, is discarded after anal-

ysis. The use of a rapid prototyping tool allows for much faster creation of a prototype

than would be the case with a standard manual implementation [7]
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possible, including decomposition into substates or orthogonal components.

3.3 LSC’s

The synthesis of object systems from LSC (Live Sequence Chart) specifica-

tions has been investigated by Harel et al [9, 14, 46]. LSC’s are an extension

of MSC’s that address their limitation in expressive power. For example, al-

though the order of message sending and receiving can be specified in MSC’s,

they cannot express what scenarios (called anti-scenarios) are forbidden in

the system.

The principal additions are liveness properties, which specify manda-

tory (called “hot”), eventual behaviour in the system, as well as forbidden

scenarios.2

Parts of a chart or even the whole chart itself can be specified as be-

ing mandatory or provisional. Live Sequence Charts (LSC’s) can express

whether a communication, instance progress, or a whole chart will be in-

volved in all runs or in some runs. The two types of charts that can be

specified are as follows:

Universal Whenever an activation condition is satisfied, the system must

follow the behavior specified in the chart, i. e. the sequence of messages

in the chart must occur in the specified order. An activation condition

can take the form of a single message or a sequence of messages defined

in a chart. Therefore, a causal precedence relationship exists between

the activation condition and the chart.

Existential The charts need not be satisfied in all runs. It is only required

that for each of these charts, there is at least one run in the system

2Liveness properties specify an event that must or must not happen when a certain

condition is true. For instance, an example of such a property is that if a phone goes

off-hook, then a dial tone is emitted. The system must satisfy this property in order to

be judged as being correct with respect to the requirements.
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that satisfies it. Existential charts can always be transformed into

universal charts specifying the exact activation message or prechart

that is to determine when each of the possible approaches occurs.

During execution, if a false mandatory condition is encountered in a

system run, the run aborts abnormally, while a false provisional condition

implies a normal exit from an enclosing chart or subchart.

LSC’s are essentially annotated MSC specifications, and are as expressive

as statecharts. The underlying automaton is called a life Büchi automaton

[9]. A standard non-annotated MSC specification, on the other hand, cor-

responds to a safety Büchi automaton, in which only pure safety properties

can be validated 3.

Message sequence charts, on the other hand, describe only the order in

which messages may be sent and received. They can only convey safety

properties, those that must be currently satisfied for a given state, not at

any point in the future, and these properties are limited to only the order

of message send and receive events.4

The validation of liveness properties involves a never automaton, derived

3The Büchi automaton consists of a set of states, an initial state, an event alphabet,

a transition relation for specifying state changes due to input events, and a set of ac-

ceptance states. The automaton accepts an infinite sequence of events if it causes the

automaton to visit at least one of its acceptance states infinitely often. The Büchi au-

tomaton is more general than a finite automaton, which accepts a word if it causes the

automaton to halt in one of its acceptance states after a finite trajectory on the word.

A Büchi automaton for which every state is an acceptance state specifies a pure safety

property, and no liveness. Liveness is only expressed if a non-empty subset of the states

are not acceptance states.
4An example of a safety property is that it is impossible for an idle tone

to be emitted at the same time as a dial tone (represented by the appropriate

signals). This follows from all of the possible scenarios encoded in the MSC.

A more general safety property is that no deadlocks are present in the system.

However, a property such as a phone not receiving a dial tone when being taken off-

hook due to all touchtone receivers (TTRX’s) being in use cannot be expressed in MSC’s.

Nor can the property that once a connection is established, either the originator or receiver

will eventually terminate the call.
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from the Büchi automaton5. It must be ensured that an acceptance state

corresponding to the fulfillment of an illegal property (the opposite of a

safety or liveness property) is not part of a sequence of states that can be

repeated infinitely often [17].

Activation conditions in LSC’s may be defined that specify the scenarios

to which the system’s behaviour must conform when the specified conditions

are satisfied. Through a combination of different message line orientations

and boundary boxes, mandatory and provisional scenarios are visually de-

picted. An example is illustrated in Figure 3.4.

In addition, Harel’s state machines are orthogonality-free and flat, while

provisions are made for the synthesis of more advanced constructs. Orthog-

onality is the characteristic of a process being active in more than one state

at a time. In other words, it entails concurrency. Essentially, Harel et al’s

paper critiques that the current synthesis employed in the Mesa tool is

based on the limiting assumption that all bMSC’s are mutually exclusive of

each other such that the system can only be in one state in one bMSC at one

time. Different bMSC’s are executed at different points in time6. While the

concept of orthogonality cannot be expressed in MSC’s, this thesis presents

a solution to behaviour specified in a hierarchical arrangement, not simply a

flat state space, an idea that is not expressed in the work on LSC synthesis.

LSC’s provide constructs for specifying the entire chart, events, condi-

tions, and instance progress as universal or existential for a set of runs. How-

ever, they don’t provide explicit representation of precedence and causality

relationships between the events in any execution. For example, these charts

can express that there exists a run r1 where event e1 will happen, and there

5The property to be proven to hold true of the model is first inverted, then translated

into an automaton. Next, the synchronous product is built of the model and this automa-

ton. The verification consists of showing that there is no trace that ends in an acceptance

state.
6This treatment is, however, consistent with usage in industrial MSC tools, such as

Lucent’s µBet (Lucent Behavior Engineering Toolset). µBet represents behavior as hi-

erarchical use cases containing scenarios, with the underlying scenario behavior being

represented by MSC’s.
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Figure 3.4: Live sequence chart example of a rail car. The sub-charts confine

the instances relevant to them, while the others are transparent. The sub-

charts have solid borders and are thus universal, while existential subcharts

(requiring only one satisfying run) are indicated by dashed borderlines [14].
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also exists a run r2 where event e2 will happen 7. However, they cannot

express the relationship between the occurrences of the above two events.

More precisely, these charts cannot express: if in a specific run e1 happens,

then the occurrence of e2 is mandatory in that same run.

The expressivity and verification of these action/reaction types of prop-

erties in a particular run is of interest here, however, and temporal logic (see

5.5 on page 154) allows for the expression of these properties. In this work,

LTL has been used to specify properties on the Promela model generated

from an MSC specification that the MSC specification cannot itself express.

A Promela model can be simulated and validated for safety and liveness

properties using the Spin tool [51].

LSC’s would be insufficient to express these specific types of liveness

properties. For instance, consider the requirement in Subsection 5.5.1 on

page 158, where after being identified and having its subscriber information

retrieved, the mobile must be authenticated by the network, with the result

being success or failure. This rule implies that the identification event must

be followed by an authentication event in the same run, and both events

must occur, but this cannot be expressed by LSC’s, as explained above.

3.3.1 LSC object synthesis

The synthesis of LSC’s addresses the problem of whether, given an LSC

specification, there exists a satisfying object system and, if so, synthesizing it

automatically [9]. An entire LSC specification is considered consistent if and

only if it is satisfiable by a state-based object system. A satisfying system is

then synthesized as a collection of finite state machines or statecharts. Live

sequence charts are considered a manifestation of use cases, and if they can

be synthesized, can directly lead to an implementation.

A crucial difference between the LSC synthesis and this work is that

the former allows for the specification and synthesis of liveness properties.

7
r1 and r2 may be the same run.
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The MSC language does not support this concept, and hence only possible

paths (scenarios) are synthesized with no liveness dependence among them.

However, progress labels8 and acceptance conditions9 can be used with the

Büchi automaton, which forms the basis of MSC specifications.

The LSC synthesis uses a more restricted form of the LSC language

as its basis, in which objects only communicate synchronously, i. e. the

sender of a message is blocked waiting for a receipt. This thesis, however,

addresses asynchronously communicating state machines10, which can be

more efficient, as explained in Section 1.4 on page 8.

An additional restriction is that communication with the environment

can appear only as an activation condition of an LSC chart and not as

part of the messages in the chart itself. There is no such restriction on the

MSC’s that are synthesized as described in this thesis. The environment is

essentially treated as a unique process instance.

Much of the LSC work deals with state machines which are orthog-

onality-free and flat, while the thesis examines systems with hierarchical

structure and behavior. However, a more complex algorithm is outlined for

synthesizing statecharts with concurrent, orthogonal state components.

The ROOM synthesis from MSC’s produces a result similar to that of

statecharts, in which an actor is synthesized for every MSC process instance,

and all actors run concurrently. However, there is no concurrency within

each actor, i. e. an actor cannot consist of orthogonal components as it

can only occupy one state at a time. While the algorithms for LSC object

synthesis also do not support the notion of orthogonality, an addition is

8 An invalid cyclic execution sequence is defined to be a sequence of statements that

can be repeated infinitely often, without achieving any progress in the execution of the

system. It it possible to specify precisely which states constitute progress by attaching

labels to states [17].
9Acceptance states are the opposite of a progress condition — they formalize that

something cannot happen infinitely often. They mark the states that may not be part of

a sequence of states that can be repeated infinitely often [17].
10A synchronous communication exchange can always be represented in an asynchronous

model, if needed.
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roughly sketched out such that each object in the system has a top-level state

and any number of orthogonal components. A general description of this

addition to the synthesis algorithms appears at the end of this subsection.

One of the most difficult aspects of LSC synthesis is the interaction

between statecharts, in which the behavior of a synthesized statechart is de-

pendent on the requirements of other statecharts. The synthesis of MSC’s

does not deal with interdependent MSC’s. The entire system is always in

a single state governed by the behavior specified in a single bMSC. This

chart specifies the behavior of all process instances in the system during its

lifetime. Thus, MSC semantics assume mutually exclusive charts. In the

ROOM model synthesis, the information used by the synthesis algorithm

pertains only to those messages directly relevant to each process in question,

i. e. in which the process is either a sender or receiver. However, because

the LSC specification language allows both existential and universal quan-

tification and does not assume mutual exclusion semantics, this projection

information is insufficient.

Just as with MSC’s, the dynamic creation and destruction of LSC in-

stances is not considered in this thesis. Also, a common assumption is that

no failures are present in the system, and hence every message that is sent

is immediately received.

In LSC synthesis, the notion of a cut is defined, representing the progress

each instance has made in a scenario in terms of event locations (situated

on message send and receive actions). The sequence of cuts in the execution

order constitutes a run, essentially denoting the sender of each message and

the identifier of the message itself in a possible execution order. An example

of a cut and a trace appears in figure 3.5 on page 52. A chart may have mul-

tiple runs, characterized by multiple message event sequences, and they may

be executed in any order. In MSC’s, all process’s can only occupy a state

defined by each process’s send and receive events only in the same bMSC. In

the Ladkin/Leue semantics for MSC’s, a synchronous communication event

of sending and reception likewise corresponds to exactly one transition in

the global state transition graph [39].
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In the example of figure 3.5, the setDest message is the activation con-

dition for the chart. An example of a single cut is:

(< cruiser, 1 >,< car, 3 >,< carHandler, 2 >)

where execution has reached location 1 in instance cruiser, location 3 in

instance car, and location 2 in instance carHandler. This corresponds

to the start message being sent from the car to the cruiser. At each

location, a send or receive event occurs. As the instances communicate with

each other, only certain combinations of positions, i. e. cuts, are possible.

An example of a single possible run is:

(env, car.setDest)

(car, carHandler.departReq)

(carHandler, car.departAck)

(car, cruiser.start)

(cruiser, car.started)

(car, cruiser.engage)

The automaton for this chart would be represented by a linear series of

nodes, beginning with node n0, representing cut (0,0,0). A transition from

n0 to n1 is labeled with the message sent in the event departReq. n1 rep-

resents cut (0,1,1), and makes a transition to n2 to cover the departAck

message, and so on. If orthogonal components are present, then the au-

tomaton would contain branches so that every possible ordering of events in

the chart was depicted. An example of this is included in [9].

For a universal chart m, the DFA (deterministic finite automaton) ac-

cepting its language is defined as:

The transition relation is formally defined as follows [9], with additional

comments:

A = (A,S, s0, ρ, F ) where:
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• A = Ain ∪Aout is the alphabet.

• The set of states S consists of the cuts through m, with an additional

state s0, so that: S = {c|c ∈ cuts(m)} ∪ s0.

• Assuming the natural mapping f between (dom(m) ∪ env) × Σ ×

dom(m) to the alphabet A, the transition function ρ is defined as

follows:

– ρ(s0, a) = c0 if a = f(amsg(m)) and c0 is the initial cut, i. e.

Make a transition to the first cut if the first event is the chart’s

activation message.

– ρ(c, a) = c if a is not restricted by m, i. e. Return to the same

state (as a self-transition) if the event is not mandatory.

– ρ(c, a) = c′ if succm(c,< j, lj >, c′′) and succm(c′′, < j′, l′j >, c′)

and f(msg(m)(< j, lj >)) = a and < j, lj >,< j′, l′j > are send

and receive events of the same message and not all locations in

c′ are cold, i. e. Make a transition to the next cut on a single

send-and-receive pair event.

– ρ(c, a) = s0 if succm(c,< j, lj >, c′) and f(msg(m)(< j, lj >)) =

a and all locations in c′ are cold, i. e. return to the initial state

once all messages restricted by the chart are received.

• The set of accepting states is F = {s0}.

The underlying automaton representation for all possible runs in LSC’s,

which is used for the construction of the synthesized state machines in the

synthesis algorithms, consists of nodes of each state representing a cut and

being labeled by the vector of locations, with edges between the nodes la-

beled with the message sent. Only send events are represented, since a

synchronous communication model is assumed (again, unlike in the synthe-

sis of MSC’s). The LSC language enables the forcing of progress along an

instance line as part of the “liveness” extensions. Each location is assigned

a “temperature:” hot or cold. Any run must continue down hot lines, while
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it may or may not continue down cold lines. In the final cut of a run, all

locations must be cold.

The target object system is a basic computational model for object-

oriented designs, defining the behavior of systems composed of object class

instances whose behavior is given by conventional state machines [24]. A

system satisfies an LSC specification if, for every universal chart and every

run, whenever an activation message holds, the run must satisfy the chart,

and if, for every existential chart, there is at least one run in which the

activation message holds and the chart is satisfied. To show satisfiability,

a GSA (Global System Automaton) is constructed, describing the behavior

of the entire system in terms of the message communication between the

objects in the system in response to messages received from the environment.

The GSA is a finite state automaton with an input alphabet consisting of

messages sent from the environment to the system, and an output alphabet

consisting of messages communicated between the objects in the system.

The construction of a GSA satisfying the specification implies the existence

of an object system (where a separate automaton is created for each object)

satisfying the specification. It is possible that a given LSC specification is

not satisfiable by an object system. This can occur due to the interaction

between more than two universal charts, and also when a scenario described

in an existential chart can never occur because of the restrictions from the

universal charts.

A universal chart must be satisfied by all runs from all points in time.

Consistency of an LSC specification is a necessary and sufficient condition for

the existence of an object system that satisfies it. An algorithm is provided

to test for consistency. The GSA is then used as part of the synthesis by

distributing it between the objects, creating a desired object system. Three

approaches are possible:

Controller. A single controller sends commands to all objects so that each

object acts in the desired fashion. The size of the state machine of the

controller object is equal to that of the GSA.
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Figure 3.5: A single LSC of an automated railcar controller system is shown.

Full duplication. There is no controller object. Each object has the state

structure of the GSA, and thus “knows” what state the GSA is in.

Each object is therefore autonomous.

Partial duplication. The GSA is distributed as in the full duplication

construction, but states that carry information that is not relevant to

the object in question are merged. The automaton is similar to that

generated for MSC synthesis.

An automaton is thus created for each LSC, the transitions representing

the message events, and states for activation conditions being labeled as

acceptance states. An intersection automaton is then created depending on

the approach chosen.

Unlike the synthesis of ROOM models from MSC specifications, the re-

sult of the synthesis of LSC’s is an unrefined generic object-based model.

The three approaches described above are illustrated and explained in

figures 3.6-3.8, re-drawn from the examples in [9]. A comparison to the MSC

synthesis approach is included in figure 3.9.
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Figure 3.6: A subautomaton (small portion of the GSA) for the railcar

controller system is shown. The controller that is synthesized results in

an identical state machine. It consists of instructions for all objects in the

system to follow, namely, the CarHandler, Car, and ProxSensor objects.

The objects have no autonomy. The branching decision (from state 1 to 2

or 3) is made solely by the controller.

53



Figure 3.7: The full duplication approach is illustrated here. Each object

can send multiple messages on a single transition to any other object. If a

message receive is defined for a transition, then the object blocks waiting

for it. Otherwise, it proceeds with the send operations. After doing so, the

object then sends a collaboration message to another arbitrary object in the

system so that it completes the same transition, even if it is not involved

in the communication. Each object’s finite state machine is the same, and

the transitions always match across all objects. The collaboration message

is forwarded to another object until all of the objects in the system have

completed the same transition. The objects orchestrate their transitions

without the help of an external controller. The disadvantage is that many

collaboration messages are required. Also, the environment is not involved

in making branching decisions, which can be useful during simulation. For

instance, in the transition from state 0 to 1, CarHandler sends the message

ArrivAck to Car, then sends the collaboration message 1, which is then

forwarded from Car to ProxSensor, so that all objects end up at state 1.

CarHandler then makes a branching decision either to state 2 or 3. The

state symbol with the thick border represents the acceptance state. Again,

the state machine shown is not complete.
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Figure 3.8: The partial duplication approach reduces the state space by

eliminating states from an object associated with communication that the

object is not specifically involved with (through a send or receive action).

For instance, consider the CarHandler. States 2 and 4 are only associated

with the messages exchanged between Car, ProxSensor, and Cruiser, and

so they have been eliminated from CarHandler’s state machine. Here, Car

is the object that makes the branching decision, i. e. whether to send the

DepartReq message, or cause ProxSensor to send the AlertStop message

by sending it the collaboration message labeled 2.
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Figure 3.9: The state-based representation of the MSC synthesis discussed in

this thesis is most similar to, but differs slightly from, that of the LSC partial

duplication result. The state machine shown here is that generated using

the maximum progress algorithm (see Section 4.1.2 on page 62). None of the

processes make autonomous local or non-local branching decisions (see Sec-

tion 4.5.2 on page 103), and none of them coordinate with each other using

collaboration-like messages. The environment acts like a “controller,” but

in a lesser capacity, injecting messages to decide branching in the presence

of local and non-local choice. For instance, Car either receives an injected

Goto3 coordination message at state 1, or it receives an AlertStop signal

to proceed in another direction.
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To support the synthesis of processes with orthogonal components, an

additional check must be performed. An object must ensure, before sending

a message, that taking a transition will not cause the system to enter a

global state where one of the universal charts that make up some of the

orthogonal components of a process cannot be executed. Thus, the process

must verify that there does not exist a supercut, of all of the finite successor

supercuts from the current state (where a supercut is the set of cuts through

all of the universal charts), that has at least one hot (mandatory) location.

