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Abstract 

Numerous studies have elucidated the health promoting properties of organosulfur 

compounds derived from cruciferous vegetables known as isothiocyanates (ITCs). As 

electrophiles, the impact of ITCs at the molecular level is profound, with the ability to directly 

bind and modify thiol-containing compounds such as glutathione and cellular protein, including 

tubulin. While the biochemical effects of ITCs have been well characterized, less information is 

available regarding their effects on the accumulation of stress-inducible heme oxygenase-1 (HO-

1) and heat shock proteins (HSPs) as well as the possible formation of aggregated protein due to 

thiol modification. In the present study, I examined the effect of benzyl isothiocyanate (BITC), 

phenethyl isothiocyanate (PEITC), and sulforaphane (SFN) on the accumulation of HO-1, 

HSP70, HSP30 and HSPB6 in A6 kidney epithelial cells derived from the frog, Xenopus laevis. 

Immunoblot analysis revealed that treatment of cells with each of the ITCs induced the 

accumulation of HO-1 and HSP70 while HSP30 levels were only enhanced in cells treated with 

BITC at 30 °C. In contrast, HSPB6 levels were not affected by ITCs. Pretreatment with 

transcriptional (actinomycin D), translational (cycloheximide) or HSF1 (KNK437) inhibitors 

prevented the ITC-induced accumulation of HO-1, HSP70 and HSP30. Immunocytochemical 

studies determined that ITC treatment also resulted in F-actin disorganization and membrane 

ruffling. Furthermore, the addition of BITC or PEITC to A6 cells enhanced the presence of 

ubiquitinated protein and induced the accumulation of aggregated protein. In an examination of 

the effect of BITC or PEITC on microtubule filament protein, immunoblot analysis revealed 

significant decreases in the relative levels of α-tubulin. Immunocytochemical analysis revealed 

that BITC induced the collapse and fragmenting of the microtubule filaments while PEITC had a 

lesser effect. However, treatment of cells with BITC or PEITC at 30 °C greatly enhanced 
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microtubule fragmentation. Normally, the accumulation of aggregated protein results in their 

coalescence forming large aggresomes, which move along microtubules to the perinuclear 

region. However, this phenomenon was not readily observed with BITC or PEITC possibly due 

to microtubule fragmentation. This possibility was supported by the finding that BITC 

pretreatment reduced the formation of aggresome-like structures induced by the proteasomal 

inhibitor, MG132. The final chapter of this thesis investigated characteristics of the Xenopus 

small heat shock protein HSPB6, a HSP whose levels were not affected by ITC treatment of A6 

cells. HSPB6 was determined to be an ortholog of mammalian HSPB6 and encoded a 168 amino 

acid protein that contained an α-crystallin domain, a polar C-terminal extension and possible 

phosphorylation sites. It shared 94% identity with X. tropicalis HSPB6 but only 49% and 59% 

with zebrafish and human proteins, respectively. Phylogenetic analysis revealed that X. laevis 

HSPB6 grouped more closely with mammalian and reptilian HSPB6s than with fish HSPB6. 

Western blot analysis determined that HSPB6 was present constitutively in A6 cells, induced by 

MG132 and slightly by cadmium chloride treatment but not by heat shock. 

Immunocytochemistry revealed that HSPB6 was present in the perinuclear region of the 

cytoplasm with some in the nucleus.  

The research detailed in this thesis examined the effect of BITC, PEITC and SFN on the 

accumulation of HO-1 and HSPs and documented the impact of BITC and PEITC on aggregated 

protein in a kidney epithelial cell line. Since a great deal of the molecular and cellular research 

with Xenopus is applicable to humans, an increase in our knowledge of the effects of ITCs is of 

importance given their potential role as therapeutic compounds in the treatment of cancer, 

neurodegenerative diseases and bacterial and viral infections. 
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Chapter 1: Introduction 

During evolution, the survival of organisms in harsh environments required the 

development of intracellular stress networks to counteract various stressors (Morimoto, 1998). 

At the molecular level, environmental and physiological stressors can disrupt protein function 

and stability causing proteins to unfold or fold into non-native conformations (Morimoto, 1998; 

Balch et al., 2008). Abnormally folded polypeptides are prone to cytotoxic aggregation which 

can result in aberrant cellular processes and/or disease (Morimoto, 2008, Valastyan and 

Lindquist, 2014). The accumulation of stress-induced unfolded protein can trigger the tr

 anscription of heat shock protein (hsp) genes to produce a class of molecular chaperones 

called heat shock proteins (HSPs), which serve a protective mechanism to maintain normal 

cellular function and to prevent proteotoxicity (Oksala et al., 2014). 

1.1. Heat shock proteins 

HSPs are involved in many cellular processes during normal and stressful conditions 

including protein synthesis, folding/assembly, translocation, degradation as well as protein re-

folding during recovery from stress (Katschinski, 2004; Khan et al., 2014). Although HSPs were 

originally identified as a response to heat shock, a wide variety of stresses including chemical, 

ultraviolet (UV) light or wound healing were shown to induce their accumulation (Ritossa, 1962; 

Bellaye, 2014). HSPs are highly conserved and have been well documented in a wide variety of 

organisms ranging from bacteria to humans (Kregel, 2002; Katschinski, 2004; Daugaard et al., 

2007). There are at least 6 different HSP families that have been classified primarily by size 

including small HSPs (sHSPs), HSP40, HSP60, HSP70, HSP90 and HSP100 (Backthisaran et 

al., 2015). Hsp gene expression patterns were shown to vary between organisms, tissue types and 
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developmental stages (Lindquist, 1986; Katschinski, 2004; Heikkila, 2010). 

1.1.1. Heat shock protein 70 (HSP70) family 

The HSP70 family of molecular chaperones is evolutionarily conserved, being found in 

every organism and containing multiple family members (Murphy, 2013). Constitutive or stress-

inducible members function in regulating protein folding by identifying exposed hydrophobic 

surfaces and refolding them in an ATP-dependent manner (Katschinski, 2004). In eukaryotic 

cells, the HSP70 family members include cytoplasmic stress-inducible HSP70 (HSPA1A), 

cytoplasmic constitutively expressed heat shock cognate 70 (HSC70; HSPA8), mitochondrial 

HSP70 (HSPA9) and immunoglobulin binding protein (also known as glucose regulated protein 

78; HSPA5), found in the endoplasmic reticulum (ER).  

1.1.1.1. Stress-inducible HSP70 

The functional components of the cytoplasmic stress-inducible HSP70 include an N-

terminal ATPase domain, a peptide-binding domain, and a C-terminal region required for 

binding with other co-chaperones (Beere et al., 2000; Daugarud et al., 2007; Murphy, 2013). The 

peptide binding domain plays a role in attachment and release of non-native proteins, while the 

25 kDa C-terminal region contains a Glu-Glu-Val-Asp (EEVD) motif enabling HSP70 to interact 

with other HSPs and various co-chaperones. (Katschinski, 2004; Daugaard et al., 2007; 

Giuseppina et al., 2011). This interaction with co-chaperones such as HSP40/DNAJ and carboxy 

terminus of HSC70-interacting protein is possible due to the 10 kDa α-helical C-terminal 

domain, which forms a lid mediating the binding (Murphy, 2013). HSP70 is involved in the 

ATP-dependent folding of nascent proteins, signal transduction, protein translocation and the 

inhibition of stress-induced protein aggregation.  

Stressors known to induce HSP70 accumulation include heat shock, UV irradiation, 
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proteasomal inhibition and exposure to some heavy metals (Yu et al., 2015). HSP70 was found 

to be an inhibitor of apoptosis as it repressed both caspase-dependent and independent cell death 

(Sevin et al., 2015). Interestingly, high levels of HSP70 are a key marker for certain cancers. 

Furthermore, its overexpression was associated with resistance to certain chemopreventive drugs 

used to treat breast, endometrial or gastric cancers, among others (Murphy, 2013; Sevin et al., 

2015). 

1.1.2. Small heat shock proteins  

SHSPs, which range in size from 12 to 43 kDa, are not highly conserved except for an 

80-100 amino acid long α-crystallin domain, which is also found in the lens proteins αA-

crystallin and αB-crystallin (Katschinski, 2004; Bakthisaran et al., 2015). Despite their lack of 

conservation, most sHSPs usually have three functional domains that include an α-crystallin 

domain, an amino-terminal region and a carboxy-terminal extension. The secondary structure of 

the α-crystallin domain contains β-strands organized into β-sheets that are vital for the formation 

of dimers, the basic functional units of sHSP complexes (MacRae, 2000, Basha et al., 2012). The 

N-terminal region of the sHSP may play a role in oligomer formation (Lambert et al., 1999; 

Ganea, 2001). The C-terminal extension which is poorly conserved and variable in length, is 

essential for self and client protein solubility (due to the high proportion of polar amino acids) 

and stabilization of sHSP structure, both of which are required for optimal chaperone activity 

(MacRae, 2000; Fernando and Heikkila, 2000; Morris et al., 2008; Heikkila, 2017). Upon 

stressful conditions that result in unfolded protein, the cellular pools of sHSPs bind and stabilize 

unfolded protein substrate (Haslbeck and Vierling, 2015; Treweek et al., 2015). Subsequently, 

dimers can assemble into larger oligomeric forms (Heikkila, 2017). SHSP oligomeric structures 

aid in ameliorating the formation of toxic protein aggregates in the cell caused by environmental 
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stress or disease states by maintaining protein solubility and then transferring them to ATP-

dependent chaperones for refolding or degradation. (MacRae, 2000; Heikkila, 2010; Mymrikov 

et al., 2011; Bakthisaran et al., 2015; Heikkila, 2017). 

Research suggests that sHSPs are involved in a number of cellular functions including 

resistance against apoptosis, acquisition of thermotolerance, actin capping/decapping activity and 

cellular differentiation (MacRae, 2000; Van Montfort et al., 2001; Heikkila, 2004; 2010; 

Mymrikiv, et al., 2011; Acunzo et al., 2012; Garrido et al., 2012; Treweek et al., 2015; Heikkila, 

2017). Furthermore, the accumulation of sHSPs or their mutants have been associated with a 

number of medical conditions such as diabetes, multiple sclerosis, oncogenesis, cardiovascular, 

inflammatory and neurodegenerative diseases (Westerheide and Morimoto, 2005; Ghayour-

Mobarhan et al., 2012; Vidyasagar et al., 2012; Mymrikov and Haslbeck, 2015).  

1.1.2.1. HSPB6 

HSPB6, also known as HSP20, was originally discovered in 1994 as part of a complex 

with HSPB1 (also termed HSP27) and HSPB5 (also known as αB-crystallin) isolated from 

mammalian muscle (Kato et al., 1994). Various studies reported that HSPB6 was not upregulated 

by heat shock although enhanced levels of this sHSP were detected in cells or tissues subjected 

to various stressors that function via other signalling pathways (Kato et al., 1994; Marvin et al., 

2008; Edwards et al., 2011; Kirbach and Golenhofen, 2011; Mymrikov et al., 2011). HSPB6 was 

shown to function as an ATP-independent molecular chaperone since it inhibited either heat- or 

chemical-induced aggregation of various client proteins (Van de Klundert et al., 1998; Bukach et 

al., 2004; Heirbaut et al., 2014; Nahomi et al., 2015). Furthermore, the interaction of HSPB6 

with various protein kinases and its phosphorylation appears to be important for its roles in 

muscle contraction, cardioprotection and insulin resistance (Fan et al., 2005; Dreiza et al., 2010; 
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Edwards et al., 2011; Mymrikov et al., 2011). Other functions proposed for HSPB6 include the 

regulation of platelet function as well as the acquisition of thermotolerance and anti-apoptotic 

activity (Myrmikov et al., 2011; Nagasawa et al., 2014; Nahomi et al., 2015). 

1.1.2.2. HSP30 

Stress-inducible HSP30, part of the sHSP superfamily, has been found in amphibian, fish, 

reptilian and avian species but not mammals (Heikkila, 2017). The initial isolation of the hsp30C 

and D genes in Xenopus laevis by Krone et al. (1992) paved the way for the discovery of hsp30 

genes in various species (additional information about X. laevis HSP30 will be covered in section 

1.8.2.). Interestingly, there is a high degree of divergence within the non-mammalian vertebrate 

HSP30s, possibly due to the rapid evolution of hsp30 genes relative to other genes within the 

sHSP family (Norris and Hightower, 2002). Phylogenetic analysis revealed that HSP25/HSP30 

proteins within birds, fish, amphibians and reptiles grouped together and were distinct from their 

HSPB1/HSP27 counterparts (Heikkila, 2017). Additionally, the number of hsp30 genes can vary 

between species of non-mammalian vertebrates (Bienz, 1984; Krone et al., 1992; Norris et al., 

1997; Helbing et al., 1996; Franck et al., 2004; Katoh et al., 2004; Elicker and Hutson, 2007). 

Although an examination of hsp30 gene expression during embryogenesis in non-

mammalian vertebrates has been investigated, a number of studies have shown heat stress 

induced hsp30 mRNA and protein accumulation in adults and tissue culture cells of fish, 

amphibians and birds (Zarate and Bradley, 2003; Kondo et al., 2004; Mulligan-Tuttle and 

Heikkila, 2007; Heikkila, 2017). Studies utilizing amphibian, fish and avian systems have 

examined the effect of chemical stressors on the induction of hsp25/hsp30 gene expression 

(Heikkila, 2017). For example, Katoh et al. (2004) demonstrated an increase in HSP25/HSP30 

accumulation in quail and chicken embryo fibroblast cells when treated with a proteasomal 
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inhibitor. HSP25/HSP30 accumulation was observed in the perinuclear regions of the cell and 

was associated with perinuclear inclusions or aggresomes. Enhanced hsp30 gene expression in 

fish has also been documented in response to various pollutants and pesticides as well as during 

feeding states following amino acid starvation (Wang et al., 2007; Miller at al., 2009; Garcia de 

la serrana and Johnston, 2013; Shahid et al., 2016). 

1.2.  Heat shock response 

The heat shock response (HSR) is a universal cellular cytoprotective mechanism that 

confers resistance against various stressors (Verghese et al., 2012). In the presence of stressful 

stimuli such as elevated temperatures, heavy metals, oxidants or disease states, an accumulation 

of unfolded protein results in proteotoxic stress leading to the activation of the HSR (Morimoto, 

2008). The accumulation of unfolded protein was shown to trigger the binding of the 

transcription factor heat shock factor (HSF1) to the heat shock element (HSE), an enhancer 

situated in the upstream promoter region of hsp genes (Morimoto, 1998; 2008, Xie et al., 2014). 

1.2.1. Heat shock factor 1 

 To date, there have been 4 HSFs (HSF1-4) identified in vertebrates. HSF1 is the master 

regulator involved in the expression of stress-induced hsp genes (Jaegar et al., 2014; Xie et al., 

2014). HSF1 is composed of an amino-terminal looped helix-turn-helix DNA binding domain 

(DBD), an oligomerization domain and a C-terminal transcriptional transactivation domain 

(Figure 1; Anckar and Sistonen, 2011; Jaegar et al., 2014). The well-conserved DBD is 

responsible for interaction with the HSE, while the hydrophobic repeat domains located within 

the oligomerization domain (HR-A/B) or adjacent to the transcriptional activation domain (HR-

C), control trimerization through intermolecular interactions (Anckar and Sistonen, 2011). 

During normal conditions, the HR-C domain is believed to fold back and interact with the HR- 
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Figure 1. HSF1 structure. Schematic representation of the HSF1 structural motifs that correspond 

to the amino-terminal looped helix-turn-helix DNA binding domain (DBD), hydrophobic repeat 

sequences HR-A/B contained within the oligomerization domain (OD) and hydrophobic repeat 

sequence HR-C adjacent to the carboxy-terminal transcriptional transactivation domain. During 

normal conditions, interactions between HR-C and HR-A/B prevent HSF1 trimer formation 

(adapted from Anckar and Sistonen, 2011). 
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A/B domains preventing the possibility of trimerization, keeping HSF1 in an inactive, 

monomeric state (Anckar and Sistonen, 2011). During this time, HSF1 is bound to HSP90 and 

possibly histone deacetylase 6 (HDAC6; Hentze et al., 2016). Several studies determined that 

under proteotoxic stress conditions which may overwhelm, compromise or inhibit the 

proteasome, polyubiquitinated protein binds HDAC6 resulting in the disassociation from the 

HSF1-HSP90 complex (Pernet et al., 2014). Meanwhile, HSP90 is recruited to bind unfolded 

protein and prevent its aggregation. This permits HSF1 to trimerize into its active form before 

moving into the nucleus, becoming hyperphosphorylated at serine residues and binding to the 

HSE to initiate transcription of hsp genes (Figure 2; Sakurai and Enoki, 2010; Hentze et al., 

2016). 

 HSF1 was found to undergo post-translational modifications which can regulate HSF1 

transcriptional ability (Dinkova-Kostova, 2012; Hentze et al., 2016). As mentioned above, 

phosphorylation can enhance HSF1’s ability to initiate transcription. However, acetylation and 

sumoylation can function to repress the ability of HSF1 to induce the expression of hsp genes 

(Anckar and Sistonen, 2011; Hentze et al., 2016). 

1.3. Heme oxygenase-1  

 Heme oxygenase-1 (HO-1; also known as HSP32), first identified by Tenhunen et al. 

(1968), catalyzes the catabolism of heme to iron, carbon monoxide and biliverdin, requiring the 

presence of NADPH and oxygen. Biliverdin is then converted to bilirubin (Araujo et al., 2012). 

When not bound to hemoproteins, heme causes deleterious effects at the cellular level leading to 

reactive oxygen species (ROS) formation and membrane lipid peroxidation (Choi et al., 2014). 

HO-1, unlike HO-2 and HO-3 isoforms, is the stress-inducible isozyme (Ryter et al., 1999).  

The 32 kDa HO-1 protein is detectable in all cells including kidney and liver with a high amount 
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Figure 2. Stress-induced activation of the heat shock response. 1) External stressful stimuli 

(indicated by the lightning bolt) can result in the unfolding of native protein within the cell. 2) 

HSP90 is bound to HSF1 under normal conditions in the cell. 3) HSP90 is recruited to prevent 

aggregation of unfolded proteins. 4) This allows HSF1 monomers to trimerize and translocate to 

the nucleus. 5) The HSF1 trimer is hyperphosphorylated and binds to the HSE at the 5’ promoter 

of hsp genes. 6) HSF1 binding to the HSE results in the initiation of transcription by RNA 

Polymerase II resulting in the accumulation of stress-induced HSPs. 
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in spleen, which is involved in the sequestration of senescent erythrocytes and the location where 

hemoglobin is degraded (Chau, 2015). It has been suggested that HO-1 is anchored into the ER 

membrane post-translationally (Chau, 2015).  

