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Abstract

Broadly, this thesis lies at the interface of mapping class groups and covering spaces.
The foundations of this area were laid down in the early 1970s by Birman and Hilden.
Building on these foundations, there has been a plethora of results, especially in the context
of a particular family of branched covering spaces over the sphere. We call these covers
the hyperelliptic covering spaces.

One of the reasons the hyperelliptic covers provide such fertile ground for research is
that every homeomorphism of a marked sphere lifts to a homeomorphism of the covering
space. Rephrasing this, the liftable mapping class group coincides with the entire mapping
class group of a marked sphere. Since the mapping class group of a marked sphere is well
understood, this understanding can be lifted to help understand a particular subgroup of
the mapping class group of the covering space.

However, for a general covering space, the liftable mapping class group does not coincide
with the mapping class group of the base space. Instead, it is a finite index subgroup. This
thesis is devoted to studying the liftable mapping class group in contexts other than the
hyperelliptic covers.

Chapter 2 provides the necessary preliminaries for the rest of the thesis. Chapter 3
classifies cyclic branched covers of the sphere with the property that the liftable mapping
class group coincides with the mapping class group of the marked sphere. Chapter 4
studies the liftable mapping class group for a family of cyclic branched covers over the
sphere, called balanced superelliptic covers. We find an explicit finite presentation for the
liftable mapping class groups corresponding to the balanced superelliptic covers, compute
the indexes of the liftable mapping class groups, and compute their abelianizations.

In Chapter 5 we study an infinite family of cyclic branched covers over a torus. The
liftable mapping class groups corresponding to this family are all subgroups of the mapping
class group of a twice marked torus. We prove that the intersection of any two of these
liftable mapping class groups is also a liftable mapping class group, and the subgroup
generated by any two is again a liftable mapping class group. In a few special cases we
find a finite generating set, and for some of those, an explicit finite presentation.

Finally, in Chapter 6 we study the liftable mapping class group for covers of surfaces
with boundary. Given a covering space of a surface with boundary, we characterize the
corresponding liftable mapping class group by the action of its members on a particular
fundamental groupoid of the base surface.
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Chapter 1

Introduction

The mapping class group of a surface of genus g, is a group of symmetries of the surface
Σg. More formally, it is the group of orientation-preserving homeomorphisms of Σg up to
isotopy. If the surface has boundary ∂Σg or marked points B, then the homeomorphisms
must preserve the set of marked points and fix the boundary pointwise. The mapping class
group will be denoted Mod(Σg, ∂Σg,B). The ∂Σ and B may be omitted if they are empty
or if we do not require them to be fixed.

The study of mapping class groups began in the 1920s with the work of Dehn [19] and
Nielsen [39, 40, 41]. Today, mapping class groups are ubiquitous in mathematics. For a few
examples among many, they appear in 4-manifold topology through Lefschetz fibrations,
and 3-manifold topology through Heegaard splittings and mapping tori. Mapping class
groups are closely related to automorphism groups of free groups and right-angled Artin
groups, and are a generalization of the braid group. The mapping class group is also
the fundamental group of the moduli space of a Riemann surface, providing a bridge to
algebraic and complex geometry.

Broadly, this thesis studies the interplay of mapping class groups and finite-sheeted,
regular covering spaces. This particular story begins with the search for a presentation of
the mapping class group of a genus 2 surface, which was arrived at in the work of Birman
and Hilden [7].

Mapping Class Groups and Covering Spaces

The key insight of Birman and Hilden was to use covering spaces to relate the mapping class
group of the base surface to that of the covering surface. In [7], they study a particular
family of branched covers over the sphere which we will call hyperelliptic covers. The
hyperelliptic covers are constructed as follows. For each genus g ≥ 1 there is a 2-sheeted
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Figure 1.1: A hyperelliptic involution on Σg and the hyperelliptic cover pg : Σg → Σ0.

branched cover pg : Σg → Σ0 of the sphere Σ0 by a surface Σg of genus g, branched at 2g+2
points B ⊂ Σ0. The nontrivial deck transformation is a rotation by π about the axis shown
in Figure 1.1. Such a rotation is called a hyperelliptic involution and is denoted by ι. See
Figure 1.1 for an illustration of the hyperelliptic covers. For a more formal construction
of the hyperelliptic covers, see the construction of the balanced superelliptic covers when
k = 2 in Section 4.1.

Birman and Hilden proved that for g ≥ 2, there is a surjective homomorphism
SModpg(Σg)→ Mod(Σ0,B) with kernel 〈ι〉. Here, SModpg(Σg) is the hyperelliptic mapping
class group, and is equal to the centralizer of ι in Mod(Σg). When g = 2, 〈ι〉 is equal to the
center of Mod(Σg), so Mod(Σ2)/〈ι〉 is isomorphic to Mod(Σ0,B). At the time, presenta-
tions for Mod(Σ0,B) and 〈ι〉 were known (the latter is of course isomorphic to Z/2Z). As a
result, the first presentation for Mod(Σ2) was obtained (for example, by applying Lemma
2.4.2 below).

The results of Birman and Hilden were subsequently generalized. Assume the genus
of Σ̃ is at least 2. Let p : Σ̃ → Σ be a regular, finite-sheeted, possibly branched covering
space with deck group D, branched at finitely many points B ⊂ Σ. Let SModp(Σ̃) be

the subgroup of Mod(Σ̃) consisting of isotopy classes of fiber-preserving homeomorphisms,
called the symmetric mapping class group. Let LModp(Σ,B) be the subgroup of Mod(Σ,B)

consisting of isotopy classes of homeomorphisms that lift to homeomorphisms of Σ̃, called
the liftable mapping class group.

Projecting fiber-preserving homeomorphisms of Σ̃ to homeomorphisms of Σ induces a
surjective homomorphism SModp(Σ̃)→ LModp(Σ,B) with kernel D. This result is known
as the Birman-Hilden theorem. Birman and Hilden proved the result in [9] for solvable
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covers, and for unbranched covers in [8]. MacLachlan and Harvey proved it for all finite-
sheeted regular covers in [34]. A version of the Birman-Hilden theorem was proved by
Winarski in [47] for possibly irregular, fully-ramified covers, and by Aramayona, Leininger
and Souto in [4] for irregular unbranched covers.

For the hyperelliptic covers, the isomorphism SModpg(Σg)/〈ι〉 ∼= Mod(Σ0,B) has been
successfully exploited. For example, Bigelow and Budney [5] prove that the hyperelliptic
mapping class group, and in particular Mod(Σ2), is linear. Brendle, Margalit, and Put-
man [14] find an explicit generating set for the kernel of the integral Burau representation.
Stukow classifies all the conjugacy classes of maximal finite subgroups of the hyperelliptic
mapping class group in [44], and proves that the hyperelliptic mapping class group is gen-
erated by two torsion elements in [45]. The homology and cohomology of the hyperelliptic
mapping class group has been extensively studied in the works of Bödigheimer-Cohen-Peim
[11], Cohen [17], Gries [25], and Kawazumi [31, 32] to name a few. The list goes on (see
the works of A’Campo [1], Ahara-Takasawa [2], Brendle-Childers-Margalit [13], Calegari-
Monden-Sato [16], Endo [21], Hain [26], Kasagawa [30], and Morifuji [38] to name a few
more). All of these results rely in some way on the Birman-Hilden theorem for hyperelliptic
covers.

One of the reasons the hyperelliptic covers have been fertile ground for research is that
LModp(Σ0,B) = Mod(Σ0,B). That is, every homeomorphism of Σ0 fixing the branch points
lifts to a homeomorphism of Σg. Since Mod(Σ0,B) is well understood, the Birman-Hilden
theorem can be used to understand the hyperelliptic mapping class group. In general, the
liftable mapping class group is a finite index subgroup of the mapping class group. This
thesis is concerned with understanding the liftable mapping class group for finite-sheeted,
regular, possibly branched covers.

Layout of the thesis

Chapter 2 is an overview of the preliminaries required for the rest of the thesis. Sections
2.1 and 2.2 cover the basic theory about lifting and projecting homeomorphisms. Section
2.3 introduces mapping class groups, including a section on the Birman-Hilden theory.
Finally, relevant results about group presentations relating to short exact sequences and a
review of the Reidemeister-Schreier rewriting process are presented in Section 2.4.

Chapters 3 and 4 are from joint work with Rebecca Winarski, and are essentially the
papers [24] and [23] respectively. Chapter 3 classifies cyclic branched covers of the sphere
with the property that every homeomorphism lifts. As a result Theorem 3.2.4 is proved,
which is a correction to Theorem 5 in [9] (see the erratum [10]).

In Chapter 4 we study the liftable mapping class group corresponding to a family of
cyclic branched covers of the sphere called the balanced superelliptic covers. The balanced

3



superelliptic covers are a natural generalization of the hyperelliptic covers, and provide ex-
amples of covers where the liftable mapping class group is a proper subgroup of the mapping
class group. We compute the index [Mod(Σ0,B) : LModp(Σ0,B)], find an explicit finite
presentation for LModp(Σ0,B), and compute the abelianization H1(LModp(Σ0,B);Z). As
a corollary, we show that the abelianization of the symmetric mapping class group, called
the balanced superelliptic mapping class group, is a non-cyclic finite group.

A family of cyclic branched covers over a torus branched at two points is the focus
of Chapter 5. The family is indexed by integers k ≥ 2, giving rise to a family of liftable
subgroups LModk(Σ1,B) < Mod(Σ1,B). Using the Reidemeister-Schreier rewriting process
and soliciting the help of the Sage code in Appendix A, we arrive at a finite presentation
for LModk(Σ1,B) for k = 2, 3, 4 and a finite generating set for k = 5, 6. We also prove
that the way the liftable subgroups live in Mod(Σ1,B) is well behaved. Indeed, for integers
k, l ≥ 2,

LModk(Σ1,B) ∩ LModl(Σ1,B) = LModlcm(k,l)(Σ1,B)

and
LModk(Σ1,B) LModl(Σ1,B) = LModgcd(k,l)(Σ1,B).

Finally, Chapter 6 looks at the liftable mapping class group for surfaces with boundary.
The chapter begins by surveying the relevant algebraic properties of groupoids. The main
result characterizes the liftable mapping class group by the action of its members on the
fundamental groupoid of the base surface. As a corollary we prove that, like the case for
surfaces without boundary, the liftable mapping class group is a finite index subgroup.

4



Chapter 2

Preliminaries

2.1 Notation and conventions for homeomorphisms of

surfaces

Let Σ be a compact orientable 2-manifold of genus g with boundary ∂Σ and finitely many
marked points B ⊂ Σ\∂Σ. Let Homeo(Σ) be the homeomorphism group of Σ. Throughout
this thesis, the focus is on various subgroups of Homeo(Σ). If ∂Σ appears in the argument
of Homeo, then we require homeomorphisms to fix ∂Σ pointwise. If B appears, then we
require homeomorphisms to fix B setwise. If a + appears as a superscript, then we require
homeomorphisms to preserve the orientation of Σ. For example,

Homeo+(Σ) = {f ∈ Homeo(Σ) : f is orientation preserving}
Homeo+(Σ,B) = {f ∈ Homeo+(Σ) : f(B) = B}

Homeo(Σ, ∂Σ,B) = {f ∈ Homeo(Σ) : f(B) = B, f(x) = x for all x ∈ ∂Σ}.

If ∂Σ 6= ∅ and f is a homeomorphism fixing ∂Σ pointwise, then f must be orientation
preserving. That is, Homeo+(Σ, ∂Σ) = Homeo(Σ, ∂Σ).

Occasionally, it may be easier to remove the marked points and consider the result-
ing surface with punctures Σ◦ = Σ \ B. Since Σ is Hausdorff and Σ◦ ⊂ Σ is dense, any
homeomorphism in Homeo(Σ◦) extends uniquely to a homeomorphism in Homeo(Σ,B).
Conversely, every homeomorphism in Homeo(Σ,B) restricts to a homeomorphism of Σ◦.
Therefore, an isomorphism Homeo(Σ,B) ∼= Homeo(Σ◦) arises by restricting homeomor-
phisms. We will go back and forth between punctures and marked points as is convenient.

If it is necessary to keep track of the genus g, the number of punctures n, and the
number of boundary components b of Σ, we will denote the surface Σ by Σb

g,n. If b or n are
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0, then they will be omitted. If |B| = m and we wish to keep track of the number of marked
points, then we will write B = B(m). So, for example, Homeo+(Σg,n) ∼= Homeo+(Σg,B(n)).

As a general rule, the group multiplication in homeomorphism groups and mapping
class groups will be performed right to left, so fg means perform g, then f . The exception
to this will be in Chapter 4, where the focus is on group presentations.

2.2 Lifting and projecting homeomorphisms

Let p : Σ̃ → Σ be a regular, finite-sheeted, possibly branched covering space branched at
finitely many points B ⊂ Σ \ ∂Σ with deck group D < Homeo+(Σ̃).

We say a homeomorphism f ∈ Homeo+(Σ̃) is fiber-preserving if whenever p(x) = p(y),

pf(x) = pf(y). Let SHomeo+
p (Σ̃) be the subgroup consisting of fiber-preserving home-

omorphisms. There is a homomorphism Π : SHomeo+
p (Σ̃) → Homeo+(Σ,B) given by

Π(f̃)(x) = pf̃(x̃) for any x̃ ∈ p−1(x). It follows that ker(Π) = D. If Π(f̃) = f , then the
square

Σ̃ Σ̃

Σ Σ

f̃

p p

f

commutes, that is pf̃ = fp. It is true that SHomeo+
p (Σ̃) is the normalizer of D in

Homeo+(Σ̃), and the justification is left to the reader.
We say a homeomorphism f ∈ Homeo+(Σ,B) lifts if there exists a homeomorphism

f̃ ∈ Homeo+(Σ̃) such that pf̃ = fp. Note that such a f̃ must necessarily be in SHomeo+
p (Σ̃).

Let LHomeo+
p (Σ,B) be the subgroup of Homeo+(Σ,B) consisting of homeomorphisms that

lift. Then the image of Π is LHomeo+
p (Σ,B) and SHomeo+

p (Σ̃)/D ∼= LHomeo+
p (Σ,B).

2.2.1 Lifting and projecting with boundary

Suppose Σ̃ and Σ have non-empty boundary ∂Σ̃ and ∂Σ respectively. We wish to lift and
project homeomorphisms that preserve the boundary pointwise, to homeomorphisms that
preserve the boundary pointwise.

Let SHomeop(Σ̃, ∂Σ̃) = SHomeo+
p (Σ̃) ∩ Homeo(Σ̃, ∂Σ̃).

Proposition 2.2.1. SHomeop(Σ̃, ∂Σ̃) = C ∩ Homeo(Σ̃, ∂Σ̃) where C is the centralizer of

the deck group D in Homeo+(Σ̃).
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Proof. It suffices to show that any homeomorphism f̃ that fixes the boundary and is in the
normalizer of D is in the centralizer of D. Let x ∈ ∂Σ̃ and let d ∈ D. Then d(x) ∈ ∂Σ̃.
Since f̃ fixes the boundary pointwise we have f̃−1df̃(x) = f̃−1d(x) = d(x). Since f̃ is in

the normalizer of D, f̃−1df̃ ∈ D. Since the deck group acts freely on ∂Σ̃, f̃−1df̃ = d,
completing the proof. �

Any fiber-preserving homeomorphism of Σ̃ that fixes ∂Σ̃ pointwise must project to a
homeomorphism of Σ that fixes ∂Σ pointwise. Since the only element of D that fixes ∂Σ̃
pointwise is the identity, restricting the domain of Π gives us an injective homomorphism
Π : SHomeop(Σ̃, ∂Σ̃)→ LHomeo+

p (Σ,B) ∩ Homeo(Σ, ∂Σ).

Define LHomeop(Σ, ∂Σ,B) = Π(SHomeop(Σ̃, ∂Σ̃)). That is, the set of homeomorphisms

of Σ fixing ∂Σ pointwise that lift to a homeomorphism f̃ of Σ̃ fixing ∂Σ̃ pointwise.
While it is tempting to define LHomeop(Σ, ∂Σ,B) as LHomeo+

p (Σ,B)∩Homeo(Σ, ∂Σ),
in Chapter 6 we will see that in general we only have the inclusion

LHomeop(Σ, ∂Σ,B) < LHomeo+
p (Σ,B) ∩ Homeo(Σ, ∂Σ).

Indeed, there may be a homeomorphism of Σ fixing ∂Σ pointwise that lifts to a homeo-
morphism of Σ̃, but none of the lifts fix ∂Σ̃ pointwise.

2.2.2 Branched versus unbranched covers

The theme running through this thesis is identifying when homeomorphisms lift in a
branched covering space. To do this, it is helpful to consider the unbranched covering
space obtained by deleting the branch points and their preimages. Let p : Σ̃ → Σ be a
finite-sheeted, branched cover branched at B ⊂ Σ. Let Σ̃◦ = Σ̃ \ p−1(B) and Σ◦ = Σ \ B.

The restriction of p to Σ̃◦ results in an unbranched cover p◦ : Σ̃◦ → Σ◦.
Conversely, suppose p : Σ̃→ Σ is a finite-sheeted unbranched cover, and Σ has at least

one puncture. That is, there exists a surface Σ′ and a non-empty finite set B ⊂ Σ′ \ ∂Σ′

such that Σ = Σ′ \ B. Then p can be completed to a (possibly branched) cover p : Σ̃→ Σ
by filling in the punctures of Σ with marked points B ⊂ Σ. To determine whether or not
q ∈ B is a branch point of p, assume for simplicity that p is a regular cover with finite
abelian deck group A. Let x ∈ H1(Σ;Z) be the homology class of a loop surrounding only
the puncture corresponding to q counterclockwise. The cover p is determined by the kernel
of a surjective homomorphism ϕ : H1(Σ;Z)→ A. The number of preimages of q under p is
given by |p−1(q)| = [A : 〈ϕ(x)〉]. In particular, q is a branch point if and only if ϕ(x) 6= 0.
For the formal definition of filling in branch points, and for proofs of the claims made in
this paragraph, see [46, §4.2].
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As in Section 2.1 there is an isomorphism Homeo+(Σ,B) ∼= Homeo+(Σ◦) given by
restricting a homeomorphism of Σ to a homeomorphism of Σ◦. Similarly, since any fiber-
preserving homeomorphism of Σ̃ must preserve the set p−1(B), there is an isomorphism

SHomeo+
p (Σ̃) ∼= SHomeo+

p (Σ̃◦).
It follows that a homeomorphism is in LHomeo+

p (Σ,B) if and only if its restriction to Σ◦

is in LHomeo+
p (Σ◦). The same holds if ∂Σ 6= ∅: a homeomorphism is in LHomeop(Σ, ∂Σ,B)

if and only if its restriction is in LHomeop(Σ
◦, ∂Σ◦).

This observation motivates the general approach to identifying liftable homeomor-
phisms. If we want to identify liftable homeomorphisms for a branched cover, it suffices to
identify liftable homeomorphisms for the associated unbranched cover.

2.3 Mapping class groups

The mapping class group is the main object of study in this thesis. In this section we
introduce the basic definitions and results surrounding mapping class groups. For an in-
troduction to the subject along with proofs of the statements below, see Farb and Margalit’s
book [22] or Ivanov’s survey [29].

2.3.1 Basic definitions

Recall that two homeomorphisms f0, f1 : X → Y between topological spaces are isotopic if
there exists a continuous map H : X× [0, 1]→ Y such that for all x ∈ X, H(x, 0) = f0(x),
H(x, 1) = f1(x) and H(−, t) : X → Y is a homeomorphism for all t ∈ [0, 1].

Let Σ be a genus g surface with possibly empty boundary ∂Σ and finitely many marked
points B ⊂ Σ \ ∂Σ. Define Homeo0(Σ, ∂Σ,B) = {f ∈ Homeo(Σ, ∂Σ,B) : f ' id}. Here,
f ' id means f is isotopic to the identity via an isotopy that fixes ∂Σ pointwise and B as
a set. Since B is discrete, any isotopy fixing B as a set must fix B pointwise.

Definition. The mapping class group Mod(Σ, ∂Σ,B) is defined to be

Mod(Σ, ∂Σ,B) := Homeo+(Σ, ∂Σ,B)/Homeo0(Σ, ∂Σ,B).

In this thesis, the mapping class group will always consist of isotopy classes of orientation-
preserving homeomorphisms. As in the notational conventions for homeomorphism groups,
the entries B and ∂Σ in Mod(Σ, ∂Σ,B) are optional. If B appears, elements of the mapping
class group are isotopy classes of homeomorphisms fixing B as a set, where the isotopies
must also fix B. If ∂Σ appears, elements of the mapping class group are isotopy classes of

8



homeomorphisms fixing ∂Σ pointwise, and the isotopies must also fix ∂Σ pointwise. For a
homeomorphism f , let [f ] denote its isotopy class in the mapping class group.

As was the case with the homeomorphism groups, marked points and punctures con-
tain the same topological information. Indeed, Mod(Σb

g,n, ∂Σb
g,n) ∼= Mod(Σb

g,0, ∂Σb
g,0,B) if

|B| = n.
The subgroup of the mapping class group consisting of isotopy classes of homeomor-

phisms that fix B pointwise, called the pure mapping class group, will play an important
role in Chapter 4. For simplicity, the next definition and the following short exact sequence
are stated without insisting ∂Σ is fixed pointwise. However, they hold if we require ∂Σ to
be fixed.

Definition. Let B 6= ∅. The pure mapping class group is defined as

PMod(Σ,B) := {[f ] ∈ Mod(Σ,B) : f(x) = x for all x ∈ B}.

If |B| = n, there is a short exact sequence

1 −→ PMod(Σ,B) −→ Mod(Σ,B)
φ−→ Sn −→ 1

where Sn is the symmetric group on n letters and φ is given by the action of Mod(Σ,B) on
B. The map φ is surjective since any transposition can be obtained by taking a half twist
about an arc joining two marked points (see Section 2.3.2).

Throughout the thesis we may abuse notation and identify an element f ∈ Mod(Σ)
with a representative homeomorphism.

2.3.2 Dehn twists and half twists

In this section we define two special elements of the mapping class group: Dehn twists and
half twists. Dehn twists are determined by an isotopy class of a simple closed curve, and
half twists are determined by an isotopy class of a simple arc.

A simple closed curve α on a surface Σ is an embedding α : S1 → Σ \ (B ∪ ∂Σ). A
simple arc δ is an embedding δ : [0, 1] → Σ \ ∂Σ such that δ−1(B) = {0, 1}. We usually
identify simple closed curves and simple arcs with their images in Σ.

We will often identify a simple closed curve or simple arc α with its isotopy class [α]. If
α and β are isotopic we write α ' β. We insist that isotopies cannot pass through marked
points. For arcs, we also insist isotopies fix the endpoints. In particular, if δ and µ are
isotopic simple arcs, then δ(0) = µ(0) and δ(1) = µ(1).

We now define Dehn twists and half Dehn twists. For a picture of both types of mapping
class group elements, see Figure 2.1.

9



α

Tα δ Hδ

Figure 2.1: A Dehn twist about the curve α and a half Dehn twist about the arc δ.

On an oriented surface Σ, a regular neighbourhood of a simple closed curve is homeo-
morphic to an annulus A = S1× I. Give A coordinates (s, t) where s = eiθ with θ ∈ [0, 2π]
and t ∈ [0, 1]. Define a homeomorphism T on A by T (s, t) = (se−2πit, t).

Definition. Let N be a regular neighbourhood of a simple closed curve α on an oriented
surface Σ. Choose an orientation-preserving homeomorphism φ : N → A. Define the Dehn
twist about α, denoted Tα ∈ Mod(Σ), as the isotopy class of the homeomorphism defined
by φ−1Tφ on N and the identity on Σ \N .

The element Tα ∈ Mod(Σ) is independent of the choice of N , homeomorphism φ, and
isotopy class representative of [α]. If a is the isotopy class of α, we may also write Ta as
the Dehn twist about α. Perhaps surprisingly, Tα is independent of the orientation of α.
That is, if −α is a curve isotopic to α with the opposite orientation, then Tα = T−α. Here
are some important facts about Dehn twists:

• Tα = Tβ if and only if α ' β or α ' −β.

• For any homeomorphism f , [f ]Tα[f ]−1 = Tf(α).

• Tα(α) ' α.

• If α does not bound a disk or a once marked disk, then Tα has infinite order.

Similar to a Dehn twist, we define a half Dehn twist about a particular isotopy class
of an arc. A regular neighbourhood of an arc is homeomorphic to the unit disc D2 ⊂ C.
Define a homeomorphism H on D2 by H(z) = e−2πi|z|z.

Definition. Let δ be a simple arc on an oriented surface Σ such that δ(0), δ(1) ∈ B. Let
F be a regular neighbourhood of δ such that F ∩B = {δ(0), δ(1)}. Choose an orientation-
preserving homeomorphism φ : F → D2 such that Fδ(t) = t − 1

2
. Define the half Dehn

twist or simply the half twist about δ, denoted Hδ ∈ Mod(Σ,B), as the isotopy class of a
homeomorphism defined by φ−1Hφ on F and the identity on Σ \ F .
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As is the case with Dehn twists, the element Hδ ∈ Mod(Σ,B) is independent of choice
of F , homeomorphism φ, and isotopy class representative of [δ]. Again, if µ = −δ, then
Hµ = Hδ. Here are some important facts about half twists:

• For any homeomorphism f , [f ]Hδ[f ]−1 = Hf(δ).

• Hδ(δ) ' −δ.

• Hδ switches the marked points δ(0) and δ(1).

• H2
δ = Tα where α is a curve isotopic to the boundary of a regular neighbourhood of

δ.