Otherwise, taking the transition in one of the orthogonal components will

invalidate the run, since that mandatory location will not be visited.
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Chapter 4

The Synthesis of ROOM

Design Models from MSC

Specifications

4.1 Analysis

4.1.1 Approach

In this section, an analysis has been undertaken of the current implementa-

tion of the MSC to ROOM synthesis algorithms in the Mesa tool. The use-

fulness of the synthesis in a realistic programming environment is of principal

interest. The expected result of the synthesis is an executable, prototypical

model that can be extended, or refined, in the future by programming logic

into state transitions.

The system selected for study is a simplified control software for a PBX

(Private Branch Exchange) supporting POTS (Plain Old Telephone Ser-

vice). It is a well-understood system of sufficient complexity to test various

aspects of the algorithm. It consists of the following entities:
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• The environment, representing the physical interface to the user, in

the context of actions initiated, including: the dialing of digits, and

sensory feedback, such as auditory dial tones.

• Phone-based call control processes, communicating by asynchronous

message-passing. Each phone process has direct access to the hardware

control memory, although this interface is left unspecified.

The environment process is similar to any other process in the system,

and has no unique characteristics in the ROOM methodology. It is also

represented as an actor in the synthesized model.

The high-level MSC view of the PBX system is seen in figure 4.1, and

the bMSC’s are shown in figure 4.2 1.

Comparison between automated and hand-coded models

A ROOM model was automatically synthesized from this MSC specification

using the maximum progress and traceability algorithms of the Mesa tool.

The latter algorithm was chosen for further study due to its greater trace-

ability of actor states to bMSC’s, as will be explained. Next, an operational

hand-coded model conforming to the same initial set of formal requirements

was created from scratch using the ObjecTime Developer tool, imparting

knowledge of advanced ROOM constructs.

The finite-state machine behavior of the hand-coded model was found to

be similar to that of the synthesized model, but its structure was expanded

to take advantage of hierarchy and replication (multiple instantiation from

actor class types), and various views were also built. A global, automatic

coordinator was also added to automate all branching decisions so that sim-

ulation would be viable. These experiments were shown to work through

simulation, and the results from the hand-coded model have been illus-

trated throughout this section, with comparisons made to the results of the

1The shapes of the hMSC and connector nodes are slight deviations from the Z.120

standard [55].
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Figure 4.1: The top-level hMSC of the PBX system specification. The

topmost hMSC appears leftmost in this diagram, while the setup and talk

components are shown to the right of it. The starting point for processing

is indicated by the start node symbol (▽). Nested hMSC’s are represented

by the captioned rectangular nodes (✷), while bMSC’s are represented by

oval nodes (©). The diamond symbol (⋄) denotes a connection to another

hMSC, the label identifying the name of the connector.
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Figure 4.2: The bMSC’s making up the PBX system specification.
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already implemented synthesis program [5]. Algorithms were then devised

to integrate these proposed enhanced synthesis features into the existing

implementation of the Mesa tool.

4.1.2 Existing synthesis algorithms

This section describes the existing synthesis algorithms implemented in

Mesa, discussing the structural component of the synthesized model first,

followed by its behavioral component.

Structural synthesis

Each concurrent MSC process is instantiated as a component actor of an

enclosing system actor. For every pair of distinct processes that is a member

of a defined coordination relation (i.e. for which there is a non-empty set of

signals exchanged between them), a bidirectional ROOM protocol is defined,

corresponding to in and out signal lists (signals defined in both directions).

These coordination relationships, as well as the signal lists, are computed by

performing a depth-first search on the underlying hMSC graph, finding all

communication partners. Each hMSC node is dereferenced along the way

until an underlying bMSC is found, and any new communication events are

added to the relation. One of the two actors is arbitrarily chosen as a sender.

Each protocol that is defined for a process will result in an end port being

generated and bound to the port of the other actor communicated with.

A pair of ports thus corresponds to a pair of processes in the coordination

relation. If an actor is designated as a receiver, then its port is conjugated,

meaning that the in and out signal lists are reversed from its perspective.

Behavioral synthesis

The two algorithms for generating the finite state machines in ROOMcharts

that are currently implemented [5] differ with respect to the point at which
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transitions are terminated:

Maximum traceability. Each transition in the FSM (finite state ma-

chine) of a synthesized actor is terminated whenever a receive event

in a bMSC is encountered, and also at the end of each bMSC.

Maximum progress. Each transition is terminated whenever the next re-

ceive event is encountered, either in the same bMSC or any successor

bMSC. The hMSC graph is traversed to find a reachable bMSC in

which a receive event is found. The state machine progresses until the

next receive event occurs. The maximum progress algorithm makes

use of two types of states:

Wait for x : Waits for signal x to be received. A trigger for this

signal is defined, and a transition is made out of this state once

it is received.

CP for x : A choice point. The signal x is the last to be sent in the

bMSC from which branching is to take place. Multiple transitions

out of this state are possible, depending on the trigger, i.e. which

signal (corresponding to a unique successor bMSC) is received.

These signals comprise the triggers.

The key difference is illustrated by examining the activity of the Envi-

ronment process in the busy bMSC, as shown in figure 4.2. This event occurs

when a call request is made to a phone already engaged in a call. Upon

receiving the BusyTone signal, the Environment process sends OnHookOrig

to Phone A. According to the path in the hMSC of figure 4.1 on page 60, a

transition is made to the off hook dial bMSC, where the first event is the

Environment sending an Offhook message to Phone A. The two synthesis

algorithms differ with respect to the number of states generated for this

single transition:

Maximum traceability. A hierarchical state is synthesized for each of the

busy and off hook dial bMSC’s, as in figure 4.3. The decomposition
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of the states is shown in figures 4.4 and 4.5. The OnHookOrig signal is

sent in the OfBu transition of the busy state, in figure 4.4. A timeout

signal causes the BuOf transition to be triggered. This extra transi-

tion is generated because the end of the corresponding busy has been

reached. The Offhook signal is then sent in the BuOf entry transition

of the off hook dial state, in figure 4.5.

Maximum progress. The state machine that is generated is flat, as in

figure 4.6. The CP for Dial state signifies that the Dial signal has

been sent, and a choice point exists at this state. The appropriate

choice will be taken depending on the signal received (i. e. to either

proceed through the busy or the ringing bMSC’s). The OnHookOrig

signal is sent in response to the BusyTone signal in the S2S1 transition.

The OffHook signal is also sent in the same transition. Therefore, this

algorithm requires one less state to be synthesized.

Thus, in the maximum traceability approach, a ROOMchart is created

for every hMSC node (at every level) in the specification, with a hierarchical

state defined for every hMSC node), and a ROOMchart is also created for

each lowermost level consisting of a bMSC node. A hierarchical state is

synthesized for the bMSC node itself. Thus, the hierarchical structure of an

hMSC specification is synthesized as a hierarchical state machine in ROOM.

Each bMSC is synthesized as a single hierarchical state containing substates

Figure 4.3: The hierarchical state machine of the Environment actor gen-

erated using the maximum traceability algorithm. The diagram has been

simplified to show only the relevant states.
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Figure 4.4: The busy state machine.

Figure 4.5: The off hook dial state machine.

Figure 4.6: The state machine of the Environment actor generated using

the maximum progress algorithm. This diagram has also been simplified.
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corresponding to the local states (send or receive events) of the MSC. This

approach results in high requirements traceability, because it is possible

to identify in their entirety all of the transitions in a synthesized actor’s

behavior that correspond to a single bMSC.

This is not the case with the maximum progress algorithm, which results

in a smaller total number of states, but at the expense of traceability to the

original specification. The structure of each actor will not be identical, and

its state machine is flat. Thus, there is a tradeoff between the two algorithms

in keeping the effective length of transitions as long as possible to reduce the

state space and resultant complexity in the final model, versus introducing

more states and hierarchical organization in an effort to improve traceability.

Another option, where a ROOMchart transition would be terminated

after every communication event, including sends, was dismissed and not

implemented. It would result in many transitions relying on auxiliary trig-

gers to model send events, and result in complex and unnecessarily bloated

models.

No actual behaviour is defined for transitions other than reactive signal

send events. It is left up to the programmer to program additional logic in

RPL or C++, as required, as part of the refinement process in later stages

of development. This can include data manipulation, which is not otherwise

modeled.

The maximum traceability algorithm is of primary interest in this thesis,

for the reasons stated above. The following is the process by which the

behavior of actors from MSC’s is synthesized:

• The general result is that local control states of bMSC processes,

marked by receive events, are mapped to states and enabling con-

ditions for transitions in the ROOMcharts. Any number of signals

may be sent through a specified port during a transition from state

to state, corresponding to all consecutive send events in a bMSC that

follow a control state.
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• All nodes of the hMSC graph are translated into top-level states of the

ROOMchart associated with each actor. The start node is converted

to the initial point in the top-level ROOMchart. Every interior node

of the hMSC graph is mapped onto a state in the top-level ROOM-

chart, and each top-level state is hierarchically decomposed into states

representing the bMSC or hMSC components that make up the main

hMSC graph. All connecting edges of the hMSC graph are converted

into transitions in the top-level ROOMchart. Therefore, a transition

is synthesized for the connection between every bMSC on the control

graph, even across hMSC boundaries.

• For every process, a message list is compiled which comprises all com-

munication events that the process participates in in each bMSC. The

entries are in the order of the events occurring in the bMSC.

• The algorithm proceeds with the construction of the basic ROOM-

chart. The first element of the message list is analyzed: if it corre-

sponds to a receive event, then a transition to a local successor state

is compiled. This transition includes all entries in the list until either

an entry corresponding to a receive event is reached, or the end of the

list is reached (and the entire bMSC has been processed).

• If the first message in the bMSC is a send message, then the generic

timeout trigger is used in the initial transition, set to the smallest

possible time step value 2. This is essentially flags the bMSC as a

target in a branching point requiring coordination from the user in

the form of an injected control signal. In the initial transition of the

actor, the timeout remains.

• As a result of the above operations, a temporary ordered list of tran-

sitions and next states is obtained for each ROOMchart. The first

2The Simulation Timing Service in OTD defines absolute time in a steady progression

of epochs, expressed by a linear progression of monotonically increasing integers. Service

methods such as setting a periodic timer are used to request a process to be asynchronously

informed at an absolute time or in an interval during a simulation.
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element in the list corresponds to the entry transitions into a basic

ROOMchart, and copies of this transition are connected with the first

state that is encountered in the list. The final states in the list are

connected to all outgoing transition points.

4.1.3 Criteria catalogue

The following criteria were identified as being relevant to an analysis of the

synthesis from the viewpoint of usefulness to a software developer:

Traceability. The ease of which it is possible to reference the requirements

of a design to the original specification, through matching labels rather

than deduction. Each component of the model should clearly corre-

spond to a specific aspect of the specification, and for reasons of clar-

ity, should not include more information than is necessary to represent

the original requirements completely and faithfully. It is necessary to

define an appropriate mapping between these two by-products of de-

velopment. The use of abstraction is key here. Traceability impacts

the ease of debugging a program during simulation, and plays an im-

portant role in documentation and architectural recovery in the future.

Understandability. The clarity and conciseness of the design model. The

programmer should be able to understand, without unreasonable dif-

ficulty, the purpose and meaning of all components, and how they

relate to the formal requirements. Strongly mathematical formalisms

can restrict their use to a small number of specialists, but a wider au-

dience is desired in general, including C++ applications programmers

and technical management. Understandability depends to some extent

on program complexity. Metrics exist to measure the quantity of vari-

ous aspects of complexity, including McCabe’s Cyclomatic Complexity

Metric, discussed in Section 4.1.3.

Maintainability. The degree to which the model is compatible with a test-

ing environment to verify the correctness, completeness, and consis-
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tency of the original requirements. Specifically, it should be possible

to add monitors to view the inner workings of the model to test its

functionality during simulation. Maintainability depends to a large

extent on understandability, and requires adequate documentation.

Complexity. The amount of information that the model consists of. It is

usually desirable to reduce the state space of the model so that it is

possible to store complex and large sets of requirements and designs in

memory and run model checking and simulation tools on them. Vari-

ous metric indices exist, including size (lines of code), interaction with

the environment, process complexity, and connectivity. Complexity

may also impact on understandability.

Correctness. The design-time model must satisfy all requirements, must

be unambiguous in interpretation, and no conflicts can be introduced

into the design, assuming none are present in the requirements.

Extensibility. The ease with which it is possible to add artifacts to the

model due to new or changed requirements, to modify its architecture,

or refine it by programming specific behaviour at each state transition.

The integration of code to the model allows more functional prototypes

to be built. This is known as perfective maintenance. Support for

refinement is considered to be the most important criterion in this

study.

Program complexity

Measuring the complexity of software is a useful step in determining its

understandability and hence the capacity for humans to verify and maintain

it effectively.

One of the oldest known measures is McCabe’s Cyclomatic Complexity

Measure, a measure of the fundamental cycles in connected and undirected

graphs with binary decisions. The McCabe number is equal to:

Mundirected = (e− n+ 1)
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where e is the number of edges, and n is the number of nodes. The McCabe

number is significant in that it represents an upper bound on the number

of tests needed to ensure that all statements are executed at least once by

performing an edge traversal.

On a directed control flow graph, of interest here, the McCabe number

is calculated as:

Mdirected = (e− n+ 2)

and is equal to the number of linearly independent basis paths. The com-

plexity of the two synthesis algorithms described in Section 4.1.2 is the same,

as the maximum traceability graph adds a single extra transition (edge) and

state (node) for every bMSC termination, as described. For instance, con-

sider two states in the synthesized ROOM model, s1 and s2. Suppose that

the two states are consecutive, in which case the addition of s2 to the un-

derlying message graph results in the connection of s1 to s2, adding one

state and one edge, so that the McCabe number remains constant. If the

two states are found in two different but consecutive bMSC’s, the maximum

traceability algorithm will cause a new state s3 to be inserted between s1

and s2, signifying a transition to a new sub-state (i. e. bMSC). The addition

of this state will result in a new edge from s1 to s3, and also a new node for

s3 itself. The two will again subtract from each other when calculating the

McCabe number, so that it remains the same.

The beneficial modularization characteristic of the maximum traceability

algorithm is not reflected in this metric, however. Object-oriented metrics

have recently been studied, such as those of Morris [26] and Chidamber &

Kemerer [27]. A number of object-oriented characteristics do not appear in

the ROOM models being synthesized, and as a result some metrics are irrel-

evant, including: depth of inheritance, method complexities, the extent of

polymorphism, attribute hiding factors, and others. An applicable measure

is application granularity [26]:

application granularity =
total function points

total no. of objects

where objects would constitute actors and function points would equate to
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state transitions in the case of ROOM models. In general, applications

constructed from more finely granular objects (a lower number of functions

per object) are more easily maintained because the objects are smaller and

less complex. The concept of multiple containment discussed in Section 4.2.6

can partition a complex object into multiple interface views, and although

the functional complexity remains the same, the granularity decreases.

Another useful measure is coupling between object classes [27], where the

definition can be extended to a count of the actors with which an actor com-

municates by sending or receiving a message to and from them. Excessive

coupling is detrimental to modular design, resulting in higher sensitivity to

changes, and less reusability. The coupling is a function of the requirements,

but the hierarchical structure proposed in Section 4.4.1 on page 89 reduces

coupling by containing the interfaces of its sub-actors and only exporting

interfaces to outside actors. Any changes to actors are contained within the

common hierarchical levels of all bound actors.

In conclusion, the level of abstraction using the proposed structural fea-

tures of multiple containment and hierarchical structure is increased. As a

result, the complexity of the model can be reduced.

4.2 Views

The support for views permits a relation between multiple objects to be

represented in more than one way. For instance, consider the original MSC

specification as shown in figures 4.1 and 4.2. The specification only presents

a one-sided view of call management. Specifically, it only focuses on a single

phone initiating a call to another phone, and eventually reaching conversa-

tion mode or aborting due to an error condition, such as a busy party at the

other end. The specification is restricted to only representing one end of a

call, namely, origination. The call scenario that was depicted necessitates

that Phone A always initiates communication with Phone B, rather than be-

ing called itself via the same protocol, or making contact with a third party.
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It does not include any termination logic so that phone A may answer or

refuse an incoming call from another phone. Due to a lack of reflexivity, the

model represents only a very specific scenario rather than a generic process

that can assume the behavior of more than one instance in the MSC specifi-

cation. Consequently, the two actors synthesized from the two MSC phone

instances, as per figure 4.7, are asymmetrical.

The reason for this incomplete specification was to keep the example

smaller, but it is a common way of representation whose context is intuitively

understood. The engineer assumes that the scenario presented in the MSC

is generic and can be mapped to any process instance, although there is no

provision for doing so in the synthesized model. The ROOM model that is

generated is a very literal translation of each process instance to an actor and

ROOMchart, rather than a combination of multiple instances. Hence, only

a partial view of either phone is modeled — call origination or termination.

Each MSC process instance is always mapped to an actor instance of a

unique type. As a result, it is difficult to test call management scenarios.

In the ideal situation, multiple instances of an identical phone process

type would be synthesized, with complete ability to originate and terminate

calls. The situation would then resemble the phone-based actor structure in

figure 4.13 on page 79.

Presently, MSC’s are used to describe object instance behaviour, rather

than class type behaviour. The goal is to combine all possible behaviours

of a process into a coherent type definition, as a single finite state machine,

that can be mapped onto any instance.

As a solution, the design-time model was enhanced to include both call

origination and termination behaviors by merging the two finite state ma-

chines, following the algorithm described below. This led to a more satisfac-

tory solution consisting of two replicated self-contained phone processes of

the same type definition. The port binding between the two phone processes

defines the same protocol in both directions, namely, consisting of identical

signal lists.
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Figure 4.7: Structural diagram from maximum traceability synthesis.

4.2.1 Generalization

The process prescribed involves the integration of behavior of multiple MSC

process instances into a single actor type definition. The type may be repli-

cated any number of times on the same hierarchical ROOMchart level. A

binding is established between each pair of replicated actors of the same

definition, with identical signals being defined in both directions. The pro-

tocol is based on the message lists compiled for the communication between

the multiple MSC process instances. To merge the finite state machines of

multiple actors, a common starting and ending node must be defined. The

two may be the same node. The complexity of the algorithm is linear.

4.2.2 Algorithm

1. Let A = {A0, . . . , An} be a set of actors in the system that represent different
views of the same process and must be merged.
Let B = {B0, . . . , Bn} be the finite state machines of each actor, consisting
of hierarchical states, transitions, and merging start and end states.
Let ML = {M0, . . . ,Mn} be the message lists of each actor.