 The cytoprotective role of HO-1 involves its aforementioned catalytic by-products. For 

example, bilirubin has strong antioxidant capabilities such as decreasing lipid peroxidation. Lipid 

peroxidation due to cadmium toxicity for instance has been attributed to alterations in expression 

of enzymes involved in the cellular antioxidant defense system. Therefore, the reduction of this 

toxic process by means of bilirubin is beneficial to the cell (Patra et al., 2011). Carbon monoxide 

(CO) in low concentrations can have a positive impact at the cellular level through various 

mechanisms. Supressing pro-inflammatory cytokines such as tumour necrosis factor alpha, 

interleukin-1β and macrophage inflammatory protein-1 highlights its ability to act as an anti-

inflammatory agent (Pae and Chung, 2009; Araujo et al., 2012). Furthermore, CO can prevent 

apoptosis through the inhibition of mitochondrial cytochrome c release as well as its interaction 

with p38 mitogen-activated kinase (MAPK; Queiroga et al., 2012).  

 HO-1 is essential for human health since its deficiency has been characterized by growth 

retardation, hemolytic anemia, endothelial damage, iron deposition as well as increased 

vulnerability to oxidative stress-related injury (Yachie et al., 1999; Chang et al., 2015). In 

mammalian systems, a variety of inducers including curcumin, MG132, sodium arsenite and 

cadmium were shown to induce ho-1 gene expression (Alam et al., 2000; Wu et al., 2004; 

Yamamoto et al., 2010; Wang et al., 2013). Protein deposition disorders including Alzheimer’s 

and Parkinson’s disease are usually accompanied by a significant increase in HO-1 levels to help 

combat the oxidative stress caused by the disease. Therefore, the use of HO-1 as a biomarker for 

neurological diseases has become extremely useful in therapeutics approaches (Abraham and 
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Kappas, 2008). 

1.3.1. Heme oxygenase-1 gene regulation 

Ho-1 gene expression is controlled primarily at the transcriptional level (Ryter et al., 

2006). In response to stressful stimuli, transcription factors bind to certain cis-acting elements 

found within the 5’ region of the ho-1 gene. This includes the musculoaponeurotic fibrosarcoma 

(MAF) recognition antioxidant response element (MARE; also called the stress response 

element), cadmium response element (CdRE) and the HSE (Choi and Alam, 1996; Lee et al., 

1996, Alam et al., 2000; Alam and Cook, 2007). The primary transcription factor responsible for 

ho-1 gene expression is the nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2; Choi et al., 

2014). Regarded as a member of the leucine zipper transcription factors, Nrf2 is supressed under 

basal conditions as it is bound to Kelch-like ECH-associated protein 1 (Keap1). Upon stress, 

modification of cysteine residues within Keap1 results in the dissociation of Nrf2, giving Nrf2 

the opportunity to translocate into the nucleus. Subsequently, Nrf2 forms a heterodimer with Maf 

protein before binding to the ARE to induce ho-1 gene expression (Figure 3; Choi et al., 2014). 

Under normal conditions, Bric-a-brac and Cap-n-Collar homology (Bach1) prevents ho-1 gene 

induction by associating with Maf proteins and binding to DNA at ARE-like enhancers (Perez-

De-Puig et al., 2013). Pro-oxidants as well as heme are known to inactivate Bach1 (Ogawa et al., 

2001). Aside from Nrf2, several protein families were implicated in ho-1 gene activation 

including nuclear factor-κB (NF-κB), activator protein-1 and HSF (Alam & Cook, 2007).  

Although HO-1 is generally not heat shock inducible, HSF1 has been found to interact 

with pescadillo, a transcription factor known to bind to the CdRE (Sikorski et al., 2006). 

Furthermore, HSF1 overexpression has been shown to enhance ho-1 gene transcription while 

HSF1 knockout in mouse embryonic fibroblast cells resulted in decreased ho-1 gene expression  
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Figure 3. Ho-1 gene regulation. Under normal conditions, Nrf2, the transcription factor 

responsible for the induction of the ho-1 gene, is bound to Kelch-like ECH-associated protein 1 

(Keap1), sequestering it in the cytoplasm. Meanwhile, in the nucleus, the repressor Bric-a-brac 

and Cap-n-Collar homology (Bach1) forms a heterodimer with Maf transcription factor and the 

complex binds to Maf recognition elements (MARE; an antioxidant response element or ARE) to 

prevent transcription of the gene. Upon cellular stress, Bach1 is exported from the nucleus, while 

Nrf2 dissociates from Keap1 and is imported into the nucleus. Here, it binds the MARE within 

the ho-1 gene and initiates transcription (adapted from Naito et al., 2011). 
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(Alam & Cook, 2007; Koizumi et al., 2007). These findings suggested that HSF1 may have a 

potential involvement in ho-1 gene expression. Recently it was determined that treatment with 

SB2023580, a p38 MAPK inhibitor, significantly reduced ho-1 gene induction giving insight into 

yet another protein which induces ho-1 expression by mediating Nrf2 translocation (Park et al., 

2013). 

1.4. Ubiquitin-proteasome system 

 The ubiquitin-proteasome system (UPS), a tightly regulated mechanism responsible for 

the degradation of 70-80% of cellular protein, is essential for regulation of protein homeostasis 

(Tramutola et al., 2016). Mediating and targeting selective proteins for degradation affects 

fundamental biological processes such as signal transduction, cell cycle arrest as well as 

apoptosis (Bassermann et al., 2014; Tramutola et al., 2016). Several studies have revealed that 

cancer progression was dependent on elaborate cellular system regulators which maintained 

proteostasis, like the UPS. Therefore, certain proteasomal inhibitors including bortezomib and 

isothiocyanates are currently being used in various clinical trials to treat cancers such as multiple 

myeloma and mantle cell lymphoma (Deshaies, 2014). The UPS degradation pathway functions 

in an ATP-dependent manner and uses ubiquitin molecules to target proteins for degradation by 

the 26S proteasome (Tramutola et al., 2016). 

1.4.1. Protein ubiquitination 

Ubiquitin, a highly stable 8.5 kDa protein, is conserved through evolution and functions 

to tag and target proteins destined for degradation by the UPS (Komander and Rape, 2012; 

Tramutola et al., 2016). The process of ubiquitination involves various ubiquitinating enyzmes 

denoted E1 to E4. First, E1 activates the ubiquitin molecule in an ATP-dependent manner 

through adenylation, resulting in a high-energy thioester bond. This bond exists between E1’s 
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active site cysteine residue and the carboxy terminus of the ubiquitin protein. The ubiquitin- 

conjugating enzyme E2 subsequently receives and forms a similar thioester bond with the 

activated ubiquitin protein. E3, an ubiquitin ligase, plays a crucial step in transferring one 

ubiquitin to a lysine residue of a substrate protein resulting in monoubiquitination (Deshaies, 

2014; Weathington and Mallampalli, 2014; Tramutola et al., 2016). A protein destined for 

degradation requires at least 4 ubiquitin molecules (facilitated by E4, a ubiquitin chain 

elongation factor) for efficient translocation to the proteasome and its subsequent degradation 

(Micel et al., 2013). Since E3 ligases essentially select which proteins become targeted for 

degradation, certain therapeutic approaches have targeted the functioning of these enzymes. 

More specifically, inactivation of E3’s active site or compromising the enzyme’s ability to form 

protein-protein interactions could be of value in the treatment of cancer and other diseases 

(Bassermann et al., 2014). 

1.4.2. Proteasome 

The highly specific and efficient 26S proteasome, approximately 2.5 MDa in size, 

contains two 19S regulatory particles which serve to cap either end of the multi-subunit 

holoenzyme as well as a 20S catalytic core (Ross et al., 2015). Each 900 kDa 19S regulatory unit 

has two very important catalytic functions: deubiquitination of the protein though proteolytic 

cleavage as well as ATP hydrolysis allowing the protein to be unfolded and passed on to the 20S  

catalytic core (Bhattacharyya et al., 2014; Dou, 2014). The 20S core is comprised of four stacked 

rings in an αββα conformation (Figure 4). The α subunits allow the entrance of the protein into 

the core from the 19S regulatory regions, while the β subunits contain chymotrypsin-like, 

trypsin-like and caspase-like catalytic activity (Dou, 2014; Ross et al., 2015). Following 

degradation, exopeptidases break down the peptides further into amino acids while other  
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Figure 4. Ubiquitin-proteasome system. 1) Ubiquitinating enzymes E1-E3 activate and transfer a 

ubiquitin molecule to a protein targeted for degradation. 2) E4 assists in the polyubiquitination of 

the protein. 3) The polyubiquitinated protein enters the 26S proteasome complex and is 

degraded. 4) The resulting peptides are further broken down into amino acids or displayed on the 

surface of the cell, while the ubiquitin molecules are recycled. (Adapted from Lee and Goldberg, 

1998). 
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peptides bind to major histocompatibility complex class 1 molecules in the ER, ultimately 

appearing on the cell surface for antigen presentation. 

1.5. Aggresomes 

 Different stressors have the ability to greatly increase the number of unfolded or 

misfolded proteins within a cell. Exceeding or impairing the ability of the proteasome to 

hydrolyze ubiquitinated protein destined for degradation leads to the formation of aggresomes 

(An and Statsyuk, 2015). This is the cell’s cytoprotective solution to minimizing and isolating  

toxic protein aggregates, which might otherwise be dispersed leading to deleterious effects on 

various cellular processes.  

 The formation and growth of aggresomes occurs through a microtubule-dependent 

process which involves the transport of aggregated protein along microtubule networks using 

dynein motors (Uversky and Fink, 2007). The first step of this process is anchoring the protein 

destined for the aggresome to the dynein motor responsible for shuttling along the microtubule. 

HDAC6 anchors ubiquitinated protein cargo while Bcl-2-associated athanogene 3 protein 

anchors non-ubiquitinated protein cargo (Munoz-Moreno et al., 2015). Studies have shown that 

drugs such as nocodazole, a microtubule depolymerizing agent, inhibits the formation  

of aggresomes indicating the importance of microtubule networks for this shuttling process 

(Garcia-Mata et al., 1999; Kopito, 2000). The aggregated protein is ultimately shipped to the 

microtubule organizing centre located in the perinuclear region of the cell, where it becomes part 

of the larger aggresome containing γ-tubulin, vimentin and aggregated protein (Shen et al., 2011; 

Nakajima and Suzuki, 2013; Munoz-Moreno et al., 2015). 

 Vimentin, a type III intermediate filament, makes up a crucial part of the external 

structure of the aggresome, forming a cage-like framework that encapsulates the mass of  
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aggregated protein (Figure 5; Pérez-Sala et al., 2015). The purpose of the cage-like intermediate 

filament structure is still unknown although it could serve to stabilize the aggresome or prevent 

non-specific interactions (Olzmann et al., 2008). The association of certain molecular chaperones 

within aggresomes have been described in various studies including avian HSP25, mammalian 

HSP27 and/or αB-crystallin, as well as amphibian HSP30 (Katoh et al., 2004; Ito et al., 2005; 

Bauer and Richter-Landsberg, 2006; Goldbaum et al., 2009; Bolhuis and Richter-Landsberg, 

2010; Khan et al., 2015). The presence of soluble toxic protein aggregates have been shown to 

underlie various neurodegenerative diseases such as Alzheimer’s disease, Huntington’s disease, 

Parkinson’s disease and oculopharyngeal muscular dystrophy (Olzmann et al., 2008).  

1.6. Actin and microtubule filament structure and function 

 Actin and microtubules along with intermediate filaments make up the three important 

components of the cellular cytoskeleton. Actin, found in the monomeric G-form or filamentous 

F-form, plays important physiological roles in the cell including the maintenance of cell shape as 

well as executing morphogenesis to cytokinesis (Dominguez and Holmes, 2011). Various 

stressors including cadmium, sodium arsenite and elevated temperatures have been shown to 

disrupt the F-actin cytoskeleton in mammalian and amphibian systems (Li and Chou, 1992; 

Young and Heikkila, 2009; Khamis and Heikkila, 2013; Khamis et al., 2016).  

 Microtubules play a vital role in a variety of cellular processes including intracellular 

trafficking as well as motility and cell division (Kononova et al., 2014). Polymerization and 

depolymerization of α- and β-tubulin heterodimers are required for the biological functions of 

microtubules in cell growth as well the formation of mitotic spindles in order to segregate 

replicated chromosomes into two daughter cells (Mi et al., 2008). The αβ heterodimer is the 

basic structural subunit of a microtubule protofilament, with the α and β globular proteins held 
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Figure 5. Aggresome formation. 1) Proteins in their native conformation become misfolded upon 

the presence of a stressful stimuli. 2) During conditions where the UPS is overwhelmed or 

inhibited, Bcl-2-associated athanogene 3 (BAG3) bridges non-ubiquitinated protein onto dynein-

bound microtubule tracks, while histone deacetylase 6 (HDAC6) performs a similar role with 

polyubiquitinated protein. 3) After the protein cargo has been shuttled to the aggresome, it is   

encapsulated and held within a vimentin cage-like structure (Adapted from Olzmann et al., 

2008). 
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together by non-covalent bonds (Alberts, 2002). A long, cylindrical 25 nm microtubule is formed 

from 13 protofilaments, with each protofilament containing numerous α- and β-tubulin 

heterodimer subunits joined end to end (Goyal et al., 2010). The nucleotide binding site of α-

tubulin contains a GTP which is trapped at the dimer interface and therefore cannot be 

hydrolyzed, unlike the GTP in β-tubulin. The rate of hydrolysis of β-tubulin GTP to GDP after 

addition of the heterodimer to the microtubule plus end influences the dynamic instability of the 

protofilament, resulting in either rapid growth (rescue) or shrinkage (catastrophe; Piedra et al., 

2016). These changes in microtubule length result in the ability to completely reorganize within 

a short amount of time (Parker et al., 2014). This is of utmost significance in maintaining cellular 

health and function not only in interphase cells, but mitotic cells undergoing chromosomal 

segregation, as mentioned previously. Tubulin’s critical role in this key cellular event makes it a 

prime target of many cancers, which characteristically elicit aberrant cell division (Goyal et al., 

2010). Therefore, chemotherapeutic drugs with the ability to disrupt microtubule polymerization, 

stability and function have become attractive clinical treatment options for a variety of cancers 

including breast, ovarian and prostate cancer (Mukhtar et al., 2014). Recognized as a key factor 

in modulating signalling events and spatial organization of organelles, certain cellular stressors 

with the ability to cause microtubule disruption including hypoxia and nitric oxide can have 

profound impacts on the health and functionality of the cell (Eiserich et al., 1999; Parker et al., 

2014). 

1.7. Isothiocyanates 

 Organosulfur compounds known as isothiocyanates (ITCs) occur naturally as 

glucosinolates within cruciferous vegetables (Molina-Vargas, 2013). Treatment of plant cells 

with physical stress such as biting or chewing, activates the enzyme myrosinase which 



25 
 

hydrolyses glucosinolates into ITCs (Zhang et al., 2006). Being electrophilic, ITCs readily form 

conjugates with thiols, having the ability to directly bind glutathione and cellular protein 

including tubulin (Li et al., 2012). Numerous studies have reported the human health promoting 

properties of ITCs such as chemopreventive efficacy as well as prevention of neurodegenerative 

diseases (Zhang et al., 2006; Mi et al., 2007; 2008; 2009; Gan et al., 2010; Mi et al., 2010; Li et 

al., 2012; Mi et al., 2011; Sarkars et al., 2013; Giacoppo et al., 2015). Three of the most 

extensively studied dietary ITCs include benzyl isothiocyanate (BITC), phenethyl isothiocyanate 

(PEITC) and sulforaphane (SFN).  

1.7.1. Benzyl and phenethyl isothiocyanate 

 At the cellular level, the two most efficient ITCs in inhibiting tumourigenesis and 

reducing cancer risk in humans are BITC and PEITC (Mi et al., 2010). Both BITC and PEITC 

have a high binding affinity for tubulin. Given the importance and abundance of tubulin within 

the cell, any chemical modification of the protein by ITCs could result in a significant 

conformational change. In fact, this is thought to be the main mechanism through which ITC-

induced cell cycle arrest and apoptosis occurs, resulting in the suppression of oncogenic cells 

(Zhang et al., 2006; Sarkars et al., 2013). A recent study has shown that the thiol side chains of 

12 cysteine residues which exist within α- and β-tubulin are prone to modification by ITCs (Mi 

et al., 2008). In human lung cancer cells treated with the 3 ITCs it was determined that the 

average number of thiols within a tubulin heterodimer that were modified by 160 µM BITC, 

PEITC or SFN were 11.7, 9.1 and 3.8, respectively. It was suggested that the lower number of 

thiols modified by SFN relative to the other two ITCs was due to the fact that its side chain 

group was much larger than those found with BITC or PEITC. Since the majority of cysteine 

residues in tubulin are buried within hydrophobic pockets, they may not be readily accessible to 
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hydrophilic SFN while BITC and PEITC were able to interact and covalently bind with 

cysteines. The subsequent alteration in tubulin conformation resulted in the formation of tubulin 

aggregates. 

Recently, it was shown that ITCs induced proteasomal inhibition. For example, Mi et al. 

(2010) determined in human tissue culture cells that the electrophilic cap of BITC and PEITC 

had the ability to directly bind accessible cysteine residues within the catalytic active site of 

proteasome subunits, significantly inhibiting all three proteasome protease activities in a 

concentration-dependent manner. SFN, however, was unable to inhibit proteasome activity at 

concentrations up to 30 µM, likely due to the fact that similar to tubulin, cysteine residues were 

inaccessible to this ITC (Mi et al., 2010). As a result of the BITC- and PEITC-induced 

proteasomal inhibition, an accumulation of UPS substrates like IĸB occurred. Normally, the 

NFĸB inhibitor, IĸB, is readily degraded by the proteasome allowing NFĸB to freely translocate 

into the nucleus where it can then induce the expression of certain cell survival genes (Mi et al., 

2010). In the presence of BITC or PEITC, IĸB was not degraded and therefore inhibited NFĸB, 

possibly contributing to arrest of the cell cycle and apoptosis. This suggested another mechanism 

(albeit indirectly) by which ITC-induced cell cycle arrest and apoptosis could occur. 