Since both Dehn twists are independent of the orientation of the curve defining the
twist, we may define a Dehn twist by specifying (the isotopy class of) an unoriented curve.
The same goes for arcs and half twists.

Dehn twists and half twists play an important role in the theory of mapping class
groups. In particular, PMod(Σ, ∂Σ,B) is finitely generated by Dehn twists [18]. Since
finitely many transpositions generate the symmetric group S|B|, and each half twist induces
a transposition that switches the endpoints of the arc, Mod(Σ, ∂Σ,B) is finitely generated
by Dehn twists and half twists.

2.3.3 The capping homomorphism

The short exact sequence associated to the capping homomorphism will play an important
role in arriving at a presentation for PMod(Σ0,n) in Section 4.4.1. For a complete exposition
and proof, see [22, §3.6].

Suppose Σ′ is a closed subsurface of Σ such that Σ \Σ′ is a disk with one marked point
x and boundary β. We say that Σ is obtained from Σ′ by capping Σ′ at β. Note that Σ
has one more marked point than Σ′, and one less boundary component. Let B′ ⊂ Σ′ be
finitely many (possibly zero) marked points.

Since representatives for mapping classes must fix boundary components pointwise, the
inclusion Σ′ ↪→ Σ induces a homomorphism

Cap : PMod(Σ′, ∂Σ′,B′)→ PMod(Σ, ∂Σ,B′ ∪ {x}).

We call this homomorphism the capping homomorphism.

Theorem 2.3.1 (The Capping Homomorphism). There is a short exact sequence

1 −→ 〈Tβ〉 −→ PMod(Σ′, ∂Σ′,B′) Cap−→ PMod(Σ, ∂Σ,B′ ∪ {x}) −→ 1

where β is a curve isotopic to the boundary component being capped.
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The capping homomorphism is also well defined on the mapping class group, not just
the pure mapping class group. In this case however, it is not surjective.

2.3.4 The Birman-Hilden theory

Given a branched or unbranched covering space p : Σ̃ → Σ, it is natural to ask how the
mapping class groups of Σ̃ and Σ are related. What is now known as the Birman-Hilden
theory deals with this question. For a wonderful survey by Margalit and Winarski see [36].

Let p : Σg → Σh be a finite-sheeted, regular, possibly branched covering space with
deck group D < Homeo+(Σg), branched at finitely many B ⊂ Σh. Suppose g ≥ 2.

Abusing notation, denote both the quotient maps by P : Homeo+(Σg)→ Mod(Σg) and
P : Homeo+(Σh,B) → Mod(Σh,B). As in Section 2.2, SHomeo+

p (Σg) denotes the group
of fiber-preserving homeomorphisms, and LHomeo+

p (Σh,B) denotes the group of liftable
homeomorphisms.

Definition. Define the liftable mapping class group as

LModp(Σh,B) = P(LHomeo+
p (Σh,B)).

Define the symmetric mapping class group as

SModp(Σg) = P(SHomeo+
p (Σg)).

Recall that there is a short exact sequence

1 −→ D −→ SHomeo+
p (Σg)

Π−→ LHomeo+
p (Σh,B) −→ 1

where Π is defined in Section 2.2. Furthermore, SHomeo+
p (Σg) is the normalizer of D in

Homeo+(Σg). At first glance, there is no reason to expect that there is a corresponding
short exact sequence for mapping class groups. Remarkably, there is.

Since g ≥ 2 and D is finite, P restricted to D is injective (see [22, Section 7.1.2]). We
will identify D with its image in Mod(Σg). The next theorem was proved by Birman and
Hilden for the hyperelliptic covers in [7], for unbranched covers in [8], and for branched
covers with solvable deck group in [9]. Maclachlan and Harvey proved Theorem 2.3.2 as is
stated here in [34].

Theorem 2.3.2 (The Birman-Hilden theorem). Let g ≥ 2 and let p : Σg → Σh be a
finite-sheeted, regular, possibly branched covering space, branched at finitely many points
B ⊂ Σh. Let D be the deck group. There is a short exact sequence

1 −→ D −→ SModp(Σg)
Π−→ LModp(Σh,B) −→ 1
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where Π([f ]) = [Π(f)] for any f ∈ SHomeo+
p (Σg). Furthermore, SModp(Σg) is the nor-

malizer of D in Mod(Σg).

The next theorem was proved by Birman and Hilden as an important ingredient in the
proof of Theorem 2.3.2. On the other hand, Machlachlan and Harvey deduce the next
theorem as a corollary of Theorem 2.3.2. Regardless of your point of view, it would be an
injustice not to include the statement.

We say symmetric homeomorphisms f0, f1 ∈ SHomeo+
p (Σg) are symmetrically isotopic

if there is an isotopy H : Σg × I → Σg such that H(−, 0) = f0, H(−, 1) = f1 and
H(−, t) ∈ SHomeo+

p (Σg) for all t ∈ I.

Theorem 2.3.3. Let g ≥ 2 and let p : Σg → Σh be a finite-sheeted, regular, possibly
branched covering space, branched at finitely many points B ⊂ Σh. If f0, f1 ∈ SHomeo+

p (Σg)
are isotopic, then they are symmetrically isotopic.

Theorem 2.3.2 was initially proved to arrive at a finite presentation for Mod(Σ2). Let
p2 : Σ2 → Σ0 be the hyperelliptic cover (see Chapter 1), which is branched at 6 points
B ⊂ Σ0. In this case, SModp2(Σ2) = Mod(Σ2) and LModp(Σ0,B) = Mod(Σ0,B). By
Theorem 2.3.2 there is a short exact sequence

1 −→ 〈ι〉 −→ Mod(Σ2) −→ Mod(Σ0,B) −→ 0.

A presentation for Mod(Σ0,B) was known at the time, as was a presentation for 〈ι〉 ∼= Z/2Z.
Using Lemma 2.4.2 below, Birman and Hilden were then able to arrive at a presentation
for Mod(Σ2) [7, Theorem 8].

The Birman-Hilden theory with boundary

The Birman-Hilden theorem stated above is for surfaces without boundary. However, there
is a corresponding Birman-Hilden theorem for surfaces with boundary, which can be arrived
at using the techniques from [9]. An alternate proof due to Alan McLeay will appear in
upcoming joint work by myself and McLeay. His proof is of the same flavour as Winarski’s
proof of the Birman-Hilden theorem for a particular family of irregular branched covers in
[47].

Suppose Σ̃ and Σ have non-empty boundary. Let p : Σ̃→ Σ be a finite-sheeted, regular,
possibly branched covering space, branched at finitely many points B ⊂ Σ \ ∂Σ.

Recall the definitions of LHomeop(Σ, ∂Σ,B) and SHomeop(Σ̃, ∂Σ̃) from Section 2.2.1.
As above, define the liftable mapping class group and symmetric mapping class group as

LModp(Σ, ∂Σ,B) = P(LHomeop(Σ, ∂Σ,B)) and SModp(Σ̃, ∂Σ̃) = P(SHomeop(Σ̃, ∂Σ̃))
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respectively.
Recall the isomorphism Π : SHomeop(Σ̃, ∂Σ̃)→ LHomeop(Σ, ∂Σ,B) from Section 2.2.1

that arises by projecting homeomorphisms. Again, there is little reason to expect that
such an isomorphism transfers over to the setting of mapping class groups.

Theorem 2.3.4 (The Birman-Hilden theorem with boundary). The map

Π : SModp(Σ̃, ∂Σ̃)→ LModp(Σ, ∂Σ,B)

given by Π([f ]) = [Π(f)] is an isomorphism.

There are a few key differences with the theorem for closed surfaces. First, there is no
restriction on the genus of the surfaces involved. Second, there is no nontrivial kernel for
the map Π since no nontrivial element of the deck group fixes the ∂Σ̃ pointwise.

We conclude this section with the following observation. Since homotopies always lift
in covering spaces [12, p. 140], if a homeomorphism lifts, then so does every isotopic home-
omorphism. Using the notation above, this means P−1(LModp(Σh,B)) = LHomeo+

p (Σh,B)
and P−1(LModp(Σ, ∂Σ,B)) = LHomeop(Σ, ∂Σ,B). However, this is not the case for the
symmetric mapping class group. That is, there exist representatives for elements of the
symmetric mapping class group that are not symmetric homeomorphisms.

2.3.5 A lifting criterion for abelian covers

Suppose Σ̃ and Σ do not have boundary. Let p : Σ̃ → Σ be a regular, finite-sheeted,
possibly branched covering space branched at finitely many points B ⊂ Σ. Furthermore,
assume the deck group A is abelian. Let p◦ : Σ̃◦ → Σ◦ be the associated unbranched cover.
Then p◦ is determined by the kernel of a surjective homomorphism ϕ : π1(Σ◦, x)→ A. Let
Φ : π1(Σ◦, x) → H1(Σ◦;Z) be the Hurewicz homomorphism (see [12, p. 250]). Since A is
abelian, ϕ = ϕΦ for a unique surjective homomorphism ϕ : H1(Σ◦;Z) → A. Therefore
p◦ is determined by the homomorphism ϕ. Conversely, two surjective homomorphisms
ϕ, φ : H1(Σ◦;Z) → A determine the same cover if and only if there is an autmorphism
ψ ∈ Aut(A) such that ϕ = ψφ.

For a mapping class f ∈ Mod(Σ,B), let f∗ ∈ Aut(H1(Σ◦;Z)) be the automorphism
induced by the action of any representative of f on H1(Σ◦;Z). The following lemma is an
application of the lifting criterion [27, Proposition 1.33], and will play an important role
in the rest of this thesis.

Lemma 2.3.5. Let p : Σ̃→ Σ be a regular, finite-sheeted, possibly branched covering space
branched at finitely many points B ⊂ Σ with abelian deck group A. Let ϕ : H1(Σ◦;Z)→ A
be a surjective homomorphism determining the cover. Then f ∈ LModp(Σ,B) if and only
if f∗(kerϕ) < kerϕ.
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Since A is finite, the condition f∗(kerϕ) < kerϕ is equivalent to f∗(kerϕ) = kerϕ.

2.4 Combinatorial group theory

Group presentations play a central role in Chapters 4 and 5. In this section we survey
three results that will be heavily relied upon.

To set notation, suppose S is an alphabet, that is a list of symbols. Denote by S∗ the
set of words in the alphabet. More precisely, S∗ is the set of finite strings in the symbols
S ∪ {s−1 : s ∈ S}. Denote the empty word by 1 ∈ S∗.

Given a presentation of a group, we may abuse notation and identify a word in the
generating symbols with the group element it represents.

2.4.1 Presentations from short exact sequences

To obtain various group presentations in Chapters 4 and 5, we use two well-known results
concerning short exact sequences and group presentations.

Lemma 2.4.1. Let
1 −→ K

α−→ G
π−→ H −→ 1

be a short exact sequence of groups. Let 〈S | R〉 be a presentation for G where each symbol
s ∈ S denotes a generator gs ∈ G. Let K be normally generated by {kβ} ⊂ K and for each
β, let wβ ∈ S∗ denote α(kβ). Then H admits the presentation 〈S | R ∪ {wβ}〉 where s ∈ S
denotes π(gs).

A proof of Lemma 2.4.1 can be found in [35, §2.1]
For Lemma 2.4.2, let

1 −→ K
α−→ G

π−→ H −→ 1

be a short exact sequence of groups. Suppose K and H admit presentations 〈SK | Rk〉 and
〈SH | RH〉 respectively.

For each s ∈ SH , let hs ∈ H be the corresponding generator. For each s ∈ SH , choose
gs ∈ π−1(hs). Let S̃H = {s̃ : s ∈ SH} and assign the symbol s̃ to gs. For each t ∈ SK , let

kt ∈ K be the corresponding generator. Let S̃K = {t̃ : t ∈ Sk} and assign t̃ to α(kt).

Let r = sε11 · · · sεmm ∈ RH where si ∈ SH and εi ∈ {±1}. Let r̃ = s̃ε11 · · · s̃εmm ∈ S̃∗H . Then
r̃ denotes an element g ∈ G such that π(g) = e, where e is the identity in H. By exactness,

g ∈ α(K), so it is represented by some word wr ∈ S̃∗K . Define the set of words

R1 := {r̃w−1
r : r ∈ RH}.
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For every s ∈ SH and t ∈ SK , gsα(kt)g
−1
s ∈ α(K). Let vs,t ∈ S̃∗K be a word denoting

gsα(kt)g
−1
s . Define the set of words

R2 := {s̃t̃s̃−1v−1
s,t : t̃ ∈ S̃K , s̃ ∈ S̃H}.

For each r = tη11 · · · tηnn ∈ RK , let r̃ = t̃η11 · · · t̃ηnn . Define R̃K := {r̃ : r ∈ RK}.

Lemma 2.4.2. Let
1 −→ K

α−→ G
π−→ H −→ 1

be a short exact sequence of groups. Then G admits the presentation

G ∼= 〈S̃K ∪ S̃H | R1 ∪R2 ∪ R̃K〉.

where S̃K , S̃H , R1, R2, and R̃K are defined as above.

This lemma is well known, however a proof is hard to come by in the literature. As
such, one is included here for completeness.

Proof. To set notation, for words v, u we write v ∼ u if u can be obtained from v by adding
or deleting relators. For a word v = tη11 · · · tηnn ∈ S∗K , let ṽ = t̃η11 · · · t̃ηnn ∈ S̃∗K . Similarly for

words in S∗H and S̃∗H .

By the definitions of R1, R2 and R̃K , each word in R1 ∪ R2 ∪ R̃K is a relator for G. It
remains to show that if w ∈ (S̃K ∪ S̃H)∗ denotes the identity e ∈ G, then w ∼ 1 through

relators in R1 ∪R2 ∪ R̃K .
Using the relators from R2 we have that w ∼ ṽkṽH for some ṽK ∈ S̃∗K and ṽH ∈ S̃∗H . By

exactness, vH ∈ S∗H denotes the identity e ∈ H. Therefore there are words{
v

(0)
H , v

(1)
H , . . . , v

(l)
H

}
⊂ S∗H such that

vH = v
(0)
H ∼ v

(1)
H ∼ · · · ∼ v

(l)
H = 1

through relators in RH .
Suppose v

(i+1)
H is derived from v

(i)
H by inserting or deleting a relator ri ∈ RH or its

inverse r−1
i . Insert wri r̃

−1
i or r̃iw

−1
ri
∈ R̃1 in the corresponding position in ṽ

(i)
H and use

relators from R2 to group letters in S̃H to the right. Thus ṽ
(i)
H is replaced by u′ṽ

(i+1)
H for

some u′ ∈ S̃∗K .

Therefore, using relators from R1 ∪R2 we have w ∼ ṽK ṽH ∼ ũK where ũK ∈ S̃∗K . Since
ũK denotes the identity, so does uK and therefore uK ∼ 1 through relators from RK . Using
the corresponding relators in R̃K , we have ũK ∼ 1, completing the proof. �
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2.4.2 The Reidemeister-Schreier rewriting process

The Reidemeister-Schreier rewriting process is an algorithm that, given a presentation for
a group G, produces a presentation for a subgroup H of G. Furthermore, if G is finitely
presented and H is finite index in G, then the presentation produced for H is finite. The
algorithm will be used in Chapter 5, and we describe the algorithm here without proof.
For a full proof see [35, §2.3].

Fix a presentation G = 〈{aα : α ∈ I} | {Rβ : β ∈ J}〉.

Definition. A right coset representative system for G mod H is a subset A ⊂ {aα : α ∈ I}∗
such that 1 ∈ A and for each right coset of Hg in G, there exists a unique word W ∈ A
such that W defines an element in Hg. A right coset representative system is called a
Schreier system for G mod H if whenever W ∈ A, every initial segment of W is in A.

It is a convenient fact that a Schreier system always exists. Given a word W ∈ {aα :
α ∈ I}∗, let W ∈ A be the unique right coset representative of W in H.

Definition. Let A ⊂ {aα}∗ be a Schreier system for G mod H. Introduce the symbols
{CK,aα : α ∈ I,K ∈ A}. Let U = aε1α1

· · · aεrαr , εi ∈ {±1} be an arbitrary word such that
U ∈ H. Define τ(U) := Cε1

K1,aα1
· · ·Cεr

Kr,aαr
where

Kj =

{
Wj if εj = 1

Wja−1
αj

if εj = −1

and Wj = aε1α1
· · · aεj−1

αj−1 . The function τ is called a Reidemeister-Schreier rewriting process
for G mod H.

If W and V are words in the same alphabet that are freely equal (that is, W can be
obtained from V by inserting and deleting substrings of the form xx−1 or x−1x) we write
W ≈ V . We are now ready to write down a presentation for the subgroup H.

Theorem 2.4.3 (The Reidemeister-Schreier rewriting process). Let τ be a Reidemeister-
Schreier rewriting process for G mod H. Then H admits the presentation

〈{CK,aα : α ∈ I,K ∈ A} | Υ1 ∪Υ2〉

where CK,aα = Kaα(Kaα)−1 and

Υ1 = {CM,aα : α ∈ I,M ∈ A,Maα ≈Maα}
Υ2 = {τ(KRβK

−1) : K ∈ A, β ∈ J}.
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Chapter 3

Cyclic Branched Covers of Spheres

The first part of this chapter provides two different ways of viewing a cyclic branched cover
over a sphere. We will see that admissible tuples provide a convenient combinatorial way
of identifying a cyclic branched cover. Then a plane curve description will be given for
each cover in the form of a superelliptic curve. The first viewpoint holds more generally
for abelian covers, and will be presented as such.

The second part classifies the cyclic branched covers of the sphere with the property
that every homeomorphism of the sphere lifts to a homeomorphism of the covering space.

3.1 Admissible tuples and superelliptic curves

Here we present two ways to view a cyclic branched cover over a sphere. The first is via
admissible tuples.

Let p : Σ → Σ0 be a finite-sheeted, regular, branched cover over a sphere Σ0 with
abelian deck group A. Let B ⊂ Σ0 be the branch points and let |B| = k. Any such cover
is determined by the associated unbranched cover p : Σ◦ → Σ◦0. Since the deck group is
abelian, the unbranched cover is determined by the kernel of a surjective homomorphism
φ : H1(Σ◦0;Z)→ A. The homomorphism φ is unique up to an automorphism of A.

The next definition will be useful to classify surjective homomorphisms from H1(Σ◦0;Z)
to A.

Definition. Let A be a finite abelian group. An admissible k-tuple is a tuple

(a1, . . . , ak) ∈ (A \ {0})k

such that
∑k

i=1 ai = 0 and {a1, . . . , ak} is a generating set for A.
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Fix an enumeration of the punctures. Let xi be the homology class of a loop sur-
rounding only the ith puncture oriented counterclockwise. The homology classes {xi}
generate H1(Σ◦0;Z). An admissible k-tuple (a1, . . . , ak) defines a surjective homomorphism
φ : H1(Σ◦0;Z)→ A by φ(xi) = ai, and therefore determines a regular cover of Σ◦0 with deck
group A. Another admissible k-tuple (a′1, . . . , a

′
k) determines an equivalent covering space

if and only if there is an automorphism ψ ∈ Aut(A) such that ψ(ai) = a′i for all i.
Conversely, a surjective homomorphism φ : H1(Σ◦0;Z)→ A is determined by the admis-

sible k-tuple (a1, . . . , ak) where ai = φ(xi). Therefore there is a one to one correspondence
between branched covers of a sphere with k points and deck group A (up to equivalence)
and admissible k-tuples (up to an automorphism of A).

Every fininte-sheeted cyclic branched cover over the sphere may also be viewed as a
superelliptic curve. Recall that a cyclic cover is a regular covering space with a cyclic deck
group. We now provide an outline of how a finite-sheeted cyclic cover of the sphere can be
viewed as a superelliptic curve. See [43, Chapter 2] for more details.

Choose distinct points z1, . . . , zt ∈ C. Any cyclic branched cover of the sphere can be
modeled by an irreducible plane curve C of the form:

yn = (x− z1)a1 · · · (x− zt)at (3.1)

for some n ≥ 2 and integers 1 ≤ ai ≤ n − 1. Indeed, let C̃ be the normalization of the
projective closure of the affine curve C. Projection onto the x axis gives a n-sheeted cyclic
branched covering C̃ → P1, branched at each zi and possibly at infinity. The cyclic deck
group is generated by the map (x, y) 7→ (x, ζny) where ζn is a primitive nth root of unity.
There is branching at infinity if and only if

∑t
i=1 ai 6≡ 0 mod n.

A cyclic branched covering space defined by (3.1) has deck group A ∼= Z/nZ. Such a
cover is defined by the admissible t-tuple (a1, . . . , at) if there is no branching at infinity. If
there is a branch point at infinity, then the cover is defined by the admissible (t+ 1)-tuple
(a1, . . . , at,−

∑t
i=1 ai). The irreducibility of C ensures that the {ai} form a generating set

for A.

3.2 Lifting homeomorphisms

The objective of this section is to identify which admissible tuples give rise to cyclic
branched covers over the sphere with the property that every homeomorphism of the sphere
lifts to a homeomorphism of the covering surface.

Let p : Σ→ Σ0 be a finite-sheeted, regular, branched cover over a sphere Σ0 with cyclic
deck group. Let B ⊂ Σ0 be the branch points and let |B| = k. Let Σ◦0 = Σ0 \ B.
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As above, fix an enumeration of the punctures of Σ◦0. Let xi be the homology class of a
loop surrounding the ith puncture that is oriented counterclockwise. Each xi ∈ H1(Σ◦0;Z)
is supported on a neighborhood of the ith puncture.

Let f be a homeomorphism of Σ◦0. The automorphism f∗ ∈ Aut(H1(Σ◦0,Z)) is deter-
mined by the permutation f induces on the punctures of Σ◦0. Indeed, let σ ∈ Sk be the
permutation induced by f . If f is orientation preserving, then f∗(xi) = xσ(i). If f is
orientation reversing, then f∗(xi) = −xσ(i).

The immediate goal is to prove Theorem 3.2.3 below. The path to this proof will
traverse through Lemmas 3.2.1 and 3.2.2.

Lemma 3.2.1. Let A be a finite abelian group and (a1, . . . , ak) an admissible k-tuple. Let
Σ◦ → Σ◦0 be the covering space defined by this tuple. Let f be a homeomorphism of Σ◦0, and
let σ ∈ Sk be the permutation of the punctures induced by f . The homeomorphism f lifts
if and only if there is an automorphism ψ ∈ Aut(A) such that ψ(ai) = aσ(i) for all i.

Proof. Let φ : H1(Σ◦0;Z)→ A be the homomorphism defining the cover, which is defined by
φ(xi) = ai. Let f∗ be the automorphism of H1(Σ◦0;Z) induced by f . We use the following
facts from group theory:

1. The equality f∗(ker(φ)) = ker(φ) holds if and only if ker(φf∗) = ker(φ).

2. Let f, g : G→ A be surjective homomorphisms. Then ker(f) = ker(g) if and only if
f = ξg for some ξ ∈ Aut(A).

By Lemma 2.3.5, the homeomorphism f lifts if and only if f∗(ker(φ)) = ker(φ). Therefore
by fact 1, f lifts if and only if ker(φf∗) = ker(φ). By fact 2, f lifts if and only if there
exists an automorphism ψ ∈ Aut(A) such that φf∗ = ψφ. If f is orientation-preserving,
then aσ(i) = φf∗(xi) = ψφ(xi) = ψ(ai) for all i and the result follows.

The map a 7→ −a is an automorphism of an abelian group. If f is orientation-reserving
then we compose a 7→ −a with the automorphism ψ in the orientation-preserving case. �

Lemma 3.2.2. Let A be a finite cyclic group, and let (a1, . . . , ak) be an admissible k-tuple.
For all permutations σ ∈ Sk, there exists ψ ∈ Aut(A) such that ψ(ai) = aσ(i) for all i if
and only if one of the following is true:

• There is an isomorphism δ : A → Z/nZ with k ≡ 0 mod n such that δ(ai) = 1 for
all i.

• k = 2 and there is an isomorphism δ : A→ Z/nZ for some n ≥ 3 such that δ(a1) = 1
and δ(a2) = −1.
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Proof. For the forward direction, suppose all the ai are equal. Then each ai is a generator
of A and there is an isomorphism δ : A→ Z/nZ such that δ(ai) = 1 for all i. The condition
that

∑k
i=1 ai = 0 implies that k ≡ 0 mod n.

Suppose now that the ai are not all equal. Then they must all be distinct. Indeed,
assume to the contrary that there exist three elements ap, aq, ar of the admissible k-tuple
such that ap = aq 6= ar. Let σ ∈ Sk be the transposition that switches q and r. By
assumption, there exists ψ ∈ Aut(A) such that ψ(ai) = aσ(i) for all i. Therefore ap =
ψ(ap) = ψ(aq) = ar, which is a contradiction.

We may therefore assume the ai are distinct. Then there is a subgroup of Aut(A)
isomorphic to the symmetric group Sk. Since the automorphism group of a cyclic group is
abelian, it must be that k = 2. Since k = 2, we have that a1 = −a2 with a1 a generator of
A. Since a1 and a2 are distinct, |A| ≥ 3. Therefore the map δ : A→ Z/nZ with δ(a1) = 1
and δ(a2) = −1 is an isomorphism when n = |A|.

For the converse, we must write down an appropriate automorphism for each permu-
tation σ ∈ Sk. In the case that δ(ai) = 1 for all i, the identity automorphism suffices for
all permutations. In the case where k = 2, δ(a1) = 1 and δ(a2) = −1, the automorphism
a 7→ −a of A suffices for the nontrivial permutation. �

Theorem 3.2.3. Let A be a finite cyclic group, and (a1, . . . , ak) an admissible k-tuple. Let
Σ→ Σ0 be the cyclic branched cover of the sphere with deck group A and k branch points
defined by the admissible k-tuple. Every homeomorphism of Σ0 lifts if and only if one of
the following is true:

• There is an isomorphism δ : A → Z/nZ with k ≡ 0 mod n such that δ(ai) = 1 for
all i.

