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Abstract

We investigate properties of various conformally invariant quantum systems, especially
from the point of view of the conformal bootstrap.

First, we study twist line defects in three-dimensional conformal field theories. Numer-
ical results from lattice simulations point to the existence of such conformal defect in the
critical 3D Ising model. We show that this fact is supported by both epsilon expansion and
the conformal bootstrap calculations. We find that our results are in a good agreement
with the numerical data. We also make new predictions for operator dimensions and OPE
coefficients from the bootstrap approach. In the process we derive universal bounds on
one-dimensional conformal field theories and conformal line defects.

Second, we analyze the constraints imposed by the conformal bootstrap for theories
with four supercharges in spacetime dimension 2 ≤ d ≤ 4. We show how superconformal
algebras with four Poincaré supercharges can be treated in a formalism applicable to any,
in principle continuous, value of d and use this to construct the superconformal blocks for
any d ≤ 4. We then use numerical bootstrap techniques to derive upper bounds on the
conformal dimension of the first unprotected operator appearing in the OPE of a chiral and
an anti-chiral superconformal primary. We obtain an intriguing structure of three distinct
kinks. We argue that one of the kinks smoothly interpolates between the d = 2, N = (2, 2)
minimal model with central charge c = 1 and the theory of a free chiral multiplet in d = 4,
passing through the critical Wess-Zumino model with cubic superpotential in intermediate
dimensions.

Finally, we turn to the question of the analytic origin of the conformal bootstrap bounds.
To this end, we introduce a new class of linear functionals acting on the conformal bootstrap
equation. In 1D, we use the new basis to construct extremal functionals leading to the
optimal upper bound on the gap above identity in the OPE of two identical primary
operators of integer or half-integer scaling dimension. We also prove an upper bound on
the twist gap in 2D theories with global conformal symmetry. When the external scaling
dimensions are large, our functionals provide a direct point of contact between crossing in a
1D CFT and scattering of massive particles in large AdS2. In particular, CFT crossing can
be shown to imply that appropriate OPE coefficients exhibit an exponential suppression
characteristic of massive bound states, and that the 2D flat-space S-matrix should be
analytic away from the real axis.
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Chapter 1

Introduction

1.1 The role of conformal field theories in physics

It is the ultimate goal of science in general and theoretical physics in particular to derive the
maximal amount of nontrivial predictions about the world we live in from the minimal set
of assumptions concerning its fundamental laws. Indeed, the wonderful richness of physical
phenomena compared to the relative simplicity of the laws they follow from has been a
recurring theme in theoretical physics as well as its main driving force. Can we eventually
identify the truly minimal set of assumptions that the laws of any consistent universe should
satisfy? Is our universe the only solution of these constraints? While science has not yet
advanced enough to provide definitive answers to these grand questions, or even to make
them sufficiently well-defined, the same paradigm, commonly referred to as the bootstrap,
has appeared in more concrete incarnations in various areas of theoretical physics. The
main theme of this thesis is an exploration of the bootstrap program in the context of
quantum field theories with conformal symmetry, where it is referred to as the conformal
bootstrap. Before describing conformal bootstrap in more detail, we will review the role
that conformal field theories play in physics.

Quantum field theory (QFT) sits at the heart of our current understanding of Nature. A
wide variety of extended fluctuating systems, ranging from the propagation and interactions
of particles in spacetime, through numerous condensed matter materials, to the large-scale
structure of matter in our universe, are well described by various versions of QFT. As
broad as the applicability of the framework of QFT is, our ability to extract predictions
from specific models has been mostly limited to the regime where the constituents are only
weakly interacting and perturbation theory is thus applicable. Since many relatively little-
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understood phenomena, such as the low-energy dynamics of quantum chromodynamics
or the high-Tc superconductivity, involve strongly-interacting quantum fields, it is of great
interest to develop tools to analyze QFT outside of the regime of weak coupling. Conformal
bootstrap is an example of such technique.

One of the main conceptual advances that QFT has brought into focus is the organiza-
tion of physical phenomena into scales at which they occur. Indeed, the effective physics at
long distances (IR) can be very different from the microscopic laws that define the model
at short distances (UV). Naively, one might anticipate that the IR physics can depend on
the UV parameters in an arbitrarily complicated manner, but this expectation turns out
to be wrong. Instead, quantum field theory exhibits universality, with a wide variety of
UV definitions exhibiting the same IR dynamics. This universality is a consequence of the
existence of quantum field theories whose properties are independent of the length scale
at which we probe the system. Typically, the invariance of these theories under scaling is
enhanced to an invariance under all conformal transformations, and such models are re-
ferred to as conformal field theories (CFTs). A general scale-dependent QFT can then be
understood as a deformation of a CFT by some of its scale-invariance breaking parameters.
Although a general CFT has infinitely many possible deformations, only a small number
of these influence the IR dynamics, which provides the explanation for universality. It
should be noted that the properties of deformations of a CFT are in principle determined
by data intrinsic to the undeformed theory. Although such description may not always be
practical for answering various IR questions, it certainly adds to the significance of CFTs
as the cornerstones in the landscape of QFTs.

In addition to their role in organizing the space of QFTs, CFTs have relevance for
another fundamental problem in physics, namely that of quantum gravity. General rela-
tivity provides a good desctiption of quantum gravity at long distance, where it is weakly
coupled. The question of finding a consistent extension of general relativity valid up to an
arbitrarily high energy turns out to be tightly constrained, with perturbative string theory
providing the only solution found to date. Any insight into the dynamics of quantum
gravity valid beyond perturbation theory is thus extremely valuable. Some progress can
be made by placing a putative quantum gravity theory into a spacetime with the asymp-
totic geometry of the anti-de Sitter (AdS) space. The significance of the AdS space in
this context stems from its following two properties. It has a timelike boundary, where a
boundary condition must be chosen to produce well-defined physics in the bulk, and its
isometry group coincides with the group of conformal transformations of the boundary. A
more detailed analysis shows that this setup endows the boundary with the structure of a
full-fledged CFT. In particular, the presence of dynamical gravity in the bulk implies the
existence of a local stress tensor in the boundary CFT.

2



Compared to quantum gravity, our understanding of CFTs is on a much firmer footing.
In particular, CFTs can be defined and studied fully non-perturbatively, as explained in
the following section. The observations of the previous paragraph thus give us the op-
portunity to analyze non-perturbative quantum gravity in the language of conventional
non-gravitational quantum field theory. Any quantum gravity theory that can be con-
sistently placed in the AdS space defines a CFT in one less dimension. Conversely, the
conditions under which a given CFT corresponds to a weakly-coupled quantum gravity in
an AdS space are relatively well-understood.

In summary, conformal field theories are central to several defining questions in current
theoretical physics. Moreover, their relatively rigid mathematical structure makes them
amenable to exact methods not available in more general quantum field theories. Let us
turn to describing this structure in more detail.

1.2 The conformal bootstrap

A conformal field theory is characterized by the properties of its allowed deformations.
These deformations are called operators. They represent the allowed probes of the physical
system and can come in a multitude of forms. The observables in a CFT are the correlation
functions of operators. Writing Oi, i = 1, . . . , n for a collection of operators in a CFT,
their correlation function is denoted as

〈
n∏
i=1

Oi〉 . (1.1)

It is a real number representing the expectation value of the result of an experiment where
the collection of probes Oi is inserted into our system. The most widely studied are local
operators, corresponding to probes localized at a point, and denoted O(x). By virtue of the
state-operator map, the local operators form a vector space endowed with a scalar product.
In this thesis, we will be mostly concerned with unitary CFTs, where this scalar product is
positive definite. The vector space is acted on by the conformal group and can be written
as a direct sum of its irreducible representations, called conformal families. The irreducible
representations appearing in physically sensible unitary theories are unitary highest-weight
representations. The highest-weight states are called primary operators. The conformal
family is specified by the quantum number of the primary states under dilatations, called
the scaling dimension ∆, and the irreducible representation of SO(d) rotations in which
the primary states transform. The rest of the conformal family is spanned by so-called

3



descendants, which are derivatives of the primary operators. In summary, we can write
the space of local operators A as

A =
⊕
i∈P

C(∆i, ρi) , (1.2)

where C(∆, ρ) stands for the conformal family with primary of scaling dimension ∆ and
SO(d) irreducible representation ρ, and where the sum runs over all conformal families
present in the CFT.

A key feature of CFTs is that the space of local operators carries a multiplicative struc-
ture. The so-called operator product expansion (OPE) allows us to expand the product of
two local operators at different positions Oi(x)Oj(y) in the basis A of all local operators
at a single location, such as

Oi(x)Oj(y) =
∑
k∈A

fkij(x− y)Ok(y) . (1.3)

The expansion coefficients fkij(x − y) are fixed by conformal invariance up to overall con-
stants ckij. Moreover, the contribution to the right-hand side coming from descendants
is completely fixed by the contribution of their primary. The multiplicative structure is
thus determined by the structure constants ckij with labels i, j, k corresponding to primary
operators. We can now use the OPE to reduce an arbitrary n-point function down to a
sum over two-point functions, which are in turn determined in terms of ∆i and ρi thanks
to conformal invariance. Therefore, the collection of primary labels (∆i, ρi) together with
the structure constants ckij are in principle sufficient to reconstruct an arbitrary correlation
function of local operators and for this reason are jointly referred to as the CFT data.

However, an arbitrary choice of the CFT data does not necessarily define a consistent
theory. This is because the OPE in a sensible theory must be associative. The associativity
imposed on a product of three primary operators is a constraint bilinear in the structure
constants with a complicated dependence on the scaling dimensions and positions of the
operators. The idea to use OPE associativity to constrain the CFT data is known as the
conformal bootstrap, with the equations expressing associativity called conformal boot-
strap equations. In its strongest form, conformal bootstrap states that physically sensible
CFTs are in one to one correspondence with the sets of CFT data consistent with OPE
associativity. Usually, additional requirements such as unitarity or the presence of a local
stress tensor are added.

The conformal bootstrap equations constitute an infinite set of intricate constraints
on the infinite amount of CFT data. Although a complete analytic understanding of the

4



consequences of these equations is currently not available, their constraining power has
been demonstrated in a number of contexts. The applications range from constraints on
CFTs relevant in condensed matter physics, through bounds on a possible conformal sector
in particle physics beyond the Standard Model, to a more precise understanding of how
quantum gravity in AdS emerges from a boundary CFT. Most prominently, a numerical
implementation of the conformal bootstrap equations has led to a prediction of the critical
exponents of the three-dimensional Ising model more precise than those obtained using
any other method [4–8].

The conformal bootstrap has provided us with a new torchlight that brightens up the
otherwise relatively dark and unexplored world of strongly-coupled quantum field theory.
The remainder of this thesis will take us to several corners of this mysterious world and
the conformal bootstrap will be our main companion on this journey. Let us turn to briefly
describing the setting of the remaining chapters.

1.3 Overview of the thesis

Local operators do not exhaust the set of possible probes a given CFT may admit. Indeed,
we can insert more general defects localized on submanifolds of various dimensions in the
ambient space. For example, one-dimensional defects may represent infinitely massive
particles propagating through our system, while codimension-one defects correspond to
boundary conditions or domain walls etc. An especially interesting class of defects of a
CFT are those that preserve the maximal possible subgroup of the conformal group, called
conformal defects. Specifically, a d-dimensional conformal defect in a D-dimensional CFT
should preserve the SO(1, d) × SO(D − d) subgroup of the (Euclidean) conformal group
SO(1, D).

Conformal defects at the same time enrich and constrain the dynamics of their ambi-
ent CFT. They come with their own spectrum of local operators, which are themselves
subject to conformal bootstrap equations. Moreover, the CFT data of the bulk theory are
intertwined with those of the defect via another set of bootstrap equations, thus allowing
to constrain the bulk dynamics purely from the knowledge of the properties of the defect.
These ideas are elaborated on in Chapter 2 based on [1], focusing on the example of the
twist line defect in the 3D Ising model. We study the twist defect both using perturbation
theory and non-perturbatively via the conformal bootstrap, arriving at a picture consistent
with existing lattice simulations and making further predictions for additional defect CFT
data.
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Among various tools to analyze strongly-coupled quantum field theories, a priviledged
role is played by supersymmetry. Ensuring cancellations between bosonic and fermionic
processes, it allows for a number of quantities to be computed exactly at any coupling.
Supersymmetry and conformal bootstrap make for a powerful interplay, since supersym-
metry fixes protected quantities, such as scaling dimensions of certain operators, which can
then be used as an input of the conformal bootstrap equations to constrain unprotected
observables. Chapter 3, based on [3], explores this idea in the context of superconformal
theories with four supercharges. We first show how the superconformal bootstrap equa-
tions in these theories can be formulated in a unified manner across spacetime dimensions.
Afterwards, we use these equations to derive universal bounds on the simplest unprotected
quantities. The interacting IR fixed point of the theory of a single chiral superfield, known
as the N = 2 super-Ising model in three dimensions, is singled out by our analysis and we
are able to make predictions for some of its CFT data which pass additional consistency
checks.

The ability of the conformal bootstrap equations to place dramatic bounds on the CFT
data pertaining to operators of small scaling dimension can be traced to the existence of
certain linear functionals acting on the spaces of conformal blocks and having appropri-
ate positivity properties. Most applications of the conformal bootstrap up to date have
proceeded by numerically optimizing the linear functional to produce the most stringent
bounds. It is clearly of great interest to construct the optimal functionals analytically
since they can hold the key to an analytic solution of CFTs lying on the boundary of
the space allowed by the conformal bootstrap equations. Chapter 4 of this thesis, based
on [9], addresses this problem in one spacetime dimension. We construct analytically the
optimal functional leading to an upper bound on the scaling dimension of the first non-
trivial primary operator. The bound in saturated by the theory of free fermions. Although
the extremal theory is rather simple, the construction of the functional is quite nontrivial
and hopefully implies useful lessons about the nature of extremal functionals in higher
dimensions and interactins theories. Furthermore, we use the optimal functional to show
how several aspects of AdS2/CFT1 holography naturally emerge from the 1D conformal
bootstrap equation.
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Chapter 2

The Twist Line Defect in the 3D
Ising Model

2.1 Introduction

As explained in more detail in Chapter 1, CFTs play an important role in many aspects of
theoretical physics, from the concrete study of physical systems at criticality to abstract
problems in mathematical physics. Although some CFTs can be given a weakly coupled
description, the most interesting and commonly occurring CFTs are strongly coupled, and
in three or more dimensions few analytic tool are available to study them. In supersym-
metric or lower-dimensional examples, conformal invariant defects have played a useful role
in probing the structure of CFTs. A conformal defect is a non-local observable, a modifi-
cation of the theory which is localized on a lower-dimensional manifold and preserves an
appropriate subgroup of the conformal group. It is natural to attempt to define and study
defects in non-supersymmetric, commonly occurring CFTs. The 3d Ising model at criti-
cality is a natural candidate: it is in a sense the simplest non-trivial 3d CFT and has been
the subject of an intensive and rather successful analysis by a variety of theoretical and
numerical tools [10] such as the ε-expansion and Monte Carlo simulations. More recently,
interesting constraints on the Ising model [4–8] and other CFTs have been derived using
the methods of the conformal bootstrap [11–56]

The simplest possible conformal defect in a CFT is a boundary condition. Boundary
conditions in the 3d Ising model have been the subject of some theoretical [57, 58] and
numerical study [59]. More recently, there have been attempts to “bootstrap” such bound-
ary conditions [22], by looking at two-point functions of bulk operators in the presence of
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the boundary. Another interesting example is a monodromy, or twist defect. The global
Z2 flavor symmetry of the Ising model allows for a natural definition of codimension two
twist defects: under a rotation around the defect, local operators pick up a phase factor
according to their Z2 quantum numbers. Due to their topological nature, such defects are
essentially guaranteed to flow to scale invariant defects in the IR and possibly to conformal
defects.

The authors of reference [60] have used Monte Carlo simulations to provide numerical
evidence for the existence of a twist defect in the 3d Ising model. In this chapter, we
aim to present further evidence for this from different points of view. We shall take a
two-pronged approach: direct analytic calculations using ε-expansion techniques; and the
numerical methods of the conformal bootstrap. In both cases not only do we find excellent
agreement with existent data, but we are also able to make new predictions that may be
verified in the near future. As such, our work is a nice example of the interplay between
theory, Monte Carlo simulations and the numerical bootstrap.

The ε-expansion, introduced by Wilson and Fisher [61], provides a framework to study
the critical O(N) models in a perturbative setting. A drawback of this method is its disre-
gard of the conformal symmetry, and another is that high accuracy requires computations
to high loop orders and Borel resummation due to the asymptotic nature of the perturba-
tive expansion [62]. Nevertheless, the ε-expansion has been used to determine basic critical
exponents in 3d rather precisely. The numerical bootstrap recently provided compelling
evidence for the consistency of this method by identifying a family of solutions to crossing
symmetry, interpolating between the 2d and 3d Ising model, and the 4d free scalar [63]. It
is thus natural to use the ε-expansion as a source of data on the twist defect in the 3d Ising
model. Concretely, we will start with the twist defect in the free theory, add a φ4 coupling
in the bulk and study correlation functions in the IR. The theory is expected to flow to the
twist defect of the 3d Ising model. Performing one-loop computations, and setting ε = 1,
we find good agreement with the Monte Carlo data. The one-loop deviation from the 3d
free theory is always in the right direction, and often surprisingly close to the measured
value. Note that defect scaling dimensions have been studied for Wilson lines in 3d U(1)
gauge theory with matter in [64].

As was mentioned before, boundary conditions have been previously considered in the
context of the conformal bootstrap. The main obstacle in such program is the lack of
guaranteed positivity/unitarity constraints in the intermediate channel where the two bulk
operators are fused together. Here we shall take a different approach, by considering
directly correlators of defect operators. This guarantees positivity, but the price to pay is
that it uses very little information about the bulk CFT itself, as the bulk operators do not
appear in any fusion channel. The only properties of the bulk theory which affect directly

8



the four-point functions on the defect are its symmetries. The 3d Ising model should
be a reasonable candidate for such an analysis, because it is strongly constrained by its
symmetries: in a sense, it is the simplest 3d CFT with a Z2 flavor symmetry. It would
be interesting to investigate if such a strategy may be successful in the study of boundary
conditions (codimension one defects). In this paper, we focus on the codimension two
twist line defects, and thus consider the conformal bootstrap in the one-dimensional world
volume of the defect.

The spectrum of operators on the defect contains operators of various U(1) ‘spin’ (cor-
responding to rotations around the defect), which can be integer of half-integer according
to the Z2 charge of the operator. Further, the spectrum should contain a protected “dis-
placement operator” D, of spin 1 and dimension 2. This is the operator one would add to
the defect Lagrangian to deform the defect away from a straight line. We shall consider
four-point functions of the simplest local operator ψ on the defect, the leading spin-1/2
operator, which occurs in the defect OPE of the Z2-odd bulk field σ (the Ising model spin
field). However, in one dimension one must take care because a four-point function can be
decomposed only into two crossing symmetry channels. There are therefore two crossing
equations: in the four-point function 〈ψψ̄ψψ̄〉 both fusion channels have spin 0; but the
correlator 〈ψψψ̄ψ̄〉 has both spin 0 and spin 1 fusion channels.

We shall explore the constraints following from the crossing equations, deriving uni-
versal bounds on one-dimension unitary CFTs. By forcing the spectrum to contain the
displacement operator, we can derive a bound on the dimension of the leading parity-even
spin-0 operator. In the extremal case where the bound is saturated, we can reconstruct a
unique solution to crossing symmetry [23], and we find that for a certain value of the OPE
coefficient of D the spectrum seems to match that of the defect, found both numerically
and via ε-expansion. We also obtain a number of other operator dimensions and OPE
coefficients which can be thought of as specific predictions for future numerical tests.

Here is a brief outline of this chapter. In section 2.2, we review the twist defect in-
troduced in [60]. We work in the continuum limit, describing the expected symmetries,
low-lying operators and the form of the operator product expansion. Section 2.3 is con-
cerned with ε-expansion calculations. In section 2.4 we turn to the methods of the modern
conformal bootstrap and conclude in Section 2.5 together with suggestions for further
research.
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2.2 The Z2 Twist Defect

Let us recall [60] that the twist line defect in the 3d Ising model can be constructed on
the lattice by flipping the Ising coupling on a semi-infinite half-plane ending on a line of
the dual lattice. Such semi-infinite surface is a topological defect, since physics is invariant
under its arbitrary deformations fixing the boundary line, provided we also flip the spins
in between the original and deformed surface. The boundary of such topological surface
defect is precisely a twist line defect. In the continuum limit, correlation functions become
discontinuous (antiperiodic) across the surface. Presumably the same twist line defect lies
at the IR end of the renormalization group flow from the free theory with a Z2 twist defect
generated by φ4 coupling in the bulk.

The global spacetime symmetry group of a D-dimensional Euclidean parity-invariant
CFT is O+(1, D+ 1), where parity or sphere inversion switches between the two connected
components. A conformal Z2 twist line defect thus breaks the bulk symmetry O+(1, 4)×Z2

down to O+(1, 2) × O′(2), where O′(2) is a double cover of the group of rotations and
reflections fixing the defect, such that the rotation by 2π is identified with the nonidentity
element of Z2. The dihedral symmetry D8 of motions of the cubic lattice fixing the defect,
discussed in [60], is a subgroup of O′(2). O+(1, 2) is the spacetime symmetry group of
the defect. At the level of Lie algebras, we have so(1, 2) = sl(2,R), and the connected
components of O+(1, 2) are switched by the reflection in a plane orthogonal to the defect
or the sphere inversion centered on the defect. Following [60], we call the former the
S-parity.

In this chapter, we will be concerned with local operators living on the twist defect.
In the Ising model, these correspond to local modifications of the lattice model in close
proximity of the defect line. Applying radial quantization centered at a point on the defect,
the defect local operators are seen to correspond to the states of the CFT quantized on a
two-punctured sphere, with each puncture inducing the Z2 action on the bulk fields. The
local operators fall into representations of the group O+(1, 2)× O′(2). The 1D conformal
algebra sl(2,R) is generated by operators P,D,K (respectively translations, dilations and
special conformal transformations) satisfying the commutation relations

[D,P ] = iP , [D,K] = −iK , [K,P ] = −2iD . (2.1)

Physically relevant irreps are the highest-weight representations labelled by the scale di-
mension ∆ ≥ 0 of the primary O(x), i.e. [K,O(0)] = 0, [D,O(0)] = i∆O(0). ∆ < 0 would
lead to correlation functions growing with distance and also violation of the unitarity bound
by the first descendant.
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The counterpart of unitarity in the Euclidean signature has been called ‘reflection-
positivity’. In our setting, this property means that any correlation function of a config-
uration of real operators which is invariant under the S-parity is positive. Real operators
in the Ising model are those appearing in the real operator algebra generated by the spin
field. Reflection-positivity of the 3d Ising model is not spoiled by the defect line since the
lattice transfer matrix in a plane perpendicular to the defect is unchanged with respect
to the bulk theory. This leads us to define the (Euclidean) conjugate C(O(x)) ≡ Ō(x) as
complex conjugate composed with S-parity, so that 〈Ō(x)O(y)〉 ≥ 0. C is an antilinear
map on the algebra of local operators which reverses the O(2) spin and commutes with the
other quantum numbers.

The commutativity properties of the symmetry algebra enable us to find a basis of
defect primaries with well-defined S-parity, and O(2) spin s, which is (half)integer for
primaries even (odd) under the global Z2. Each s = 0 representation moreover carries
O(2)-parity, denoted B. We are free to choose the phase of the s = 0 primaries so that
C acts on them as the identity. The basis of |s| > 0 primaries can be chosen so that
B(O) = bOŌ. From BC = CB and B2 = 1, we get bO = eiθ. Redefining O → e−iθ/2O, we
cancel the phase and get BO = Ō, so that |s| > 0 do not carry any O(2)-parity.

Exactly as in higher dimensions, conformal invariance fixes the form of two and three
point functions. The difference in 1D is that the three point function coefficient cO1O2O3

may depend on the cyclic order of the operators (signature of the permutation), since this
order is invariant under the connected component of identity in the conformal group. In
particular, note that for x < y < z

〈O1(x)O2(y)O3(z)〉 = (−1)S1+S2+S3〈O3(−z)O2(−y)O1(−x)〉 , (2.2)

where (−1)Si is the S-parity of Oi. Hence

cO1O2O3 = (−1)S1+S2+S3cO2O1O3 . (2.3)

Arbitrary cyclic permutations are generated by P + K. The sign in (2.3) will play an
important role in one of our bootstrap equations.

Primary operators on the defect satisfy the usual operator product expansion

O1(x)O2(y) =
∑
O3

cO1O2Ō3

|x− y|∆1+∆2−∆3
D∆i

(x− y, ∂)O3(y), (2.4)

where the sum runs over defect primaries and

D∆i
(x− y, ∂) =

∞∑
n=0

(∆1 + ∆3 −∆2)n
n!(2∆3)n

(x− y)n∂n (2.5)
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is fixed by conformal symmetry. Moreover, bulk operators can be expanded in terms of
the defect operators in the so-called bulk-defect OPE [58, 65] , which for a scalar primary
in the bulk takes the form

φ(x, z, z̄) =
∑
O

Cφ
O

z̄sO

|z|∆φ−∆O+sO
B∆O(|z|, ∂)O(x) , (2.6)

where we use complex coordinates z, z̄ for the transverse directions, the sum is over defect
primaries, and sO denotes the O(2) spin of O. Conformal symmetry in the presence of the
defect fixes 〈φ(x, z, z̄)Ō(y)〉 up to an overall constant Cφ

O, and consequently determines

B∆(|z|, ∂) =
∞∑
n=0

(−1)n(∆)n
n!(2∆)2n

|z|2n∂2n . (2.7)

Notice that in particular, the boundary OPE coefficient Cφ
1 gives the expectation value of

φ,

〈φ(x, z, z̄)〉 =
Cφ

1

|z|∆φ
(2.8)

Applying a 2π rotation to (2.6), we see that the defect expansion of a bulk operator φ even
(odd) under the global Z2 contains only defect primaries with integer (half-integer) spins.
Typically, the bulk-defect OPE will contain an infinite tower of defect primaries at each
allowed spin. An exception is the bulk free field, studied below, which only features one
defect primary at each spin.

The defect spectrum always contains the displacement operator D(x) which, when
added to the Lagrangian, generates deformations of the defect. Its dimension and quantum
numbers are fixed by the Ward identity expressing the breaking of transverse translational
symmetry by the defect

∂aT
ai(x, z, z̄) = Di(x)δ2(z, z̄), (2.9)

where i label the transverse coordinates. Hence ∆D = 2, sD = 1, and D is even under
S-parity.

Let us illustrate the above in the simplest setting – the theory of the free massless
real scalar φ in three dimensions, with twist defect for the global Z2. Applying the bulk
equations of motion to the bulk-defect OPE of φ, we find that the scale dimension of the
defect primary of (half-integer) spin s appearing in the OPE is ∆s = |s| + 1/2. We will
denote this tower of operators by ψs. The field φ (and consequently each ψs) is even under
S-parity. Reality of φ implies ψ−s = ψ̄s. The lowest-lying non-identity defect primary is
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ψ ≡ ψ1/2 with scale dimension ∆ψ = 1. Since the scale dimension of the bulk spin field in
the 3d Ising model is close to the free-field value, we expect the lowest-lying operator in the
Ising defect spectrum to have dimension close to 1 and share the other quantum numbers
with the free-theory ψ. Going back to the free theory, the ψ̄ψ OPE contains primary
operators of schematic form On = ψ̄∂nψ, n ≥ 0. We have ∆On = n + 2, sOn = 0, and
the S-parity, as well as O(2)-parity of On is (−1)n. The ψψ OPE features primaries with
schematic form Sn = ψ∂2nψ for n ≥ 0. This time, we obtain ∆Sn = 2n+2, sSn = 1, and the
operators are even under S-parity. S0 is the only candidate for the displacement operator,
since forming further OPEs will only create operators with dimensions greater than 2. In
the next section, we will compute the first-order corrections to the scale dimensions of some
of these operators, as well as their three point function constants at the Wilson-Fisher fixed
point in 4− ε dimensions. In particular, we will check that D ≡ S0 is indeed protected at
this order.

2.3 Epsilon Expansion

In order to study the properties of the twist defect at the Wilson-Fischer fixed point in 4−ε
dimensions, we start with the D = 2−ε dimensional twist defect in the free theory and add
a bulk φ4 interaction at the critical coupling. Since renormalization is a local property, the
bulk flow is unaffected by the presence of the defect, and so the critical coupling is the usual
g = (4π)2ε/3 + O(ε2). Correlation functions of local bulk operators interpolate between
two regimes – when the typical distances between the insertions are much smaller than the
distance from the defect, the correlation functions become those of the Wilson-Fisher fixed
point with no defect. In the opposite case, the correlation functions are controlled by the
CFT data of the defect. In the latter regime, the distance from the defect acts as a UV
cutoff.