 ITCs have a promising future for their use as therapeutic and preventive agents for 

various diseases including multiple myeloma (MM), a neoplastic proliferation of plasma cells 

responsible for being one of the top 10 leading causes of cancer death among African-Americans 

(Mi et al., 2010). In a study by Mi et al. (2010), it was found that BITC treatment of U266 cells 

from a human MM cell line was effective in inhibiting cell proliferation. PEITC had less of an 

effect on MM cell line proliferation than BITC but greater than SFN, a pattern which was similar 

to their ability to inhibit the proteasome. Another potential application of BITC is its use in the 
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control of Campylobacter jejuni contamination in the food industry. C. jejuni, a widespread 

pathogen, is responsible for many severe side effects in humans as well as Guillain-Barre 

syndrome, a long-term neurological disorder (Nachamkin et al., 1998). Treatment of C. jejuni 

with BITC was found to enhance protein aggregation, disrupt various metabolic processes and 

ultimately result in apoptosis (Dufour et al., 2012; 2013). Recently, in clinical trials, PEITC was 

found to modestly reduce the activation of the tobacco carcinogen 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanone, which was determined to be responsible for tumourigenesis initiation in the 

human lung (Yuan et al., 2016). 

1.7.2. Sulforaphane 

SFN, unlike BITC and PEITC, is relatively inert in tubulin-related biological activities as 

mentioned above. However, studies have investigated the role of SFN in upregulating ARE-

dependent antioxidant enzymes like HO-1 through direct binding of Keap1 (Mi et al., 2011). As 

mentioned previously, Keap1 is a repressor protein which sequesters Nrf2 in the cytoplasm and 

incidentally contains various cysteine residues that function as sensors of the intracellular redox 

state (Tarozzi et al., 2013). It was shown that through covalent modification of vulnerable thiol 

groups on Keap1 by SFN, Nrf2 was able to disassociate, translocate to the nucleus and bind to 

the ARE of the ho-1 gene promoter to induce expression. This finding, which demonstrated the 

ability of SFN to induce a direct antioxidant response, may be of potential use as an agent to 

combat acute and chronic neurodegenerative diseases (Giacoppo et al., 2015). 

1.8. Xenopus laevis as a model organism 

 X. laevis, the South African clawed frog, has been one of the most extensively used 

amphibian model research organism within many branches of life science including cell biology, 

development, physiology and toxicology (Schmitt et al., 2014). A great deal of basic information 
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has been acquired at both the cellular and molecular level. For example, work with Xenopus 

oocytes, eggs and early embryos was used to elucidate the mechanisms associated with early 

embryogenesis and differentiation (Philpott and Yew, 2008). Since the data obtained from 

Xenopus is often applicable to human cells, the aforementioned contributions as well as many 

others have aided in our understanding of tumour biology and chemopreventive therapeutics.  

The present study has employed the Xenopus laevis A6 kidney epithelial cell line as an 

experimental system. The growing collection of data derived from this cell line is in part due to 

its quick doubling time of 22 h (Rafferty, 1975). The fast growing nature of A6 cells combined 

with their easy maintenance as well as continuous division after reaching confluency makes this 

model system ideal for cellular and molecular research purposes. Originally isolated by Rafferty 

(1968) from the proximal renal tubules of adult male Xenopus, this cell line has been a model 

system in various areas of research from genetic profiling under zero gravity to the role of renal 

epithelial sodium channels in hypertension and function of Cystic Fibrosis transmembrane 

conductance regulator channels (Guerra et al., 2004; Ikuzawa et al., 2007; Ma, 2011; Niisato et 

al., 2012). Recently, A6 kidney epithelial cells have been used to assess the toxicological impact 

of various environmental stressors. For instance, perfluoroalkylated substances (PFAs), used for 

a range of chemical and industrial applications, are considered organic pollutants with adverse 

effects on human health when present in food or water (EFSA, 2012). Therefore, researchers 

have monitored changes in the physiological state of A6 cells (cells forming monolayers or 

differentiating into domes) in the presence of PFAs to further elucidate the effects of this 

toxicant (Gorrochategui et al., 2016). 

A6 cells have also been employed to observe the toxicological impact of engineered 

copper oxide nanoparticles (CuO NP; Thit et al., 2015). Copper, a metal co-factor for enzymes 
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including cytochrome c oxidase used in respiration, can become very toxic at high concentrations 

(Zhou and Gitschier, 1997). The resulting deleterious effects include DNA damage and the 

formation of ROS. Cu2+ is able to undergo redox reactions resulting in the formation of CuO, 

which is classified as a polydispersed nanoparticle if less than 100 nm in size (Thit et al., 2013). 

Thit et al. (2015) demonstrated that when A6 cells were treated with CuO NPs, a significant 

increase in ROS formation was observed along with reduced glutathione levels and decreased 

cell viability.  

Another application of the A6 kidney epithelial cell line includes the analysis of HSP 

accumulation after treatment with various environmental stressors including heat shock, sodium 

arsenite and cadmium chloride (Ohan et al., 1998; Phang et al., 1999; Gellalchew and Heikkila, 

2005; Woolfson and Heikkila, 2009; Heikkila, 2010; Brunt et al., 2011; Khamis and Heikkila, 

2013). Also, the A6 cell line was employed to examine HO-1 accumulation in the presence of 

metals and proteasomal inhibitors (Music et al., 2014; Shirriff and Heikkila, 2017). Finally, other 

studies have identified the ability of A6 cells to confer thermotolerance to lethal thermal 

challenges when pretreated with a mild heat shock, sodium arsenite or proteasomal inhibitors 

(Manwell and Heikkila, 2007; Young et al., 2009; Khan and Heikkila, 2011; Khan et al., 2012). 

1.8.1. Xenopus laevis HSP70 

In 1984, Bienz isolated 4 stress-inducible X. laevis hsp70 genes (A-D). Developmentally, 

both hsp70 mRNA and protein were present constitutively during Xenopus oogenesis and hsp70 

mRNA was first heat inducible after the midblastula transition, signalling the onset of zygotic 

genome activation (Bienz, 1984; Krone and Heikkila, 1988; Ovsenek and Heikkila, 1990; 

Heikkila et al., 1991; Lang et al., 2000). In another study, Xenopus laevis embryos were 

measured for toxicity in the presence of perfluooctane sulfonate by assessing hsp70 mRNA as 
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well as pro-apoptotic proteins such as Bax, both of which were significantly upregulated in the 

presence of the chemical (Segundo et al., 2016). HSP70 accumulation in A6 cells was induced 

by a variety of stressors including heat shock, sodium arsenite, cadmium chloride, herbimycin A, 

hydrogen peroxide as well as proteasomal inhibitors such as MG132, lactacystin, celastrol and 

curcumin (Darasch et al., 1988; Briant et al., 1997; Heikkila, 2004, Muller et al., 2004; Woolfson 

and Heikkila, 2009; Young et al., 2009; Young and Heikkila, 2010; Walcott and Heikkila, 2010; 

Khan and Heikkila, 2011; Khamis and Heikkila, 2013).  

1.8.2. Xenopus laevis HSP30 

 HSP30, a member of the sHSP family, is a well-characterized molecular chaperone. 

Multiple intronless genes have been isolated to date including hsp30A, B, C, D and part of E. 

Hsp30A and hsp30B genes were deemed non-functional. Hsp30A contained an insertional 

mutation with a stop codon in the coding region giving rise to only a 10 kDa protein, while 

hsp30B was a pseudogene (Bienz, 1984). Isolation and sequencing of hsp30C and hsp30D by 

Krone et al. (1992) determined that these two genes encoded functional 24 kDa proteins with an 

α-crystallin domain, a characteristic which has been conserved through evolution within the 

entire sHSP family (Krone et al., 1992, MacRae, 2000; Heikkila, 2017).  

 In X. laevis A6 cells, research has investigated stress-induced HSP30 accumulation and 

its localization. For example, treatment of cells with heat shock, sodium arsenite, cadmium 

chloride, herbimycin A, hydrogen peroxide or proteasomal inhibitors like MG132 induced the 

accumulation of HSP30 (Briant et al., 1997; Ohan et al., 1998; Phang et al., 1999; Muller et al., 

2004; Woolfson and Heikkila, 2009; Young et al., 2009; Walcott and Heikkila, 2010; Khan and 

Heikkila, 2011; Khamis and Heikkila, 2013; Khan et al., 2015). Immunocytochemical analysis 

revealed that heat shock-induced HSP30 accumulation was present primarily in the perinuclear 
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region in a granular or punctate pattern and that proteasomal inhibitors had the ability to induce 

the formation of large HSP30 staining structures (Gellalchew and Heikkila, 2005; Young and 

Heikkila, 2010; Khan and Heikkila, 2011). A recent study with A6 cultured cells employing 

immunocytochemistry indicated the association of HSP30 with aggresome-like inclusion bodies 

after treatment with sodium arsenite, cadmium chloride or MG132 (Khan et al., 2015). As 

molecular chaperones, HSP30 may be involved in the sequestration of unfolded protein which is 

transported to the perinuclear region (Khan and Heikkila, 2014; Heikkila, 2017).  

1.8.3. Xenopus laevis HO-1 

In a report by Shi et al. (2008), cDNA data obtained from GenBank determined that the 

percent identity of Xenopus HO-1 with human and mouse amino acid sequences was 61% and 

58%, respectively. Ho-1 mRNA was detected in oocytes and during early embryogenesis from 

the 1-cell stage to tadpole and was found to accumulate in the dorsal region once embryos 

reached the neurula stage. Experiments examining stress-induced HO-1 accumulation were 

conducted for the first time in an amphibian cell line by our laboratory (Music et al., 2014; 

Shirriff and Heikkila, 2017). It was determined that HO-1 accumulation in X. laevis was not 

induced by heat shock but was induced by sodium arsenite, cadmium chloride and proteasomal 

inhibitors in a concentration- and time-dependent manner. Immunocytochemical analysis 

revealed the presence of HO-1 within the perinuclear region of cells, which was consistent with 

HO-1 being an anchored ER protein. Interestingly, A6 cells treated with a concurrent mild heat 

stress and sodium arsenite or cadmium chloride elevated HO-1 accumulation to a level greater 

than observed with either stressor individually.  



32 
 

1.9. Hypothesis 

 Given the ability of ITCs to bind thiol groups of cellular protein, which results in misfolding and 

aggregation, my hypothesis is that these electrophilic compounds will induce stress protein 

accumulation and enhance levels of ubiquitinated and aggregated protein. Additionally, BITC and 

PEITC will have an affect on tubulin levels and microtubule structure. 

1.10. Objectives 

As mentioned previously, BITC, PEITC and SFN were shown to be of possible 

therapeutic use in treating human diseases. While a number of studies have characterized the 

ability of ITCs to directly bind and modify thiol-containing proteins including α-tubulin, less is 

known regarding their ability to induce the accumulation of stress proteins such as HO-1 and 

HSPs and the possible formation of aggregated protein. The present study will focus on the effect 

of BITC, PEITC and SFN on stress protein accumulation, aggregated protein levels and the actin 

and microtubule filament structure in Xenopus laevis A6 kidney epithelial cells. Specifically, the 

objectives of this thesis are as follows:  

1. To examine the effects of BITC, PEITC and SFN on the relative levels of HO-1, HSP70, 

HSP30 and HSPB6 accumulation as well as on the actin and microtubule cytoskeleton. 

2. To determine the impact of ITC treatment on the level of ubiquitinated protein, aggregated 

protein and formation of aggresome-like structures.  

3. To carry out sequence and phylogenetic analyses of a X. laevis small heat shock protein 

encoded by an hspb6 cDNA (that was expressed in our laboratory during this research) as 

well as examining the accumulation of HSPB6 in A6 cells in response to ITCs, heat 

shock, cadmium and MG132.  
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Chapter 2: Materials and Methods 

2.1.  Maintenance and treatment of Xenopus laevis A6 cells 

 HSP accumulation patterns in response to stressful stimuli were examined in Xenopus 

laevis A6 kidney epithelial cells obtained from the American Type Culture Collection 

(Rockville, MD). The cell line was grown in 70% Leibovitz L-15 Media containing 10% fetal 

bovine serum and 1% penicillin/streptomycin (Sigma-Aldrich, Oakville, ON) at 22 ºC in T75 cm 

BD falcon culture flasks (BD Biosciences, Mississauga, ON). After cells reached confluency, old 

media was aspirated and washed with 1 mL versene [0.02% (w/v) KCl, (0.8% (w/v) NaCl, 

0.02% (w/v) KH2PO4, 0.115% (w/v) NaHPO4, 0.02% (w/v) Na2EDTA] followed by incubation 

with 2 mL of fresh versene. Subsequently, 1 mL of 1X trypsin (Sigma-Aldrich) in 100% Hanks 

balanced salt solution (HBSS; Sigma-Aldrich) for 1 min was added to detach the cells from the 

bottom of the flask. Cells were resuspended in fresh media and transferred into new culture 

flasks.  

 Flasks reaching at least 90% confluency were used for treatments. Treatment of cells at 

30 °C were performed in a water bath. Also, some flasks of cells were heat shocked in a 33 °C 

water bath for 2 h and allowed to recover at 22 °C for 2 h. BITC, PEITC and SFN (Sigma-

Aldrich) were dissolved in dimethylsulphoxide (DMSO) to make a stock solution of 100 mM, 

from which a 1 mM working solution was created. Subsequently, A6 cells were treated with 7.5 

µM BITC, 5 µM PEITC or 20 µM SFN. MG132 (Sigma-Aldrich), which was dissolved in 500 

µL DMSO to prepare 21 mM stock solutions, was added to the cells at a final concentration of 

30 µM. Other flasks were exposed to 100 µM cadmium chloride for 16 h at 22 °C (Khamis and 

Heikkila, 2013).	
  In transcriptional inhibitor experiments, cells were pretreated for 30 min with 2 

µg/mL actinomycin D (Sigma-Aldrich) before the addition of the ITC. In translational inhibitor 
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experiments, A6 cells were pretreated with 100 µM cycloheximide (Sigma-Aldrich) for 6 h prior 

to the introduction of the ITC directly into the media in the flask. In other experiments, cells 

were pretreated with the HSF1 inhibitor, 100 µM KNK437 (Sigma-Aldrich; dissolved in DMSO) 

for 6 h prior to the ITC treatments. Cell morphology was recorded using a phase contrast Nikon 

TMS microscope equipped with a Nikon Coolpix 995 digital camera (400X magnification; 

Nikon Canada, Mississauga, ON). 

2.2.  Protein isolation and quantification  

 The media was removed from the flasks followed by rinsing of the cells with 2 mL of 

65% HBSS and the subsequent addition of 1 mL of 100% HBSS. A cell scraper was used to 

remove cells from the flask, which were then transferred to a 1.5 mL microcentrifuge tube. The 

cells were centrifuged at 14,000 rpm for 1 min (Eppendorf centrifuge; Model No. 5810R; 

Mississauga, ON). The supernatant was removed and cells were stored at -80 °C until protein 

isolation. Protein was isolated using 300 µL lysis buffer (200 mM sucrose, 2 mM EGTA, 1 mM 

EDTA, 40 mM NaCl, 30 mM HEPES, pH 7.4), which contained 1% SDS and 1% protease 

inhibitor cocktail (Promega; Madison, WI). For ubiquitinated protein, 10 mM N-ethylmaleimide 

(Sigma-Aldrich) was added to the lysis buffer to inhibit deubiquitination of proteins. Next, 

samples were sonicated on ice with a sonic dismembranator (Model 100, Fisher Scientific; 

Waltham, MA, USA) and then centrifuged at 14,000 rpm for 30 min at 4 ºC. The protein 

supernatant was then isolated and stored at -20 ºC until further use.  

The bicinchoninic acid (BCA) method was used for protein quantification according to the 

manufacturer’s instructions (Pierce, Rockford, IL, USA). A protein standard was made using a 

bovine serum albumin (BSA; Bioshop; Burlington, ON). BSA was diluted in MilliQ water to 

concentrations ranging from 0 to 2 mg/mL. Protein samples in 1.5 mL microcentrifuge tubes 
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were diluted to a concentration of 1:2 in MilliQ water. BSA standards and protein samples in 10 

µL volumes were loaded in triplicate into a 96-well polystyrene plate. Eighty µL of BCA reagent 

A and B (Pierce) was added to each standard and protein sample and the plate was incubated at 

37 °C for 30 min. Subsequently, the plate was read at 562 nm using a Versamax Tunable 

microplate reader (Molecular Devices, Sunnyvale, CA, USA) and Softmax Pro software. A 

standard curve was created using the BSA protein standards which was used to determine the 

concentration of the protein samples. 

2.3.  SDS-polyacrylamide gel electrophoresis 

 Proteins were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

employing 12% gels for HO-1, HSP70, HSP30, HSPB6, α-tubulin and actin and 10% gels for 

ubiquitinated protein. Separating gels [10 or 12% (w/v) acrylamide, 0.32% (v/v) n’n’-bis 

methylene acrylamide, 0.375 M Tris pH 8.8, 1% (w/v) SDS, 0.2% (w/v) ammonium persulfate 

(APS), 0.14% (v/v) tetramethylethylenediamine (TEMED)] were prepared and allowed to 

polymerize for 25 min after 100% ethanol was layered on top of the gel. Once the separating gel 

solidified, ethanol was removed and the stacking gel [4% (v/v) acrylamide, 0.11% (v/v) n’n’-bis 

methylene acrylamide, 0.125 M Tris pH 6.8, 1% (w/v) SDS, 0.4% (w/v) APS, 0.21% (v/v) 

TEMED] was added. Combs were inserted to create lanes in the stacking gel after which it was 

left to polymerize for another 25 min. Protein samples (30 µg) for HO-1, HSP70, HSP30 and α-

tubulin, 40 µg for HSPB6, 60 µg for ubiquitinated protein or 12 µg for actin were added to 

loading buffer [0.0625 M Tris pH 6.8, 10% (v/v) glycerol, 2% (w/v) SDS, 5% (v/v) β-

mercaptoethanol, 0.00125% (w/v) bromophenol blue]. Samples were boiled for 10 min, cooled, 

briefly centrifuged and loaded on to the gel. Gels were electrophoresed in 1X running buffer [25 

mM Tris, 0.2 M glycine, 1 mM SDS] at 90 V until samples reached the separating gel at which 
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point the voltage was increased to 140 V for ubiquitinated protein or 160 V for HO-1, HSP70, 

HSP30, HSPB6, α-tubulin and actin. 