• k = 2 and there is an isomorphism δ : A→ Z/nZ for some n ≥ 3 such that δ(a1) = 1
and δ(a2) = −1.

Proof. Any permutation of the branch points can be induced by a homeomorphism of the
sphere. Therefore, the result follows by combining Lemmas 3.2.1 and 3.2.2. �

We now apply Theorem 3.2.3 to mapping class groups using the Birman-Hilden theorem.
Let p : Σ → Σ0 be an n-sheeted cyclic branched cover of a sphere branched at k points
B ⊂ Σ0. If the genus of Σ is at least 2, then SModp(Σ)/D ∼= LModp(Σ0,B) (see Theorem
2.3.2). Recall that SModp(Σ) is the normalizer of the deck group D ∼= Z/nZ in Mod(Σ)
and LModp(Σ0,B) < Mod(Σ0,B) is the liftable mapping class group.

There is an error in the statement of Theorem 5 in [9] (see the erratum [10]). Theorem
5 in [9] relies on a lemma that incorrectly claims that every cyclic branched cover over
the sphere has the property that every homeomorphism lifts. However, as we have seen in
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Theorem 3.2.3, this is not the case. The next theorem provides a correction to Theorem 5
in [9].

Theorem 3.2.4. Let A be a finite cyclic group, and (a1, . . . , ak) an admissible k-tuple. Let
p : Σ→ Σ0 be the cyclic branched cover of the sphere with deck group A and k branch points
defined by the admissible k-tuple. The quotient SModp(Σ)/A is isomorphic to Mod(Σ0,B)
if there is an isomorphism δ : A→ Z/nZ with k ≡ 0 mod n such that δ(ai) = 1 for all i,
and (n, k) is not equal to (2, 2), (2, 4), or (3, 3).

Proof. If a homeomorphism lifts, then so do all isotopic homeomorphisms (see the comment
at the end of Section 2.3.4). Therefore, we have that LModp(Σ0,B) = Mod(Σ0,B) if and
only if (a1, . . . , ak) satisfies one of the two conditions in the statement of Theorem 3.2.3.
To satisfy the conditions of the Birman-Hilden theorem (Theorem 2.3.2), it suffices to
determine when the genus of the covering surface is at least 2. Let Iai be the index of 〈ai〉
in A. In the cases we are considering, Iai = 1 for all i so each branch point has exactly one
preimage under the covering map p : Σ→ Σ0 (see Section 2.2.2). Let g be the genus of Σ.
The Riemann-Hurwitz formula implies g = 1

2
(k − 2)(n− 1).

If k = 2, g = 0 ruling out the case when k = 2. If n = 2, g ≥ 2 if and only if k ≥ 6,
ruling out the covers corresponding to n = 2 and k = 2 or 4. If n = 3, g ≥ 2 if and only if
k ≥ 4 ruling out the cover corresponding to n = 3 and k = 3. If n ≥ 4 and k ≡ 0 mod n,
then g ≥ 2 completing the proof. �

We now rephrase Theorem 3.2.3 in the language of superelliptic curves.

Corollary 3.2.5. Let C̃ → P1 be a cyclic branched cover defined by an irreducible superel-
liptic curve as in equation (3.1). Then every homeomorphism of P1 lifts if and only if one
of the following is true.

• a1 = · · · = at and t ≡ 0 or − 1 mod n,

• n ≥ 3 and t = 1, or

• n ≥ 3, t = 2 and a1 ≡ −a2 mod n.

22



Chapter 4

Balanced Superelliptic Covers

The balanced superelliptic covers are a family of cyclic branched covers over the sphere.
They are indexed by pairs of integers g, k ≥ 2 such that k − 1 divides g. Let the liftable
mapping class group corresponding to the balanced superelliptic cover indexed by the pair
of integers g, k be denoted by LModg,k(Σ0,B). The covers are denoted pg,k : Σg → Σ0 and
will be formally constructed below.

We study this family of covers for a variety of reasons. First, when k = 2, the bal-
anced superelliptic covers coincide with the hyperelliptic covers defined in Chapter 1. In
particular, LModg,2(Σ0,B) = Mod(Σ0,B) (see Corollary 4.3.3 below for a new proof). As
a result, the balanced superelliptic covers provide a natural generalization of the hyperel-
liptic covers. Second, when k > 2, LModg,k(Σ0,B) is a proper subgroup of Mod(Σ0,B).
Therefore the covers pg,k for k > 2 are a family of counterexamples to Lemma 5.1 of [9]
(see the erratum [10]). A correction is provided in Theorem 3.2.4. Lastly, the covers can
be embedded in R3 so that the deck group is generated by a rotation about the z-axis.
This viewpoint should provide insight into the balanced superelliptic mapping class groups
SModg,k(Σg).

4.1 Constructing the covers

Choose a pair of integers g, k ≥ 2 such that k− 1 divides g, and let n = g/(k− 1). Embed
Σg in R3 so it is invariant under a rotation by 2π/k about the z-axis as we describe below.

The intersection of Σg with the plane z = a is:

• Empty for a < 0 and a > 2n+ 1

• A point at the origin for a = 0 and a = 2n+ 1

23



x

y

z
p4,3

Figure 4.1: The embedding of Σ4 in R3 when k = 3 and the balanced superelliptic cover
p4,3 : Σ4 → Σ0 branched at 6 points.

• Homeomorphic to a circle for 2m < a < 2m+ 1 with m ∈ {0, . . . , n}
• A rose with k petals for a ∈ {1, . . . , 2n}
• k disjoint simple closed curves invariant under a rotation of 2π/k about the z-axis

for 2m − 1 < a < 2m with m ∈ {1, . . . , n}. In the special case a = 2m − 1
2
, endow

the plane z = a with polar coordinates (r, θ). Then we have k disjoint circles with
centers on the rays θ = 2πd/k, d ∈ {0, . . . , k − 1}.

See Figure 4.1 for the embedding when g = 4 and k = 3.
Consider a homeomorphism ζ : Σg → Σg of order k given by rotation about the z-axis

by 2π/k. The homeomorphism ζ fixes 2n + 2 points, which are the points of intersection
of Σg with the z-axis. Define an equivalence relation on Σg given by x ∼ y if and only if
ζq(x) = y for some q. The resulting surface Σg/ ∼ is homeomorphic to a closed sphere
Σ0. The quotient map pg,k : Σg → Σ0 is a k-sheeted cyclic branched covering map with
2n + 2 branch points B ⊂ Σ0. The branch points are the images of the points fixed by ζ.
The deck group of pg,k is a cyclic group of order k generated by ζ. When k = 2, ζ is a
hyperelliptic involution.

4.2 The admissible tuples

Let pg,k : Σg → Σ0 be a balanced superelliptic covering space. The branch points are the
images under pg,k of the intersection of Σg with the z-axis. Let B = {q1, . . . , q2n+2} be
the branch points where qi = pg,k((0, 0, i − 1)). That is, enumerate the branch points in
increasing order of the z-coordinates of their preimages under pg,k. Fix this enumeration
for the rest of the chapter.

The deck group of pg,k : Σg → Σ0 is isomorphic to Z/kZ. Therefore each balanced
superelliptic cover corresponds to an admissble (2n + 2)-tuple with entries in Z/kZ. The
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aim of this section is to prove that the balanced superelliptic covers correspond to the
admissible (2n+ 2)-tuples (1,−1, 1,−1, . . . , 1,−1).

4.2.1 Lifting curves

For any covering space p : X̃ → X, we say a curve c : S1 → X lifts if there exists a
curve c̃ : S1 → X̃ such that pc̃ = c. If p : X̃ → X is a regular covering space with
abelian deck group A, then p is determined by the kernel of a surjective homomorphism
ϕ : H1(X;Z) → A. With this setup we have the following result, which is an application
of the lifting criterion [27, Proposition 1.33].

Lemma 4.2.1. A curve c : S1 → X lifts if and only if [c] ∈ kerϕ < H1(X;Z).

Recall from Section 3.1 that an admissible k-tuple determines a branched cover over
a sphere by defining a surjective homomorphism ϕ : H1(Σ◦0;Z) → A where A is the deck
group.

Let pg,k : Σg → Σ0 be a balanced superelliptic cover. Let ϕ : H1(Σ◦0;Z)→ Z/kZ be the
surjective homomorphism defined by the admissible (2n+2)-tuple (1,−1, 1,−1, . . . , 1,−1).
In order to show pg,k corresponds to the admissible (2n+ 2)-tuple (1,−1, 1,−1, . . . , 1,−1),
it suffices to show a curve γ : S1 → Σ◦0 lifts if and only if [γ] ∈ kerϕ (see Section 3.1).

With this in mind, we now focus our attention on characterizing when a curve lifts in
a balanced superelliptic covering space.

An important collection of arcs. Fix a pair of integers g, k ≥ 2 such that k−1 | g, and
consider the surface Σg embedded in R3 as described above. Using cylindrical coordinates
in R3, let Pθ0 = {(r, θ0, z) ∈ R3 : r ≥ 0} be a closed half plane. The intersection of Σg and
Pπ/k is a collection of n+ 1 arcs where n = g/(k− 1). Call these arcs β1, . . . , βn+1. Orient
each βi so that βi(0) = (0, 0, 2i− 2) and βi(1) = (0, 0, 2i− 1).

Consider the balanced superelliptic covering map pg,k as defined above. For each i with
1 ≤ i ≤ n + 1, let αi = pg,kβi. Notice that αi(0) = q2i−1 and αi(1) = q2i for all i, where
qi ∈ Σ0 is the ith branch point. Let α be the union of the arcs αi. Let [α] denote the
relative homology class of α in H1(Σ0,B;Z). Figure 4.2 shows the embeddings of the arcs
β1, β2, β3 ∈ Σ4 and α1, α2, α3 ∈ Σ0 for the 3-sheeted balanced superelliptic cover of Σ4 over
Σ0.

Intersection data with α will characterize when a curve lifts.

An intersection form for punctured surfaces. The next lemma is well known and
and a proof sketch is included for completeness. In Lemma 4.2.2, we abuse notation and
identify curves in Σ0,m with their image in Σ0 under the inclusion Σ0,m ↪→ Σ0.
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β1 β2 β3
α1 α2 α3p4,3

Figure 4.2: The arcs β1, β2, β3 ∈ Σ4 and the arcs α1, α2, α3 ∈ Σ0.

Lemma 4.2.2. Let Σg be a closed surface and B ⊂ Σg a finite set of points. Let Σ◦g = Σg\B.
There exists a homomorphism

• : H1(Σ◦g;Z)⊗H1(Σg,B;Z)→ Z

given by c•b = î(γ, β). Here γ is a union of curves on Σ◦g such that [γ] = c, β is a union of
curves and arcs on Σg such that [β] = b and γ and β are in general position. The integer
î(γ, β) is the algebraic intersection number of γ and β.

Proof sketch. Let Σ′g be the genus g surface with m = |B| boundary components obtained
by deleting m open disks from Σg, each containing a single marked point. Let B1, . . . , Bm

be the boundary components. Define the equivalence relation ∼ on Σ′g by x ∼ y if and
only if x, y ∈ Bi for some i. Let ρ : Σ′g → Σ′g/ ∼ be the quotient map. Note that Σ′g/ ∼
is homeomorphic to Σg, and ρ(Bi) is a single point for all i. Let ı : Σ′g ↪→ Σ◦g be the
inclusion map. The induced maps on homology ρ∗ : H1(Σ′g, ∂Σ′g;Z) → H1(Σg,B;Z) and
ı∗ : H1(Σ′g;Z) → H1(Σ◦g;Z) are both isomorphisms. Composing the isomorphisms ρ∗ and
ı∗ with the standard homology intersection product • : H1(Σ′g;Z) ⊗ H1(Σ′g, ∂Σ′g;Z) → Z
(see [12, §VI.11]) completes the proof. �

Lemma 4.2.3. Let G be the weighted digraph
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R0

R1

R2

R0

R1

R2

α̃ α̃

Figure 4.3: The subsurfaces R0, R1, and R2 corresponding to g = 4, k = 3. The 9 arcs on
the left image make up α̃ = p−1

3,4(α). The left image is from the negative x-axis in R3, and
the right is from the positive z-axis.

and let Γ be a finite walk on G beginning at S0. Define the weight of Γ, which we denote
w(Γ), as the sum of the weights of the edges traversed in the walk. Then Γ terminates at
Si if and only if w(Γ) ≡ i mod k.

Proof. Induct on the length of the walk. �

In order to apply Lemma 4.2.3, we use the union of arcs α in Σ0 defined above and
their preimages p−1

g,k(α) ⊂ Σg.

The full preimage α̃ = p−1
g,k(α) is a collection of k(n+ 1) oriented arcs in Σg. The union

of arcs α̃ consists of the orbits of βi under the action of the deck group.
The surface Σg \ {α̃} is a union of k subsurfaces of Σg. The subsurfaces are cyclically

permuted by the action of the deck group D ∼= Z/kZ. Label the subsurfaces as follows.
Choose one subsurface and label it R0. Then every subsurface is of the form d(R0) for
some d ∈ D. Label d(R0) by Rd. See Figure 4.3 for a picture of α̃ and the subsurfaces R0,
R1, and R2 in the case g = 4 and k = 3.

Lemma 4.2.4. Let p◦g,k : Σ◦g → Σ◦0 be the associated unbranched cover of the balanced
superelliptic cover pg,k. If a curve γ in Σ◦0 lifts, then [γ] • [α] ≡ 0 mod k.

Proof. Identify γ with its image under the inclusion Σ◦0 ↪→ Σ0. By adjusting γ by isotopy,
we may assume γ and α intersect transversally at finitely many points. Parametrize γ
by γ : [0, 1]/{0, 1} → Σ◦0. Then there are real numbers 0 < t1 < · · · < tr < 1 such that
γ ∩ α = {γ(t1), . . . , γ(tr)}. Choose a lift γ̃ of γ such that γ̃(0) ∈ R0. Then
γ̃ ∩ α̃ = {γ̃(t1), . . . , γ̃(tr)}. As with γ, we are identifying γ̃ with its image under the
inclusion Σ◦g ↪→ Σg.

Choose ε > 0 such that γ̃([ti− ε, ti + ε])∩α = {γ̃(ti)} for all i. Suppose γ̃(ti− ε) ∈ Rj.
Then by the way α̃ is constructed, γ̃(ti + ε) ∈ Rj±1. The point γ̃(ti) contributes +1 or
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−1 to the algebraic intersection number î(γ̃, α̃). By relabelling Rl by R−l for all l ∈ Z/kZ
if necessary, we may assume that if γ̃(ti + ε) ∈ Rj+1, then the intersection point γ̃(t)
contributes +1 to î(γ̃, α̃). It follows that if γ̃(ti + ε) ∈ Rj−1, then γ̃(t) contributes −1 to
î(γ̃, α̃).

Without loss of generality, assume p◦g,k is locally orientation preserving. If γ̃(ti) con-

tributes ±1 to î(γ̃, α̃), then p◦g,kγ̃(ti) = γ(ti) contributes ±1 to î(p◦g,kγ̃, pg,kα̃) = î(γ, α).

Therefore î(γ̃, α̃) = î(γ, α).
We now construct a walk Γγ̃ on the weighted digraph G from Lemma 4.2.3 associated

to γ̃. Let S0 be the first vertex of Γγ̃. For each intersection point γ̃(ti) ∈ γ̃∩ α̃, add another
vertex as follows. Suppose Sm is the ith vertex. If γ̃(ti) contributes ±1 to î(γ̃, α̃), then set
Sm±1 to be the i+ 1st vertex in Γγ̃. By the weighting of the edges in G, if γ̃(ti) contributes
±1 to î(γ̃, α̃), then moving from the ith vertex to the i + 1st vertex in Γγ̃ contributes ±1
to the weight w(Γγ̃). Therefore w(Γγ̃) = î(γ̃, α̃).

Building Γγ̃ in this fashion gives a walk with r+1 vertices. Furthermore, if ti < s < ti+1

and γ̃(s) ∈ Rj, the i + 1st vertex is Sj. Since γ̃(0) = γ̃(1) ∈ R0, Γγ̃ is a walk that starts
and ends at the vertex S0. By Lemma 4.2.3, w(Γγ̃) ≡ 0 mod k. The proof is completed
by observing w(Γγ̃) = î(γ̃, α̃) = î(γ, α). �

We are now ready to prove Lemma 4.2.5, which is Lemma 4.2.4 and its converse.

Lemma 4.2.5 (A lifting criterion for curves). Let p◦g,k : Σ◦g → Σ◦0 be the unbranched
balanced superelliptic covering space. Let γ be a curve on Σ◦0. Then γ lifts if and only if
[γ] • [α] ≡ 0 mod k.

Proof. Let − • [α] : H1(Σ◦0;Z) → Z be the homomorphism from Lemma 4.2.2, and let
π : Z→ Z/kZ be the natural projection map. Let φ = π ◦ (− • [α]) : H1(Σ◦0;Z)→ Z/kZ.
The homomorphism φ is surjective since there is a curve γ such that î(γ, α) = 1.

Let K = {[γ] ∈ H1(Σ◦0;Z) : γ lifts}. Since pg,k is a k-sheeted cover, the index of K in
H1(Σ◦0;Z) is k. By Lemma 4.2.4, K < kerφ. However, both K and kerφ are index k in
H1(Σ◦0;Z) so they are equal.

Unwrapping definitions we have γ lifts if and only if [γ] ∈ K and [γ] ∈ kerφ if and only
if [γ] • [α] ≡ 0 mod k, completing the proof. �

Proposition 4.2.6. The balanced superelliptic cover pg,k corresponds to the admissible
(2n+ 2)-tuple (1,−1, 1,−1, . . . , 1,−1) with entries in Z/kZ.

Proof. Let xi be homology class of a loop surrounding only the ith puncture counterclock-
wise. Recall the surjective homomorphism ϕ : H1(Σ◦0;Z)→ Z/kZ defined by the admissible
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tuple (1,−1, 1,−1, . . . , 1,−1) is given by

ϕ(xi) =

{
1 if i is odd,

−1 if i is even.

It suffices to show a curve γ lifts if and only if [γ] ∈ kerϕ. As in the proof of Lemma 4.2.5,
let φ = π ◦ (− • [α]) : H1(Σ◦0;Z) → Z/kZ where π : Z → Z/kZ is the natural projection
map and • is the intersection product from Lemma 4.2.2.

Since xi is the homology class of a loop surrounding only the ith puncture counter-
clockwise we have

φ(xi) =

{
1 if i is odd,

−1 if i is even.

Therefore ϕ = φ. By Lemma 4.2.5, γ lifts if and only if [γ] ∈ kerφ, completing the
proof. �

4.3 Lifting homeomorphisms

Identifying an admissible tuple for each balanced superelliptic cover now allows us to use
Lemma 3.2.1 to characterize when a homeomorphism of Σ◦0 lifts.

Parity of a permutation. Fix an integer m ≥ 2. Let τ be a permutation in Sm. We say
that τ preserves parity if τ(q) = q mod 2 for all q ∈ {1, · · · ,m}. We say that τ reverses
parity if τ(q) 6= q mod 2 for all q ∈ {1, · · · ,m}.

Let S2l be the symmetric group on the set {1, . . . , 2l}. Let W2l < S2l be the subgroup
consisting of permutations that either preserve parity, or reverse parity. Then

W2l
∼= (Sl × Sl) o Z/2Z

where Z/2Z acts on Sl × Sl by switching the coordinates.

Lemma 4.3.1. Let pg,k : Σg → Σ0 be a balanced superelliptic cover. Let f ∈ Homeo+(Σ0,B)
and let σ ∈ S2n+2 be the permutation induced by f on the branch points. If k = 2, f always
lifts. If k > 2, f lifts if and only if σ ∈ W2n+2.

Proof. By Proposition 4.2.6, the admissible tuple corresponding to pg,k is the 2n+ 2-tuple
(a1, . . . , a2n+2) with entries in Z/kZ where

ai =

{
1 if i is odd

−1 if i is even.
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By Lemma 3.2.1, f lifts if and only if there is an automorphism ψ ∈ Aut(Z/kZ) such that
ψ(ai) = aσ(i) for all i.

For k = 2, the admissible tuple is (1, 1, . . . , 1). For any σ ∈ S2n+2, idZ/kZ(ai) = aσ(i) for
all i so every homeomorphism lifts.

Suppose k > 2. If σ is parity preserving then idZ/kZ(ai) = aσ(i) for all i. If σ is parity
reversing, let ψ be the automorphism defined by ψ(g) = −g. Then ψ(ai) = aσ(i) for all
i. Therefore if σ ∈ W2n+2, f lifts. If σ /∈ W2n+2, there are odd indices i and j such that
aσ(i) = 1 and aσ(j) = −1. Since there is no automorphism ϕ ∈ Aut(Z/kZ) such that
ϕ(1) = 1 and ϕ(1) = −1, f does not lift. �

Proposition 4.3.2. Let k > 2 and let pg,k : Σg → Σ0 be a balanced superelliptic covering
map. There is a short exact sequence

1 −→ PMod(Σ0,B) −→ LModg,k(Σ0,B)
Ψ−→ W2n+2 → 1

where Ψ is given by the action of LModg,k(Σ0,B) on the branch points.

Proof. By Lemma 4.3.1 there is a surjective homomorphism Ψ : LModg,k(Σ0,B)→ W2n+2.
The kernel is exactly the mapping classes with representatives that act trivially on the
branch points, which is the pure mapping class group PMod(Σ0,B). �

Proposition 4.3.2 gives us the following result. The case k = 2 has already been proven
by Birman and Hilden [7] using different methods.

Corollary 4.3.3. For k = 2, LModg,k(Σ0,B) = Mod(Σ0,B). For k > 2, the index

[Mod(Σ0,B) : LModg,k(Σ0,B)] is (2n+2)!
2((n+1)!)2

.

Proof. If k = 2, the result follows from Lemma 4.3.1. For k > 2,

[Mod(Σ0,B) : LModg,k(Σ0,B)]

= [Mod(Σ0,B)/PMod(Σ0,B) : LModg,k(Σ0,B)/PMod(Σ0,B)]

= [S2n+2 : W2n+2] .

Observing that |W2n+2| = 2((n+ 1)!)2 completes the proof. �

Proposition 4.3.2 reveals a somewhat surprising phenomenon regarding the liftable
mapping class groups. Fix an integer n ≥ 1. Then for each integer k ≥ 2, there is a balanced
superelliptic cover pg,k : Σg → Σ0 branched at 2n+2 points, where g = n(k−1). Therefore
there is a family of subgroups {LModn(k−1),k(Σ0,B(2n+2)) : k ≥ 2} of Mod(Σ0,B(2n+2)).
These subgroups exhibit the following stability property.
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Corollary 4.3.4. Fix an integer n ≥ 1. Then

LModn(k1−1),k1(Σ0,B(2n+ 2)) = LModn(k2−1),k2(Σ0,B(2n+ 2))

for any integers k1, k2 > 2.

By Lemma 4.3.1, LModn,2(Σ0,B(2n+ 2)) = Mod(Σ0,B(2n+ 2)).

4.4 Presentations of PMod(Σ0,B(m)) and W2n+2

For the remainder of this chapter, all operations in mapping class groups will be performed
left to right. That is, the mapping class [f ][g] is the isotopy class of the homeomorphism
obtained by performing f , then g.

As in Section 4.3.2, LModg,k(Σ0,B(2n + 2)) can be written as a group extension of
W2n+2 by the pure mapping class group PMod(Σ0,B(2n+ 2)). A presentation of the pure
mapping class group PMod(Σ0,B(2n + 2)) is found in Lemma 4.4.1. A presentation of
W2n+2 is found in Lemma 4.4.2.

4.4.1 A presentation of PMod(Σ0,B(m))

Let D be a disk with m marked points B(m) ⊂ D \ ∂D. Then Mod(D, ∂D,B(m)) ∼= Bm

and PMod(D, ∂D,B(m)) ∼= PBm where Bm and PBm are the braid group and pure braid
group on m strands respectively. For a survey of the braid group see [6].

Number the marked points from 1 to m and let {σ1, . . . , σm−1} be the standard braid
generators. The arc about which σi is a half twist is shown in Figure 4.4. The pure braid
group, denoted PBm is generated by elements Ai,j with 1 ≤ i < j ≤ m of the form:

Ai,j = (σj−1 · · ·σi+1)σ2
i (σj−1 · · ·σi+1)−1.

The curve about which Ai,j is a Dehn twist is shown in Figure 4.4.

Lemma 4.4.1. The group PMod(Σ0,B(m)) is generated by Ai,j for 1 ≤ i < j ≤ m − 1
and has relations:

1. [Ap,q, Ar,s] = 1 where p < q < r < s

2. [Ap,s, Aq,r] = 1 where p < q < r < s

3. Ap,rAq,rAp,q = Aq,rAp,qAp,r = Ap,qAp,rAq,r where p < q < r

4.
[
Ar,sAp,rA

−1
r,s , Aq,s

]
= 1 where p < q < r < s
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5. (A1,2A1,3 · · ·A1,m−1) · · · (Am−3,n−2Am−3,n−1)(Am−2,m−1) = 1

Proof. Let D be a disk with m − 1 marked points. Capping the boundary of D we get a
sphere Σ0 with m marked points. By Theorem 2.3.1 we have the short exact sequence

1 −→ Z −→ PBm−1
Cap−→ PMod(Σ0,B(m)) −→ 1. (4.1)

Here Z is generated by the Dehn twist about a curve homotopic to the boundary of Dm−1,
which we will denote Tβ. From [22, p. 250] we have

Tβ = (A1,2A1,3 · · ·A1,m) · · · (Am−3,m−2Am−3,m−1)(Am−2,m−1).