In this section, we use bulk perturbation theory to study bulk correlation functions
in the defect regime and thus determine the data associated to some important defect
operators to the first order in ε. The reader uninterested in the details may skip directly
to the results which are displayed in table 2.1.
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2.3.1 The two-point function in the free theory

First, we will need the two-point function in the free theory alias the propagator. It is
anti-periodic around the defect and satisfies

−∇2G0(x1, x2) =
4πD/2+1

Γ
(
D
2

) δD+2(x1 − x2), (2.10)

where we chose the normalization standard in CFT literature, resulting in the asymptotics

G0(x1, x2)
x1→x2∼ 1

|x1 − x2|d
. (2.11)

Let x denote coordinates in the whole space and y those along the defect. The propagator
can be easily found in momentum space

G0(x1, x2) =
2πD/2

Γ
(
D
2

) ∑
s∈Z+ 1

2

∫
dDk

(2π)D
eis(θ1−θ2)eik·(y1−y2)I|s| (kr−)K|s| (kr+) , (2.12)

where the Fourier transform is over the coordinates along the defect, θ is the angle around
the defect, r− = min(r1, r2), r+ = max(r1, r2) and Is, Ks are the modified Bessel functions.
The contribution from spin s can be integrated to give

G0(x1, x2, s) =
1

4∆

Γ (∆)

Γ
(
D
2

)
Γ
(
∆− D

2
+ 1
) eis(θ1−θ2)

(r1r2)
D
2

ξ−∆×

× 2F1

(
∆,∆− D

2
+

1

2
; 2∆−D + 1;−1

ξ

)
, (2.13)

where ∆ = |s|+D/2 is the scaling dimension of the primary field ψs of spin s induced on
the defect by φ in the bulk, and

ξ =
(y1 − y2)2 + (r1 − r2)2

4r1r2

(2.14)

is one of the two conformal cross-ratios, the other being the relative angle. The computa-
tion can be simplified by using conformal invariance – it is enough to evaluate the spin-s
propagator at r1 = r2 since this fixes the dependence on ξ. ξ � 1, ∆θ � 1 is the regime
controlled by the bulk CFT and ξ � 1 the regime controlled by the defect data. Defect
channel scalar conformal blocks for equal external dimensions can be read off from (2.13),
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since these depend only on the internal dimension ∆ and space-time dimension. To com-
pute the properties of ψs, we will need the spin-s two-point function in four dimensions,
where (2.13) reduces to

G0(x1, x2, s)
D=2
=

eis(θ1−θ2)

4r1r2

ξ−
1
2

√
1 + ξ

(√
ξ +
√

1 + ξ
)2|s| . (2.15)

We can check that the infinite sum over spins produces the correct short distance singu-
larity. Indeed, the full free two-point function can be resummed for θ1 = θ2

G0(x1, x2)
θ1=θ2=

1

|x1 − x2|D
2Γ
(
D+1

2

)
√
πΓ
(
D
2

)ξ− 1
2 2F1

(
1

2
,
D + 1

2
;
3

2
;−1

ξ

)
. (2.16)

When ξ � 1, this reduces to the expected (2.11). For completeness, let us note that the
full two-point function can be found explicitly in D = 2 by summing (2.15)

G0(x1, x2)
D=2
=

1

|x1 − x2|2
cos
(
θ1−θ2

2

)
√

1 + ξ
. (2.17)

2.3.2 The two-point function at one loop

Leading defect operators of half-integer spin

In this subsection, we will compute the scaling dimensions of the operators ψs of spin
s = n + 1/2, n ∈ Z≥0, induced by σ on the defect, as well as the bulk-defect OPE
coefficient Cσ

ψs
to the first order in ε. If nothing too dramatic happens along the RG flow

from the free massless scalar, these should be the leading operators of half-integer spin. We
will consider the spin-s component of the bulk two-point function when the two insertions
are taken close to the defect. Let us place both points at radius r and distance y along
the defect, relative angle θ and denote λ = r/y = 1/

√
4ξ. From the bulk-defect OPE,

we expect the spin-s component of the two-point function to have the following leading
behaviour as λ→ 0

G(x1, x2, 1/2) = |Cσ
ψs|2

eisθ

r2∆σ
λ2∆ψs (1 +O(λ2)). (2.18)

The dependence of ∆ψs and Cσ
ψs

on ε at one loop comes from two sources – the change of
the free theory result with space-time dimension and the one-loop self-energy diagram (see
figure 2.1). Using (2.13), one finds the free theory result
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G0(x1, x2, s) =
Γ
(
s+ D

2

)
Γ
(
D
2

)
Γ (s+ 1)

eisθ

rD
λ2s+D(1 +O(λ2)). (2.19)

Expanding the Gamma functions, we obtain the free theory CFT data of ψs to the first
order in ε

∆ψs

free
= s+ 1− ε

2
(2.20)

|Cσ
ψs|

free
= 1 +

ψ(1)− ψ(s+ 1)

4
ε+O(ε2), (2.21)

where ψ(z) = (log Γ(z))′. The one-loop self-energy diagram should be evaluated in D = 2
since the coupling constant is itself proportional to ε. Taking care of the normalization
and symmetry factor, the diagram’s contribution is equal to

G1(x1, x2, s) = − g

32π4

∫
R4

d4x0G0(x1, x0, s)G0(x0, x0)G0(x0, x2, s). (2.22)

We need a regularized expression for the full free two-point function between coincident
points G0(x0, x0) in D = 2. Starting either from (2.12) and evaluating the sum over spins
for D < 0 (so in dimensional regularization), or taking the finite piece of (2.16), we find

G0(x0, x0) = − Γ
(
D+1

2

)
2D−1D

√
πΓ
(
D
2

) 1

rD0

D=2
= −1

8

1

r2
0

. (2.23)

r

y

Figure 2.1: The one-loop contribution to 〈φ(x1)φ(x2)〉
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Using g = (4π)2ε/3, and the free D = 2, spin-s propagator (2.15), and performing the
trivial integration over the angle, the one-loop diagram becomes

G1(x1, x2, s) =
ε

24π
eisθ
∫
R2

dy0dz0

∞∫
0

dr0

r0

(4r0r)
2s

d+d−e+e−(d+ + d−)2s(e+ + e−)2s
, (2.24)

where

d± =

√(
y0 −

y

2

)2

+ z2
0 + (r0 ± r)2

e± =

√(
y0 +

y

2

)2

+ z2
0 + (r0 ± r)2.

When λ → 0, the integral is proportional to λ2(s+1) log λ, which is giving precisely the
anomalous dimension of ψs. The asymptotic expansion (see Appendix 2.A.1) reveals that

G1(x1, x2, s) = − ε

12s

eisθ

r2
λ2(s+1) (log λ+ o(1)) (2.25)

as λ → 0. It follows that the one-loop contribution to ∆ψs is −ε/24s and that to |Cσ
ψs
|

vanishes. The CFT data at the Wilson-Fisher fixed point to the first order in ε are therefore

∆ψs = s+ 1−
(

1

2
+

1

24s

)
ε+O(ε2) (2.26)

|Cσ
ψs| = 1 +

ψ(1)− ψ(s+ 1)

4
ε+O(ε2). (2.27)

The inverse power-law dependence of the anomalous dimension on spin is in agreement
with the results of [66, 67]. The comparison to Monte Carlo data on ψ = ψ1/2 and ψ3/2

presented in [60] are reassuring, see table 2.1.

2.3.3 Energy operator

In this subsection, we will consider the two-point function in the bulk limit ξ � 1 in order
to find the one-point function of the energy operator ε in the presence of the defect at
one loop. Put the two insertions at the same θ, same radius r and distance y along the
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quantity 3D free theory Wilson-Fisher Monte Carlo
∆ψ 1 0.917 0.9187(6)

∆ψ3/2
2 1.972 1.99(5)

∆D 2 2 2
∆s 2 2.167 2.27(1)
∆p0 3 2.833 2.9(2)
∆t+ 3 3.111 3.1(5)
|Cσ

ψ| 0.798 0.847 0.968(2)
|Cσ

ψ3/2
| 0.651 0.680 0.61(9)

Cε
1 -0.225 -0.141 -0.167(4)

Table 2.1: A comparison of lattice data and the Wilson-Fisher fixed point at one loop.

defect, so that λ = r/y � 1. Bulk OPE and conformal invariance of the one-point function
dictates that

G(x1, x2) =
1

y2∆σ

[
1 + cσσεC

ε
1λ
−∆ε(1 + o(1))

]
, (2.28)

where the o-notation now refers to the limit λ → ∞. Expanding the free-theory result
(2.16) around ξ =∞ yields

G0(x1, x2) =
1

yD

[
1− 2−DΓ

(
D+1

2

)
√
πΓ
(
D+2

2

) λ−D(1 +O(λ−2))

]
, (2.29)

which gives the following free-theory predictions for the CFT data associated to ε

∆ε
free
= 2− ε (2.30)

cσσεC
ε
1

free
= −1

8

[
1 +

2 log 2− ψ(3/2) + ψ(2)

2
ε

]
+O(ε2). (2.31)

The one-loop self-energy can be evaluated using the full 4D propagator (2.17). Rather than
starting directly from (2.17), it is more convenient to sum (2.24) over the spins, setting
θ = 0

G1(x1, x2) =
ε

3π

∫
R2

dy0dz0

∞∫
0

dr0
r

d+d−e+e−

(d+ + d−)(e+ + e−)

(d+ + d−)2(e+ + e−)2 − (4rr0)2
. (2.32)

Asymptotic expansion of this integral as λ→∞ shows (see Appendix 2.A.2)

G1(x1, x2) =
ε

y2
λ−2

[
1

24
log λ+

log 2

12
+ o(1)

]
. (2.33)
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We checked this result agrees with the computation which uses the full propagator (2.17).
Combining the tree-level and one-loop result, we find the following properties of ε at one
loop

∆ε = 2− 2

3
ε+O(ε2) (2.34)

cσσεC
ε
1 = −1

8

[
1 +

2 log 2 + 3ψ(2)− 3ψ(3/2)

6
ε

]
+O(ε2). (2.35)

The formula for ∆ε is in agreement with the standard result obtained using perturbation
theory without the defect. We reproduce the computation in Appendix 2.B in order to
find the OPE coefficient cσσε =

√
2(1− ε/6) +O(ε2). It follows that the one-point function

coefficient of energy is

Cε
1 = − 1

8
√

2

[
1 +

1 + 2 log 2 + 3ψ(2)− 3ψ(3/2)

6
ε

]
+O(ε2). (2.36)

As shown in table 2.1, the first order result is again in a good agreement with Monte Carlo
data.

2.3.4 The four-point function

Leading defect operators of positive integer spin

Operators on the defect of integer spin can be found in the ψs1ψs2 OPEs. The most
important of these is the displacement operator of spin one and protected dimension D +
1 = 3 − ε. In the free theory, the normal ordered product ψs1ψs2 has scaling dimension
|s1| + |s2| + 2 − ε. Consequently, the space of lowest-lying operators of positive integer
spin s is generated by all ψs1ψs2 with s1, s2 > 0 and s1 + s2 = s. After flowing to the
Wilson-Fisher fixed point, this degeneracy is lifted. Let us denote Os,m ≡ ψm− 1

2
ψs−m+ 1

2
for

m = 1, . . . , b s+1
2
c, with the exception O2k−1,k ≡ ψk− 1

2
ψk− 1

2
/
√

2, so that Os,m is normalized
in the free theory. At the Wilson-Fisher fixed point, the matrix of two-point functions of
Os,ms is, to the first order in ε,

〈Os,m(y1)Ōs,n(y2)〉 =
1

y2s+4−2ε
12

[δmn − 2ε(log y12)∆s
mn] , (2.37)

where we ignored the possible corrections sub-leading in y12. Denoting δs the minimal
eigenvalue of ∆s

mn, the lowest dimension at spin s ∈ Z>0 is, to the first order in ε

∆s = s+ 2 + ε(δs − 1). (2.38)
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In particular, if the displacement D = O1,1 is protected, we should have δ1 = ∆1
11 = 0.

In the following, we will find the matrix ∆s
mn by studying the various spin components

of the four-point function of φ when all four insertions are at the same radius r with
|y12| = |y34| = r/λ and |y13| = r/(λµ) such that λ� 1, µ� 1. Using first the bulk-defect
OPE, and then OPE on the defect, we find the leading piece of the four-point function for
s1, s2 > 0, s3, s4 < 0 and s1 + s2 = −s3 − s4 = s

G
(
{xj, sj}4

j=1

)
=

∏4
j=1

(
Cσ
ψsj
eisjθjλ

∆ψsj

)
r4∆σ

×
× cψs1ψs2Ōs,mcψs3ψs4Os,nµ

2s+4−2ε [δmn + 2ε(log µ)∆s
mn] , (2.39)

where Os,m is the normalized product ψs1ψs2 and Ōs,n is the normalized product ψs3ψs4 .
Recall that to O(ε0), we have Cσ

ψsj
= 1 and from Wick’s theorem

cψs1ψs2Ōs,m =

{
1 if s1 6= s2√

2 if s1 = s2

. (2.40)

In bulk perturbation theory, the contributions to the four-point function at the first order
come from the diagrams with two disconnected loop-corrected propagators, and the contact
four point interaction (see figure 2.2). The former give the leading contribution

Gdisc.

(
{xj, sj}4

j=1

)
=

∏4
j=1

[
eisjθj(λµ)

∆ψsj

]
r4∆σ

(δs1,−s3δs2,−s4 + δs1,−s4δs2,−s3) , (2.41)

while the contact interaction leads to the integral (following from (2.15))

Gcon.

(
{xj, sj}4

j=1

)
= − ε

273π

∫
R2

dy0dz0

∞∫
0

dr0

r4r3
0

4∏
j=1

eisjθj√
ξj
√

1 + ξj
(√

ξj +
√

1 + ξj
)2|sj |

,

(2.42)
where

ξj =
(yj − y0)2 + z2

0 + (r − r0)2

4rr0

. (2.43)

Asymptotic expansion gives the following leading piece (see Appendix 2.A.3)

Gcon.

(
{xj, sj}4

j=1

)
=

4ε

3(s+ 1)
(log µ+O(1))

1

r4

4∏
j=1

[
eisjθj(λµ)|sj |+1

]
, (2.44)
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Figure 2.2: The diagrams contributing to the properties of ψs1ψs2 up to one loop. The
double line denotes the one-loop-corrected propagator.

which is consistent with (2.39). Putting the disconnected and contact interaction diagrams
together, we find the following values of the matrix of scaling dimensions ∆s

mn

∆s
mn =


2

3(s+1)
if m 6= n

2
3(s+1)

− 1
12

(
1

2m−1
+ 1

2s−2m+1

)
if m = n, 2m 6= s+ 1

1
3(s+1)

− 1
6s

if m = n, 2m = s+ 1

(2.45)

The first term comes from the contact interaction and the second from the disconnected
diagrams (if present), where we need to use the one-loop-corrected ∆ψsj

from (2.26). The

first case occurs when {s1, s2} 6= {−s3,−s4}, when only the contact interaction contributes.
The second case occurs when {s1, s2} = {−s3,−s4} but s1 6= s2. Finally, the third case
occurs when s1 = s2 = −s3 = −s4.

The first thing to notice is that ∆1
11 = 0, so the displacement operator is indeed pro-

tected at the first order in ε. The next simplest case is s = 2, with a single operator
t+ = ψψ 3

2
of free-theory dimension 4− ε and anomalous dimension ε/9. Numerical results
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for the lowest eigenvalue of ∆s
mn are shown in figure 2.3. The leading anomalous dimension

converges to −1/12 as s → ∞, which can be understood be noting that in this limit,
(ej)n = δnj becomes an eigenvector of ∆s

mn with eigenvalue

λj = − 1

12(2j − 1)
. (2.46)

It would be interesting to understand the asymptotic properties of the spectrum along the
lines of [66, 67]. Unfortunately, the Monte Carlo data on higher-spin operators are not yet
precise enough to provide a test of our results.

10 20 30 40 50 60

- 0.090

- 0.085

- 0.080

- 0.075

s

∆
s

Anomalous dimensions of leading integer spin operators

Figure 2.3: Anomalous dimensions of the leading operators of spin s at one loop. Dashed
blue lines interpolate between the even and odd spins. They both asymptote to the dashed
red line δs = −1/12.

Computation of the next-to-leading order in µ of the contact interaction diagram (2.44)
provides the first order correction to the OPE coefficients cψs1ψs2Os,m . The disconnected
diagrams contribute only to Cσ

ψsj
. The computation is included in Appendix 2.A.4, the
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result being

Gcon.

(
x1,

1

2
;x2,

1

2
;x3,−

1

2
;x4,−

1

2

)
= ε

(
2

3
log µ− 8 log 2− 5

6
+ o(1)

)
×

× (λµ)6

r4
e(θ1+θ2−θ3−θ4)/2, (2.47)

from which it follows that

cψψD̄ =
√

2

(
1− 8 log 2− 5

24
ε+O(ε2)

)
. (2.48)

2.3.5 The leading defect scalar and pseudoscalar

The above discussion was concerned only with operators of positive integer spin, but it is
a simple matter to use the same method to find the dimension of the leading defect (non-
identity) scalar. In the free theory, it is the operator s = ψ̄ψ of dimension 3− ε. Now we
can repeat the steps above with s1 = −s2 = −s3 = s4 = 1/2 and find that the computation
is almost identical to that for the displacement operator, the only difference being in the
free-theory OPE coefficients (cψψD̄ =

√
2, cψψ̄s = 1). In both cases, the contribution from

the disconnected diagrams is −ε/6 (twice the anomalous dimension of ψ). The contact
interaction diagram contributes ε/6 to the displacement, but ε/3 to the scalar since in the
former case, it is reduced by |cψψD̄|2=2. Hence the dimension of s is

∆s = 3− 5

6
ε+O(ε2). (2.49)

Table 2.1 indicates that already the first order provides a considerable improvement towards
the Monte Carlo results with respect to the free theory. We can also use the constant piece
of (2.47) to conclude that

cψ̄ψs = 1− 8 log 2− 5

12
ε+O(ε2). (2.50)

The leading free-theory defect operator with spin zero and negative S-parity is p0 =

ψ̄
←→
∂ ψ/2 = [(∂ψ̄)ψ−ψ̄(∂ψ)]/2. We wish to study it using the 〈φ(x1)

←→
∂ φ(x2)φ(x3)

←→
∂ φ(x4)〉

bulk correlator, where the derivatives act along the defect. We put all four points at
the same distance from the defect and focus on the correct spin component of the four-
point function. The contact interaction diagram for 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 is completely
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symmetric under any permutation of the four points. The antisymmetric derivative acting
on x3, x4 thus makes the diagram vanish in the limit x3 → x4. Hence the properties of p0

to the first order are determined solely by the renormalization of ψ. We find

∆p0 = 2∆ψ + 1 +O(ε2) = 4− 7

6
ε+O(ε2) . (2.51)

The generalized free theory gives for the three point function constant

cψ̄ψp0 =
√

∆p0 +O(ε2) =

√
3

2

(
1− 7

36
ε+O(ε2)

)
. (2.52)

We will be able to compare these predictions with data from conformal bootstrap in the
following section.

2.4 Bootstrapping the twist defect

In this section we will apply the methods of the numerical conformal bootstrap to the
one-dimensional defect directly. As outlined in the introduction, there are two distinct
but related crossing equations which are relevant for our problem. Analysis of the first
leads to an operator dimension bound in one dimension, similar to those derived between
2 and 4 dimensions in references [4, 13, 14, 63]. The bound appears to be saturated by
the generalized free fermion. Adding an extra equation and demanding the existence of
a displacement operator leads to more interesting bounds, and we are able to reconstruct
the twist defect spectrum.

2.4.1 The bootstrap equations

The bootstrap equations that we use result from expanding four-point functions of ψ, ψ̄ in
different OPE channels. Four points on a line have only one invariant under the SL(2,R)
action. We take it to be

z =
x12x34

x13x24

. (2.53)

We fix the order of the insertions to x1 < x2 < x3 < x4, which results in the constraint
0 < z < 1. The four-point function of defect primaries Oi of equal scale dimension d can
be written as

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
1

|x12|2d|x34|2d
g(z) , (2.54)
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where g(z) is an analytic function for z ∈ (0, 1). Colliding x1 and x2 leads to the series
expansion in conformal blocks

g(z) =
∑
O

c12Oc34ŌG∆O(z), (2.55)

where the sum runs over defect primaries, and G∆(z) is the 1D conformal block for equal
external dimensions and internal dimension ∆. The conformal blocks are given by [68]

G∆(z) = z∆
2F1(∆,∆; 2∆; z) . (2.56)

Colliding instead x2 and x3 and equating the two different representations of the four-point
function leads to the crossing equation∑

O

c12Oc34Ōz
−2dG∆O(z) =

∑
O

c23Oc41Ō(1− z)−2dG∆O(1− z) (2.57)

valid for z ∈ (0, 1).

U(1) symmetry requires that a nonzero four-point function of ψ and ψ̄ must contain two
of each. There are two nonequivalent orders to consider: 〈ψ̄ψψ̄ψ〉 and 〈ψ̄ψψψ̄〉. Focusing
on the first case, the exchanged operators come from the ψ̄ψ OPE, so they have U(1) spin
zero. Moreover, their S-parity equals the O(2) parity since the two symmetries require in
turn

〈ψ̄ψO〉 = (−1)S(O)〈ψψ̄O〉 = (−1)B(O)〈ψψ̄O〉 . (2.58)

We have seen this correlation between the parities in the ψ̄ψ OPE in the free theory
example of section 2.2. Of course, the ψ̄ψ OPE starts with the identity. The coefficients
of the conformal block expansion in the (12)(34) channel are cψ̄ψOcŌψ̄ψ. Using the Hilbert
space formalism, this equals

〈ψ|ψ|O〉〈O|ψ̄|ψ〉 = |〈ψ|ψ|O〉|2 = |cψ̄ψO|2. (2.59)

The (23)(41) contains the same set of spin-0 operators and the corresponding coefficients
are |cψψ̄O|2. But cψψ̄O = ±cψ̄ψO thanks to the parity symmetries, so that the first bootstrap
equation can be written as∑

O

|cψ̄ψO|2
[
z−2dG∆O(z)− (1− z)−2dG∆O(1− z)

]
= 0 . (2.60)

We have thus obtained a conventional crossing equation with positive and equal coefficients
on both sides, directly analogous to those used in higher dimensions [4, 63].
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The equation resulting from the crossing symmetry of the 〈ψ̄ψψψ̄〉 correlation function
is less standard. The (12)(34) channel still consists of primaries from the ψ̄ψ OPE, but
this time, the coefficient is

cψ̄ψOcψψ̄Ō = (−1)S(O)cψ̄ψOcψ̄ψŌ = (−1)S(O)|cψ̄ψO|2, (2.61)

so that the conformal block expansion can distinguish between scalars and pseudoscalars at
the cost of lost positivity. The (23)(41) channel comes from the ψψ OPE, and so contains
only spin-1 operators even under S-parity (〈ψψS〉 = (−1)S(S)〈ψψS〉). The coefficients are
manifestly positive since

cψ̄ψ̄ScψψS̄ = 〈ψ|ψ̄|S〉〈S|ψ|ψ〉 = |cψψS̄ |2 . (2.62)

The resulting bootstrap equation thus takes the form∑
O+

|cψ̄ψO+|2z−2dG∆O+ (z)−
∑
O−
|cψ̄ψO−|2z−2dG∆O−

(z) =

=
∑
S

|cψψS̄ |2(1− z)−2dG∆S (1− z) , (2.63)

where the first, second sum on the LHS runs over parity-even, odd scalars respectively, and
the sum on the RHS runs over spin-1 primaries. We expect the lowest operator in the ψψ
OPE to be the displacement. Note that the difference in sign between the two bootstrap
equations goes hand in hand with the fact that the crossed channel in (2.60) starts with the
identity, while in (2.63), it starts at ∆ > 0. In the former case, the scalars and pseudoscalars
together produce the strong singularity of the identity in the crossed channel, but in the
later, their effect must cancel to leave a weaker singularity corresponding to the first spin-1
primary. Since the singularity in the crossed channel is produced by the tail of the set
of primaries, it follows that there are infinitely many scalars as well as infinitely many
pseudoscalars.

There is a family of simple solutions of the two bootstrap equations corresponding to
a generalized free complex scalar in 1D. In this case, Wick’s theorem implies (x1 < x2 <
x3 < x4)

〈ψ̄(x1)ψ(x2)ψ̄(x3)ψ(x4)〉 =
1

|x12|2d|x34|2d

[
1 +

(
z

1− z

)2d
]

(2.64)

〈ψ̄(x1)ψ(x2)ψ(x3)ψ̄(x4)〉 =
1

|x12|2d|x34|2d
(
1 + z2d

)
. (2.65)
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The first term in each bracket is the contribution of the identity, and the rest can be
expanded in 1D conformal blocks as(

z

1− z

)2d

=
∞∑
n=0

(2d)2
n

n!(4d+ n− 1)n
G2d+n(z) (2.66)

z2d =
∞∑
n=0

(−1)n(2d)2
n

n!(4d+ n− 1)n
G2d+n(z) , (2.67)

so that the ψ̄ψ OPE contains scalars of dimensions 2d + 2n, n ≥ 0, and pseudoscalars of
dimensions 2d+ 2n+ 1, n ≥ 0. (2.65) in the crossed channel becomes

〈ψ(x1)ψ(x2)ψ̄(x3)ψ̄(x4)〉 =
1

|x12|2d|x34|2d

[
z2d +

(
z

1− z

)2d
]

(2.68)

with conformal block expansion

z2d +

(
z

1− z

)2d

=
∞∑
m=0

2(2d)2
2m

(2m)!(4d+ 2m− 1)2m

G2d+2m(z) , (2.69)

so that the spin-1 sector consists of dimensions 2d+ 2m, m ≥ 0.

Unless we put constraints on the spin-1 spectrum, any solution of (2.60) can be extended
to a solution of both (2.60) and (2.63). Indeed, let∑

i

|λi|2
[
z−2dG∆i

(z)− (1− z)−2dG∆i
(1− z)

]
= 0 (2.70)

be a solution of the first equation and take the ∆ > 0 spectrum in the even and odd scalar
sectors identical, with |cψ̄ψO+

i
|2 = |cψ̄ψO−i |

2 = |λi|2/2. (2.60) is automatically satisfied and in

(2.63), the nonidentity scalars and pseudoscalars cancel out. Moreover, (2.66) guarantees
that we can use a tower of spin-1 operators of dimensions 2d + n, n ≥ 0 to cancel the
contribution of the identity.

Let us comment on the domain of applicability of our bootstrap equations. (2.60) by
itself does not know in any way about the bulk theory and merely expresses the constraints
of crossing and unitarity for a 1D CFT. It is (2.63) together with the assumption that the
ψψ OPE starts with the displacement that identifies the line as a codimension two object.
Indeed, the structure of the OPE suggests a displacement operator which carries charge
1 under a transverse SO(2) rotation symmetry, and a bosonic operator ψ of half-integral
rotation quantum number1.

1Of course, the bounds derived from the bootstrap equations may apply to other situations which
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2.4.2 Constraints from the first crossing equation

As a warm-up, let us consider first the constraints that follow from the first bootstrap
equation (2.60). This kind of equation has been previously analyzed in the literature,
though not in one dimension. The major difference is that here there are no spin-L rep-
resentations other than L = 0. Operators are labeled only by their conformal dimensions,
along with discrete quantum numbers. The method for deriving constraints from equation
(2.60) has been explained in detail elsewhere, so here we will content ourselves with a
brief summary. We first expand it in derivatives around z = 1/2 up to some finite order.
By setting each individual Taylor coefficient to zero, we are left with a system of linear
equations with constraints, namely that the OPE coefficients should be positive and that
at least one of them (that of the identity operator) is strictly non-zero. This is a linear
programming problem, which can be solved with standard algorithms, such as the simplex
method. Alternatively, we can try to disprove that such an equation can hold, by finding
a linear functional which is non-negative on all possible vectors (namely, for any ∆). We
will follow the former route, using our own numerical implementation of the simplex algo-
rithm. This has the advantage that the output is automatically a solution to the crossing
symmetry constraints – a spectrum, made up of operator dimensions and OPE coefficients,
which solve the crossing equations – as opposed to the linear functional method, where a
spectrum has to be extracted by examining the zeros of the functional [23].

Our approach is to fix d, the dimension of ψ, ψ̄ and ask for the maximum allowed
dimension of the first scalar appearing in the ψψ̄ OPE. We do this by excluding from the
sum rule (2.60) all vectors with dimension below some value ∆s (apart from the identity).
We then increase this gap until no solution can be found. The result is shown in figure 2.4.

The result is a relatively boring straight line, which seems to very nearly coincide with
the curve corresponding to the 1d generalized free fermion. This amounts to the four-point
function

〈ψ(x1)ψ(x2)ψ(x3)ψ(x4)〉 =
1

|x12|2d|x34|2d

[
1 +

(
z

1− z

)2d

− z2d

]
(2.71)

with conformal block expansion

1 +

(
z

1− z

)2d

− z2d = 1 +
∞∑
j=0

2(2d)2
2j+1

(2j + 1)!(4d+ 2j)2j+1

G2d+2j+1(z) , (2.72)

include operators with similar quantum numbers. For example, a codimension 3 defect has an SO(3)
rotation symmetry, and may have an operator of spin 1/2 under that SO(3). One could focus on a single
component ψ of that doublet and on the SO(2) Cartan subgroup of the full rotation group, using our
analysis for a sub-optimal bound.
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Figure 2.4: One-dimensional bounds derived from (2.60). In red the curves corresponding
to the generalized free fermion solution. Left: bound on scalar dimension. Right: OPE
coefficient of the leading scalar, in the solution to crossing corresponding to the dots on
the top plot.

so that the minimal exchanged primary above the identity has ∆s = 2d + 1. We can find
solutions to crossing at any point below our bound curve. In the extremal case where we
sit directly on the bound itself, the solution is generically unique [23]. In this case we
expect this solution to closely match the generalized free fermion. On the same figure on
the right-hand side we compare the OPE coefficient of the leading scalar obtained with
the bootstrap with that of the generalized free fermion – namely |cψψ̄O|2 = 2d. Overall the
agreement is quite good for small d and gradually gets worse as d increases. As we increase
the accuracy in our numerical procedure, by augmenting the total number of derivatives
(here we have used 50), the agreement gets better and better for larger and larger values
of d. As for the twist defect CFT, it lies well inside the bound, and as such, through
bounds alone we cannot reach it, at least not with a single equation. This is unlike the
situation described in [63], where the Ising model lies on an interesting point (a kink) in
the dimension bound. Here we are not as lucky and must work a bit harder to obtain an
interesting result.
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2.4.3 Constraints from both crossing equations

We now turn to deriving constraints by using both crossing equations. We use the confor-
mal dimension to label operators, and define

F∆(z) = G∆(z)−
(

z

1− z

)2d

G∆(1− z), (2.73)

S∆(z) = G∆(z), (2.74)

T∆(z) = −
(

z

1− z

)2d

G∆(1− z) (2.75)

With this notation, it follows that we can write (2.60) and (2.63) in vector form.∑
O+

a+
∆

(
F∆(z)
S∆(z)

)
+
∑
O−

a−∆

(
F∆(z)
−S∆(z)

)
+
∑
S

b∆

(
0

T∆(z)

)
= 0 (2.76)

where all coefficients appearing in the above are explicitly positive. The procedure now is
the same as in the single equation case. We evaluate the sum rule and its derivatives at
z = 1/2 (up to 40) and attempt to find a solution imposing various constraints. Since the
spectrum is now split into three different sectors, we have more freedom in setting up the
problem. Since we are looking for the twist defect, we are interested in solutions to crossing
where the first spin-1 operator is the displacement, which has dimension 2. Therefore we
shall impose a gap, by disallowing any spin-1 operators with dimension below 2 in the sum
rule above. Figure 2.5 shows the bound derived by scanning over the dimension d of ψ
while imposing the same gap on the dimension of the parity odd and parity even scalars.
The bound is clearly more restrictive up to some value of d, beyond which it returns to
the original single equation result. This can be understood by recalling that a solution of
the first equation can be extended to a solution of both as long as the gap imposed in the
spin-1 sector does not exceed 2d. We can see this directly by examining the spectra of the
solutions to crossing living at the boundary of the bound. In figure 2.6 we show the odd
and even scalar spectra corresponding to these solutions. It is clear that for high enough d
the spectra become identical in these two channels, as we expect. A detailed examination
of the OPE coefficients shows that this occurs precisely at d = 1.