2.4.  Immunoblot analysis 

 Immunoblot analysis was employed to detect the relative levels of different proteins in 

A6 cells subjected to various stressors. Nitrocellulose membranes (BioRad, Mississauga, ON) 

and filter paper (BioRad) were cut to a size of 5.5 X 8.5 cm. Membranes were soaked for 30 min 

in 10% transfer buffer [25 mM Tris, 192 mM glycine, 10% (v/v) methanol] for ubiquitin blots, or 

20% transfer buffer [25 mM Tris, 192 mM glycine, 20% (v/v) methanol] for HO-1, HSP70, 

HSP30, HSPB6, α-tubulin and actin. Once electrophoresis was finished, the stacking gel was 

removed and the remainder of the gel was soaked in transfer buffer for 15 min. Protein was 

transferred to the nitrocellulose membrane with a Trans-Blot Semi-dry Transfer cell (BioRad) for 

25 min at 20 V. Once the transfer was complete, membranes were stained with Ponceau S stain 

[0.19% (w/v) Ponceau S, 5% (v/v) acetic acid] for 10 min to determine the quality of the transfer 

and loading of protein. Blots were rinsed with MilliQ water and scanned. Membranes were then 

incubated with 5% blocking [20 mM Tris pH 7.5, 0.1% Tween 20 (Sigma), 300 mM NaCl, 5% 

(w/v) Nestle® Carnation skim milk powder] solution for 1 h to prevent non-specific binding. 

Once the blocking solution was removed, the membranes were incubated with rabbit anti-HO-1 

(at a dilution of 1:500, Enzo Life Sciences, Farmingdale, NY; Catalog No. BML-HC3001-0100), 

rabbit anti-Xenopus HSP70 (commercially made against a 16 amino acid C-terminal peptide 

fragment of HSP70B; 1:350; Gauley et al., 2008), rabbit anti-Xenopus HSP30 (1:500; Fernando 

and Heikkila, 2003) or rabbit anti-actin (1:200; Sigma; Catalog No. A2066) polyclonal 

antibodies or a mouse anti-α-tubulin (1:500; Sigma; Catalog No. T9026) monoclonal antibody, 

diluted in 5% blocking solution and left overnight. Other membranes were incubated overnight 
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with a polyclonal rabbit anti-human HSPB6 (1:200; Cedarlane; Catalog No. ARP48436_T100) 

antibody or a monoclonal mouse anti-ubiquitin (1:150; Invitrogen, Carlsbad, CA, USA; Catalog 

No. 13-1600) antibody diluted in 5% BSA (Sigma). After incubation with primary antibody, 

membranes were washed once for 15 min and twice for 10 min, with 1X TBS-T [20mM Tris, 

300 mM NaCl, (pH 7.5), 0.1% (v/v) Tween 20]. Membranes were then incubated with secondary 

antibody in blocking solution for 1 h. Alkaline phosphatase-conjugated goat-anti-rabbit (BioRad) 

at a dilution of 1:30,000 dilution was employed to detect HO-1, HSP70, HSP30, HSPB6 and 

actin while alkaline phosphatase-conjugated goat-anti-mouse (BioRad) at a 1:1000 dilution was 

used to monitor α-tubulin and ubiquitin. Following incubation with secondary antibody, the 

membranes were washed once for 15 min with TBS-T and twice for 5 min. Membranes were 

then washed in alkaline phosphatase detection buffer [50 mM Tris, 50 mM NaCl, 25 mM MgCl2 

pH 9.5, 0.3% 4-nitro blue tetrazolium (NBT; Roche, Ayr, ON) and 0.17% 5-bromo-4-chloro-3-

indolyl phosphate, toluidine salt (BCIP; Roche)] until bands or ubiquitinated protein lanes were 

visible and then detection buffer was removed and the blots were rinsed with MilliQ water.  

2.5. Immunocytochemistry and laser scanning confocal microscopy 

In order to determine the localization of HO-1, HSP30 or aggregated protein or the 

morphology of actin and microtubule filaments in response to various treatments, 

immunocytochemistry in conjunction with laser scanning confocal microscopy was employed. 

A6 cells were grown on flame sterilized 22 x 22 mm base-washed glass coverslips (VWR; 

Catalog No. 48366-067) in sterile petri dishes (VWR, Catalog No. 351029). Coverslips were 

washed with a base solution [49.5% (v/v) ethanol, 0.22 M NaOH] in small staining jars (Thomas 

Scientific Apparatus, Philadelphia, PA, USA) for 30 min and then rinsed with distilled water for 

3 h.  



38 
 

ITC treatments involved the adjustment of 10 mL of fresh media to a final concentration of 

7.5 µM BITC, 5 µM PEITC or 20 µM SFN (as indicated in section 2.1) which was then poured 

into the petri dishes. The petri dishes were then kept at 22 °C or wrapped with parafilm, sealed in 

a plastic bag and incubated at 30 °C. Following treatment, L-15 media was removed and cells 

were rinsed twice with phosphate buffered saline (PBS; 1.37 M NaCl, 67 mM Na2HPO4, 26 mM 

KCl, 14.7 mM H2PO4, 1 mM CaCl2, 0.5 mM MgCl2 pH 7.4). Once washed, coverslips were 

transferred to small petri dishes and fixed with 3.7% paraformaldehyde (BDH, Toronto, ON) for 

15 min. Coverslips were then rinsed with three 5 min each washes with PBS and then 

permeabilized using 0.3% Triton X-100 (Sigma) for 10 min. After an additional three washes 

with PBS, A6 cells were incubated with 3.7% (w/v) BSA (Sigma) for 1 h or overnight at 4 °C. 

The following day, cells were incubated with rabbit anti-HO-1 (1:200), affinity-purified rabbit 

anti-Xenopus HSP30 (1:500), rabbit anti-human HSPB6 (1:100) or monoclonal mouse anti-α-

tubulin (1:250) antibodies in 3.7% BSA for 1 h. After three washes for 3 min each with PBS, 

indirect labeling of cells was carried out with fluorescent-conjugated secondary antibodies 

including goat anti-rabbit Alexa Fluor 488 (Molecular Probes) at a 1:2000 dilution (1:1000 for 

HSPB6) or goat anti-mouse Alexa Fluor 488 (Invitrogen Molecular Probes) at 1:1000 in 3.7% 

BSA for 30 min in the dark. Coverslips were then incubated with rhodamine-

tetramethylrhodamine-5-isothiocyanate phalloidin (TRITC; Invitrogen Molecular Probes) for 15 

min at a 1:60 in 3.7% BSA in the dark in order to visualize the actin cytoskeleton. A ProteoStat 

aggresome detection kit (Enzo Life Sciences, Plymouth Meeting, PA) was used to monitor the 

presence of aggregated protein and/or aggresome-like structures as per manufacturer’s 

instructions. Coverslips were dried and mounted on a glass microscope slide with Vectashield 

(Vector Laboratories Inc., Burlingame, CA) containing 4,6-diamidino-2-phenylindole (DAPI; 
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Vector Laboratories Inc.) to stain nuclei followed by three washes of 5 min each. Clear nail 

polish was used to permanently attach coverslips to glass slides and the slides were stored at 4 

°C. Slides were examined using a Zeiss Axiovert 200 confocal microscope with LSM 510 

META software (Carl Zeiss Canada Ltd., Mississauga, ON). 

2.6. DNA sequence alignment and phylogenetic analysis 

 The X. laevis HSPB6 amino acid sequence was aligned with human, rat and mouse 

HSPB6 proteins using the multiple sequence alignment program of Clustal Omega (Version 

O.2.1; Sievers et al., 2011). For phylogenetic analysis, representative HSPB6 and HSPB5 amino 

acid sequences obtained from amphibians, reptiles, mammals and fish were aligned using 

Clustal. A maximum-likelihood tree was constructed using a Jones-Taylor-Thornton model and 

Nearest Neighbor-Interchange as the heuristic method using MEGA 7.0.14 (Jones et al., 1992; 

Kumar et al., 2016). The tree was rooted with S. cerevisiae HSP26. The reliability of the tree was 

estimated by bootstrapping with 1000 replicates. 

2.7.  Densitometry and statistical analysis 

 Densitometric analysis of all blots were performed with at least 3 separate replicates, 

using Image J software (Version 1.44; National Institute of Health http://rsb.info.nih.gov/ij/). In 

cases where 2 HSP70 bands or multiple HSP30 bands were observed, the entire HSP signal 

detected by each respective antibody was used for analysis. The average densitometric values of 

HO-1, HSP70 or HSP30 were expressed as a percentage of the maximum signal obtained for 

each stress protein. The densitometric values obtained for HSPB6, α-tubulin or ubiquitin were 

compared to control. The standard error is represented by vertical error bars. To determine if any 

statistically significant differences existed between samples, a one-way ANOVA with a Tukey’s 

post-test was performed on the data.  



40 
 

Chapter 3: Results 

3.1. Examination of ITC treatment on HO-1 and HSP accumulation. 

3.1.1.  Morphology of A6 cells treated with BITC, PEITC or SFN.  

 Preliminary studies employed phase contrast microscopy to observe the effects of ITCs 

on the morphology of Xenopus laevis A6 kidney epithelial cells (Fig. 6). The concentrations used 

were similar to studies examining the effects of BITC, PEITC and SFN in mammalian systems 

(Gibbs et al., 2009; Sarkars et al., 2013; Sehrawat et al., 2016; Yeh et al., 2016). Compared to 

control, cells treated with 7.5 µM BITC for 12 h at 22 °C displayed an elongated structure with 

numerous cell processes and a lower overall density. In contrast, cells treated with 5 µM PEITC 

had a control-like appearance whereas SFN-treated cells displayed a slightly elongated polygonal 

morphology. After completion of the ITC treatments, the cells were allowed to recover in fresh 

media for 72 h. Regardless of the ITC treatment, the number of cells increased during recovery 

and were morphologically similar to control cells. Given these latter results, subsequent studies 

employed primarily the aforementioned concentrations of the three ITCs to examine their effect 

on HO-1 and HSP accumulation in A6 cells. 

3.1.2.   Immunoblot analysis of HO-1, HSP70 and HSP30 accumulation in BITC-, PEITC- and 

SFN-treated cells.  

 In this study, the effect of different BITC concentrations on the relative levels of HO-1, 

HSP70 and HSP30 at 22 °C were examined. Given that HSP70 and HSP30 are heat-inducible, 

the effect of A6 cells treated with BITC at 30 °C was also evaluated. MG132, a proteasomal 

inhibitor which was found previously to induce both HO-1 and HSPs in Xenopus A6 cells, was 

used a positive control (Gauley et al., 2008; Young and Heikkila, 2010; Khamis and Heikkila,  
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Figure 6. Effect of BITC, PEITC and SFN treatment and recovery on the morphology of A6 

cells. Cells were maintained at 22 °C (Control) or treated with either 7.5, 5 or 20 µM of BITC, 

PEITC or SFN, respectively, for 12 h followed by recovery (Rec) in fresh media for 72 h at 22 

°C. Phase contrast microscopy was employed to observe the morphology of ITC-treated cells. 

A6 cells were photographed using a Nikon Coolpix 995 digital camera (400X magnification).  
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2013; Music et al., 2014). The analysis of HO-1 accumulation utilizing immunoblotting and 

immunocytochemistry employed an antibody that was made against a synthetic peptide 

(DLSEALKEATKEVH), which shared 100% identity with X. laevis HO-1 (Music et al., 2014). 

Previous studies employed this anti-HO-1 antibody to analyze stress-induced HO-1 accumulation 

in human cells (Hock et al., 2004; Hanneken et al., 2006). As shown in Figure 7, treatment of 

cells with 5 and 7.5 µM BITC for 12 h resulted in a greater accumulation of HO-1 than found 

with 10 µM. Densitometric analysis revealed that A6 cells treated with these two different BITC 

concentrations at 30 °C had HO-1 levels that were 56 and 28% less, respectively, than found 

with treatments at 22 °C. While HSP70 was induced to low levels in cells treated with 5 µM 

BITC compared to control, larger accumulations were observed when cells were exposed to 

either 7.5 or 10 µM (at 22 or 30 °C). Very low levels of HSP30 were observed in cells treated 

with all three concentrations of BITC at 22 °C. However, treatment of cells with 7.5 or 10 µM 

BITC at 30 °C produced an increase in HSP30 accumulation compared to the responses observed 

at 22 °C or with 30 °C alone. Densitometric analysis revealed that treatment of cells with 7.5 µM 

BITC at 30 °C resulted in a 40-fold increase in HSP30 compared to the sum of responses 

obtained with the same concentration at 22 °C or at 30 °C alone. Exposure of cells to DMSO 

alone did not induce stress protein accumulation (data not shown). Throughout these 

experiments, the levels of actin remained relatively constant. 

 The next set of experiments examined the effect of different concentrations of PEITC or 

SFN on HO-1, HSP70 and HSP30 accumulation at 22 and 30 °C for 12 h. As shown in Figure 8, 

higher levels of HO-1 and HSP70 accumulation were observed in cells treated with 5 µM PEITC 

at 22 °C compared to cells treated with 7.5 µM. Exposure of cells to 5 µM PEITC at 30 °C 

resulted in a 59 and 58% decrease in HO-1 and HSP70 accumulation, respectively, compared to  
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Figure 7. Relative levels of HO-1, HSP70 and HSP30 in cells subjected to BITC treatment at 22 

or 30 °C. A6 cells were maintained at 22 °C (C) or exposed to either 5, 7.5 or 10 µM BITC at 22 

or 30 °C for 12 h. Additionally cells were exposed to a temperature of 30 °C for 12 h or treated 

with 30 µM MG132 (MG) for 12 h at 22 °C as a positive control since MG132 was shown to 

induce the accumulation of all 3 stress-inducible proteins. A) Total protein was isolated and 30 

µg (or 15 µg of protein from MG132-treated cells, 12 µg for actin) was subjected to immunoblot 

analysis using an anti-HO-1, anti-HSP70, anti-HSP30 or anti-actin antibody as described in 

Materials and methods, with the representative immunoblot shown. B) ImageJ software was 

used to perform densitometric analysis of signals obtained for HO-1, HSP70 and HSP30 as 

described in Materials and methods. The data were expressed as a percentage of the maximum 

band obtained for each protein, while standard errors were indicated with vertical bars. A one-

way ANOVA with a Tukey’s Multiple Comparisons post-test was used to determine 

significance. Significant differences between the control cells and treated cells are indicated with 

an asterisk (p < 0.05). These data are representative of 4 separate experiments. 
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Figure 8. Representative immunoblot showing the effect of PEITC on HO-1, HSP70 and HSP30 

accumulation at 22 or 30 °C. Cells were maintained at 22 °C (C), exposed to a temperature of 30 

°C for 12 h, or treated with 30 µM MG132 (MG) for 12 h at 22 °C. Some flasks were incubated 

with 5 or 7.5 µM PEITC at 22 or 30 °C for 12 h. A) Following treatments, total protein was 

isolated and subjected to immunoblot analysis using an anti-HO-1, anti-HSP70, anti-HSP30 or 

anti-actin antibody. B) Densitometric analysis of the band densities obtained for HO-1 and 

HSP70 utilized ImageJ software. The data were expressed as a percentage of the maximum band 

obtained for either HO-1 or HSP70 (5 µM PEITC at 22 °C for both), while the standard errors 

were represented by vertical bars. Densitometry was not carried out with HSP30 immunoblots 

since the relative levels induced by PEITC were very low or undetectable. Statistical analysis 

was performed and the significant differences were indicated with an asterisk (p < 0.05). These 

data are representative of 3 separate experiments. 
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values obtained at 22 °C. A decrease in HO-1 levels but not HSP70 was evident when cells were 

treated with 7.5 µM PEITC at 30 °C compared to 22 °C. HSP30 accumulation was not detected 

after PEITC treatment at either temperature. Additionally, high levels of HO-1 were observed 

when cells were treated with 10 or 20 µM SFN at 22 °C for 12 h compared to control with lower 

levels when SFN treatment was carried out at 30 °C (Fig. 9). HSP70 levels were detected in cells 

treated with 10 µM SFN at 22 °C with higher amounts at 20 µM. SFN exposure at 30 °C resulted 

in higher levels of HSP70. For example, at 30 °C, 20 µM SFN treatment was enhanced by 47% 

compared cells treated with the same concentration at 22 °C. HSP30 was not detected in cells 

treated with SFN at either 22 or 30 °C. The levels of actin remained relatively constant 

throughout these experiments.  

3.1.3.   Time course studies investigating levels of HO-1, HSP70 and HSP30 accumulation in 

BITC-treated cells. 

 In time course studies, the exposure of cells to 7.5 µM BITC at 22 °C resulted in 

relatively low levels of HO-1 and HSP70 accumulation at 4 and 6 h with higher levels observed 

at 12, 16 and 24 h (Fig. 10A). Densitometric analysis revealed a 68% increase in HO-1 at 12 h 

compared to 4 h (Fig. 10B). HSP70 levels increased by 63% and 80% at the 12 and 16 h time 

points, respectively compared to 4 h. HSP30 was not included in this analysis since the relative 

levels of protein were too low for accurate densitometric measurements. The next series of time 

course experiments explored the effect of BITC on stress protein accumulation in cells incubated 

at 30 °C from 4 to 24 h. As shown in Figure 11, HO-1 accumulation was detected at 4 h, with a 

29% increase at 6 h and a 36% increase at 12 h. A subsequent decline in HO-1 protein levels was 

observed at the 16 and 24 h time points. HSP70 and HSP30 were both detectable at 4 h, with the 

largest increase observed at 16 h followed by a decline at 24 h. The levels of actin remained  
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Figure 9. Effect of SFN on HO-1, HSP70 and HSP30 accumulation at 22 or 30 °C. Cells were 

maintained at 22 °C (C) or incubated with 10 or 20 µM SFN at 22 or 30 °C for 12 h. Also, some 

cells were exposed to a temperature of 30 °C for 12 h or treated with 30 µM MG132 (MG) at 22 

°C. In panel A, a representative immunoblot is shown. Following treatments, total protein was 

isolated and subjected to immunoblot analysis using an anti-HO-1, anti-HSP70, anti-HSP30 or 

anti-actin antibody. B) Densitometric analysis of the bands obtained for HO-1 and HSP70 

utilized ImageJ software. The data was expressed as a percentage of the maximum band 

obtained for either HO-1 (10 µM SFN at 22 °C) or HSP70 (20 µM SFN at 30 °C), with vertical 

bars denoting the standard errors. Densitometry was not carried out with HSP30 immunoblots 

since the relative levels induced by SFN were very low or undetectable. Statistical analysis was 

performed and the significant differences were indicated with an asterisk (p < 0.05). These data 

are representative of 3 separate experiments. 
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Figure 10. Time course of HO-1, HSP70 and HSP30 accumulation in A6 cells treated with BITC 

at 22 °C. A6 cells were maintained at 22 °C (C), treated with 30 µM MG132 (MG) for 12 h or 

incubated with 7.5 µM BITC from 4 to 24 h at 22 °C. A) Total protein was isolated and 

subjected to immunoblot analysis using an anti-HO-1, anti-HSP70, anti-HSP30 or anti-actin 

antibody, with the representative immunoblot shown. B) ImageJ software was used to perform 

densitometric analysis of signal intensity for HO-1 and HSP70 protein bands. The data were 

expressed as a percentage of the maximum band obtained for either stress-inducible protein (24 

h for HO-1 and 16 h for HSP70), while the standard errors were represented by vertical bars. 