Using the presentation for PBm in Margalit–McCammond [37, Theorem 2.3] and Lemma
2.4.1, we obtain the desired presentation. �

4.4.2 A presentation of W2n+2

As in Section 4.3, W2n+2 is the subgroup of the symmetric group S2n+2 given by all per-
mutations of {1, . . . , 2n+ 2} that either preserve or reverse parity.

The symmetric group Sm admits the presentation:

Sm =

〈
τ1, . . . , τm−1 |


τ 2
i = 1 for all i ∈ {1, . . . ,m− 1}
τiτi+1τi = τi+1τiτi+1 for all i ∈ {1, . . . ,m− 2}
[τi, τj] = 1 for |i− j| > 1

〉
(4.2)

where τi is the transposition (i i+ 1).

Lemma 4.4.2. Let S2n+2 be the symmetric group on {1, . . . , 2n+2}. Let xi = (2i−1 2i+1),
yi = (2i 2i+2), and z = (1 2)(3 4) · · · (2n+1 2n+2). Then W2n+2 admits a presentation
with generators {x1, . . . , xn, y1, . . . , yn, z} and relations

1. [xi, yj] = 1 for all i, j ∈ {1, . . . , n},
2. x2

i = 1 and y2
i = 1 for all i ∈ {1, . . . , n},

3. xixi+1xi = xi+1xixi+1 and yiyi+1yi = yi+1yiyi+1 for all i ∈ {1, . . . , n− 1},
4. [xi, xj] = 1 and [yi, yj] = 1 for all |i− j| ≥ 2,

5. z2 = 1, and

6. zxiz
−1 = yi for all i ∈ {1, . . . , n}.
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Proof. We have the short exact sequence

1 −→ Sn+1 × Sn+1
α−→ W2n+2

π−→ Z/2Z −→ 1.

The homomorphism α maps the first coordinate in Sn+1 × Sn+1 to permutations of the
subset {1, 3, . . . , 2n + 1} and the second coordinate to permutations of {2, 4, . . . , 2n + 2}.
The map π is given by π(σ) = 0 if σ is parity preserving and π(σ) = 1 if σ is parity
reversing.

The desired presentation is obtained by using the presentation (4.2) for Sn+1 and Lemma
2.4.2. �

4.5 Presentation of LModg,k(Σ0,B)

In this section we compute a presentation for LModg,k(Σ0,B), which is given in Theorem
4.5.7. Throughout this section, let pg,k : Σg → Σ0 be the balanced superelliptic cover. Let
B ⊂ Σ0 be the set of 2n+ 2 branch points where n = g/(k − 1).

We apply Lemma 2.4.2 to the short exact sequence

1 −→ PMod(Σ0,B)
ι−→ LMod(Σ0,B)

Ψ−→ W2n+2 −→ 1

from Proposition 4.3.2. Recall from Lemma 2.4.2 that LModg,k(Σ0,B) admits the presen-
tation

〈S̃K ∪ S̃H | R1 ∪R2 ∪ R̃K〉

where the generating symbols S̃K , S̃H and the sets of relators R1, R2, and R̃K are defined
immediately prior to the statement of Lemma 2.4.2. The generators S̃K∪ S̃H are arrived at
in Lemma 4.5.1. The set of relators R1 is constructed in Lemma 4.5.3. The set of relators
R2 is derived in three steps in Section 4.5.2.

4.5.1 Lifts of generators and relations

Let σi be the half twist that exchanges the ith and i+ 1st branch points about the arc in
Σ0 as in image Figure 4.4. The mapping class group Mod(Σ0,B) admits the presentation
[22, p. 123]

〈
σ1, . . . , σ2n+1 |


[σi, σj] = 1 |i− j| > 1,

σiσi+1σi = σi+1σiσi+1 i ∈ {1, . . . , 2n},
(σ1σ2 · · ·σ2n+1)2n+2 = 1,

(σ1 · · ·σ2n+1σ2n+1 · · ·σ1) = 1

〉
.
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Since LModg,k(Σ0,B) is a subgroup of Mod(Σ0,B), the generators of LModg,k(Σ0,B)
will be defined in terms of the σi.

Lemma 4.5.1. The group LModg,k(Σ0,B) is generated by

{Ai,j : 1 ≤ i < j ≤ 2n+ 1} ∪ {ai : i ∈ {1, . . . , n}} ∪ {bi : i ∈ {1, . . . , n}} ∪ {c}

where

Ai,j = (σj−1σj−2 · · ·σi+1)σ2
i (σj−1σj−2 · · ·σi+1)−1

ai = σ2iσ2i−1σ
−1
2i

bi = σ2i+1σ2iσ
−1
2i+1

c = σ1σ3 · · · σ2n+1.

Proof. The set {Ai,j : 1 ≤ i < j ≤ 2n + 1} is the image under ι of the generators of
PMod(Σ0,B) from Lemma 4.4.1. We have Ψ(c) = z, Ψ(ai) = xi and Ψ(bi) = yi for all i,
where xi, yi, and c are the generators for W2n+2 from Lemma 4.4.2. Therefore, using the
notation from Lemma 2.4.2, S̃K = {Ai,j : 1 ≤ i < j ≤ 2n+ 1} and

S̃H = {ai : i ∈ {1, . . . , n}} ∪ {bi : i ∈ {1, . . . , n}} ∪ {c},

completing the proof. �

The generators Ai,j, ai, and bi are all shown in Figure 4.4. The elements ai exchange
consecutive odd marked points and the elements bi exchange consecutive even marked
points. The generator c is the composition of half twists about the arcs on the right side
of Figure 4.4, and c switches each odd marked point with an even marked point.

Although the elementsAi,2n+2 = (σ2n+1 · · ·σi+1)σ2
i (σ2n+1 · · ·σi+1)−1 are in PMod(Σ0,B),

they are not part of the generating set from Lemma 4.5.1. However, it will be useful to
use the elements Ai,2n+2 in the set of relations for our final presentation. The next lemma
rewrites the elements Ai,2n+2 as words in the generators Ai,j with 1 ≤ i < j ≤ 2n+ 1.

Lemma 4.5.2. Fix ` ∈ {1, . . . , 2n+ 1}. Define

Ai,j :=


Ai,j if j < `

A−1
`,j+1Ai,j+1A`,j+1 if i < ` ≤ j

Ai+1,j+1 if ` ≤ i.

Then A`,2n+2 = (A1,2 · · ·A1,2n)(A2,3 · · ·A2,2n) · · · (A2n−1,2n).
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σi ai bi
Ai,j

c

i 2i i j

Figure 4.4: Left to right: the arcs about which σi, ai, and bi are half twists, the curve
about which Ai,j is a Dehn twist, and the collection of arcs about which c is a composition
of half twists. The labels above the marked points are to indicate the enumeration.

Proof. Let γi,j be the curve about which Ai,j is a Dehn twist. Then γ2n+1,2n+2 bounds a
disk containing the first 2n marked points. Therefore

A2n+1,2n+2 = (A1,2 · · ·A1,2n)(A2,3 · · ·A2,2n) · · · (A2n−2,2n−1A2n−2,2n)(A2n−1,2n). (4.3)

The right hand side of equation (4.3) is a Dehn twist about the boundary of a disk con-
taining 2n marked points, as seen in [22, p. 260]. Let Q` = σ2nσ2n−1 · · ·σ`. The desired
relations will be obtained from equation (4.3) by conjugating by Q`.

We have Q`(γ2n+1,2n+2) ' γ`,2n+2 so Q−1
` A2n+1,2n+2Q` = A`,2n+2 (see Section 2.3.2). It

suffices to show Q−1
` Ai,jQ` = Ai,j for 1 ≤ i < j ≤ 2n. We have

Q`(γi,j) '


γi,j if j < `

A`,j+1(γi,j+1) if i < ` ≤ j

γi+1,j+1 if ` ≤ i.

Therefore Q−1
` Ai,jQ` = Ai,j completing the proof. �

We are now ready to derive the relators R1 from Lemma 2.4.2. To ease notation, let

Ci,j =


A−1

2i−1,2iA
−1
2i+1,2i+2A2i−1,2i+2A2i,2i+1 if i = j

A−1
2i+1,2i+2A

−1
2i,2i+3A2i+2,2i+3A2i,2i+1 if i = j + 1

1 otherwise

(4.4)

for 1 ≤ i ≤ j ≤ n.
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Lemma 4.5.3. Let Ai,j, ai, bi, and c be the generators defined in Lemma 4.5.1. The fol-
lowing relations hold:
Commutator relations

1. [ai, bj] = Ci,j where Ci,j is given by (4.4)

Braid relations

2. aiai+1ai = ai+1aiai+1 and bibi+1bi = bi+1bibi+1 for i ∈ {1, . . . , n− 1}
3. [ai, aj] = [bi, bj] = 1 if |j − i| > 1

Half twists squared are Dehn twists

4. a2
i = A2i−1,2i+1 and b2

i = A2i,2i+2 for i ∈ {1, . . . , n}.
5. c2 = A1,2A3,4 · · ·A2n+1,2n+2

Parity Flip

6. caic
−1b−1

i = 1.

Proof. Since the σi satisfy the braid relations, we may use any solution to the word problem
for the braid group to reduce a word in the σi to the empty word. Our weapon of choice
will be Dehornoy’s handle reduction [20]. We will underline the handles as we perform the
reduction.

For relation 1 it suffices to show [ai, bj]C
−1
i,j is the identity. If i = j

aibia
−1
i b−1

i A−1
2i,2i+1A

−1
2i−1,2i+2A2i+1,2i+2A2i−1,2i

= (σ2iσ2i−1σ
−1
2i )(σ2i+1σ2iσ

−1
2i+1)(σ2iσ

−1
2i−1σ

−1
2i )(σ2i+1σ

−1
2i σ

−1
2i+1)

(σ−1
2i σ

−1
2i )(σ2i+1σ2iσ

−1
2i−1σ

−1
2i−1σ

−1
2i σ

−1
2i+1)(σ2

2i+1)(σ2i−1σ2i−1)

= σ2iσ2i−1σ2i+1σ2iσ
−1
2i+1σ

−1
2i+1σ2iσ

−1
2i−1σ

−1
2i σ2i+1σ

−1
2i σ

−1
2i+1

σ−1
2i σ2i+1σ2iσ

−1
2i+1σ

−1
2i−1σ2iσ

−1
2i−1σ

−1
2i σ2i+1σ2i−1

= σ2iσ2i+1σ
−1
2i σ2i−1σ2iσ

−1
2i+1σ

−1
2i+1σ

−1
2i σ2i−1σ

−1
2i+1σ

−1
2i−1σ2iσ2iσ

−1
2i−1σ

−1
2i σ2i+1

= σ−1
2i+1σ2iσ2i+1σ2i−1σ

−1
2i+1σ

−1
2i−1σ

−1
2i σ2i+1

= 1

A similar computation estabilshes the relation if i = j + 1.
For the cases where i /∈ {j, j + 1} we note |2j − 2i| ≥ 2 and |(2i− 1)− (2j + 1)| ≥ 2.

Therefore ai = σ2iσ2i−1σ
−1
2i commutes with bj = σ2j+1σ2jσ

−1
2j+1, establishing relation 1.

Similarly, [ai, aj] = [bi, bj] = 1 if |j − i| > 1, establishing relation 3.
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For relation 2 we have

aiai+1aia
−1
i+1a

−1
i a−1

i+1

= (σ2iσ2i−1σ
−1
2i )(σ2i+2σ2i+1σ

−1
2i+2)(σ2iσ2i−1σ

−1
2i )

(σ2i+2σ
−1
2i+1σ

−1
2i+2)(σ2iσ

−1
2i−1σ

−1
2i )(σ2i+2σ

−1
2i+1σ

−1
2i+2)

= σ2i+2(σ2iσ2i−1σ2i+1σ2iσ
−1
2i+1)σ2i−1σ

−1
2i σ

−1
2i+2

σ2i+2σ
−1
2i+1(σ−1

2i−1σ
−1
2i σ2i−1)(σ−1

2i+2σ2i+2)σ−1
2i+1σ

−1
2i+2

= σ2i+2σ2iσ2i+1(σ2iσ2i−1σ2i)(σ
−1
2i σ

−1
2i+1σ

−1
2i )σ−1

2i−1σ
−1
2i σ2i−1σ

−1
2i+1σ

−1
2i+2

= σ2i+2(σ2iσ2i+1σ2i)σ2i−1σ
−1
2i+1σ

−1
2i σ

−1
2i−1σ

−1
2i σ2i−1σ

−1
2i+1σ

−1
2i+2

= σ2i+2σ2iσ2i+1σ2iσ2i−1σ
−1
2i+1(σ−1

2i−1σ
−1
2i σ

−1
2i−1)σ2i−1σ

−1
2i+1σ

−1
2i+2

= σ2i+2σ2iσ2i+1(σ−1
2i+1σ

−1
2i σ2i+1)σ−1

2i+1σ
−1
2i+2

= 1

The same proof can be used for the relation bibi+1bi = bi+1bibi+1 by decreasing all indices
by 1.

For relation 4 we see a2
i = σ2iσ

2
2i−1σ

−1
2i = A2i−1,2i+1. Similarly, for relation 5 we have

b2
i = A2i,2i+2. For relation 6 we have

caic
−1 = (σ1σ3 · · ·σ2i−1σ2i+1 · · ·σ2n+1)(σ2iσ2i−1σ

−1
2i )(σ−1

1 σ−1
3 · · ·σ−1

2i−1σ
−1
2i+1 · · ·σ−1

2n+1)

= σ2i+1σ2i−1σ2iσ2i−1σ
−1
2i σ

−1
2i−1σ

−1
2i+1

= σ2i+1σ2iσ
−1
2i+1

= bi

which completes the proof. �

Topological interpretation. Although the proof of Lemma 4.5.3 is purely algebraic,
there are topological interpretations of most of the relations. Let αi be the arc about
which ai is a half twist, and βi the arc about which bi is a half twist.

When i 6= j, j+1, αi and βj can be modified by homotopy to be disjoint so the relations
[ai, bj] = 1 in 1 hold. The homeomorphisms {ai} are supported on a closed neighborhood
of the union α1∪ · · · ∪αn, which is an embedded disk Dn+1 with n+ 1 marked points. The
mapping class group of Dn+1 is isomorphic to the braid group Bn+1. Embedding Dn+1 in
Σ0 with 2n + 2 marked points induces a homomorphism φ : Bn+1 → Mod(Σ0,B(2n + 2)).
The homomorphism φ maps the standard braid generators to the ai, and so the braid
relations 2 and 3 hold. The same applies to the bi.
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i j
c−1

γi,j c−1(γi,j)

Figure 4.5: Both i and j are odd. The curve γi,j and its image under c−1, which is a product
of half twists about the dashed arcs.

Relations 4 and 5 reflect the fact that squaring a half twist about an arc is equal to
a Dehn twist about a curve surrounding the arc. Recall from Section 2.3.2 that if τδ
is a half twist about an arc δ in Σ0 and f is a mapping class, then f−1τγf = τf(γ) (the
homeomorphisms are applied left to right). We realize caic

−1 = bi in relation 6 by applying
the homeomorphism c−1 to the arc αi.

4.5.2 Conjugation relations

We now shift our attention to finding the relations that make up R2 from Lemma 2.4.2.
First we consider conjugation of the generators of PMod(Σ0,B) by c. Let

Xi,j =



Ai,j for odd i, j = i+ 1

Ai+1,j+1 for odd i, j

(Ai−1,jA
−1
i−1,i)

−1Ai−1,j−1(Ai−1,jA
−1
i−1,i) for even i, j

A−1
i,j+1Ai−1,j+1Ai,j+1 for even i, odd j

Aj−1,jAi+1,j−1A
−1
j−1,j otherwise.

(4.5)

Lemma 4.5.4. For 1 ≤ i < j ≤ 2n+ 1, let Ai,j and c be as above. Then

cAi,jc
−1 = Xi,j

where the Xi,j are as in (4.5).

Proof. Let γi,j be the simple closed curve in Σ0 about which Ai,j is a Dehn twist, so
Tγi,j = Ai,j. Recall that cTγi,jc

−1 = Tc−1(γi,j) (where we maintain our convention that we
read products from left to right). Therefore it suffices to show that c−1(γi,j) is the curve
about which Xi,j is a twist.

We first note that when i is odd and j = i + 1 the curve γi,j is disjoint from the arcs
that define c, therefore cAi,jc

−1 = Ai,j. We then consider the remaining cases.

i and j are both odd. The curves c−1(γi,j) and γi+1,j+1 are shown to be isotopic in
Figure 4.5. Therefore cAi,jc

−1 = Ai+1,j+1.
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i jγi,j

c−1(γi,j)
c−1

γi−1,j−1

A−1
i−1,i(Ai−1,j(γi−1,j−1))

Ai−1,j

A−1
i−1,i

Figure 4.6: Both i and j are even. The left figure shows γi,j and its image under c−1,
which is a product of half twists about the dashed arcs. Starting at the top left and going
clockwise, the right figure shows γi−1,j−1, Ai−1,j(γi−1,j−1), and A−1

i−1,i(Ai−1,j(γi−1,j−1)). The

dashed curves indicate the curves about which Ai−1,j and A−1
i−1,i are Dehn twists.

i j

c−1

γi,j

c−1(γi,j)

γi−1,j+1

Ai,j+1
Ai,j+1(γi−1,j+1)

Figure 4.7: Even i and odd j. The left figure shows γi,j and its image under c−1, which
is a product of half twists about the dashed arcs. The right figure shows γi−1,j+1 and its
image under Ai,j+1, which is a Dehn twist about the dashed curve.

i and j are both even. The curves c−1(γi,j) and A−1
i−1,i(Ai−1,j(γi−1,j−1)) (with composition

applied as indicated) are shown to be isotopic in Figure 4.6. Therefore

cAi,jc
−1 = (Ai−1,jA

−1
i−1,i)

−1Ai−1,j−1(Ai−1,jA
−1
i−1,i).

i is even and j is odd. The curves c−1(γi,j) and Ai,j+1(γi−1,j+1) are shown to be isotopic
in Figure 4.7. Therefore cAi,jc

−1 = A−1
i,j+1Ai−1,j+1Ai,j+1.

i is odd and j is even j 6= i+ 1. The curves c−1(γi,j) and A−1
j−1,j(γi+1,j−1) are shown to

be isotopic in Figure 4.8. Therefore cAi,jc
−1 = Aj−1,jAi+1,j−1A

−1
j−1,j. �
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i j

c−1 A−1
j−1,j

γi,j

c−1(γi,j)

γi+1,j−1

A−1
j−1,j(γi+1,j−1)

Figure 4.8: Odd i and even j, j 6= i+ 1. The left figure shows γi,j and its image under c−1,
which is a product of half twists about the dashed arcs. The right figure shows γi+1,j−1

and its image under A−1
j−1,j, which is an inverse Dehn twist about the dashed curve.

Next we consider conjugation of the elements Ai,j by the generators a`. Let

Yi,j,` =



Ai,j if i < 2`− 1, j > 2`+ 1,

Ai,j if i, j > 2`+ 1 or i, j < 2`− 1

Ai,j+2 if i < 2`− 1, j = 2`− 1

(A−1
i,j−1Ai,j+1)−1Ai,j(A

−1
i,j−1Ai,j+1) if i < 2`− 1, j = 2`

A−1
i,j Ai,j−2Ai,j if i < 2`− 1, j = 2`+ 1

Ai,j+1Aj,j+1A
−1
i,j+1 if i = 2`− 1, j = 2`

Ai,j if i = 2`− 1, j = 2`+ 1

Ai+2,j if i = 2`− 1, j > 2`+ 1

Ai−1,j−1 if i = 2`, j = 2`+ 1

(A−1
i,i+1Ai−1,i)

−1Ai,j(A
−1
i,i+1Ai−1,i) if i = 2`, j > 2`+ 1

A−1
i,j Ai−2,jAi,j if i = 2`+ 1, j > 2`+ 1

(4.6)

Lemma 4.5.5. For 1 ≤ i < j ≤ 2n + 1 and ` ∈ {1, . . . , n}, let Ai,j and a` be as above.
Then

a`Ai,ja
−1
` = Yi,j,`

where the Yi,j,` are as in (4.6).

Proof. Recall that a` = σ2`σ2`−1σ
−1
2` and

Ai,j = (σj−1σj−2 · · ·σi+1)σ2
i (σj−1σj−2 · · ·σi+1)−1.

The transpositions σp and σq commute if |p − q| ≥ 2. Therefore a` and Ai,j commute if
both (2`− 1)− (j − 1) ≥ 2 and 2`− (i+ 1) ≥ 2, if i, j > 2`+ 1, or if i, j < 2`− 1.
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i j a−1
`

γi,j a−1
` (γi,j)

Figure 4.9: i < 2` − 1, j = 2` − 1. The curve γi,j and its image under a−1
` , which is a

counterclockwise half twist about the dashed arc.

Therefore in the first two cases of (4.6), a` and Ai,j commute. In the remaining cases,
at least one of i and j is equal to 2`− 1, 2`, or 2`+ 1.

If i = 2`− 1 and j = i+ 2, then Ai,j = σi+1σ
2
i σ
−1
i+1 = Ai,i+2 and

a`Ai,ja
−1
` = (σi+1σiσ

−1
i+1)σi+1σ

2
i σ
−1
i+1(σi+1σ

−1
i σ−1

i+1)

= σi+1σ
2
i σ
−1
i+1

= Ai,j

If i = 2` and j = i+ 1, then a` = σiσi−1σ
−1
i and Ai,j = σ2

i . Then:

a`Ai,ja
−1
` = (σiσi−1σ

−1
i )σ2

i (σiσ
−1
i−1σ

−1
i )

= (σi−1σiσi−1)(σ−1
i−1σ

−1
i σi−1)

= σ2
i−1

= Ai−1,j−1

If i = 2`− 1 and j = i+ 1, then Ai,j = σ2
i and a` = σi+1σiσ

−1
i+1.

a`Ai,ja
−1
` = (σi+1σiσ

−1
i+1)σ2

i (σi+1σ
−1
i σ−1

i+1)

= σi+1σiσ
−1
i+1σi(σi+1σ

−1
i+1)σiσi+1σ

−1
i σ−1

i+1

= σi+1σi(σiσi+1σ
−1
i )(σiσi+1σ

−1
i )σ−1

i σ−1
i+1

= (σi+1σ
2
i σ
−1
i+1)σ2

i+1(σi+1σ
−2
i σ−1

i+1)

= Ai,j+1Aj,j+1A
−1
i,j+1

We prove the remaining cases topologically. As above, let γi,j be a curve such that
Tγi,j = Ai,j. As in the proof of Lemma 4.5.4, it suffices to prove that Yi,j,` = Ta−1

` (γi,j)
for

various relationships between i, j and `.

The case where i < 2`− 1 and j = 2`− 1. The curves a−1
` (γi,j) and γi,j+2 are shown to

be isotopic in Figure 4.9. Therefore a`Ai,ja
−1
` = Ai,j+2.

The case where i < 2`− 1 and j = 2`. The curves a−1
` (γi,j) and Ai,j+1(A−1

i,j−1(γi,j)) are

shown to be isotopic in Figure 4.10. Therefore a`Ai,ja
−1
` = (A−1

i,j−1Ai,j+1)−1Ai,j(A
−1
i,j−1Ai,j+1).
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i j

a−1
`

γi,j

a−1
` (γi,j)

γi,j

A−1
i,j−1

Ai,j+1
Ai,j+1(A

−1
i,j−1(γi,j))

Figure 4.10: i < 2` − 1, j = 2`. The left figure shows γi,j and its image under a−1
` , which

is a half twist about the dashed arc. Starting at the top left and going clockwise, the right
figure shows γi,j, A

−1
i,j−1(γi,j) and Ai,j+1(A−1

i,j−1(γi,j)). The dashed curves indicate the curves

about which A−1
i,j−1 and Ai,j+1 are Dehn twists.

i j

a−1
`

γi,j

a−1
` (γi,j)

γi,j−2

Ai,j
Ai,j(γi,j−2)

Figure 4.11: i < 2` − 1, j = 2` + 1. The left figure shows γi,j and its image under a−1
` ,

which is a half twist about the dashed arc. The right figure shows γi,j−2 and its image
under Ai,j, which is a Dehn twist about the dashed curve.

The case where i < 2` − 1 and j = 2` + 1. The curves a−1
` (γi,j) and Ai,j(γi,j−2) are

shown to be isotopic in Figure 4.11. Therefore a`Ai,ja
−1
` = A−1

i,j Ai,j−2Ai,j.

The case where i = 2`− 1 and j > 2`+ 1. The curves a−1
` (γi,j) and γi+2,j are shown to

be isotopic in Figure 4.12. Therefore a`Ai,ja
−1
` = Ai+2,j.

The case where i = 2` and j > 2` + 1. The curves a−1
` (γi,j) and Ai−1,i(A

−1
i,i+1(γi,j)) are

shown to be isotopic in Figure 4.13. Therefore

a`Ai,ja
−1
` = (A−1

i,i+1Ai−1,i)
−1Ai,j(A

−1
i,i+1Ai−1,i).