2. Find the initial node of each actor, which immediately follows the start
construct in the MSC specification. Connect the initial nodes of all actors
in A with bidirectional transitions. Re-assign all states of the finite state
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machines of actorsA1 toAn to belong to the A0 actor for behavioral synthesis.

3. Combine the message lists of all actors in A that A0 communicated with

and create protocol Pm. Duplicate each message so that it appears in both

the in (incoming) and out (outgoing) lists. Instances of actor class A0 will

be bound together via the Pm protocol.

4.2.3 Example

Consider the MSC process instances Ph a, the call originator, and Ph b, the

call terminator. The intent is to merge these two views, namely these two

finite state machines, together, into process Ph a. Therefore, A0 is the actor

synthesized from Ph a, and A1 is from Ph b, which make up the set A. B0

and B1 are the finite state machines of these two actors, which make up the

set B. M0 and M1 are the message lists of these two actors, respectively.

The initial node of each actor in A is state S0 of the Off hook dial

superstate. The finite state machines of both actors have the same finite

state machine on the superstate level, as the maximum traceability algo-

rithm was used. The states S0 of each actor are connected by the FSM0 and

FSM1 transitions, as shown in figure 4.8. The programmer must add logic

to these transitions so that the correct partial-FSM will be executed. A

global coordinator process (described in a later section) can be used for this

purpose. The superstate-level behavioral diagram appears in figure 4.9.

The messages that Ph a and Ph b exchanged with each other are com-

bined in the protocol Ph aPh bProtocol shown in figure 4.10. Two instances

of the merged actor class Ph a, representing autonomous phone handlers that

can originate or terminate calls, are shown in the structural diagram of figure

4.11, bound via the Ph aPh bProtocol.

4.2.4 Implementation

The finite-state-machine merging algorithm has been implemented in C++

in the ROOM synthesis engine of the Mesa tool. The user specifies, for
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Figure 4.8: The initial node S0 of the Ph a process, connected to node S0 of
Ph b’s finite state machine, which has been merged with that of Ph a’s.

Figure 4.9: The merged superstate-level behavioral diagram of actor Ph a.
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Figure 4.10: The merged inter-process protocol. The <> symbol indicates
that every message is defined bidirectionally.

Figure 4.11: Instances of the Ph a actor class bound together via the protocol
Pm.
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each actor in the system, which actor it should be merged with, by entering

the latter’s name in the corresponding entry field in the ROOM synthesis

parameters window, shown in figure 4.12, programmed in Tcl/Tk. The

merging function copies all states and transitions of the first actor to the

one being merged with, appending a numeric suffix to each name to differ-

entiate between the FSM’s. The initial transition of the ROOMchart is not

copied, but the first states (connected to the initial node) are linked by two

transitions, going in opposite directions, so that the programmer may add

logic to switch between the FSM’s as appropriate. The signal list of the

protocol defined between the original two actors is modified such that each

signal appears both in the in-list and the out-list. This enables the merged

actor to be multiply instantiated and the instances to be bound together

for inter-communication. The synthesized model has been found to compile

correctly.

4.2.5 Alternative view

The architectural view described is that of so-called phone-based call man-

agement. Another possible layout of call control is possible, called the call-

based approach. Both layouts are used to illustrate new synthesis features

in the following sections, such as those of views (in Section 4.2) and hier-

archical actor structure (in Section 4.4.1), and therefore must be explained

here. The differences are summarized below:

Phone-based. Each phone is statically mapped to a single process (i.e. ac-

tor in the ROOM model), integrating both the call origination and

termination behaviour as combined finite state machines, as shown in

figure 4.13. Each connection involves two communicating phone pro-

cesses, with each conceptually bound to a unique phone. Only the call

origination or termination components are active at one time in each

process.

Call-based. Another option is to take advantage of a hierarchical actor

structure containing the call origination and termination components
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Figure 4.12: The ROOM synthesis parameters window in Mesa. For each
MSC process instance found in the specification, the name of a hierarchical
parent actor (that will contain the actor synthesized from the MSC process)
can be specified in the adjacent text entry field. A replication factor can also
be assigned in the second field. The actor with which the corresponding finite
state machine will be merged is indicated in the third field. In the example
shown, the Orig and Term actors (including their structure and behavior)
will be merged together into the actor called Orig. The Maint and User

actors will become children of a hierarchical parent actor called System,
while the others will be instantiated on the system-level. Finally, the User

actor will be replicated twice, while the other actors are instantiated only
once.
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as communicating sub-actors inside a higher-level process responsible

for a single call between any two phones in the system. Once a call

is initiated, an available call process responsible for handling both

ends of the call, the caller and the callee, is assigned. This concept

is illustrated in Fig. 4.14, where the first diagram is the system-level

description, while the second shows the interior of the higher-level call

actor.

The call-based approach can be implemented using the hierarchical struc-

ture feature described in Section 4.4.1, by encapsulating both call origination

and termination components within a higher-level actor.

The phone-based approach is more resource-intensive in that it results

in at least twice as many processes being active in the system, assuming

that each actor maps to a software process in the run-time simulation. It is

also redundant in that only the origination or termination component of a

phone process plays a role during a call. The call-based approach, however,

involves a process with more complicated behaviour and interfaces, and may

be more difficult to maintain.

In conclusion, both the phone-based and call-based approaches model

the phones as multiple instances of the same type, namely, a self-contained

behavioral description of more than one view — in this case, call origination

Figure 4.13: Phone-based actor structure.
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Figure 4.14: The call-based actor structure. The topmost figure is of the
system-level actor, defining the bindings of the call actor. The figure below
it is of the internal structure of the call actor itself.
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and termination logic. This results in a more accurate and flexible definition

of phone processes so that more complicated call processing test scenarios

may be simulated. Either view can be built using the proposed finite state

machine combination and hierarchical actor structures.

4.2.6 Multiple containment

Abstraction plays an important role in object-oriented systems, by reducing

the information and thus complexity of different views of them, in an effort

to enhance readability and understandability. Multiple containment is an

abstraction feature that allows for the representation of components simul-

taneously being active in different decompositions. It essentially allows the

engineer to specify that two different actor references (to the same class) are

bound to the same run-time instance. This is a convenience that simplifies

the structural layout of the system by allowing actors to be decomposed into

different views called aspects. It is possible to view different interfaces of the

same actor in different aspects, with irrelevant information in the model (the

other interfaces) being omitted.

The idea is based on the concept of an equivalence between two or more

actor references, in which they all collectively represent the same actor. Each

separate appearance of a multiple containment actor is called an aspect of

that actor.

Multiple containment was not found to be an applicable construct for the

multiple view example (figure 4.14) in Section 4.2. Since the same actor must

be represented in all decompositions, the callInit and callRecv (call ini-

tiation and termination) components cannot be joined in a new equivalence

set in the call-based layout, as they are references to different actor classes.

Therefore, it is not possible to view the aspect of callInit’s interface to

the environment separately from callRecv’s interface to the environment.

Multiple containment necessitates that an actor be decomposed accord-

ing to its defined ports, such that each binding is reflected in a different view,

with the composition of all views resulting in a unified actor. An example
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appears in figure 4.15.

The use of multiple containment results in a decomposition of an actor

according to its communications interfaces, and simplifies the conceptual

separation of the different services of a system.

A useful addition would be the support for the merging of independent

finite state machines of the same actor reference, each represented in a sep-

arate decomposition using multiple containment. This is not possible in the

case of call origination and termination behaviors of a call process, because

the two behaviors are interrelated. It could be used to good effect in a client-

server system supporting multiple, independent services, with each reference

defining a partial state machine relevant to the service to reduce its com-

plexity. However, this concept is not realizable in ROOM, because an actor

can consist only of a single state machine, and thus cannot be partitioned

behavior-wise even across multiple views.

Generalization

Suppose that an actor Ax has multiple bindings to other actors in the system,

all contained in the same top-level actor Atop (i. e. all references are on the

same hierarchical level). Each interface (binding between Ax and another

actor) can be individually represented in a different view through multiple

containment. Each view will contain a reference to the same actor Ax. This

complies with the limitation of multiple containment that no more than one

reference to the same actor can appear within the same top-level actor.

Algorithm

1. Let P = {P0, . . . , Pn} be the set of port references in actor Ax, where each
port binds to another actor in the set A = {A0, . . . , An}, where Ax and all
actors in A are references in the same top-level actor Atop.

2. For each binding between Ax and an actor Ay in A, create a sub-actor Ayview
,

containing the references Ax, Ay , and their binding.
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Figure 4.15: The system-level structural diagram is shown. The CallInit

actor reference is defined within the call-based call handler actor, as shown
at the bottom of figure 4.14 on page 80. It is also defined on the system-
level diagram, as being bound to the maintenance actor. This represents
automated test and maintenance activity being carried out on the phone
when not in use, and represents a system service different from call man-
agement. The binding of the actor reference within the call actor concerns
the communication of switch-hook status and tone signals with the envi-
ronment, while maintenance control signals are represented in the binding
shown on the system-level diagram. Although the maintenance process is
not relevant to the call processing scenario serving here as the result of the
ROOM synthesis work, it does illustrate how multiple containment can be
used to display different views of a software system.
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3. Replace the references to Ax and the actors in A with references to Ayview

for all actors Ay in A (the references are not bound).

Example

An example of the application of the above multiple containment algorithm

appears in figure 4.16. The callInit actor has a number of interfaces,

including ports binding it to the environment and callRecv actors. These

two bindings are reproduced in their own sub-actors: the callInitSystem

and callInitRecv actors. The references to callInit in the sub-actors are

equivalences, and each sub-actor constitutes an aspect. The sub-actors are

referenced in a top-level actor, which replaces that of figure 4.7 on page 73.

4.3 Replication

As stated earlier in Section 4.2, MSC’s inherently describe object instances

rather than class type definitions. The ability to specify types and instan-

tiate them is a useful addition to the work on structural ROOM synthesis

in [5]. In the context of ROOM, it comprises translating an MSC instance

into an actor class, then instantiating multiple actor references to this class

in the structural view.

An example of how this idea can be applied is in the specification of

multiple line cards being connected on a shelf and the synthesis of each

as a replicated actor, complete with replicated ports and bindings. This

allows more complex call management scenarios to be simulated, such as

call-forwarding features, involving three or more phones.

Although it is possible to create distinctly-named references to the same

actor class, the concept of replication is studied here, where a replicated

reference is defined as an array of objects implementing the same actor class

(with the array being referenced by name and element number in send and

receive primitives). Both actors and ports can be replicated, with the multi-

plicity of bindings being automatically calculated. A requirement that must
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Figure 4.16: An application of the multiple containment algorithm is shown.
From top left, going clockwise, the structural diagrams shown are of the top-
level actor, the callInitSystem actor, and the callInitRecv actor.
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be satisfied is that the replication factors of the actors and ports must be

equal on both sides of a binding. The replication factor is the number of

times that a specific component is replicated. In other words, only certain

configurations are possible such that the number of actors and ports match.

Consider the model in figure 4.17 of a call-based system consisting of an en-

vironment, and call origination and termination components, labeled Ph a

and Ph b3. The two call components are each replicated twice, as indicated

by the number 2 label on the actor construct. Thus, the system is capable of

supporting two simultaneous calls. The same environment actor communi-

cates with both Ph a and Ph b, and hence is instantiated only once. However,

each of its ports that binds to the call components must be replicated twice

(once per component instance). For example, the envPh aProtocol port is

replicated twice, as configured in its property page inside of the OTD tool

(not shown). This is known as a star configuration, where an actor A1 is

replicated x times on one side of a port binding, while the ports on the actor

A2 on the other side of the binding are replicated x times as well. Thus,

the A2 actor is connected to all of the replicated actors of A1 in a star-like

pattern.

The environment process can choose to communicate with either com-

ponent by indexing the appropriate port reference in its send function call.

To model the interaction between multiple calls, such as a phone attempt-

ing to call another party already engaged in an active call, the programmer

must add the appropriate call management logic, typically found in a sep-

arate call management module. The concern at this point is to synthesize

multiple actors from a single MSC process through replication.

4.3.1 Generalization

A replication factor (≡ Rf) is assigned to each MSC process, with a default

of Rf = 1 being assumed. Syntactically, the factor can be represented by

a numeric label next to the MSC process name. Each port on an actor

3The coordinator actor shown is a form of synchronization explained in Section 4.5.5.
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Figure 4.17: Replication of the call origination (ph a) and termination (ph b)
components.

whose Rf is 1 is replicated only once. However, every actor Ax bound to

an actor Ay that has a higher replication factor, has its ports replicated. If

Ay is a hierarchical actor (Section 4.3 on page 84 discusses the concept of

hierarchical actors), then its relay ports are replicated, and their replication

factor is used, instead. In other words, the star configuration is always

synthesized.

4.3.2 Algorithm

1. Let A = A0, . . . , An be the set of actors in the system, each corresponding
to an MSC process of the same name.

2. For each actor Ax, if the replication factor AxRf
> 1, then replicate Ax by

AxRf
times.

3. For each actor Ax in A:

4. For each actor Ay bound to Ax where x 6= y, and the binding has not yet
been examined:

5. Let Rfdiff = AyRf
−AxRf

. Note: If Ay is a hierarchical actor, then its
relay ports were replicated according to the algorithm of Section 4.4.1. Use
the replication factor of each relay port as AyRf

, in this case.
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6. If Rfdiff > 0 then:

7. Let Rfdiv =
AyRf

AxRf

. Replicate the port of Ax bound to Ay by ⌊Rfdiv⌋

times.

8. If Rfdiff < 0 then:

9. Let Rfdiv =
AxRf

AyRf

. Replicate the port of Ay bound to Ax by ⌊Rfdiv⌋

times.

Note: If Ax does not divide into Ay exactly (or vice versa), then a

replication factor mismatch will occur, and the synthesized model will not

be correct (but can be repaired).

4.3.3 Example

Examine figure 4.17 more closely. The actors in the system include ph a,

ph b, env, and coordinator. The replication factors of ph a and ph b are

2. Hence, these actor references have each been replicated twice.

Now, the differences in replication factors between actors bound to each

other are compared. Starting with ph a as actor Ax, this actor communicates

with env, as Ay, which has a replication factor of 1 by default. Rfdiff ,

The difference in replication factors of the two actors is -1. As a result,

Rfdiv = 2

1
= 2. Therefore, env’s envPh aProtocol port is replicated 2

times. Next, the difference in replication factors between actors ph a and

ph b is compared. Since the difference is zero, no ports are replicated on this

binding. The same procedure is followed on the other actors of the system.

4.3.4 Implementation

The replication algorithm specified above has been implemented in C++

in the synthesis engine of the Mesa tool. A user interface has been pro-

grammed in Tcl/Tk, as shown earlier in figure 4.12 on page 78. The user

inputs the replication factor for each actor in the corresponding entry field.
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The actors are then replicated, as are their end ports, so that one-to-one

bindings are maintained. Message sends use array references to communi-

cate with replicated actors. The replication works in conjunction with the

hierarchical structure algorithm, so that the system can consist of hierar-

chical parent actors and children, and the latter can be replicated. All end

ports, including relay ports, are correctly replicated for bindings spanning

hierarchical levels. The implementation has been tested and verified through

synthesis and simulation of a test model.

4.4 Hierarchy

4.4.1 Hierarchical structure

In the ROOM synthesis work done so far, only a flat structural topogra-

phy has been modeled. Only actors and their bindings occupying a single

structural level are synthesized. The lack of hierarchy defeats the notion of

object-orientation to a large extent.

A solution to this is to consider a hierarchical actor structure, in which

the structural definition of an actor encapsulates other actors. Multiple

processes defined in a bMSC can be encapsulated, and a hierarchical actor

containing a sub-actor for each of the MSC processes can be synthesized.

Signals communicated by each sub-actor to actors outside of their structural

level are transported through relay ports defined on the boundary of the

encapsulating actor.

An example of this can be seen in the call-based structure of figure 4.14

on page 80, where the complementary behavioral components consisting

of the transitions and message activity of the caller and the callee are each

represented within their own sub-actor, with both components encapsulated

within a higher-level call handler actor. All of the activity associated with

a single phone calling another is contained within this single actor, thus

isolating and abstracting this aspect of call management from any other

services.
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A close examination of the interfaces of the hierarchical actor in figure

4.14 reveals that the same environment-to-phone and phone-to-phone pro-

tocols defined earlier are re-used without modification. The ports on the

high-level phone actor simply act as non-delaying relays for the sub-actors

contained inside. The ports on the sub-actors themselves are regular end

ports.

The MSC processes corresponding to the synthesized CallInit and

CallRecv actors can be grouped together in the MSC specification by intro-

ducing straightforward structural notation so that both processes would be

understood as belonging to the same higher-level actor containment, such

as using a hierarchical process instance proposed in [20]. The higher-level

encapsulating process appears on the MSC’s of the specification labeled with

the decomposed keyword, and represents the interface to all of its sub-actors.

The decomposition appears in its own bMSC, defining all of the sub-process

instances, and their communication with outside processes (represented by

the enclosing bounding box). An example appears in figure 4.18.

The co-ordination of behavior within the sub-actors requires a control

component to be added by a programmer. For example, an on-hook signal

from the environment may be destined for either the caller (callInit) or

callee (callRecv) within the higher-level call actor (the structural view

was previously shown in 4.14 on page 80, which assumes the call-based

configuration). The message may be forwarded by including a destination

address as a parameter of the message. Otherwise, each sub-actor can com-

municate with the environment through a distinct port. Messages from the

environment can arrive by referencing port addresses. This layout has been

synthesized by default in the example.

Representation in MSC’s

The modular design representation suggested in [20] is an appropriate form

of expressing hierarchical MSC process structure, as illustrated in figure

4.18.
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Figure 4.18: The representation of hierarchical structure in MSC’s is shown.
In the Decomp bMSC, the d process signifies the encapsulation of subpro-
cesses g and h in the subMSC of the same name. Messages from outside
terminating at the subprocesses are repeated from the environment within
the subMSC, such as the message k. Messages internal to the subprocesses
only appear in the subMSC, such as the message m. The decomposed key-
word denotes the encapsulation [20]. Process instances g and h would each
be synthesized as sub-actors of actor d, and bound together.

Generalization

Each hierarchical actor is constructed as a ROOMchart containing its sub-

actors. A depth-first search is performed to build the entire hierarchical

structure. Actors in the same level are connected by binding their end

ports. An actor may also bind to an actor a level above it through a relay

port. If the actor is replicated, then the relay port must be replicated with

the same factor (Section 4.3 on page 84 discusses the concept of replication).

A number of assumptions have to be made:

• The same set of processes is defined in each bMSC in the specification.