Statistical analysis was performed and the significant differences are indicated with an asterisk 

(p < 0.05) or a triangle (p < 0.1). These data are representative of 4 separate experiments. 
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Figure 11. Time course of BITC-induced HO-1, HSP70 and HSP30 accumulation at 30 °C. Cells 

were maintained at 22 °C (C), incubated at 30 °C for 12 h, or treated with 7.5 µM BITC at 30 °C 

for 4 to 24 h. In panel A, a representative immunoblot is shown. After treatment, total protein 

was isolated and subjected to immunoblot analysis using an anti-HO-1, anti-HSP70, anti-HSP30 

or anti-actin antibody. B) Densitometric analysis of the band intensity for HO-1, HSP70 and 

HSP30 utilized ImageJ software. The results were expressed as a percentage of the maximum 

band intensity acquired for each protein in each trial. Vertical error bars denote standard error. 

Statistical analysis was performed and the significant differences are indicated with an asterisk (p 

< 0.05). These data are representative of 4 separate experiments. 
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relatively constant throughout these experiments. 

3.1.4.   Immunoblot analysis of HSPB6 accumulation in ITC-treated cells. 

 The effect of ITCs on HSPB6 levels in A6 cells employed a rabbit polyclonal antibody 

made against a proprietary human HSPB6 14 amino acid peptide sequence located within A101 

to S150 (additional information is shown in Fig. 30). According to the manufacturer, 11 out of 

14 amino acids of the human HSPB6 peptide immunogen were identical with the comparable 

region in X. laevis HSPB6. In preliminary experiments, I confirmed the ability of the anti-human 

HSPB6 antibody in detecting two dilutions of X. laevis recombinant HSPB6, produced by a 

former undergraduate student in our laboratory (D. Chan; data not shown). The antibody was 

then used to examine the accumulation of HSPB6 in cells treated with BITC, PEITC and SFN at 

22 and 30 °C. As shown in Figure 12, none of the treatments resulted in significant changes in 

HSPB6 accumulation relative to control. The levels of actin remained relatively constant in this 

experiment. 

3.1.5.   Effect of actinomycin D, cycloheximide and KNK437 on HO-1 and HSP accumulation in 

ITC-treated cells. 

 In the present study, pretreatment of A6 cells with actinomycin D (ActD), a 

transcriptional inhibitor, inhibited BITC, PEITC and SFN-induced HO-1 and HSP70 

accumulation at both 22 and 30 °C (Fig. 13). Furthermore, ActD treatment prior to the 

introduction of 7.5 µM BITC at 30 °C resulted in an inhibition of HSP30 accumulation. As 

already determined, PEITC and SFN did not induce the accumulation of HSP30 at 22 or 30 °C. 

In the next series of experiments, pretreatment of cells with cycloheximide (CHX), an inhibitor 

of protein synthesis, also prevented BITC-, PEITC- and SFN-induced HO-1 and HSP70 

accumulation, as well as HSP30 accumulation in cells treated with BITC at 30 °C (Fig. 14).  



56 
 

 

 

 

 

 

 

 

 

Figure 12. Representative immunoblot showing the effect of BITC, PEITC and SFN on HSPB6 

accumulation. Cells were maintained at 22 °C (C), incubated at 30 °C, or treated individually 

with either 7.5 µM BITC, 5 µM PEITC or 20 µM SFN at 22 or 30 °C for 12 h. A) Following 

treatments, total protein was isolated and 40 µg was subjected to immunoblot analysis using an 

anti-HSPB6 or anti-actin antibody as described in Materials and methods. ImageJ software was 

used to perform densitometric analysis of signal intensity for HSPB6 (panel B) as described in 

Materials and methods. The data for HSPB6 are expressed as a ratio to control levels and vertical 

error bars denote standard error. Statistical analysis was performed as described in Materials and 

methods. These data are representative of 3 separate experiments.  
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Figure 13. Effect of actinomycin D on ITC-treated cells. A) Cells were maintained at 22 °C (C) 

or treated with 7.5, 5, or 20 µM of BITC, PEITC or SFN, respectively, for 12 h at 22 °C, with or 

without a 30 min pretreatment of 2 µg/mL actinomycin D (ActD) at 22 °C. B) Cells were 

maintained at 22 °C (C) or incubated at 30 °C for 12 h. Some flasks were treated with 7.5, 5, or 

20 µM BITC, PEITC or SFN, respectively, for 12 h at 30 °C, with and without a 30 min 

pretreatment of 2 µg/mL ActD at 22 °C. Following treatments, total protein was isolated and 

subjected to immunoblot analysis using an anti-HO-1, anti-HSP70, anti-HSP30 or anti-actin 

antibody. These results are representative of 2 separate experiments. 
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Figure 14. Effect of cycloheximide on ITC-treated cells. A) Cells were maintained at 22 °C (C) 

or treated with 7.5, 5 or 20 µM of BITC, PEITC or SFN, respectively, for 12 h at 22 °C with or 

without a 6 h pretreatment with 100 µM cycloheximide (CHX) at 22 °C. B) Cells were 

maintained at 22 °C (C) or incubated at 30 °C for 12 h. Other cells were treated with 7.5, 5 or 20 

µM of BITC, PEITC or SFN for 12 h at 30 °C, with or without a 6 h pretreatment with 100 µM 

CHX at 22 °C. Following treatments, total protein was isolated and subjected to immunoblot 

analysis using an anti-HO-1, anti-HSP70, anti-HSP30 or anti-actin antibody. These results are 

representative of 2 separate experiments. 
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Finally, the effect of the HSP transcriptional inhibitor, KNK437, on ITC-induced HO-1, HSP70 

and HSP30 accumulation was examined (Fig. 15). Treatment of cells with 100 µM KNK437, an 

HSF1 inhibitor, prior to their exposure to BITC, PEITC or SFN at either 22 or 30 °C inhibited 

both HO-1 and HSP70 accumulation. The induction of HSP30 accumulation with BITC at 30 °C 

was also inhibited by KNK437. The levels of actin remained relatively constant throughout these 

experiments.  

3.1.6.   Cytoskeletal structure and localization of HO-1 and HSP30 in MG132- and ITC-treated 

cells. 

 Immunocytochemistry and laser scanning microscopy (LSCM) was used to compare the 

effect of MG132 (MG) and ITCs on HO-1 and HSP30 localization in A6 cells. HSP70 

localization was not examined since the affinity-purified polyclonal anti-HSP70 antibody, used 

successfully in immunoblot detection, was unable to detect HSP70 by immunocytochemistry 

(Gauley et al., 2008; Khamis and Heikkila, 2013). As shown in Figure 16, control and MG132-

treated A6 cells at 22 °C displayed actin stress fibers transversing the entire length of cells in 

mostly axial bundles, with the appearance of a few radial bundles located at the periphery. Some 

cells treated with MG132 showed signs of membrane ruffling and disorganization of F-actin 

(yellow arrows). HO-1 and HSP30 were undetectable in control cells maintained at 22 °C. 

However, treatment of A6 cells with MG132 induced HO-1 and HSP30 accumulation in 90 and 

60% of the cells, respectively, in a punctate pattern primarily located in the perinuclear region.  

 Treatment of A6 cells with BITC revealed the presence of ruffled edges in some cells and 

when this ITC treatment occurred at 30 °C, cellular cytoskeletal disorganization (yellow arrows) 

was observed with numerous cells undergoing F-actin bundle collapse around the nucleus (Fig. 

17). Additionally, larger F-actin structures were also present in the periphery of cells. Following  
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Figure 15. Effect of KNK437 on ITC-treated cells. A) Cells were maintained at 22 °C (C) or 

treated with 7.5, 5, or 20 µM of BITC, PEITC or SFN, respectively, for 12 h at 22 °C, with or 

without a 6 h pretreatment with 100 µM KNK437 at 22 °C. B) Cells were maintained at 22 °C 

(C) or incubated at 30 °C for 12 h. Other flasks were treated with 7.5, 5, or 20 µM of BITC, 

PEITC or SFN, respectively, for 12 h at 30 °C with or without a 6 h pretreatment with 100 µM 

KNK437 at 22 °C. Following treatments, total protein was isolated and subjected to immunoblot 

analysis using an anti-HO-1, anti-HSP70, anti-HSP30 or anti-actin antibody. These results are 

representative of 2 separate experiments. 
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Figure 16. Localization of HO-1 and HSP30 in MG132-treated A6 cells at 22 °C. A6 cells were 

cultured on base-washed glass coverslips and then maintained at 22 °C (C) or incubated with 30 

µM MG132 (MG) for 12 h at 22 °C. HO-1 and HSP30 were detected with a rabbit anti-HO-1 or 

anti-HSP30 antibody, respectively, and a secondary antibody conjugated to Alexa-488 (green). 

Actin and nuclei staining utilized phalloidin conjugated to TRITC (red) or DAPI (blue), 

respectively. The columns, from left to right, show the fluorescence detection channels for actin, 

HO-1 or HSP30, and merged images, which also includes DAPI staining. Yellow arrows 

indicate membrane ruffling or disorganization of the F-actin cytoskeleton. The laser scanning 

confocal microscopy (LSCM) procedure was followed as outlined in the Materials and methods. 

The 20 µm scale bars are indicated at the bottom right corner of each panel. These results are 

representative of 3 different experiments. 
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Figure 17. Effect of ITCs on the localization of HO-1 in A6 cells. In panels A and B, cells were 

cultured on glass coverslips and then maintained at 22 °C (C) or incubated with 30 µM MG132 

(MG) for 12 h. Other cells were treated with 7.5, 5 or 20 µM of BITC, PEITC or SFN, 

respectively, for 12 h at 22 or 30 °C. HO-1 was detected with a rabbit anti-HO-1 antibody, and a 

secondary antibody conjugated to Alexa-488 (green). Actin and nuclei staining utilized 

phalloidin conjugated to TRITC (red) or DAPI (blue), respectively. The columns, from left to 

right, show the fluorescence detection channels for actin, HO-1, and merged images, which also 

includes DAPI staining. Yellow arrows indicate membrane ruffling or disorganization of the F-

actin cytoskeleton. White arrows indicate larger HO-1 staining structures. The 20 µm scale bars 

are indicated at the bottom right corner of each panel. These results are representative of 3 

different experiments. 
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PEITC treatment at 22 °C, slight F-actin ruffling was localized to the periphery of most cells. 

This effect on F-actin disorganization was enhanced when A6 cells were incubated with PEITC 

at 30 °C. Finally, some A6 cells treated with SFN at 22 °C displayed cytoskeletal collapse 

around the nucleus, while this ITC treatment at 30 °C resulted in dysregulation of actin stress 

fibers in cell regions associated with cell-cell contact.  

 Immunocytochemistry revealed that treatmentof cells with 7.5 µM BITC at 22 °C 

induced the accumulation of HO-1 in 85% of cells in a diffuse pattern throughout the cytosol 

with some in the nucleus. Treatment of cells with 7.5 µM BITC at 30 °C resulted in 70% of cells 

displaying a diffuse pattern of HO-1 accumulation with some larger staining structures present at 

the cell periphery in 30% of cells (white arrows). Interestingly, the merger of the immunostained 

images for this treatment revealed a possible co-localization of the larger HO-1 staining 

structures with actin-stained structures (see white arrows). Following a 5 µM PEITC treatment at 

22 °C, 80% of cells displayed HO-1 accumulation primarily in the cytoplasm in a punctate 

pattern. PEITC treatment at 30 °C resulted in 75% of cells inducing HO-1, which was localized 

to the cytoplasm. Finally, SFN-induced HO-1 accumulation at 22 °C was observed in 70% of 

cells, with HO-1 being distributed throughout the cytoplasm with enrichment in the perinuclear 

region in some cells, while SFN treatment at 30 °C resulted in 60% of cells displaying 

cytoplasmic and some nuclear HO-1 accumulation in a punctate pattern. 

 The next set of experiments examined the effect of ITCs on HSP30 localization. As 

shown in Figure 18, HSP30 was not detected in control cells or cells treated at 30 °C. Following 

BITC treatment at 22 °C, a low amount HSP30 accumulation was detectable. In contrast, at the 

elevated temperature of 30 °C, BITC-induced HSP30 was present in 65% of cells in a punctate  
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Figure 18. Effect of ITCs on the localization of HSP30 in A6 cells. In panels A and B, cells were 

cultured on glass coverslips and then maintained at 22 °C (C), incubated at 30 °C for 12 h or 

treated with 7.5, 5 or 20 µM of BITC, PEITC or SFN, respectively, for 12 h at 22 or 30 °C. 

HSP30 was detected with a rabbit anti-HSP30 antibody, and a secondary antibody conjugated to 

Alexa-488 (green). Actin and nuclei staining utilized phalloidin conjugated to TRITC (red) or 

DAPI (blue), respectively. The columns, from left to right, show the fluorescence detection 

channels for actin, HSP30, and merged images, which also includes DAPI staining. Yellow 

arrows indicate membrane ruffling or disorganization of the F-actin cytoskeleton while the red 

arrows highlight larger HSP30 staining structures. The 20 µm scale bars are indicated at the 

bottom right corner of each panel. These results are representative of 3 different experiments. 
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pattern as well as additional slightly larger HSP30 structures (red arrows). HSP30 accumulation 

was not observed in A6 cells treated with PEITC or SFN at 22 or 30 °C. 

3.2. Effect of BITC and PEITC on ubiquitinated, aggregated and α-tubulin protein 

accumulation and microtubule filament structure. 

3.2.1.   Relative levels of ubiquitinated protein accumulation in MG132-, BITC- and PEITC-

treated cells. 

 In this section I examined the effect of BITC and PEITC on the accumulation of 

ubiquitinated protein in A6 cells. In previous studies, our laboratory and others found that 

MG132, a reversible proteasomal inhibitor, induced a strong accumulation of ubiquitinated 

protein (Malik et al., 2001; Lehman, 2009; Young and Heikkila, 2010; Brunt et al., 2012; 

Khamis and Heikkila, 2013). Thus, MG132-treated cells were employed as a positive control 

showing elevated levels of ubiquitinated protein as indicated in Figure 19. Exposure of cells to 

BITC for 12 h at 22 °C resulted in a 0.5-fold increase in ubiquitinated protein accumulation, 

while a 3-fold increase was observed in cells treated with PEITC at 22 °C relative to control 

(Fig. 20 and 21). Treatment with either ITC at 30 °C resulted in levels of ubiquitinated protein 

that relatively equivalent to control. Unlike BITC or PEITC, exposure of cells to SFN did not 

alter the levels of ubiquitinated protein compared to control (data not shown).  

3.2.2.   Comparison of MG132-, BITC- and PEITC-induced protein aggregation and HSP30 

localization in A6 cells. 

 Given that BITC and PEITC bound and modified protein thiol groups in mammalian 

systems, it was possible that these ITCs could induce an accumulation of aggregated protein in 

A6 cells (Mi et al., 2008; 2009; 2010; Xiao et al., 2012). In the present study, a ProteoStat 

aggresome detection assay, which identifies aggregated protein and aggresome-like structures,  
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Figure 19. Examination of ubiquitinated protein levels in A6 cells treated with MG132. Cells 

were maintained at 22 °C (C) or treated with 30 µM MG132 (MG) for 12 h at 22 °C. After 

treatment, total protein was isolated and 60 µg was subjected to immunoblot analysis, utilizing 

an anti-ubiquitin antibody as described in Materials and methods. Detection of higher molecular 

mass ubiquitinated protein was close to reaching saturation near the top of the gel, and as a 

result the values obtained by densitometry in subsequent ubiquitinated protein experiments may 

be underestimated slightly. The positions of molecular mass standards in kDa are shown in the 

first lane as a marker. A section of a representative Ponceau S stained membrane is shown 

below. These results are representative of 2 separate experiments. 
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Figure 20. Effect of BITC on ubiquitinated protein levels. Cells were maintained at 22 °C (C), 

incubated at 30 °C, or exposed to 7.5 µM BITC at 22 or 30 °C for 12 h. A) After treatments, total 

protein was isolated and subjected to immunoblot analysis, utilizing an anti-ubiquitin antibody, 

with the representative immunoblot shown. B) Densitometric analysis of the band intensity 

utilized ImageJ software, and the data is expressed as a ratio of ubiquitinated protein to control 

levels. The standard error is represented by vertical error bars. Statistical analysis was performed 

and the significant differences are indicated with an asterisk (p < 0.05) or a triangle (p < 0.1). 

These data are representative of 4 separate experiments. 
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Figure 21. Representative immunoblot showing the relative levels of ubiquitinated protein in 

cells treated with PEITC. Cells were maintained at 22 °C (C), incubated at 30 °C or exposed to 5 

µM PEITC at 22 or 30 °C for 12 h. A) After treatments, total protein was isolated and subjected 

to immunoblot analysis, utilizing an anti-ubiquitin antibody. B) Densitometric analysis of the 

band intensity utilized ImageJ software, and the data is expressed as a ratio of ubiquitinated 

protein to control levels. Vertical error bars denote standard error. Statistical analysis was 

performed as described in the Materials and methods and the significant differences are indicated 

with an asterisk (p < 0.05) or a triangle (p < 0.1). These data are representative of 4 separate 

experiments. 
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was employed to examine the effect of BITC and PEITC in comparison to MG132, a known 

inducer of protein aggregation and aggresome formation (Zaarur et al., 2008; Bolhuis and 

Richter-Landsberg, 2010; Xiong et al., 2013; Khan et al., 2014). Cells maintained at 22 or 30 °C 

displayed minimal staining of the ProteoStat dye in contrast to MG132-treated cells which 

induced the formation of numerous (approximately 30-50 per cell) and intensely stained 

aggresome-like structures in the perinuclear regions, which appeared to co-localize with HSP30 

as determined by Z-stacking (white arrows; Fig. 22). BITC treatment at 22 °C resulted in a 

diffuse punctated pattern of aggregated protein (green arrows) throughout the cytoplasm. 

Treatment of cells with BITC at 30 °C also induced a granular pattern of aggregated protein as 

well as large aggregated protein structures (less than 1 per cell; white arrows). Some of these 

structures potentially co-localized with HSP30. PEITC treatment at 22 or 30 °C resulted in an 

increased accumulation of aggregated protein in a granular pattern compared to control, with 

some larger aggregated protein structures detected at the 30 °C temperature. It should be 

emphasized that the weakly-stained aggregated protein structures found with BITC or PEITC 

treatment were detected throughout the cytoplasm whereas MG132-induced numerous strongly 

stained aggregated protein structures per cell that were concentrated in the perinuclear region.  