The case where i = 2` + 1 and j > 2` + 1. The curves a−1
` (γi,j) and Ai,j(γi−2,j) are

shown to be isotopic in Figure 4.14. Therefore a`Ai,ja
−1
` = A−1

i,j Ai−2,jAi,j. �
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i j a−1
`

γi,j a−1
` (γi,j)

Figure 4.12: i = 2` − 1, j > 2` + 1. The curve γi,j and its image under a−1
` , which is an

inverse half twist about the dashed arc.

i j

a−1
`

γi,j

a−1
` (γi,j)

γi,j

A−1
i,i+1

Ai−1,i
Ai−1,i(A

−1
i,i+1(γi,j))

Figure 4.13: i = 2`, j > 2` + 1. The left figure shows γi,j and its image under a−1
` , which

is a half twist about the dashed arc. Starting at the top left and going clockwise, the right
figure shows γi,j, A

−1
i,i+1(γi,j) and Ai−1,i(A

−1
i,i+1(γi,j)). The dashed curves indicate the curves

about which A−1
i,i+1 and Ai−1,i are Dehn twists.

Next we consider conjugation of the elements Ai,j by the generators b`. Let

Zi,j,` =



Ai,j if i < 2`, j > 2`+ 2

Ai,j if i, j > 2`+ 2 or i, j < 2`

Ai,j+2 if i < 2`, j = 2`

(A−1
i,j−1Ai,j+1)−1Ai,j(A

−1
i,j−1Ai,j+1) if i < 2`, j = 2`+ 1

A−1
i,j Ai,j−2Ai,j if i < 2`, j = 2`+ 2

Ai,j+1Aj,j+1A
−1
i,j+1 if i = 2`, j = 2`+ 1

Ai,j if i = 2`, j = 2`+ 2

Ai+2,j if i = 2`, j > 2`+ 2

Ai−1,j−1 if i = 2`+ 1, j = 2`+ 2

(A−1
i,i+1Ai−1,i)

−1Ai,j(A
−1
i,i+1Ai−1,i) if i = 2`+ 1, j > 2`+ 2

A−1
i,j Ai−2,jAi,j if i = 2`+ 2, j > 2`+ 2.

(4.7)

Lemma 4.5.6. For 1 ≤ i < j ≤ 2n + 1 and ` ∈ {1, . . . , n}, let Ai,j and b` be as above.
Then

b`Ai,jb
−1
` = Zi,j,`

where the Zi,j,` are as in (4.7).
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i j

a−1
`

Ai,j

γi,j

a−1
` (γi,j)

γi−2,j

Ai,j(γi−2,j)

Figure 4.14: i = 2` + 1, j > 2` + 1. The left figure shows γi,j and its image under a−1
` ,

which is a half twist about the dashed arc. The right figure shows γi−2,j and its image
under Ai,j, which is a Dehn twist about the dashed curve.

The proof of Lemma 4.5.6 is the same as the proof of Lemma 4.5.5 with an increase in
index by 1.

4.5.3 Proof of the presentation

We are now ready to write down a presentation for LModg,k(Σ0,B).

Theorem 4.5.7. Let pg,k : Σg → Σ0 be a balanced superelliptic cover with k ≥ 3. The
liftable mapping class group LModg,k(Σ0,B) is generated by

Ai,j = (σj−1σj−2 · · ·σi+1)σ2
i (σj−1σj−2 · · ·σi+1)−1, 1 ≤ i < j ≤ 2n+ 1

c = σ1σ3 · · · σ2n−1σ2n+1

ai = σ2iσ2i−1σ
−1
2i , i ∈ {1, . . . , n}

bi = σ2i+1σ2iσ
−1
2i+1, i ∈ {1, . . . , n}.

For ` ∈ {1, . . . , 2n+1}, let A`,2n+2 be defined as in Lemma 4.5.2. Then LModg,k(Σ0,B)
has defining relations:
Commutator relations

1. [Ai,j, Ap,q] = 1 where 1 ≤ i < j < p < q ≤ 2n+ 1.

2. [Ai,q, Aj,p] = 1 where 1 ≤ i < j < p < q ≤ 2n+ 1.

3.
[
Ap,qAi,pA

−1
p,q, Aj,q

]
= 1 where 1 ≤ i < j < p < q ≤ 2n+ 1.

4. [ai, bj] = Ci,j where Ci,j are as in (4.4).

Braid relations

5. Ai,pAj,pAi,j = Aj,pAi,jAi,p = Ai,jAi,pAj,p where 1 ≤ i < j < p ≤ 2n+ 1.
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6. aiai+1ai = ai+1aiai+1 and bibi+1bi = bi+1bibi+1 for i ∈ {1, . . . , n− 1}.
7. [ai, aj] = [bi, bj] = 1 if |j − i| > 1.

Subsurface support

8. (A1,2A1,3 · · ·A1,m−1) · · · (Am−3,n−2Am−3,n−1)(Am−2,m−1) = 1 for m = 2n+ 2.

Half twists squared are Dehn twists

9. a2
i = A2i−1,2i+1 and b2

i = A2i,2i+2 for i ∈ {1, . . . , n}.
10. c2 = A1,2A3,4 · · ·A2n+1,2n+2.

Parity Flip

11. caic
−1b−1

i = 1

Conjugation relations

12. cAi,jc
−1 = Xi,j where the Xi,j are as in (4.5).

13. a`Ai,ja
−1
` = Yi,j,` where the Yi,j,` are as in (4.6).

14. b`Ai,jb
−1
` = Zi,j,` where the Zi,j,` are as in (4.7).

Proof. The proposed generators are proven to be generators in Lemma 4.5.1. Using the
notation from Lemma 2.4.2, R̃K consists of the relations 1, 2, 3, 5, and 8 by Lemma 4.4.1,
R1 consists of the relations 4, 6, 7, 9, 10, and 11 by Lemma 4.5.3, and R2 consists of
the relations 12, 13, and 14 as by Lemmas 4.5.4, 4.5.5, and 4.5.6. The result follows by
applying Lemma 2.4.2. �

4.6 Abelianization

In this section we will compute the abelianization of LModg,k(Σ0,B) in Theorem 4.6.6,
and compute the first Betti number of the balanced superelliptic mapping class group
SModg,k(Σg) in Theorem 4.6.7. Recall that for any group G, H1(G;Z) ∼= G/[G,G]. For
this section, fix k ≥ 3 and let pg,k : Σg → Σ0 be the balanced superelliptic cover. Recall
that there are 2n+2 branch points where n = g/(k−1). By Corollary 4.3.4, LModg,k(Σ0,B)
depends only on n. For ease of notation, let Gn = LModg,k(Σ0,B) for the remainder of
this section. Let φ : Gn → Gn/[Gn, Gn] be the abelianization map. Note that if a, b ∈ Gn

are in the same conjugacy class of Gn, then φ(a) = φ(b).
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A presentation for Gn/[Gn, Gn] is given by taking a presentation for Gn and adding
the set of all commutators to the set of defining relators. We begin with the presentation
given in Theorem 4.5.7.

So we do not have to deal with the symbols A`,2n+2 separately, we will add the symbols
A`,2n+2 for ` ∈ {1, . . . , 2n+ 1} as generators along with the relations

A`,2n+2 = (A1,2 · · ·A1,2n)(A2,3 · · ·A2,2n) · · · (A2n−2,2n−1A2n−2,2n)(A2n−1,2n)

where the Ai,j are as in Lemma 4.5.2.

Lemma 4.6.1. If j − i ≡ t− s mod 2, then Ai,j is conjugate to As,t in Gn.

Proof. We consider two cases: either j− i ≡ t− s ≡ 0 mod 2 or j− i ≡ t− s ≡ 1 mod 2.
Case 1: j − i ≡ t− s ≡ 0 mod 2.

Let i and j be even. Recall the conjugation relations

b`Ai,jb
−1
` = A−1

i,j Ai,j−2Ai,j

for i < 2` and j = 2n+ 2, and
b`Ai,jb

−1
` = Ai,j+2

for i < 2` and j = 2`. Therefore for any fixed even i, all generators Ai,j with even j are in
the same conjugacy class of Gn. We also have the conjugation relations

b`Ai,jb
−1
` = Ai+2,j

for i = 2` and j > 2`+ 2, and

b`Ai,jb
−1
` = A−1

i,j Ai−2,jAi,j

for i = 2`+ 2 and j > 2`+ 2. Therefore for any fixed even j, all the Ai,j such that i is even
are in the same conjugacy class of Gn. Then by varying j, we conclude that if i, j, s, t are
all even, then Ai,j and As,t are conjugate.

Similarly we can consider the conjugacy relations a`Ai,ja
−1
` = Yi,j,` to conclude that if

i, j, s, t are all odd, then Ai,j is conjugate to As,t in Gn.
Observe that cA1,3c

−1 = A2,4. We may finally conclude that if j− i ≡ t−s ≡ 0 mod 2,
then Ai,j is conjugate to As,t in Gn.

Case 2: j − i ≡ t− s ≡ 1 mod 2.
Similar to case 1, we use relations from the family of relations a`Ai,ja

−1
` = Yi,j,` to conclude

that for any fixed even i, all the Ai,j for any odd j are in the same conjugacy class of G.
Using relations of the form b`Ai,jb

−1
` = Zi,j,` gives us that for any fixed odd j, all the Ai,j
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for any even i are in the same conjugacy class of Gn. Therefore if i and s are even and j
and t are odd, then Ai,j and As,t are conjugate in Gn.

Similarly, if i and s are odd and j and t are even, then Ai,j and As,t are conjugate in
Gn.

Finally, the relation cA2,3c
−1 = A−1

2,4A1,4A2,4 allows us to conclude that if j−i ≡ t−s ≡ 1
mod 2, then Ai,j is conjugate to As,t in Gn, completing the proof. �

From now on, let A = φ(A1,2) and B = φ(A1,3).

Lemma 4.6.2. For each ` ∈ {1, . . . , 2n+ 1}, consider the relation

A`,2n+2 = (A1,2 · · ·A1,2n)(A2,3 · · ·A2,2n) · · · (A2n−2,2n−1A2n−2,2n)(A2n−1,2n)

where the Ai,j are as in Lemma 4.5.2. Applying φ to each of these relations gives the
relation Bn2−n = A1−n2

in Gn/[Gn, Gn].

Proof. Fix ` ∈ {1, . . . , 2n+ 1} and let

W = (A1,2 · · ·A1,2n)(A2,3 · · ·A2,2n) · · · (A2n−2,2n−1A2n−2,2n)(A2n−1,2n)

W = (A1,2 · · ·A1,2n+1)(A2,3 · · ·A2,2n+1) · · · (A2n−1,2nA2n−1,2n+1)(A2n,2n+1)

L =
∏

1≤i<j≤2n+1
i=` or j=`

Ai,j.

Observe that φ(W ) = φ(W )φ(L)−1. By Lemma 4.6.1 we have

φ(W ) = ((AB)n)((AB)n−1A)((AB)n−1) · · · (AB)(A)

= A2nA2(n−1) · · ·A2BnB2(n−1)B2(n−2) · · ·B2

= An(n+1)Bn2

since
∑n−1

i=1 2i = n(n− 1).
If ` is even, φ(L) = An+1Bn−1. Applying φ to the relation above gives

B = φ(W ) = An(n+1)Bn2

A−n−1B1−n.

This rearranges to Bn2−n = A1−n2
.

If ` is odd, φ(L) = AnBn. Applying φ to the relation above gives Bn2−n = A1−n2
. �

Lemma 4.6.3. In the abelianization of Gn, Bn2
= A−n

2−1.
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Proof. Consider the subsurface support relation,

(A1,2 · · ·A1,2n+1)(A2,3 · · ·A2,2n+1) · · · (A2n−1,2nA2n−1,2n+1)(A2n,2n+1) = 1.

Applying φ to both sides gives 1 = An(n+1)Bn2
by the computation of φ(W ) in the proof

of Lemma 4.6.2. �

Lemma 4.6.4. For all 1 ≤ i, j ≤ n, φ(ai) = φ(bj).

Proof. By Lemma 4.5.3, we have the braid relations (a−1
i+1ai)ai+1(a−1

i+1ai)
−1 = ai and

(b−1
i+1bi)bi+1(b−1

i+1bi)
−1 = bi for all i ∈ {1, . . . , n− 1}. Hence φ(ai) = φ(aj) and φ(bi) = φ(bj)

for all i, j ∈ {1, . . . , n − 1}. The parity flip relation ca1c
−1 = b1 allows us to deduce that

ai and bj are conjugate for all 1 ≤ i, j ≤ n and φ(ai) = φ(bj). �

Lemma 4.6.5. The abelianization Gn/[Gn, Gn] admits the presentation

〈a, d, A,B | Bn2−n = A1−n2

, Bn2

= A−n
2−1, a2 = B, d2 = An+1, T 〉

where a = φ(a1), d = φ(c), A = φ(A1,2), B = φ(A1,3), and T is the set of all commutators.

Proof. Lemmas 4.6.1 and 4.6.4 show that the elements φ(a1), φ(c), φ(A1,2) and φ(A1,3) form
a generating set for Gn/[Gn, Gn].

Lemmas 4.6.2 and 4.6.3 show that the relations Bn2−n = A1−n2
and Bn2

= A−n
2−1 hold

in Gn/[Gn, Gn]. Applying φ to the relation a2
1 = A1,3 shows that a2 = B. Applying φ to

the relation c2 = A1,2A3,4 · · ·A2n+1,2n+2 gives the relation d2 = An+1.
Lemma 4.6.2 shows that for all ` ∈ {1, . . . , 2n+ 1}, the relation

A`,2n+2 = (A1,2 · · ·A1,2n)(A2,3 · · ·A2,2n) · · · (A2n−2,2n−1A2n−2,2n)(A2n−1,2n)

is derivable from T and Bn2−n = A1−n2
.

It remains to show that in the abelianization, the relations from the presentation of Gn

in Theorem 4.5.7 can be derived from the proposed defining relations.
The commutator relations 1-4 of Theorem 4.5.7 all map to the identity under φ. The

braid relations 5 and 7 of Theorem 4.5.7 are derivable from T . The braid relation 6
is also derivable from T since all relations in this family take the form a = a in the
abelianization. Relation 8 is derivable from Bn2

= A−n
2−1 by Lemma 4.6.3. Relations 9

and 10 are derivable from a2 = B and d2 = An+1 respectively. The image φ(caic
−1b−1

i ) is
the identity by Lemma 4.6.4. Finally, the conjugation relations 12-14 are all of the form
A = A or B = B in the abelianization, so they are all derivable from T . �

We now have everything needed to prove Theorem 4.6.6.
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Theorem 4.6.6. Let k ≥ 3. Then

H1(LModg,k(Σ0,B);Z) ∼=

{
Z/2Z× Z/2Z× Z/(n(n− 1)2)Z if n is odd

Z/2Z× Z/(2n(n− 1)2)Z if n is even.

Proof. Recall H1(LModg,k(Σ0,B);Z) = Gn/[Gn, Gn]. We will start with the presentation
from Lemma 4.6.5 and perform Tietze transformations to simplify it.

Starting with Bn2−n = A1−n2
, we may substitute in the relation Bn2

= A−n
2−1 to

obtain A2 = B−n. Thus we may add the relation A2 = B−n to the set of defining relations.
Observe Bn2−n = A1−n2

is derivable from A2 = B−n and Bn2
= A−n

2−1 so we may delete
the relation Bn2−n = A1−n2

.
Similarly, we may add the relation A(n−1)2 = 1 and delete the relation Bn2

= A−n
2−1.

Deleting the generator B and replacing it with a2 then gives the presentation

Gn/[Gn, Gn] ∼= 〈a, d, A | A2 = a−2n, A(n−1)2 = 1, d2 = An+1, T 〉. (4.8)

This presentation has presentation matrix
[ 2n 0 2

0 0 (n−1)2

0 2 −1−n

]
.

If n is odd, this matrix has Smith normal form
[

2 0 0
0 2 0
0 0 n(n−1)2

]
. Therefore

H1(LModg,k(Σ0,B);Z) ∼= Z/2Z× Z/2Z× Z/(n(n− 1)2)Z.

If n is even, the presentation matrix has Smith normal form
[

1 0 0
0 2 0
0 0 2n(n−1)2

]
, so

H1(LModg,k(Σ0,B);Z) ∼= Z/2Z× Z/(2n(n− 1)2)Z. �

We now apply Theorem 4.6.6 to compute the first Betti number of the balanced su-
perelliptic mapping class group SModg,k(Σg). The first Betti number of a group G is the
rank of the abelian group H1(G;Z) = G/[G,G].

Let D < Mod(Σg) be the image of the deck group of the balanced superelliptic cover
pg,k. Recall D ∼= Z/kZ.

Theorem 4.6.7. Let k > 2. The abelianization of the balanced superelliptic mapping class
group H1(SModg,k(Σg);Z) is a finite, non-cyclic group. In particular, the first Betti number
of SModg,k(Σg) is 0.

Proof. The Birman-Hilden theorem (Theorem 2.3.2) gives a short exact sequence

1 −→ Z/kZ −→ SModg,k(Σg) −→ LModg,k(Σ0,B) −→ 1.
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Since the abelianization functor is right exact, we have the exact sequence

Z/kZ −→ H1(SModg,k(Σg);Z) −→ H1(LModg,k(Σ0,B);Z) −→ 1.

Since Z/kZ and H1(LModg,k(Σ0,B);Z) are both finite, so is H1(SModg,k(Σg);Z). More-
over, since H1(LModg,k(Σ0,B);Z) is not cyclic, neither is H1(SModg,k(Σg);Z). �

To complete the story, one may use the presentation of the hyperelliptic mapping class
group SModg,2(Σg) in [7, Theorem 8] to deduce that

H1(SModg,2(Σg);Z) ∼=

{
Z/(2g + 1)Z if g is odd

Z/(4g + 2)Z if g is even.

In particular, the first Betti number of SModg,2(Σg) is also 0.
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Chapter 5

A Family of Cyclic Branched Covers
Over the Torus

The thesis so far has dealt exclusively with cyclic branched covers over the sphere. A
family of cyclic branched covers over the torus branched at two points will be investigated
in this chapter.

Consider a torus with two punctures and let x, y, z ∈ H1(Σ1,2;Z) be the homology
classes of the loops α, β, δ respectively from Figure 5.1. The set {x, y, z} forms a basis for
H1(Σ1,2;Z) ∼= Z⊕3.

For any integer k ≥ 2 define the surjective homomorphism ϕk : H1(Σ1,2;Z)→ Z/kZ by

ϕk(c1x+c2y+c3z) = c3 mod k. Therefore ϕk determines a cyclic cover pk : Σ̃→ Σ1,2. Let
z′ be the homology class of δ′ in Figure 5.1. Then z′ = −z, so ϕ(z) = 1 and ϕ(z′) = −1.
Since z and z′ are the homology classes of loops surrounding only the punctures, pk can
be completed to a branched cover branched at two points B ⊂ Σ1, each with one preimage
(see Section 2.2.2).

Using the Riemann-Hurwitz formula, we can conclude the genus of Σ̃ is k. Abusing
notation, from now on we denote the unbranched covers and associated branched covers
by pk : Σk,2 → Σ1,2 and pk : Σk → Σ1 respectively. For a picture of the covers p2, p3, and
p4, see Figure 5.2.

Let LModk(Σ1,B) < Mod(Σ1,B) be the liftable mapping class group corresponding to
the branched cover pk : Σk → Σ1. The goal of this chapter is to find presentations for the
groups LModk(Σ1,B) by using the Reidemeister-Schreier rewriting process from Section
2.4.2. While the goal as stated will unfortunately not be achieved, a finite presentation for
LModk(Σ1,B) is obtained for k = 2, 3, 4, and a finite generating set is obtained for k = 5, 6.
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α

β

γ

δ

δ′
π

Figure 5.1: The curves α, β, γ, δ and δ′ on the left. The hyperelliptic involution ι on the
right. In both images, the puncture at the top is on the back side of the torus.

5.1 Preparing the Reidemeister-Schreier rewriting pro-

cess

In order to apply the Reidemeister-Schreier rewriting process, we need a finite presentation
for Mod(Σ1,B), a Schreier system of right coset representatives for LModk(Σ1,B), and a
way of identifying the coset representative corresponding to any element of Mod(Σ1,B).
We begin with a presentation for Mod(Σ1,B).

5.1.1 A presentation for Mod(Σ1,B)

Let ι ∈ Mod(Σ1,B) be the hyperelliptic involution shown in Figure 5.1. Note that ι
switches the two marked points B ⊂ Σ1.

Proposition 5.1.1. Mod(Σ1,2) admits the presentation

〈a, b, c, d | aba = bab, bcb = cbc, [a, c], [a, d], [b, d], [c, d], d2, (abc)4〉

where d = ι and a = Tα, b = Tβ and c = Tγ where α, β, and γ are the curves from Figure
5.1.

Proof. Consider the short exact sequence

1→ PMod(Σ1,B)→ Mod(Σ1,B)
φ→ S2 −→ 1

given by the action of Mod(Σ1,B) on the two marked points. We will apply Lemma 2.4.2
to this short exact sequence.
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µ

p2

p3

p4

p−1
2 (µ) p−1

3 (µ) p−1
4 (µ)

π

2π

3

π

2

Figure 5.2: The arc µ and its preimages under p2, p3, and p4. The rotations are generators
of the deck groups.

The group S2 admits the presentation 〈d | d2〉, and PMod(Σ1,2) admits the presentation

〈a, b, c | ac = ca, aba = bab, bcb = cbc, (abc)4〉

where a = Tα, b = Tβ, and c = Tγ are Dehn twists about the curves α, β, and γ from
Figure 5.1 respectively (see [42, Theorem 3.2.1]).

To apply Lemma 2.4.2, let d̃ = ι and notice φ(d̃) = d. Since ι2 = 1, in the notation
from Lemma 2.4.2 we have R1 = {d̃2}. Since ι preserves the unoriented isotopy classes of
α,β, and γ, we have

R2 = {d̃ad̃−1a−1, d̃bd̃−1b−1, d̃cd̃−1c−1}.

Applying Lemma 2.4.2 and replacing d̃ by d we see Mod(Σ1,2) admits the presentation

〈a, b, c, d | aba = bab, bcb = cbc, [a, c], [a, d], [b, d], [c, d], d2, (abc)4〉

completing the proof. �
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Those familiar with the braid group will notice that the presentation for PMod(Σ1,B)
shows that PMod(Σ1,B) ∼= B4/Z(B4) where B4 is the braid group on 4 strands and Z(B4)
is the center of B4. It is worth noting that the presentation in the statement of Proposition
5.1.1 is a presentation for the direct product PMod(Σ1,B)× S2

∼= B4/Z(B4)× S2.

5.1.2 A Schreier system

Our focus now shifts to finding a Schreier system of right coset representatives of Mod(Σ1,B)
mod LModk(Σ1,B). To do this, we look at the action of Mod(Σ1,B) on H1(Σ1,2;Z).

Let {x, y, z} ⊂ H1(Σ1,2;Z) be the basis defined above. Let Ψ : Mod(Σ1,B) → GL3(Z)
be the homomorphism given by the action of Mod(Σ1,B) with respect to this basis.

Lemma 5.1.2. Let α, β, γ be the curves from Figure 5.1, and µ the arc in Figure 5.2. Let
τ be the half Dehn twist about µ. Then

Ψ(Tα) =

1 1 0
0 1 0
0 0 1

 Ψ(Tβ) =

 1 0 0
−1 1 0
0 0 1


Ψ(Tγ) =

1 1 0
0 1 0
0 1 1

 Ψ(τ) =

1 0 0
0 1 0
0 0 −1

 .
Proof. For any f ∈ Mod(Σ1,B), let f∗ ∈ Aut(H1(Σ1,2;Z)) be the induced automorphism
of any representative of f .

Since [α] = x and [β] = y, (Tα)∗(x) = x and (Tβ)∗(y) = y. Since δ is disjoint from α, β,
and γ, (Tα)∗(z) = (Tβ)∗(z) = (Tγ)∗(z) = z. Since µ is disjoint from α and β, τ∗(x) = x and
τ∗(y) = y. Since α and γ are disjoint, (Tγ)∗(x) = x. For any homeomorphism f such that
[f ] = τ , the curve f(δ) is homotopic to δ′. Since [δ] = −[δ′] in H1(Σ1,2;Z), τ∗(z) = −z. It
remains to show (Tα)∗(y) = x+ y, (Tβ)∗(x) = x− y and (Tγ)∗(y) = x+ y + z.

Figure 5.3A shows three representatives for the elements α, β, δ ∈ π1(Σ1,2, x0). Let
Φ : π1(Σ1,2, x0)→ H1(Σ1,2;Z) be the Hurewicz homomorphism. Then Φ(α) = x, Φ(β) = y,
and Φ(δ) = z. Figure 5.3B shows Tα(β), which is homotopic to any representative of
αβ ∈ π1(Σ1,2, x0). Therefore (Tα)∗(y) = x+y. Figure 5.3C shows Tβ(α), which is homotopic

to any representative of αβ
−1 ∈ π1(Σ1,2, x0). Therefore (Tβ)(x) = x− y. Finally, the curve

Tγ(β) in Figure 5.3D is homotopic to any representative of αβδ ∈ π1(Σ1,2, x0). Therefore
(Tγ)∗(y) = x+ y + z completing the proof. �
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A B C D

α

β

δ
x0

Tα(β) Tβ(α) Tγ(β)

Figure 5.3: Left to right: representatives of α, β, δ ∈ π1(Σ1,2, x0), the curve Tα(β), the curve
Tβ(α), and the curve Tγ(β).

Lemma 5.1.3. The image of Ψ is given by

Ψ(Mod(Σ1,B)) =


A11 A12 0
A21 A22 0
v1 v2 ±1

 :

[
A11 A12

A21 A22

]
∈ SL2(Z), v1, v2 ∈ Z

 .