This is a consistency requirement that is verified by Mesa.

• Each actor can contain any number of actors to any level of depth4.

• Each actor requires a unique bidirectional communications channel

to every other actor at every level that it communicates with. All

4An unspecified physical limit probably exists in OTD.
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synthesized ports must be bound. An actor must communicate with

another actor in the same level or at most one level above it.

Algorithm

The following is a process for the construction of a hierarchical ROOM

model, extended from the flat-structure algorithm of [5]:

1. Definitions: As is the set of actors {A0, . . . , An} contained in the system-level
(highest) actor. Each actor Ax in As is defined as a tuple {A,Ports, P,Bind}
with the following definitions:
A is the set of actors contained in Ax through encapsulation.
Ports : endports −→ conj where endports is the set of end ports and conj =
{0, 1} is the type of port: ordinary (0) or conjugated (1).
P is the set of protocols defined as P = {InSig,OutSig} where InSig and
OutSig are the sets of input and output signals, respectively.
Bind ⊆ A×A is the binding relation between ports.

2. Inputs: Partial MSC specification B, consisting of a finite set of bMSC’s
N = {N0, . . . , Nn}, as defined in [5]. Each element Nx in N is now a set of
bMSC nodes contained in Nx, such that N is recursively defined. By default,
a set is empty unless otherwise defined.
Outputs: The hierarchical structural components of the ROOM model R =
{A,Ports, P,Bind}.

3. Create the system actor As. Recursively descend N , and for each process in
every bMSC node Nx, add an actor with the same name to the actor set Ax.

4. Instantiate the highest-level actors (elements of N) in the system actor As.
For each new actor, create a new structural ROOMchart and populate it with
its component sub-actors (populate bMSC corresponding to Nx in N with
elements of Nx) by performing a depth-first search.

5. For each actor contained Ax in A (i.e. elements of A):

6. Instantiate it in that actor, A.

7. Create a list of messages L for Ax (composed from all of its contained
actors). For each message Mi in L:

8. Create a new protocol Prot corresponding to the in and out mes-
sages of the source and destination processes of Mi.

9. If(Prot or conjugate(Prot)) 6∈ P , add Prot to P in Ax.
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10. If (Prot ∈ P and Mi is a send) or (conj(Prot) ∈ P and Mi is
receive), add Mi to OutSig list of P .

11. Else, add Mi to InSig list of P .

12. Call procedure CreateBindings(Actor As).

13. Procedure CreateBindings(in parameter Actor Ax)
{

14. If no actors are contained in Ax, create an end port for every other
process (within the same ROOMchart) that Ax communicates with based on
L, then exit procedure.

15. For each actor Ay in Ax:

16. Call procedure CreateBindings(Ax).

17. Create relay port Porty for actor Ay contained in Ax, where the
actor that Ay is communicating with is not in the same ROOMchart. If Ay

has a replication factor of AyRf
(see Section 4.3 on page 84, then replicate

the relay port AyRf
times.

18. For each message Mi in the message list L:

19. Let Asrc = Ay be the source actor and Adst be the destination
actor.

20. If Asrc is not contained in the same actor as Adst, then we
assume that Adst is contained on a higher level. Instantiate relay port
Portsrcdst, add it to Ports of Ax, and bind it to Asrc’s end port. Portsrcdst
is then bound to Adst’s end port in Ax’s parent using protocol Protsrcdst.

21. If both Asrc and Adst are contained in Ax, then bind their

existing ports (end or relay) using Protsrcdst.

Example

Consider figure 4.19, reproduced here for convenience. Suppose that the

call actor is composed of the callInit and callRecv actors, as shown.

Through a traversal of the bMSC’s in the partial MSC specification, four pro-

cess instance definitions are found, including: environment, call, callInit
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and callRecv. The highest-level actors are instantiated in the system actor,

namely the environment and call processes. Next, a depth-first search is

carried out, and the call actor is found to contain sub-actors itself. A struc-

tural ROOMchart is created for this actor, and the callInit and callRecv

sub-components are instantiated inside of it.

Figure 4.19: Example of the application of the hierarchical actor structure

algorithm. The system-level actor appears topmost, while the internal struc-

ture of the call actor is shown below it.

For each actor and sub-actor in the system, a list of messages is compiled

based on send and receive actions. For every message exchanged between

two actors, a protocol is created and added to the master list of proto-

cols. Every message in the message list is added to either the incoming or

the outgoing signal list of the corresponding protocol. For instance, Ph a

sends the ConnectReq message to Ph b in the off hook dial bMSC. There-

fore, the ConnectReq message will be appended to the outgoing list of the

phonePhoneProtocol protocol.

The next step in the synthesis process entails the ports and bindings
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for the protocols defined between pairs of actors. Starting with the system-

level actor, every actor contained inside is traversed recursively by calling

the CreateBindings procedure. Suppose that the call actor is selected,

first. It contains two sub-actors, so that the procedure is called on one of

them: the callInit actor. As it contains no sub-actors itself, an end port

is created for the phonePhoneProtocol, to be bound later to its compan-

ion callRecv actor. Also, an end port is created for communication with

the environment actor via envPhoneProtocol A, even though it is declared

outside of the call actor. Likewise, two end ports are synthesized for the

same two protocols for the callRecv actor. By this point, all sub-actors of

the call actor have been traversed, and all end ports for communication

have been synthesized, although the bindings have not yet been.

Now, it is necessary to create the bindings to actors outside of the scope

of the current call actor. For example, the callInit actor communi-

cates with the environment via the envPhoneProtocol. Therefore, a relay

port is created for this protocol, with a unique name, and the relay port

is bound to the end port of callInit. Likewise, callRecv’s interface to

the environment actor is synthesized through a relay port and binding. As

the last step, the procedure requires that bindings between all sub-actors

instantiated in the same process be completed by connecting the existing

end ports. In this case, callInit is bound to callRecv.

Once the recursive procedure call returns to the system-level actor, the

final bindings in the system take place, between the existing end ports of

the environment and call actors. The hierarchical structure of the system

has now been built.

Implementation

The hierarchical actor structural synthesis algorithm has been implemented

in C++ in the synthesis engine of the Mesa tool. A user interface has been

programmed in Tcl/Tk, as previously shown in figure 4.12 on page 78. The

user enters the name of the hierarchical parent of each MSC process instance
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that is found in the specification. A hierarchical actor is then synthesized

for each parent, with the children actors contained inside of it. The relay

ports and bindings (connecting the children to actors outside of the parent)

are automatically synthesized, and conjugated as necessary. The bindings

between children of the same hierarchical parent actor are also synthesized.

Up to two levels of nesting depth are supported. The implementation has

been tested and verified on a test model through simulation.

Hierarchical layers

An alternative to hierarchical structure attained through the use of actor

encapsulation and relay ports is the use of layers for “vertical” communica-

tion. SAP’s (Service Access Points) and SPP’s (Service Provision Points)

are defined for layers by creating references to communication service pro-

tocol classes. SAP’s can be viewed as the interfaces of the users of a service,

while SPP’s are the interfaces for the providers of the service. SAP and SPP

access points are defined for individual actors in the system, and are bound

together.

While ports are bound by connecting a binding construct between two

end or relay port references, layer SAP’s are bound by reference name alone.

A layer SAP is automatically bound at run-time to the layer SPP that

shares the same reference name. All SAP’s are bound to the first SPP that

registered for binding under that name. Both access point types can be

registered and deregistered dynamically, with binding or unbinding taking

effect immediately based on the existence of references defined in the system.

More than one SPP cannot register under the same name. Unfortunately,

OTD does not have the capacity to visually depict layers and their bindings,

and so their existence is not evident in the structural diagram of a model.

The layering feature was found to work correctly in the telephony model

by replacing end ports and their bindings with SAP and SPP references in

the transition codes. All protocols are compatible with either mechanism.

Layers are primarily useful when a shared service is accessed by a very
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large number of clients, or when shared functionality is of such secondary

significance in a system that it is useful to abstract it out of view [12].

4.4.2 Hierarchical behavior

Consider the FSM of the phone actor model generated by the maximum

progress algorithm of Mesa, as shown in figure 4.20. All of the states are

synthesized on a flat topology. There is no conceptual grouping present,

resulting in a potentially large state space that is difficult to analyze by a

programmer. It is also unclear as to which states are derived from which

bMSC.

A solution is to group states in a hierarchical fashion. The presence of a

hierarchy in the state-based representation of actor behaviour increases the

traceability of the model to the original MSC specification. Each bMSC node

can be mapped to a single encapsulating superstate, with the result being

an easily understood multilevel state diagram due to better abstraction.

The hand-coded version with hierarchical states is shown in figure 4.21. It

is essentially the same as that generated using the maximum traceability

algorithm of [5].

Inside each state corresponding to a bMSC node are the local states of

each message receive junction in the bMSC. For instance, the behavioral

description of the off hook dial state is illustrated in figure 4.22. The

initial point is indicated by the circled I symbol, which indicates a transition

into the the first substate upon entry into the enclosing superstate. At the

exit point of the bMSC’s, a choice is made as to which succeeding superstate

is to be entered next. A history is maintained for a superstate such that the

current substate is always remembered whenever execution returns to the

superstate. The history is erased on an exit from the superstate, however.

Hierarchical states do function in the same manner as a flat-based state

machine, with the exception of incoming high-priority messages that inter-

rupt processing and affect the history feature of the substate. The assump-
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Figure 4.20: Behaviour of the Phone A actor generated in maximum progress

synthesis.
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Figure 4.21: Hand-coded behavioral description of the call-based Phone ac-

tor using hierarchical states.

Figure 4.22: The internals of the off hook dial superstate of the Phone

actor.
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tion in this text, however, is that all messages exchanged within the system

are of equal priority.

Data in the model is also accessed hierarchically. Each state represents

a lexical scope, and the scoping rule for a state follows a nested approach

for any defined variables [11].

4.5 Non-determinism

4.5.1 Transition model

A number of decisions must be made throughout the execution of the be-

haviour of an actor. Specifically, a non-deterministic choice must be made

as to which one of multiple branches is to be taken when exiting a super-

state. Each transition from the exiting substate must be bound to a specific

transition in the higher-level state machine, and so the choice must be made

within the substate logic itself. To do this, it is necessary to include the

first message reception, or trigger, of each succeeding bMSC, then to add

an exiting transition to the corresponding successor substate. Any mes-

sages that are sent in response to this received message can be included in

the transition code of the exiting transition of the substate, or of the en-

tering transition of the succeeding bMSC. Although both techniques were

confirmed to work identically, it will be shown that the latter is preferred

for readability reasons.

Locality of transitions

For maximum traceability, all message events of a bMSC should be syn-

thesized within the scope of execution of the corresponding superstate of

the actor’s FSM. In other words, assuming the use of the maximum trace-

ability algorithm, each send and receive event of a bMSC would ideally be

synthesized inside of the finite state machine of the appropriate actor in

the superstate corresponding to that bMSC. Therefore, any send or receive
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event that is synthesized in the actor’s superstate should be traceable to an

event in the corresponding bMSC, and not any other.

One difficulty, however, lies in the transition between superstates. Con-

sider the off hook dial state of the Phone A actor shown in figure 4.22, cor-

responding to the off hook dial bMSC. Two possible exits from this state

are possible, the destination being either the ringing or the busy state (cor-

responding to the bMSC’s of the same name). An enabling event is defined

for each of these transitions. For instance, the transition to the ringing

state is programmed to occur on the reception of a ConnectAccept signal

from the phone being dialed (the ConnectAccept signal is the first message

event in the Ringing bMSC). Next, any send action that must occur as the

result of receiving the triggering event is specified in the transition code of

the state being entered. In this case, the receipt of the ConnectAccept trig-

ger results in an AudibleRing signal being sent to the environment, i.e. upon

reception of the ConnectAccept message in the Ringing bMSC, phone A

sends the AudibleRing message to the environment. This action is pro-

grammed in the entry code of the ringing state, even though the trigger is

actually received in the previous off hook dial state. This inclusion of the

sending action in the state which is being entered results in a truer transla-

tion of the MSC specification. As many messages as possible are contained

in the superstates that correspond to their original bMSC nodes.

Relating this concept to bMSC’s, the message events defined in each

bMSC are mapped to a ROOMcharts superstate of the same name. The only

exception is that the first message events of successor bMSC’s are moved up

to the state corresponding to the branching bMSC node, so that they act

as triggers in branching decisions. Any send events run in response to these

triggers are still localized in the successor states for higher clarity. In other

words, transitions are localized for greater traceability.
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Multiple entry and exit transitions

Multiple transitions into and out of a state require unambiguous naming for

correct resolution. In the interest of clarity, the name of each transition is

the same as that of the message that enables (i.e. triggers) it. The names

of states from which only one exit is possible are labeled wait X, where X

is the signal that will trigger a transition from out of the state. The one

exception is wait EXIT, a state from which multiple transitions exiting the

substate can be taken. In the example of figure 4.22 on page 99, two exit

triggers are defined: ConnectAccept and LineBusy.

Due to these necessary exit transitions, there is admittedly some over-

lap between signals from the viewpoint of the original bMSC’s in which

they are defined, as explained in the previous section. It is minimal, how-

ever, and only one new state is introduced to handle these multiple exits

from the substate, namely, the wait EXIT state. Following the example, the

ConnectAccept trigger must be defined in the off hook dial state so that

the correct transition is taken, even though it originally belonged to the

Ringing bMSC.

Although arrived at independently, the maximum traceability synthesis

algorithms were found to already generate a transition model similar to the

one found to be most intuitive in the hand-coded design process, with the

exception of the unnecessary generic state names inside substates, which are

labeled from S1 to Sn, where n is the last state created. The state names

in the handcoded version are called wait X, where X is the name of the

expected trigger.

A restriction of ROOM is that every transition of the FSM graph that

enters the same state must have a unique name, regardless of which signal

enables it. Thus, duplicate transition labels need to be differentiated using

an automatically incremented numeric suffix.

It is possible for multiple transitions to exit from a state, and have some

or all of them be enabled by the arrival of the same message. ROOMcharts
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specify that the choice is non-deterministic. However, only the signal that is

“found first” by the ObjecTime tool is executed, while the others are ignored.

The choice is compiler-dependent, and therefore not truly deterministic [12].

4.5.2 Non-local choice

MSC specifications in general are prone to the hazard of non-local choice,

in which a unique branching choice may not exist [59]. This is due to un-

derspecification — although syntactically legal, it must be resolved before

implementation. The syntactic detection of non-local choice, and its han-

dling through synchronization methods described below, relieves a designer

from the burden of explicitly coordinating branching early in the design

stage. Non-local choice can eventually be resolved through additional mes-

sages making up a coordination protocol [59].

For example, consider the termination of a call. In the environment of

the system being modeled, the process representing the environment en-

compasses the activities of the two human users of the system. As specified

in the on hook term bMSC in figure 4.2 on page 61, if the user of phone

A wishes to disconnect, then the Phone A process receives an OnHookOrig

signal. It then requests call termination by sending a ReleaseTermReq sig-

nal to Phone B. However, if the user of phone B disconnects first, then the

Environment process sends an OnHookTerm signal to Phone B, which in turn

responds by sending ReleaseOrigReq to Phone A. In either case, the Phone

A process uses a wait-and-see strategy [59, 65] to determine its course of ac-

tion. The applicability of the wait-and-see approach in a branching situation

determines the classification of the branching [59, 65]:

Local branching choice. The wait-and-see strategy can be used to resolve

non-determinism within each process.

Non-local branching choice. The wait-and-see strategy cannot be used.

Explicit synchronization between processes is required.
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A required normalization is to ensure that for each branching bMSC

node, the successor bMSC’s do not share a common prefix of message ex-

change sequences. Any such prefix is delegated to the end of the branching

bMSC node. This does not affect the behavior of the system, but simplifies

the detection of non-local choice. A solution to non-local choice is the use

of synchronizing history variables, discussed below.

4.5.3 Synchronizing history variables

Synchronizing history variables [40, 59] enable the model to continue func-

tioning even in the presence of process divergence, where a lack of synchro-

nization can cause a process to have its message channel flooded by other

processes, regardless of its length, before it has the opportunity to respond.

The use of history variables ensures that processes cannot diverge in exe-

cution in more steps than the variables’ lengths allow. In addition, history

variables are useful for resolving non-local choice situations by having a

process make a branching decision that the rest of the system must follow,

depending on which process is furthest ahead in execution.

Essentially, for each non-local choice branching point, a historical record

is kept of the last branching decisions made at that point up to a finite

depth. The length of a history variable (usually implemented as an array)

determines the number of prior decisions that are kept in memory. Processes

synchronize through a collection of global counters, which keep track of how

far each process is ahead in execution. Each process, once it reaches one

of the branching points, either makes a new branching decision and records

it if no other processes are ahead of it in execution, or else follows the

same branch taken by another process that arrived at the same point earlier

in time. Each branch taken is recorded in the branching point’s history

variable.

The proposed coordination system for automatic model simulation that

will follow in Section 4.5.5 is a different concept, and a comparison of the

two will be made once it is explained.
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4.5.4 Choice points

A number of alternatives were considered for the implementation of branch-

ing in actor FSM’s. One of the possibilities is to replace the described trig-

gers with choice points, special constructs in ROOMcharts. Through their

use, one out of several enabled transitions can be taken based on the Boolean

result of the evaluation of a logical predicate. However, such choices are in-

herently deterministic. In addition, only binary (true or false) decisions can

be made, and so there is no support for two transitions exiting a state using

a single choice point. Non-determinism can be introduced through the use

of a random number generator function, and a choice point can be added for

each possible transition out of a state, similar to an if/else-if/else construct

in procedural programming languages such as C, but this is an awkward so-

lution requiring the introduction of many states. As stated in Section 4.1.3

on page 68, an increase of the state space of the model is undesirable due to

greater complexity. Thus, choice points were not found to confer any useful

advantage over message triggers.

4.5.5 Automatic coordination

The original method of decision-making in choosing a successor from a

branching bMSC node in [5] relies on the injection of control messages,

during simulation, into the auxiliary ports of the actors corresponding to

the branching nodes. For example, consider the case of the ringing state

in figure 4.1 on page 60. The successor states include on hook ringing,

ringing timeout, busy, and conversation (corresponding to the bMSC’s

of the same names). An appropriate branching choice at this point requires

the user, during simulation of the model, to attach a probe to the end port

on Phone B bound to the system-level actor, and inject a control message to

trigger a transition into the appropriate successor superstate. For instance,

the Doofbu signal will trigger a transition into the busy state. An example

of the injection of this message during simulation is shown in figure 4.23.

The injection port itself is unbound. This process of injection must be re-
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peated every time that a branching decision at that point must be made,

and this can seriously impact on the time that a user must spend performing

simulations.