3.2.3.   Effect of BITC and PEITC on α-tubulin and HO-1 levels in A6 cells. 

 Since studies with mammalian cells determined that ITCs bind and modify thiols 

associated with tubulin dimers, the next set of experiments investigated the effect of BITC and 

PEITC at 22 or 30 °C on α-tubulin and HO-1 levels. As shown in Figure 23, treatment with 

BITC for 4, 8 or 12 h at either 22 or 30 °C produced a decline in α-tubulin levels relative to 

control. Densitometric analysis revealed that cells treated with BITC for 4 h at 22 °C resulted in 

a 61% decrease in α-tubulin levels relative to control and a 91% decrease at 12 h. Cells incubated  
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Figure 22. Examination of aggregated protein and HSP30 localization in A6 cells treated with 

MG132, BITC or PEITC. In panels A and B, cells were grown on glass coverslips and 

maintained at 22 °C, incubated at 30 °C or exposed to 30 µM MG132 (MG) at 22 °C. Other 

coverslips were treated with 7.5 µM BITC or 5 µM PEITC at 22 or 30 °C for 12 h. The 

Proteostat aggresome detection kit was used to directly stain aggregated protein (red), while 

nuclei were stained directly with DAPI (blue). HSP30 was detected with a rabbit anti-HSP30 

antibody, and a secondary antibody conjugated to Alexa-488 (green). From left to right, the 

columns display fluorescence detection channels for the Proteostat dye, HSP30 and merger of 

ProteoStat dye, HSP30 and DAPI. In MG-treated cells, white arrows indicate a large number of 

aggresome-like structures that co-localize with large HSP30 staining structures in the 

perinuclear region. Green arrows highlight BITC- or PEITC-induced accumulation of 

aggregated protein. In cells exposed to BITC at 30 °C, two large Proteostat stained structures are 

indicated with white arrows which co-localize with large HSP30 staining structures. The 20 µm 

scale bars are indicated at the bottom right corner of each panel. These results are representative 

of 3 different experiments. 
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Figure 23. Time course of the relative levels of α-tubulin and HO-1 in cells subjected to BITC 

exposure. A6 cells were maintained at 22 °C (C), incubated at 30 °C for 12 h or treated with 7.5 

µM BITC for 4, 8 or 12 h at 22 or 30 °C. A) Total protein was isolated and 30 µg was subjected 

to immunoblot analysis using an anti-α-tubulin, anti-HO-1 or anti-actin antibody as described in 

Materials and methods, with the representative immunoblot shown. B) Image J software was 

used to perform densitometric analysis for the signal intensity for α-tubulin and HO-1. The data 

are expressed as percentage of control levels for α-tubulin and as a percentage of the maximum 

signal for HO-1 (12 h at 22 °C). The standard error is represented by vertical bars. Statistical 

analysis was performed as described in Materials and methods, and significant differences are 

indicated with an asterisk (p < 0.05). These results are representative of 3 different experiments.  
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at 30 °C without ITC treatment had approximately 12% less α-tubulin than control levels. 

Treatment of cells with BITC at 30 °C resulted in a rapid 87% drop in α-tubulin relative to 

control after 4 h with similar levels after 8 and 12 h. HO-1 levels were first detected after 8 h of 

BITC treatment time at 22 °C with the highest levels at 12 h. Additionally, BITC treatment at 30 

°C resulted in 75 and 59% less HO-1 accumulation after the 8 and 12 h treatment, respectively, 

compared to 12 h at 22 °C.   

 While the effect of PEITC on α-tubulin was not as great as observed with BITC, a 

consistent decline in α-tubulin protein levels was evident with increasing exposure time of A6 

cells to PEITC at either 22 or 30 °C (Fig. 24). Densitometric analysis revealed a 22% decrease in 

α-tubulin levels after 4 h of PEITC treatment at 22 °C and 32% after 12 h. In cells treated with 

PEITC at 30 °C, a 27% decrease in α-tubulin levels were observed after 4 h with a 49% decline 

after 12 h. At both 22 and 30 °C, HO-1 accumulation was first observed at 4 h, with increased 

amounts after longer treatment times. Finally, cells treated with PEITC at 22 °C for 12 h had the 

highest level of HO-1 accumulation compared to cells treated for 8 or 12 h of PEITC at 30 °C 

which had 23 and 22% less HO-1, respectively. 

3.2.4.   Immunocytochemical analysis of the effect of BITC on microtubule filament structure. 

 A6 cells incubated at 22 or 30 °C for 12 h had a similar tubulin cytoskeleton structure, 

consisting of long polymerized microtubule filaments emanating from microtubule-organizing 

centres within the perinuclear region (Fig. 25).  However, disruption and microtubule filament 

fragmentation was evident after BITC treatment at 22 °C, which was enhanced when the 

experiments was performed at 30 °C (white arrows). As shown in Figure 25B, cells exposed to 

PEITC at 22°C revealed some microtubule disruption relative to control with microtubule 

filaments losing their long continuous structure. Treatment of cells with PEITC at 30 °C induced  
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Figure 24. Time course of the relative levels of α-tubulin and HO-1 in PEITC-treated A6 cells. 

Cells were maintained at 22 °C (C) or incubated at 30 °C for 12 h. Other cells were treated with 

5 µM PEITC for 4, 8 or 12 h at 22 or 30 °C. In panel A, a representative immunoblot is shown. 

Total protein was isolated and subjected to immunoblot analysis using an anti-α-tubulin, anti-

HO-1 or anti-actin antibody. B) Image J software was utilized for densitometric analysis of α-

tubulin and HO-1 band intensity. The data are expressed as a percentage of control levels for α-

tubulin and as a percentage of the maximum signal for HO-1 (12 h at 22 °C). The standard error 

is represented by vertical bars. Statistical analysis was performed and significant differences are 

indicated with an asterisk (p < 0.05). These results are representative of 5 different experiments.  
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Figure 25. Effect of BITC and PEITC on actin and microtubule filament structure. A) A6 cells 

were cultured on glass coverslips and then maintained at 22 °C (C), exposed to a temperature of 

30 °C or treated with 7.5 µM BITC at 22 or 30 °C for 12 h. Microtubule filaments were detected 

with a mouse anti-α-tubulin antibody, and a secondary antibody conjugated to Alexa-488 

(green). Actin filaments and nuclei were stained with phalloidin conjugated to TRITC (red) or 

DAPI (blue), respectively. The columns, from left to right, show the fluorescence detection 

channels for actin, α-tubulin, and merged images plus DAPI. Enlarged α-tubulin antibody-

stained images are shown in panel B, comparing microtubule structure of A6 cells in response to 

treatments with 7.5 µM BITC or 5 µM PEITC at 22 or 30 °C for 12 h. Yellow arrows indicate 

membrane ruffling or disorganization of the F-actin cytoskeleton and white arrows indicate 

microtubule fragmentation. The 20 µm scale bars are indicated at the bottom right corner of each 

panel. These results are representative of 3 different experiments. 
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tubulin fragmentation but to a lesser extent than found with BITC-treated cells at 30 °C. 

Exposure of cells to DMSO alone did not affect α-tubulin levels or microtubule filament 

structure (data not shown). Subsequent immunocytochemical studies examined only BITC since 

it had a greater effect on α-tubulin levels and microtubule filament structure than PEITC. 

3.2.5.   Comparison of the effect of BITC on the actin and microtubule filament structure.  

 As shown in Figure 26, control A6 cells displayed actin stress fibers transversing the 

entire length of cells in mostly axial bundles, with the appearance of a few radial bundles located 

at the periphery. This pattern of actin cytoskeletal structure was also found in A6 cells that were 

exposed to 1, 2 and 4 h BITC at 22 °C. However, after 8 and 12 h of BITC treatment, membrane 

ruffling (yellow arrows) was present and localized to the periphery of cells. BITC exposure at 30 

°C revealed membrane ruffling after only 2 h of treatment, and became more intense at 4 and 8 h 

(Fig. 27A and B). Additionally, cells exposed to BITC for 12 h at 30 °C displayed F-actin 

disorganization and collapse as well as larger F-actin structures present in the periphery of cells. 

 In contrast to the actin cytoskeleton, changes in microtubule filament morphology 

occurred after 1 h of BITC treatment at 22 °C (Fig. 26A and 26C). BITC-induced filament 

fragmentation was first detected after 2 h and was present after 4 and 8 h (white arrows; Fig. 26). 

However, after 12 h of BITC treatment at 22 °C, a coalescence of the microtubule filaments in 

the perinuclear region was apparent (white arrow). In comparison to BITC, treatment of cells 

with MG132 for 12 h resulted in some dysregulation of the actin cytoskeleton (yellow arrows), 

while the microtubule filament morphology was similar to control cells (Fig. 26B). Treatment of 

cells with BITC at 30 °C for 1 h induced microtubule filament fragmentation (white arrows Fig. 

27A and C). After 2 and 4 h, microtubules were detected in the perinuclear regions of the cells as 

microtubule filament fragmentation increased while at 8 h microtubule filaments were  
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Figure 26. Time course examining the actin and microtubule filament structure in response to 

BITC treatment at 22 °C. In panels A and B, A6 cells were cultured on glass coverslips and then 

maintained at 22 °C (C) or treated with 7.5 µM BITC at 22 °C for 1-12 h. α-tubulin was detected 

with a mouse anti-α-tubulin antibody, and a secondary antibody conjugated to Alexa-488 

(green). Actin and nuclei staining utilized phalloidin conjugated to TRITC (red) or DAPI (blue), 

respectively. The columns, from left to right, show the fluorescence detection channels for actin, 

α-tubulin, and merged images plus DAPI staining. In panel C, each of the previous α-tubulin 

images were enlarged for a better comparison of the change in microtubule structure with 

selected BITC treatment times. Yellow arrows indicate collapse or disorganization of the F-actin 

cytoskeleton while white arrows indicate microtubule fragmentation. The 20 µm scale bars are 

indicated at the bottom right corner of each panel. These images are representative of 3 different 

experiments. 
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Figure 27. Time course examining the actin and microtubule filament structure in A6 cells 

subjected to BITC treatment at 30 °C. In panels A and B, A6 cells were cultured on glass 

coverslips and then maintained at 22 °C (C), exposed to a higher temperature of 30 °C or treated 

with 30 µM MG132 (MG) for 12 h at 22 °C. Other cells were incubated with 7.5 µM BITC for 

1-12 h at 30 °C. α-tubulin was detected with a mouse anti-α-tubulin antibody, and a secondary 

antibody conjugated to Alexa-488 (green). Actin and nuclei staining utilized phalloidin 

conjugated to TRITC (red) or DAPI (blue), respectively. The columns, from left to right, show 

the fluorescence detection channels for actin, α-tubulin, and merged images plus DAPI. C) Each 

of the previous α-tubulin images were enlarged for better comparison of the change in 

microtubule structure with selected BITC treatment times at 30 °C. Yellow arrows indicate 

membrane ruffling or disorganization of the F-actin cytoskeleton while white arrows indicate 

microtubule fragmentation. The 20 µm scale bars are indicated at the bottom right corner of each 

panel. These results are representative of 3 different experiments. 
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concentrated in the perinuclear region, as determined by Z-stacking. Furthermore, at 12 h of 

BITC at 30 °C, a substantial decrease in the number of fragmented filaments was observed 

relative to 4 and 8 h.  

3.2.6.   BITC pretreatment resulted in fewer MG132-induced aggresome-like structures in A6 

cells. 

 Given the previous results, which revealed the presence of microtubule filament 

fragmentation in cells exposed to BITC for 12 h at 22 °C, it was possible that this phenomenon 

could potentially disrupt the movement of aggregated protein to the perinuclear region and the 

formation of aggresomes. In the following experiment, I examined whether pretreatment of cells 

with BITC could disrupt the formation of MG132-induced aggresome-like structures in the 

perinuclear region. As shown in Figure 28, treatment of cells with MG132 for 12 h at 22 °C 

resulted in intact microtubule filaments and the formation of large aggresome-like structures 

(white arrows) that localized primarily to the perinuclear region. Approximately 30-50 large 

aggresome-like structures were detected per cell in response to the MG132 treatment. However, 

a 2 h BITC pretreatment prior to the introduction of MG132 reduced the intensity, size and the 

number of aggresome-like structures (10-15 per cell) as well as inducing the fragmentation of 

microtubule filaments (white arrows). When the pretreatment time was lengthened to 4 h, the 

number of MG132-induced large aggresome-like structures became less than approximately 10 

per cell, many of which were not located within the perinuclear region of A6 cells. Microtubule 

filament fragmentation was also more pronounced occurring in essentially every cell. 
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Figure 28. Effect of BITC pretreatment on the formation of MG132-induced aggresome-like 

structures in A6 cells. In panels A and B, A6 cells were cultured on glass coverslips and then 

maintained at 22 °C (C) or incubated with 30 µM MG132 (MG) for 12 h. Other cells were pre-

treated with 7.5 µM BITC for 2 or 4 h at 22 °C before exposure to 30 µM MG132 for 12 h at 22 

°C. A) To directly stain aggregated protein, the Proteostat aggresome detection kit was used. 

White arrows indicate aggresome-like structures in the perinuclear region. B) α-tubulin was 

detected with a mouse anti-α-tubulin antibody, and a secondary antibody conjugated to Alexa-

488 (green). White arrows indicate aggresome-like structures in panel A and microtubule 

fragmentation in panel B. The 20 µm scale bars are indicated at the bottom right corner of each 

panel. These images are representative of 2 different experiments. 
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3.3. Analysis of HSPB6 structure and accumulation. 

3.3.1.   X. laevis hspB6 cDNA sequence analysis. 

 During the course of my doctoral research, I investigated the effect of ITCs on HSPB6 

accumulation in A6 cells (Fig. 12). This work stemmed from the DNA sequence analysis of a 

putative X. laevis hspB6 cDNA clone (GenBank Accession No. NM_001093010.1), which 

encoded a HSPB6 protein of 168 amino acids with an isoelectric point of 6.16 (Fig. 29). X. laevis 

HSPB6 has a predicted size of 18,831 Da, which was similar to values found with X. tropicalis 

(18,860 Da), the only other amphibian HSPB6 found in the GenBank database. The amphibian 

HSPB6 was slightly larger than human HSPB6 (17,151 Da).  

 The deduced X. laevis HSPB6 amino acid sequence (NP_001086479.1) was aligned with 

the well-characterized human, rat and mouse HSPB6 sequences to further confirm its identity 

(Fig. 30). A comparison of the 4 aligned sequences revealed a total of 78 identical amino acids, 

26 conserved amino acid substitutions and 3 semi-conservative substitutions. Like the other 

members of the sHSP superfamily, X. laevis HSPB6 has an α-crystallin domain (E68-P149). The 

highest amount of amino acid conservation of the 4 HSPB6 sequences was found within the α-

crystallin domains. Furthermore, comparable to other X. laevis sHSPs including HSP27 and 

HSP30C and D, HSPB6 has a C-terminal extension (T151 to K168). Interestingly, the X. laevis 

HSPB6 C-terminal extension had 13 amino acids out of 18 that were polar. Previous analyses of 

mouse, rat, swine, bovine and/or human HSPB6 have experimentally determined the presence of 

key phosphorylation sites at serines 16, 59 and 157 (Beall et al., 1999; Islamovic et al., 2007; 

Edwards et al., 2011; Mymrikov et al., 2011; Sin et al., 2015). Using the GPS 3.0 Kinase-

Specific Phosphorylation Site Prediction software, multiple potential serine phosphorylation sites 

were detected in X. laevis HSPB6 (Xue et al., 2011). Of the 3 aforementioned mammalian  
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Figure 29. Nucleotide and putative amino acid sequence of a Xenopus laevis hspB6 cDNA. 

Nucleotide and amino acid numbering is shown on the left and right hand side, respectively. The 

amino acids shown in bold comprise the α-crystallin domain while the underlined amino acids 

indicate the putative C-terminal extension. 
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1    cacgcgtccgttcagctttgcactcacacaatggatgttacaattcatcacccctggatg 
                M  D  V  T  I  H  H  P  W  M   10 
61   cgccgacccccactgtctccctcgtttttccctagccgaattctaggacagaggttcgga 
     R  R  P  P  L  S  P  S  F  F  P  S  R  I  L  G  Q  R  F  G   30 
121  gaaggggtcctggagtcggatctattccctgccatgcccatgccgatgacccttagcccg 
     E  G  V  L  E  S  D  L  F  P  A  M  P  M  P  M  T  L  S  P   50 
181  tactactatagttctcccagcatcccgcagccgagcgaagtcggactgtcagaggtgaag 
     Y  Y  Y  S  S  P  S  I  P  Q  P  S  E  V  G  L  S  E  V  K   70 
241  ttggataaggatcagttctcggttctcctggatgtgaaacatttctctccggaggagttg 
     L  D  K  D  Q  F  S  V  L  L  D  V  K  H  F  S  P  E  E  L   90 
301  aacgtcaaggttgtgggagattccgtggaagtccatgccaagcacgaggagcgcctggat 
     N  V  K  V  V  G  D  S  V  E  V  H  A  K  H  E  E  R  L  D   110 
361  gaacatggatttatatcccgagagttccacagaaggtacaagatccccccgactgtgaac 
     E  H  G  F  I  S  R  E  F  H  R  R  Y  K  I  P  P  T  V  N   130 
421  cccggggccatatcctcagctctgtctgcagaggggcttctgtctatccaggcccccgtc 
     P  G  A  I  S  S  A  L  S  A  E  G  L  L  S  I  Q  A  P  V   150 
481  actgccagtgggaaacaagaagagaggagcatccccatagccagaaaggacaagtaaagc 
     T  A  S  G  K  Q  E  E  R  S  I  P  I  A  R  K  D  K         168 
541  caaagccacccagtgtgtccctcctactgacaccaacacccacacatgggacctacccca 
  
601  gcggctccaccaccaggatctcccaactcccttgtctggcttatgggtcacttatacacc 
  
661  cacaggacccacccaatgcaactgtccactaacagcacccacaccccaatatagggcacc 
  
721  cccagactacgtgcagcacctggaggcttctgtgtgtatcagccagtgcatctgccctaa 
  
781  ataagcagcacccagagactcccctggatctgaatcttctctttcatgatgtttgcaata 
  
841  aattcctttctaataaaaatagtctggtatcaaaaaaaaaaaaaaa 
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Figure 30. Comparison of the deduced amino acid sequence of Xenopus laevis hspB6 cDNA to 

human, rat and mouse HSPB6. Multiple sequence alignment was performed using Clustal 