As it is clear, this approach is unfortunately still not sufficient to find the twist defect.
From table 2.1 we expect there to be a parity even scalar of dimension about 2.27 when
d ' 0.9187, which is allowed, but not saturated by our bound. Hence we consider a different
strategy. Since we know that the defect must contain a spin-1 operator with dimension
2 in its spectrum, we shall impose this directly on the sum rule. More concretely, we fix
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Figure 2.5: Single equation bound in red and two equation bound in black. In the latter,
the leading scalar is parity odd, up to about d = 1, where the parity even and odd scalars
have identical spectra.

the OPE coefficient of the D operator in the sum rule to some value, and we determine
the maximum gap in the parity even sector consistent with crossing symmetry. We can
do this for various values of d, but we will be interested in the experimentally relevant
d = 0.9187. Figure 2.7 shows the resulting bound. We see that the bound is saturated by
a solution to crossing including a parity even scalar of dimension 2.27 for an OPE squared
value of about 1.8. Notice that this is consistent with the results of the ε-expansion, which
indicate that the OPE coefficient square should be ' 1.9. We can determine the spectrum
of this solution, and this is shown in figure 2.8. Remarkably, we find a parity odd scalar
of dimension ' 2.9 in the solution, signaling that this is indeed the twist defect. We
summarize our spectrum results in table 2.2. Besides the spectrum data present on the
table, the bootstrap also predicts other operators and their OPE coefficients. The accuracy
of these depends on the number of derivatives. We can estimate the error by repeating the
calculations at different numbers of derivatives and seeing how the results change. Doing
this we further predict the existence of the operators shown in table 2.3, with an estimated
error of 5% or less.
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Figure 2.6: Spectra corresponding to the extremal solutions in figure 2.5. In black (red)
the parity even (odd) scalars. On the left the operator dimensions, and their OPE coeffi-
cients on the right. The correspondence between both is reversed: larger OPE coefficients
correspond to lower dimension operators.

To summarize, we have used as input the dimension of ψ; the dimension of the first even
scalar s; and the existence of a spin 1 operator D of dimension 2. Using this information,
and assuming the defect spectrum lies on the bound of figure 2.7, we have been able to
determine the OPE coefficient of D in the ψψ operator product. Further, we have checked
the existence of an odd scalar of dimension ' 2.9 and its OPE coefficient, and predict a
further six operator dimensions and OPE coefficients. We could have gone further by doing
more intensive calculations, but we are limited by the relatively large error in the dimension
of s determined from the lattice. As it stands, our confidence that we are finding the correct
solution to crossing hinges on obtaining the correct operator dimension for po and an OPE
coefficient for the displacement operator consistent with the ε-expansion. It would be very
interesting to further test this by extending the epsilon-expansion calculations or doing
further lattice simulations.

2.5 Conclusions

We have offered new points of view on the twist line defect in the 3d Ising model – the
ε-expansion and the conformal bootstrap of the defect four-point functions. While the ε-
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quantity Bootstrap ε-expansion Monte Carlo
∆ψ 0.9187 0.917 0.9187(6)
∆D 2 2 2
∆s 2.27 2.167 2.27(1)
∆po 2.92 2.833 2.9(2)
cψψs 0.95 0.955 ???
cψψD̄ 1.345 1.382 ???
cψψ̄po 0.988 0.987 ???

Table 2.2: A comparison of lattice data, the Wilson-Fisher fixed point at one loop, and
bootstrap calculations. We have italicized numbers which are used as inputs to the boot-
strap method.

Type Dimension OPE2

0+ 4.12 0.66
0+ 6.29 0.26
0− 5.11 0.45
0− 7.42 0.15
1 3.98 0.99
1 6.20 0.38

Table 2.3: Spectrum predictions from the bootstrap method.
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Figure 2.7: One-dimensional bound, using two equations.

expansion at one loop leads to a surprisingly good agreement with the Monte Carlo results,
the identification of the defect spectrum from conformal bootstrap is not as straightforward
as in the case of the bulk theory [4]. In spite of this, we believe we have successfully found
the 1D defect theory by forcing the inclusion of the displacement operator in the spectrum,
at the cost of using more data, namely the dimensions of the leading parity even scalar
s and of ψ as determined from the lattice. The pay-off is that we determine a number
of other quantities, namely operator dimensions and their OPE coefficients, which match
well with results of the ε-expansion. It is quite interesting that the inclusion of the second
equation in the bootstrap set-up results in significant improvement of the bound, despite
the lack of positivity in the spin-0 channel.

Several extensions of our work offer themselves. The O(N) models allow twist line
defects for arbitrary R ∈ O(N), and it should be straightforward to generalize the ε-
expansion calculation at least in the case when R = −I. Although our bootstrap bounds
apply to this defect for any N by taking ψ to be a fixed component of a spin-1/2 O(N)
vector, it may be worth repeating the analysis for 〈ψ̄iψjψ̄kψl〉, 〈ψ̄iψjψkψ̄l〉 while separating
the exchanged primaries according to their O(N) representations, as in [25]. Large-N
computations for the defect should also be possible. Note that O(N) can also be interpreted
as the spacetime symmetry of the transverse directions, so that conformal bootstrap on
the line can be used to constrain higher-dimensional CFTs. It may also be interesting to
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Figure 2.8: Spectra corresponding to the extremal solutions to crossing symmetry - the
unique solutions at the boundary of our bounds.

see how the bootstrap bound evolves for the 2− ε dimensional defect in the Wilson-Fisher
CFT.

1D CFTs can also serve as simple test cases for analytical understanding of the con-
formal bootstrap. In particular, the coincidence of the single equation bound with the
generalized free fermion begs for an analytical explanation. Note that the techniques of
[66] and [67] are not directly applicable since they require the presence of two cross-ratios.
Also for this reason, the study of crossing of the bulk two-point function in the presence
of a defect may be a fruitful direction of research.
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2.A Asymptotic evaluation of integrals

2.A.1 Half-integer spin operators

The one-loop properties of ψs are encoded in the asymptotic properties of the integral
(2.24) as λ→ 0. To find these asymptotics, we start by the substitution y0 = ya, z0 = yb,
r0 = yc, which leads to

G1(x1, x2, s) = ε
24(s−1)

3π

eisθ

r2
λ2(s+1)

∫
R3

dadbdc
c2s−1

d+d−e+e−(d+ + d−)2s(e+ + e−)2s
, (2.77)

where

d± =

√(
a− 1

2

)2

+ b2 + (c± λ)2

e± =

√(
a+

1

2

)2

+ b2 + (c± λ)2,

and where we extended the domain of integration to the full R3, which is admissible since
2s− 1 is even. Let us denote

I(λ) =
24(s−1)

3π

∫
R3

dadbdc
c2s−1

d+d−e+e−(d+ + d−)2s(e+ + e−)2s
. (2.78)

As λ → 0, the integral is logarithmically divergent around (a, b, c) = (±1/2, 0, 0), with λ
acting as a point-splitting regulator. We expect I(λ) = α log λ+β+o(1) and our goal is to
determine α and β. Our general strategy will be to introduce an auxiliary parameter N and
split the integration domain into two parts. In this case, denote I1(λ,N) the integral above
restricted to the union of the two spheres of radii λN surrounding the two singularities, and
denote I2(λ,N) the integral over the rest of R3 so that I(λ) = I1(λ,N)+I2(λ,N). I1,2(λ,N)
simplify in the limit N →∞, Nλ→ 0 if we do not care about terms which vanish as λ→ 0.
Working first with I1(λ,N), and focusing on the sphere surrounding (a, b, c) = (1/2, 0, 0),
note that in the limit λN → 0, we can replace e± = 1. Making further the substitution
a = 1/2 + λx, b = λy, c = λz, we find that λ-dependence disappears

I1(λ,N) =
22s−3

3π

∫
x2+y2+z2≤N2

dxdydz
z2s−1

f+f− (f+ + f−)2s + o(1), (2.79)
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where
f± =

√
x2 + y2 + (z ± 1)2. (2.80)

The integrals over x and y can be done explicitly, leaving us with

I1(λ,N) =
22s

12s

N∫
0

dz

[
(z2s + 1)− |z2s − 1|

22s+1z
− z2s−1(√

N2 + 2z + 1 +
√
N2 − 2z + 1

)2s

]
+ o(1).

(2.81)
It is now a matter of a simple calculation to show that

I1(λ,N) =
1

12s
logN + o(1). (2.82)

Let us consider I2(λ,N), denoting D = {(a, b, c) ∈ R3|(a ± 1/2)2 + b2 + c2 ≥ (λN)2} the
domain of integration. As N →∞, we can write d+ = d−, e+ = e− up to terms of O(N−1),
so that

I2(λ,N) =
1

48π

∫
D

dadbdc
c2s−1

(r+r−)2(s+1)
+ o(1), (2.83)

where

r± =

√(
a± 1

2

)2

+ b2 + c2. (2.84)

Let us perform the inversion around (1/2, 0, 0), so that D is mapped to the region D′

between the sphere of radius λN + O((λN)2) centered around (−1/2, 0, 0) and sphere of
radius 1/(λN) centered around (1/2, 0, 0). The integral simplifies considerably

I2(λ,N) =
1

48π

∫
D′

dadbdc
c2s−1

r
2(s+1)
+

+ o(1). (2.85)

Working up to terms vanishing as λN → 0, we can modify D′ by making the inner sphere
have radius exactly λN , and shifting the outer sphere so that it is also centered around
(−1/2, 0, 0). After these modifications, the integral becomes almost trivial, the result being

I2(λ,N) = − 1

12s
log(λN) + o(1). (2.86)

Combining I1 and I2, the dependence on N drops out as expected and we find

I(λ) = − 1

12s
log λ+ o(1), (2.87)

so that α = −1/(12s) and β = 0.
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2.A.2 Energy operator

In order to find the asymptotic behaviour of the integral (2.32) as λ→∞, which gives the
one-loop properties of the energy operator, let us start by making the substitution y0 = ra,
z0 = rb, r0 = rc, after which we obtain

G1(x1, x2) =
ε

6π

1

r2

∫
R3

dadbdc
1

d+d−e+e−

(d+ + d−)(e+ + e−)

(d+ + d−)2(e+ + e−)2 − (4c)2
, (2.88)

where

d± =

√(
a− µ

2

)2

+ b2 + (c± 1)2

e± =

√(
a+

µ

2

)2

+ b2 + (c± 1)2,

and where we extended the domain of integration to the whole R3 and write µ = 1/λ. Let
us denote J(µ) = r2G1(x1, x2)/ε. Analogously to the previous computation, µ acts as a
point-splitting regulator for the logarithmic singularities at (0, 0,±1). We proceed along
the same lines, splitting the domain into the union of the spheres of radii Nµ centered
at (0, 0,±1), and the rest of R3, and considering the limit N → ∞, Nµ → 0. We start
analyzing the integral J1(µ,N) over the spheres. Concentrating on the sphere centered at
(0, 0, 1), and making the substitution a = µx, b = µy, c = 1 + µz, we find

d+ = e+ = 2 + µz +O(µ2)

d− = µ

√(
x− 1

2

)2

+ y2 + z2 +O(µ2)

e− = µ

√(
x+

1

2

)2

+ y2 + z2 +O(µ2),

so that the integral becomes

J1(µ,N) =
1

48π

∫
x2+y2+z2≤N2

dxdydz
1

f+f−(f+ + f−)
+ o(1), (2.89)

where

f± =

√(
x± 1

2

)2

+ y2 + z2. (2.90)
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Notice that after scaling the variables by 1/2, the integral is equivalent to I1(λ, 2N)/4 from
(2.79) with s = 1/2, so that we immediate obtain

J1(µ,N) =
1

4
I1(µ, 2N, s = 1/2) + o(1) =

1

24
(logN + log 2) + o(1). (2.91)

Shifting to J2(µ,N), we can use d± = e±, so that

J2(µ,N) =
1

6π

∫
D

dadbdc
1

(d+d−)2

(d+ + d−)2

(d+ + d−)4 − (4c)2
+ o(1), (2.92)

where the domain is D = {(a, b, c) ∈ R3|a2 + b2 + (c± 1)2 ≥ (µN)2}. Scaling the variables
by 2 and applying inversion centered at (0, 0, 1), the integral simplifies greatly

J2(µ,N) =
1

192π

∫
D′

dadbdc
1[

a2 + b2 +
(
c+ 1

2

)2
] 3

2

+ o(1), (2.93)

where D′ = {(a, b, c) ∈ R3|a2 + b2 + (c ± 1/2)2 ≷ (µN/2)±1}. Modifying the integration
domain as in the previous section, to make it into the region between two concentric spheres
of mutually inverse radii, we easily find the result

J2(µ,N) = − 1

24
log

(
µN

2

)
+ o(1), (2.94)

so that indeed the N dependence cancels in the final result and we obtain

J(µ) = − 1

24
log µ+

1

12
log 2 + o(1), (2.95)

so that

G1(x1, x2) =
ε

r2

[
1

24
log λ+

log 2

12
+ o(1)

]
(2.96)

as λ→∞.

2.A.3 Dimensions of integer spin operators

We start the analysis of the integral (2.42) by making the substitution x0 = ar/(λµ),
y0 = br/(λµ), z0 = cr/(λµ), after which the integral becomes

Gcon.

(
{xj, sj}4

j=1

)
= ε

e
i
∑
j
sjθj

r4
(λµ)2(s+2)K(µ, λ), (2.97)
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where

K(µ, λ) = − 2

3π

∫
R2

dadb

∞∫
0

dcc
4∏
j=1

(4c)|sj |

djej (dj + ej)
2|sj |

, (2.98)

where

dj =

√
(a− aj)2 + b2 + (c− λµ)2

ej =

√
(a− aj)2 + b2 + (c+ λµ)2,

where a1 = −1/2 − µ/2, a2 = −1/2 + µ/2, a3 = 1/2 − µ/2, a4 = 1/2 + µ/2. We want
to study the asymptotic behaviour as λ, µ → ∞. Note that for fixed µ > 0, the integral
is non-singular in the limit λ → ∞, so we may set λ = 0, and use dj = ej. Writing
K(µ) = K(µ, 0), we thus have

K(µ) = − 2

3π

∫
R2

dadb

∞∫
0

dc
c2s+1∏4

j=1 d
2|sj |+2
j

, (2.99)

where

dj =

√
(a− aj)2 + b2 + c2. (2.100)

As µ → ∞, the singularities collide pairwise around (±1/2, 0, 0), inducing logarithmic
singularities, so again, we expect K(µ) = γ log µ+O(1). The constant γ, which is related
to the anomalous dimension, can be found by changing the role of µ from a point-splitting
regulator, to a hard regulator, i.e. setting µ = 0 in the integrand, but omitting the half-
spheres of radii µ centered around (±1/2, 0, 0) from the integration domain. The arguments
from the previous subsections make this statement rigorous. Near (1/2, 0, 0), we can replace
d1 = d2 = 1, d3 = d4, so that the near-singularity behavior of the integral is

K(µ) = −8

3

∫
µ

dr

r

π
2∫

0

dθ sin θ(cos θ)2s+1 +O(1) =
4

3(s+ 1)
+O(1). (2.101)

Hence equation (2.44) follows.

2.A.4 cψψD̄ OPE coefficient

In order to find the one-loop-corrected OPE coefficients cψs1ψs2Os , we would need to work
much harder, repeating the analysis involving the auxiliary parameter N on the compli-
cated integral (2.98), and finding the eigenvectors of the first-order dilatation operator.
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Here we content ourselves with the analysis in the one-dimensional case s1 = s2 = 1/2,
which gives the correction to the OPE coefficient cψψD̄. Our goal is thus to find the constant
piece of (2.99) when |sj| = 1/2, s = 1

K(µ) = − 2

3π

∫
R2

dadb

∞∫
0

dc
c3∏4
j=1 d

3
j

. (2.102)

As in the previous sections, we introduce parameter N , and split the integration domain
into the union of the two half-spheres of radii µN centered at (±1/2, 0, 0) and the rest of
the 3D half-space, denoting the two resulting integrals K1(µ,N), K2(µ,N) respectively.
K2(µ,N) can be dealt with easily by applying the previously used methods. As µN → 0,

we can write d1 = d2 =
√

(a− 1/2)2 + b2 + c2, d3 = d4 =
√

(a+ 1/2)2 + b2 + c2. Then,

applying inversion centered at (1/2, 0, 0) and shifting the outer half-sphere to become
concentric with the inner one, we arrive at the simple integral

K2(µ,N) = − 2

3π

(µN)−1∫
µN

dr

r

∫
dΩS2

+
(cos θ)3 + o(1), (2.103)

where S2
+ denotes the upper half of S2, i.e. θ ∈ [0, π/2]. It follows that K2 does not

contribute to the constant term

K2(µ,N) =
2

3
log(µN) + o(1). (2.104)

Moving on to K1(µ,N), let us focus on the half-sphere centered at (1/2, 0, 0) and write
a = 1/2 + µx, b = µy, c = µz, so that

K1(µ,N) = − 4

3π

∫
D

dxdydz
z3[

(x− 1
2
)2 + y2 + z2

] 3
2
[
(x+ 1

2
)2 + y2 + z2

] 3
2

+ o(1), (2.105)

where D = {(x, y, z) ∈ R3|z ≥ 0, x2 + y2 + z2 ≤ N2}. The integral over z can be done with
the result (dropping sub-leading terms)

K1(µ,N) =
4

3π

∫
x2+y2<N2

dxdy

 1

N2
−
(

1 + x2+y2

N2

r+ + r−

)2
+ o(1), (2.106)
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where

r± =

√(
x± 1

2

)2

+ y2. (2.107)

The first term of (2.106) trivially integrates to 4/3, and we will denote the remaining
integral L(N). Scaling the variables by N , we find

L(N) = − 4

3π

∫
x2+y2<1

dxdy

 1 + x2 + y2√(
x+ 1

2N

)2
+ y2 +

√(
x− 1

2N

)2
+ y2

2

. (2.108)

We can simplify the integral by repeating our trick of splitting the integration domain
into the disc of radius M/N and the remaining annulus and consider the limit M → ∞,
M/N → 0. Denote the disc integral by L1(M,N) and the annulus integral by L2(M,N).
When evaluating L2, we can set 1/N = 0 in the integrand and arrive at

L2(M,N) = −2

3

1∫
M
N

drr
(1 + r2)2

r2
+ o(1) =

2

3
log

(
M

N

)
− 5

6
+ o(1), (2.109)

so that L2 contributes −5/6 to the constant term. It remains to find the constant term in
L1(M,N). Scaling the variables by N , the integral becomes

L1(M,N) = − 4

3π

∫
x2+y2<M

dxdy
1(√(

x+ 1
2

)2
+ y2 +

√(
x− 1

2

)2
+ y2

)2 + o(1). (2.110)

The angular integration can be done in terms of elliptic integrals or hypergeometric func-
tions, and the radial integral can then be expanded as M →∞

L1(M,N) = −2

3
logM +

1− 4 log 2

3
+ o(1). (2.111)

Hence, putting all the constants together

K1(µ,N) = −2

3
logN − 8 log 2− 5

6
+ o(1), (2.112)

and so

K(µ) =
2

3
log µ− 8 log 2− 5

6
+ o(1) (2.113)

as µ→ 0.
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2.B The four-point function without the defect

In this appendix, we will compute the one-loop correction to the four-point function of φ
in the φ4 theory without the defect in order to find properties of ε at one loop. Placing
the four insertions on a line, with distances |x12| = |x34| = r, |x13| = |x24| = r/µ, µ � 1,
the OPE predicts

G(x1, x2, x3, x4) =
1

r4∆σ

[
1 + c2

σσεµ
2∆ε(1 + o(1))

]
. (2.114)

The free-theory values are ∆σ = 1− ε/2, ∆ε = 2− ε, cσσε =
√

2, where the first result holds
also at the Wilson-Fisher fixed point up to corrections of O(ε2). The one-loop self-energy
vanishes in the massless φ4 theory, so the only contribution comes from the contact four
point interaction

G1 = −(2π)4g

∫
d4x0G(x1, x0)G(x2, x0)G(x3, x0)G(x4, x0) = − ε

3π2

∫
d4x0

1

x2
01x

2
02x

2
03x

2
04

.

(2.115)
After scaling the integration variables as x0 = ry/µ, the integral becomes

G1 =
ε

r4
µ4H(µ), (2.116)

where

H(µ) = − 1

3π2

∫
d4y

1(
y − 1+µ

2
n̂
)2 (

y − 1−µ
2
n̂
)2 (

y + 1−µ
2
n̂
)2 (

y + 1+µ
2
n̂
)2 , (2.117)

where n̂ is a unit vector in a fixed direction. As µ → 0, the integral develops logarithmic
singularities at y = ±n̂/2. We can compute the logarithmic and constant piece exactly as
before, splitting H(µ) = H1(µ,N)+H2(µ,N), where H1(µ,N) is the integral over the union
of the two spheres of radii µN , centered at ±n̂/2, and H2(µ,N) over their complement in
R4. Again, we work in the limit N →∞, µN → 0. Working with H1 and focusing on the
sphere centered at n̂/2, we can set the distances to the far singularities equal to one, and
upon rescaling the variables by µ, we obtain

H1(µ,N) = − 2

3π2

∫
R2<N2

dy4 1(
y − 1

2
n̂
)2 (

y + 1
2
n̂
)2 + o(1). (2.118)

The integral can be evaluated exactly

1

π2

∫
R2<N2

dy4 1(
y − 1

2
n̂
)2 (

y + 1
2
n̂
)2

N> 1
2= log

(
4N2 + 1

)
+ 1, (2.119)
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giving the following asymptotics

H1(µ,N) = −4

3
logN − 2

3
+ o(1). (2.120)

Moving on to H2(µ,N), we can set µ = 0 in the integrand, and use our usual trick of doing
the inversion centered at n̂/2, after which the integration domain becomes the region
between the sphere of radius µN + O((µN)2) centered at −n̂/2 and the sphere of radius
1/(µN) centered at n̂/2. Ignoring terms vanishing as µN → 0, we can make the former
radius exactly µN and make the spheres concentric, so that

H2(µ,N) = − 1

3π2

∫
µN<R<(µN)−1

d4y

R4
+ o(1) =

4

3
log(µN) + o(1). (2.121)

Hence

H(µ) =
4

3
log µ− 2

3
+ o(1). (2.122)

Comparing with the expansion (2.114), this gives the following properties of the energy
operator

∆ε = 2− 2

3
ε+O(ε2) (2.123)

cσσε =
√

2
(

1− ε

6

)
+O(ε2). (2.124)
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Chapter 3

Superconformal Bootstrap with Four
Supercharges

3.1 Introduction

The ingredients for the bootstrap program are minimal, namely conformal symmetry, uni-
tarity, and crossing symmetry of the four-point function. Strikingly, this is sufficient to
derive highly non-trivial, non-perturbative constraints on the space of generic conformal
field theories. Beginning with [17, 18], it has been shown that, as it is natural to expect,
imposing additional symmetries on the CFT allows one to obtain even stronger constraints.
A particularly interesting possibility is to consider supersymmetry. Supersymmetry leads
to exact results for specific quantities such as the dimensions of chiral operators. This is a
nice complement to the conformal bootstrap approach, which, although very powerful – it
can determine and bound unprotected quantities – is a somewhat blunt instrument, since it
addresses general properties for the space of all consistent conformal field theories. When
supersymmetry is combined with the conformal bootstrap we expect an interesting inter-
play where exact information is used to restrict bootstrap searches to specific theories or
classes of theories whereupon one can obtain accurate information about the unprotected
part of the spectrum.

Bootstrap methods have been previously applied to theories with various amounts of
supersymmetry. Theories with maximal supersymmetry are very constrained and thus
particularly suited for analysis using bootstrap technology. This has been explored in four
[26, 69–71] and three [30] dimensions where various bounds on the spectrum of conformal
dimensions and OPE coefficients were found. It turns out that theories with at least sixteen
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superconformal charges in various dimensions admit a remarkable algebraic structure which
leads to the closure of the crossing equations on the space of certain protected operators.
This was uncovered in [72] where it was shown that in four-dimensional CFTs with N =
2 supersymmetry one can solve analytically for correlation functions of some protected
operators by exploiting an underlying chiral algebra. This feature was further explored to
great efficacy in six [73], four [74, 75] and three dimensions [76]. These analytic results
can then be used as input to perform a numerical bootstrap analysis and obtain bounds
on the spectrum of unprotected operators in these highly symmetric theories [35, 76].

While theories with eight or more Poincaré supercharges are quite rigid and possess
deep mathematical properties, their dynamics is highly constrained. Thus it is worthwhile
to explore theories with less supersymmetry, which are harder to control, but perhaps of
greater phenomenological interest. This motivates our study in this chapter of CFTs with
four Poincaré supercharges (eight superconformal charges). Some of the first papers on the
modern incarnation of the bootstrap program studied N = 1 SCFTs in d = 4 [17, 20, 27].
Very little has been done in two and three dimensions, a notable exception being the work
in [77] which studied SCFTs with four superconformal charges in d = 3, i.e. CFTs with
N = 1 supersymmetry.

In this chapter, we aim to fill this gap by applying bootstrap methods to SCFTs with
four Poincaré supercharges in any dimension in the range 2 ≤ d ≤ 4. This corresponds to
N = (2, 2) and N = 2 theories in d = 2 and d = 3, respectively, and to N = 1 SCFTs
in d = 4. Moreover, one of the advantages of bootstrap methods is that they allow for
a straightforward analytic continuation into fractional values of the spacetime dimension.
This has been explored before in [63], where the numerical bootstrap results were success-
fully compared with analytic calculations for the Wilson-Fisher fixed point in d < 4. Here
we follow a similar approach, tracking the four-supercharge version of the Wilson-Fisher
fixed point from four to two dimensions. This CFT is simply the critical Wess-Zumino
(cWZ) model, i.e. the theory of a single chiral superfield with cubic superpotential at its
infrared fixed point. As compared to the non-supersymmetric case, we have a lot less room
for error here, since the conformal dimension of the “spin” field is protected and equal
to (d − 1)/3 in any spacetime dimension d. Remarkably, we show that bounds on the
dimension of the leading scalar operator in a chiral-antichiral OPE exhibit “kinks” (as in
e.g. [4, 14]) at precisely this point for all 2 ≤ d < 4. They range from the (2, 2) c = 1 su-
persymmetric minimal model in d = 2, where the numerical bootstrap agrees with various
exact results, all the way to the free theory in d = 4. In d = 3, we find a kink at conformal
dimension 2/3, and are able to read off the dimension of the leading unprotected scalar,
which is approximately 1.9098. Also in d = 3, our bootstrap prediction for the two-point
function of the stress-tensor is in close agreement with the exact localization calculation
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of [78]. Furthermore, for d . 4 our results for the dimension of the leading unprotected
scalar agree with those of the one-loop ε-expansion [79]. This strongly suggests that in 3d
our kink does indeed describe the super-Ising model. This theory is of some interest in
condensed matter physics [80–83].

Part of the difficulty in bootstrapping supersymmetric theories lies in determining the
form of the superconformal blocks. Supersymmetry organizes conformal into superconfor-
mal multiplets, and accordingly conformal blocks of primaries with different dimensions and
spins also become grouped. The calculation of superconformal blocks for general external
operators can be a cumbersome technical problem. In this chapter, we find the supercon-
formal blocks in theories with four supercharges for external scalar superconformal primary
operators with arbitrary scaling dimensions. A crucial ingredient is that at least two of
these operators should be chiral primaries. Our approach is facilitated by the existence of
a formal dimensional continuation of the superconformal algebra with four supercharges to
arbitrary dimension d ≤ 4. The commutation relations for the ordinary conformal algebra
formally make sense when we let the spacetime vector indices run from 1 to d, since Jacobi
identities can be verified without specializing to a fixed integer d. Here we show that this
picture can be extended to include fermionic generators, namely four Poincaré supercharges
and four conformal supercharges. We are able to write down (anti)commutation relations
among all generators without specializing to a fixed d and demonstrate the validity of all
super-Jacobi identities in an essentially dimension-independent way. The superconformal
blocks can then be found in general d using the fact that they are eigenfunctions of the
quadratic Casimir operator of this superconformal algebra. This method is similar to the
way in which non-supersymmetric conformal blocks were found in [84]. Our general results
reduce to previously studied cases, namely d = 2 and d = 4 [17, 85, 86]. Remarkably, we
find that for any dimension, the superconformal blocks take the same functional form as
ordinary, non-supersymmetric, blocks where the dimensions of external and propagating
operators are shifted. This fact was also observed for d = 2, 4 in [86].

We begin our exploration in the next section, where we describe a construction of
the superconformal algebras in d ≤ 4 in a unified framework. This is necessary in order
to properly define the Casimir operator of the algebra and its action on local operators,
which is used in Section 3.3 to find the superconformal blocks. In Section 3.4, we provide
a short review of the properties of the critical Wess-Zumino model in general dimension.
Section 3.5 describes the set of crossing equations that we utilize in the numerical bootstrap
procedure, the results of which are presented and discussed in Section 3.6. We finish with
a discussion in Section 3.7. Several appendices complement the main text with technical
results.
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3.2 Superconformal algebra in continuous dimension

3.2.1 General results

We begin by presenting what we would like to call the dimensional continuation of the
superconformal algebra with four Poincaré supercharges to an arbitrary spacetime dimen-
sion d ≤ 4. The superconformal algebras in the traditional sense exist only for integer
values of d. We will show however that some insight can be gained by considering a set of
(anti)commutation relations which formally make sense for any real 0 ≤ d ≤ 4, such that
we obtain the corresponding superconformal algebras for integer d. We believe that this
language is useful because it allows us to

• cast the d = 4 N = 1, d = 3 N = 2, d = 2 N = (2, 2) and d = 1 N = 4
superconformal algebras in a unified way, where d enters only as a real parameter in
the (anti)commutation relations (besides defining the range for the spacetime vector
index),

• derive unitarity bounds on highest-weight representations for the whole d-dependent
family in a unified manner, and verify they reduce to the correct results for the
algebras in integer d,

• find the superconformal blocks as analytic functions of d.