Proof. Let α, β, γ be the curves from Figure 5.1, and µ the arc in Figure 5.2. Then
Mod(Σ1,B) is generated by {Tα, Tβ, Tγ, τ}. For notational convenience, let Q = Ψ(Tα),
R = Ψ(Tβ), S = Ψ(Tγ), and T = Ψ(τ) be the matrices from Lemma 5.1.2. Let

G :=


A11 A12 0
A21 A22 0
v1 v2 ±1

 :

[
A11 A12

A21 A22

]
∈ SL2(Z), v1, v2 ∈ Z

 < GL3(Z).

It suffices to show G is generated by Q,R, S, and T .
Let B = [ A 0

v ±1 ] ∈ G with A ∈ SL2(Z) and v = (v1, v2) ∈ Z ⊕ Z. We will write B as
a word in {Q,R, S, T} by starting with the identity and multiplying on the left using the
following procedure.

1. If the bottom right entry of B is -1, start with T , otherwise skip this step.

2. Let k = gcd(v1, v2) and multiply on the left by Sk =
[

1 k 0
0 1 0
0 k 1

]
. This gives us a word

representing
[

1 k 0
0 1 0
0 k ±1

]
.

3. Since SL2(Z) is generated by {[ 1 1
0 1 ] , [ 1 0

−1 1 ]}, there exists a word in Q and R repre-
senting [ Z 0

0 1 ] for any Z ∈ SL2(Z). Since gcd(0, k) = gcd(v1, v2) = k, there exists a
Y ∈ SL2(Z) such that

[
0 k

]
Y =

[
v1 v2

]
. Multiply on the left by the word in Q

and R representing [ Y 0
0 1 ]. This leaves us with a word representing [X 0

v ±1 ] for some
X ∈ SL2(Z).
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4. Finally, since AX−1 ∈ SL2(Z), there exists a word in Q and R representing
[
AX−1 0

0 1

]
.

Multiply on the left by this word. The result is the desired element B ∈ G. �

Lemma 5.1.4. A mapping class f ∈ Mod(Σ1,B) is in LModk(Σ1,B) if and only if

Ψ(f) ∈


A11 A12 0
A21 A22 0
v1 v2 ±1

 :

[
A11 A12

A21 A22

]
∈ SL2(Z), v1 ≡ v2 ≡ 0 mod k

 .

Proof. With respect to the basis {x, y, z} of H1(Σ1,2;Z) we have

kerϕk =


c1

c2

c3

 ∈ H1(Σ1,2;Z) : c3 ≡ 0 mod k

 .

Let c = c1x+ c2y + c3z ∈ kerϕk. By Lemma 2.3.5, it suffices to showA11 A12 0
A21 A22 0
v1 v2 ±1

c1

c2

c3

 =

 A11c1 + A12c2

A21c1 + A22c2

v1c1 + v2c2 ± c3

 ∈ kerϕk

if and only if v1 ≡ v2 ≡ 0 mod k. If v1 ≡ v2 ≡ 0 mod k, then v1c1 +v2c2±c3 ≡ 0 mod k.

Conversely, suppose v1 6≡ 0 mod k. Consider
[

1
0
0

]
∈ kerϕk. ThenA11 A12 0

A21 A22 0
v1 v2 ±1

1
0
0

 =

A11

A21

v1

 6∈ kerϕk.

If v2 6≡ 0 mod k, then the same argument with
[

0
1
0

]
∈ kerϕk completes the proof. �

Lemma 5.1.5. Let f, g ∈ Mod(Σ1,B) with Ψ(f) = [ A1 0
v1 ε1 ] and Ψ(g) = [ A2 0

v2 ε2 ] where
Ai ∈ SL2(Z), vi ∈ Z ⊕ Z, and εi = ±1. Then f and g are in the same right coset of
LModk(Σ1,B) if and only if v1 ≡ v2 mod k when ε1 = ε2 and v1 ≡ −v2 mod k when
ε1 = −ε2.

Proof. As above, let τ be the half twist about the arc µ from Figure 5.2. By Lemma 5.1.4,

τ ∈ LModk(Σ1,B) since Ψ(τ) =
[

1 0 0
0 1 0
0 0 −1

]
. Therefore for any f ∈ Mod(Σ1,B), τf and f are

in the same right coset of LModk(Σ1,B). Since multiplying a matrix on the left by Ψ(τ)
simply negates the third row, it suffices to prove the result in the case where ε1 = ε2 = 1.

Since [ A 0
v 1 ]−1 =

[
A−1 0
−vA−1 1

]
we have Ψ(fg−1) =

[
A1A

−1
2 0

(v1−v2)A−1
2 1

]
. Since det(A2) = 1, A2

is invertible over Z/kZ. By Lemma 5.1.4, fg−1 ∈ LModk(Σ1,B) if and only if v1 ≡ v2

mod k, completing the proof. �
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We have the following immediate corollary of Lemma 5.1.5.

Corollary 5.1.6. The index of LModk(Σ1,B) in Mod(Σ1,B) is equal to k2.

Lemma 5.1.5 not only allows us to find a Schreier system of right coset representatives,
but also provides a tool for identifying to which coset an element of Mod(Σ1,B) belongs.

To proceed, we will focus on the case k = 3. Let a, b, c, d be the generating symbols
from Proposition 5.1.1.

Proposition 5.1.7. The set S = {1, c, c−1, cb, cb−1, c−1b, c−1b−1, cba, cb−1c} is a Schreier
system of right coset representatives of Mod(Σ1,B) mod LMod3(Σ1,B).

Proof. Recall a = Tα, b = Tβ, and c = Tγ where α, β, and γ are the curves defined in
Figure 5.1. Let q : GL3(Z)→ GL3(Z/3Z) be the quotient map. By Lemma 5.1.2 we have

qΨ(1) =

1 0 0
0 1 0
0 0 1

 qΨ(cb) =

0 1 0
2 1 0
2 1 1

 qΨ(c−1b−1) =

0 2 0
1 1 0
2 2 1


qΨ(c) =

1 1 0
0 1 0
0 1 1

 qΨ(cb−1) =

2 1 0
1 1 0
1 1 1

 qΨ(cba) =

0 1 0
2 0 0
2 0 1


qΨ(c−1) =

1 2 0
0 1 0
0 2 1

 qΨ(c−1b) =

2 2 0
2 1 0
1 2 1

 qΨ(cb−1c) =

2 0 0
1 2 0
1 0 1

 .
By Lemma 5.1.5, S is a complete set of right coset representatives of LMod3(Σ1,B). Ob-
serving that any initial segment of a word in S is again in S completes the proof. �

We are now ready to apply the Reidemeister-Schreier rewriting process to arrive at a
presentation for LMod3(Σ1,B).

5.1.3 Presentations and generating sets

Applying Theorem 2.4.3 using Lemma 5.1.5 and Proposition 5.1.7 we get the following
presentation for LMod3(Σ1,B).

Theorem 5.1.8. The liftable mapping class group LMod3(Σ1,B) admits the presentation

〈A,B,C,D | [A,C], [A,D], [B,D], [C,D],

ABA = BAB,BCBCBC = CBCBCB,D2, (BACBC)4〉

where A = Tα,B = Tβ,C = T 3
γ , and D = ι.
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The proof relies on Sage code to perform the Reidemeister-Schreier rewriting process,
as well as to help perform some of the Tietze transformations to arrive at the desired pre-
sentation. Since it is lengthy and computationally dense, the proof is deferred to Appendix
A.

Using the same method as in the k = 3 case, presentations for the cases k = 2 and k = 4
are obtained, and finite generating sets are obtained for k = 5 and k = 6. Unfortunately
the current method of arriving at presentations using the Reidemeister-Schreier rewriting
process does not appear to lend itself well to finding a general form for presentations for
all k. The next paragraph summarizes the results for k = 2, 4, 5, 6, which were arrived at
using similar methods to the k = 3 case.

The liftable mapping class group LMod2(Σ1,B) admits the presentation

〈A,B,C,D | [A,D], [A,C], [C,D], [B,D], D2, ABA = BAB,BCBC = CBCB, (BAC)3〉

where A = Tα, B = Tβ, C = T 2
γ , and D = ι.

LMod4(Σ1,B) admits the presentation

〈A,B,C,D,H |[A,D], [A,C], [C,D], [B,D], [H,D], D2, ABA = BAB,

HAHA = AHAH,CBH = HCB,HCBCB = BHCBC, (BAHC)3〉

where A = Tα, B = Tβ, C = T 4
γ , H = T 2

T 2
γ (β) and D = ι.

LMod5(Σ1,B) and LMod6(Σ1,B) are generated by

{Tα, Tβ, T 5
γ , ι, TγT

3
βTγT

−2
β Tγ} and {Tα, Tβ, T 6

γ , ι, T
3
T 2
γ (β), T

2
T 3
γ (β)}

respectively.

5.1.4 Abelianization

Using the presentation from Theorem 5.1.8 we may now compute the abelianization of
LMod3(Σ1,B). Recall that for any group G, H1(G;Z) ∼= G/[G,G].

Theorem 5.1.9. H1(LMod3(Σ1,B);Z) ∼= Z/2Z⊕ Z/4Z⊕ Z.

Proof. In the following computations, let T be the set of all commutators. By Theorem
5.1.8, H1(LMod3(Σ1,B);Z) admits the presentation

〈A,B,C,D | D2, A = B, (AB2C2)4, T 〉 ∼= 〈A,C,D | D2, A12C8, T 〉.

The presentation matrix for this presentation is [ 2 0 0
0 4 8 ], which has Smith normal form [ 2 0 0

0 4 0 ].
Therefore H1(LMod3(Σ1,B);Z) ∼= Z/2Z⊕ Z/4Z⊕ Z. �
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By similar computations to those in the proof of Theorem 5.1.9 we have

H1(LModk(Σ1,B);Z) ∼=

{
Z/2Z⊕ Z/3Z⊕ Z if k = 2

Z/2Z⊕ Z/3Z⊕ Z⊕ Z if k = 4.

We have the following corollary. Recall that the first Betti number of a group G,
denoted b1(G), is the rank of the abelian group H1(G;Z). Let SModk(Σk) be the symmetric
mapping class group corresponding to the cyclic branched cover pk : Σk → Σ1.

Corollary 5.1.10. The first Betti number of SMod3(Σ3) is 1.

Proof. By the Birman-Hilden theorem (Theorem 2.3.2) there is a short exact sequence

1 −→ Z/kZ −→ SModk(Σk) −→ LModk(Σ1,B) −→ 1.

Since the abelianization functor is right exact we have

Z/kZ −→ H1(SModk(Σk);Z) −→ H1(LModk(Σ1,B);Z) −→ 1.

Since ⊗Q is an exact functor we have H1(SModk(Σk);Z)⊗Q ∼= H1(LModk(Σ1,B);Z)⊗Q.
Therefore b1(SModk(Σk)) = b1(LModk(Σ1,B)). Computing b1(LMod3(Σ1,B)) by Theorem
5.1.9 completes the proof. �

Again, performing similar computations for k = 2 and k = 4 we get

b1(SModk(Σk)) =

{
1 if k = 2

2 if k = 4.

5.2 Interactions between the liftable mapping class

groups

In the previous section, we constructed a family of finite index subgroups

{LModk(Σ1,B) : k ≥ 2}

of Mod(Σ1,B). A natural question to ask is how do these subgroups interact with each
other.

To state the main result of this section, we need the following standard result from
group theory. For subgroups H,K < G, denote HK := {hk : h ∈ H, k ∈ K}. In general
HK is not a group.
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Lemma 5.2.1. Let H,K < G be subgroups of finite index. Then

[G : H ∩K] ≤ [G : H][G : K]

with equality if and only if G = HK.

For the statement of the next theorem, let LMod1(Σ1,B) = Mod(Σ1,B).

Theorem 5.2.2. For integers k, l ≥ 2, LModk(Σ1,B)∩LModl(Σ1,B) = LModlcm(k,l)(Σ1,B)
and LModk(Σ1,B) LModl(Σ1,B) = LModgcd(k,l)(Σ1,B).

Proof. For ease of notation, let Gk = LModk(Σ1,B).
Let {x, y, z} be the basis for H1(Σ1,2;Z) defined at the beginning of this chapter. Let

Ψ : Mod(Σ1,B) → GL3(Z) be the homomorphism given by the action of Mod(Σ1,B) on
H1(Σ1,2;Z) with respect to {x, y, z}. Let f ∈ Mod(Σ1,B), and let Ψ(f) = [ A 0

v ±1 ] where
A ∈ SL2(Z) and v = (v1, v2) ∈ Z ⊕ Z by Lemma 5.1.3. Then f ∈ Gk ∩ Gl if and only if
v1 ≡ v2 ≡ 0 mod k and v1 ≡ v2 ≡ 0 mod l by Lemma 5.1.4. This is true if and only if
v1 ≡ v2 ≡ 0 mod lcm(k, l). Therefore by Lemma 5.1.4 we can conclude Gk∩Gl = Glcm(k,l).

Since gcd(k, l) divides k and l, it follows that Gk and Gl are both subgroups of Ggcd(k,l).
By Lemma 5.2.1, it suffices to show [Ggcd(k,l) : Glcm(k,l)] = [Ggcd(k,l) : Gk][Ggcd(k,l) : Gl]. By
Corollary 5.1.6 we have

[Ggcd(k,l) : Glcm(k,l)] =
lcm(k, l)2

gcd(k, l)2

=
k2

gcd(k, l)2

l2

gcd(k, l)2

= [Ggcd(k,l) : Gk][Ggcd(k,l) : Gl]

since lcm(k, l) gcd(k, l) = kl. �
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Chapter 6

Lifting Mapping Classes on Surfaces
with Boundary

So far we have only dealt with liftable mapping class groups coming from covers of closed
surfaces. We now shift our focus to the case where the surfaces have non-empty boundary.
Assume ∂Σ̃ 6= ∅ and ∂Σ 6= ∅. Let p : Σ̃→ Σ be a finite-sheeted, regular, possibly branched
covering space with finite deck group D, branched at B ⊂ Σ \ ∂Σ.

The primary goal of this chapter is to prove the analogous result to Lemma 2.3.5 for
surfaces with boundary in Theorem 6.2.4. As a consequence we prove that LModp(Σ, ∂Σ,B)
is a finite index subgroup of Mod(Σ, ∂Σ,B) in Theorem 6.2.9.

To characterize homeomorphisms that lift, it will once again be useful to look at the
corresponding unbranched covering p◦ : Σ̃◦ → Σ◦.

If we were not concerned with fixing boundary components, then a homeomorphism f

of Σ◦ lifts if and only if f∗p
◦
∗π1(Σ̃◦, x̃) = p◦∗π1(Σ̃◦, f̃(x)) for any x ∈ Σ◦, x̃ ∈ p−1(x) and

f̃(x) ∈ p−1(f(x)). However, the following example shows that such a characterization in
terms of the fundamental group is inadequate when boundaries are to be fixed.

Consider the 2-sheeted unbranched cover of an annulus S by an annulus S̃, and choose a
basepoint x ∈ ∂S. Then any homeomorphism fixing ∂S pointwise acts trivially on π1(S, x)

and therefore lifts to a homeomorphism of S̃. However, a Dehn twist on the annulus S does
not have a lift that fixes ∂S̃ pointwise, whereas the square of a Dehn twist does. Indeed,
the square of a Dehn twist on S lifts to a Dehn twist on S̃ (see Example 6.2.7 below).

To characterize when a homeomorphism lifts to a homeomorphism that fixes boundary
components, we must instead look at the action of a homeomorphism on the fundamental
groupoid π1(Σ◦, A) for a specific choice of basepoints A ⊂ Σ◦.
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6.1 Groupoids

Here we survey the relevant results about groupoids. See the books [28] and [15] for more
details.

A groupoid is a small category where every morphism is an isomorphism. Equivalently,
a groupoid G is a disjoint collection of sets {Gij}i,j∈I together with an associative partial
operation · : Gij ×Gjk → Gik such that

• For each i ∈ I there is an identity ei ∈ Gii such that eif = f and gei = g for all f, g
such that the products eif and gei are defined, and

• For each g ∈ Gij there is an inverse g−1 ∈ Gji such that gg−1 = ei and g−1g = ej.

We will call I the object set of G. If |I| = 1 (equivalently if the category has one object),
then G is a group.

A groupoid is connected if Gij 6= ∅ for all i, j ∈ I. Notice that Gii is a group for all
i ∈ I, and if G is connected then Gii

∼= Gjj for all i, j ∈ I. The groups Gii will be called
vertex groups. From now on we will assume G is a connected groupoid.

Fix an i0 ∈ I. For each i ∈ I choose an element ιi ∈ Gi0i with ιi0 = ei0 . Then G is
generated by the vertex group Gi0i0 and {ιi}i∈I . In fact, every element in Gij is uniquely
written as ι−1

i gιj for some g ∈ Gi0i0 . We call {ιi}i∈I a star based at i0.
A subgroupoid H < G is a collection of subsets {Hij ⊂ Gij}i,j∈J for some non-empty

J ⊂ I such that H is a groupoid with the operation from G. A subgroupoid is wide if
J = I. A subgroupoid H < G is normal if f−1Hiif ⊂ Hjj for all f ∈ Gij. It follows that
normal subgroupoids of connected groupoids are wide, and h 7→ f−1hf is an isomorphism
of groups Hii

∼= Hjj.
In this chapter we will be interested in connected normal subgroupoids of connected

groupoids. LetH be a connected normal subgroupoid of G. Construct the quotient groupoid
G/H to be a groupoid with one object, or a group, as follows. Put an equivalence relation
∼ on G by a ∼ b if there exists x, y ∈ H such that a = xby. The equivalence classes will
be called the cosets of H in G, and these are the elements of G/H. Define an operation
on the cosets by [a][b] = [axb] for some x ∈ H. This is a well defined group operation on
G/H.

Although we will not need it, the quotient groupoid can be defined for disconnected
normal subgroupoids of connected groupoids. The only difference is that there is one object
for each connected component of H (see [28, Chapter 12]).
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6.1.1 Automorphisms of groupoids

Let G and H be groupoids with object sets I and J respectively. A morphism Φ : G → H
is a functor from G to H. Explicitly, Φ is a function φ : I → J together with functions
φij : Gij → Hφ(i)φ(j) for all i, j ∈ I such that φij(a)φjk(b) = φik(ab) for all a ∈ Gij, b ∈ Gjk.
It follows that φii(ei) = eφ(i) and φji(g

−1) = φij(g)−1 for all i, j ∈ I an g ∈ Gij. We may
suppress the subscripts and simply write φij(g) as Φ(g).

An automorphism of G is a morphism Φ : G → G with a two-sided inverse. The set of
automorphisms of G forms a group under composition, denoted Aut(G).

We now restrict our attention to connected groupoids with finite object set. Let G be
a group and consider the semi-direct product Gn o Aut(G). To set notation, the group
operation on Gn o Aut(G) is given by

((g1, . . . , gn), ψ)((h1, . . . , hn), ϕ) = ((ψ(h1)g1, . . . ψ(hn)gn), ψϕ)

for all gi, hi ∈ G and ψ, ϕ ∈ Aut(G).
Define the pure automorphism group of G by

PAut(G) := {Φ ∈ Aut(G) : φ(i) = i for all i ∈ I}.

Let G be a connected groupoid with object set I = {0, 1, . . . , n}. Let G = G00 be the
vertex group at 0 ∈ I. Choose a star {ιi}i∈I ⊂ G based at 0 ∈ I and let g0 = e0 ∈ G.

Lemma 6.1.1. The map θ : Gn o Aut(G) −→ PAut(G) given by

θ(((g1, . . . , gn), ψ))(ι−1
i aιj) = ι−1

i g−1
i ψ(a)gjιj

is an isomorphism.

Lemma 6.1.1 is proved in [3, §3]. Note that the isomorphism θ depends on the choice
of star.

Let H < G be a normal subgroupoid. If Φ ∈ Aut(G) is such that Φ(H) ⊂ H, then
Φ induces an automorphism Φ ∈ Aut(G/H) by Φ([a]) = [Φ(a)]. Define the subgroup
LAutH(G) < PAut(G) by

LAutH(G) = {Φ ∈ PAut(G) : Φ(H) = H and Φ = id ∈ Aut(G/H)}.

Our goal is to prove, with certain restrictions on G and H, that LAutH(G) is finite index
in PAut(G).

The next lemma requires the following setup. Let G be a connected groupoid with
object set I = {0, 1, . . . , n} and let G = G00 be the vertex group at 0 ∈ I. Let H be a

63



connected normal subgroupoid with vertex group H = H00, which is a normal subgroup of
G.

Define the subgroup K < Gn o Aut(G) by

K = {((g1, . . . , gn), ψ) ∈ Gn o Aut(G) : ψ ∈ LAutH(G), gi ∈ H for all i}.

Here, LAutH(G) is defined by considering a group as a groupoid with one object.

Lemma 6.1.2. Choose a star S = {ιi}i∈I ⊂ H based at 0 ∈ I. Consider the isomorphism
θ : Gn o Aut(G)→ PAut(G) from Lemma 6.1.1 defined by S. Then θ(K) = LAutH(G).

Proof. Let k = ((h1, . . . , hn), ψ) ∈ K, let h0 = e0 ∈ H and let ι−1
i gιj be an arbitrary

element in G. Then θ(k)(ι−1
i gιj) = ι−1

i h−1
i ψ(g)hjιj. Since ψ(g) ∈ H if and only if g ∈ H,

θ(k)(ι−1
i gιj) ∈ H if and only if g ∈ H. Therefore θ(k)(H) = H. In G/H, [ι−1

i gιj] = [g]

for any g ∈ G. Therefore θ(k)([ι−1
i gιj]) = θ(k)([g]) = [ψ(g)]. Since ψ ∈ LAutH(G),

[ψ(g)] = [g] implying θ(k) ∈ LAutH(G).
Conversely, suppose k = ((g1, . . . , gn), ψ) ∈ GnoAut(G) is such that θ(k) ∈ LAutH(G).

We have θ(k)([g]) = [ψ(g)] = [g] for all g ∈ G, so ψ ∈ LAutH(G). Let hιj be an arbitrary
element of H0j. Then θ(k)(hιj) = ψ(h)gjιj. For θ(k)(hιj) to be inH, we must have gj ∈ H.
Therefore k ∈ K, completing the proof. �

Lemma 6.1.3. Let G be a connected groupoid with object set I = {0, 1, . . . , n} and H a
connected normal subgroupoid. Let G = G00 and H = H00 as above. Suppose G is finitely
generated and H is finite index in G. Then LAutH(G) is finite index in PAut(G).

Proof. By Lemma 6.1.2, it suffices to show that K is finite index in Gn o Aut(G). It is
easily checked that ((g1, . . . , gn), ψ) and ((h1, . . . , hn), ϕ) are in the same right coset of K if
and only if [hi] = [gi] in G/H for all i and ψ and ϕ are in the same right coset of LAutH(G)
in Aut(G). The result then follows from the fact that if G is finitely generated and H is
finite index in G, LAutH(G) is finite index in Aut(G). �

6.1.2 The fundamental groupoid

The groupoid that will arise in the next section is the fundamental groupoid of a surface.
We will briefly state the definition here and state some properties without proof that will
be useful later on. For a full treatment, see [15, Chapter 6] or [28, Chapter 6].

Let X be a topological space and A ⊂ X a subset. As a set, the fundamental groupoid
π1(X,A) is the set of homotopy classes of paths σ : [0, 1] → X relative to the endpoints.
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The paths must satisfy σ(0), σ(1) ∈ A. A partial operation is defined on π1(X,A) as
follows. If σ(1) = τ(0), then [σ][τ ] = [γ] where

γ(t) =

{
σ(2t) if 0 ≤ t ≤ 1

2

τ(2t− 1) if 1
2
< t ≤ 1.

Intuitively, two paths can be concatenated if the endpoint of one meets the beginning of
the next. With this partial operation, π1(X,A) forms a groupoid with object set A. The
identities are the constant paths and the vertex group at a ∈ A is the fundamental group
π1(X, a). It is helpful to think of the fundamental groupoid as a fundamental group with
multiple basepoints.

Like the fundamental group, the fundamental groupoid provides a functor from the
category of pairs of topological spaces to groupoids. In particular, if f : X → Y is
a continuous map such that f(A) ⊂ B, then there is an induced groupoid morphism
f∗ : π1(X,A) → π1(Y,B). Furthermore, if f : X → X is a homeomorphism such that
f(A) = A, then f∗ : π1(X,A)→ π1(X,A) is an automorphism of the groupoid π1(X,A).

The last point is especially important. In the next section we will characterize homeo-
morphisms that lift in a particular way by the induced automorphism on the fundamental
groupoid.

6.2 Fundamental groupoids and lifting mapping classes

As hinted at above, to characterize when a homeomorphism lifts to a homeomorphism
that fixes boundary components, we must look at the action of a homeomorphism on the
fundamental groupoid π1(Σ◦, A) for a specific choice of basepoints A ⊂ Σ◦.

Suppose ∂Σ◦ has n + 1 components. Let A = {x0, x1, . . . , xn} ⊂ ∂Σ◦ be such that
each component contains exactly one of the xi. For each xi, choose a point x̃i ∈ p−1(xi)

and let Ã = {x̃0, x̃1, . . . , x̃n} ⊂ ∂Σ̃◦. It follows from the unique path lifting property for

covering spaces [27, p. 60] that the induced groupoid morphism p∗ : π1(Σ̃◦, Ã)→ π1(Σ◦, A)

is injective. Since p : Σ̃◦ → Σ◦ is a regular cover, p∗π1(Σ̃◦, Ã) is a normal subgroupoid of

π1(Σ◦, A). For the remainder of this section let G = π1(Σ◦, A) and H = p∗π1(Σ̃◦, Ã).