The synthesis of an autonomous global co-ordination mechanism would

enable these choices to be made automatically, without requiring user in-

tervention during simulation, as is the case with [5]. Breakpoints in the

form of port dæmons halting on specific transitions may always be set up

local to a problem area whenever debugging is required, but the problem

of manually injecting a message for every single trigger point encountered

during execution, as in [5], is alleviated. An entity called the global con-

troller replaces the user in sending control messages to participating actors

at branching points. Although the use of an automatic coordinator does not

add or modify any information in the system model in terms of the original

MSC specification itself, it is a useful design-time aid in executing the model

that is synthesized. The operation of the automatic coordinator is detailed

in the example below.

Mechanism

A single system-level coordinator, manifested as an actor called Coordina-

tor, is responsible for making non-deterministic choices at branching points.

It interfaces with all actors in the system that require branching choices to

be made, as shown in the structural layout in figure 4.24.

In this example, the Environment actor, during the transition into sub-

state S2 of the Ringing state from which the branching must take place,

sends a request to the Coordinator to arbitrate the execution flow. The

behavioral description of this state is found in figure 4.25. The signal sent

is Askri, the “ri” suffix derived from the current Ringing state.

Inside of the Coordinator actor, the coordination request enables a tran-

sition out of the Idle state, as shown in figure 4.26, and causes a response

to be sent to the Environment actor in the form of a signal indicating which

branch is to be taken. The Coordinator is aware of all possible alternatives,
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Figure 4.23: An example of the injection of the Doofbu message into the

probe attached to the potsSystemPh bProtocol port, on actor Ph b, is

shown. The list of injected messages appears on the left, while the probe dæ-

mon is indicated on structural diagram to the right by the square construct

overlaying the port symbol.
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Figure 4.24: Interface between the coordinator actor and the rest of the

system.

Figure 4.25: Coordination required inside of the Ringing state of the

Environment actor.
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and the choice is made non-deterministically on the basis of random number

generation. The transition code is found in figure 4.275.

The response sent by the coordinator is in the form of a DoX message,

where X is an acronym for the successor state chosen. For instance, the

choice to proceed to the ringing on hook state is executed as the result of

the Environment actor receiving a Dori signal (the “ri” signifying Ringing)

from the Coordinator actor.

Multiple entry points

It is possible for more than one transition into a state to be programmed with

the same coordination request, of the same name. This occurs if at least

one entry from another substate, or possibly the initial transition of the

system, is made into the substate where a branching choice must be made,

in addition to the standard internal transition from a previous substate. In

other words, this occurs when the indegree of a substate is higher than one,

5 Timeouts are not presently supported in ROOM model synthesis. Thus, the

StopRinging signal sent by Phone B represents the point at which ringing has stopped

without the phone being answered. The decision to proceed with this choice is made im-

mediately. As it is directly relevant to the (in)action of the environment, an extra message

called NoActivity was inserted at the beginning of the RingingTimeout bMSC, sent from

the Environment to Phone B. Thus, the environment solely determines which one of the

three possible branchings is taken, and the choice is local in this case.

Figure 4.26: Behaviour inside of the Coordinator actor.
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Figure 4.27: Co-ordination of the Ringing state of the Environment ac-

tor. The transition code for the Askri coordination request received by the

Coordinator is shown.

and it is permissible under coordination rules.

For example, consider the off hook dial substate of the Phone B ac-

tor, as shown in figure 4.28. Six transitions in total are made into the S1

state, including OnOfA, OnOf, RiOf, S0S1, BuOf, and OnOfB. It is there-

fore necessary to send the AskOf signal to the Coordinator actor in each of

these transitions.

Non-local choice

If the first sender of all of the successors of a substate is the same process,

then the branching decision is local. That process can autonomously make a

decision as to what action to take, and all other processes proceed with the

wait-and-see strategy, discussed earlier. Hence, there is no need for global

synchronization of all processes at the branching point and the need for them

all to understand the branching strategy. In this case, the global coordinator

simply acts as a entity for randomizing the local branching choice.

However, the need for a global coordinator becomes clear in the presence
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Figure 4.28: The off hook dial substate of the Phone B actor.

of non-local choice in an under-specified MSC specification 6. For example,

consider the removal of the extra synchronization message mentioned in

footnote 5. This will cause the branching type to be changed from local to

non-local (either Phone A or Phone B may initiate a disconnect — there is

no unique first sender in the on hook term and on hook orig bMSC’s). The

under-specification here is that the model will not function if both phones

initiate a disconnection sequence at the same time — if phone A disconnects

by sending a request to B, then receives a disconnection request of its own

from phone B immediately after, it will not reject it, as this synchronization

is not specified. Only one or the other disconnect is intended to occur and

be validated at a time, hence the need for coordinating which is initiated

first.

Coordination becomes possible when each actor in the system encounters

a branching decision where non-local choice is present, stops, and requests

coordination by the global coordinator actor. This entails each participat-

6As explained earlier, it is expected that underspecified process synchronizations will

be rectified during the design process.
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ing actor sending an Ask signal to the coordinator at the branching point.

The coordinator maintains an internal counter and increments it on recep-

tion of each coordination request. Once all actors have “reported in,” the

coordinator makes its choice and informs all actors of its decision by a Do

signal broadcast. The mechanism relies on the fact that under the maximum

traceability approach, each state in the hMSC specification is duplicated in

the finite state machines of all actors, and hence it is possible to determine

and match the current state of each actor and identify the global coordina-

tion point. In the case of local choice, only one actor requests a branching

decision and coordination of other processes is unnecessary.

The automatic coordination being proposed is a simplification of the

synchronizing history variable mechanism [40, 59], outlined in Section 4.5.3.

It does not maintain a historical record of branching decisions made by each

actor, thereby reducing its state space. Process divergence, whereby one

actor can visit the same branching point several times ahead of the other

actors, is not allowed, as the global coordinator requires that all actors arrive

at the same branching point at the same time before making a decision.

Process divergence can always be detected at the specification stage by using

Mesa [59] and eliminated before synthesis.

It is possible to implement finite-length synchronizing variables in

ROOM, but they consist of data that must be globally accessible by ev-

ery actor. A containing entity, such as the coordinator actor, must provide

access. The coordinator can be programmed to handle all history variable

updates and checks while retaining the Ask and Do message interface. This

isolates the coordination logic from the application actors to reduce their

complexity.

Synchronizing semantics should always be avoided. The beginning and

end of a bMSC should not be interpreted as synchronization points for all

processes. The automatic coordinator complies with this rule, as it simply

replaces message injections of [5] at local and non-local branching points,

which already avoid synchronizing semantics. Processes that can resolve

their branching path through the wait-and-see strategy do not participate in
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the coordination. Only those processes that cannot do so request instruction

from the coordinator.

Generalization

The injection triggers created by the standard maximum traceability al-

gorithm are replaced by coordination requests. An interface to the global

coordinator actor is synthesized for every actor that sends a coordination

request. In the case of non-local choice, each actor must send a coordination

request to the coordinator once the branching point is reached, if that actor

is the first sender in a successor bMSC (the other actors use the wait-and-

see strategy: they react based on the type of message received). Once all

requests from all actors have been received, the coordinator makes its choice

and replies to all actors.

Algorithm

The following is an algorithm for generating a global coordinator actor, as

a modification to the maximum traceability algorithm in [5]:

1. Approach:

2. The maximum traceability algorithm assigns a timeout signal for every tran-
sition corresponding to a message being sent. The timeout signal is then re-
placed by an injection point if it is the first transition in the sub-ROOMchart.
Here, the injection signals will be replaced by coordination signals.

3. Algorithm:

4. Create the Coordinator actor on the system-level ROOMchart.

5. For each actor Ai in A = {A0, . . . , An}, the set of all actors in the system:

6. For each statechart SubRCi (corresponding to a bMSC) of Ai:

7. If the number of outgoing transitions of the last state sl of chart SubRCi

is > 1 (i.e. sl is a branching point with at least two outgoing transitions),
and sl is identified as a local or non-local branching point:
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8. Create an outgoing signal called Ask{Namecurr} to the Coordinator
actor, where Namecurr is the unique name of the substate SubRCi. Add a
send action for this signal to the transition code of all transitions into state
sl.

9. For each outgoing transition Ot of SubRCi (from state sl):

10. Enable the Ot superstate exit transition (to successor superstate
SubRCs) with the signal Do{Namesucc} received from the Coordinator,
whereNamesucc is the unique name of the successor superstate corresponding
to the Ot transition.

11. Create a corresponding transition called Ask{Namecurr}, enabled
by the Ask{Namecurr} signal, in the Coordinator, if it does not already
resist. Add the Do{Namecurr} signal to the randomization code for this
transition.

12. Create protocol Pic and add all newly defined Ask{Namecurr} and
Do{Namesucc} signals to the outgoing (for the Ask) and incoming (for the
Do) signal lists of the protocol bound to the Coordinator. Create end ports
and a binding between actor Ai and the Coordinator actor implementing
protocol Pic.

13. If the branching decision is non-local (and the Ask{Namecurr} tran-

sition is already defined in the Coordinator), then increment an internal

counter cnt in the transition code. When cnt equals the total number of co-

ordination requests that are expected by all actors for that branching point,

then the Coordinator is to proceed with the random choice of Do commands.

Generate the appropriate if/else if/else construct for the counter check.

Example

Re-examine figure 4.24. The coordinator actor is first synthesized on the

system-level structural chart. Now, starting with the Environment actor, all

of its super-states, or statecharts, are traversed. Suppose that the current

statechart being examined is Ringing. As shown in figure 4.25, the last

substate of this statechart is S2. Three transitions out of this state are

defined, including RiOn, RiCo, and RiRi. The destination super-states are

on hook ringing, conversation, and ringing timeout, respectively, as

can be seen from figure 4.21. Therefore, S2 is identified as a branching

point.
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Next, a coordination request signal, called Askri (an abbreviation for

“Ringing”), is created. The signal is sent to the coordinator actor in the

transition from S1 to S2. Only one such incoming transition into S2 is

defined.

Next, for each of the three outgoing transitions from state S2, the en-

abling condition is programmed as being the receipt of a Do signal from the

coordinator. For instance, the RiOn transition is triggered by the receipt

of a Dorion (an abbreviation for “Ringing to On-Hook-Ringing”) command

signal.

When the first outgoing transition, RiOn, is processed, a corresponding

transition, called Askri, is synthesized in the Coordinator actor, as pictured

in figure 4.26. In the code for the transition, shown in figure 4.27, one of

three Do signals is randomly selected to be sent to the Environment in

response to the Askri request. Each additional outgoing transition that is

processed in the Environment actor, after the first, is added to the code

block of the existing Askri transition in the Coodinator, i.e. the processing

of RiOn causes the Askri transition in the coordinator to be synthesized,

and the RiCo and RiRi transitions are added to the switch statement of the

existing transition code, so that only one transition in total is created in the

Coordinator for the Ringing superstate of Environment.

The three new Ask signals are added to the outgoing signal list of the

potsSystemEnvProtocol (from the view of the Environment actor), while

the Do signals are added to the incoming signal list of that protocol. Finally,

end ports and a binding are synthesized between the Environment and the

Coordinator.

Implementation

The global coordinator actor synthesis algorithm has been implemented in

C++ for the Maximum Traceability synthesis approach in the ROOM syn-

thesis engine of Mesa. The implementation includes the structural and

behavioral synthesis of the coordinator actor, and its coordination activity
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with other actors in the system. Ask and Do coordination signals and events

are automatically synthesized, and the coordinator deterministically chooses

the first out transition that is created for all local and non-local branching

points, thus coordinating all actors in the system. The coordinator instantly

issues the coordination command signals in response to requests from any

actors participating in a branch. The execution of the model is now fully au-

tomated during simulation, and no longer requires user intervention through

message injection. The implementation has been tested and verified, through

simulation, on a model exhibiting both local and non-local choice.

Applications

It is possible to replace the random branching decisions of the coordinator

with user-programmed scenarios, by having the coordinator read the deci-

sions from an input simulation file. This is a useful technique for performing

discrete event simulations, and for manual validation of scenarios.

Another effective use of this coordination mechanism is in performance

analysis. If the probability of all branches occurring in the system is not

equal, then a choice can be biased by specifying appropriate ranges in the

checks against the random number being generated.

Multiple coordinators

Only one coordinator is synthesized in the system. If a coordinator instance

was synthesized for every actor requiring coordination, then it would be

possible for non-local choice to result in conflicts. For example, consider

the Conversation state of all actors. If Phone A and Phone B were inde-

pendently allowed to terminate a connection on their own, then a situation

could arise whereby Phone A and Phone B would simultaneously proceed

with their disconnection sequence, causing a loss of synchronization.

Also, it would be impossible for Phone A’s and Phone B’s coordinators

to mutually agree on a single action to be taken, such as only Phone A
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disconnecting, without introducing complicated arbitration logic.

Coordination is simplest in the absence of non-local choice. A non-local

choice can be transformed into a local choice by allowing only one actor to

decide a successive course of action, i.e. requiring a unique first sender in

all successors to a branching node — this is always possible in a completely

specified deterministic system with the environment modeled.

For instance, as specified in the MSC model, the environment alone de-

cides whether Phone A or Phone B disconnects, by sending an OnHookTerm

signal to Phone B, or an OnHookOrig signal to Phone A, respectively, as

opposed to the unrealistic scenario of having either phone handler au-

tonomously decide its own course of action.

Tool support

Standard C libraries must be added to the project in the configuration

browser window, in order for the randomization function to be compiled

correctly. Otherwise, the entire structure and behaviour of the coordinator

can be automatically generated within a linear form file.

Other work

An interface for an actor control mechanism has been proposed, but only in

the context of system start-up and reset for the purpose of system activa-

tion, failure recovery, and preventive maintenance [12]. The co-ordination

of activities within the system based on an intimate knowledge of the global

finite state machine has not been addressed.

4.6 Simulation of ROOM models

A useful application of the global coordinator is in the simulation of a ROOM

model. It is possible to quickly generate execution traces that can be used
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for validation of properties, as the coordinator automatically synchronizes

all actors, and eliminates the need for user intervention as in [5]. The traces

can then be used for validation of properties, on an implementation-level.

This section provides insight into the process.

OTD allows the software designer to generate a design-time MSC by

using the internal message tracing facility during a simulation run. The

MSC is not created automatically, but it can be viewed by configuring which

actors to monitor, then running a run-time system simulation to create a

trace. A sample MSC is shown in figure 4.29. In this scenario, Phone A

calls Phone B, which starts ringing, but Phone A hangs up before Phone B is

picked up. A useful procedure in testing is to compare the MSC’s generated

from a design to those produced from the initial requirements stage. This

illustrates the fact that an important use of MSC’s is in the creation of test

plans and design validation.

For example, a design-time and a run-time MSC can be compared in or-

der to validate an implementation. OTD offers a facility called the “Differ-

ences” tool to report any variation that it finds. The trace can be exported,

but the format does not match that of Mesa.

An unfortunate limitation of OTD is that states may also be shown on

the design-time MSC, but only the leaves, as in figure 4.30. It is therefore

difficult to trace the states drawn to their higher-level counterparts, as the

state S1 is found in every hierarchical state, for example.

4.7 Conclusion

In Section 4.1.3, a number of criteria were identified with which to evaluate

the current ROOM synthesis algorithms [5], and propose improvements so

that they may be satisfied to a greater degree. Hand-coded ROOM models

were created from scratch following the algorithms proposed in this chapter,

and illustrated throughout the text. The following is an analysis of how the

proposed features addressed the various criteria:
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Figure 4.29: Design-time MSC generated from a simulation run, involving

automatic coordination (see Section 4.5.5). Here, Phone A dials Phone B,

and requests a coordination command from the Coordinator by sending

the signal Askof, following the example in 4.5.5. The Coordinator’s re-

sponse is Doofri, instructing the system to branch to the Ringing state

(corresponding to the Ringing bMSC), and the ConnectAccept message

is sent to Phone A as the first message in this state, accepting the incom-

ing call request. A little later, coordination occurs once again when the

Environment sends the Askri signal, requesting a branching decision from

the Ringing state. The response, in the form of the Dorion message, signi-

fies that the originator places the phone back on-hook, and control proceeds

to the On Hook Ringing state. The rest of the call activity is not shown in

the MSC.
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Figure 4.30: Design-time MSC with substates displayed. The same example

as in figure 4.6 is shown, but with additional top-level state information

displayed.
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Traceability. The mapping of bMSC states to actor states was investigated

in Section 4.5.1, and no improvement in the locality of transitions of

the maximum traceability algorithm was found to be possible.

Understandability. Multiple containment, in Section 4.2.6, allows differ-

ent interfaces of the same actor component to be represented in differ-

ent abstractions, so that parts of its functionality can be isolated for

viewing, increasing comprehension.

Maintainability. The grouping of actors into hierarchical structures, dis-

cussed in Section 4.4.1, can assist maintenance work by isolating views

at different levels to support unit testing of sub-actors, and also help-

ing to localize errors. The greater abstraction that is possible also im-

proves understandability. The automatic coordinator of Section 4.5.5

eliminates the need for user-injected control messages for branching

decisions, and supports the execution of preprogrammed test scenar-

ios, thus simplifying and quickening the process of testing.

Complexity. In the discussion of non-determinism in Section 4.5, it was

not found to be advantageous to replace message triggers for multi-

ple state exits with choice points, as the number of sub-states in and

subsequent complexity of each actor state would be increased. Multi-

ple containment and hierarchical actor structure, however, permit an

actor and its interfaces to be viewed at different levels of abstraction,

reducing the apparent complexity of the view. No significant differ-

ence in complexity was found to exist between the maximum progress

and maximum traceability algorithms [5].

Correctness. The global coordinator mechanism automates branching de-

cisions during simulation of a model, allowing a trace log to be quickly

produced to validate its behavior. Syntactic notation for MSC’s has

been suggested for hierarchical actors and replication factors, and all

of the synthesis algorithms can be implemented so that the synthesis

process is fully automated using a tool such as Mesa, thus reducing

the potential for human errors in the translation.
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Extensibility. The merging of finite state machines of different process

instances, i. e. views, described in Section 4.2, supports the creation of

different structural architectures (e.g. call-based versus phone-based)

from existing process descriptions. Replication, in Section 4.3, allows

more complex scenarios to be run by instantiating the same actor class

more than once. The algorithms have been designed to be compatible

with each other, so that it is possible to create replicated, structurally

hierarchical actors, for instance.