Omega as described in Materials and methods. Asterisks under the sequences indicate identical 

amino acids among all 4 species. Colons represent conservative amino acid substitutions, and 

periods represent semi-conservative substitutions. Deletions are indicated by dashes. The 

underlined amino acids indicate the α-crystallin domains. The X. laevis HSPB6 putative C-

terminal extension composed of primarily polar residues is shown in bold. Serine residues that 

have been shown to be key points of phosphorylation in mammalian HSPB6 are indicated in 

bold and underlined. 
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X. laevis       --MDVTIHHPWMRRP--PLSPSFFPSRILGQRFGEGVLESDLFPAMPMPMTLSPYYYSSP 56 
H. sapiens      MEIPVPVQPSWLRRASAPLLGLSAPGRLFDQRFGEGLLEAELAAL--CPTTLAPYYLRAP 58 
R. norvegicus   MEIRVPVQPSWLRRASAPLPGFSTPGRLFDQRFGEGLLEAELASL--CPAAIAPYYLRAP 58 
M. musculus     MEIPVPVQPSWLRRASAPLPGFSAPGRLFDQRFGEGLLEAELASL--CPAAIAPYYLRAP 58 
                  : * ::  *:**   **     *.*:: ******:**::*      * :::***  :* 
 
X. laevis       SIPQPSEVGLSEVKLDKDQFSVLLDVKHFSPEELNVKVVGDSVEVHAKHEERLDEHGFIS 116 
H. sapiens      SVALPV----AQVPTDPGHFSVLLDVKHFSPEEIAVKVVGEHVEVHARHEERPDEHGFVA 114 
R. norvegicus   SVALPT----AQVPTDPGYFSVLLDVKHFSPEEISVKVVGDHVEVHARHEERPDEHGFIA 114 
M. musculus     SVALPT----AQVSTDSGYFSVLLDVKHFLPEEISVKVVDDHVEVHARHEERPDEHGFIA 114 
                *:  *     ::*  *   ********** ***: **** : *****:**** *****:: 
 
X. laevis       REFHRRYKIPPTVNPGAISSALSAEGLLSIQAPVTASGKQEERSIPIARKDK 168 
H. sapiens      REFHRRYRLPPGVDPAAVTSALSPEGVLSIQAAPASAQA----PPPAAAK-- 160 
R. norvegicus   REFHRRYRLPPGVDPAAVTSALSPEGVLSIQATPASAQA----SLPSPPAAK 162 
M. musculus     REFHRRYRLPPGVDPAAVTSALSPEGVLSIQATPASAQA----QLPSPPAAK 162 
                *******::** *.*.*::**** **:*****  ::.        * 
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HSPB6 serine phosphorylation sites, the only conserved site was at position 57, which 

corresponded to serine 59 in human, rat and mouse that was originally found to be 

phosphorylated in vitro by cAMP-dependent protein kinase (Beall et al., 1999; Mymrikov et al., 

2011). The cAMP-dependent protein kinase motif associated with serine 57 in Xenopus HSPB6 

has a low score for possible phosphorylation according to GPS 3.0. Nevertheless, it is possible 

that this site could be phosphorylated by other kinases. 

 Amino acid sequence comparison studies revealed that X. laevis HSPB6 shared a 94% 

identity with X. tropicalis putative HSPB6 but only 53% with X. tropicalis HSPB5 and 50, 49 

and 43% with X. laevis HSPB1, HSPB4 and HSP30C, respectively. Additionally, X. laevis 

HSPB6 shared primary sequence identity with HSPB6 found in two reptiles (65% P. sinensis 

[turtle], 65% A. carolinensis [lizard]), two mammals (60% M. davidii [bat], 59% H. sapiens) and 

two fish HSPB6 (51% P. mexicana [Atlantic molly], 49% D. rerio [zebrafish]) (Table 1). Avian 

HSPB6 proteins were not detected in the GenBank gene or protein library. An amino acid 

comparison of the α-crystallin domains of X. laevis HSPB6 with H. sapiens HSPB6 and other X. 

laevis sHSPs is shown in Table 2. The percent identity of the α-crystallin domains of the various 

X. laevis sHSPs ranged from 36% to 56%. Also, there was greater identity between X. laevis 

HSPB6 and human HSPB6 (71%) than with the other X. laevis sHSPs. 

 Phylogenetic analysis of translated protein sequences employing a maximum-likelihood 

tree revealed that X. laevis and X. tropicalis HSPB6 sequences grouped more closely with 

mammalian and reptilian HSPB6s than with fish HSPB6 amino acid sequences (Fig. 31). 

Additionally, representative HSPB5s from different classes of vertebrates grouped together 

rather than with HSPB6 proteins. A similar phylogenetic tree was obtained when only the 

conserved α-crystallin domains of the various sHSPs were used in this analysis (data not shown).  
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A comparison of X. laevis HSPB6 with other sHSP amino acid sequences 
_______________________________________________________________________ 
Percent identity with Xenopus laevis HSPB6 (NP_001086479.1)  
_______________________________________________________________________ 
 
Amphibians 
X. tropicalis HSPB6 (XP_002940672.2)     94 
X. tropicalis αB-crystallin/HSPB5 (XP_002932964.1)   53 
X. laevis HSPB1/HSP27 (NP_001087285.1)     50 
X. laevis αA-crystallin/HSPB4 (NP_001079340.1)    49 
X. laevis HSP30C (NP_001165977.1)     43 
X. laevis HSP30D (NP_001165976.1)     39 
 
Reptiles 
P. sinensis HSPB6 (XP_014426555.1)     65 
A. carolinensis HSPB6 (XP_003224996.2)     65 
P. mucrosquamatus HSPB6 (XP_015672057.1)    64 
G. japonicus HSPB6 (XP_015264062.1)      63 
C. picta bellii HSPB6 (XP_005311592.1)      62 
 
Mammals 
M. davidii HSPB6 (XP_006761589.1)      60 
H. sapiens HSPB6 (AAH68046.1)      59  
M. musculus HSPB6 (NP_001012401.1)     53 
R. norvegicus HSPB6 (NP_620242.1)     54 
 
Fish 
P. mexicana HSPB6 (XP_014844531.1)          51 
P. nyererei HSPB6 (XP_005738449.1)       50 
C. semilaevis HSPB6 (XP_008321765.1)      50 
D. rerio HSPB6 (NP_001094428.1)      49 
 
An amino acid sequence comparison of Xenopus laevis HSPB6 with HSPB6 from amphibians, 
reptiles, mammals, fish and other sHSPs from Xenopus laevis and Xenopus tropicalis. Genbank 
accession numbers are indicated within the brackets. 
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A comparison of the α-crystallin domain of HSPB6 with human HSPB6 and sHSPs of X. 
laevis  
_______________________________________________________________________ 
Percent identity with the α-crystallin domain of HSPB6 (NP_001086479.1) 
_______________________________________________________________________ 
 
sHSP       % 
H. sapiens 
HSPB6 (NP_653218.1)    71 
X. laevis 
HSPB5 (AAI70250.1)     56 
HSPB1 (NP_001087285.1)    51 
MGC85304 (NP_001087283.1)   49 
HSPB8 (NP_001079782.1)    42  
HSP30C (NP_001165977.1)    44   
HSP30D (NP_001165976.1)    40    
HSPB7 (NP_001086558.1)    36    
_______________________________________________________________________ 
An amino acid sequence comparison of the α-crystallin domains of X. laevis HSPB6 and other 
sHSPs was generated using the Blast program. Genbank accession numbers are indicated within 
the brackets. 
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Figure 31. Phylogenetic relationships among vertebrate HSPB6 proteins. The tree was 

constructed using MEGA7 maximum-likelihood analysis of amino acid sequences and rooted to 

the yeast sHSP S. cerevisiae HSP26 (GenBank accession no. NP_009396.2), as described in 

Materials and methods. The tree was drawn to scale, with branch lengths measured in the 

number of substitutions per site. Bootstrap values (percentage of 1000 replicates) are shown 

above each branch. The GenBank accession numbers for the HSPB6 amino acid sequences are 

shown in Table 1 except for the following HSPB5 sequences: R. norvegicus HSPB5 

(NP_037067.1); M. musculus (AAH10768); D. rerio (AAI62206); G. japonicus 

(XP_015271074.1); A. carolinensis (XP_008119279.1). 
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3.3.2.   Immunoblot analysis of HSPB6 protein accumulation in Xenopus laevis A6 cells.  

 The next phase of this study examined the accumulation of HSPB6 in X. laevis A6 kidney 

epithelial cells subjected to various stressors including a 2 h 33 °C heat shock plus a 2 h recovery 

at 22 °C, treatment with the proteasomal inhibitor 30 µM MG132 or 100 µM cadmium chloride 

for 16 h at 22 °C (Fig. 32). The heat shock, MG132 and cadmium chloride treatments employed 

in this study were previously determined to induce the accumulation of HSP70 and HSP30 in A6 

kidney epithelial cells (Gauley et al., 2008; Young and Heikkila, 2010; Khamis and Heikkila, 

2013). Incubation of A6 cells at 33 °C did not significantly alter the relative level of HSPB6 

above the level of untreated control cells. However, treatment of cells with 30 µM MG132 

produced 2-fold increase in HSPB6 relative to control. Finally, incubation of A6 cells with 100 

µM cadmium chloride induced a slight increase in HSPB6 levels compared to control that was 

only significant at p < 0.1. In other experiments, higher levels of cadmium chloride (200 or 400 

µM) did not further enhance the relative levels of HSPB6 compared to 100 µM (data not shown). 

In contrast to HSPB6, all three stressors strongly induced the accumulation of HSP70. The 

relative levels of actin were not affected by these treatments.  

3.3.3.   Localization of HSPB6 in A6 cells. 

 An examination of HSPB6 localization in control A6 cells as well as after treatment with 

heat shock (HS), MG132 (MG) or cadmium chloride (Cd) was determined by 

immunocytochemistry and laser scanning confocal microscopy (Fig. 33). In control and heat 

shock treated cells, HSPB6 was localized primarily in the cytoplasm in a punctate or granular 

pattern at the periphery of the nucleus. I did not observe a detectable association of HSPB6 with 

actin stress fibers in control or stressor-treated cells. In some cells, a low level of HSPB6 was 

also detected within the nucleus. MG132 treatment resulted in an enhanced accumulation of 
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Figure 32. Relative levels of HSPB6 and HSP70 in cells subjected to heat shock or treated with 

MG132 or cadmium chloride. Cells were maintained at 22 °C (C) or incubated at 33 °C for 2 h 

followed by a recovery period at 22 °C for 2 h. Other flasks of cells were treated with 30 µM 

MG132 or 100 µM cadmium chloride for 16 h at 22 °C. A) Total protein was isolated and 

subjected to immunoblot analysis using an anti-HSPB6, anti-HSP70 or anti-actin antibody, with 

the representative immunoblot shown. ImageJ software was used to perform densitometric 

analysis of signal intensity for HSPB6 (panel B) and HSP70 (panel C) protein. The data for 

HSPB6 are expressed as a ratio to control levels while HSP70 is expressed as a percentage of the 

maximum band (30 µM MG132). Standard errors are represented by vertical bars. Statistical 

analysis was and the significant differences are indicated with an asterisk (p < 0.05) or a triangle 

(p < 0.1). These data are representative of at least 4 separate experiments. 
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Figure 33. Localization of HSPB6 accumulation in A6 cells exposed to heat shock, MG132 or 

cadmium chloride. Cells were cultured on glass coverslips in L-15 media for 16 h at 22 °C (C) or 

incubated at 33 °C (HS) for 2 h followed by a 2 h recovery period at 22 °C. Other flasks of cells 

were treated with either 30 µM MG132 (MG) or 100 µM cadmium chloride (Cd) for 16 h at 22 

°C. Actin and nuclei were stained directly with phalloidin conjugated to TRITC (red) and with 

DAPI (blue), respectively. HSPB6 was detected indirectly by an anti-HSPB6 antibody and 

Alexa-488 secondary antibody conjugate (green). From left to right, the columns display 

fluorescence detection channels for actin, HSPB6 and merged images which also contain DAPI 

staining. Yellow arrows indicate membrane ruffling of the F-actin cytoskeleton. The 20 µm 

white scale bar is shown. These images are representative of 4 different experiments. 
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HSPB6 in 90% of cells, in a granular pattern encircling the nucleus. Furthermore, cells treated 

with MG132 also displayed an increase in the relative amount of HSPB6 inside the nucleus. 

Cadmium chloride treatment slightly enhanced the relative level of HSPB6 in 40% of cells. This 

treatment also resulted in some cytoskeletal disorganization with increased membrane ruffling 

(yellow arrows).  
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Chapter 4: Discussion 

The present study has investigated, for the first time in a poikilothermic model system, 

the effect of the ITCs, BITC, PEITC and SFN on the accumulation of the stress proteins HO-1, 

HSP70 and the sHSP, HSP30. In dose-response and/or time course studies performed with X. 

laevis A6 cells, it was determined that HO-1 accumulation was readily induced by each ITC. 

These findings with Xenopus HO-1 are in agreement with previous studies which observed ITC-

induced HO-1 accumulation in human cell lines including prostate and liver cancer cells (Xu et 

al., 2006; Prawan et al., 2007). Also, pretreatment of A6 cells with a transcriptional or 

translational inhibitor repressed BITC-, PEITC or SFN-induced HO-1 accumulation suggesting 

that they were the result of de novo transcription and translation. Studies with mammalian cells 

have documented the transcriptional activation of ho-1 gene expression in response to oxidative 

stress conditions involving the activation of Nrf2, the principal regulator of ho-1 gene induction 

(Alam et al., 2000; Suzuki et al., 2003; Waisberg et al., 2003; Galazyn-Sidorczuk et al, 2009). 

Normally, Nrf2 is ubiquitinated and targeted for degradation by the UPS (Kobayashi, 2004; Choi 

et al., 2014). However, it was shown in mammalian cells that BITC- and PEITC-induced 

proteasomal inhibiton resulted in Nrf2 stabilization leading to the upregulation of ho-1 gene 

expression (Stewart et al., 2003; Mi et al., 2008; 2011). In support of this mechanism, a study 

using rat adrenal pheochromocytoma cells found that an increase in Nrf2 stability was induced 

by treatment with the proteasomal inhibitor, MG132 (Martin et al., 2004). While BITC and 

PEITC likely induced HO-1 accumulation in A6 cells by means of this mechanism, it was 

possible that the mechanism associated with SFN was different since studies with murine and 

human cells found that SFN promoted proteasomal degradation activity (Parnaud et al., 2004; 

Kwak et al., 2007; Park et al., 2009). In agreement with these latter studies, I found that SFN did 



123 
 

not significantly alter the levels of ubiquitinated protein in A6 cells, which was indicative of a 

functional proteasome. It has been suggested that HO-1 accumulation in response to SFN 

treatment occurs by means of its rapid and prolonged binding and inactivation of glutathione, a 

key antioxidant, which then triggers the oxidative stress pathway (Mi et al., 2007). Finally, 

BITC-, PEITC- and SFN-induced HO-1 was inhibited by the HSF1 inhibitor, KNK437, in A6 

cells. Although it is tenable that KNK437 could act on signalling proteins responsible for Nrf2 

activation, my results indicate the potential involvement of HSF1 in ho-1 gene expression. 

Previous studies employing KNK437 in our laboratory have consistently shown that this reagent 

inhibited HSP accumulation induced by a variety of stressors. In other studies, the effect of 

KNK437 on hsp mRNA or HSP accumulation was comparable to other means of inhibiting the 

HSF1 pathway including HSF1-targeted siRNA or generation of HSF1 knockout in somatic cells 

using CRISPR (Liu et al., 2012; Scheraga et al., 2016). As mentioned in the Introduction, an 

HSF1-binding DNA element, HSE, is present within the regulatory region of the Xenopus ho-1 

gene. Previously, our laboratory determined that heat shock did not induce HO-1 accumulaton, 

suggesting HSF1 activation is not sufficient for the expression of the ho-1 gene (Music et al., 

2014). However, it is possible HSF1 may play a role in stabilizing other transcription factors 

such as Nrf2, which is involved in ITC-induced ho-1 gene expression (Alam and Cook, 2007; 

Koizumi et al., 2007).  

 Treatment of A6 cells with BITC, PEITC or SFN also induced an increase in HSP70. 

This finding was in agreement with studies examining the effect of ITCs on this molecular 

chaperone in mammalian cell lines (Gan et al., 2010; Sharma et al., 2010; Naidu et al., 2016). 

Gene expression inhibitor studies determined that the ITC-induced accumulation of Xenopus 

HSP70 in A6 cells was the result of de novo transcription and translation and involved the 
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transcription factor, HSF1. HSF1 activation, leading to hsp gene expression, is triggered by an 

increase in unfolded protein (Morimoto, 1998; Voellmy, 2004; Young and Heikkila, 2009). 

Since ITCs are electrophilic, it is possible that their interaction with cysteine thiol side chains 

found in hydrophobic pockets of targeted proteins resulted in conformational changes and/or 

protein unfolding, which lead to the initiation of the heat shock response (Mi et al., 2008). In 

contrast to HSP70, PEITC or SFN treatment of A6 cells did not induce HSP30 accumulation 

while BITC treatment resulted in relatively low levels of this sHSP. The reason for the 

differences in the ability to detect HSP70 and HSP30 accumulation following ITC treatments is 

not clear at this time. However, differences in the relative level of different HSPs or their 

mRNAs in response to various stressors such as heavy metals, metalloids, proteasomal inhibitors 

and heat shock in A6 cells have been reported (Gauley and Heikkila, 2007; Young et al., 2010; 

Khan et al., 2010; Walcott and Heikkila, 2010). 

 A6 cells treated with ITCs were also incubated at 30 °C to investigate whether an 

increase in incubation temperature affected the relative level of ITC-induced HO-1 and HSP 

accumulation. Exposure of cells to BITC, PEITC or SFN at 30 °C produced lower HO-1 

accumulation levels than at 22 °C. This finding was in contrast to other stressors examined in our 

laboratory, which determined that treatment of A6 cells with low concentrations of either 

cadmium or arsenite at 30 °C enhanced the levels of HO-1 accumulation compared to 22 °C 

(Music et al., 2014). While the reason for the decrease in ITC-induced HO-1 accumulation at the 

higher incubation temperature is not known, it is possible that the reduced levels of HO-1 

accumulation may be due to an inhibition of ho-1 gene expression or decreased stability. 