For the next lemma, recall from Section 2.2.1 the definitions of SHomeop(Σ̃
◦, ∂Σ̃◦),

LHomeop(Σ
◦, ∂Σ◦), and the homomorphism Π : SHomeop(Σ̃

◦, ∂Σ̃◦)→ LHomeop(Σ
◦, ∂Σ◦).

Lemma 6.2.1. Let f̃ ∈ SHomeop(Σ̃
◦, ∂Σ̃◦) and let f = Π(f̃) ∈ LHomeop(Σ

◦, ∂Σ◦). Then
f∗(H) = H and f∗ = id ∈ Aut(G/H).
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Proof. Since f̃ is a homeomorphism that fixes Ã we have f̃∗π1(Σ̃◦, Ã) = π1(Σ̃◦, Ã). Then

f∗p∗π1(Σ̃◦, Ã) = p∗f̃∗π1(Σ̃◦, Ã) = p∗π̃1(Σ̃◦, Ã) so f∗H = H.
Now let B = p−1(A). Let [σ] ∈ G for some path σ : [0, 1] → Σ◦ such that σ(0) = xi

and σ(1) = xj. Let σ̃ be the unique path in Σ̃◦ such that p(σ̃) = σ and σ̃(0) = x̃i. Then

σ̃(1) ∈ B. Since B ⊂ ∂Σ̃◦, f̃ σ̃(1) = σ̃(1). Therefore [σ̃][f̃ σ̃]−1 is defined in π1(Σ̃◦, B). Then

p∗([σ̃][f̃ σ̃]−1) = [pσ̃][pf̃ σ̃]−1 = [σ][fpσ̃]−1 = [σ][f(σ)]−1. However, [σ̃][f̃ σ̃]−1 ∈ π1(Σ̃◦, Ã) so
[σ][f(σ)]−1 ∈ H. We finally conclude that [σ] and [f(σ)] are in the same coset of H in G,
completing the proof. �

Lemma 6.2.1 is one direction of Theorem 6.2.4. Lemmas 6.2.2 and 6.2.3 prove the other
direction.

Lemma 6.2.2. Let f ∈ Homeo(Σ◦, ∂Σ◦) be such that f∗(H) = H and f∗ = id ∈ Aut(G/H).
Then there is a lift f̃ of f such that f̃(x̃0) = x̃0 and f̃−1df̃ = d for all d ∈ D.

Proof. Since f∗(H) = H, f∗p∗π1(Σ̃◦, x̃0) = p∗π1(Σ̃◦, x̃0). Therefore there is a lift g̃ of f
such that g̃(x̃0) ∈ p−1(x0). Since D acts transitively on the fiber p−1(x0), there is some
d ∈ D such that dg̃(x̃0) = x̃0. Therefore f̃ = dg̃ is a lift of f such that f̃(x̃0) = x̃0.

Let d ∈ D. To see f̃−1df̃ = d, we will first show f̃d(x̃0) = df̃(x̃0). Let δ̃ be a path in

Σ̃◦ such that δ̃(0) = x̃0 and δ̃(1) = d(x̃0). Let δ = pδ̃. Then [δ] ∈ π1(Σ◦, x0).
By assumption, [δ] and [fδ] are in the same coset of H in G, so in particular they are in

the same coset of p∗π1(Σ̃◦, x̃0) in π1(Σ◦, x0). This implies that if γ̃ is a lift of fδ such that
γ̃(0) = x̃0, then γ̃(1) = δ̃(1). However, pf̃ δ̃ = fδ and f̃ δ̃(0) = x̃0 so f̃ δ̃ = γ̃. Therefore
f̃d(x̃0) = f̃ δ̃(1) = δ̃(1) = d(x̃0). Since f̃(x̃0) = x̃0 we have df̃(x̃0) = d(x̃0) = f̃d(x̃0).

We now have df̃(x̃0) = f̃df̃−1f̃(x̃0). Since f̃df̃−1 ∈ D and the deck group acts freely

on Σ̃◦, f̃df̃−1 = d, completing the proof. �

Lemma 6.2.3. Let f ∈ Homeo(Σ◦, ∂Σ◦) be such that f∗(H) = H and f∗ = id ∈ Aut(G/H).
Then f ∈ LHomeop(Σ

◦, ∂Σ◦).

Proof. Let f̃ be the lift of f such that f̃(x̃0) = x̃0 ensured by Lemma 6.2.2. Let ỹ ∈ ∂Σ̃◦.
It suffices to show f̃(ỹ) = ỹ.

Let y = p(ỹ) ∈ ∂Σ◦. Then y is in the same component of ∂Σ◦ as xi for some i. We will
first show f̃(x̃i) = x̃i.

Let δ̃ be a path in Σ̃◦ such that δ̃(0) = x̃0 and δ̃(1) = x̃i. Let δ = pδ̃. Since [δ] ∈ H,
[fδ] ∈ H. Since pf̃ δ̃ = fpδ̃ = fδ, we have that f̃ δ̃ is the unique lift of fδ such that
f̃ δ̃(0) = x̃0. Since [fδ] ∈ H, there is a lift γ̃ of fδ such that γ̃(0) = x̃0 and γ̃(1) = x̃i.
Therefore f̃ δ̃(1) = x̃i so f̃(x̃i) = x̃i.
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Now let σ be a path in ∂Σ◦ such that σ(0) = xi and σ(1) = y. Then fσ = σ. Let σ̃
be the lift of σ such that σ̃(0) = x̃i. Then f̃ σ̃ is a lift of σ. Furthermore, since f̃(x̃i) = x̃i,
f̃ σ̃(0) = σ̃(0) so f̃ σ̃ = σ̃. Since σ̃ is a lift of σ and D acts transitively on p−1(y), there is
some d ∈ D such that σ̃(1) = d(ỹ). Therefore f̃d(ỹ) = d(ỹ). By Lemma 6.2.2, df̃(ỹ) = d(ỹ)
so f̃(ỹ) = ỹ, completing the proof. �

To state the following theorem, we return to the setting of the original branched cover
p : Σ̃→ Σ branched at B ⊂ Σ\∂Σ. If f ∈ Mod(Σ, ∂Σ,B) we will abuse notation and denote
by f∗ ∈ Aut(π1(Σ◦, A)) the automorphism induced by a representative homeomorphism
for f . The abuse of notation is legal since any representative homeomorphism for f fixes
A pointwise, and isotopic homeomorphisms induce the same groupoid automorphism.

Theorem 6.2.4. The liftable mapping class group is given by

LModp(Σ, ∂Σ,B) = {f ∈ Mod(Σ, ∂Σ,B) : f∗(H) = H, f∗ = id ∈ Aut(G/H)}.

Proof. Recall that f ∈ LHomeop(Σ, ∂Σ,B) if and only if the restriction of f to Σ◦ is in
LHomeop(Σ

◦, ∂Σ◦). Combining Lemmas 6.2.1 and 6.2.3 completes the proof. �

If Σ has one boundary component we get the following well-known corollary.

Corollary 6.2.5. Suppose Σ has one boundary component. Choose a basepoint x ∈ ∂Σ◦

and x̃ ∈ p−1(x). Then

LModp(Σ, ∂Σ,B) = {[f ] ∈ Mod(Σ, ∂Σ,B) : qf∗ = q}

where q : π1(Σ◦, x)→ π1(Σ◦, x)/p∗π1(Σ̃◦, x̃) is the quotient map and f∗ is the induced map
on π1(Σ◦, x).

Proof. The condition qf∗ = q is equivalent to f∗ acting trivially on the cosets of p∗π1(Σ̃◦, x̃)
in π1(Σ◦, x). The result then follows from Theorem 6.2.4. �

6.2.1 Identifying liftable mapping classes

The next proposition gives a direct way to check whether or not an element of Mod(Σ, ∂Σ,B)
is in LModp(Σ, ∂Σ,B).

Choose a point x0 ∈ ∂Σ◦ and a lift x̃0 ∈ p−1(x0). Choose a generating set {γ1, . . . , γm} of

π1(Σ◦, x0). Since the cover is regular, π1(Σ◦, x0)/p∗π1(Σ̃◦, x̃0) ∼= D. Choose an isomorphism
and let q : π1(Σ◦, x0)→ D be the quotient map.
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Suppose there are n+1 components of ∂Σ◦. Enumerate the components not containing
x0 from 1 to n. For each i ∈ {1, . . . , n}, choose an arc σi : [0, 1]→ Σ◦ such that σi(0) = x0

and σi(1) is in the ith boundary component. Let xi = σi(1) ∈ ∂Σ◦.
Let A = {x0, x1, . . . , xn} ⊂ ∂Σ◦. Then the γi and [σj] are all elements of π1(Σ◦, A).

Given an element [f ] ∈ Mod(Σ◦, ∂Σ◦), f∗[σj] = aj[σj] for some aj ∈ π1(Σ◦, x0).

Proposition 6.2.6. A mapping class [f ] is in LModp(Σ, ∂Σ,B) if and only if
qf∗(γi) = q(γi) for all i and aj ∈ ker q for all j.

Proof. Choose a lift x̃0 ∈ p−1(x0). For all i choose lifts σ̃i of σi such that σ̃i(0) = x̃0. Let

x̃i = σ̃i(1) and let Ã = {x̃0, x̃1, . . . , x̃n}. Let G = π1(Σ◦, A) and H = p∗π1(Σ̃◦, Ã). Then
by Theorem 6.2.4 [f ] ∈ LModp(Σ, ∂Σ,B) if and only if f∗ ∈ LAutH(G) where LAutH(G) is
defined in Section 6.1.1.

The condition qf∗(γi) = q(γi) for all i is equivalent to f∗ acting trivially on the cosets

of p∗π1(Σ̃◦, x̃0) in π1(Σ◦, x0). The condition aj ∈ ker q implies aj ∈ p∗π1(Σ̃◦, x̃0) for all i.
The result follows from observing that {[σ1], . . . , [σn]} is a star in H and applying Lemma
6.1.2. �

We will now apply Proposition 6.2.6 to two well-known situations.

Example 6.2.7. Consider the k-sheeted cyclic unbranched cover pk : Ã→ A of an annulus
by an annulus. Choose points x0, x1 ∈ ∂A, with x0 in one boundary component and x1

in the other. Choose an arc σ such that σ(0) = x0, σ(1) = x1. Let γ be a generator of
π1(A, x0).

The cover pk is determined by the surjective homomorphism q : π1(A, x0) → Z/kZ
given by q(γ) = 1, so ker q = 〈γk〉.

The mapping class group Mod(A, ∂A) is an infinite cyclic group generated by a Dehn
twist T . Then T∗(γ) = γ and T∗([σ]) = γ±1[σ] (the exponent of γ depends on the choice
of generator γ of π1(A, x0)).

Applying Proposition 6.2.6, we see T n lifts if and only if n ≡ 0 mod k. Interestingly,
T k lifts to a Dehn twist on Ã, so SModpk(Ã, ∂Ã) = Mod(Ã, ∂Ã).

Example 6.2.8. Choose integers n, k ≥ 2. LetD be a disk and choose n points B ⊂ D\∂D.
LetDn = D\B. Enumerate the deleted points and let xi ∈ H1(Dn;Z) be the homology class
of a loop surrounding only the ith puncture counterclockwise. Let ϕ : H1(Dn;Z)→ Z/kZ
be the surjective homomorphism given by ϕ(xi) = 1 for all i. Let p◦ : Σ◦ → Dn be the
cyclic cover determined by ker(ϕ) and let p : Σ → D be the associated branched cover,
branched at B ⊂ D.

We have Mod(D, ∂D,B) ∼= Bn, where Bn is the braid group on n strands [22, §9.1].
For any f ∈ Mod(D, ∂D,B), let f∗ ∈ Aut(H1(Dn;Z)) be the action of f on H1(Dn;Z) and

68



let σf ∈ Sn be the induced permutation on the marked points. Then f∗(xi) = xσf (i) for all

i. Therefore ϕf∗(xi) = ϕ
(
xσf (i)

)
= ϕ(xi) for all i, so ϕf∗ = ϕ. Applying Corollary 6.2.5

we see LModp(D, ∂D,B) = Mod(D, ∂D,B).
Applying the Birman-Hilden theorem with boundary (Theorem 2.3.4), we get an iso-

morphism Bn
∼= SModp(Σ, ∂Σ). An argument using the Riemann-Hurwitz formula shows

that Σ has gcd(n, k) boundary components and genus g = 1
2
(1+(1−n)(1−k)−gcd(n, k)).

Therefore there is an injection Bn ↪→ Mod
(

Σ
gcd(n,k)
g , ∂Σ

gcd(n,k)
g

)
.

When k = 2 the embedding coincides with the usual embedding of the braid group
sending each standard braid generator to a Dehn twist [22, §9.4]. An investigation when
k ≥ 3 will appear in upcoming joint work with Alan McLeay.

6.2.2 The index of the liftable mapping class group

In the case when p : Σ̃ → Σ is a finite-sheeted, regular branched cover between closed
surfaces, it is known that the liftable mapping class group LModp(Σ,B) is finite index in

Mod(Σ,B). In this section we prove the analogous result when Σ̃ and Σ have non-empty
boundary.

Theorem 6.2.9. The index of LModp(Σ, ∂Σ,B) in Mod(Σ, ∂Σ,B) is finite.

Proof. Let Ψ : Mod(Σ, ∂Σ,B) → PAut(G) be the homomorphism given by the action of
Mod(Σ, ∂Σ,B) on the fundamental groupoid G. An application of the Alexander method
[22, §2.3] shows that Ψ is injective [33, Theorem 3.1.1]. By Theorem 6.2.4,

Ψ(LModp(Σ, ∂Σ,B)) ⊂ LAutH(G).

We have

[Mod(Σ, ∂Σ,B),LModp(Σ, ∂Σ,B)] = [Ψ(Mod(Σ, ∂Σ,B)),Ψ(LModp(Σ, ∂Σ,B))]

≤ [PAut(G) : LAutH(G)]

<∞.

The equality follows from the injectivity of Ψ. The first inequality follows from the following
fact from group theory: if K,H are subgroups of G, then [H : K ∩H] ≤ [G : K]. The fact
that LAutH(G) is finite index in PAut(G) is Lemma 6.1.3, completing the proof. �
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[19] Max Dehn. Papers on group theory and topology. Springer-Verlag, New York, 1987.
Translated from the German and with introductions and an appendix by John Still-
well, With an appendix by Otto Schreier.

[20] Patrick Dehornoy. A fast method for comparing braids. Adv. Math., 125(2):200–235,
1997.

[21] Hisaaki Endo. Meyer’s signature cocycle and hyperelliptic fibrations. Math. Ann.,
316(2):237–257, 2000.

[22] Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49 of
Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2012.

71



[23] Tyrone Ghaswala and Rebecca R. Winarski. The liftable mapping class group of
balanced superelliptic covers. New York J. Math., 23:133–164, 2017.

[24] Tyrone Ghaswala and Rebecca R. Winarski. Lifting homeomorphisms and cyclic
branched covers of spheres. Michigan Math. J., 66, 2017.

[25] Daniel Gries. On the cohomology of the hyperelliptic mapping class group. Topology
Appl., 143(1-3):49–73, 2004.

[26] Richard Hain. Finiteness and Torelli spaces. In Problems on mapping class groups
and related topics, volume 74 of Proc. Sympos. Pure Math., pages 57–70. Amer. Math.
Soc., Providence, RI, 2006.

[27] Allen Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.

[28] Philip J. Higgins. Notes on categories and groupoids. Van Nostrand Reinhold Co.,
London-New York-Melbourne, 1971. Van Nostrand Rienhold Mathematical Studies,
No. 32.

[29] Nikolai V. Ivanov. Mapping class groups. In Handbook of geometric topology, pages
523–633. North-Holland, Amsterdam, 2002.

[30] Ryoji Kasagawa. Dirac operators and hyperelliptic mapping class groups.
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Appendix A

Proof of Theorem 5.1.8

In this appendix we provide a proof for Theorem 5.1.8. The proof relies heavily on code
written in Sage, which has been included below in Section A.1.

Proof of Theorem 5.1.8. Applying the Reidemeister-Schreier rewriting process we obtain
the generators

{CK,α : K ∈ S, α ∈ {a, b, c, d}}
and relators

{CK,α : K ∈ S, α ∈ {a, b, c, d}, Kα ≈ Kα} ∪ Λ

= {C1,c, Cc,b, Cc−1b, Cc−1,c, Ccb−1,b, Ccb−1,c, Ccb,a, Cc−1b−1,b} ∪ Λ

where Λ is defined below and Kα is the element in S that represents the same coset as
Kα. Here ≈ means freely equal.

The relators in Λ are given by output 0 from the Sage code:
C1,aC1,bC1,aC

−1
1,bC

−1
1,aC

−1
1,b

C1,bC1,cCc,bC
−1
cb,cC

−1
c,b C

−1
1,c

C1,aC1,cC
−1
c,aC

−1
1,c

C1,aC1,dC
−1
1,aC

−1
1,d

C1,bC1,dC
−1
1,bC

−1
1,d

C1,cCc,dC
−1
1,cC

−1
1,d

C1,dC1,d

C1,aC1,bC1,cCc,aCc,bCcb,cCcb,aCcba,bCcba,cCcba,aCc′b′,bCc′,c
C1,cCc,aCc,bCcb,aC

−1
cba,bC

−1
cb,aC

−1
c,b C

−1
1,c

C1,cCc,bCcb,cCcb,bC
−1
c′b,cC

−1
c′,bC

−1
c,cC

−1
1,c

C1,cCc,aCc,cC
−1
c′,aC

−1
c,cC

−1
1,c
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C1,cCc,aCc,dC
−1
c,aC

−1
c,dC

−1
1,c

C1,cCc,bCcb,dC
−1
c,b C

−1
c,dC

−1
1,c

C1,cCc,cCc′,dC
−1
c,cC

−1
c,dC

−1
1,c

C1,cCc,dCc,dC
−1
1,c

C1,cCc,aCc,bCcb,cCcb,aCcba,bCcba,cCcba,aCc′b′,bCc′,cC1,aC1,bC1,cC
−1
1,c

C−1
c′,cCc′,aCc′,bCc′b,aC

−1
cb′c,bC

−1
c′b,aC

−1
c′,bCc′,c

C−1
c′,cCc′,bCc′b,cCcb′,bC

−1
1,cC

−1
1,bC

−1
c′,cCc′,c

C−1
c′,cCc′,aCc′,cC

−1
1,aC

−1
c′,cCc′,c

C−1
c′,cCc′,aCc′,dC

−1
c′,aC

−1
c′,dCc′,c

C−1
c′,cCc′,bCc′b,dC

−1
c′,bC

−1
c′,dCc′,c

C−1
c′,cCc′,cC1,dC

−1
c′,cC

−1
c′,dCc′,c

C−1
c′,cCc′,dCc′,dCc′,c

C−1
c′,cCc′,aCc′,bCc′b,cCcb′,aCc′b,bCc′b′,cCc′b′,aCcb,bCcb′,cCcb′c,aCcb′,bCc,cCc′,c

C1,cC
−1
cb′,bCcb′,cCcb′c,aCcb′,bCc,aC

−1
cb′,bC

−1
cb′c,aC

−1
cb′c,bC

−1
cb′,cCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,cCcb′c,bCcb′c,cCc′b,bC

−1
c′b′,cC

−1
c′b,bC

−1
cb′c,cC

−1
cb′,cCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,cCcb′c,aCcb′,cC

−1
c′b,aC

−1
cb′c,cC

−1
cb′,cCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,cCcb′c,aCcb′,dC

−1
cb′c,aC

−1
cb′c,dC

−1
cb′,cCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,cCcb′c,bCcb′c,dC

−1
cb′c,bC

−1
cb′c,dC

−1
cb′,cCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,cCcb′c,cCc′b,dC

−1
cb′c,cC

−1
cb′c,dC

−1
cb′,cCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,cCcb′c,dCcb′c,dC

−1
cb′,cCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,cCcb′c,aCcb′,bCc,cCc′,aCc′,bCc′b,cCcb′,aCc′b,bCc′b′,cCc′b′,aCcb,bCcb′,cC

−1
cb′,cCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,aCc′b,bCc′b′,aC

−1
c,b C

−1
c,aC

−1
cb′,bCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,bCc,cCc′,bC

−1
cb′c,cC

−1
cb′c,bC

−1
cb′,cCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,aCc′b,cC

−1
cb′c,aC

−1
cb′,cCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,aCc′b,dC

−1
cb′,aC

−1
cb′,dCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,bCc,dC

−1
cb′,bC

−1
cb′,dCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,cCcb′c,dC

−1
cb′,cC

−1
cb′,dCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,dCcb′,dCcb′,bC

−1
1,c

C1,cC
−1
cb′,bCcb′,aCc′b,bCc′b′,cCc′b′,aCcb,bCcb′,cCcb′c,aCcb′,bCc,cCc′,aCc′,bCc′b,cCcb′,bC

−1
1,c

C−1
c′,cCc′,bCc′b,aCcb′c,bCcb′c,aC

−1
cb,bC

−1
c′b′,aC

−1
c′b,bC

−1
c′,bCc′,c

C−1
c′,cCc′,bCc′b,bCc′b′,cCc′b′,bC

−1
c,cC

−1
cb′,bC

−1
c′b,cC

−1
c′,bCc′,c

C−1
c′,cCc′,bCc′b,aCcb′c,cC

−1
cb′,aC

−1
c′b,cC

−1
c′,bCc′,c

C−1
c′,cCc′,bCc′b,aCcb′c,dC

−1
c′b,aC

−1
c′b,dC

−1
c′,bCc′,c

C−1
c′,cCc′,bCc′b,bCc′b′,dC

−1
c′b,bC

−1
c′b,dC

−1
c′,bCc′,c
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C−1
c′,cCc′,bCc′b,cCcb′,dC

−1
c′b,cC

−1
c′b,dC

−1
c′,bCc′,c

C−1
c′,cCc′,bCc′b,dCc′b,dC

−1
c′,bCc′,c

C−1
c′,cCc′,bCc′b,aCcb′c,bCcb′c,cCc′b,aCcb′c,bCcb′c,cCc′b,aCcb′c,bCcb′c,cCc′b,aCcb′c,bCcb′c,cC

−1
c′,bCc′,c

C1,cCc,bCcb,aCcba,aCc′b′,bCc′,aC
−1
c′b′,bC

−1
cba,aC

−1
cba,bC

−1
cb,aC

−1
c,b C

−1
1,c

C1,cCc,bCcb,aCcba,bCcba,cCcba,bC
−1
cba,cC

−1
cba,bC

−1
cba,cC

−1
cb,aC

−1
c,b C

−1
1,c

C1,cCc,bCcb,aCcba,aCc′b′,cC
−1
cba,aC

−1
cba,cC

−1
cb,aC

−1
c,b C

−1
1,c

C1,cCc,bCcb,aCcba,aCc′b′,dC
−1
cba,aC

−1
cba,dC

−1
cb,aC

−1
c,b C

−1
1,c

C1,cCc,bCcb,aCcba,bCcba,dC
−1
cba,bC

−1
cba,dC

−1
cb,aC

−1
c,b C

−1
1,c

C1,cCc,bCcb,aCcba,cCcba,dC
−1
cba,cC

−1
cba,dC

−1
cb,aC

−1
c,b C

−1
1,c

C1,cCc,bCcb,aCcba,dCcba,dC
−1
cb,aC

−1
c,b C

−1
1,c

C1,cCc,bCcb,aCcba,aCc′b′,bCc′,cC1,aC1,bC1,cCc,aCc,bCcb,cCcb,aCcba,bCcba,cC
−1
cb,aC

−1
c,b C

−1
1,c

C1,cCc,bCcb,aCcba,bCcba,aC
−1
c′b,bC

−1
cb′,aC

−1
cb,bC

−1
c,b C

−1
1,c

C1,cCc,bCcb,bCcb′,cCcb′c,bC
−1
cb′,cC

−1
cb,bC

−1
cb,cC

−1
c,b C

−1
1,c

C1,cCc,bCcb,aCcba,cC
−1
cb,aC

−1
cb,cC

−1
c,b C

−1
1,c

C1,cCc,bCcb,aCcba,dC
−1
cb,aC

−1
cb,dC

−1
c,b C

−1
1,c

C1,cCc,bCcb,bCcb′,dC
−1
cb,bC

−1
cb,dC

−1
c,b C

−1
1,c

C1,cCc,bCcb,cCcb,dC
−1
cb,cC

−1
cb,dC

−1
c,b C

−1
1,c

C1,cCc,bCcb,dCcb,dC
−1
c,b C

−1
1,c

C1,cCc,bCcb,aCcba,bCcba,cCcba,aCc′b′,bCc′,cC1,aC1,bC1,cCc,aCc,bCcb,cC
−1
c,b C

−1
1,c

C−1
c′,cC

−1
c′b′,bCc′b′,aCcb,bCcb′,aC

−1
c′,bC

−1
c′,aC

−1
c′b′,bCc′b′,bCc′,c

C−1
c′,cC

−1
c′b′,bCc′b′,bCc′,cC1,bC

−1
c′,cC

−1
c′b′,bC

−1
c′b′,cCc′b′,bCc′,c

C−1
c′,cC

−1
c′b′,bCc′b′,aCcb,cC

−1
c′b′,aC

−1
c′b′,cCc′b′,bCc′,c

C−1
c′,cC

−1
c′b′,bCc′b′,aCcb,dC

−1
c′b′,aC

−1
c′b′,dCc′b′,bCc′,c

C−1
c′,cC

−1
c′b′,bCc′b′,bCc′,dC

−1
c′b′,bC

−1
c′b′,dCc′b′,bCc′,c

C−1
c′,cC

−1
c′b′,bCc′b′,cCc′b′,dC

−1
c′b′,cC

−1
c′b′,dCc′b′,bCc′,c

C−1
c′,cC

−1
c′b′,bCc′b′,dCc′b′,dCc′b′,bCc′,c

C−1
c′,cC

−1
c′b′,bCc′b′,aCcb,bCcb′,cCcb′c,aCcb′,bCc,cCc′,aCc′,bCc′b,cCcb′,aCc′b,bCc′b′,cCc′b′,bCc′,c.