The hierarchical actor structure, replication, finite-state-machine merg-

ing, and global coordinator synthesis algorithms were implemented in C++

and Tcl/Tk and verified in the Mesa tool, proving the validity of the algo-

rithms.
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Chapter 5

Validation of Requirements

for GSM Mobility

Management using MSC’s

and Temporal Logic

5.1 Introduction

5.1.1 Background

As explained in Chapter 1, software projects in the area of real-time telecom-

munication systems are highly complex, and the accurate specification of

requirements on the externally observable behavior of these systems is an

important step in their development. Studies have found that most of the

software development failures that occur are due to errors introduced in the

software requirements and specification phase [47]. Therefore, it is impor-

tant to demonstrate a methodology of proving that a system design consis-

tent with initial specifications fully satisfies all desired functional properties,

before proceeding to the implementation stage.

The system under study in is an existing European cellular telecom-
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munications system called GSM (often referred to as the Global System for

Mobile Communication), composed of several entities whose functions, prop-

erties and interfaces have been well-defined and standardized by ETSI (the

European Telecommunications Standards Institute) [48], [49], [54], [57]. The

focus is on formally capturing and validating requirements on the communi-

cation protocol aspect of the interaction between these entities with respect

to a service called Mobility Management. The formal specification and vali-

dation of the properties of this system is important to detect conflicting and

incomplete requirements specifications, and to provide unambiguous docu-

mentation and useful groundwork for future transformation of the system

requirements to a design and implementation in the later stages of the life

cycle.

5.1.2 Approach

As a first step, Message Sequence Charts [55, 56] were used to capture the

majority of the operational requirements of Mobility Management of GSM.

MSC’s were chosen due to their simplicity in the specification of message-

passing concurrent systems, and their prevalence in the field. A thorough

discussion of the MSC language is found in Section 2.1 on page 24. MSC’s

were only used to specify the operational behavior of the system, not any

specific properties that were required to be held. A number of safety and

liveness properties were identified as being required of the system, but could

not be validated directly through the MSC’s alone. Therefore, the speci-

fication required translation to another type of model that could be used

to (through a tool) automatically validate the properties. An operational

model was built from the MSC specification using the Promela language

and was simulated and validated using the Spin tool. The informal high-

level requirements from the system requirements were encoded in LTL (Lin-

ear Temporal Logic) formulæ [53]. These were used to determine whether

all required properties hold of the Promela operational requirements model

through the use of partial and exhaustive state space exploration techniques

of the Spin model checker [50].
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Although the initial prototype was built from scratch by hand and vali-

dated as a proof-of-concept, a later version was fully synthesized through the

use of automated tool support, arriving at an equivalent model (in terms of

process type definitions and message exchanges), which also validated cor-

rectly. The use of CASE (Computer-Aided Software Engineering) tools at

all stages of the process described herein greatly validates the approach as

a viable and practical methodology in the field.

5.1.3 Related work

π calculus and Lotos

A formal specification and validation of the mobility management service

of GSM has been previously presented using π calculus [60] and LOTOS

[63, 64]. There is also an automatic tool available named Mobility Work-

bench, which is based on π calculus. The Mobility Workbench allows for the

analysis of mobile concurrent systems [62]. The approach prescribed in this

thesis is based on MSC’s as a front-end to the specification of the operational

behavior of mobility management. This approach makes it simpler to cap-

ture the essentials of message-based protocols compared to beginning with

a low-level mathematical specification method such as π calculus or Lotos.

The visual MSC specification is then translated into Promela [50] and ana-

lyzed using the Spin tool [51] for compliance with a set of LTL-formalized

high-level requirements. While the verification tool based on the π calculus

has the ability to detect deadlocks, it does not allow for the validation of

arbitrary safety and liveness properties as in the approach described here.

5.2 Overview of GSM

A simplified architecture of the GSM network is shown in figure 5.1. A

description of each subsystem follows in Section 5.2.1.
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Figure 5.1: Architecture of the GSM Network [58].

5.2.1 Structural description

Cellular telecommunications is one of the fastest growing telecommunica-

tions applications of the present age, and has already become a prominent

way of personal communication. GSM is a digital cellular telecommunica-

tions system, a standard created by ETSI [48, 49]. GSM provides stan-

dardization to guarantee proper inter-working between components of the

cellular system, achieved by providing functional and interface descriptions

for each of the functional entities defined in the system. The Bearer Ser-

vices of GSM dictate the means by which the user communicates with the

network, and Teleservices define the communication between users. The

basic teleservice provided by GSM is telephony. GSM users can also send

and receive data to and from POTS, ISDN, PSPDN and CSPDN networks

using a variety of protocols [57].

The general architecture of GSM is illustrated in figure 5.1. The MS

(Mobile Station) in the GSM architecture is essentially a portable phone

communicating with the BSS (Base Station Subsystem) through the radio

frequency interface Um. The BSS consists of a number of components, in-

cluding the BSC (Base Station Controller), providing control functions, and

the BTS (Base Transmitter Station), containing the radio transmitter. The

BTS is used to provide radio coverage in a geographical zone called a cell,

while the BSC controls a larger geographical area called an LA (Location
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Area), consisting of multiple cells. This is made possible through the BSC

controlling multiple BTS’s. The BTS and BSC are connected through a

standardized interface called Abis. The BSS in turn communicates with the

MSC (Mobile-services Switching Center), containing switching functions,

through the interface A. The MSC handles the switching of calls between

mobile users, and between mobile and fixed network users. In addition, it

manages the location registration procedure for wandering mobiles. The

MSC stores two databases: the HLR (Home Location Register), containing

all subscriber information, and the VLR (Visitor Location Register), dy-

namically storing only the subscriber information for mobiles located in the

area being serviced by it. The MSC includes two other registers: the EIR

(Equipment Identity Register) and the AuC (Authentication Centre). The

EIR contains a list of the IMEI (International Mobile Equipment Identity)

numbers of all valid mobile stations on the network. The AuC stores a copy

of the secret key used for authentication that is stored in a user’s SIM (Sub-

scriber’s Identity Module). Overall, the general subsystem under study in

this thesis is the SMSS (Switching and Management Subsystem), responsi-

ble for signaling protocols by which calls are established, maintained, and

cleared.

5.2.2 Mobility management

The Mobility Management (MM) layer is involved in keeping track of the

mobile while on the move, and handles the operations which arise due to the

movement of the subscriber across location areas, as well as his interaction

with the network at all times. It is also concerned with the location up-

date procedures that enable the system to realize the current location of a

switched-on MS so that incoming call routing can be performed successfully.

Authentication and security issues are also handled, as are call management

procedures.

There are two possible states of a mobile station: turned off or turned

on. If the MS is turned on, it may be either in the idle or in the conversation
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state. The following is an overview of the behavior of the system with respect

to these states:

• MS is turned off: The MS is simply inoperative and does not update

the system about its location. It cannot be reached by the network.

• MS is turned on but in the idle state: The MS is considered to be

attached to the system, and it can be reached through paging by the

network. While roaming, the MS must always be connected to the

network, and to ensure this, it must update its location in the system

should it move to a new cell. The mobile is considered to always be

switched on, synchronized to the system, and ready to send or receive

a call.

• MS is in conversation state: The MS has already been allocated traffic

channels i.e. it is connected to the network. The handover procedure

will allocate a new traffic channel if the signal on the current channel

drops below an unacceptable level.

One of the major characteristics of mobility management is that the

mobile station may be connected to different radio channels in the system

at different points of time. This feature is called handover. Due to its

importance in mobility management, this aspect will be discussed in the

following subsection. The other functions related to mobility management

such as security, location update, connection establishment and disconnec-

tion can easily be understood from the corresponding bMSC’s in figure 5.6

on page 152 and signal dictionaries in Section 5.4 on page 131.

5.2.3 Handover

Call handover is the process by which a call in progress is automatically

transferred to a new cell. It can occur when the loss of the call is imminent

due to movement of the mobile and subsequent drop in signal strength.

The three purposes of handover are: alleviation of excessive interference
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within a cell, that of between cells, and the easing of traffic congestion by

moving calls between cells. Thus, handover can occur between channels of

the same BSC, between channels of different BSC’s of the same MSC, and

between channels under the control of different MSC’s in the same PLMN.

The BSS alone may handle the connections for handover within the same

cell or between the cells under its own coverage. This is called internal

handover. In the case of handover between cells under the coverage of two

different Base Stations, the MSC gets involved, and this kind of handover is

called external handover.

In this paper, handover is considered between different base station con-

trollers under the control of the same MSC. This is called intra-MSC han-

dover [48]. In external handover, the MSC uses the signal quality informa-

tion reported by the MS and preprocessed at the BSS. The original MSC

will always keep control of the call in an external handover to a different

and even a subsequent MSC [54]. The handover mechanism implemented in

the model works as follows [48]:

If the BSS to which the MS is currently connected determines

that the MS is required to be handed over to a new BSS, it

will send a handover required message to the MSC. This message

contains an ordered list of preferred cells based on some prede-

fined handover criteria. Upon receiving the above message, the

MSC initiates the handover process by sending a handover re-

quest message to a new BSS, which will in turn acknowledge the

request by a handover request acknowledge message to the MSC.

The MSC will then inform the MS of the channel belonging to

the new Base Station by a handover command message to the

MS via the present BSS. After receiving the handover command

message, the MS disconnects the channel of the present BSS and

initiates connection with the channel of the new Base Station by

sending a handover access message to the new BSS. If the MS

is successfully connected to the new Base Station, the new BSS

will send a handover detect message to the MSC. After that, the
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MS will also send a handover complete message to the MSC via

the new Base Station. Upon receipt of the handover complete

message, the MSC sends a clear command message to the old

BSS, which can allocate the freed channels to another MS. The

old BSS will respond to this message by a clear complete mes-

sage. If the MS is unable to connect to the new Base Station, it

will try to re-establish the connection on the old Base Station.

If this succeeds, the MS sends a handover failure to the network

via the old Base Station, and resumes operation as before the

handover attempt. If the MS also does not succeed with the

old Base Station, the MS is disconnected from the network. For

simplification, in the model presented here, the ideal case is con-

sidered, where the MS will always be able to connect with the

new Base Station. The message sequences used in the model are

shown in the Handover bMSC (basic Message Sequence Chart)

of figure 5.6 on page 152.

5.3 Validation tools

5.3.1 Promela/Spin

Promela (PROcess MEta LAnguage) [50] is a design-based modeling lan-

guage that allows the specification of the behavior of asynchronously exe-

cuting concurrent processes that may interact through synchronous or asyn-

chronous message-passing or through direct access to shared variables. A

Promela model can consist of three different types of objects: processes, vari-

ables and message channels. Promela was developed at Bell Laboratories,

and is used as an input language to the validation tool Spin.

Spin (and its graphical version XSpin) [50, 51] is a widely-used software

tool supporting the formal validation of distributed system software. It

has been used to trace logical design errors in distributed and concurrent

system designs, including telecommunication systems. It is used to check the
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logical consistency of the specification and report any deadlock, unspecified

receptions, incompleteness, race conditions, and unwarranted assumptions

about the relative speeds of processes.

5.4 Construction of model

A formal Promela Model has been created to capture a simplified functional

model of the Mobility Management features of GSM using Message Sequence

Charts. The choice of MSC’s is particularly appropriate given the nature of

Mobility Management in that it mainly concerns a message-passing protocol.

5.4.1 Architecture of the model

The high-level architecture of the Promela model is based on the simpli-

fied GSM architecture presented in figure 5.1 on page 126. The current

GSM specification standard has been inspected, and a reasonable level of

abstraction has been chosen for the work in mapping GSM components into

entities, to preserve as much accuracy as possible in the model without un-

necessary complexity. The entities of the model include the MS, BSS, MSC,

and Network. The Promela model is composed of the following processes

corresponding to these entities, previously described in more detail in Sec-

tion 5.2.1 on page 126:

• MS. The mobile station, e.g. a wireless phone.

• BSS. The base station subsystem, communicating with a mobile via

radio frequency.

• MSC. The mobile services switching center.

• Network. The network subsystem. This process encapsulates the

activity generated by users of the network, e.g. an ISDN modem user

initiating calls to the mobile.
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Each process represents the control software running on each respective

hardware subsystem. For example, the BSS represents the control software

running on the base station transceiver assembly. The interface between the

processes consists of messages, and channels of sufficient capacity (bounded

channels).
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Basic MSC Description

Chan Req The mobile sets up a communications

channel to the base station. It is then con-

sidered to be synchronized and connected

to the network.

Call Set Req The mobile creates a service request for

initiating a call to another party.

Page Res Req The mobile creates a service request by

responding to a page from the network.

Loc up Req The mobile creates a service request to up-

date its location in the network based on

the signal strength of all nearby base sta-

tions.

Identity The network confirms the identity of the

mobile, and retrieves the subscriber infor-

mation for a newly arrived mobile.

Auth Req The network authenticates the user

through a security key challenge.

Auth Succ The user’s request is confirmed and access

rights have been verified.

Auth Fail The user’s request for the service request

has been denied.

Mob Init Call The mobile initiates a call to another

party.

Mob Pag Res The mobile answers an incoming page as

part of an incoming call.

Loc Up The mobile’s location in the network is up-

dated.

Mob Init Disc The mobile terminates the call.

Net Init Disc The network terminates the call.

Handover The MS connects to a new BSS due to its

location change during conversation.

Table 5.1: Description of the bMSC’s making up the GSM mobility man-

agement system behavior.
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The following is a dictionary of all of the signals in the system, catego-

rized by the bMSC in which they appear:

Chan Req

The mobile is turned on and connects to the network.

Message Source Destination Description

chan req MS BSS Request for a communications

channel from the base station.

chan assign BSS MS A channel is granted and syn-

chronization is made.

Call Set Req

The mobile initiates a call to another party.

Message Source Destination Description

cal chan req MS BSS Request for service for initiating

a call by dialing the other party’s

PSTN number.

cal chan resp BSS MS A call channel is granted.

cal set req MS MSC A request to initiate a confirmed.

cal set req1 MSC Network If the called party is a

PSTN/ISDN user, his de-

vice begins to ring. Otherwise,

if the called party is a mobile, a

page request will be initiated.
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Pag Res Req

The mobile responds to a page, preceding an incoming call.

Message Source Destination Description

pag chan req MS BSS A mobile will monitor all in-

coming page requests and answer

only those specifically addressed

to it. A request for a channel as-

signment is sent in response.

pag chan ack BSS MS The call channel has been

granted.

pag res req BSS MSC A paging response is forwarded

to the network over the assigned

channel, and through the switch-

ing centre.

pag resp MSC Network Completion of the paging re-

sponse.

Loc Up Req

The mobile, while idle, detects a loss in signal strength. It selects a

stronger base station, and updates the network of its corresponding

location.

Message Source Destination Description

loc up req MS BSS The mobile monitors the re-

ceived signal strengths of all base

stations. Should one drop below

an unacceptable level, a location

update request is made.

loc up req1 BSS MSC The location of the mobile is up-

dated in the switching center’s

database.

loc up req2 MSC Network The network is notified as well.
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Identity

The mobile moves to a new location area, and must be identified

by the network.

Message Source Destination Description

iden req Network MS The network does not recognize

the identity of a mobile that has

just arrived in its location area.

A request is made for the mo-

bile’s IMSI.

iden res MS Network The IMSI is provided.

Auth Req

The mobile has requested service, and it must first be authorized.

Message Source Destination Description

auth req Network MS An authentication challenge re-

quest, containing a challenge

word.

auth resp MS MSC The mobile computes a challenge

response based on its key.

Auth Succ

The mobile has been identified and its access rights have been ver-

ified.

Message Source Destination Description

serv accept MSC MS The challenge response is veri-

fied, and the request for service

is accepted.

serv accept MSC Network The network is notified.

Auth Fail

The authorization has failed.

Message Source Destination Description

auth fail MSC MS The challenge response is found

to be incorrect. The request for

service is denied.

auth fail1 MSC Network The network is informed.

rel chan MS BSS The channel is released, only in

the case of a call or page chan-

nel request (which previously re-

sulted in a call channel alloca-

tion).
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Mob Init Call

The mobile, once authorized to originate a call, initiates the con-

nection procedure.

Message Source Destination Description

assign cmd MSC MS Indication that the call can pro-

ceed, and an assignment of the

call channel.

assign compl MS MSC The assignment has completed.

init addr mob MSC Network The network is updated of the

call service request and the num-

ber being dialed.

adr compl Network MSC The called party has been alerted

to the incoming call.

alert MSC MS The mobile is also informed of

the called party being alerted to

the incoming call.

answer Network MSC The called party has answered

the call.

connect MSC MS The mobile is informed of the

other party answering the call.

conn ack MS MSC The mobile acknowledges the

connection, and conversation be-

gins.

Mob Pag Res

The mobile answers an incoming call.

Message Source Destination Description

cal setup MSC MS The calling and called parties’

numbers.

cal conf MS MSC Confirmation.

alerting MSC MS The mobile should begin to ring.

alert MS MSC Confirmation that the mobile

has begun to ring.

connect MS MSC The call has been answered.

con ack MSC MS Verification of the call answer no-

tification.

answer MSC Network The mobile has accepted the call.
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Loc Up

The mobile has moved to a new location area, and the network

must be updated of its new location.

Message Source Destination Description

update loc MSC Network The network is informed of the

previous location area of the mo-

bile.

loc upd result Network MSC The result of the location up-

date.

loc upd result MSC MS The result of the location update

is passed on to the mobile. Ei-

ther the mobile has been identi-

fied and its roaming rights have

been verified, or its identity or lo-

cation cannot be confirmed, and

service is rejected.

Mob Init Disc

The mobile terminates a current call.

Message Source Destination Description

discon req MS MSC The mobile disconnects from the

call.

release MSC Network The release is forwarded to the

network.

rel conf Network MSC Network verifies receipt of the re-

lease request.

rel comp MSC MS The call channel is ready to be

released.

rel chan MS BSS The previously allocated call

channel is now released.
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Net Init Disc

A network user, engaged in a call to a mobile, terminates the call.

Message Source Destination Description

release req Network MSC The network user has discon-

nected from the call.

release req MSC MS Forwarded disconnect request to

mobile.

release chan MS MSC The call channel is ready to be

released.

connect MSC Network Notification that the connection

has completed.

rel conf MSC Network Notification that the call channel

will be released.

rel comp MSC MS A release complete acknowledg-

ment.

rel chan MS BSS The call channel is released.

Table 5.2: Signal dictionary of the GSM system.

5.4.2 Specification of requirements

The behavior of the GSM Mobility Management system is described using

MSC’s. A hierarchical hMSC is presented in figure 5.4 on page 150 in order

to depict the top-level abstraction of the GSM Promela Model. The hMSC’s

in this figure are further elaborated in order to show the control flow between

all of the bMSC’s. These hMSC’s are as follows:

• Loc up Req: The network is updated with the new location of the

mobile.