It is a well-known fact that the d = 3, N = 2, and d = 2, N = (2, 2) Poincaré supersymme-
try algebras are dimensional reductions of the N = 1 algebra in d = 4, with the extra U(1)
R-symmetry in d = 2 coming from rotations in the two “transverse” dimensions. Here,
we generalize this dimensional reduction to the full superconformal algebra. Imposing the
Jacobi identities in a superconformal algebra leads to non-trivial polynomial relations for
the generators of the Clifford algebra, this being the essential reason for the scarcity of
superconformal algebras [87]. Consistency of our approach requires a continuous version
of these identities valid in any d ≤ 4. The identities can be checked for any d = 0, 1, . . . , 4
and at the level of traces even for continuous d. The superconformal algebra thus exists in
continuous dimension in the same sense as the ordinary conformal algebra, where Jacobi
identities can be checked formally without fixing spacetime dimension. Moreover, we show
in Section 3.3 that superconformal blocks can be derived as analytic functions of d exactly
as in the non-supersymmetric case [84, 88].
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We work in Euclidean signature, with reality conditions equivalent to those imposed by
unitarity in Lorentzian signature.1 The unhatted Latin indices will run over the unreduced
spacetime directions i = 1, . . . , d, while the hatted indices over the reduced ones î =
d+ 1, . . . , 4. The bosonic generators include the usual momenta Pi, special conformal Ki,
dilation D, and rotation Mij generators, with i, j = 1, . . . , d, the U(1) R-symmetry R, and
finally the rotations in the reduced dimensions Mîĵ. Because of our formal approach, it
is important to keep the reduced rotations Mîĵ for any d, although there are no physical
generators for d > 2. In our conventions, the bosonic commutation relations are

[Mij,Mkl] = −i(δilMjk + δjkMil − δikMjl − δjlMik) ,

[Mîĵ,Mk̂l̂] = −i(δîl̂Mĵk̂ + δĵk̂Mîl̂ − δîk̂Mĵ l̂ − δĵ l̂Mîk̂) ,

[Mij, Pk] = −i(δjkPi − δikPj) ,
[Mij, Kk] = −i(δjkKi − δikKj) ,

[D,Pi] = −iPi ,

[D,Ki] = iKi ,

[Pi, Kj] = −2i(δijD +Mij) ,

(3.1)

with all other commutators vanishing. The Hermitian conjugation rules are

D† = −D , R† = R , M †
ij = Mij , M †

îĵ
= Mîĵ , P †i = Ki . (3.2)

We note that in our conventions, the action of the dilation generator D on an operator O
is [D,O] = −i∆O, where ∆ is the conformal dimension of O.

The fermionic generators include four Poincaré supercharges, Q, and four conformal
supercharges, S. The former will be denoted Q+

α , Q−α̇ , with α, α̇ = 1, 2, where the upper
index denotes the R-charge eigenvalue, ±1, and the lower index transforms under the
SO(d) × SO(4 − d) rotations. As indicated by the dot, the supercharges with different
R-charge are allowed to transform non-equivalently under rotations, as is the case for
N = 1 in d = 4. The conformal supercharges are Hermitian conjugates of the Poincaré
supercharges

Sα− = (Q+
α )† , Sα̇+ = (Q−α̇ )† . (3.3)

With this convention for placement of indices, contraction of an upper and a lower index
of the same kind is an invariant operation since any representation of the compact group

1The four-dimensional Euclidean superconformal algebra with four Poincaré supercharges does not
admit unitary representations. This is not important for us since we insist on unitarity in Lorentzian
signature. We thank Toine Van Proeyen for emphasizing this point.
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SO(d)× SO(4− d) is unitary. Let us now sketch how the structure of the superconformal
algebra, with the generators above, follows from the Jacobi identities. With the exception
of the anticommutator of Poincaré and conformal supercharges, we simply reproduce the
d = 4, N = 1 superconformal algebra, but we think it is worthwhile to show how the
structure emerges in a d-independent language.

Jacobi identities involving D or R imply that both sides of an (anti)commutation
relation must have the same scaling dimension and R-charge, and we always impose these
constraints in what follows. Furthermore repeated indices always imply a summation. The
basic building block is the anticommutator of Poincaré supercharges, which takes the form

{Q+
α , Q

−
α̇} = Σi

αα̇Pi , (3.4)

where Σi
αα̇ is an, as yet, unspecified tensor. Using the conjugation rules (3.2), (3.3) one

finds
{Sα̇+, Sα−} = Σ̄α̇α

i Ki , (3.5)

with Σ̄α̇α
i = (Σi

αα̇)∗. The only generators that can appear in the anticommutator of a
Poincaré and a conformal supercharge are D, R, Mij and Mîĵ. Rotation invariance dictates

that D comes multiplied with one of the invariant tensors δαβ, δα̇
β̇
. Let us normalize our

supercharges so that
{Sα−, Q+

β } = iδαβD + . . . ,

{Sα̇+, Q−
β̇
} = iδα̇

β̇
D + . . . ,

(3.6)

where the dots stand for the contribution of other generators. The Jacobi identities coming
from the triplets [Q+

α , Q
−
α̇ , Ki] and [Sα̇+, Sα−, Pi] then determine the following commutators

[Ki, Q
+
α ] = Σi

αα̇S
α̇+ ,

[Ki, Q
−
α̇ ] = Σi

αα̇S
α− ,

[Pi, S
α̇+] = −Σ̄α̇α

i Q+
α ,

[Pi, S
α−] = −Σ̄α̇α

i Q−α̇ .

(3.7)

We denote the representation matrices of rotations on the supercharges as mij, m̃ij, i.e.

[Mij, Q
+
α ] = (mij)

β
α Q

+
β ,

[Mij, Q
−
α̇ ] = (m̃ij)

β̇
α̇Q
−
β̇
,

[Mij, S
α̇+] = −(m̃ij)

α̇
β̇
Sβ̇+ ,

[Mij, S
α−] = −(mij)

α
β S

β− ,

(3.8)
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where the latter two follow from the former two using the conjugation rules in (3.2) and
(3.3). Note that the matrices mij, m̃ij are necessarily antisymmetric in the space-time
indices. The Jacobi identities for the triplets [Pi, Kj, Q

+
α ] and [Pi, Kj, Q

−
α̇ ] imply

ΣjΣ̄i = δij + 2imij ,

Σ̄iΣj = δij + 2im̃ij .
(3.9)

Taking the symmetric parts implies that the Σi tensors satisfy the Clifford algebra

ΣiΣ̄j + ΣjΣ̄i = 2δij ,

Σ̄iΣj + Σ̄jΣi = 2δij ,
(3.10)

while taking the antisymmetric parts leads to explicit formulas for the rotation generators
in terms of Σi

mij = − i

4
(ΣjΣ̄i − ΣiΣ̄j) ,

m̃ij = − i

4
(Σ̄iΣj − Σ̄jΣi) .

(3.11)

Since we would like our algebras to be related by the dimensional reduction, we will take
(3.8), (3.10), and (3.11) to hold also for the hatted indices î, ĵ = d + 1, . . . , 4, thus defin-
ing the action of the extra R-symmetry. It remains to determine the anticommutators
between Poincaré and conformal supercharges, i.e. {Sα−, Q+

β } and {Sα̇+, Q−
β̇
}. It follows

from the [Sα−, Q+
β , Pi], [Sα̇+, Q−

β̇
, Pi] Jacobi identities that Mij appears contracted with

the corresponding tensor mij or m̃ij with unit coefficient. The most general form of the
anticommutators which can be checked, using only (3.10), to be consistent with all Jacobi
identities except for those involving three fermionic generators, is

{Sα−, Q+
β } = δαβ(iD − aR) + (mij)

α
β Mij + b(mîĵ)

α
β Mîĵ ,

{Sα̇+, Q−
β̇
} = δα̇

β̇
(iD + aR) + (m̃ij)

α̇
β̇
Mij + b(m̃îĵ)

α̇
β̇
Mîĵ ,

(3.12)

for some real constants a, b. It remains to check whether the Jacobi identities involv-
ing three fermionic generators are satisfied. The Jacobi identity coming from the triplet
[Q+

α , Q
−
α̇ , S

β−] leads to

Σ̄α̇α
i Σi

ββ̇
=

2a+ 1

2
δαβδ

α̇
β̇

+ (mij)
α
β (m̃ij)

α̇
β̇

+ b(mîĵ)
α
β (m̃îĵ)

α̇
β̇
. (3.13)

The rotation generators are traceless in the spinor indices, so taking the trace of this
equation with respect to both pairs of indices and noting that (3.10) implies

tr(ΣiΣ̄i) = 2d , (3.14)
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we find

a =
d− 1

2
. (3.15)

To fix b, we consider the Jacobi identity of the triplet [Q+
α , Q

+
β , S

γ−], which leads to

d− 2

2
δαβδ

γ
δ + (α↔ γ) = (mij)

α
β (mij)

γ
δ + b(mîĵ)

α
β (mîĵ)

γ
δ + (α↔ γ) . (3.16)

There is an analogous identity with dotted indices. Contracting all spinor indices and using
that (3.10) and (3.11) imply

(mij)
α
β (mij)

β
α =

d(d− 1)

2
, (mîĵ)

α
β (mîĵ)

β
α =

(4− d)(3− d)

2
, (3.17)

so we find

3(d− 2) =
d(d− 1)

2
+ b

(4− d)(3− d)

2
, (3.18)

which holds in continuous d for b = −1. The final form of the sought anticommutators is
thus

{Sα−, Q+
β } = δαβ

(
iD − d− 1

2
R

)
+ (mij)

α
β Mij − (mîĵ)

α
β Mîĵ ,

{Sα̇+, Q−
β̇
} = δα̇

β̇

(
iD +

d− 1

2
R

)
+ (m̃ij)

α̇
β̇
Mij − (m̃îĵ)

α̇
β̇
Mîĵ .

(3.19)

We have demonstrated that identities (3.13), (3.16) are satisfied in any d after contracting
the spinor indices. We do not know of a d-independent way to argue for their validity in
their uncontracted form. However, one can make an explicit choice of the 4d Σ matrices
satisfying (3.10), and check the identities for all dimensions of interest. Indeed, they are
satisfied for any consistent choice of Σ matrices for any d = 0, 1, . . . , 4. This exhausts all
the constraints imposed by Jacobi identities, thus showing that our algebra is consistent
in any d ≤ 4.

3.2.2 Realizations in integer d ≤ 4

In this section, we illustrate that our interpolation reduces to the expected algebras in
integer number of dimensions. This is of course necessary since they are the unique su-
perconformal algebras with four Poincaré supercharges and a U(1) R-symmetry in the
respective number of spacetime dimensions.

For d = 4, our algebra is manifestly the N = 1 superconformal algebra with com-
plexification sl(4|1), with two pairs of Poincaré supercharges, with opposite R-charge,
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transforming in the two inequivalent Weyl representations. The value a = (d− 1)/2 = 3/2
leads to the well-known chirality condition on scalar superconformal primaries, ∆ = 3q/2,
with ∆ the dimension and q the R-charge.

For d = 3, we reproduce the N = 2 superconformal algebra, whose complexification
is osp(2|4). Choosing Σi

αα̇ = (σi)
α̇
α for i = 1, 2, 3, where σi are the usual Pauli matrices,

we find that Q−α̇ transforms as a complex conjugate of Q+
α , so that a lower (upper) dotted

index is equivalent to an upper (lower) undotted index, and all indices can be raised and
lowered using εαβ, εαβ. The complete algebra is presented in Appendix 3.A.

The relevant superconformal algebra in two dimensions is the global part of the N =
(2, 2) superconformal algebra in the NS-NS sector. The complexified Lie superalgebra
is sl(2|1)l ⊕ sl(2|1)r. Working on the holomorphic (left-moving) side, we have the usual
bosonic generators Ln, n = −1, 0, 1, R-symmetry Ω, and fermionic generators G±±1/2. They

satisfy the following (anti)commutation relations

[Lm, Ln] = (m− n)Lm+n ,

[Lm, G
±
r ] =

(m
2
− r
)
G±m+r ,

[Ω, G±r ] = ±G±r ,
{G+

r , G
−
s } = 2Lr+s + (r − s)Ω ,

(3.20)

with all other (anti)commutators vanishing. The anti-holomorphic generators, which we
denote with a bar, satisfy exactly the same algebra. Making the traditional choice Σi

αα̇ =
(σi)

α
α̇ for i = 1, 2, 3 and Σ4

αα̇ = iδαα̇, our interpolating algebra from Section 3.2.1 reproduces
(3.20) after the following identification for the bosonic generators

P1 = −i(L−1 + L̄−1) ,

K1 = i(L1 + L̄1) ,

D = −i(L0 + L̄0) ,

R = Ω + Ω̄ ,

P2 = L−1 − L̄−1 ,

K2 = L1 − L̄1 ,

M12 = −L0 + L̄0 ,

M34 =
Ω− Ω̄

2
,

(3.21)

and the following for the fermionic generators

Q+
1 = G+

−1/2 ,

Q−1 = Ḡ−−1/2 ,

S1+ = Ḡ−1/2 ,

S1− = G−1/2 ,

Q+
2 = Ḡ+

−1/2 ,

Q−2 = G−−1/2 ,

S2+ = G+
1/2 ,

S2− = Ḡ−1/2 .

(3.22)
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Finally consider the case d = 1. In this dimension, the generator R drops out from
equations (3.19), and indeed from the expression for the conformal Casimir as shown in
Section 3.3.1. Hence, it may be safely dropped from the algebra. Since 4 = 1 + 3, the
situation is quite similar to the d = 3 case detailed above and in appendix 3.A. In particular,
the rotation generators in the directions 2, 3, 4 describe an su(2) algebra acting as an R-

symmetry on the supercharges. Analogously to d = 3, we make the choice Σî
αβ̇

= (σî−1)β̇α

for î = 2, 3, 4, where σa are the usual Pauli matrices and Σ1
αβ̇

= iδβ̇α. A lower dotted index

has the same transformation under the R-symmetry as an upper undotted index and vice
versa, so that we can write

Qα− ≡ Q−α̇ , S+
α ≡ Sα̇+ . (3.23)

Spinor indices can be raised and lowered using εαβ, εαβ. We also define

H ≡ P1 , K ≡ K1 , Rî−1 ≡
1

2
εî−1,ĵ−1,k̂−1Mĵk̂ , (3.24)

and find that the algebra becomes psu(1, 1|2), described by the non-zero commutators:

[H,K] = −2iD , [D,H] = −iH , [D,K] = iK ,

{Q+
α , Q

β−} = iδ β
α H , [D,Q+

α ] = − i

2
Q+
α , [D,Qα−] = − i

2
Qα− ,

{S+
α , S

β−} = −iδ β
α K , [D,S+

α ] =
i

2
S+
α , [D,Sα−] =

i

2
Sα− ,

{Sα−, Q+
β } = iD δαβ − (σi)

α
βRi, [K,Q+

α ] = iS+
α , [K,Qα−] = iSα− ,

{S+
α , Q

β−} = iD δ β
α − (σi)

β
α Ri, [H,S+

α ] = iQ+
α , [H,Sα−] = iQα− ,

[Ri, Rj] = iεijkRk , [Ri, X
+
α ] =

1

2
(σi)

β
αX

+
β , [Ri, X

α−] =
1

2
(σi)

α
β X

β− ,

(3.25)

where in the last line X stands for either Q or S.

3.2.3 Unitarity bounds in general d

It will be useful for Section 3.3.4 to work out the unitarity bounds, in general dimension, for
the symmetric traceless representation and the representation in the tensor product of the
symmetric traceless and the spinors. The unitary representations in integer d were found
in [89, 90] but our goal here is to offer a derivation that formally makes sense in general
d. It was noted in [91] that the free scalar CFT in non-integer d contains negative-norm
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states. This casts doubt on whether one can have unitary CFTs in fractional dimensions.
Here, we will be modest and will derive necessary conditions for unitarity in general d, by
focusing on the lowest levels, assuming that superconformal primaries have positive norm.

Suppose |OA〉 is a superconformal primary of dimension ∆, R-charge q, transforming
in a representation R of SO(d) × SO(4 − d). Using a standard argument, [89, 92–94], it
follows from (3.19) that the Q+

α descendants of |OA〉 have non-negative norm when

∆ ≥ d− 1

2
q + aR + ar − min

R′⊂R⊗r
(aR′) , (3.26)

where aR denotes the eigenvalue of representation R under the following Casimir

1

2
MijMij −

1

2
MîĵMîĵ , (3.27)

and r denotes the spinor representation in which Q+
α transforms, with ar its eigenvalue

under (3.27). Similarly, the Q−α̇ descendants of |OA〉 have non-negative norm whenever

∆ ≥ −d− 1

2
q + aR + ar̄ − min

R′⊂R⊗r̄
(aR′) , (3.28)

where r̄ is the representation in which Q−α̇ transforms. In Euclidean signature, the bar
operation on SO(d)×SO(4−d) representations corresponds to parity, rather than complex
conjugation, but we will refer to it as conjugation for simplicity. It remains to evaluate
aR on the representations of interest. Suppose R = Ss is the symmetric traceless tensor of
spin s. Since it has no indices in the reduced dimensions, we find just the SO(d) eigenvalue

aSs = s(s+ d− 2) . (3.29)

Consider now the spinor representations r, r̄. It follows from (3.10) that their eigenvalue

under 1
2
MijMij is d(d−1)

8
, which matches the expected values 1

4
, 3

4
, 3

2
in d = 2, 3, 4, respec-

tively. The spinor indices α, α̇ necessarily transform also under the reduced rotations Mîĵ,

and indeed, the eigenvalue under 1
2
MîĵMîĵ is related to the eigenvalue under 1

2
MijMij by

replacing d 7→ 4− d. Hence the eigenvalue under (3.27) is

ar = ar̄ =
d(d− 1)

8
− (4− d)(3− d)

8
=

3(d− 2)

4
. (3.30)

Let us move on to the representation |Oαi1...is〉, symmetric and traceless in the s vector
indices, and satisfying the irreducibility criterion Σ̄α̇α

i1
|Oαi1...is〉 = 0. We denote this repre-

sentation as Ps. The action of the SO(d) Casimir can be evaluated in general d using the
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dimensional continuation of the superconformal algebra from the previous sections with
the result

1

2
MjkMjk|Oαi1...is〉 =

[
d(d− 1)

8
+ s(s+ d− 1)

]
|Oαi1...is〉 . (3.31)

This expression reduces to the expected
(
s+ 1

2

)2
in d = 2; j(j + 1), with j = s + 1

2
, in

d = 3; and 2[j1(j1 + 1) + j2(j2 + 1)], with j1 = s+1
2

, j2 = s
2
, in d = 4. We have already seen

that
1

2
Mĵk̂Mĵk̂|Oαi1...is〉 =

(4− d)(3− d)

8
|Oαi1...is〉 , (3.32)

leading to

aPs = s(s+ d− 1) +
3(d− 2)

4
. (3.33)

The same formula is valid for the conjugate representation |Oα̇i1...is〉.
Finally, we will need the Casimir for the representation |Oαβi1...is〉, symmetric in αβ,

symmetric and traceless in the vector indices, and satisfying Σ̄α̇α
i1
|Oαβi1...is〉 = 0. We denote

this representation by Qs. The superconformal algebra is not sufficient to find the individ-
ual eigenvalues of the SO(d) and SO(4 − d) Casimir operators because of the cross-term
occurring when the two rotation generators each act on one spinor index. Fortunately, the
identity in (3.16) is precisely what is needed to evaluate this cross-term in the difference
of the two Casimirs. The final result is

aQs = s(s+ d) + 2(d− 2) . (3.34)

This result is in harmony with the results in d = 3, 4, where the contribution of the
SO(4−d) Casimir must vanish. Indeed, in d = 3, aQs = (s+1)(s+2), corresponding to the
j = s+1 representation, and in d = 4, aQs = (s+2)2, corresponding to the j1 = s

2
+1, j2 = s

2

representation. Formula (3.34) applies also to the conjugate representation |Oα̇β̇i1...is〉.
We are now in a position to derive the unitarity bounds at level one for the Ss and

Ps representations. Due to the covariance of the Σ̄ tensor, we have the decompositions
Ss⊗r = P̄s−1⊕Ps+1, Ss⊗ r̄ = Ps−1⊕ P̄s+1, valid for s > 0. The first direct summand has a
smaller value of a, leading to the unitarity bound for the symmetric traceless representation

∆Ss ≥
d− 1

2
|q|+ s+ d− 2 , s > 0 . (3.35)

This formula reduces to the well-known results in integer d. For the special case s = 0,
unitarity at the first level implies only ∆ ≥ d−1

2
|q|. However, this condition is not sufficient
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for unitarity, since the level-two state |P〉 = εαβQ+
αQ

+
β |OA〉 has norm

〈P|P〉 = 4

(
∆− d− 1

2
q

)(
∆− d− 1

2
q − d+ 2

)
. (3.36)

An analogous result holds for |P̃〉 = εα̇β̇Q−α̇Q
−
β̇
|OA〉, leading to the unitary representations

∆S0 =
d− 1

2
|q| ,

∆S0 ≥
d− 1

2
|q|+ d− 2 .

(3.37)

Consider now the representation Ps. We have Ps ⊗ r = Ss ⊕ Qs, Ps ⊗ r̄ = Qs−1 ⊕ Ss+1,
with the first direct summand having the smaller value of aR′ . Equations (3.26), (3.28)
thus lead to the bound

∆Ps ≥
∣∣∣∣d− 1

2
(q + 1)− 1

∣∣∣∣+ s+ d− 3

2
. (3.38)

In d = 3, this reduces to the expected ∆ ≥ |q| + s + 3
2

= |q| + j + 1, with j = s + 1
2
. In

d = 4, it becomes ∆ ≥
∣∣3

2
q + 1

2

∣∣+s+ 5
2

=
∣∣3

2
q + j1 − j2

∣∣+ j1 + j2 +2, with j1 = s+1
2

, j2 = s
2
,

in perfect agreement with [89, 90]. The unitarity bound for the conjugate representation
P̄s is obtained simply by flipping the sign of q in (3.38)

∆P̄s ≥
∣∣∣∣d− 1

2
(q − 1) + 1

∣∣∣∣+ s+ d− 3

2
. (3.39)

The notions of short and semi-short representations are useful because operators in
these representations often have dimensions protected from quantum corrections. A super-
conformal chiral scalar operator belongs to a short multiplet and obeys the first equation
in (3.37) with q > 0, an anti-chiral operator obeys the same equation with q < 0. For the
symmetric traceless representation of spin s, the semi-short multiplets are those for which
the superconformal primary saturates (3.35), which for s = 0 is the same as saturating the
second equation in (3.37).

Necessary conditions for unitary representations of the nonsupersymmetric conformal
algebra in general dimension are presented in Section 6 of [90] (see also [95]) and they are
generally weaker than the ones for the superconformal algebra discussed here. It is also
useful to recall that a free scalar field in d dimensions necessarily has

∆free =
d− 2

2
, (3.40)

and a conserved current of spin s in any CFT obeys

∆cc = s+ d− 2 . (3.41)
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3.3 Superconformal blocks

A standard method for finding conformal and superconformal blocks is by utilizing the
Casimir equation [84, 86]. Having formulated a dimensional continuation of the supercon-
formal algebra with four Poincaré supercharges, we are in a position to find the Casimir
equation and its solution for a large class of superconformal blocks in general d. This is
done in Sections 3.3.1, 3.3.2. Remarkably, as was already noticed in [86], superconformal
blocks are closely related to non-supersymmetric conformal blocks with shifted scaling di-
mensions and we provide an interpretation of this fact in Section 3.3.3. In section 3.3.4
we deal with an important case not captured by the Casimir approach, namely that of
superconformal blocks in the chiral channel.

3.3.1 Superconformal Casimir

In this section, we find the quadratic Casimir of the relevant superconformal algebra in
general dimension. The quadratic Casimir must be a linear combination of the quadratic
Casimir Cb of the bosonic conformal subalgebra so(d + 1, 1), the Casimir of the reduced
rotations, so(4−d), R2, and terms quadratic in the fermionic generators. Invariance under
D, R, Mij, and Mîĵ reduces the possibilities to

C = Cb + c1S
α+Q−α + c2Q

−
αS

α+ + c3S
α−Q+

α + c4Q
+
αS

α− + c5R
2 + c6MîĵMîĵ , (3.42)

with ci so far undetermined constants. Note that

Cb = −D2 − 1

2
(PiKi +KiPi) +

1

2
MijMij . (3.43)

The coefficients ci can be determined by requiring [C,Q+
α ] = [C,Q−α̇ ] = 0. Using (3.19) and

looking at the coefficients of DQ+
α , DQ−α̇ , Q+

αD and Q−α̇D leads to c1 = c3 = −c2 = −c4 =
1/2. Similarly, the coefficient of RQ+

α determines c5 = −(d− 1)/4. Finally, the coefficient
of MîĵQ

+
α fixes c6 = −1/2, leading to the final result

C = −D2− 1

2
(PiKi+KiPi)+

1

2
MijMij−

1

2
MîĵMîĵ−

d− 1

4
R2+

1

2

([
Sα̇+, Q−α̇

]
+
[
Sα−, Q+

α

])
.

(3.44)
It is instructive to study the contribution of the R-symmetries in d = 2, where, after using
(3.21), one finds

1

2
MîĵMîĵ +

d− 1

4
R2 =

1

4

[
(Ω− Ω̄)2 + (Ω + Ω̄)2

]
=

1

2

(
Ω2 + Ω̄2

)
. (3.45)
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The contribution is a sum of a holomorphic and an antiholomorphic part as expected.
The eigenvalue of C when acting on a superconformal family, where the superconformal
primary has dimension ∆, R-charge q, and transforms as a symmetric traceless tensor of
spin s under Mij and as a singlet under Mîĵ, is

λC = ∆(∆− d+ 2) + s(s+ d− 2)− d− 1

4
q2 . (3.46)

To find this, we have used the eigenvalue of the usual conformal Casimir operator Cb when
acting on a conformal primary [84]

λCb = ∆(∆− d) + s(s+ d− 2) . (3.47)

3.3.2 Casimir equation and its solution

Here, we derive a formula for the superconformal blocks in theories invariant under the
superconformal algebra in Section 3.2, for the four-point function 〈φ1φ2φ3φ4〉, where φi
are scalar superconformal primaries with dimensions ∆i and R-charges qi. In addition, we
assume that φ1 and φ3 are chiral, i.e. Q+

αφ1,3 = 0, or equivalently

∆1,3 =
d− 1

2
q1,3 . (3.48)

A superconformal block corresponds to the contribution of a single superconformal family
produced in the OPE of φ1 and φ2. It is therefore an eigenfunction of the superconformal
Casimir (3.44) applied to the first two operators. Due to the appearance of supercharges,
the resulting equation will relate the superconformal block of 〈φ1φ2φ3φ4〉 to the one of
〈ψα̇1ψα2 φ3φ4〉, where ψ1,2 is a supersymmetric descendant of φ1,2. In the limit |x4| → ∞,
we can use a supersymmetric Ward identity to reduce the latter correlator to a differential
operator acting on 〈φ1φ2φ3φ4〉 and thus derive a differential equation for the original super-
conformal block. Consider the action of the fermionic part of the superconformal Casimir
on the product φ1(x1)φ2(x2). Using the chirality of φ1 and the superconformal algebra,
one can show that

1

2

([
Sα̇+, Q−α̇

]
+
[
Sα−, Q+

α

])
(φ1(x1)φ2(x2)) |0〉 =

=
[
(Sα−φ1(x1))(Q+

αφ2(x2))− (Q−α̇φ1(x1))(Sα̇+φ2(x2)) + 2(∆1 + ∆2)φ1(x1)φ2(x2)
]
|0〉 ,

(3.49)
where the action of conserved charges on local operators is the usual one via the commu-
tator. From

φ(x) = eix·Pφ(0)e−ix·P , (3.50)
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and using (3.7), it follows that

(Sα−φ1(x1)) = ixi1Σ̄α̇α
i (Q−α̇φ1(x1)) , (Sα̇+φ2(x2)) = ixi2Σ̄α̇α

i (Q+
αφ2(x2)) . (3.51)

It remains to relate the correlator〈
(Q−α̇φ1(x1))(Q+

αφ2(x2))φ3(x3)φ4(x4)
〉
, (3.52)

to 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉. Starting from the Ward identity〈[
Q+
α , (Q

−
α̇φ1(x1))φ2(x2)φ3(x3)φ4(x4)

]〉
= 0 , (3.53)

and using the anticommutator of Poincaré supercharges, (3.4), and the chirality of φ3, we
find〈

(Q−α̇φ1(x1))(Q+
αφ2(x2))φ3(x3)φ4(x4)

〉
+
〈
(Q−α̇φ1(x1))φ2(x2)φ3(x3)(Q+

αφ4(x4))
〉

=

= −iΣi
αα̇∂

x1
i 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 . (3.54)

Conformal invariance ensures that no information is lost if we take the limit x4 → ∞.
The leading behavior of a correlation function containing a primary O(x) of dimension ∆
and arbitrary Lorentz quantum numbers as |x| → ∞ is |x|−2∆. Thus the second term on
the left-hand side of (3.54) is subleading in the limit |x4| → ∞, since Q+

α increases the
dimension of φ4 by 1/2. In the derivation of the differential equation, we can then replace〈

(Q−α̇φ1(x1))(Q+
αφ2(x2))φ3(x3)φ4(x4)

〉
, (3.55)

with
− iΣi

αα̇∂
x1
i 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 , (3.56)

while remembering that we must send |x4| to infinity at the end of the calculation. Com-
bining this with (3.51), and using

tr
(
ΣiΣ̄j

)
= 2δij , (3.57)

which follows from the Clifford algebra, we find the action of the fermionic part of the
superconformal Casimir on the four-point function to be〈

1

2

([
Sα̇+, Q−α̇

]
+
[
Sα−, Q+

α

])
(φ1(x1)φ2(x2))φ3(x3)φ4(x4)

〉
∼

∼ 2 (x12 · ∂x1 + ∆1 + ∆2) 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 ,
(3.58)

where xij ≡ xi−xj, and the ∼ symbol means equality up to terms subleading as |x4| → ∞.
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The contribution of a single superconformal family of the superconformal primary O
to the four-point function takes the form

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉|O =
cOφ1φ2

cφ3φ4O

|x12|∆1+∆2 |x34|∆3+∆4

|x24|∆12|x14|∆34

|x14|∆12|x13|∆34
G∆12,∆34

∆O,sO
(z, z̄) ,

(3.59)
where G∆12,∆34

∆,s (z, z̄) is the superconformal block and ∆ij ≡ ∆i − ∆j. Here z and z̄ are
related to the usual conformally invariant cross-ratios u, v as

u ≡ x2
12 x

2
34

x2
13 x

2
24

= zz̄ , v ≡ x2
14 x

2
23

x2
13 x

2
24

= (1− z)(1− z̄) . (3.60)

The operator (3.58) translates into the following action on the superconformal block

2
[
z(1− z)∂ + z̄(1− z̄)∂̄

]
G∆12,∆34

∆,s (z, z̄)−∆34(z + z̄)G∆12,∆34

∆,s (z, z̄) , (3.61)

where ∂ ≡ ∂z and ∂̄ ≡ ∂z̄. The action of the R-symmetry cancels on the two sides of the
superconformal Casimir equation, and using the result for the conformal Casimir [84], the
differential equation for the superconformal block becomes

DG∆12,∆34

∆,s (z, z̄) = [∆(∆− d+ 2) + s(s+ d− 2)]G∆12,∆34

∆,s (z, z̄) , (3.62)

where the differential operator D is given by

D ≡ 2z2(1− z)∂2 + 2z̄2(1− z̄)∂̄ + (∆12 −∆34 − 4)(z2∂ + z̄2∂̄) + 2
(
z∂ + z̄∂̄

)
+

+
1

2
(∆12 − 2)∆34(z + z̄) + 2(d− 2)

zz̄

z − z̄
[
(1− z)∂ − (1− z̄)∂̄

]
.