Deleting all the symbols which are relators we are left with generators

{CK,α : K ∈ S, α ∈ {a, b, c, d}, Kα 6≈ Kα}

and relators given by output 1 from the Sage code:

C1,aC1,bC1,aC
−1
1,bC

−1
1,aC

−1
1,b

C1,bC
−1
cb,c

77



C1,aC
−1
c,a

C1,aC1,dC
−1
1,aC

−1
1,d

C1,bC1,dC
−1
1,bC

−1
1,d

Cc,dC
−1
1,d

C1,dC1,d

C1,aC1,bCc,aCcb,cCcba,bCcba,cCcba,a
Cc,aC

−1
cba,b

Ccb,cCcb,bC
−1
c′b,cC

−1
c,c

Cc,aCc,cC
−1
c′,aC

−1
c,c

Cc,aCc,dC
−1
c,aC

−1
c,d

Ccb,dC
−1
c,d

Cc,cCc′,dC
−1
c,cC

−1
c,d

Cc,dCc,d
Cc,aCcb,cCcba,bCcba,cCcba,aC1,aC1,b

Cc′,aCc′b,aC
−1
cb′c,bC

−1
c′b,a

Cc′b,cC
−1
1,b

Cc′,aC
−1
1,a

Cc′,aCc′,dC
−1
c′,aC

−1
c′,d

Cc′b,dC
−1
c′,d

C1,dC
−1
c′,d

Cc′,dCc′,d
Cc′,aCc′b,cCcb′,aCc′b,bCc′b′,cCc′b′,aCcb,bCcb′c,aCc,c
Ccb′c,aCc,aC

−1
cb′c,aC

−1
cb′c,b

Ccb′c,bCcb′c,cCc′b,bC
−1
c′b′,cC

−1
c′b,bC

−1
cb′c,c

Ccb′c,aC
−1
c′b,aC

−1
cb′c,c

Ccb′c,aCcb′,dC
−1
cb′c,aC

−1
cb′c,d

Ccb′c,bCcb′c,dC
−1
cb′c,bC

−1
cb′c,d

Ccb′c,cCc′b,dC
−1
cb′c,cC

−1
cb′c,d

Ccb′c,dCcb′c,d
Ccb′c,aCc,cCc′,aCc′b,cCcb′,aCc′b,bCc′b′,cCc′b′,aCcb,b
Ccb′,aCc′b,bCc′b′,aC

−1
c,a

Cc,cC
−1
cb′c,cC

−1
cb′c,b

Ccb′,aCc′b,cC
−1
cb′c,a

Ccb′,aCc′b,dC
−1
cb′,aC

−1
cb′,d

Cc,dC
−1
cb′,d
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Ccb′c,dC
−1
cb′,d

Ccb′,dCcb′,d
Ccb′,aCc′b,bCc′b′,cCc′b′,aCcb,bCcb′c,aCc,cCc′,aCc′b,c
Cc′b,aCcb′c,bCcb′c,aC

−1
cb,bC

−1
c′b′,aC

−1
c′b,b

Cc′b,bCc′b′,cC
−1
c,cC

−1
c′b,c

Cc′b,aCcb′c,cC
−1
cb′,aC

−1
c′b,c

Cc′b,aCcb′c,dC
−1
c′b,aC

−1
c′b,d

Cc′b,bCc′b′,dC
−1
c′b,bC

−1
c′b,d

Cc′b,cCcb′,dC
−1
c′b,cC

−1
c′b,d

Cc′b,dCc′b,d
Cc′b,aCcb′c,bCcb′c,cCc′b,aCcb′c,bCcb′c,cCc′b,aCcb′c,bCcb′c,cCc′b,aCcb′c,bCcb′c,c
Ccba,aCc′,aC

−1
cba,aC

−1
cba,b

Ccba,bCcba,cCcba,bC
−1
cba,cC

−1
cba,bC

−1
cba,c

Ccba,aCc′b′,cC
−1
cba,aC

−1
cba,c

Ccba,aCc′b′,dC
−1
cba,aC

−1
cba,d

Ccba,bCcba,dC
−1
cba,bC

−1
cba,d

Ccba,cCcba,dC
−1
cba,cC

−1
cba,d

Ccba,dCcba,d
Ccba,aC1,aC1,bCc,aCcb,cCcba,bCcba,c
Ccba,bCcba,aC

−1
c′b,bC

−1
cb′,aC

−1
cb,b

Ccb,bCcb′c,bC
−1
cb,bC

−1
cb,c

Ccba,cC
−1
cb,c

Ccba,dC
−1
cb,d

Ccb,bCcb′,dC
−1
cb,bC

−1
cb,d

Ccb,cCcb,dC
−1
cb,cC

−1
cb,d

Ccb,dCcb,d
Ccba,bCcba,cCcba,aC1,aC1,bCc,aCcb,c
Cc′b′,aCcb,bCcb′,aC

−1
c′,a

C1,bC
−1
c′b′,c

Cc′b′,aCcb,cC
−1
c′b′,aC

−1
c′b′,c

Cc′b′,aCcb,dC
−1
c′b′,aC

−1
c′b′,d

Cc′,dC
−1
c′b′,d

Cc′b′,cCc′b′,dC
−1
c′b′,cC

−1
c′b′,d

Cc′b′,dCc′b′,d
Cc′b′,aCcb,bCcb′c,aCc,cCc′,aCc′b,cCcb′,aCc′b,bCc′b′,c.
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There are several relators which tell us that two generating symbols define the same element
in LMod(Σ1,2), for example the second relator C1,bC

−1
cb,c allows us to replace all occurences

of Ccb,c with C1,b and delete the former as a generating symbol. Doing this for all such
relators we can remove the generators on the left in the table below, and replace them with
the symbols on the right.

{Ccba,b, Cc−1,a, Cc,a} 7−→ C1,a

{Ccba,c, Ccb,c, Cc−1b,c, Cc−1b−1,c} 7−→ C1,b

{CK,d : K ∈ S \ {1}} 7−→ C1,d.

Making these substitutions we are left with the generators

{C1,a, C1,b, Cc,c, C1,d, Ccb−1c,a, Ccb−1c,b, Ccb−1c,c, Ccb−1,a, Cc−1b,a, Cc−1b,b, Ccba,a, Ccb,b, Cc−1b−1,a} .

To make this easier to read, we now replace these 13 generating symbols with the letters

{A,B,C,D,E, F,G,H, I, J,K, L,M}

respectively.
Making both these sets of substitutions in the relators, freely reducing, removing du-

plicate relators and removing empty relators, we are left with the following set of relators
given by output 3 of the Sage code. We have numbered the relators so we can keep track
of them as they are manipulated.

1. ABAB−1A−1B−1

2. ADA−1D−1

3. BDB−1D−1

4. DD

5. ABABABK

6. BLB−1C−1

7. ACA−1C−1

8. CDC−1D−1

9. ABABKAB

10. AIF−1I−1

11. ABHJBMLEC
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12. EAE−1F−1

13. FGJB−1J−1G−1

14. EI−1G−1

15. EDE−1D−1

16. FDF−1D−1

17. GDG−1D−1

18. ECABHJBML

19. HJMA−1

20. CG−1F−1

21. HBE−1

22. HDH−1D−1

23. HJBMLECAB

24. IFEL−1M−1J−1

25. JBC−1B−1

26. IGH−1B−1

27. IDI−1D−1

28. JDJ−1D−1

29. IFGIFGIFGIFG

30. KAK−1A−1

31. KBK−1B−1

32. KDK−1D−1

33. KABABAB

34. AKJ−1H−1L−1

35. LFL−1B−1

36. LDL−1D−1

37. ABKABAB

38. MLHA−1

39. MBM−1B−1
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40. MDM−1D−1

41. MLECABHJB

We can now eliminate all but four of the generating symbols by rewriting various relators
as follows:

14. I = G−1E

20. G = F−1C

12. F = EAE−1

38. M = AH−1L−1

21. E = HB

34. H = L−1AKJ−1

25. J = BCB−1

6. L = B−1CB

5. K = (BABABA)−1.

Notice that the last substitution is not exactly as it appears in relator 5. However, by 1
we have that ABABAB = BABABA so this substitution for K is still valid.

Performing these substitutions in the order listed, freely reducing, and eliminating
empty relators leaves us with generators {A,B,C,D} and relators given by Sage output 4:

1. ABAB−1A−1B−1

2. ADA−1D−1

3. BDB−1D−1

4. DD

5. ABABABA−1B−1A−1B−1A−1B−1

7. ACA−1C−1

8. CDC−1D−1

9. ABABA−1B−1A−1B−1A−1B−1AB

10. AC−1B−1C−1A−1B−1A−1C−1AB−1C−1A−1B−1A−1C−1A−1

CABACBA−1CABACBC
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11. AC−1A−1C

13. CBCB−1C−1B−1C−1B−1C−1A−1B−1A−1C−1ACABACB

15. [(BACACB)−1, D]

16. [B−1C−1A−1B−1A−1C−1ACABACB,D]

17. [B−1C−1A−1B−1A−1C−1A−1CABACBC,D]

18. B−1C−1A−1B−1C−1A−1CABACB

19. B−1C−1A−1B−1A−1B−1ABCABABA−1

22. [(BCABACB)−1, D]

23. B−1C−1A−1CAB

24. C−1B−1C−1A−1B−1A−1C−1AB−1C−1A−1B−1

A−1C−1AB−1C−1A−1B−1A−1C−1B−1A−1BC−1B−1

26. C−1B−1C−1A−1B−1A−1C−1AB−1C−1A−1B−1A−1C−1A−1CABACBCBCABAC

27. [(A−1CABACBC)−1, D]

28. [BCB−1, D]

29. C−1B−1C−1A−1B−1A−1C−1AB−1C−1A−1B−1

A−1C−1AB−1C−1A−1B−1A−1C−1AB−1C−1A−1B−1A−1C−1AC

30. A−1B−1A−1B−1A−1B−1ABABAB

31. A−1B−1A−1B−1A−1BABABAB−1

32. [(BABABA)−1, D]

33. A−1B−1A−1B−1A−1B−1ABABAB

35. B−1A−1B−1A−1C−1ACABA

36. [B−1CB,D]

37. ABA−1B−1A−1B−1A−1B−1ABAB

39. ABCABABA−1B−1A−1C−1B−1A−1B−1

40. [ABCABAB,D]

41. ABCAC−1A−1B−1A−1

We will now eliminate relators by showing they are derivable from the relators we want
to end up with.
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Note that the commutators 15, 16, 17, 22, 27, 28, 32, 36, and 40 can all be derived
from 2, 3, and 8 so they can be eliminated. Now consider relator 19, which we can derive
using only relators 1 and 7 as follows. The numbers above the equivalence symbols indicate
which relator we are using to perform the manipulation.

B−1C−1A−1B−1A−1B−1ABCABABA−1 7∼ B−1C−1A−1B−1A−1B−1ABACBABA−1

1∼ B−1C−1A−1CBABA−1

1∼ B−1C−1A−1CABAA−1

7∼ B−1BAA−1

∼ 1.

Similarly, using only 1 and 7 we can derive relators 5, 9, 11, 18, 23, 30, 31, 33, 35, 37, 39,
and 41, so these can also be eliminated. Using 7, we can now rewrite 29 as

(C−1A−1CABACBA−1CABACBA−1CABACBA−1CABACBC)−1 ∼ (BACBC)−4,

so we can replace 29 with the relator (BACBC)4. Similarly we can rewrite 13 using 1 and
7 as

CBCB−1C−1B−1C−1B−1C−1A−1B−1A−1C−1ACABACB

∼ CBCB−1C−1B−1C−1B−1C−1A−1B−1ABACB

∼ CBCB−1C−1B−1C−1B−1C−1BCB,

so 13 can be replaced with (BC)3(CB)−3.
This leaves us with relators

1. ABAB−1A−1B−1

2. ADA−1D−1

3. BDB−1D−1

4. DD

7. ACA−1C−1

8. CDC−1D−1

10. AC−1B−1C−1A−1B−1A−1C−1AB−1C−1A−1B−1A−1C−1A−1

CABACBA−1CABACBC

13. (BC)3(CB)−3
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24. C−1B−1C−1A−1B−1A−1C−1AB−1C−1A−1B−1

A−1C−1AB−1C−1A−1B−1A−1C−1B−1A−1BC−1B−1

26. C−1B−1C−1A−1B−1A−1C−1AB−1C−1A−1B−1A−1C−1A−1CABACBCBCABAC

29. (BACBC)4

It remains to show 10, 24, and 26 can be derived from the others. For 24 we have

(BCB−1ABCABACBA−1CABACBA−1CABACBC)−1

1,7∼ (BCABA−1CA(BACBC)3)−1

7∼ (BACBC)−4

29∼ 1.

For 10 we have

AC−1B−1C−1A−1B−1A−1C−1AB−1C−1A−1B−1A−1C−1A−1CABACBA−1CABACBC
7∼ AC−1B−1A−1C−1B−1C−1B−1C−1A−1B−1A−1BACBCBCABC
1∼ AC−1B−1A−1C−1B−1C−1B−1C−1B−1CBCBCABC
13∼ AC−1B−1A−1B−1C−1B−1C−1B−1C−1CBCBCABC

∼ AC−1B−1A−1B−1ABC
1,7∼ 1.

Similarly using only 1,7, and 13 we can derive 26. These transformations show us that we
can remove relators 10, 24, and 26, leaving us with the presentation

〈A,B,C,D | [A,C], [A,D], [B,D], [C,D],

ABA = BAB,BCBCBC = CBCBCB,D2, (BACBC)4〉.

The final thing to do is work out which elements of Mod(Σ1,2) A, B, C, and D represent.
Recall these symbols are just labels for the symbols C1,a, C1,b, Cc,c, and C1,d respectively.
The rewriting process tells us that the symbol CK,α represents the element represented by

the word KαKα
−1

in the original presentation.
Using this, we see A,B,C, and D represent the words a, b, c3, and d in the presentation

for Mod(Σ1,2) given by Proposition 5.1.1, which are the elements Tα, Tβ, T 3
γ , and the

hyperelliptic involution ι respectively. �
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A.1 Sage code

This is the code that helped perform the Reidemeister-Schreier rewriting process and the
subsequent Tietze transformations in the proof of Theorem 5.1.8. Words are entered as
strings with inverses denoted by a ′. For example, the word ab−1ca−1 would be entered as
the string “ab′ca′”.

generators = [’a’,’b’,’c’,’d’]
inverses = [x + "’" for x in generators]
relators = ["abab’a’b’","bcbc’b’c’","aca’c’","ada’d’","bdb’d’",
"cdc’d’","dd","abcabcabcabc"]
coset_reps = [’’,"c","c’","cb’c","cb’","c’b","cba","cb","c’b’"]

#Takes a word (as a string) and outputs a list of letters (eg
#"abc’" to [’a’,’b’,"c’"]).
def word_to_letters(x):

final = []
L = list(x)
while len(L) > 0:

if L[1 % len(L)] == "’":
final.append(L[0] + L[1])
L.remove(L[0])
L.remove(L[0])

else:
final.append(L[0])
L.remove(L[0])

return final

#Does the opposite of word_to_letters.
def letters_to_word(x):

final = ’’
for letter in x:

final = final + letter
return final

#Takes a word and outputs a list, eg "ab’c" to [[’a’,1],
#[’b’,-1],[’c’,1]].
def word_to_list(x):
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L = word_to_letters(x)
final = []
for let in L:

if let[-1] == "’":
final.append([let[:-1],-1])

else:
final.append([let,1])

return final

#does the opposite of word_to_list.
def list_to_word(x):

final = ""
for let in x:

if let[1] == 1:
final = final + let[0]

else:
final = final + let[0] + "’"

return final

#Checks whether or not a letter (as a string) is an inverse.
def is_inverse(x):

if x in inverses:
return True

else:
return False

#Inverts a list, eg [[’a’,1],[’b’,-1]] to [[’b’,1],[’a’,-1]].
def invert_list(x):

return [[let[0],-let[1]] for let in reversed(x)]

#Inverts a word, eg "abc’d’a" to "a’dcb’a’".
def invert_word(x):

return list_to_word(invert_list(word_to_list(x)))

#Conjugates the first word by the second.
def conjugate(x,y):

return y + x + invert_word(y)
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#Freely reduces a word in list form.
def freely_reduce(rel):

reducedrel = [x for x in rel]
flag = 0
while flag == 0:

flag = 1
for let in range(len(reducedrel)-1):

if reducedrel[let][0] == reducedrel[let + 1][0] and
reducedrel[let][1] + reducedrel[let+1][1] == 0:

flag = 0
del reducedrel[let]
del reducedrel[let]
break

return reducedrel

#Replaces a letter with a string in a word, the word is a list,
#the letter and replacement word are strings.
def replace_letter(rel,letter,replacement):

replacement_list = word_to_list(replacement)
final = []
for let in rel:

if let[0] == letter:
if let[1] == 1:

for x in replacement_list:
final.append(x)

else:
for x in invert_list(replacement_list):

final.append(x)
else:

final.append(let)
return final

#Makes a copy of a list of words (in list form). It will help
#preserve the steps in the working out.
def copy_relators(rels):

final1 = []
for rel in rels:

final2 = []
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for let in rel:
final3 = [x for x in let]
final2.append(final3)

final1.append(final2)
return final1

#Preliminary definitions and functions to define schreier_rep.
######################

a = matrix(GF(3),[[1,1,0],[0,1,0],[0,0,1]])
b = matrix(GF(3),[[1,0,0],[-1,1,0],[0,0,1]])
c = matrix(GF(3),[[1,1,0],[0,1,0],[0,1,1]])
d = matrix(GF(3),[[-1,0,0],[0,-1,0],[0,0,-1]])

alpha = {’a’:a,’b’:b,’c’:c,"a’":aˆ(-1),"b’":bˆ(-1),"c’":cˆ(-1),
’d’:d,"d’":d}
cosetdict = {(0,0):"",(0,1):’c’,(0,2):"c’",(1,0):"cb’c",
(1,1):"cb’",(1,2):"c’b",(2,0):"cba",(2,1):’cb’,(2,2):"c’b’"}

#This takes in a word and outputs the matrix it represents.
def word_to_matrix(x):

letters = word_to_letters(x)
final = matrix(GF(3),[[1,0,0],[0,1,0],[0,0,1]])
for letter in letters:

final = final*alpha[letter]
return final

#This takes in a matrix and returns the coset it belongs to as
#a tuple.
def coset(x):

if x[2,2] == -1:
return tuple([-x[2,0],-x[2,1]])

else:
return tuple([x[2,0],x[2,1]])

########################
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#This takes in a word as a string and returns its coset
#representative (as a string).
def schreier_rep(x):

return cosetdict[coset(word_to_matrix(x))]

#This rewrites a word and outputs the c-symbols as a list.
def rewrite(x):

final = []
L = word_to_letters(x)
for y in range(len(L)):

if is_inverse(L[y]):
symbol = [(schreier_rep(letters_to_word(L[0:y+1])),
L[y][:1]),-1]

else:
symbol = [(schreier_rep(letters_to_word(L[0:y])),
L[y]),1]

final.append(symbol)
return final

#Inputs a set of generators in the Schreier form and outputs
#LaTeX code.
def schreier_rels_to_tex(x):

print "\\noindent $"
for rel in x:

texrel = ’’
for y in rel:

if y[1] == 1:
if y[0][0] == ’’:

texrel = texrel + "C_{1," + y[0][1] + "}"
else:

texrel = texrel + "C_{" + y[0][0] + ","
+ y[0][1] + "}"

else:
if y[0][0] == ’’:

texrel = texrel + "C_{1," + y[0][1] +
"}ˆ{-1}"

else:
texrel = texrel + "C_{" + y[0][0] + ","
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+ y[0][1] + "}ˆ{-1}"
print texrel + "\\\\\n\\\\"

print "$"

#Inputs a list of generators in word/list form and outputs
#LaTeX code.
def list_rels_to_tex(x):

print "\\noindent $"
for rel in x:

texrel = ’’
for y in rel:

if y[1] == 1:
texrel = texrel + y[0]

else:
texrel = texrel + y[0] + ’ˆ{-1}’

print texrel + "\\\\\n\\\\"
print "$"

#This section outputs the relators from the Reidemeister-
#Schreier rewriting process, without any simplification.

SR_relators = []

#Outputs the relators from the Schreier-Reidemeister rewriting
#process.
for x in coset_reps:

for y in relators:
SR_relators.append(rewrite(conjugate(y,x)))

#output 0
schreier_rels_to_tex(SR_relators)

#This section optimizes the relators by deleting any trivial
#generators.

trivial_generators = []
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#Outputs the set of tuples (a,K) such that $C_{a,K}$ is a
#generator that defines the identity.
for y in coset_reps:

for x in generators:
test = y + x + invert_word(schreier_rep(y + x))
if freely_reduce(word_to_list(test)) == []:

trivial_generators.append((y,x))

#Deletes a trivial generator from a word in list form.
def delete_trivial_generators(x):

final = []
for y in x:

if y[0] in trivial_generators:
pass

else:
final.append(y)

return final

#This is the new set of relators.
SR_relators1 = [delete_trivial_generators(x) for x in
copy_relators(SR_relators)]

#output 1
schreier_rels_to_tex(SR_relators1)

#This section optimises the relators by dealing with relations
#of the form $abˆ{-1}$, which allow us to delete $b$ and
#replace it by $a$ wherever it appears.

#This is a list of all relators of the form we want.
short_relators = [x for x in copy_relators(SR_relators1) if
len(x) == 2 and x[0][1] + x[1][1] == 0]

#This is a list of pairs of relators that are equal
equal_generators = [[x[0][0],x[1][0]] for x in short_relators]

#This function takes in a list of pairs defining an equivalence
#relation and outputs the equivalence classes.
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def equivalence_classes(pairs):
equiv = [x for x in pairs]
flag = 0
while flag == 0:

flag = 1
for pair1 in equiv:

for pair2 in equiv[equiv.index(pair1)+1:]:
if len([x for x in pair1 if x in pair2]) > 0:

inindex = equiv.index(pair1)
outindex = equiv.index(pair2)
equiv.insert(inindex,list(set(pair1 +
pair2)))
del equiv[inindex + 1]
del equiv[outindex]
flag = 0
break

if flag == 0:
break

return equiv

#These are the equivalence classes of generators.
generator_classes = [sorted(x) for x in
equivalence_classes(equal_generators)]

#This generates a dictionary which associates every generator
#in the list generator_classes with a specific representative,
#which is the first element in the equivalence class.
generator_classes_dict = {}
for cl in generator_classes:

for gen in cl[1:]:
generator_classes_dict[gen] = cl[0]

SR_relators2 = copy_relators(SR_relators1)
for rel in SR_relators2:

for let in rel:
if let[0] in generator_classes_dict:

newgen = generator_classes_dict[let[0]]
let.insert(0,newgen)
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del let[1]

#output 2
schreier_rels_to_tex(SR_relators2)

#This section replaces the $C$-symbols with letters.

#This creates a dictionary associating a tuple (corresponding
#to a $C$-symbol), with a letter.
new_letters = [’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’,’I’,’J’,’K’,’L’,
’M’]
old_tuples = [(’’,’a’),(’’,’b’),(’c’,’c’),(’’,’d’),
("cb’c",’a’),("cb’c",’b’),("cb’c",’c’),("cb’",’a’),("c’b",’a’),
("c’b",’b’),(’cba’,’a’),(’cb’,’b’),("c’b’",’a’)]
tuples_to_letters = dict(zip(old_tuples,new_letters))

#This rewrites the relators in terms of the new letters defined
#above.
new_relators3 = copy_relators(SR_relators2)

for rel in new_relators3:
for let in rel:

newlet = tuples_to_letters[let[0]]
let.insert(0,newlet)
del let[1]

#This freely reduces all the words, removes empty relators and
#removes duplicate relators.

new_relators3a = [freely_reduce(x) for x in
copy_relators(new_relators3) if len(freely_reduce(x)) > 0]

new_relators3b = []
for rel in copy_relators(new_relators3a):

if rel not in new_relators3b:
new_relators3b.append(rel)

#output 3
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list_rels_to_tex(new_relators3b)

#This section eliminates all but 4 symbols. It then freely
#reduces every word and eliminates empty words.

new_relators4a = [replace_letter(x,’I’,"G’E") for x in
copy_relators(new_relators3b)]

new_relators4b = [replace_letter(x,’G’,"F’C") for x in
copy_relators(new_relators4a)]

new_relators4c = [replace_letter(x,’F’,"EAE’") for x in
copy_relators(new_relators4b)]

new_relators4d = [replace_letter(x,’M’,"AH’L’") for x in
copy_relators(new_relators4c)]

new_relators4e = [replace_letter(x,’E’,"HB") for x in
copy_relators(new_relators4d)]

new_relators4f = [replace_letter(x,’H’,"L’AKJ’") for x in
copy_relators(new_relators4e)]

new_relators4g = [replace_letter(x,’J’,"BCB’") for x in
copy_relators(new_relators4f)]

new_relators4h = [replace_letter(x,’L’,"B’CB") for x in
copy_relators(new_relators4g)]

new_relators4i = [replace_letter(x,’K’,"A’B’A’B’A’B’") for x in
copy_relators(new_relators4h)]

new_relators4 = [freely_reduce(x) for x in
copy_relators(new_relators4i)]

#output 4
list_rels_to_tex(new_relators4)
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