• Service req: Channel allocation and request for service.

• Authorization loc: Identification and authorization for location up-

date service request.

• Authorization: Identification and authorization for call setup and

page response service requests.
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• Loc update: Location update.

• Conversation: Call setup and handover between two parties.

• Termination: Call termination.

The hierarchical approach is useful for describing large and complex

systems in a modular fashion. Each bMSC is related to an operational

function of the GSM specification for Mobility Management. Next, bMSC’s

are presented in figure 5.6 on page 152. Also, a description of each bMSC

is provided in table 5.1 on page 133. The operational Promela model was

constructed according to the behavior specified in the bMSC’s. All of these

diagrams were drawn using the Mesa tool (see Section 1.6.1 on page 12).

5.4.3 Message simplification

The mobility aspect of the system was the central focus of this model, and as

a result, a number of simplifications and abstractions were made with respect

to the messages that were recorded in the MSC specification. The result is a

compact representation of the actual, complicated GSM protocols described

in the original specification. The simplifications included the following:

• The merging of two or more messages into a single message and the re-

placement of the same messages forwarded across one or more entities

by a single message originating at the source and being received at the

final destination. The application of these heuristics is demonstrated

in figure 5.2.

• Another simplification made was the elimination of messages used for

low-level hardware purposes, such as the synchronization of channels,

handshake negotiation, framing, and other messages not central to the

high-level concepts of mobility and call management. It was deemed

entirely possible to model the general working of these features without

complicating the protocols with many hardware-related messages. An

example is shown in figure 5.3.
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MS BSS MSC NETWORK

discon_req

rel_comp

rel_chan

rel_conf

release

msc Mob_Init_Disc

Figure 5.2: An example of a message-merging simplification on a mobile-

originated disconnect is shown. The original MSC found in the specification

[2] appears on the left, while the simplified version used for purposes of the

Promela model appears on the right.

In the original specification, a Disconnect message is sent from the MS to

the BSS, and then the same message is forwarded by the BSS to the MSC.

This sequence was simplified in the project’s corresponding bMSC. The two

Disconnect messages were replaced by a single discon req message. Sim-

ilarly, in other MSC’s, if the same message was forwarded across one or

more entities, a simplification was made so that they were replaced by a sin-

gle message originating at the source and being received at the destination.

This pattern occurred frequently in the specification, and the simplification

allowed for the reduction of many redundant messages to a more manage-

able number.

c©Artech House, 1997.
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MS BSS MSC NETWORK

chan_assign

chan_req

msc Chan_Req

Figure 5.3: An example of a hardware message simplification on the

Chan Req bMSC is shown. The original specification [2] is shown on the

left, and the simplified version on the right, as before.

This example illustrates that the request for a communications channel be-

tween the MS and the BSS involves a number of messages related to time

synchronization bursts, frequency correction, framing, decoding of beacon

frequencies, connection service requests on auxiliary access channels, and

other particulars beyond the scope of high-level Mobility Management. The

underlying meaning of these messages is a channel request between an MS

and the BSS, and a subsequent confirmation. These ideas are encapsu-

lated by the chan req and chan assignmessages in the simplified Chan Req

bMSC. The elimination of the original hardware-related messages results in

a more understandable model with a reduced state space that the Spin tool

will handle without great difficulty.

c©Artech House, 1997.
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Simplification guidelines

The following message simplification guideline has been identified, and may

be applicable to most systems:

1. If a message m is sent from process a to b, then the same message is

sent from b to c (where a, b, and c are unique processes), then use

transitivity to replace the two sends by message m sent from a to c.

Process b must not have a message n (n 6= m) to send in response to

receiving m, other than forwarding m to c, and the message m should

not be used to resolve a wait-and-see strategy. Otherwise, removing

the sends will stop the model from working. This is only a guideline,

and other effects of removing the sends may be present.

While the simplification will result in a model being synthesized with

fewer states for greater coverage in validation runs, the removal of messages

may have an adverse effect on the functionality of the system.

5.4.4 Synthesis of Promela model

Once the MSC requirements specification was entered into the Mesa tool,

its automatic Promela synthesis feature was invoked, resulting in a syntacti-

cally correct and complete Promela code file being generated. The following

sections describe a number of important aspects of the synthesis process:

Communication

The MSC’s were translated into Promela code following the approach de-

scribed in [65]: every instance in the MSC specification was mapped to

exactly one instance of a unique Promela process type definition. Each pro-

cess was assigned a buffered channel, with a default capacity of one message,

for its incoming traffic. When sending a message to a process, all senders

used only the single channel specifically assigned to that process. The al-

location of a single channel to a process is a rule of the synthesis, rather
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than a property enforced by Spin. The buffering of the channel allows for

asynchronous communication.

Mesa’s synthesis feature supports a number of different channel defini-

tion schemes:

SDL: Each process has a unique input message queue assigned to it. This

mirrors the characteristics of the communication model in the SDL

language (for a detailed description of SDL, see Section 3.1 on page 35).

Point-to-point: A unique channel is assigned between every pair of pro-

cesses for communication in each direction (and each channel can only

be ever used by one sender process).

One-channel-per-message: Every message transmission is carried out on

a unique channel, regardless of the sender or destination processes

involved. It is also possible to individually assign messages to channels.

The SDL template results in the fewest channels being synthesized, and

so is the best approach for keeping the resultant total state space to a

minimum. The SDL template was the one that was chosen for the synthesis

of the GSM system.

Static analysis

The synthesis feature performs a series of static syntactic analysis tests

on the MSC specification before executing the translation into Promela.

This includes verifying the connectivity of all bMSC’s, identifying branching

points where non-local choice is present, and finding and displaying any

process divergence.

Synchronizing history variables

History variables (see Section 4.5.3 on page 104) were configured for all non-

local branching points, with a default length of one, i.e. up to a maximum

of one branching decision could be saved. The non-local choice points were
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identified by running the non-local choice analysis feature of Mesa. The

MSC model was drawn so that all branching occurred out of connect points,

rather than the start symbol, as history variables can only be defined for

connect points.

An option is available in Mesa to force the definition of history variables

for all branching points in the specification to remain on the safe side, rather

than adding them individually to non-local choice branching points. How-

ever, the addition of superfluous history variables increases the length of the

state vector used in validation runs, and hence the potential for insufficient

memory errors. As opposed to the five history variables defined manually,

a total of eleven variables were created with the force option enabled — a

significant inefficiency (as controlled by the user).

Process divergence was not found to be present in the model as presented

in figure 5.6. Process divergence can cause a problem in a non-local choice

situation, where a history variable needs to be kept and may be filled up

as a result of the divergence. However, one difficulty that occurs is that

the Network process takes no part in the Handover bMSC. Thus, it may

try to initiate a disconnect by sending the release req message to the

MSC in the Net Init Disc bMSC, while a handover operation is occurring.

The addition of a hand compl2 signal at the end of the Handover bMSC,

sent from the MSC to the Network process, will notify the Network once the

handover operation completes. The addition of this message adds a state

to the Network process for the Handover bMSC so that a history variable

can be added to it, resolving the problem. However, this has the side effect

of introducing process divergence, whereby multiple consecutive handovers

can flood the Network with the hand compl2 signal.

Instantiation

A difficulty that was encountered was that the Promela synthesis algorithms

have no notion of the instantiation of process types, as previously mentioned.

In modeling the key component of handover, this issue posed a problem.

The handover being modeled involved the transfer of a mobile connection

from one BSS to another, both being theoretically identical in operation

but physically separated by distance. To model the interaction between
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two independent BSS’s, two different MSC processes were defined, BSS and

BSS New, although handover can in reality occur across any pair of base

station subsystems in operation. In the precursory hand-coded model, the

switch was performed by the MS and MSC processes keeping track of which

BSS they were currently connected to for purposes of communicating with

it by sending to either BSS’s or BSS New’s channel. This was accomplished

by setting a proxy variable to point to the correct channel, and sending

all messages through it. The proxy was re-assigned during the handover

operation, and so the mobile could switch between the two BSS’s at will.

This special bit of logic was not present in the synthesized code. The

BSS was instantiated as a process type supporting call negotiation (including

channel allocation and release), while BSS New was instantiated as a process

type supporting only handover commands. The two behaviours could not

be integrated into a single, coherent process type definition. Nonetheless,

the working assumption was made that the BSS New process would assume

the identity of the new BSS process after the completion of the handover. In

addition, the BSS New instance was required to be defined as a silent process

in all bMSC’s other than Handover, as the synthesis requires that the same

process definitions be present in all bMSC’s in the specification.

Unordered receipt

A characteristic of the standard message receive mechanism in Promela is

that messages are normally retrieved from the head of the input queue only.

Therefore, all messages destined for a process must arrive in an expected

order so that the process does not block. This initially caused a difficulty in

the case of the BSS, which was attempting to initiate a handover operation by

contacting the MSC, by sending the hand reqd signal in the Handover bMSC,

while the latter was still processing the mobile’s authorization, in Auth Req,

Auth Succ and Auth Fail. Therefore, the handover request hand reqd mes-

sage waiting at the head of the MSC’s queue prevented the reception of the

messages related to authorization (such as auth resp from the MS), even if

the channel buffer size was increased to hold all incoming messages. One

solution that was tried was to add a synchronization message so that the

BSS would be informed of the beginning of the conversation state. Another
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solution was to use the random receive mechanism in Promela, in which the

specific message expected in a state is retrieved from any location within

the input message buffer. A third possibility would be to discard any unex-

pected message, but this would require a more complicated retry mechanism

on the part of the sender.

Optimization

Because the length of the state vector ultimately affects the amount of phys-

ical memory used up during validation of the LTL properties, an effort was

always made to reduce it whenever possible. The aim was to be able to per-

form validation of a model of comparable complexity to the GSM Mobility

Management system on a typical current machine of 300-1000 MHz with

256 MB RAM.

Message send and receive events in the MSC’s are modeled by the corre-

sponding Promela statements with a special care to ensure the event atom-

icity by using the atomic scope of Promela, in which all processing runs to

completion without interruption, unless message blocking occurs. Branching

and iterations in the MSC specification are modeled through labels and goto

statements in Promela. Non-local choice has been described in Section 4.5.2

on page 103.

An optimization that was made involved the merge of atomic blocks.

The synthesis code encapsulates each send and receive event within an

atomic block, making it impossible for the instructions within to be in-

terleaved with those of another process, thus further optimizing the state

space. This rule applies both to simulation and validation runs. However,

it was observed that consecutive sequences of message sends and receives

could instead be enclosed as a group within a single atomic block, as a fur-

ther optimization. A filter was designed to process the code file and perform

this tweak. However, an even more optimized version of the atomic block

called a d step could not be used in the model, as goto’s are not allowed

into such a block. It was found that almost every state was accessed by a

goto elsewhere in the process body due to the inherent branching in the

generated code.
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Example of translation

A portion of the translation of the Chan Req bMSC of figure 5.6 to Promela

code is shown below, extracted from the code synthesized by Mesa. Only

a partial listing is shown, sufficient to illustrate the single bMSC. Two mes-

sages are first defined in the mtype block, corresponding to signals in the

bMSC. In addition, two channels (message buffers) are defined as instances

of type chan. The MS In channel is a message queue from which the MS

process receives its messages, and to which all other processes can send. Sim-

ilarly, the BSS process reads from the BSS In channel. Both channels were

assigned a length of 10, and no message overflow was found to occur during

the simulation. The send and receive operations are translated to Promela’s

communication mechanism. The ‘‘BSS In ! chan req’’ string means

that the chan req message is immediately sent to the BSS’s incoming mes-

sage buffer. The ‘‘MS In ? [chan assign]" defines a read operation from

the incoming message queue. The MS first inspects the channel for the pres-

ence of the chan assign message, and blocks if it is not found. The MS will

resume execution once the chan assignmessage arrives. Both processes run

concurrently and are started in a separate initialization block called init.

The atomic keyword defines a block within which no interleaving can occur.

mtype = { chan_req, /* message for requesting channel */

chan_assign /* message for assigning channel */

};

chan Input_MS=[1] of {mtype}; /* channel for messages to MS */

chan Input_BSS=[1] of {mtype}; /* channel for messages to BSS */

proctype MS() {

State_MS_1_Chan_Req :

atomic {

Input_BSS!chan_req; /* MS requests a channel from BSS */

Input_MS?[chan_assign] -> Input_MS?chan_assign; }

/* MS receives the assigned channel */

}

proctype BSS() {

State_BSS_1_Chan_Req :

atomic {

Input_BSS?[chan_req] -> Input_BSS?chan_req;

/* BSS receives channel request from MS */

Input_MS!chan_assign; } /* BSS assigns a channel to MS */

}
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init {

atomic { run BSS(); run MS(); } /* start running the processes */

}

Non-local branching choice

Non-determinism is an inherent feature of MSC’s. At the completion of a

sequence specified in a single bMSC, it is possible that the successive be-

havior will occur according to one of several bMSC’s. For example, refer to

the Service req hMSC in figure 5.4 on the next page. After a channel has

been allocated according to the Chan Req bMSC, the MS may initiate a call

or answer an incoming call. The bMSC’s corresponding to these actions are

Call Set Req and Pag Res Req, respectively. A necessary condition is that

all processes must choose the same alternative flow of control. The prob-

lem of non-local branching choice (see Section 4.5.5 on page 110), where

the first message sent in multiple successor bMSC’s originates from differ-

ent processes, was avoided altogether whenever possible, in the following

manner:

• First, all successor bMSC’s of a branching point were specified to have

the same process being the first sender, whenever possible. This allows

the other processes to use the wait-and-see strategy (see Section 4.5.5

on page 110) to choose their actions depending on the type of message

that they first receive from the sender [65].

• It was also necessary to use normalization of bMSC’s to ensure that

for each branching node bMSC, the successor bMSC’s did not share a

common prefix of message exchange sequences. Any common prefix in

the successors was delegated to the root bMSC of the successors. This

is a requirement of the non-local branching choice detection algorithm

[59].

The complete control flow of the model could not, however, be imple-

mented using the wait-and-see approach alone. In some cases, it was not

possible to specify a unique sender process in the successor bMSC’s, as two

149



Service_req

Authorization

ConversationLoc_update

Loc_up_Req

Authorization_loc

Chan_alloc

Failure

Call_setup
Chan_deallocChan_dealloc

Chan_alloc

Failure

Loc_update

msc GSM

Chan_alloc

Loc_Up_Req

msc Loc_up_Req

Chan_Req

Call_Set_Req Pag_Res_Req

Chan_alloc

msc Service_req

Identity

Auth_Req

Auth_FailAuth_Succ

Loc_update Failure

msc Authorization_loc

Figure 5.4: hMSC’s of the GSM Promela Model (part 1).
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Figure 5.5: hMSC’s of the GSM Promela Model (part 2).
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Figure 5.6: bMSC’s used in the hMSC’s of figure 5.4 for specifying the

Promela Model (part 1).
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Figure 5.7: bMSC’s used in the hMSC’s of figure 5.4 for specifying the

Promela Model (part 2).
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or more processes had to make their choices independently. In the precur-

sory, experimental hand-coded Promela model, global variables were used to

ensure a unique branching choice for all processes to resolve non-local choice.

One occurrence of the use of a global variable was to record the choice of ser-

vice type after channel allocation so that after successful authentication, all

processes could branch according to that service type. Another occurrence

is in the call disconnection phase of a mobile where otherwise no unique

sender process in the alternative bMSC’s is possible, as either the network

or the mobile station can initiate a disconnection request. Each global vari-

able was set at the branching point by a preselected process, read by others,

then reset in the idle state.

However, the hand-coded global variables proved to be more awkward

and restrictive than the synchronizing history variable mechanism (also re-

lying on global variables) supported by the automatic synthesis feature of

Mesa 4.5.3. History variables were configured for each non-local branching

point.

5.5 Validation of model

This section presents the summarized results of the validation of the Promela

model against the high-level requirements, with respect to the Mobility Man-

agement features of GSM. The properties of the system requirements which

were required to hold in all circumstances were elicited and formalized in

Linear Temporal Logic.

LTL (Linear Temporal Logic) is a branch of formal logic used for ex-

pressing temporal properties of a system. It makes use of symbols to denote

temporal properties [53]: ✷,✸ and U represent the always, eventually and

until operator, respectively. p, q, r, s, etc. , are used to represent the state

predicates. The symbols && and || denote conjunction and disjunction, re-

spectively. In order to define the above variables in the Promela code, the

values of global variables and the labels of the control points of individual

processes were used. For example, consider the first high-level requirement

of 5.5.1 on page 157. The p and q variables were defined as follows according

to the Promela code:
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p: MS[1]@State_MS_3_Pag_Res_Req\\

q: v_ms_chan_assign == 1\\

r: MS[1]@State_MS_2_Loc_Up_Req

By p, the statement label State MS 3 Pag Res Req is being identified in

the Promela code for the process instance MS, corresponding to its state 3.

Pag Res Req is also the name of the original bMSC from which this state

was generated. r is a label corresponding to state 2 of the same process.

v ms chan assign is a control point in the code where the MS is assigned

a channel. p, q and r define the truth values of the corresponding logical

comparisons. v ms chan assign is a global variable of type byte in the

Promela code. The state labels demonstrate good traceability between the

original MSC specification and the Promela code, so that it is easier to track

down errors.

Using the Spin tool, the LTL formula of each high level requirement was

converted to a Büchi automaton, also called a never claim [50, 51]. This

automaton is a specific type of transition system that accepts only those

execution traces of the model that satisfy this LTL formula. Using this

never claim, Spin can make a partial or exhaustive search of all system

states in order to check whether the formula holds of the model, or not.

In other words, Spin checks whether that property is indeed satisfied or

not. See Section 3.3.1 on page 46 for a more thorough discussion of Büchi

automata.

5.5.1 High-level requirements and LTL formulæ

The following is a list of high-level requirements representative of Mobility

Management, and their encoding in LTL formulæ. The definitions of specific

messages are also presented, with reference to the Promela model created.

The model was also checked for possible deadlocks and livelocks, and no

invalid end states or non-progress cycles were detected.
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Deadlock

High-level requirement: The system should not exhibit any deadlock.

Deadlocks are states in which no further execution is possible, for instance,

because all processes are waiting for conditions that can never be fulfilled

[50].

Method: The validation of this requirement was performed by using the

invalid end states detection feature of Spin. In the GSM model, only the

end of the body of a process type declaration was a valid end state. Since

the system is event-driven and never terminates, the end of a process body

cannot be reached. In transformational systems, a valid end state can be

inserted at the location of an end symbol in the MSC specification.

Livelock

High-level requirement: The system should not exhibit any livelock.

Livelocks are execution sequences that can be repeated infinitely often with-

out ever making effective progress.