(3.63)

It turns out that this equation has a simple solution in terms of the ordinary non-supersymmetric
conformal blocks. This has also been pointed out for d = 4 and φ1 = φ3 = φ̄2 = φ̄4 in [86].
Indeed, the solution with the correct z, z̄ → 0 behavior is

G∆12,∆34

∆,s (u, v) = u−1/2G∆12−1,∆34−1
∆+1,s (u, v) , (3.64)

where G∆12,∆34

∆,s (u, v) is the non-supersymmetric conformal block and we switched to the
usual cross-ratios u, v. We comment on the relationship between conformal and super-
conformal blocks in the next section. It is also possible to decompose the superconformal
block into conformal blocks using a relation found in [68]. Using the convention where the
u→ 0, v → 1 behavior of the conformal blocks is

G∆12,∆34

∆,s (u, v) ∼ (−1)s

2s
u

∆−s
2 (1− v)s , (3.65)
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the decomposition reads

G∆12,∆34

∆,s = G∆12,∆34

∆,s + a1G
∆12,∆34

∆+1,s+1 + a2G
∆12,∆34

∆+1,s−1 + a3G
∆12,∆34

∆+2,s , (3.66)

where

a1 ≡ −(∆ + ∆12 + s)(∆ + ∆34 + s)

2(∆ + s)(∆ + s+ 1)
,

a2 ≡ − s(s+ d− 3)(∆ + ∆12 − s− d+ 2)(∆ + ∆34 − s− d+ 2)

2(2s+ d− 4)(2s+ d− 2)(∆− s− d+ 2)(∆− s− d+ 3)
, (3.67)

a3 ≡
∆(∆− d+ 3)(∆ + ∆12 + s)(∆ + ∆34 + s)(∆ + ∆12 − s− d+ 2)(∆ + ∆34 − s− d+ 2)

4(2∆− d+ 4)(2∆− d+ 2)(∆ + s)(∆ + s+ 1)(∆− s− d+ 2)(∆− s− d+ 3)
.

It follows that whenever a superconformal family contributes to a given four-point func-
tion, as in (3.59), it is through the superconformal primary, O, and three other conformal
primaries (and all their conformal descendants). The three conformal primaries are super-
symmetric descendants of O, with dimensions and spins that can be read off from (3.66).

A few comments are in order. Notice that for ∆12 = ∆34 = 0 the coefficients do not
have poles for dimension and spin consistent with the unitarity bounds, and furthermore
their sign is consistent with unitarity. For ∆12 and ∆34 different from zero, there can be
poles, for ∆, s saturating the unitarity bound, but this is expected since the leading block
itself diverges. This is related to the fact that conserved currents can only couple to scalars
with identical dimensions.

It is useful to pause for a moment and compare our solution for G∆12,∆34

∆,s (u, v) to previous
results in integer dimensions. For the special case of the d = 4, N = 1 superconformal
blocks studied in [17, 86], our solution is in agreement with their result since conformal
blocks are invariant under ∆12 ↔ −∆34. For d = 2, the explicit form of the solution is (up
to an overall constant)

G∆12,∆34

∆,s (z, z̄) = j∆+s
2

(z)j∆−s
2

(z̄) + z ↔ z̄ , (3.68)

where

jh(z) ≡ zh2F1

(
h− ∆12

2
+ 1, h+

∆34

2
; 2h+ 1; z

)
. (3.69)

This also agrees with the result found in [86], up to the transformation z ↔ z/(z − 1), or
equivalently x1 ↔ x2, and after taking into account the following identity

zh2F1(h+ 1, h, 2h+ 1; z) =

(
z

1− z

)h
2F1

(
h, h, 2h+ 1;

z

z − 1

)
. (3.70)
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As a cross-check on the Casimir approach, appendix 3.A contains a derivation of the
coefficients in (3.67) for d = 3, using the constraints of superconformal symmetry and
chirality of φ1,3 on the OPE. It is conceivable that this type of OPE derivation of the
superconformal blocks can be carried out in general d using the superconformal algebra of
Section 3.2.

Finally, we would like to point out some curious relations between the coefficients in
(3.67). For d = 2 and d = 4 one has a3 = a1a2. This identity is not true in general
dimension. However, if one considers ai as a formal function ai(∆, s, d,∆12,∆34) one finds

a3(∆, s, d,∆12,∆34) = a1(∆, s, d,∆12,∆34)a2(−s,−∆, d,∆12,∆34) . (3.71)

3.3.3 The relationship between conformal and superconformal
blocks

The relation in (3.64) between superconformal and ordinary conformal blocks can be given
a simple interpretation. Consider the contribution of the superconformal family of the
superconformal primary O to the correlator 〈φ1φ2φ3φ4〉 as in (3.59). It can be rewritten,
via (3.64), as

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉|O =

= |x24|2
cOφ1φ2

cφ3φ4O

|x12|∆1+∆2+1|x34|∆3+∆4+1

( |x24|
|x14|

)∆12−1( |x14|
|x13|

)∆34−1

G∆12−1,∆34−1
∆O+1,sO

(u, v) .
(3.72)

Up to the |x24|2 prefactor, this has the form of the contribution of the conformal family of
a conformal primary Õ to the four-point function of some new fields φ̃i

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉|O = |x24|2〈φ̃1(x1)φ̃2(x2)φ̃3(x3)φ̃4(x4)〉|Õ , (3.73)

where the quantum numbers of operators with a tilde are related to the original ones as

∆φ̃1
= ∆φ1 ,

∆φ̃2
= ∆φ2 + 1 ,

∆φ̃3
= ∆φ3 ,

∆φ̃4
= ∆φ4 + 1 ,

∆Õ = ∆O + 1 , sÕ = sO .

(3.74)
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Hence, the terms in the superconformal block expansion of 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 are
in one-to-one correspondence with the terms of the conformal block expansion of

〈φ̃1(x1)φ̃2(x2)φ̃3(x3)φ̃4(x4)〉 =
1

|x24|2
〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 . (3.75)

Moreover, since the only difference between the four-point functions 〈φ1φ2φ3φ4〉 and 〈φ̃1φ̃2φ̃3φ̃4〉
is the factor |x24|2, we can mimic their relationship by writing

φ̃1,3 = φ1,3 ,

φ̃2,4 = σφ2,4 ,
(3.76)

where σ is a real scalar conformal primary field of scaling dimension ∆σ = 1 not interacting
with any of the φi. Therefore, there is no regularization needed in defining the composite
operators σφ2,4, and the correlation function factorizes as

〈φ1(x1)(σφ2)(x2)φ3(x3)(σφ4)(x4)〉 = 〈σ(x2)σ(x4)〉〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 . (3.77)

It may sound surprising that the conformal block expansion of 〈φ1(σφ2)φ3(σφ4)〉 is the same
as the superconformal block expansion of 〈φ1φ2φ3φ4〉. Each superconformal primaryO(0) in
the φ1×φ2 OPE gives rise to four conformal primaries O(j), j = 0, . . . , 3, and each of these
gives rise to infinitely many conformal primaries in the φ1×σφ2 OPE, of the schematic form
σ∂nO(j), n = 0, 1, . . .. For the proposed relationship between the two expansions to hold,
there must occur numerous cancellations among the various conformal primaries, leaving
only the contribution of the lowest one σO(0). Indeed, denoting the conformal descendant
of O(0) with dimension ∆O + 1 and spin sO + 1 as O(1), the contribution of the conformal

primary σO(1) is cancelled by the contribution of σ
↔
∂O(0), which has the same dimension

and spin. Remarkably, this cancellation continues to hold for all the higher-lying conformal
primaries, leaving only σO(0).

It will be curious to study whether the relation in (3.73) between correlation functions
in a superconformal field theory and those in a non-supersymmetric conformal field theory
can ever be realized for some theories of physical interest.

3.3.4 Spectrum in a chiral OPE

When considering conformal bootstrap for the correlator 〈φ1φ2φ3φ4〉 with φ1,3 chiral pri-
maries and φ2,4 superconformal primaries, there is another possibility for an OPE expan-
sion, namely fusing φ1 and φ3. Chirality implies that all conformal primaries appearing
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in this OPE must be annihilated by Q+
α and it is the goal of this section to derive which

components of superconformal multiplets have this property.

Suppose that P is a conformal primary of dimension ∆P and R-charge qP in the sym-
metric traceless representation of spin s, satisfying [Q+

α ,P ] = 0. Further, assume that P is
a supersymmetric descendant of the superconformal primary O, where O has dimension ∆
and R-charge q. The SO(d)×SO(4− d) representation R in which O transforms depends
on the precise way P is obtained from O through the action of supercharges. The relation-
ship between O and P is constrained by observing that the superconformal Casimir (3.44)
must have the same eigenvalue on O and P . Since P is annihilated by both Ki and Q+

α ,
it is also annihilated by their anticommutator Sα̇+. One can then use the superconformal
algebra to evaluate the action of C on P purely in terms of its quantum numbers, with the
resulting eigenvalue

λ1 = ∆P(∆P − d) + s(s+ d− 2)− d− 1

4
q2
P + (d− 1)qP , (3.78)

where the last term arises from the fermionic generators. Similarly, one can evaluate the
eigenvalue of C on O using the fact that it is a superconformal primary, the result being

λ2 = ∆(∆− d+ 2) + aR −
d− 1

4
q2 , (3.79)

where aR is the SO(d) × SO(4 − d) Casimir familiar from Section 3.2.3. Moreover, for
each conformal primary in the superconformal multiplet, there are relations of the form
∆P = ∆ + m

2
, m = 0, . . . , 4, qP = q + n, n = −2, . . . , 2, and we can proceed case by case

and determine whether λ1 = λ2 is consistent. We label each case by (qP , R) and use the
notation of Section 3.2.3 for the SO(d)× SO(4− d) representations.

• At level zero, we have the single case (qP = q, R = Ss), and λ1 = λ2 implies

∆ =
d− 1

2
q , (3.80)

which corresponds to a unitary representation only if s = 0, i.e. P must be a chiral
primary. In other words, the chiral superconformal primaries must have s = 0.

• There are four cases to consider at level one: (q + 1, P̄s−1), (q + 1, Ps), (q − 1, Ps−1),
(q−1, P̄s), corresponding to Pi1...is = Σ̄α̇α

i1
Q+
αOα̇i2...is , Pi1...is = εαβQ+

αOβi1...is , Pi1...is =

Σ̄α̇α
i1
Q−α̇Oαi2...is , Pi1...is = εα̇β̇Q−α̇Oβ̇i1...is respectively, where in the first and third case
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we also need to symmetrize with respect to the extra vector index. For the first case,
λ1 = λ2 implies

∆ =
d− 1

2
q + s− 1 +

d

2
, (3.81)

which is precisely the unitarity bound (3.39) for P̄s−1. The first case is therefore
allowed only if the superconformal multiplet of O contains the non-trivial null states
Q+
αP . We call a null state trivial if it can be seen to vanish without resorting to the

computation of its norm. For example, Q+
1 Q

+
1O is a trivial null state. The shortening

condition (3.81) translates into

∆P =
d− 1

2
qP + s , s > 0 , (3.82)

and thus can be thought of as a natural extension of (3.80) to s > 0. The remaining
three cases all lead to non-trivial linear relations between ∆, q and s, but none of
these relations corresponds to the appearance of a non-trivial null-state. Therefore,
they all lead to a contradiction since we know that Q+

αP must be non-trivial null
states, since if they were trivial null-states, the condition λ1 = λ2 would itself be
trivial.

• We simply state the results for level two. The only case not leading to the type
of contradiction we saw for the three disallowed cases at level one is (q + 2, Ss),
i.e. Pi1...is = εαβQ+

αQ
+
βOi1...is , which can be easily seen to always satisfy Q+

αP = 0
without the need for a shortening condition on O. There are then two allowed types
of unitary representations. Either O is antichiral, i.e. s = 0 and ∆ = −d−1

2
q, leading

to

∆P = −d− 1

2
qP + d , (3.83)

or O is generic, satisfying (3.35) (including s = 0), which leads to

∆P ≥
∣∣∣∣d− 1

2
qP − d+ 1

∣∣∣∣+ s+ d− 1 . (3.84)

We must also remember that for s = 0, the superconformal primary must satisfy the
unitarity bound ∆ ≥ d−2

2
.

• Of the four cases at level three, the condition λ1 = λ2 does not lead to an immediate
contradiction only for (q+ 1, P̄s−1). Similarly to what happenes at level one, λ1 = λ2

in this case implies a consistent shortening condition. The novelty here is that this
shortening also kills the state P , and thus there are no consistent possibilities at level
three.
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• There is only one conformal primary at level four, but λ1 = λ2 does not lead to a
consistent shortening condition on O, so the primary at level four can not appear in
the chiral OPE.

Essentially identical results were derived in [20, 96] for d = 4, N = 1 in the context
of the OPE of a chiral operator Φ with itself. The new feature of the generalization to
d < 4 is the appearance of the level-two descendant of an antichiral primary (3.83). From
R-charge conservation we have d−1

2
qP = 2∆Φ which, combined with the unitarity bound

∆ ≥ d−2
2

for the operator O, implies that the antichiral case can only be included if

∆Φ ≤
d

4
. (3.85)

Thus in d = 4, the antichiral case can only appear when Φ is the scalar component of a
free chiral superfield, where we know it does not appear since there is no coupling between
Φ and any other fields. However, in d < 4, there is a finite window for ∆Φ where the
level-two descendant of an antichiral primary can make a contribution, and we will see it
plays a crucial role in the Wess-Zumino model, since its appearance corresponds to the
Yukawa coupling.

It follows from the above discussion that only one kind of allowed conformal primary P
from the same superconformal multiplet can appear in the φ1×φ3 OPE, and therefore the
superconformal blocks coincide with the usual conformal blocks. Supersymmetry plays a
role in this channel only through constraints on the spectrum of conformal primaries that
can appear in the OPE.

3.4 Intermezzo: review of the Wess-Zumino model

In this section, we remind the reader of some basic facts about the massless Wess-Zumino
model in d ≤ 4 [97]. A nice review on the subject can be found in [98]. The model consists
of the theory of a single chiral superfield Υ with cubic superpotential W (Υ) = 1

3
λΥ3.

Equivalently, this is a theory of a complex boson and fermion with the Lagrangian

LWZ = ∂µφ̄∂
µφ+ iψ̄γµ∂µψ + |λ|2|φ|4 + (λφψαε

αβψβ + c.c.) . (3.86)

The classical dimension of the coupling λ is ε
2
, with ε ≡ 4 − d, and it is convenient

to define the dimensionless coupling λ̃ = µ−ε/2λ, where µ is the renormalization scale.
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Supersymmetry implies that the superpotential is not renormalized. Therefore the β-
function of λ̃ is determined by the anomalous dimension of the chiral field Φ, which is the
lowest component of the superfield Υ

βλ̃ = λ̃
[
− ε

2
+ 3γΦ(λ̃)

]
, (3.87)

where γΦ = −1
2
d logZ
d log µ

and the factor of 3 comes from the fact that W (Υ) is cubic. Since

we know from perturbation theory and unitarity that γΦ(λ̃) > 0 for λ̃ � 1, we expect
that for sufficiently small ε, the theory has an interacting IR fixed point with unbroken
supersymmetry at a coupling λ̃∗ > 0. This CFT is what we refer to as the critical WZ
model (cWZ). The exact relation (3.87) implies that at the fixed point the anomalous
dimension is

γΦ(λ̃∗) =
4− d

6
, (3.88)

and hence

∆Φ =
d− 2

2
+ γΦ(λ̃∗) =

d− 1

3
. (3.89)

This formula can also be deduced from the exact superconformal relationship between
scaling dimension and R-charge of a chiral field ∆ = d−1

2
q, since the R-charge of the

superpotential is qW = 2 and thus qΦ = 2/3.

An equivalent way to state the result in (3.89) is that the ε-expansion of the critical
exponent η ≡ 2∆Φ − (d− 2) is exact at the leading order

η = 2γΦ(ỹ∗) =
ε

3
. (3.90)

The critical exponent ν, characterizing the divergence of the correlation length as the
temperature approaches the critical temperature, is related to the scaling dimension of the
lowest uncharged scalar, [Φ̄Φ], as follows

ν−1 = d−∆[Φ̄Φ] . (3.91)

It is not protected by supersymmetry and has been computed at one loop in the ε-expansion
[79, 80]

ν =
1

2
+
ε

4
+O(ε2) , (3.92)

leading to
∆[Φ̄Φ] = 2 +O(ε2) . (3.93)
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The critical exponent ω, characterizing the approach to scaling, is related to the scaling
dimension of the lowest irrelevant scalar operator, O, as

ω = ∆O − d . (3.94)

It is reasonable to expect that O is the supersymmetric descendant of [Φ̄Φ] obtained by
acting on [Φ̄Φ] with four Q supercharges. This leads to ∆O = ∆[Φ̄Φ] +2, implying the exact
relation

ω = 2− ν−1 . (3.95)

Finally, let us note that the equation of motion for Υ can be written in superspace language
as

DαD
αῩ = ∂ΥW (Υ) , (3.96)

where Dα is the superspace derivative corresponding to the action of the supercharge Q+
α

that annihilates the chiral superfield Υ. This implies that the chiral ring of the fixed-point
theory has the relation

Φ2 = 0 . (3.97)

In the language of the CFT data, this means that the OPE Φ×Φ does not contain a chiral
primary. From the results of Section 3.3.4 we can conclude that all operators that appear
in the OPE are then exact under Q+

α .

There is another piece of data available about the cWZ model in d = 3 that we will seek
to match with the bootstrap results, namely the coefficient of the two-point function of the
stress tensor, denoted by CT . In SCFTs with four supercharges, the two-point function of
the stress tensor is proportional to the two-point function of the R-current τRR. In [99], it
was shown how τRR can be computed for d = 3, N = 2 SCFTs from the squashed-sphere
partition function F (b)

τRR =
2

π2
Re

∂2F (b)

∂b2

∣∣∣∣
b=1

, (3.98)

where b is the squashing parameter, b = 1 corresponding to the round sphere. A formula
for the squashed-sphere partition function of d = 3, N = 2 theories was found using
localization in [100]. Denoting by τ

(free)
RR the two-point function of the R-current in the

theory of a single free chiral multiplet, it was found in [78] that2

CT

C
(free)
T

=
τRR

τ
(free)
RR

' 0.7268 . (3.99)

We will comment further on this ratio in Section 3.6.
2We are grateful to Simone Giombi, Igor Klebanov, and Silviu Pufu for bringing this result to our

attention.
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3.5 Bootstrap setup

In this section, we review the derivation of a set of crossing symmetry equations which we
later solve numerically. The results of the previous sections suggest that the structure of
these “bootstrap equations” should be very similar to those that were studied in the case
of d = 4, N = 1 SCFTs in [18–20, 96], and indeed this is what we find.

We are interested in the crossing symmetry constraints for the four-point function
〈ΦΦ̄ΦΦ̄〉, where Φ is a chiral operator with dimension ∆Φ and Φ̄ is its charge conjugate.
The chirality condition imposes that the R-charge is given by qΦ = 2

d−1
∆Φ = 2

d−1
∆Φ̄ = −qΦ̄.

Conformal symmetry fixes the four point function to take the form

〈Φ(x1)Φ̄(x2)Φ(x3)Φ̄(x4)〉 ≡ g(u, v)

|x12|2∆Φ|x34|2∆Φ
, (3.100)

where the cross-ratios u, v are defined in (3.60). Let us ignore supersymmetry for the
moment but still insist on the presence of a U(1) global symmestry under which Φ and Φ̄
have opposite charges. The OPE leads to a decomposition of g(u, v) in terms of conformal
blocks G∆,s(u, v). For instance, in the (12) channel we take x1 → x2, and get

g(u, v) =
∑
O

(−1)s|cOΦΦ̄|2G∆,s(u, v) . (3.101)

Recall that we are using the normalization (3.65). Equality of the OPEs in the three
channels leads to the constraints

v∆Φ

∑
O

(−1)s|cOΦΦ̄|2G∆,s(u, v) = u∆Φ

∑
O

(−1)s|cOΦΦ̄|2G∆,s(v, u) , (12) = (14) ,

(3.102)

v∆Φ

∑
O

|cOΦΦ̄|2G∆,s(u, v) = u∆Φ

∑
P

|cPΦΦ|2G∆,s(v, u) , (12) = (13) ,

(3.103)

where O, P are conformal primaries appearing in the Φ× Φ̄, and Φ×Φ OPE, respectively.
Symmetrizing and antisymmetrizing equation (3.103) with respect to u ↔ v allows us to
write the equations in (3.102), (3.103) as the system

∑
O+

|cO+

ΦΦ̄ |2
 F∆Φ

∆,s

F∆Φ
∆,s

H∆Φ
∆,s

+
∑
O−
|cO−ΦΦ̄ |2

 F∆Φ
∆,s

−F∆Φ
∆,s

−H∆Φ
∆,s

+
∑
P

|cPΦΦ|2
 0

F∆Φ
∆,s

−H∆Φ
∆,s

 = 0 . (3.104)
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The first/second sum in (3.104) runs over uncharged conformal primaries with even/odd
spin respectively. The third term in (3.104) is a sum over conformal primaries of charge
2qΦ and contains even spins only. The functions F,H in (3.104) are defined as

F∆Φ
∆,s ≡ (−1)s

[
v∆ΦG∆,s(u, v)− u∆ΦG∆,s(v, u)

]
,

H∆Φ
∆,s ≡ (−1)s

[
v∆ΦG∆,s(u, v) + u∆ΦG∆,s(v, u)

]
. (3.105)

Including the effects of supersymmetry simply means replacing conformal blocks by the
superconformal blocks appropriate for each channel, and taking into account superconfor-
mal unitarity bounds. As we showed in Section 3.3, the superconformal blocks in the ΦΦ̄
channel are linear combinations of four non-supersymmetric conformal blocks, while in the
ΦΦ channel, at most one conformal primary from a superconformal multiplet can appear,
meaning that superconformal blocks are equal to non-supersymmetric conformal blocks.
Equations (3.66), (3.67) with ∆12 = ∆34 = 0, lead us to define

F∆Φ
∆,s ≡ F∆Φ

∆,s + c1F
∆Φ
∆+1,s+1 + c2F

∆Φ
∆+1,s−1 + c3F

∆Φ
∆+2,s ,

F̃∆Φ
∆,s ≡ (−1)s

(
F∆Φ

∆,s − c1F
∆Φ
∆+1,s+1 − c2F

∆Φ
∆+1,s−1 + c3F

∆Φ
∆+2,s

)
,

H̃∆Φ
∆,s ≡ (−1)s

(
H∆Φ

∆,s − c1H
∆Φ
∆+1,s+1 − c2H

∆Φ
∆+1,s−1 + c3H

∆Φ
∆+2,s

)
,

(3.106)

where

c1 ≡ −a1|∆12=∆34=0 , c2 ≡ −a2|∆12=∆34=0 , c3 ≡ a3|∆12=∆34=0 , (3.107)

and the ai were defined in (3.67). The supersymmetric version of equation (3.104) then
reads

∑
O+

|cO+

ΦΦ̄ |2
 F∆Φ

∆,s

F̃∆Φ
∆,s

H̃∆Φ
∆,s

+
∑
O−
|cO−ΦΦ̄ |2

 F∆Φ
∆,s

F̃∆Φ
∆,s

H̃∆Φ
∆,s

+
∑
P

|cPΦΦ|2
 0

F∆Φ
∆,s

−H∆Φ
∆,s

 = 0 , (3.108)

The first two sums run over superconformal primaries of vanishing R-charge and even/odd
spin respectively, while the third sum runs over conformal primaries of R-charge qP =
2qΦ = 4

d−1
∆Φ. All terms in the sums are constrained by superconformal unitarity bounds,

and the third sum also by [Q+
α ,P ] = 0, as analyzed in Section 3.3.4. We can summarize

the constraints on the spectrum as follows

O+ : ∆ = 0 , ∆ ≥ s+ d− 2 , s = 0, 2, 4, . . . , (3.109a)

O− : ∆ ≥ s+ d− 2 , s = 1, 3, 5, . . . , (3.109b)

P :


∆ = 2∆Φ + s ,
∆ = d− 2∆Φ ,
∆ ≥ |2∆Φ − (d− 1)|+ s+ (d− 1) ,

s = 0, 2, . . . ,
s = 0, ∆Φ ≤ d/4 ,
s = 0, 2, . . . .

(3.109c)
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Equations (3.108), together with the spectrum specifications (3.109), constitute a linear
program for the various OPE coefficients squared. Solving this kind of problem is the basis
of the numerical (conformal) bootstrap program, and the procedure has by now been
described extensively in the literature. Here, we shall provide a very brief description of
how such a problem can be solved, and refer the reader to [5, 33] for further details.

The first step is to reduce the continuously infinite functional equations to some finite
set of constraints. The usual bootstrap procedure is to Taylor expand to some given order in
the two cross-ratios u and v (or an alternative coordinate system). The number of derivative
components is most conveniently labeled by a parameter nmax, in terms of which the total
number of constraints is 1

2
(nmax + 1)(nmax + 2). Standard algorithms, such as Dantzig’s

simplex method, can then be used to try to obtain a set of OPE coefficients which solve
the equations. This may or may not be possible, depending on the set of operators that we
allow in the crossing equations. In particular, to derive bounds, one imposes constraints
on the sets of operators allowed in the sum rule (3.108) until a solution can no longer be
found. Typically, this constraint is a gap in the set of uncharged scalar operators, so that if
a solution cannot be found for a given nmax, then it is ruled out definitively. Increasing the
parameter nmax can then only lead to tighter bounds. In this work, our calculations were
done using a modification of a Python-based arbitrary precision3 simplex method solver
for semi-infinite linear programs [5]. The package [33] was also used as a cross-check on
some results.

3.6 Bootstrap results

Having developed the technology to analyze crossing symmetry for SCFTs with four
Poincaré supercharges in various dimensions, we now apply it to study and constrain
the space of allowed theories. Theories with only four Poincaré supercharges do not exist
in d > 4 and, while the status of SCFTs (and CFTs) in d < 2 is certainly an interesting
question, for this study, we choose to restrict ourselves to 2 ≤ d ≤ 4.

Since we made no use of parity invariance in our derivation of superconformal blocks
and crossing relations, our bounds also apply to unitary theories which do not preserve
parity, such as N = 2 superconformal Chern-Simons-matter theories in d = 3.

Unless otherwise specified, all the plots shown in this section were made using nmax = 6

3In the implementation used in this chapter arbitrary-precision arithmetic was used only for matrix
inversion as lower precision generation of conformal blocks proved sufficient at the values of nmax presented
here.
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which gives 84 constraints (28 terms in the Taylor expansion of the three-vector identity
in (3.108)).

3.6.1 Scalar operator bounds
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Figure 3.1: Upper bound on the lowest-dimension neutral scalar operator, [ΦΦ̄], appearing
in the Φ × Φ̄ OPE. The dashed vertical lines correspond to ∆Φ = d−1

3
, the protected

dimension of Φ in the cWZ model in dimension d. The value of d associated to a line is
indicated by its color, which matches the corresponding bound plot.

We begin our numerical exploration by determining bounds on the scaling dimension of
the first scalar operator in the Φ × Φ̄ OPE as a function of ∆Φ. This corresponds to the
lowest dimension scalar in the O+ channel in equation (3.108). Throughout this section,
we will refer to this operator schematically as [ΦΦ̄], following the weak-coupling intuition
of it being the composite operator of Φ and Φ̄. Bounds in various dimensions, d = 2, . . . , 4,
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are shown in Figures 3.1 and 3.2 for a range of conformal dimensions ∆0 ≤ ∆Φ ≤ ∆0 + 1
2

(with ∆0 = d−2
2

the conformal dimension of a free scalar in dimension d).

Figures 3.1 and 3.2 exhibit a variety of interesting features.

1. A clear kink at ∆Φ = d−1
3

where we conjecture that the bound is saturated by the
d-dimensional critical Wess-Zumino model with a cubic superpotential.

2. A second kink located at ∆Φ = d
4

that is very sharp for 3 ≤ d ≤ 4, but seems to
soften, and may no longer exist, for d < 3.

3. A third kink at some value of ∆Φ >
d
4
. In d = 3 the value is ∆Φ ≈ 0.86. In d = 4 this

feature appears at ∆Φ ≈ 1.38 and is likely the same feature first observed in [20].

0.2 0.4 0.6 0.8 1.0

∆Φ

1.80

1.85

1.90

1.95

2.00

2.05

∆
[Φ

Φ̄
]

d=2.0

d=2.2

d=2.4

d=2.6

d=2.8

d=3

d=3.2

d=3.4

d=3.6

d=3.8

d=4.0

Figure 3.2: A close-up of the bounds in Figure 3.1. Note that the first kink in every
dimension corresponds to ∆Φ = d−1

3
(the locations of the vertical lines).