 Treatment of A6 cells with BITC or SFN at 30 °C enhanced HSP70 accumulation 

relative to 22 °C but only enhanced HSP30 levels in cells exposed to BITC. Our laboratory has 
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observed a similar phenomenon in which various stressors (e.g. MG132, cadmium chloride, 

sodium arsenite or curcumin) plus a 30 °C incubation temperature acted synergistically in the 

induction of HSP70 and HSP30 accumulation (Woolfson and Heikkila, 2009; Young et al., 2009; 

Khan and Heikkila, 2011; Khamis and Heikkila, 2013). It is possible that the amount of ITC-

induced unfolded and/or damaged protein which resulted from proteasomal inhibition or 

covalent interactions with thiol groups of cellular protein was enhanced at the higher incubation 

temperature. In contrast to individual stressors, it was suggested that the elevated levels of 

unfolded or damaged protein induced by multiple stressors can exceed a set point or threshold 

level, such that there is a strong activation of HSF1 leading to increased hsp gene expression 

(Young et al., 2009; Khamis and Heikkila, 2013; Heikkila, 2017). Studies with various model 

systems such as intertidal mussels, HeLa cells, mouse T-lymphocytes and testis and Xenopus 

heart have confirmed the existence of an HSF1 threshold level (Sarge, 1995; Lee et al., 1995; Ali 

et al., 1997; Buckley et al., 2001; Gothard et al., 2003). 

 Immunocytochemical analysis determined that BITC, PEITC or SFN induced the 

accumulation of HO-1 primarily in the perinuclear region in a punctate pattern with some HO-1 

present in the nucleus. Mammalian studies reported the ability of HO-1 to translocate to the 

nucleus or mitochondria in response to stress conditions (Converso et al., 2006; Slebos et al., 

2007; Lin et al., 2007; Gandini et al., 2012; Namba et al., 2014). Larger HO-1 structures were 

also detected in 30% of A6 cells treated with BITC at 30 °C. A previous study determined that 

NADPH cytochrome P450 reductase promoted the oligomerization of HO-1 into larger 

complexes, which also contained biliverdin reductase (Huber et al., 2009; Linnenbaum et al., 

2012). It is possible that BITC treatment at 30 °C elicited a similar oligomerization of HO-1 into 

higher ordered complexes. In A6 cells treated with BITC at 30 °C, HSP30 occurred in a granular 
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pattern with occasional larger structures, which were reported previously in our laboratory in A6 

cells in response to a variety of stressors (Gellalchew and Heikkila, 2005; Voyer and Heikkila, 

2008; Woolfson and Heikkila, 2009; Young and Heikkila, 2010; Khan et al., 2015). The granular 

pattern of ITC-induced HSP30 was likely due to stress-induced multimeric complex formation, 

which is necessary for HSP30 molecular chaperone function (Ohan et al., 1998; MacRae, 2000; 

Fernando and Heikkila, 2000; Van Montfort et al., 2001; Fernando et al., 2003). The current 

study also determined that treatment of A6 cells with either BITC, PEITC or SFN caused F-actin 

cytoskeletal disorganization. Similar effects were noted after sodium arsenite or cadmium 

chloride treatment of amphibian and mammalian cultured cells (Li and Chou, 1992; Gellalchew 

and Heikkila, 2005; Woolfson and Heikkila, 2009; Khamis and Heikkila, 2013; Khan et al., 

2015). Although minimal information is available on the effect of ITCs on the actin cytoskeleton, 

it was reported that two cysteine residues conserved within all actin isoforms were vulnerable to 

oxidative stress (Dalle-Donne et al., 2001). Therefore, it is conceivable that these two 

nucleophilic residues found within the actin molecule are targets for ITC modification, inducing 

actin cytoskeletal disorganization and membrane ruffling.  

 In this study, treatment of X. laevis A6 cells with BITC or PEITC significantly enhanced 

the relative levels of ubiquitinated protein. Studies with HeLa cells also reported an increase in 

ubiquitinated protein levels after exposure to either ITC (Mi et al., 2009). BITC and PEITC also 

inhibited the proteasome in multiple myeloma cells specifically repressing chymotrypsin-like, 

trypsin-like and caspase-like enzyme activities in a concentration-dependent manner (Mi et al., 

2010). In this latter study, it was suggested that BITC and PEITC bound directly to susceptible 

cysteine residues within the proteasome B3 subunit, which protrudes into the active site of the 

B2 subunit. It is possible that ITC treatment inhibited the proteasome of A6 cells, which resulted 
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in the accumulation of ubiquitinated protein. BITC- and PEITC-induced ubiquitinated protein 

levels were greater in cells treated with ITCs at 22 °C than at 30 °C. This finding was not 

unexpected given that treatment of A6 cells at 30 °C alone reduced the relative level of 

ubiquitinated protein compared to control. Furthermore, it was possible that treatment of cells 

with ITCs at an elevated temperature may have an enhanced effect on the thiols associated with 

cysteine residues of enzymes that function in the addition of ubiquitin to proteins targeted for 

degradation. Alternatively, it was tenable that elevated levels of HSPs in ITC-treated cells at 30 

°C bound to target proteins and prevented them from being targeted for degradation via 

ubiquitination. In support of this latter possibility, a potential relationship between an increase in 

HSP accumulation and a decrease in levels of ubiquitinated protein was reported in pear cells 

(Ferguson et al., 1994).  

 Immunocytochemical analysis employing the Proteostat aggresome detection assay 

determined that exposure of cells to BITC or PEITC increased the levels of aggregated protein 

structures relative to control. While ITC-induced proteasomal inhibition may have elevated the 

level of aggregated protein in A6 cells, studies with mammalian cell demonstrated the direct 

ability of ITCs to covalently bind and modify cysteine residues within proteins including α- and 

β-tubulin, resulting in conformational changes, exposure of hydrophobic regions and ultimately 

their aggregation (Mi et al., 2008; 2009; Xiao et al., 2012). Given that the tubulin family 

comprises 3-4% of the total protein in eukaryotic cells, the binding of ITCs to this protein alone 

could have accounted for a substantial portion of aggregated protein observed in A6 cells 

(Oakley, 2000). Other proteins that were found to be targeted by ITCs include proteasomal 

subunits, cytochrome P450s, HDAC6 and macrophage migration inhibitory factor (Fimognari et 

al., 2008; Gibbs et al., 2009; Ouertatani-Sakouhi et al., 2009). In comparison to BITC and 
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PEITC, treatment with the proteasomal inhibitor, MG132, resulted in aggregated protein and the 

formation of numerous aggresome-like structures in the perinuclear region of cells. This finding 

was in agreement with previous studies conducted in our laboratory as well as in mammalian 

cells including HeLa, embryonic kidney, glioma, neuroblastoma, adenocarcinoma, 

oligodendroglial neuronal and astrocyte cells (Ito et al., 2002; Bauer and Richter-Landsberg, 

2006; Goldbaum et al., 2009; Bolhuis and Richter-Landsberg, 2010; Shen at al., 2011; Bang et 

al., 2014; Khan et al., 2015). As mentioned in the Introduction, these aggresome-like structures 

result from the coalescence of individual protein aggregates, which are then transported to the 

perinuclear region along microtubule filaments employing a dynein motor (Kopito, 2000; Ito et 

al., 2002; Rodriguez-Gonzalez et al., 2008; Driscoll and Chowdhury, 2012; Hao et al., 2013; 

Richter-Landsberg and Leyk, 2013). In contrast to MG132, very few large aggregated protein 

structures were present in cells exposed to BITC or PEITC.  

 Since soluble tubulin and microtubule filaments, as mentioned above, were determined to 

be the primary targets of BITC or PEITC, this phenomenon was investigated in A6 cells. 

Immunoblot analysis revealed that BITC decreased α-tubulin accumulation to a greater extent 

than PEITC in a concentration- and time-dependent manner. A similar phenomenon was reported 

in human non-small lung cancer, breast cancer, colon carcinoma, prostate cancer and HeLa cells 

(Mi et al., 2008; 2009). Since BITC is a smaller compound, containing a methyl group extending 

from its aromatic hydrocarbon compared to an ethyl group for PEITC, it has greater accessibility 

to cysteine residues buried within the tubulin molecule thus increasing its affinity for the protein 

(Mi et al., 2008).  

 Immunocytochemical analysis determined that exposure of A6 cells to BITC induced 

microtubule filament fragmentation in a time-dependent manner. Furthermore, the effect of 
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BITC was enhanced when cells were incubated at 30 °C. Disruption and degradation of the 

microtubule network by this ITC was also observed in immunocytochemical studies conducted 

in mammalian cells (Mi et al., 2008; 2009). Given that BITC and PEITC induced decreased 

levels of α-tubulin and caused the fragmentation of microtubule filaments in A6 cells, it was 

likely that these phenomena blocked the translocation of aggregated protein to the perinuclear 

region to form aggresome-like structures. The possibility that BITC could inhibit aggresome-like 

structure formation in A6 cells was supported by a series of experiments showing that a 2 or 4 h 

pretreatment of cells with BITC inhibited the accumulation of aggresome-like structures by 

MG132, a reversible proteasome inhibitor. A diagramatic comparison of the effect of BITC and 

MG132 on aggregated protein and aggresome formation is shown in Figure 34. It should be 

mentioned that factors other than microtubule filament fragmentation may be responsible for the 

lack of transport of aggregated protein in BITC-treated cells including the conformational change 

of dynein which is required for the movement of protein aggregates along filaments. These 

results are of significance, as they not only elucidated BITC’s ability to induce aggregated 

protein, but in this work I have also shown how ITCs can potentially interfere with the 

translocation of aggregated protein to the perinuclear region, therefore inhibiting aggresome-like 

structure formation.  

 Finally, during the course of this study I determined that ITCs did not have a significant 

effect on the accumulation of a previously uncharacterized Xenopus laevis sHSP, namely, 

HSPB6 (HSP20). Given the lack of information on Xenopus HSPB6, I examined the properties 

of this protein encoded by a cDNA that had been sequenced in our laboratory. Alignment of the 

X. laevis HSPB6 amino acid sequence with HSPB6 proteins from various organisms indicated 

that it had 94% identity with X. tropicalis HSPB6, 62-65% with selected reptiles, 54-60% with  
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Figure 34. Movement of aggresome-like structures along microtubules. A) When the capacity of 

the UPS is exceeded or inhibited by agents like MG132, aggregated protein (red) is anchored to 

dynein motors and translocated (white arrows) along microtubule filaments to the perinuclear 

region of the cell to form aggresome-like structures (orange). The aggresome is ultimately 

degraded by autophagy. B) BITC pretreatment caused microtubule filament fragmentation, 

which inhibited MG132-induced protein aggregates from being transported along the 

microtubule filaments to the perinuclear region where they form aggresome-like structures. In 

these BITC-pretreated cells, potentially toxic aggregated protein remain dispersed throughout the 

cell. 
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mammalian HSPB6 proteins, and 49-51% with HSPB6 from various fish species. Also, X. laevis 

HSPB6 displayed 53% identity with X. tropicalis HSPB5 and 49% with X. laevis HSPB4 as well 

as 50, 43 and 39% identity with X. laevis HSPB1 (HSP27), HSP30C and HSP30D, respectively. 

Most of the identity shared among X. laevis HSPB6 and HSPB6’s from other vertebrates was 

found in the α-crystallin domain. These findings support the results of previous studies showing 

the general lack of conservation of sHSPs between species except for the α-crystallin domain 

(Arrigo and Landry, 1994; Lindner et al., 1998; MacRae, 2000; Stromer et al., 2003). 

 Phylogenetic analysis indicated that X. laevis HSPB6 grouped with reptile and 

mammalian HSPB6 sequences but was distinct from amphibian, reptilian, mammalian and fish 

HSPB5 amino acid sequences. However, HSPB5 and HSPB6 sequences did share an older 

common ancestor. Additionally, fish HSPB6 amino acid sequences grouped together outside of 

the other HSPB6 and HSPB5 proteins mentioned above. Examination of the X. laevis HSPB6 

amino acid sequence revealed that it has an 18 amino acid C-terminal extension containing 

approximately 13 polar residues. In contrast, the comparable regions of the human HSPB6 C-

terminal regions had only 3 of 11 polar residues while rat and mouse both had 5 of 14. The high 

polarity of the C-terminal extension of X. laevis HSPB6 may be important for its molecular 

chaperone activity. Our previous results with X. laevis HSP30C determined that its C-terminal 

extension, which also had a high proportion of polar residues was essential for its solubility, 

maintenance of secondary structure and optimal chaperone activity (Fernando and Heikkila, 

2000; Fernando et al., 2002). While the HSPB6 C-terminal extension in mammals contains fewer 

polar residues than X. laevis HSPB6, this region was important in the protection of mouse 

cardiomyocytes against simulated ischemia/reperfusion injury (Islamovic et al., 2007).  

Analysis of the X. laevis HSPB6 amino acid sequence with phosphorylation site prediction 
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software suggested the presence of multiple serine phosphorylation sites. Compared to human, 

rat and mouse HSPB6, the only conserved potential phosphorylation site in X. laevis HSPB6 is at 

serine 59. In rat, this site was phosphorylated in vitro by cAMP-dependent kinase but it is not 

known whether this serine is phosphorylated in vivo (Beall et al., 1999). Only future in vivo 

analysis will determine if this site and others are phosphorylated in X. laevis HSPB6.   

 Immunoblot and immunocytochemical analysis revealed that HSPB6 was detected 

constitutively in X. laevis A6 kidney epithelial cells. Most studies characterizing the properties of 

HSPB6 accumulation and function have been carried out in mammals, where HSPB6 was 

similarly detected constitutively at high levels, in different types of muscle tissue but also found 

in brain, stomach, liver, lung blood and kidney (Kato et al., 1994). While treatment of A6 cells 

with heat shock or ITCs did not induce a significant increase in the relative levels of HSPB6, 

treatment with cadmium chloride resulted in a minor increase whereas exposure to the 

proteasomal inhibitor, MG132 induced a 2-fold increase. In contrast, these stressors induced a 

10-16-fold increase in HSP70 levels. The lack of an increase in HSPB6 levels in response to heat 

shock treatment of A6 cells agrees with previous results in fish and mammalian systems, which 

suggest that HSPB6 is not heat-inducible and likely does not depend on the action of HSF1 (Fan 

et al., 2005; Marvin et al., 2008; Kirbach and Golenhofen, 2011; Mymrikov et al., 2011). It was 

suggested that other signalling pathways may regulate the relative level of HSPB6 as well as its 

function (Mymrikov et al., 2011). For example, in a mouse model of glomerulonephritis, renal 

cortices of diseased mice demonstrated an enhanced accumulation of HSPB6 without an increase 

in HSP70, suggesting a lack of a generalized stress response (Guess et al., 2013). Also, increased 

levels of HSPB6 were reported in dog and rat heart due to congestive heart failure or exercise 

and also in rat bladder in response to partial urethral ligation (Batts et al., 2006; Boluyt et al., 
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2006; Dohke et al., 2006). While the mechanism(s) associated with the increase in X. laevis 

HSPB6 levels in response to cadmium or MG132 is unclear, it is likely that their enhanced levels 

may be due at least in part, to a reduction in HSPB6 degradation since both cadmium and 

MG132 were found to inhibit the ubiquitin-proteasome system in Xenopus A6 cells (Young and 

Heikkila, 2010; Brunt et al., 2012; Khan et al., 2012; Khamis and Heikkila, 2013; Khan et al., 

2015). 

 Immunocytochemical analysis of HSPB6 determined that it occurred as granular 

structures primarily in the cytoplasm in control and in heat shock-, MG132- and cadmium-

treated A6 cells. A cytoplasmic localization of HSPB6 was also reported in swine carotid artery 

smooth muscle and in rat myocardial cells (Van de Klundert et al., 1998; Rembold and Zhang, 

2001; Pipkin et al., 2003; Sin et al., 2015). In Xenopus A6 cells, HSPB6 was enriched in the 

cytoplasm at the nuclear periphery and in some cells low levels of HSPB6 were detected within 

the nucleus. The presence of X. laevis HSPB6 at the periphery of the nucleus is of interest since 

rat myocyte HSPB6 was shown to act as a nuclear import chaperone for protein kinase D1, 

which is important in the regulation of cardiac transcription during development (Sin et al., 

2015).  

Future Directions 

 In this thesis, I determined that treatment of A6 cells with ITCs enhanced the levels of 

HO-1. Further studies employing an Nrf2 inhibitor should be conducted to assess whether Nrf2 

stability and/or activation contributed to ITC-induced HO-1 accumulation. Brusatol, a chemical 

compound known to sensitize cancer cells and increase efficacy of therapeutic agents, has the 

ability to supress the Nrf2 pathway through increased ubiquitination and subsequent degradation 

of this transcription factor (Ren at al., 2011). Therefore, it would be possible to inhibit the 
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synthesis of Nrf2 in A6 cells with a pretreatment of this compound for 6 h prior to ITC exposure. 

Subsequent immunoblot analysis revealing HO-1 protein levels could help to determine whether 

transcriptional activation of the ho-1 gene involves Nrf2 activity. 

 Additionally, given that numerous mammalian studies have investigated and reported 

ITC-induced cell cycle arrest, it would be interesting to examine the effect of ITCs on the A6 cell 

cycle (Zhang et al, 2006; Mi et al., 2008; Mi et al., 2009). Specifically, this would involve an 

investigation of whether ITC-induced tubulin degradation is associated with cell cycle arrest in 

A6 cells employing flow cytometry. Immunofluorescence of both tubulin and DNA content 

would elucidate a potential correlation between ITC-induced degradation of tubulin and an 

increase in population of A6 cells in the G2/M phase. Given the critical role of tubulin in the 

formation mitotic spindles to segregate replicated chromosomes, immunofluorescence of a 

mitotic biomarker such as histone 3 would indicate whether ITC-induced cell cycle arrest 

occurred specifically during the mitotic phase.  

 Finally, research conducted in Xenopus laevis A6 cells could be extended to eggs and 

embryos, which are large and amenable for injection of macromolecules such as DNA, mRNA, 

morpholino antisense oligonucleotides and protein (Krone and Heikkila, 1989; Heikkila, 1990; 

Kay and Peng, 1991; Gurdon, 2006; Liu, 2006). Given the large amount of information available 

on Xenopus embryogenesis, it would be an excellent system to monitor the effect of ITCs on 

early development. Since hsp gene expression in Xenopus embryos has been well characterized 

in response to heat and chemical stress, future studies could easily assess the effect of ITCs on 

hsp mRNA and protein levels in embryos employing Northern and Western blot analysis, 

respectively. Furthermore, the use of whole-mount in situ hybridization and 

immunocytochemistry could determine the spatial distribution of ITC-induced hsp30 mRNA and 
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encoded protein in Xenopus embryos. In addition, it would be of interest to monitor the impact of 

ITCs on the expression of ho-1 genes in embryos. Only the constitutive accumulation of ho-1 

mRNA has been examined during Xenopus development.  
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