Method: The validation of this requirement was done by adding progress

labels (see footnote 8 on page 47) to the Promela code and using the non-

progress cycles detection feature of Spin. For example, a progress label was

used to indicate the allocation of a channel to a mobile station after its

request. Livelock is more applicable, however, to situations where a cycle

exists in the MSC specification that can be executed infinitely often such

that a condition is not satisfied. For instance, the handover operation speci-

fied in the Handover bMSC can occur infinitely often so that the connection

is never terminated. However, this scenario would entail constant and rapid

physical relocation of the mobile across base station boundaries, and is ex-

tremely unlikely.
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Power off

High-level requirement: If the MS has not been granted a channel to the

BSS, then it cannot respond to any paging request.

Formula: ✷((¬pUq)||(r))

p = Respond to a paging request. (pag chan req message in Pag Res Req

bMSC)

q = The MS has been granted a channel to the BSS. (chan assign message

in Chan Req bMSC)

r = The MS performs a location update request. (loc up req in Loc Up Req

bMSC)

Network connection

High-level requirement: When the MS is turned on, it is eventually

granted a channel from the BSS.

Formula: ✷(p → ✸q)

p = The MS is turned on. (chan req in Chan Req bMSC)

q = The MS is granted a channel from the BSS. (chan assign in Chan Req

bMSC)

Service Request

High-level requirement: If the MS is idle, then it will eventually initiate

a call setup, a paging response, or a location update.

Formula: ✷(p → ✸(q || r || s))

p = The MS is idle. (after chan assign in Chan Req bMSC)

q = The MS initiates a call setup. (cal chan req in Call Set Req bMSC)

r = The MS initiates responds to a paging request. (pag chan req in Pag-

Res Req bMSC)

s = The MS initiates a location update. (loc up req in Loc Up Req bMSC)
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Identification

High-level requirement: After the MS initiates a new service request, it

must eventually be identified by the network.

Formula: ✷((q || r || s) → ✸t)

q = The MS initiates a call setup. (cal chan req in Call Set Req bMSC)

r = The MS initiates responds to a paging request. (pag chan req in Pag-

Res Req bMSC)

s = The MS initiates a location update. (loc up req in Loc Up Req bMSC)

t = The MS is identified by the network. (iden req in Identity bMSC)

Authentication

High-level requirement: After being identified, the MS must be authen-

ticated by the network, and the result is a success or failure.

Formula: ✷(p → ✸(q || r))

p = The MS is identified. (iden req in Identity bMSC)

q = The authentication is successful. (serv accept in Auth Succ bMSC)

r = The authentication is unsuccessful. (auth fail in Auth Fail bMSC)

Successful authentication

High-level requirement: The MS can only connect to another party if it

is first authenticated.

Formula: ✷(p → q)

q = The MS is successfully authenticated. (serv accept in Auth Succ

bMSC)

p = The MS is connected to another party (the call is initiated by the

former or latter). (cal setup in Mob Pag Res bMSC or assign cmd in

Mob Init Call bMSC)
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Authentication failure

High-level requirement: If the authentication fails, then the mobile re-

leases the call channel, and can attempt to request a channel from the BSS

again.

Formula: ✷(p → (q → ✸r))

p = The authentication of the MS fails. (auth fail in Auth Fail bMSC)

q = The call channel is released by the MS. (rel chan in Auth Fail bMSC)

r = The MS requests a channel to the BSS. (chan req in Chan Req bMSC)

Location update

High-level requirement: If the MS moves to a new location area, it

remains connected to the network.

Formula: ✷(p → q)

p = The MS has updated the network of its new location. (loc upd result

in Loc Up bMSC)

q = The MS remains connected to the network. (chan assign in Chan Req

bMSC)

Conversation

High-level requirement: After a successful authentication, if the MS ini-

tiated a call or answered a page, then it will end up in the connected state.

Formula: (✷(q&&r) || ✷(p&&r)) → ✸s

q = TheMS has requested a paging response. (pag chan req in Pag Res Req

bMSC)

r = The MS is successfully authenticated. (serv accept in Auth Succ

bMSC)

p = The MS has requested a call setup. (cal chan req in Call Set Req

bMSC)

s = The MS is in the connected state with another party. (assign cmd in

Mob Init Call bMSC or cal setup in Mob Pag Res bMSC)

159



Disconnection

High-level requirement: Either the caller or the callee can disconnect a

call.

Formula: ✷((p || q) → ✸r)

p = The network initiates a disconnection. (release req in Net Init Disc

bMSC)

q = The MS initiates a disconnection. (discon req in Mob Init Disc

bMSC)

r =The call is terminated. (chan req in Chan Req bMSC)

Channel release

High-level requirement: Upon termination of the connection, the call

channel is released, and the MS can now initiate a new service request.

Formula: (✷(p → s) || ✷(q → t)) → ✸r

p = The network initiates a disconnection. (release req in Net Init Disc

bMSC)

q = The MS initiates a disconnection. (discon req in Mob Init Disc

bMSC)

s = The channel is released. (rel chan in Net Init Disc bMSC)

t = The channel is released. (rel chan in Mob Init Disc bMSC)

r = The MS reconnects to the network and can initiate a new service request.

(chan assign in Chan Req bMSC)
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Handover

I. High-level requirement: If handover is required, then the MS will be

able to connect to a new base station.

Formula: ✷(((p&&q) → ✸r) || ((p&&r) → ✸q))

p = Handover is required. (hand reqd in Handover)

q = The MS is currently connected to BSS 1.

r = The MS is currently connected to BSS 2.

II. High-level requirement: If the MS is in conversation with another

party, and handover occurs, then the MS will continue its conversation with-

out interruption.

Formula: ✷(p → ✸s)

p = Handover is required. (hand reqd in Handover)

s = The MS is in the conversation state. (after hand compl in Handover)

5.5.2 Summary of validation results

All of the properties of the high-level requirements that were chosen were

found to be valid (in the portion of the state space covered) in the Promela

model using the Spin tool. The methodology used is quite practical in

terms of the computing resources required to analyze the model. Supertrace

state space exploration was always performed1. Statistics for the valida-

tion runs are shown in table 5.3. For comparison, the statistics for the

earlier hand-coded model are shown, too, in table 5.4. The latter required

significantly fewer resources, because history variables were not used to re-

solve non-local choice. Hence, exhaustive state exploration was performed

on the hand-coded model. However, the model was less flexible in that the

synchronization through global variables resulted in the processes running

1Supertrace is a controlled partial-search technique using hashing to perform the largest

possible search within a set amount of memory [50]. Due to the possibility of unresolved

hash conflicts, 100% coverage cannot be guaranteed. Supertrace is a controlled partial-

search technique that is only meant for the validation of protocol systems that cannot be

analyzed exhaustively, which is the case here, and usually with any reasonably complex

system. It cannot be guaranteed that the tests would still be valid if an exhaustive search

of the state space was possible and performed.
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more in lock-step with each other, and the same process always decided on

non-local branching decisions. Although it was more optimized, the hand-

coded model required considerable time and patience to encode, while the

generated model was produced by Mesa in seconds.

5.6 Conclusions

A step-by-step procedure has been shown for requirements specification and

validation of the Mobility Management aspect of GSM using Promela/Spin.

Message Sequence Charts have been used for the early stage of requirements

specification and to create the operational Promela model. A representa-

tive set of high-level requirements were elicited from the GSM specification

standard and coded in Linear Temporal Logic in order to prove a number

of properties to hold true of the Promela model. The results obtained for

the validation of the Promela model were also discussed. The procedure

shown is easy to follow and effective for the specification and validation of

a complex system like the Mobility Management service of GSM. A compli-

cated real-world communications protocol has been modeled. The approach

demonstrated allows for an easy and complete analysis of a subset of almost

any communications protocol.

The Promela language was found to be an appropriate method of mod-

eling Mobility Management in GSM. The high degree of message interaction

in the system lent itself to Promela’s support for a message-passing model,

and the entities of the GSM system were easily modeled using multiple pro-

cess instances in Promela. The resulting model was automatically validated

with the potential for easy modification if necessary. Although the elicited

set of requirements based on the standard were not found to have any in-

herent faults in the final model, a number of minor errors were detected

and subsequently corrected in the simplified operational model during de-

velopment. The principal causes of them were missing messages eliminated

due to oversimplification. These errors were easily detected through Spin’s

validation features.

The approach used was highly automated, simple, quick, and effective.

The MSC specification of the system was quickly entered using the editing
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Generated model

Processor AMD AthlonTM700 MHz

Memory 256 MB RAM

Duration of deadlock test 16 min.

Maximum depth 8 · 106 states

No. of state transitions 3.98 · 106

No. of atomic steps 4.66 · 106

Total memory usage 251 MB

Average duration of LTL tests 4 min.

Maximum memory usage 252 MB

Maximum depth 2 · 106 states

Table 5.3: Statistics for validation of LTL tests on GSM model generated

using Mesa. The total number of transitions and atomic steps required

for the LTL tests varied greatly depending on the high-level requirements

tested.

Hand-coded model

Processor UltraSPARC IIiTM300 MHz

Memory 256 MB RAM

Duration of deadlock test 15 sec.

No. of state transitions 21.5 · 103

No. of atomic steps 5.73 · 103

Total memory usage 3.6 MB

Average duration of LTL tests 11 sec.

Maximum memory usage 3.6 MB

Maximum no. of transitions 21.5 · 103

Maximum no. of atomic steps 5.76 · 103

Table 5.4: Statistics for validation of LTL tests on hand-coded GSM model.
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facilities of Mesa. Syntactic and static-based analysis, such as identification

of non-local choice and Z.120 compliance, was automatically performed in-

side the tool. History variables were easily added to the appropriate branch-

ing points. A Promela model of the system was automatically synthesized

usingMesa. After some minor work in adding progress labels and state vari-

ables to select portions of the code, the LTL tests were easily entered and

automatically verified in seconds or minutes using the Spin tool, with the

exact location of any problems displayed on a progress chart for debugging.

In spite of the completeness of the described method, one area not sup-

ported by the Promela language is the notion of incorporating real time con-

straints into the model. This limitation of Promela prevented the modeling

of some parts of the specification related to the exact timing requirements.

One example is the mechanism by which the MS regularly polls the received

signal strengths for all surrounding cells at least once every 6 seconds for

purposes of activating handover in the case of an out-of-bounds value. Mod-

eling real-time constraints is not the focus of this thesis, however, and, in

any case, this requirement can be abstracted away.

164



Chapter 6

ROOM Synthesis of GSM

Model

The GSM model of the previous chapter was synthesized into a ROOM

model, using the proposed features of hierarchical actor structure, replica-

tion, and automatic coordination, from chapter 4. This illustrates how an

MSC specification can be validated (through Promela synthesis and LTL

tests), then synthesized into a design-time ROOM model.

The topmost Environment actor is shown in figure 6.1. The internal

structure of the GSM subsystem appears in figure 6.2. The finite state

machine of the base station (BSS) actor is shown in figure 6.3. The internal

behavior of the Conversation superstate of the BSS actor appears in figure

6.4. For comparison, the finite state machine of the mobile (MS) actor is

shown in figure 6.5.

The base station is modeled as a replicated actor (with a replication

factor of 2), so that handover between two BSS’s can be simulated. In

the BSS actor, the handover operation, from the view of the BSS pro-

cess instance in the original MSC specification, is performed within the

Handover sub-state of the Conversation state. Once handover completes,

the original base station (specifically, the channel used) is free to be used

as part of another call. Thus, the CoIn transition is taken to return to

the Initialization state, from which a new service can be started. The
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base station to which the mobile is handed over to, begins from the oppo-

site end: the Initialization state. Upon receiving a handover request

(Hand Request) from the MSC, it participates in the processing of the han-

dover operation in the Handover Conv state, from the view of the BSS New

process instance in the original MSC specification. It then travels via the

HaCo transition to the Handover substate, and becomes the new base station

of the current call. Handover can theoretically occur from one base station

to the other an unlimited number of times. All other actors communicate

with the correct BSS instance through an indexed array of pointers to the

two BSS actor references, and must keep track of the current index number.

In comparison, the MS actor does not possess a Handover Conv state in its

behavioral description, as the handover process does not terminate a call

from its point of view, and is handled entirely within the Handover substate

of the Conversation state.

The Coordinator is involved in coordinating non-local branching deci-

sions, such as deciding whether a call request or a paging response scenario

should be executed, or whether the mobile authorization succeeds or fails.
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Figure 6.1: The structural diagram of the topmost Environment actor of

the GSM ROOM model is shown. The mobile is represented by the ms

process, and interfaces with the GSMSubSystem hierarchical actor containing

all GSM hardware components. The automatic coordinator is represented

by the coordinator actor in the middle.
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Figure 6.2: The structural diagram of the interior of the GSMSubSystem

hierarchical actor is shown. The BSS, MSC, and Network components are

each represented by their own actor instance. The BSS actor is replicated

twice so that handover between two base stations can be modeled. The end

and relay ports on its interfaces are replicated as well, with a replication

factor of 2. Each actor interfaces with the coordinator in the Environment

actor through the gsmSystem protocol.
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Figure 6.3: The finite state machine of the BSS actor is shown. The

Initialization state simply serves to select an initial branch: a location

update or service request. The branch is selected by the coordinator.
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Figure 6.4: The internal state machine of the Conversation state of the

BSS actor is shown.
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Figure 6.5: The finite state machine of the MS actor.
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Chapter 7

Final conclusions

7.1 The purpose and process of synthesis

Formal requirements specification at the early stages of complex software

systems development helps to reduce errors before they become very expen-

sive to repair. Message sequence charts are a popular method of specifying

protocols in real-time systems. The automatic synthesis of models from

MSC’s reduces errors in the design process. The purpose of MSC synthesis

is two-fold:

• To produce a working skeletal prototype for later refinement. It is

important for the synthesis result to be of practical value to an ap-

plications programmer not necessarily skilled in the practice of formal

requirements engineering, and various criteria have been identified.

ROOM is an appropriate methodology as a synthesis target due to

its wide use in the telecommunications industry and ObjecTime De-

veloper tool support. Although prior work was done in this area, the

synthesized model suffered from a lack of structural object-orientation,

a lack of traceability in the behavioral view, a lack of support for cer-

tain types of refinement and scenarios, and could not be executed

without the user’s input. A solution to each of these problems has

been proposed and verified to work correctly on a POTS telephony

system, including hierarchical actor structure, replication, and a global
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co-ordination system.

• To produce a model to validate properties from the requirements spec-

ification that cannot be directly accomplished with MSC’s. The most

important concept not present in the MSC standard is an expression

of liveness properties. The synthesis of a Promela model from the

MSC specification allows these properties to be specified in LTL and

validated to determine whether they hold true of the model. Although

prior work was done on Promela synthesis algorithms, the result gen-

erated a large statespace that could not be practically validated to a

reasonable degree. A number of optimizations in the approach and

algorithms have been proposed in this thesis, and a complex telecom-

munications system, the Mobility Management service of GSM, was

successfully specified, synthesized, and validated using the Mesa and

Spin CASE tools.

The synthesis work presented in this thesis is a step towards the ultimate

goal of the automation of the software development process and elimination

of errors.

The development process suggested based on the results of the thesis is il-

lustrated in figure 7.1. The synthesis process entails the creation of a working

design-time prototype from initial, informally-specified requirements elicited

from the customer. After entry of the MSC model and verification of syn-

tactic properties such as connectedness using the Mesa toolset, a ROOM

model is synthesized and loaded into the ObjecTime Developer environ-

ment for refinement, adding design details such as data processing to the

state machines. A simulation can then be run to test functional aspects such

as timing constraints. To ensure robustness, a Promela model may be syn-

thesized from the MSC specification, and safety and liveness requirements

may be translated into LTL properties that are validated against it. After

any necessary corrections to the MSC specification, the ROOM model may

be re-generated. The process can be followed in an iterative fashion — if the

ROOM model is found to exhibit undesired properties at any point requiring

modification to the MSC specification, it can be re-synthesized. This pro-

cess was followed in chapter 5, where a GSM system was synthesized into a

Promela model to validate a number of properties, then re-synthesized into
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a design-time ROOM model to proceed into the implementation phase.

7.2 Future work

The current process structure in ROOM synthesis is static. Dynamic process

creation and destruction is not supported. The addition of these features

would expand the spectrum of systems that could be synthesized.
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Figure 7.1: The synthesis process.
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Appendix A

ROOM Linear Form

The following is an example of the ROOM linear form syntax. It contains

the actor definition for the hierarchical actor PhoneActor CallBased in fig-

ure 4.14 on page 80. It shows how the structure of an actor is encoded into

a file that is imported into OTD.

The rules and syntax of the linear form format were not publicly docu-

mented by ObjecTime other than a BNF (Backaus-Naur Form) grammar.

The coding of the linear form generation in [5] required a reverse engineer-

ing of the format by careful inspection of the linear form exported from

manually encoded OTD projects.

The linear form file includes the structural definition of actors, ports, and

the system-level package. It includes the specification of instances of class

types, replication factors, conjugation of ports, transitions between states in

the finite state machine, and associated triggers and actions.

VERSION ’5.2’

ACTOR CLASS PhoneActor_CallBased

DESCRIPTION ’Phone process with call initiation and

call reception components as contained sub-actors.’

INTERFACE {

PORTS {
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DEFINE envPhoneProtocol_A

ISA CONJUGATED EnvironmentPhoneProtocol;

DEFINE envPhoneProtocol_B

ISA CONJUGATED EnvironmentPhoneProtocol;

}

}

IMPLEMENTATION {

STRUCTURE {

COMPONENTS {

DEFINE callInit

ISA SUBSTITUTABLE CallInit;

DEFINE callRecv

ISA SUBSTITUTABLE CallRecv;

}

BINDINGS {

DEFINE B1 [1]

BETWEEN phonePhoneProtocol/callRecv

AND phonePhoneProtocol/callInit;

DEFINE B2 [1]

BETWEEN envPhoneProtocol/callInit

AND envPhoneProtocol_A;

DEFINE B3 [1]

BETWEEN envPhoneProtocol/callRecv

AND envPhoneProtocol_B;

}

}

BEHAVIOR {

LANGUAGE ’C++’

FSM

}

};
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Appendix B

Glossary

Call origination. The initiation of a call request from one phone to an-

other.

Call termination. The response to an incoming call request.

Caller. The phone initiating a call request.

Callee. The phone that is the recipient of a call request.

ISDN. Integrated Services Digital Network. An international communica-

tions standard for sending voice, video, and data over digital telephone

lines or normal telephone wires.

POTS. Plain Old Telephone Service. The standard analogue voice-based

phone system that most homes use.

TTRX. Touch-tone receiver. A device that senses which digit is being

dialed.
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