The location of the second feature described above, ∆Φ = d
4
, coincides with a kinematically

special point. This is the value of ∆Φ where the scalar operator P in the Φ × Φ OPE
with dimension d− 2∆Φ is a superdescendant of a superconformal primary which hits the
unitarity bound (see (3.109) and the discussion around (3.85)). The third kink, however,
does not seem to correspond to any kinematically special point. We will discuss these two
features in more detail in Section 3.6.5.
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3.6.2 OPE and central charge

In addition to placing bounds on operator dimensions, the numerical bootstrap allows us
to extract the spectrum and OPE coefficients associated with the “extremal” solution that
saturates these bounds [23]. In particular, we can use this procedure to deduce |cΦΦ̄T |2, the
squared OPE coefficient of the stress-tensor in the Φ×Φ̄ OPE, from which we can compute
CT (the canonical normalization of the stress-tensor two-point function) associated with the
solutions lying along the bounding curves in Figure 3.1. In two dimensions, CT reduces to
2 c, where c is the central charge of the left/right Virasoro algebra. In general dimension,
CT is not always related to a conformal anomaly, but we still refer to it as the central
charge. In terms of the OPE coefficient in our normalization, equation (3.65), the central
charge4 is

CT =
∆2

Φ

|cΦΦ̄T |2
(

d

d− 1

)2

. (3.110)

In theories with four Poincaré supercharges, the stress-tensor is not a superconformal pri-
mary, but rather lies in the supermultiplet of the R-current, so what we actually read off
with our approach is |cΦΦ̄J |2 with J a conserved spin-one superconformal primary (of di-
mension ∆J = d−1). From this, we extract the OPE coefficient of the spin-two descendant
using (3.107). Note also that unlike in [63], here we are not maximizing the stress-tensor
(or R-current) OPE coefficient, but rather simply extracting it from a particular solution,
characterized by having a maximal allowed dimension of [ΦΦ̄].

In the normalization given above, a free boson has C
(b)
T = d

d−1
while a free Dirac fermion

has C
(f)
T = d, so for a free chiral multiplet we have

C
(free)
T = 2C

(b)
T + C

(f)
T =

d(d+ 1)

d− 1
. (3.111)

The values of C
(free)
T for d = 2, . . . , 4 are shown in Figures 3.3 and 3.4 as large crosses

which, as expected, sit at the limiting value of CT as ∆Φ approaches the unitarity bound
in dimension d.

The CT plots share a lot of the structure of the ∆[ΦΦ̄] plots. We find local minima (that

are global minima within the range of the plot) at ∆Φ = d−1
3

corresponding to the exact
dimension of the chiral field in the d-dimensional cWZ model. Moreover, a sharp spike

4We follow the normalization of [88], in particular equation (4.2) in that reference.
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Figure 3.3: The central charge, CT , of the boundary solution, i.e. when ∆[ΦΦ̄] saturates the
bounds given in Figure 3.1. The crosses denote the value of CT for a free chiral multiplet
in dimension d. The dashed vertical lines lie at ∆Φ = d−1

3
, corresponding to the chiral

primary field of the cWZ model in dimension d.

appears for 3 ≤ d ≤ 4 at ∆Φ = d
4
. This spike is a local maximum of the CT curve rather

than a minimum. Once more, it is not clear if this last feature persists for d < 3. There is
also a third feature: another local minimum at the value of ∆Φ corresponding to the third
kink in the bounds plot. This also implies a local CT minimum in d = 4 for the kink at
∆Φ ≈ 1.4, as first observed in [20].

It is important to emphasize that the curves depicted in Figures 3.3 and 3.4 are not
the result of maximizing the stress-tensor OPE and hence are not, in any strict sense,
lower bounds on CT . However, a preliminary comparison of ∆[ΦΦ̄] maximization and CT
minimization (analogous to the analysis in [63]) suggests that these two are equivalent, at
least in the region ∆Φ . d−1

3
. A more thorough investigation of this question is left to

future studies.
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Figure 3.4: A close-up of the curves in Figure 3.3. The minimum in every dimension
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3
(the locations of the vertical lines). Note that CT in

d = 2 lies precisely at 2, corresponding to the known value c = c̄ = 1 of the lowest N = 2
minimal model (see Section 3.6.3).

3.6.3 Two-dimensional N = 2 minimal models

As there is a great deal known about two-dimensional superconformal minimal models,
we can use them as a benchmark to compare various exactly known quantities with our
numerical estimates. In Appendix 3.C, we summarize some of the salient features of these
theories.

The N = 2 minimal models are labeled by a positive integer k, which determines their
central charge via

c =
3 k

k + 2
. (3.112)

Superconformal primaries in these models are labeled by two integers n = 0, . . . , k and
m = −n,−n+ 2, . . . , n with (holomorphic) dimension h and R-charge Ω

hn,m =
n (n+ 2)−m2

4 (k + 2)
, Ω =

m

(k + 2)
. (3.113)
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3
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Virasoro minimal model). The dashed green like corresponds to ∆[ΦΦ̄] = 2∆Φ, the expected
value in mean field theory.

The chiral (antichiral) primaries have m = ±n, respectively. In principle, one can apply
the superconformal bootstrap to two-dimensional conformal theories with generic spectrum
and only (0, 2) supersymmetry. However, in our analysis, we have restricted to theories
with (2, 2) supersymmetry and a diagonal spectrum. Our conventions imply that CT = 2c.

The model with k = 1 has CT = 2 and two super-Virasoro primary operators of
dimension ∆1,±1 = 1

3
and R-charge q = ±2

3
(and of course the identity ∆0,0 = 0). The

Φ1,1 × Φ1,−1 OPE contains only the super-Virasoro family of the identity, so that the first
primary of the global superconformal algebra appearing after the identity is Ω−1Ω̄−1|0〉,
which has ∆ = 2. Indeed, this operator must appear in the OPE of any chiral primary
and its conjugate in any local two-dimensional N = 2 SCFT. This immediately allows us
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to determine that all hypothetical CFTs saturating our bounds for ∆Φ ' 1/3 cannot be
local theories. It is possible that adding more constraints (i.e. derivatives in the crossing
symmetry relations) will bring the bound down, but we know that at best, it can asymptote
to the line ∆[ΦΦ̄] = 2∆Φ, corresponding to a supersymmetric version of mean field theory
(also known as generalized free field theory). Note that the latter indeed does not have
a local stress tensor and hence does not benefit from the standard enhancement to the
infinite conformal symmetry in d = 2.
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Figure 3.6: Central charges (left), and the OPE coefficient of [ΦΦ̄] (right), for d = 2,
extracted from the boundary solution in Figure 3.5 . The blue crosses give the expected
values of CT for the first few super minimal-models (k = 1, . . . , 11). The dashed green line,
CT = 6∆Φ, is the unitarity bound discussed in Appendix 3.C. Both figures were made with
nmax = 9.

In Figure 3.5, we focus our attention on the d = 2 bound and superimpose the dimen-
sions of known minimal model operators. At ∆Φ = 1

3
, we find that the bound is very close
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to 2, suggesting that the k = 1 minimal model saturates our bound. This observation is
further confirmed in the left panel of Figure 3.6, where we show that CT ≈ 2 at this point
as expected. As a further check we plot, in the right panel of Figure 3.6, the absolute value5

of the OPE coefficient |cΦΦ̄ [ΦΦ̄]|. There is clearly a cusp at ∆Φ = 1
3
, |cΦΦ̄ [ΦΦ̄]| ≈ 1

3
, which

is indeed the expected value for this OPE coefficient in the k = 1 model (see Appendix
3.C for a derivation). Let us emphasize once more that the OPE coefficients appearing in
our figures are not computed by maximizing any OPE coefficient but rather are extracted
from the solutions saturating the ∆[ΦΦ̄] bound (see [23]).

As mentioned above, ∆Φ = d−1
3

is the expected dimension of the protected operator Φ
of the cWZ model, which can be thought of as a super-symmetric generalization of the Ising
model. The k = 1 model fits naturally into this role, being the simplest super-Virasoro
minimal model. Moreover, it was shown in [101, 102] that precisely the minimal model
with k = 1 arises from an N = 2 Ginzburg-Landau theory with a cubic superpotential, i.e.
the two-dimensional incarnation of the Wess-Zumino model.

To the left of ∆Φ = 1/3, we see that the upper bound on ∆[ΦΦ̄] is very nearly saturated
at points corresponding to Φ = Φ1,1, Φ̄ = Φ1,−1, [ΦΦ̄] = Φ2,0 in the minimal models with
k ≥ 2, which lie at

∆Φ =
1

(k + 2)
, ∆[ΦΦ̄] =

4

(k + 2)
, k ≥ 2 . (3.114)

From the left panel in Figure 3.6 it seems, however, that for ∆Φ < 1/3, the central charges
extracted from the boundary solutions do not precisely match those of the k > 1 minimal
models. This suggests that the latter do not exactly saturate our bound6 at the given
constraint level, a phenomenon which has also been observed for the higher minimal models
in the non-supersymmetric case. It may be that imposing further constraints, i.e. higher
values of nmax, will improve the situation but, as this is not our focus here, we leave this
question for future explorations.

The blue crosses in Figure 3.5 to the right of the super-Ising point (1/3, 2) correspond to
the fusion of Φk,k, i.e. the chiral primary with the highest conformal dimension in the k-th
minimal model, with its conjugate Φk,−k. As noted above, in this case, [ΦΦ̄] = Ω−1Ω̄−1|0〉,
and thus ∆[ΦΦ̄] = 2. Our numerical bound does show a short plateau with ∆[ΦΦ̄] = 2 just

5Since OPE coefficients only appear squared in the crossing symmetry relations we consider, we only
have access to their magnitude, not their sign.

6The “extremal functional method” advocated in [23] requires a very precise determination of the
maximal scalar gap in order to yield (generically) a unique solution. Moreover, if this maximal value is
sufficiently far from the expected value of ∆[ΦΦ̄] in a particular theory, then the resulting spectrum might
be quite different.
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to the right of the super-Ising kink. These boundary solutions are ruled out however in a
full-fledged N = 2 SCFT with super-Virasoro symmetry. This can be seen by the virtue
of the unitarity bound CT ≥ 6∆Φmax (see Appendix 3.C), which is shown in the left panel
of Figure 3.6 as the green dashed line. However, it is reassuring that CT corresponding
to the numerical solution of the crossing on the boundary asymptotes to CT = 6∆Φ, and
hence to the correct value in the minimal models.

3.6.4 Bootstrapping the cWZ model in 2 ≤ d ≤ 4

In this section, we analyse in more detail the numerical bootstrap results at ∆Φ = d−1
3

for
2 ≤ d ≤ 4. As previously noted, this value of ∆Φ is significant as it corresponds to the
protected dimension of a chiral primary operator in the d-dimensional cWZ model. As the
bounds for every 2 ≤ d ≤ 4 in Figure 3.1 have a kink precisely at this value of ∆Φ, we
conjecture that the bounds are saturated by the operator [ΦΦ̄] in the d-dimensional cWZ
theory.

As argued in [91], it is likely that theories in fractional dimension are non-unitary
and may even suffer further pathologies. Nonetheless, they provide a useful interpolation
between theories in integer dimension, allowing us to track critical exponents and other
features as a function of the dimensions. This idea is similar in spirit to the ε-expansion.
The literature on the cWZ model is rather sparse and very few critical exponents have
been computed and only to leading order, see [79, 80, 83].

As discussed in Section 3.4, the dimension of [ΦΦ̄] in this theory has only been computed
to the first order in the ε-expansion

∆[ΦΦ̄] = 2− ε+
1

ν
= 2 +O(ε2), (3.115)

so we do not have precise estimates to compare with. Our numerical results for the maximal
value of ∆[ΦΦ̄] at ∆Φ = (d − 1)/3 are presented in Figure 3.7. To give a better sense for
this quantity, we plot both the anomalous dimension ∆[ΦΦ̄]− (d−2) against the anomalous

dimension ∆Φ − d−2
2

, and the difference ∆[ΦΦ̄] − 2 as a function of ε. The latter gives an
estimate for the form of the unknown O(ε2) corrections in (3.115). We also plot, in Figure
3.8, the values of CT at ∆Φ = (d−1)/3, normalized with respect to CT for a free chiral field.
Recall, from Figure 3.4, that these correspond to local minima of CT which we conjecture
to correspond to the d-dimensional cWZ model.
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Figure 3.7: Predictions for the anomalous dimension of [ΦΦ̄] in the d-dimensional cWZ
model. The ε-expansion for this operator dimension is known to linear order and gives
∆[ΦΦ̄] = 2 +O(ε2) so on the RHS we show ∆[ΦΦ̄] − 2 as a function of ε.

The location of the kink and the fact that it corresponds to the exact result, ∆[ΦΦ̄] = 2,
in d = 2 supports our claim that we are indeed studying the cWZ theory. Moreover,
equation (3.115) is consistent with what we observe in Figure 3.2; namely that ∆[ΦΦ̄] ≈ 2
for 2 ≤ d ≤ 4.

The strongest evidence for our conjecture comes, however, not from a critical exponent,
but from the computation of CT . As discussed in Section 3.4, it is possible to determine
this quantity, in d = 3, by taking derivatives of the squashed-sphere partition function, a
quantity that is exactly computable via localization. This computation yields CT/C

(free)
T '

0.7268 while our best numerical estimate (in [3]) gives 0.72652(33), putting the exact value
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T = d(d+1)
d−1

. This data is extracted

from the solution which saturates the bounds given in Figure 3.1 at ∆Φ = d−1
3

. The
exact value in d = 3 can be computed via localization to be ' 0.7268 while in this figure
(nmax = 6) we find ∼ 0.7260 (see [3] for a more precise determination).

just within our error bars. As noted in Section 3.6.2, we have checked (in d = 3) that for
∆Φ . 2/3, the value of CT extracted from the OPE coefficients of the solution maximizing
∆[ΦΦ̄] does, indeed, correspond to what one would get using CT -minimization in the sense
of [5] (i.e. it is the minimal value of CT , as a function of ∆Φ, consistent with unitarity
and crossing symmetry under the very mild additional assumption of not having additional
scalars of very low dimension). Since the exact value of CT is close to saturating this lower
bound (which will only increase as we increase nmax) one could conceivably turn this into
a proof that the theory under consideration is necessarily the cWZ model.

Near d = 4, we expect that the ε-expansion should yield good numerical estimates so, as
an additional test of our results, we would like to check the vanishing of the O(ε) term in
(3.115) by studying our bounds for small ε. In Figure 3.9, we show the ∆[ΦΦ̄] bounds, now
computed for d = 3.95 − 3.99 in steps of 0.01. We expect that the low-order ε-expansion
should yield reasonable results for these small values of ε ∼ 0.01− 0.05. The first thing to
note about the bounds is that we see (at this resolution) that the kink does not exactly
coincide with ∆Φ = d−1

3
but rather is very slightly to the right of that value. Although

we know that the cWZ theory has an operator exactly at ∆Φ = d−1
3

, we also know our
bounds are not optimal (as we are using a relatively small number of Taylor coefficients
corresponding to nmax = 6), and the bound curve will move down as we increase the
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Figure 3.9: Bound plots for [ΦΦ̄] near d = 4 (left). On closer inspection, the kink in
the bound plot is slightly to the right of ∆Φ = d−1

3
(shown as dashed vertical lines). As

explained in the text, we read off and plot (right) ∆[ΦΦ̄] at the bound both at the local

maximum (top curve) and the value ∆Φ = d−1
3

(bottom curve).

number of constraints. In fact, in [3] we show that, for d = 3, the minimum of the CT
curve does indeed correspond much more closely to ∆Φ = d−1

3
, and that as we add more

derivatives, the kink in the ∆[ΦΦ̄] bound moves left towards ∆Φ = d−1
3

and towards the
minimum of the CT plots.

We will nonetheless be conservative here and estimate the value of ∆[ΦΦ̄] using two
different procedures and show that our results are relatively robust. In the first approach,
we simply extract the value of the bound at ∆Φ = d−1

3
. The second approach is to read

off the value of ∆[ΦΦ̄] at the local maximum in the left plot of Figure 3.9. In both cases,
we find a quadratic fit for ∆[ΦΦ̄] − 2 as a function of ε and read off the subleading terms
in equation (3.115). The two fits are shown in the right plot in Figure 3.9 with the lower
curve corresponding to the values at ∆Φ = d−1

3
.
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The results for the two fits are:

∆[ΦΦ̄] − 2 = −0.283 ε2 + 7.76× 10−3ε+ 7.17× 10−5 , ∆[ΦΦ̄] at ∆Φ =
d− 1

3
,

(3.116)

∆[ΦΦ̄] − 2 = −0.648 ε2 + 22.3× 10−3ε+ 77.4× 10−5 , ∆[ΦΦ̄] at local max ,

(3.117)

It is clear that the quadratic coefficient depends on how we choose to extract ∆[ΦΦ̄], meaning
that our bounds have not converged sufficiently. What does seem rather robust however,
is that the constant and linear pieces are orders of magnitude smaller than the quadratic
piece, consistent with the ε-expansion prediction in equation (3.115).

3.6.5 Additional kinks

In every dimension in the range 2 ≤ d ≤ 4, we clearly observe a kink at ∆Φ = d−1
3

which,
as explained above, very likely corresponds to the cWZ model. For 3 ≤ d ≤ 4, there is
also a very clear kink at ∆φ = d

4
, but it stops being sharp below d = 3. Moreover, for

2 ≤ d ≤ 4, there is yet one more kink at some ∆Φ > d
4

that is an extension of the d = 4
kink first observed in [20]. In this section, we initiate a very brief exploration of these two
structures. We will refer to them as the second and third kink even though the former
may not exist for d < 3, rendering the name “third kink” somewhat incorrect in those
dimensions. Thus by “third kink”, we will always mean the feature located at ∆Φ >

d
4
.

In Figure 3.10, we plot the dimension bound for ∆[ΦΦ̄] and the central charge extracted

from Figure 3.1 at ∆Φ = d
4
. This kink is distinct from the first and third kink, and from

various other crossing symmetry kinks that have appeared in the literature [5, 63], in two
important ways. First, as is clear from Figure 3.3, it corresponds to a local maximum
of the central charge rather than a minimum. This statement is not entirely accurate as
Figure 3.3 is not a central charge bound plot, in the sense of [5], but rather the central
charge corresponding to the saturating solution, which, a priori, may not minimize the
central charge. Second, this kink occurs at a kinematically special point in terms of the
constraints imposed by supersymmetry. Precisely at ∆Φ = d

4
, the two additional scalar

operators allowed in the R-charged channel at dimensions ∆ = d − 2∆Φ and ∆ = 2∆Φ

have equal dimensions, see (3.109). For this reason, one might suspect that the second
kink is a kinematical feature of the boundary solution that may not correspond to any
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Figure 3.10: Second kink: the anomalous dimension of ∆[ΦΦ̄] vs that of ∆Φ at ∆Φ = d
4

for 2 ≤ d ≤ 4 (left). The central charge, normalized by that of a free chiral superfield, at
∆Φ = d
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(right).

physically interesting theory. The fact that this structure does not continue below d = 3,
whereas the coincidence of the two operator dimensions persists, might, however, suggest
otherwise. Motivated by this possibility, in Section 3.6.5, we discuss some initial attempts
to guess a physical theory corresponding to the second kink, and provide some guidance
for others who would try their hand at this task.
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Figure 3.11: Third kink: the anomalous dimension of ∆[ΦΦ̄] vs that of ∆Φ for the third
kink (left); the central charge, normalized by that of a free chiral superfield, for the third
kink (right).
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The third kink is much more “traditional”, since it locally minimizes CT and also appears
at values of ∆Φ which do not enjoy any known significance. As mentioned before, these
kinks seem to be a continuation of the one first observed at d = 4 in [20]. The third kink
merges with the first in d = 2, and thus becomes the N = 2 minimal model with k = 1.
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Figure 3.12: Third kink: the anomalous dimension of ∆Φ as a function of d for the third
kink (left); the anomalous dimension of ∆[ΦΦ̄] as a function of d for the third kink (right).

In Figure 3.11, we display the anomalous dimension of ∆[ΦΦ̄] as a function of the anomalous
dimension of ∆Φ, as well as the ratio CT/C

free
T as a function of d, for the third kink. We

determine the location of the kink by choosing the minimum of CT (or equivalently the
location of the kink in the ∆[ΦΦ̄] bound) up to the resolution of Figure 3.3, which is7

∼ 0.005. For d = 2, we do not see any distinct kink and since already at d = 2.2, the

7As we have not conducted any systematic convergence estimate for our bounds, we do not make any
claim that this resolution bounds the error in any way.
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location of the kinks seems to be merging, we assume that for d = 2 the first and third
kink coincide. To exhibit the structure of the third kink in more detail we also provide, in
Figure 3.12, plots of the anomalous dimensions of ∆Φ and ∆[ΦΦ̄] at the kink as a function
of d .

Some speculations

In this section, we would like to offer some speculations about the nature of the second
and third kinks.

The second kink is kinematically special, since here the two candidate scalar conformal
primaries in the Φ×Φ OPE (Φ2, with dimension 2∆Φ, and Q2Ψ̄, with dimension d−2∆Φ)
have equal dimensions, see (3.109). Between ∆Φ = (d − 1)/3 and this point, the bound
on [ΦΦ̄] is linearly decreasing, and an analysis of the Φ × Φ OPE coefficients shows that
all along this line, the Φ2 operator is not present, see Figure 3.13. At ∆Φ = d/4, the
chiral scalar field Ψ becomes a free field, and so it should decouple from the spectrum.
At this precise point, the Φ2 operator reappears, and it is this transition that marks the
appearance of the second kink. It is interesting to note that the kink persists all the way to
d = 4, where it seems to lead to a very abrupt change in the central charge. Although our
numerics present problems close to the free theory point in d = 4, it seems then that the
second kink describes free theory with more than one chiral superfields. A natural guess
is three chiral superfields, since this gives8 CT = 20, which seems to be very close to the
asymptotic value in Figure 3.3.

We are then led to guess that the second kink describes a theory with three chiral
superfields, X, Y, Z. Furthermore, we expect a superpotential term X2Y , which implies
that if Y becomes free at the fixed point, then one has ∆X = d/4 as required. In d = 3, we
can use F-maximization to find the scaling dimensions of the chiral fields [103]. We have
found two superpotentials which seem to have the right properties, namelyW = X2Y+XZ,
and W = X2Y + Y 2Z2. In the first case, the fixed-point conformal dimensions (which are
equal to the R-charges in d = 3), as fixed by F -maximization, come out to be ∆X = 3/4,
∆Y = 1/2, and ∆Z = 5/4. In the second case, one finds that the dimension of Z at the fixed
point is naively below the unitarity bound. This signals the emergence of accidental flavor
symmetries which mix with the R-symmetry, modifying the F -maximization procedure.

8 At precisely the free point, there are extra spin-1 and spin-2 currents which mix with the stress-tensor.
Our numerics cannot disentangle these, hence the discontinuous jump to the single-field value of CT at
the free point.
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Figure 3.13: Scaling dimensions (left) and OPE coefficients (right) for the first three scalar
operators in the the Φ × Φ OPE, extracted from the saturating solution, for d = 3 with
nmax = 9. Operators appear in both plots with the same color (chosen according to ordering
in the scaling dimension plot). Note the decoupling of Φ2 at ∆Φ = 2/3, corresponding to
the cWZ model, as well as at the location of the third kink at ∆Φ ∼ 0.86.

This accidental flavor symmetry is accounted for by noting that the field Z becomes free
and thus ∆Z = 1/2. This then leads to ∆Y = 1/2 and ∆X = 3/4.

To distinguish between the two guesses above, we need another observable. A conve-
nient choice is the central charge CT . As mentioned above, by computing the partition
function on a squashed sphere, it is possible to determine τRR/τ

free
RR = CT/C

free
T , with τRR

the R-current two-point function coefficient. For the two superpotentials above we find

τRR(3/4) + τRR(1/2) + τRR(5/4)

τRR(1/2)
= 1 , W = X2Y +XZ , (3.118)

τRR(3/4) + 2τRR(1/2)

τRR(1/2)
' 2.5603 , W = X2Y + Y 2Z2 . (3.119)

This should be compared with the ratio CT/C
free
T ' 1.24 that we obtain from Figure 3.10

(to avoid any confusion in the formulas above, we are normalizing by dividing by the values
for a single free chiral field). Indeed, it appears we would need ∆Z ' 1.14, which seems
hard to obtain from a polynomial superpotential with three chiral superfields.

To finish the discussion on the second kink, we should mention the intriguing possibility
that the corresponding theory is in fact non-unitary. Violations of unitarity are not neces-
sarily excluded by our bootstrap methods, as long as squares of OPE coefficients remain.
This exotic suggestion is motivated by the observation that

4τRR(3/4)− τRR(1/2)

τRR(1/2)
' 1.2413 . (3.120)
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This suggest that the field theory actually contains five chiral superfields, but one of
them has the wrong sign kinetic term, so that in terms of CT , they effectively appear
as three chiral superfields. Considering the superpotential W = (X2 + Z2 + W 2 + V 2)Y ,
F -maximization leads to ∆Y < 1/2, which is below the unitarity bound, and signals
that the field Y is actually free, i.e. ∆Y = 1/2. After taking this into account, we find
∆X = ∆Z = ∆W = ∆V = 3/4. Hence, it appears that this theory has all the right
properties to match our second kink.

The attentive reader may have noticed a small sleight of hand here. When a chiral
field becomes free, it decouples from the rest of the theory and hence stops contributing to
the OPE coefficient of the conserved spin-2 current. Therefore, CT derived from numerical
bootstrap measures the two-point function of the stress-tensor of the interacting part of
the CFT only, and we should leave out the free contributions in (3.118), (3.119), (3.120).
However, we expect that the extra field is free only precisely at the kink and not in
its immediate neigbourhood, and thus we should include its contribution by continuity.
We would then also expect that another spin-one superconformal primary approaches the
unitarity bound as we approach the kink, providing the extra U(1) symmetry of the free
chiral. Unfortunately, preliminary numerical studies suggest that this is not so.

Let us focus now on the line of theories for (d− 1)/3 < ∆Φ < d/4. The decoupling of
Φ2 suggests a chiral ring relation Φ2 = 0. One particular such theory is the Wess-Zumino
model with two chiral superfields Υ,Λ and a cubic superpotential of the form W = λΥ2Λ.
Denoting the lowest components of the superfields by Φ and Ψ respectively, this model
yields the correct OPE Φ×Φ = Q2Ψ̄, i.e. the operator Φ2 is absent. In addition, we have
the relation ∆Ψ = (d− 1)− 2∆Φ, which follows from chirality and R-charge conservation.
The exact dimensions in this model can be determined in d = 3 by F -maximization, as
shown in [78], giving ∆Φ ' 0.708. Could it be that our bound is saturated by this theory?
Unfortunately this is not so. In the same reference, the authors compute τRR ' 0.380,
whence it follows that

CT
C free
T

=
τRR

τRR(1/2)
≈ 1.52 . (3.121)

On the other hand, from Figure 3.4, we read off that at ∆Φ ' 0.708, CT ' 6, and hence
CT/C

free
T ' 1, very different from what we obtain above.

Consider now the third kink, which was first observed in d = 4 [20]. Our analysis adds
a few more pieces of information about a putative theory sitting there. First, the kink
continues to exist all the way to d = 2, where it apparently merges with the CT = 2c = 2,
N = 2 minimal model. Second, the chiral field Φ2 disappears from the spectrum also at
this kink, as witnessed by Figure 3.13. In d = 2, this corresponds to the non-existence of
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a dimension-2/3 Virasoro primary in the c = 1 model. This is a strong hint that the chiral
ring of the theory at the kink has a relation Φ2 = 0. Since the kink does not merge with the
free theory in d = 4, we do not expect it can be described by a Lagrangian for a collection
of chiral superfields. It is concievable it arises as an IR fixed point of a non-abelian gauge
theory in d = 4, or even an abelian gauge theory in d = 3. Note that the central charge
CT in d = 4 is rather low – about 1.6 times that of the free chiral multiplet and only about
a half of a single free vector multiplet.

3.7 Discussion

In this chapter, we have investigated the constraints of the conformal bootstrap on su-
perconformal field theories with four Poincaré supercharges in d ≤ 4. The cases d = 2
and d = 3 have not been analyzed before and thus we provide new universal bounds on
unitary SCFTs with N = 2 supersymmetry in these dimensions. We have also shown that
the bounds display three interesting features (kinks), one of which we have conjecturally
identified as the infrared fixed point of the single-field Wess-Zumino model with cubic su-
perpotential. This conjecture is supported by the matching of the protected dimension of
the chiral field, comparison of the value of CT with an exact calculation by supersymmetric
localization in d = 3, the structure of the OPE in the chiral sector, ε-expansion computa-
tions, and the agreement with exact results in d = 2. In [3], we take this conjecture at face
value to provide a detailed study of the theory for d = 3.

It is clearly of great interest to elucidate the remaining two kinks. We expect that at
least the third kink corresponds to a physical theory, since it shares many features with
the better-understood Ising-like kinks. Perhaps a good candidate theory can be found with
the correct value of CT , and a gauge-invariant chiral operator Φ with the right dimension
and chiral ring relation Φ2 = 0. It could also be interesting to see if CT can be derived
using localization in continuous d, in the spirit of [104], and matched with our results for
the cWZ model or used as a tool to probe the other kinks.

The crucial ingredient in this work was to formulate a dimension-independent approach
to superconformal algebras with four Poincaré supercharges in d ≤ 4. This allowed us,
among other things, to write down the action of the superconformal Casimir on a four-
point function as a differential equation, whose solutions in turn gave us the superconformal
blocks relevant for the bootstrap analysis. This approach can be extended to supercon-
formal theories with eight Poincaré supercharges in general dimension, the parent algebra
being the (1, 0) superconformal algebra in six dimensions. Theories with this amount of
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supersymmetry are particularly suited for bootstrap analysis since, apart from the case
d = 2, 4, they do not admit marginal deformations. Work on this is currently in progress.

It is intriguing that the supersymmetric conformal blocks can be recast as non-supersymmetric
ones with shifted external dimensions. In this chapter, we have extended this observation,
previously noted in [86] for d = 2, 4, to any dimension and more general external opera-
tors. In the same reference, the authors showed that certain N = 2 superblocks in four
dimensions are given by a similar expression, this time with a shift by two units. It would
be interesting to see if there is any deep reason for this connection and if the latter result
also extends to other spacetime dimensions.

We have only briefly touched upon the extension of our analysis to d < 2. While the
superconformal blocks we derived should be valid in any d ≤ 4, it is not clear whether one
can use the numerical bootstrap techniques to extract interesting information in d = 1 [105].
This certainly deserves further study since superconformal quantum-mechanical models are
ubiquitous and should be dual to the AdS2 near horizon regions of some extremal black
holes.

Another interesting avenue for future exploration is to combine the constraints from
superconformal symmetry studied here with the simplifications that occur in large N CFTs,
i.e. when correlation functions factorize. This was explored to some extent with N = 4
supersymmetry in d = 4 in [71] but much remains to be understood. The interest in this
problem stems in part from the AdS/CFT correspondence and the fact that string theory
leads to a vast landscape of holographic duals to SCFTs with four supercharges.

3.A OPE derivation of 3d N = 2 superconformal blocks

In this Appendix, we provide further evidence for the formulae (3.66), (3.67) by explicitly
determining the coefficients ai from constraints imposed by d = 3, N = 2 superconformal
invariance on the OPE.9 As a first order of business let us present the explicit realization
of the d = 3, N = 2 algebra. The bosonic generators are just the conformal generators and
the R-charge {R,Mij, D, Pi, Ki}. They satisfy the commutation relations already presented
in (3.1). A realization of these commutation relations in terms of differential operators is

9It is quite possible that these results can be derived also using techniques from superspace similar to
the ones in [106].
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given by

Mjk = −i(xj∂k − xk∂j) ,
Kj = −i(xkx

k∂j − 2xjx
k∂k) ,

Pj = −i∂j , D = ixk∂k , R = r .

(3.122)

Note that the action of the conformal generators on operators in the CFT picks up a minus
sign relative to (3.122). See the discussion around equations (2.28)-(2.31) in [90].

The fermionic generators are Q±α , Sα±, where α = 1, 2 is the Dirac index. The Dirac
representation is self-dual, with the isomorphism with the dual representation provided by
the antisymmetric tensor ε12 = −ε21 = ε21 = −ε12 = 1. Thus in d = 3 there is no real
distinction between the α and α̇ index used in Section 3.2 and we will omit the dots in
this Appendix. Hermitian conjugation acts as (Q±α )† = Sα∓. Let (σi)

α
β be the usual Pauli

matrices

σ1 ≡
(

0 1
1 0

)
, σ2 ≡

(
0 −i
i 0

)
, σ3 ≡

(
1 0
0 −1

)
, (3.123)

and further define

(σi)αβ = εαγ(σi)
γ
β , (σi)

αβ = (σi)
α
γε
γβ , (σi)

β
α = εαγ(σi)

γ
δε
δβ . (3.124)

The action of the bosonic generators on the fermionic ones is then

[R,Q±α ] = ±Q±α , [R, Sα±] = ±Sα± ,

[Mij, Q
±
α ] =

1

2
εijk(σk)

β
αQ
±
β , [Mij, S

α±] =
1

2
εijk(σk)

α
β Sβ± ,

[D,Q±α ] = − i

2
Q±α , [D,Sα±] =

i

2
Sα± ,

[Pi, S
α±] = −(σi)

βαQβ± , [Ki, Q
±
α ] = (σi)βαS

β± ,

(3.125)

with all other commutators vanishing. Note that εijk is the completely antisymmetric
tensor in three dimensions. Finally, the anticommutation relations among the fermionic
generators are

{Q+
α , Q

−
β } = Pi(σi)αβ , {Sα+, Sβ−} = Ki(σi)

αβ ,

{Sα−, Q+
β } = (iD −R)δαβ +

1

2
εijkMij(σk)

α
β ,

{Sα+, Q−β } = (iD +R)δαβ +
1

2
εijkMij(σk)

α
β ,

(3.126)

with all other anticommutators vanishing. This algebra is of course in harmony with the
general presentation in Section 3.2 of the superconformal algebras in d ≤ 4.
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Generalities

Let us first consider a CFT without supersymmetry and review how a conformal multiplet,
with primary Pi1...is of dimension ∆ in the symmetric traceless representation of spin s,
contributes to the four-point function, 〈φ1φ2φ3φ4〉, of scalar primaries φi of dimensions ∆i.
Define the OPE coefficient, cPφ1φ2

, by writing the contribution of the conformal family of P
to the φ1 × φ2 OPE as10

φ1(x)|φ2〉 = . . .+ cPφ1φ2
|x|−∆1−∆2+∆−sxi1 . . . xis [|Pi1...is〉+ desc.] + . . . . (3.127)

The contribution of level-one descendants in the square bracket is

desc. = α(x · P )|Pi1...is〉+ βxi1P
j|Pji2...is〉+ . . . , (3.128)

where

α = − i

2

∆ + ∆12 + s

∆ + s
,

β = − i

2

s∆12

(∆ + s)(∆− s− 1)
.

(3.129)

The two-point function of P and its conjugate P̄ takes the form

〈
Pi1...is(x)P̄j1...js(y)

〉
=

fPP̄
|x− y|2∆

[
1

s!

∑
σ∈Ss

s∏
n=1

Iinjσ(n)
(x− y)− traces

]
, (3.130)

where Ss is the permutation group on s elements and

Iij(x) = δij − 2
xixj
|x|2 . (3.131)

It is useful to note that the coefficient fPP̄ also appears in the scalar product

〈Pi1...is|Pj1...js〉 = fPP̄

(
1

s!

∑
σ∈Ss

s∏
n=1

δinjσ(n)
− traces

)
. (3.132)

With these normalizations, the contribution of the conformal family to the four-point
function is

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉|P =
fPP̄ c

P
φ1φ2

cP̄φ3φ4

|x12|∆1+∆2 |x34|∆3+∆4

|x24|∆12|x14|∆34

|x14|∆12|x13|∆34
G∆12,∆34

∆,s (u, v) ,

(3.133)

10In this appendix we freely use the operator-state correspondence, which is valid in any CFT in Eu-
clidean signature. The state corresponding to an operator φ(x) will be denoted by |φ〉.
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where G∆12,∆34

∆,s (u, v) is the conformal block whose normalization is determined as in (3.65).
The following derivation of the superconformal blocks relies on the observation that when
φi are superconformal primaries and φ1,3 chiral primaries, superconformal symmetry fixes
the OPE coefficients and two-point functions of all contributing conformal primaries from
the same superconformal multiplet in terms of those of the superconformal primary.

Consider now the correlator 〈φ1φ2φ3φ4〉 in a 3d, N = 2 SCFT, where φi are scalar
superconformal primaries, with φ1,3 chiral, i.e. [Q+

α , φ1,3] = 0. We wish to determine
which conformal primaries in the superconformal family of a superconformal primary P
can appear in both the OPE of φ1 × φ2 and the OPE of φ̄3 × φ̄4. Only those conformal
primaries can contribute to the above four-point function. Consider the OPE φ1(x)|φ2〉.
It follows from the chirality of φ1 and the superconformal algebra that [Sα+, φ1(x)] = 0.
Hence

Sα+φ1(x)|φ2〉 = 0 , (3.134)

since φ2 is a superconformal primary. Similarly,

Sα−φ̄3(x)|φ̄4〉 = 0 . (3.135)

Consequently, the conformal primary with the lowest dimension from a given supercon-
formal family that contributes to both OPEs must be annihilated by Sα±, and thus this
operator is necessarily the superconformal primary. It follows that the superconformal
primary has integer spin and its R-charge is given by q = q1 + q2 = −q3 − q4. Let us
denote this operator with P(0)

i1...is
, and its dimension and spin with ∆ and s, respectively.

All other contributing conformal primaries from the same supermultiplet must have in-
teger spin and R-charge q. The conformal primaries in the multiplet have dimensions
∆ +n/2, with n = 0, . . . , 4 labelling the number of Q supercharges acting on P(0)

i1...is
. These

operators have integer spin only when n is even. For s > 0 and generic ∆ − |q|, there
are four candidate conformal primaries with dimension ∆ + 1. P(1) with spin s + 1, P(2)

with spin s − 1, and P+−, P−+, both with spin s. All four can be obtained by acting
with linear combinations of the products Q±αQ

∓
β on P(0). Consider the action of spacetime

parity xi 7→ −xi. A proper tensor of spin s transforms as (−1)s, while a pseudotensor as
(−1)s+1. The supercharges Q±a “square to the momentum”, and thus must transform such
that any product transforms as Q±αQ

∓
β 7→ −Q±αQ∓β . It follows that P(1), P(2) have the same

parity as P(0), while P+−, P−+ have the opposite. In theories invariant under parity, this
gives an argument why only P(1) and P(2) can contribute. However, the Casimir approach
from the main text does not require parity invariance and thus shows that our formula
for superconformal blocks is valid in general. Finally, there is a conformal primary P(3)

with dimension ∆ + 2, spin s and R-charge q, obtained from P(0) by acting with a linear

95



combination of products of four Q’s, which can also contribute to the four-point function.
In the following subsections, we show how the constraints (3.134) and (3.135) fix the OPE
coefficients of P(1), P(2), and P(3) in terms of those of P(0) and also compute the two-point
functions fP(i)P̄(i) for i = 1, 2, 3 in terms of fP(0)P̄(0) . We find that

ai =
fP(i)P̄(i)

fP(0)P̄(0)

cP
(i)

φ1φ2
cP̄

(i)

φ3φ4

cP
(0)

φ1φ2
cP̄

(0)

φ3φ4

, (3.136)

reproduce the results in (3.67) for d = 3.

The contribution of P (1)

It is useful to define the operator

Tj(x, y) ≡ (σj)
αβ
[
(x− y)Q+

αQ
−
β − (x+ y)Q−αQ

+
β

]
. (3.137)

An explicit expression for P(1) is then given by

|P(1)
i1...is+1

〉 =
1

s+ 1

s+1∑
n=1

Tin(∆ + s, q)|P(0)

i1...̂in...is+1
〉 − traces , (3.138)

where the notation i1 . . . în . . . is+1 means that the index in is omitted from the string of
indices, and the traces are subtracted to make the resulting state traceless. Applying S+

α

to the OPE φ1(x)|φ2〉 mixes the contribution of level-one conformal descendants of P(0),
(3.128), with that of the conformal primary P(1). Requiring that the result vanishes and
looking at the coefficient of the highest power of z̄ = x1 − ix2 leads to

cP
(1)

φ1φ2
= − i(∆ + ∆12 + s)

4(∆ + s)(∆ + s+ 1)(∆ + s+ q)
cP

(0)

φ1φ2
, (3.139)

and hence also

cP̄
(1)

φ3φ4
= − i(∆ + ∆34 + s)

4(∆ + s)(∆ + s+ 1)(∆ + s− q)c
P̄(0)

φ3φ4
. (3.140)

Note the opposite sign of the R-charge in the denominators of (3.139), (3.140) resulting
from the presence of the conjugate operator. The two-point function can be found by using
the superconformal algebra

fP(1)P̄(1) = 8(∆ + s)(∆ + s+ 1)(∆ + s+ q)(∆ + s− q)fP(0)P̄(0) . (3.141)
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Putting the pieces together, we find

a1 =
fP(1)P̄(1)

fP(0)P̄(0)

cP
(1)

φ1φ2
cP̄

(1)

φ3φ4

cP
(0)

φ1φ2
cP̄

(0)

φ3φ4

= −(∆ + ∆12 + s)(∆ + ∆34 + s)

2(∆ + s)(∆ + s+ 1)
, (3.142)

in agreement with (3.67).

The contribution of P (2)

The conformal primary P(2) is given by the contraction

|P(2)
i1...is−1

〉 = Tj(∆− s− 1, q)|P(0)
ji1...is−1

〉 , (3.143)

so that the resulting state is automatically symmetric and traceless. Using again (3.134),
and this time looking at the next-to-leading power of z̄ = x1 − ix2 fixes

cP
(2)

φ1φ2
= − is(∆ + ∆12 − s− 1)

4(2s+ 1)(∆− s)(∆− s− 1)(∆− s− 1 + q)
cP

(0)

φ1φ2
, (3.144)

and similarly

cP̄
(2)

φ3φ4
= − is(∆ + ∆34 − s− 1)

4(2s+ 1)(∆− s)(∆− s− 1)(∆− s− 1− q)c
P̄(0)

φ3φ4
. (3.145)

The norm of |P(2)〉 is

fP(2)P̄(2) = 8
(2s+ 1)

(2s− 1)
(∆− s)(∆− s− 1)(∆− s− 1 + q)(∆− s− 1− q)fP(0)P̄(0) , (3.146)

leading to

a2 =
fP(2)P̄(2)

fP(0)P̄(0)

cP
(2)

φ1φ2
cP̄

(2)

φ3φ4

cP
(0)

φ1φ2
cP̄

(0)

φ3φ4

= −s
2(∆ + ∆12 − s− 1)(∆ + ∆34 − s− 1)

2(4s2 − 1)(∆− s)(∆− s− 1)
, (3.147)

in harmony with (3.67) for d = 3.
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The contribution of P (3)

In order to be able to write a relatively compact expression for P(3) it is convenient to define
the following operator, which takes symmetric traceless tensors of spin s and dimension ∆,
into symmetric traceless tensors of spin s, dimension ∆ + 1, and opposite parity

Uab
η : |ψi1...is〉 7→ η εαβQa

αQ
b
β|ψi1...is〉+ i

s∑
n=1

εjink(σj)
αβQa

αQ
b
β|ψki1...̂in...is〉 , (3.148)

where a, b = ± are R-charge indices, η ∈ C, and εijk is the standard antisymmetric tensor
with ε123 = 1. This operator is useful also to write down the other four conformal primaries
with dimension ∆ + 1. We find that

|P+−〉 = U+−
∆−1+q|P(0)〉 ,

|P−+〉 = U−+
∆−1−q|P(0)〉 ,

|P++〉 = U++
η |P(0)〉 ,

|P−−〉 = U−−η |P(0)〉 ,

(3.149)

are conformal primaries, the first two of which have been discussed below (3.135). The
parameter η is arbitrary for the last two cases since the second part of (3.148) drops out by
the symmetry of (σj)

αβ, and the anticommutativity of supercharges of the same R-charge.
We must remember that Uab

η acts not only on the Hilbert space, but also on the vector
indices. The conformal primary of dimension ∆ + 2 and spin s can then be written as

|P(3)〉 =(∆ + s− q)(∆− s− 1− q)
(
U++

∆ U−−∆ − U+−
∆+qU

+−
∆−1+q − U−+

∆−qU
+−
∆−1+q

)
|P(0)〉+

+(∆ + s+ q)(∆− s− 1 + q)
(
U−−∆ U++

∆ − U−+
∆−qU

−+
∆−1−q − U+−

∆+qU
−+
∆−1−q

)
|P(0)〉 .

(3.150)
Note that the second line is obtained from the first by flipping all R-charge indices and the
sign of the R-charge. Using once again (3.134), and looking at the leading power of z̄ for
the lowest scaling dimension where |P(3)〉 contributes, one can show that

cP
(3)

φ1φ2
= −

(∆ + ∆12 + s)(∆ + ∆12 − s− 1)cP
(0)

φ1φ2

16(4∆2 − 1)(∆2 − s2)(∆2 − (s+ 1)2)(∆ + s+ q)(∆− s− 1 + q)
, (3.151)

and so

cP̄
(3)

φ3φ4
= −

(∆ + ∆34 + s)(∆ + ∆34 − s− 1)cP̄
(0)

φ3φ4

16(4∆2 − 1)(∆2 − s2)(∆2 − (s+ 1)2)(∆ + s− q)(∆− s− 1− q) . (3.152)
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The norm is

fP(3)P̄(3) = 64∆2(4∆2−1)(∆2−s2)(∆2− (s+1)2)((∆+s)2− q2)((∆−s−1)2− q2)fP(0)P̄(0) ,
(3.153)

so that

a3 =
fP(3)P̄(3)

fP(0)P̄(0)

cP
(3)

φ1φ2
cP̄

(3)

φ3φ4

cP
(0)

φ1φ2
cP̄

(0)

φ3φ4

=
∆2(∆ + ∆12 + s)(∆ + ∆12 − s− 1)(∆ + ∆34 + s)(∆ + ∆34 − s− 1)

4(4∆2 − 1)(∆2 − s2)(∆2 − (s+ 1)2)
,

(3.154)
in complete agreement with (3.67) for d = 3.

3.B Decomposition of the generalized free chiral cor-

relator

A natural solution to the crossing equation using the conformal blocks in (3.64) in both
channels corresponds to the supersymmetric analogue of the generalized free field. The
elementary fields of this theory are a chiral scalar primary φ(x) of dimension ∆φ, its
supersymmetric descendants – a fermion ψa(x) = (Q−a φ(x)), and the auxiliary field F (x) =
εabQ−aQ

−
b φ(x), as well as their conjugates. The correlators are computed using Wick’s

theorem, where each field only couples to its conjugate. The decomposition of the correlator
〈φφ̄φφ̄〉 into ordinary conformal blocks was given in [107]. We can use this decomposition
together with (3.66) to find the decomposition into superconformal blocks〈

φ(x1)φ̄(x2)φ(x3)φ̄(x4)
〉

=
1

|x12|2∆φ|x34|2∆φ

[
1 +

(u
v

)∆φ

]
=

=
1

|x12|2∆φ|x34|2∆φ

[
G0,0

0,0(u, v) +
∑
n,s≥0

pn,sG0,0
2∆φ+2n+s,s(u, v)

]
,

(3.155)
where

pn,s =
(−2)s(∆φ)2

n+s

(
∆φ − d

2
+ 1
)2

n

n!s! (2∆φ + 2n+ s)s
(
s+ d

2

)
n

(2∆φ + n− d+ 2)n
(
2∆φ + n+ s− d

2
+ 1
)
n

,

(3.156)
and (x)n ≡ Γ(x+n)/Γ(x) is the Pochhammer symbol. This decomposition serves as a fur-
ther test of the validity of the superconformal blocks in (3.64). The result in (3.155), (3.156)
strongly resembles the decomposition of the four-point function of non-supersymmetric
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generalized free fields into ordinary conformal blocks given in equation (43) of [107]. In
fact the two results are identical to each other (up to an overall normalization) if one fixes
∆1 = ∆2 = ∆φ in equation (43) of [107], and performs the shift 2∆φ 7→ 2∆φ − 1 in the
denominator of (3.156). This is reminiscent of the observations in Section 3.3.3.

3.C N = 2 minimal models

Generalities

Here we collect some well-known facts about N = 2 minimal models in two dimensions, see
for example [108]. For a discussion on N = 1 minimal models see [109]. The (holomorphic)
infinite-dimensional N = 2 superconformal algebra in two dimensions is:

[Lm, Ln] =
c

12
(m3 −m) δm+n,0 + (m− n)Lm+n ,

[Lm, G
±
r ] =

(m
2
− r
)
G±m+r ,

[Lm,Ωn] = −nΩm+n ,

{G+
r , G

−
s } =

c

3

(
r2 − 1

4

)
δr+s,0 + 2Lr+s + (r − s)Ωr+s ,

{G+
r , G

+
s } = {G−r , G−s } = 0 ,

[Ωn, G
±
r ] = ±G±r+n ,

[Ωm,Ωn] =
c

3
mδm+n,0 .

(3.157)
Here m and n are integers and in the NS sector r and s are half-integers. The modes of the
energy momentum tensor are Lm, those of the superconformal R-symmetry are Ωn and the
two supercharges have modes G±r . The real number c is the (left or right moving) central
charge and it is related to the conformal anomaly of the CFT.

The finite, sl(2|1), subalgebra of the superconformal algebra, given in (3.20), is obtained
from (3.157) by restricting to the generators {L−1,0,1,Ω ≡ Ω0, G

±
±1/2}. Unitary represen-

tations of the infinite-dimensional N = 2 superconformal algebra exist for any real c ≥ 3
and for the discrete values

c =
3k

k + 2
, k = 0, 1, 2, . . . . (3.158)

This discrete series is usually referred to as theN = 2 minimal models. The dimensions and
R-charges of the superconformal primary operators in the NS sector of the k-th minimal
model are labeled by two integers m and n

h =
n(n+ 2)−m2

4(k + 2)
, Ω =

m

k + 2
, 0 ≤ n ≤ k , −n ≤ m ≤ n , m+ n = even .

(3.159)
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The fusion rules for N = 2 minimal models are derived in [110, 111] (see also [112]).11 The
superconformal primaries in the k-th minimal model will be denoted by φn,m. The fusion
rules are then

φn1,m1 × φn2,m2 =

m2+n2
2∑

n=
m2−n2

2

φn1−m2+2n,m1+m2 . (3.160)

The k-th N = 2 minimal model has a Zk+2 symmetry generated by some of the primaries
in the Ramond sector, see [110]. Chiral, antichiral primaries are superconformal primaries
also annihilated by G+

−1/2, G−−1/2, respectively, which is equivalent to Ω = ±2h. In the
minimal models, these are operators with m = ±n, respectively.

One can derive a universal bound for the central charge of a two-dimensional N = 2
SCFT using the infinite-dimensional superconformal algebra, see for example [113]. Using
unitarity and the algebra in (3.157) one finds

0 ≤ 〈φ|{G+
−3/2, G

−
3/2}|φ〉 = 〈φ|

(
2L0 − 3Ω +

2c

3

)
|φ〉 , (3.161)

for any superconformal primary |φ〉. Thus we arrive at the following constraint for the
dimension and R-charge of any superconformal primary

2h− 3Ω +
2c

3
≥ 0 , (3.162)

which becomes h ≤ c/6 for a chiral primary. The bound is saturated only if the state
G+
−3/2|φ〉 is null. The highest-dimension chiral primary in every minimal model has m =

n = k and saturates the bound. If we have a unitary (2, 2) SCFT with a diagonal spectrum,
i.e. h̄ = h = ∆/2, we arrive at the following lower bound on the central charge

CT ≥ 6∆max , (3.163)

where ∆max is the highest dimension of a superconformal primary in the theory. One can
repeat the same analysis with the state G+

−(2p+1)/2|φ〉 with p = 1, 2, 3, . . . and find the
bound

CT ≥
12

p+ 1
∆max , (3.164)

Clearly the strongest bound is obtained for p = 1 as in (3.163).

11Notice that there is a factor of 1/2 difference between our conventions for the R-charge and the ones
in [110, 111].
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In Section 3.6.3 we claimed that in every unitary CFT with N = (2, 2) supersymmetry
there is always an operator (or state) of dimension ∆ = 2 which is a superdescendant of
the identity. This state is given by

Ω−1Ω̄−1|0〉 , (3.165)

where |0〉 is the NS vacuum and Ω−1 is defined in (3.157). This state clearly has dimension
∆ = h+ h̄ = 2 and R-charge q = Ω + Ω̄ = 0. Moreover its norm is given by

〈0|Ω1Ω̄1Ω−1Ω̄−1|0〉 =
c2

9
. (3.166)

Therefore in a unitary theory the state is never null since c > 0.

Super-Ising in d = 2

The theory with c = 1 can be realized in terms of a single compact boson, ϕ, at a specific
radius R =

√
3 [112, 114]. There are three superconformal primary operators

φ1,±1 =: e
± i√

3
ϕ

: , φ0,0 = 1 . (3.167)

The operator φ1,1 is chiral with ∆ = q/2 = 1
3
, and is identified with the (holomorphic

part of the) operator Φ in Section 3.6.3. Similarly the operator φ1,−1 is antichiral with
∆ = −q/2 = 1

3
, and is identified with the operator Φ̄. One can now use the formula

: eiaϕ(z1) :: eibϕ(z2) := (z1 − z2)ab : eiaϕ(z1)+ibϕ(z2) : , (3.168)

where a and b are some constants, to find the OPE

φ1,1(z1)φ1,−1(z2) ∼ 1

(z1 − z2)1/3
+

i√
3
∂z2ϕ(z2)(z1 − z2)2/3 + . . . . (3.169)

We normalize all two point functions in the theory to have coefficients 1 and define the
operator Oε(z) ≡ i∂zϕ(z), which has dimension h = 1. The operator of dimension ∆ = 2,
which should be identified with [ΦΦ̄] from Section 3.6.3, is obtained by takingOε(z)Ōε(z̄) =
∂zϕ(z)∂z̄ϕ̄(z̄). Another useful OPE is given by

i∂z1ϕ(z1) : eiaϕ(z2) :∼ a
: eiaϕ(z2) :

z1 − z2

+ . . . . (3.170)
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With these OPEs at hand one finds the following three point function

〈φ1,1(z1)φ1,−1(z2)Oε(z3)〉 =
1√
3

1

(z1 − z2)−2/3(z2 − z3)(z1 − z3)
. (3.171)

Combining the left and right-moving sectors one finds the three-point function

〈Φ(z1, z̄1)Φ̄(z2, z̄2)[ΦΦ̄](z3, z̄3)〉 =
1

3

1

|z1 − z2|−4/3|z2 − z3|2|z1 − z3|2
. (3.172)

Thus we find that the OPE coefficient denoted by cΦΦ̄[ΦΦ̄] is given by

cΦΦ̄[ΦΦ̄] =
1

3
. (3.173)

This matches nicely with the numerical value at the kink in the right panel of Figure 3.6.

A comment on two supercharges

Finally, let us mention a tangential observation about bootstrap of (1, 1) SCFTs in d = 2,
complementing the results of [77] with N = 1 supersymetry in d = 3. Analogously to that
study, also with (1, 1) supersymmetry in d = 2, the superconformal blocks are equal to
the conformal blocks, so that there are no additional constraints from crossing symmetry
besides the numerical bounds obtained in [4, 13]. However, it may happen that the leading
scalar appearing in the σ×σ OPE is the superdescendant of σ itself. In this case, we have
the extra constraint ∆[σσ] = ∆σ + 1. The result is that the two lines intersect at ∆σ ≈ 1/5
and ∆ε ≈ 6/5 for d = 2. These dimensions correspond to the Virasoro minimal model with
central charge c = 7/10, i.e. the tricritical Ising model. This is in fact the first N = 1
minimal model [109], in harmony with the analogous results of [77] in d = 3.
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Chapter 4

Analytic Functionals for the
Conformal Bootstrap

4.1 Introduction

As examplified in the previous chapters, unitarity and associativity of the operator product
expansion have proven very powerful in constraining the dynamics of CFTs in various
dimensions. Focusing on the analytic results, these principles can be used for example to
derive universal behaviour of CFTs at large spin [66, 67], the emergence of local physics in
the AdS dual [115], Hofman-Maldacena bounds [116] or causality [117].

Some of the most exciting consequences of the conformal bootstrap equations are con-
straints on the low-lying spectrum of operators. Most prominently, there is a strong nu-
merical evidence that the 3D Ising model at criticality is the unique 3D CFT with a Z2

symmetry and precisely one relevant scalar primary operator of each Z2 charge [4–6]. In
spite of a substantial progress on the numerical front, little has been learnt about the
analytic origin of these constraints. The main aim of this chapter is to take some steps
towards such analytic understanding.

A standard example of an equation arising in the conformal bootstrap expresses the
crossing symmetry of the four-point function of identical scalar primary operators φ(x)
and takes the form ∑

O∈φ×φ

(cφφO)2FO(z, z̄) = 0 , (4.1)

where the sum runs over primary operators present in the φ × φ OPE, cφφO is the cor-
responding OPE coefficient, and FO(z, z̄) are functions related to conformal blocks and

104



completely fixed by conformal symmetry in terms of the quantum numbers of φ and O and
the dimension of spacetime. Unitarity implies (cφφO)2 > 0.

(4.1) can be looked upon as a vector equation in the infinite-dimensional vector space
of functions of two complex variables z and z̄. It is mostly due to the infinite-dimensional
nature of the problem that an extraction of physical consequences from (4.1) is not a simple
task. The challenge is to identify a direction in this vector space along which the bootstrap
equation is the most revealing. Speaking more formally, any linear functional acting on
the space of functions FO(z, z̄) can be applied to (4.1), leading to a single constraint on
the CFT data. Some functionals lead to stronger constraints than others. The functionals
leading to optimal constraints have been called extremal functionals [23]. The extremal
functional depends on the precise question we are asking but can be expected to carry
valuable physical information about conformal field theories. An analytic construction
of various extremal functionals is therefore a promising strategy for understanding the
bootstrap bounds.

One example of a constraint that (4.1) implies for the CFT data is an upper bound
on the gap in the spectrum of scalar O above identity. This bound exhibits a kink at
the critical Ising model both in two and three dimensions, and the two are continuously
connected across dimensions [63]. An analytic derivation of the shape of this bound already
in 2D with global conformal symmetry is therefore a very important problem.

In the present chapter, we take a step in this direction by finding the optimal upper
bound on the gap in one-dimensional theories with global conformal symmetry. Such
theories are interesting in their own right since they describe conformal line defects in
higher-dimensional CFTs [1, 60], models of (super)conformal quantum mechanics, as well as
field theories placed in AdS2 [118]. The conformal bootstrap equations in 1D are relatively
simple since the conformal blocks are hypergeometric functions of a single cross-ratio z.
Moreover, the global conformal blocks in 2D are products of two copies of 1D conformal
blocks so one can hope to lift bootstrap results from 1D to 2D.

In chapter 2, we presented numerical evidence that in unitary 1D CFTs, the optimal
upper bound on the scaling dimension of the lowest primary operator above identity in the
OPE of two identical primary operators ψ(x) is

∆̃ = 2∆ψ + 1 (4.2)

for any ∆ψ > 0. In fact, the bound can not be any lower since this value is saturated by
the boundary correlators of a free massive Majorana fermion in AdS2. Indeed, the primary

operators in the ψ×ψ OPE are the two-particle states ψ
←→
∂ 2j+1ψ, j ≥ 0, the lowest scaling

dimension being 2∆ψ + 1.
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We will prove that 2∆ψ + 1 is the optimal bound for ∆ψ positive integer or half-
integer by analytically constructing the corresponding extremal functionals. Traditional
numerical bootstrap relies on functionals in the form of linear combinations of derivatives in
z evaluated at the crossing-symmetric point z = 1/2. We will demonstrate that the correct
extremal functionals do not lie in the space spanned by this set. Instead, we will introduce
a new class of functionals taking the form of integrals of the discontinuity of the conformal
blocks on the branch cut z ∈ (1,∞) against a suitable integral kernel. The integral kernel
corresponding to the extremal functional can be fixed analytically. We checked that the
derivative functionals coming from the numerics converge to our analytic functional when
expressed in the new basis as we approach the optimal bound.

Thanks to its distinguished nature, the analytic extremal functional ω∆ψ
can be ex-

pected to imply important consequences for any 1D CFT. Acting with ω∆ψ
on the equation

(4.1), we obtain ∑
O∈ψ×ψ

(cψψO)2ω∆ψ
(FO(z)) = 0 . (4.3)

The free fermion theory trivially satisfies this equation since ω∆ψ
vanishes on the spectrum

of the extremal solution. However, (4.3) represents a universal constraint satisfied by any
consistent four-point function. This constraint is particularly revealing for ∆ψ � 1. We
will show that a family of unitary solutions of (4.3) where the dimensions of all primary
operators scale linearly with ∆ψ as ∆ψ →∞ has many features of a boundary four-point
function corresponding to scattering in a massive QFT placed in large AdS2. Specifi-
cally, we will recover the precise exponential supression of OPE coefficients of operators
corresponding to bound states seen in [118–120] and universal behaviour of OPE coeffi-
cients corresponding to two-particle states derived in [118]. The validity of equation (4.3)
will then be seen to require analyticity of the flat-space S-matrix in the upper-half plane,
together with a sum rule for the OPE coefficients of two-particle states at rest.

Finally, we can use the relationship between 1D conformal blocks and 2D global con-
formal blocks to lift the 1D extremal functionals to closely related functionals acting on
the 2D crossing equation. These functionals then imply that the OPE of two identical
scalar primaries φ(x) must contain a non-identity global conformal primary with twist τ
satisfying

τ ≤ 2∆φ + 2 . (4.4)

This bound is valid without assuming Virasoro symmetry, so also for 2D conformal bound-
aries and surface defects. Theories with Virasoro symmetry automatically satisfy it thanks
to the existence of zero-twist operators other than identity. However, when 0 < ∆φ < 1,
we can show that the bound must be satisfied by a primary with strictly positive twist,
thereby getting a nontrivial prediction also in the presence of Virasoro symmetry.
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The rest of this chapter is organized as follows. Section 4.2 is a review of ideas useful
in the remaining parts, namely extremal functionals and the conformal bootstrap in 1D.
We use section 4.3 to motivate and introduce a new class of 1D bootstrap functionals. In
section 4.4, we explain the virtues of the new basis and analytically construct the extremal
functional for ∆ψ = 1/2. We extend the construction to other integer and half-integer
values of ∆ψ in section 4.5. We explain how applying the new functionals at large ∆ψ

naturally leads to the physics of massive (1+1)D QFTs in large AdS2 in section 4.6 and
prove an upper bound on the minimal twist in 2D in section 4.7. Future directions are
outlined in section 4.8.

4.2 Review

4.2.1 The conformal bootstrap and extremal functionals

The simplest example of constraints that the conformal bootstrap imposes on the low-lying
spectrum of primary operators comes from considering the four-point function of a neutral
scalar primary operator φ(x). Thanks to the conformal symmetry, the four-point function
takes the form

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
1

|x12|2∆φ |x34|2∆φ
A(z, z̄) , (4.5)

with A(z, z̄) unconstrained by conformal symmetry alone, and where z and z̄ are defined
by their relation to the conformal cross-ratios

zz̄ =
x2

12x
3
34

x2
13x

2
24

, (1− z)(1− z̄) =
x2

14x
3
23

x2
13x

2
24

, (4.6)

with xij = xi − xj. Applying the operator product expansion (OPE) to φ(x1)φ(x2) leads
to the following expansion of A(z, z̄)

A(z, z̄) =
∑
O∈φ×φ

(cφφO)2G∆O,sO(z, z̄) , (4.7)

where the sum ranges through primary operators appearing in the φ× φ OPE, which are
characterized by their scaling dimension ∆O and spin sO. The conformal blocks G∆,s(z, z̄)
are fixed by conformal symmetry in terms of ∆, s and the dimension of spacetime d. In
unitary theories, (cφφO)2 has the following interpretation in terms of the scalar product
〈·|·〉 in the Hilbert space of the theory on Sd−1 × R

(cφφO)2 =
〈φ|φ(0)|O〉〈O|φ(0)|φ〉

〈O|O〉 =
|〈O|φ(0)|φ〉|2
〈O|O〉 (4.8)
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and thus is positive. We can assume the identity operator appears in the φ × φ OPE.
Crucially, we can also apply the OPE to φ(x1)φ(x4), leading to the expansion

A(z, z̄) =

[
zz̄

(1− z)(1− z̄)

]∆φ ∑
O∈φ×φ

(cφφO)2G∆O,sO(1− z, 1− z̄) . (4.9)

The consistency of the expansions (4.7), (4.9) can be written more succintly as∑
O∈φ×φ

(cφφO)2F∆O,sO(z, z̄) = 0 , (4.10)

where
F∆,s(z, z̄) = (zz̄)−∆φG∆,s(z, z̄)− (z ↔ 1− z, z̄ ↔ 1− z̄) . (4.11)

Equation (4.10) imposes constraints on the spectrum of primary operators in the φ × φ
OPE. Only for certain choices of the spectrum will there exist positive coefficients (cφφO)2

satisfying (4.10). F∆,s(z, z̄) should be thought of as a holomorphic function of two indepen-
dent complex variables z, z̄. In each of the variables, it has branch points at z, z̄ = 0, 1,∞,
where the branch cuts can be chosen to run from −∞ to 0 and from 1 to ∞. Equation
(4.10) holds everywhere away from these branch cuts. Either of the two OPE expansions
stops converging on some of the branch cuts, and consequently it is not legal to analytically
continue the equation through the branch cuts. However, the equation holds arbitrarily
close to the branch cuts, provided we stay on the first sheet.

The mechanism through which equation (4.10) constrains the spectrum in the φ × φ
OPE can be usefully cast in the language of linear functionals ω acting on the functions
F∆,s(z, z̄). Indeed, suppose we have such functional

ω : F∆,s 7→ ω(∆, s) ∈ R (4.12)

and suppose that ω is non-negative on a candidate spectrum S of primary operators ap-
pearing in the φ× φ OPE

∀ (∆, s) ∈ S : ω(∆, s) ≥ 0 . (4.13)

Applying ω to (4.10) we find that S can be a consistent spectrum only if ω vanishes on
all of S. Moreover, the converse also holds, namely whenever we have a spectrum S for
which no solution of (4.10) can be found, there is always a functional non-negative on all
of S and strictly positive on at least one operator (∆, s) ∈ S.
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Figure 4.1: The action of a typical extremal functional for the bound on the scalar gap on
F∆,0. The leading non-identity operator appears at a first-order zero with a positive slope,
while higher operators lie at second-order zeros.

In order to search for an upper bound on the gap in the scalar sector above identity
without reference to the rest of the spectrum, we should focus on nonzero functionals such
that1

ω(0, 0) ≥ 0

ω(∆, 0) ≥ 0 for ∆ ≥ ∆∗

ω(∆, s) ≥ 0 for ∆ ≥ d+ s− 2 and s ≥ 2 .

(4.14)

The minimal ∆∗ for which such ω exists coincides with the upper bound on the scalar gap.
We denote this upper bound as ∆̃. Consider a unitary solution to crossing with gap ∆̃. As
pointed out in [23], all operators in the solution must correspond to zeros of any functional
ω for which ∆∗ = ∆̃. Functionals for which ∆∗ = ∆̃ are called extremal functionals. Figure
4.1 illustrates how a typical extremal functional corresponding to the upper bound on the
scalar gap acts on F∆,0. It vanishes at ∆ = 0 and has a first-order zero and positive slope
at the lowest non-identity operator with dimension ∆∗. The functional must be negative
immediately to the left of ∆∗ since otherwise it would not exclude solutions with gap
smaller than ∆∗. Higher-lying scalar operators in the spectrum sit at second-order zeros
since the functional must vanish there without ever becoming negative for ∆ > ∆∗.

Generically, we expect both the extremal functional and the corresponding extremal

1In numerical implementations, the first condition is usually replaced by ω(0, 0) = 1 in order to
avoid the identically zero functional. Such functionals can only become extremal asymptotically, when
ω(∆, s)/ω(0, 0)→∞ for a generic (∆, s) outside of the spectrum.
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solution of (4.10) to be unique up to an overall positive rescaling. One counterexample is
the free theory point in 4D, i.e. ∆φ = 1, where an infinite class of extremal functionals
leads to the unique free theory solution. The extremal functionals for the 1D bound studied
in this chapter will be unique up to an overall rescaling. There is no reason for all the zeros
of the extremal functional to correspond to operators appearing in the solution to crossing
with nonzero OPE coefficient. A typical example is the first first-order zero in Figure 4.1
with negative slope, but sometimes even spurious second-order zeros can occur above ∆∗.
We will find that the extremal functionals for 1D bootstrap do not contain such subtleties.

One should view the extremal functional as the optimal lens with which to study the
bootstrap equation. It is the functional that projects the infinite-dimensional bootstrap
equation on a one-dimensional space in the most revealing manner. It is likely that un-
derstanding the mechanism through which the conformal bootstrap leads to bounds on
the gap, features in these bounds as well as islands in multi-correlator bootstrap amounts
to understanding the precise nature of the extremal functionals. In this chapter, we will
also see that extremal functionals carry valuable physical information about solutions to
crossing distinct from the extremal solution. Indeed, the extremal functionals for the 1D
bootstrap bound will be shown to naturally lead to the physics of QFT in AdS2 of large
radius when the external scaling dimensions are large.

4.2.2 The conformal bootstrap in one dimension

There are good reasons to start an analytic study of the constraining power of the bootstrap
equations in one spacetime dimension. The kinematics is very simple, and explicit formulas
exist for arbitrary conformal blocks. Moreover, one can hope to lift the 1D results to 2D,
where the conformal blocks are linear combinations of products of the 1D blocks. Finally, as
we saw in chapter 2, an explicit formula likely exists for the optimal 1D bootstrap bound,
begging for an analytic explanation. Numerous interesting systems exhibit the global
conformal symmetry in one dimension, including conformal boundaries in 2D CFTs, line
defects in general CFTs [1, 60], and various examples of AdS2/CFT1 holography.

Here and in the rest of the chapter, by conformal symmetry we always mean the global
conformal symmetry. In one dimension, the conformal group is SL(2), with generators
D,P,K satisfying commutation relations

[D,P ] = P , [D,K] = −K , [K,P ] = 2D . (4.15)

Unitary highest-weight representations, corresponding to primary fields, are labelled by the
scaling dimension ∆. There are no rotations and therefore no spin. Two- and three-point
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functions are completely fixed in terms of ∆i and structure constants cijk.
2 Four points on

a line give rise to a single cross-ratio

z =
x12x34

x13x24

. (4.16)

We can focus on the kinematic region where x1 < x2 < x3 < x4 and use the three conformal
generators to set x1 = 0, x3 = 1, x4 =∞, so that x2 = z ∈ (0, 1). The four-point function
of identical primary fields ψ(x) takes the form

〈ψ(x1)ψ(x2)ψ(x3)ψ(x4)〉 =
1

|x12|2∆ψ |x34|2∆ψ
A(z) , (4.17)

where A(z) can be expanded in conformal blocks

A(z) =
∑
O∈ψ×ψ

(cψψO)2G∆O(z) . (4.18)

The 1D conformal block is just the chiral half of the 2D global conformal block [88]

G∆(z) = z∆
2F1(∆,∆; 2∆; z) . (4.19)

Assuming ψ(x) is a real field, the conformal block expansion starts with the identity oper-
ator with ∆ = 0. The crossing equation reads∑

O∈ψ×ψ

(cψψO)2F∆O(z) = 0 , (4.20)

where
F∆(z) = z−2∆ψG∆(z)− (1− z)−2∆ψG∆(1− z) . (4.21)

As we saw in section 2.4, standard numerical bootstrap applied to (4.20) using deriva-
tives at the crossing-symmetric point z = 1/2 leads to an upper bound on the scaling
dimension of the first non-identity operator in the ψ × ψ OPE. The bound seems to con-
verge to

∆̃ = 2∆ψ + 1 (4.22)

as the number of derivatives is increased. Figure 4.2, which we repeat here for reader’s
convenience from chapter 2, shows a comparison of the numerical bound using 50 deriva-
tives and the exact line (4.22). The matching seems to deteriorate for higher ∆ψ. It is a
well-known feature of numerical bootstrap using derivatives that convergence slows down
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Figure 4.2: Black dots: Numerical bootstrap bound on the gap above identity following
from (4.20), using 50 derivatives. Red dashed line: ∆̃ = 2∆ψ + 1.

dramatically as the external scaling dimension is increased, so one should not take this
mismatch too seriously.

In fact, the bound can never be lower than 2∆ψ + 1 because this value is saturated by
the unitary solution to crossing corresponding to the generalized free real fermion in 1D,
which also arises as the boundary dual of the free massive Majorana fermion in AdS2. The
four-point function takes the form

〈ψ(x1)ψ(x2)ψ(x3)ψ(x4)〉 =
1

|x12|2∆ψ |x34|2∆ψ
− 1

|x13|2∆ψ |x24|2∆ψ
+

1

|x14|2∆ψ |x23|2∆ψ
, (4.23)

where ∆ψ can take an arbitrary positive value. In other words

A(z) = 1 +

(
z

1− z

)2∆ψ

− z2∆ψ . (4.24)

A(z) can be decomposed in conformal blocks with positive coefficients, the spectrum being

∆j = 2∆ψ + 2j + 1 , j ∈ Z≥0 . (4.25)

2Note that unlike in higer dimensions, cijk 6= cjik in general because two operators can not be con-
tinuously swapped in 1D. However, we still expect cijk = cjki since a line is conformally equivalent to a
circle.
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The primary operators appearing in this OPE are ψ
←→
∂ 2j+1ψ, corresponding to two-particle

states in AdS2. The gap is indeed 2∆ψ + 1. The existence of this solution together with
evidence from the numerics suggests 2∆ψ+1 is the optimal bootstrap bound. As explained
in the previous subsection, proving this claim amounts to constructing (for each ∆ψ > 0)
a nonzero functional ω∆ψ

acting on functions F∆(z) defined in (4.21)

ω∆ψ
: F∆(z) 7→ ω∆ψ

(∆) ∈ R (4.26)

such that
ω∆ψ

(0) = 0

ω∆ψ
(∆) = 0 for ∆ = 2∆ψ + 2j + 1 , j ∈ Z≥0

ω∆ψ
(∆) ≥ 0 for ∆ ≥ 2∆ψ + 1

(4.27)

One of the main results of this chapter is to construct such ω∆ψ
explicitly when ∆ψ is a

positive integer or half-integer, and thus find the optimal bootstrap bound for these values.

4.3 From derivative functionals towards the new basis

4.3.1 Inadequacy of the z-derivatives and the Zhukovsky variable

We will now discuss what the numerics have to say about the nature of the extremal
functionals and introduce a new class of functionals that we use to construct the extremal
functionals analytically in later sections. The discussion is framed in the context of 1D
bootstrap but we expect analogous comments to apply in higher dimensions too.

Numerical searches for functionals excluding candidate spectra have used the basis con-
sisting of derivatives of functions F∆(z) defined through (4.21), evaluated at the crossing-
symmetric point z = 1/2. In practice, one truncates the space to derivatives of maximal
degree 2N − 1. Let ω(N) be the extremal functional in this truncated space and write

ω(N) =
N∑
j=1

a
(N)
j

(2j − 1)!

d2j−1

dz2j−1

∣∣∣∣
z=1/2

(4.28)

with a
(N)
j ∈ R. It is natural to wonder wether the extremal functional corresponding to

the optimal bootstrap bound lies in the basis of derivatives, in other words whether ω(N)

converges in this basis as N → ∞. At least for the 1D bootstrap problem at hand, the
numerics indicate that this is not the case, and we expect the same happens in higher
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dimensions too. Since the functional is defined only up to an overall positive rescaling, let
us normalize the leading coefficient as |a(N)

1 | = 1. It turns out that (for any ∆ψ) as N is
increased, higher coefficients diverge as increasing powers of N

a
(N)
j

N→∞∼ βjN
j−1 . (4.29)

Hence the optimal extremal functional can not be a linear combination of derivatives at
z = 1/2. The result (4.29) resembles the evaluation of functions F∆(z) at a point that
moves to infinity in the z-plane as N increases. There is another instructive way to look
at this divergence as follows. Equation (4.20) holds everywhere in the complex z-plane
away from the branch cuts located at z ∈ (−∞, 0) and z ∈ (1,∞). However, derivatives
at z = 1/2 have access to information about F∆(z) only within the radius of convergence
of F∆(z) around this point, i.e. only in |z − 1/2| < 1/2, see Figure 4.3. The result (4.29)
is thus telling us that the existence of the optimal bootstrap bound crucially relies on
complex analytic behaviour of the functions F∆(z) outside of this disc.

There is a simple way to keep using derivatives at z = 1/2 while getting access to the
whole complex plane. We can map the complex plane without the two branch cuts to the
interior of the unit disc via a version of the Zhukovsky transformation

z(y) =
(1 + y)2

2(1 + y2)
, (4.30)

illustrated in Figure 4.3.

The points z = 0, 1/2, 1 correspond to y = −1, 0, 1 respectively, while z = ∞ corre-
sponds to the pair y = ±i. The pair of branch cuts in the z-plane gets mapped to the unit
circle. Crossing symmetry z ↔ 1− z gets mapped to y ↔ −y and the Taylor expansion of
F∆(z(y)) around y = 0 converges in the whole interior of the unit disc.

We can wonder whether the optimal extremal functional can be written as a linear
combination of derivatives with respect to y evaluated at y = 0. For any finite N , the
space of functionals generated by {∂2j−1

z |z=1/2, 1 ≤ j ≤ N} and by {∂2j−1
y |y=0, 1 ≤ j ≤ N}

coincide. However, when we express the extremal functional for any finite N in terms of
the y-derivatives as

ω(N) =
N∑
j=1

b
(N)
j

(2j − 1)!

d2j−1

dy2j−1

∣∣∣∣
y=0

(4.31)

and normalize |b(N)
1 | = 1, we find the other coefficients converge

bj ≡ lim
N→∞

b
(N)
j , (4.32)
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Figure 4.3: The transformation (4.30) between the z and y coordinates. z-derivatives
evaluated at z = 1/2 can reconstruct the values of F∆(z) only in the dark-blue region,
while y-derivatives at y = 0 can reconstruct the values everywhere away from the branch
cuts.

in other words, the optimal extremal functional can be written as

ω =
∞∑
j=1

bj
(2j − 1)!

d2j−1

dy2j−1

∣∣∣∣
y=0

(4.33)

for some bj ∈ R. One could now try to fix coefficients bj leading to a functional with
the desired properties (4.27). However, it will turn out there is another representation
of ω better suited for this task. This representation takes the form of an integral of the
discontinuity of F∆(z) across the branch cut z ∈ (1,∞) against suitable integral kernels.
To go from y-derivatives to such integrals, notice first that any derivative at y = 0 of a
function f(y) holomorphic inside the unit disc can be written as a contour integral

f (k)(0) =
k!

2πi

∮
Γ

dy

y
y−kf(y) , (4.34)

where the contour Γ winds once around the origin and lies inside the unit disc. If k ≥ 1,
nothing changes with the insertion of an extra holomorphic term

f (k)(0) =
k!

2πi

∮
Γ

dy

y

(
y−k − yk

)
f(y) . (4.35)
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Taking Γ to be the unit circle,3 parametrized as y = eiθ, the integral becomes

f (k)(0) =
k!

iπ

2π∫
0

dθ sin (kθ) f
(
eiθ
)
. (4.36)

Since we will be taking f(y) = F∆(z(y)), we can assume f(ȳ) = ¯f(y). Consequently, the
last integral is only sensitive to the imaginary part of f(y) on the unit circle. A general
odd derivative functional can now be written as

ω(f) =
∞∑
j=1

bj
(2j − 1)!

f (2j−1)(0) =
1

π

2π∫
0

dθ g(θ)Im[f
(
eiθ
)
] , (4.37)

where

g(θ) =
∞∑
j=1

bj sin [(2j − 1)θ] . (4.38)

We can use symmetries of F∆(z) to simplify the result to

ω(F∆) =
4

π

π/2∫
0

dθ g(θ)Im[F∆

(
z(eiθ)

)
] (4.39)

with z(y) given by (4.30). Since the unit circle in the y-coordinate corresponds to the
pair of branch cuts of F∆ in the z-coordinate, we see that we can write the functional
as an integral of the imaginary part, or in other words discontinuity, of F∆(z) on the
branch cut z ∈ (1,∞) against an appropriate integral kernel.4 The coefficients bj are
simply the Fourier coefficients of this kernel when the latter is written in the θ coordinate.
However, there is a basis of functions on the branch cut which is more natural than the
sines for the problem at hand. Namely the complete set of eigenfunctions of the conformal
Casimir regular at the endpoints of the branch cut. In 1D, these eigenfunctions are simply
Legendre polynomials of an appropriate coordinate. We are going to show soon how to fix
the coefficients of the extremal functionals analytically in this basis. We can then always
use the representation (4.38) and (4.39) to go back to the derivative basis.

3The contour can be taken all the way to the unit circle only in the absence of singularities of f(y)
on |y| = 1. If these are present, we need to avoid them along infinitesimal arcs in the interior of the unit
circle.

4We thank Miguel Paulos for suggesting to look at functionals involving the discontinuity of the con-
formal block.
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4.3.2 The new basis

As explained in the previous section, we want to write the extremal functionals as integral
kernels applied to the imaginary part of F∆ defined in (4.21) on the branch cut z ∈ (1,∞).
Let us write

F∆(z) = g∆(z)− g∆(1− z) , (4.40)

where
g∆(z) = z∆−2∆ψ

2F1(∆,∆; 2∆; z) . (4.41)

It is convenient to map the branch cut to the unit interval x ∈ (0, 1) via

x =
z − 1

z
. (4.42)

Let us denote

f+
∆(x) = lim

ε→0+

1

π
Im [g∆(z(x) + iε)]

f−∆(x) = lim
ε→0+

1

π
Im [g∆(1− z(x)− iε)]

(4.43)

It is not hard to evaluate f±∆(x)

f+
∆(x) = (1− x)2∆ψ

Γ(2∆)

Γ(∆)2 2F1(∆, 1−∆; 1;x)

f−∆(x) = −(1− x)2∆ψ
sin [π(∆− 2∆ψ)]

π
x∆−2∆ψ

2F1(∆,∆; 2∆;x) .

(4.44)

f+
∆(x) is coming from the logarithmic branch cut of the direct channel conformal block

starting at z = 1. The crossed channel conformal block has a power-law singularity at
z = 1, so that f−∆(x) is essentially the original conformal block with a sine prefactor. We
are going to study functionals of the form

ω(F∆) =
1

π

1∫
0

dxh(x)(1− x)−2∆ψIm [F∆(z(x) + iε)]

=

1∫
0

dxh(x)(1− x)−2∆ψ
[
f+

∆(x)− f−∆(x)
] (4.45)

where h(x) is a suitable integral kernel. We also explicitly eliminated the prefactor (1 −
x)2∆ψ common to f±∆(x). It is natural to expand h(x) in the basis of solution of the

117



conformal Casimir equation which are regular at x = 0, 1. Note that this choice breaks
the symmetry between the direct and crossed conformal block since the Casimir equation
is not invariant under z ↔ 1 − z. However, we will see that the symmetry is partially
restored by the full h(x). The conformal Casimir equation in the direct channel written in
the x-coordinate is just the Legendre differential equation

d

dx

[
x(1− x)

dg(x)

dx

]
+ ∆(∆− 1)g(x) = 0 . (4.46)

The solutions regular at x = 0, 1 have ∆ = n ∈ N and read

pn(x) = 2F1(n, 1− n; 1;x) = (−1)n−1Pn−1(2x− 1) , (4.47)

where Pm(y) are the Legendre polynomials. pn(x) form a complete set of functions on
x ∈ [0, 1] orthogonal with respect to the standard inner product with constant weight. We
can expand h(x) in this basis

h(x) =
∞∑
n=1

anpn(x) . (4.48)

In the following sections, we are going to present analytic formulas for an that make ω
into extremal functionals. Substituting (4.48) into (4.45), the action of ω becomes (we use
ω(F∆) and ω(∆) interchangably in this chapter)

ω(∆) =
∞∑
n=1

s(∆, n)an , (4.49)

where
s(∆, n) = s+(∆, n)− s−(∆, n) (4.50)

and we have defined overlaps of the imaginary part of F∆ with our basis functionals

s±(∆, n) =

1∫
0

dx (1− x)−2∆ψf±∆(x)pn(x) . (4.51)

The overlaps can be found in a closed form as follows. (1 − x)−2∆ψf+
∆(x) satisfies the

differential equation (4.46), and so the overlap is particularly simple

s+(∆, n) =
Γ(2∆)

Γ(∆)2

sin[π(∆− n)]

π(∆− n)(∆ + n− 1)
. (4.52)
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In particular, for ∆ = m ∈ N, we find orthogonality

s+(m,n) =
Γ(2m)

Γ(m)2

1∫
0

dx pm(x)pn(x) =
Γ(2m− 1)

Γ(m)2
δmn . (4.53)

The formula for s−(∆, n) is more complicated because the Casimir equations in the two
channels do not coincide

s−(∆, n) = (−1)n
Γ(2∆)

Γ(∆)2

sin[π(∆− 2∆ψ)]

π
R∆ψ

(∆, n) , (4.54)

where

R∆ψ
(∆, n) ≡ Γ(β)2Γ(γ)2

Γ(δ)Γ(ε)Γ(ζ)
4F3

(
β β γ γ
δ ε ζ

; 1

)
(4.55)

with
β = ∆

γ = ∆− 2∆ψ + 1

δ = 2∆

ε = ∆− 2∆ψ − n+ 2

ζ = ∆− 2∆ψ + n+ 1 .

(4.56)

A comment is in order concerning the regime of validity of (4.54). f−∆(x)pn(x) = O(x∆−2∆ψ)
as x → 0, so we would expect s−(∆, n) to be defined only for ∆ > 2∆ψ − 1. Indeed,
R∆ψ

(∆, n) is an analytic function of ∆ for ∆ > 2∆ψ−1 with a simple pole at ∆ = 2∆ψ−1.
However, this pole is precisely cancelled by a zero of sin[π(∆− 2∆ψ)] in the full expression
for s−(∆, n). In fact, the formula (4.54) defines s−(∆, n) as a function analytic in ∆ for
any ∆ ≥ 0. The reason is that the imaginary part of F−∆ on the branch cut is also the
discontinuity of F−∆ across the branch cut. The integral (4.51) can then be thought of as a
contour integral in the complex x-plane with the contour starting at x = 1, running under
the branch cut, going around x = 0 and coming back to x = 1 above the branch cut. The
contour can be deformed away from the real axis, and thus the singularity at x = 0 is
avoided, as illustrated in Figure 4.4, leading to a finite answer for any ∆ ≥ 0. The proper
generalization of our functionals (4.45) to an arbitrary ∆ is then

ω(F∆) =
1

2πi

∫
Γ

dxh(x)(1− x)−2∆ψF∆(z(x)) . (4.57)

Note that when passing from derivatives at y = 0 to contour integrals as explained in the
previous subsection, singularities of the integrand on the unit disc are avoided in the same
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Figure 4.4: The choice of integration contour leading to a well-defined action of ω, equation
(4.57).

manner. The bottom line is that the expression (4.54) can be trusted for any ∆ ≥ 0. A
further subtlety will later arise from the fact that h(x), being an infinite linear combination
of pn(x), develops a branch cut at x ∈ (−∞, 0). Some care will then be needed to give
meaning to (4.57). However, no ambiguity is present when h(x) is a single basis vector
pn(x).

4.4 Constructing extremal functionals

4.4.1 General properties of the new basis

Let us first explain why the new basis is particularly suitable for the construction of
extremal functionals for 1D bootstrap. We will assume that ∆ψ is an integer or half-
integer, so that the oscillating factors in (4.52) and (4.54) are in phase. The action of the
general functional (4.45) can then be written as

ω(∆) =
Γ(2∆)

Γ(∆)2

sin(π∆)

π

∞∑
n=1

ŝ(∆, n)an , (4.58)

where

ŝ(∆, n) =
(−1)n

(∆− n)(∆ + n− 1)
+ (−1)2∆ψ+n+1R∆ψ

(∆, n) . (4.59)

In order to prove that the bootstrap bound is saturated by the generalized free fermion,
we need to find coefficients an so that ω(∆) has the properties listed in (4.27). This means
that ∆ = 2∆ψ + 1 is a zero of odd order of ω(∆), while ∆ = 2∆ψ + 2j + 1 is a zero of
even order for any j ∈ N. We will assume that in fact ∆ = 2∆ψ + 1 is a simple zero and
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the higher ∆ = 2∆ψ + 2j + 1 are all double zeros. The first key property of our basis is
that it is in a sense a basis dual to the set of functions F∆ with ∆ ∈ N and ∆ ≥ 2∆ψ.
Indeed, suppose ∆ = m ∈ N. The sine prefactor in (4.58) guarantees that ω(m) can only
be non-zero if the sum in (4.58) has a pole at ∆ = m. As explained in the previous section,
R∆ψ

(∆, n) has no poles for ∆ > 2∆ψ − 1, so that in this range of ∆ the pole must come
from the first term in (4.59) and the summand n = m. We conclude that

ω(m) =
Γ(2m− 1)

Γ(m)2
am for m ∈ N ,m ≥ 2∆ψ . (4.60)

In other words, the coefficient am is proportional to the value of the functional at ∆ = m.
It is also illuminating to consider the behaviour of the functionals at ∆ = 0. The prefactor
in (4.58) has a double zero there, so any contribution must come from a double pole of
R∆ψ

(∆, n). Indeed, there is such double pole, and its contribution can be written in a
closed form

ω(0) = − 1

Γ(2∆ψ)2

∞∑
n=2∆ψ

(n− 2∆ψ + 1)4∆ψ−2 an , (4.61)

where (a)b is the Pochhammer symbol. This formula also follows from applying ω to the
solution of crossing corresponding to the massive scalar in AdS2 and using (4.60). Note
that the Pochhammer symbol is only non-vanishing for n ≥ 2∆ψ and that it is positive
in that range. It follows that if ω(0) = 0, as is required from an extremal functional, the
coefficients an for n ≥ 2∆ψ must not all have the same sign. In particular, at least one of
them, say an∗ , is negative. Going back to (4.60), we conclude

ω(n∗) < 0 . (4.62)

Hence the bootstrap bound following from the existence of ω must be strictly above ∆ = n∗.
The lowest choice is n∗ = 2∆ψ, and we conclude that any bound following from the
functionals at hand must lie strictly above ∆ = 2∆ψ. Of course, we already knew this
thanks to the existence of the generalized free fermion solution, but it is reassuring to see
it follow so naturally in the present language. Assuming that ω is an extremal functional
with the spectrum of the generalized free fermion, we can now conclude from (4.60) that

a2∆ψ
< 0

a2∆ψ+2j−1 = 0 for j ∈ N
a2∆ψ+2j > 0 for j ∈ N .

(4.63)
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Moreover, the condition ω(0) = 0 determines a2∆ψ
in terms of the higher a2∆ψ+2j through

(4.61) as

a2∆ψ
= −

∞∑
j=1

(2j + 1)4∆ψ−2

(4∆ψ − 2)!
a2∆ψ+2j . (4.64)

For the sum to be convergent, an must decay at least as fast as

an = O(n−α) as n→∞ (4.65)

with
α > 4∆ψ − 1 . (4.66)

We will find out that in fact
α = 4∆ψ + 1 . (4.67)

In other words, the speed of convergence of the functionals to the optimal one improves
with increasing ∆ψ in the new basis. This is the exact opposite of what happens in the
standard derivative basis, where high values of ∆ψ require higher numbers of derivatives
to achieve the same precision! This is one aspect of the particularly nice properties our
functionals possess for ∆ψ � 1, elaborated on in section 4.6.

It remains to determine the values of an for 1 ≤ n ≤ 2∆ψ − 1 as well as n = 2∆ψ + 2j
with j ∈ Z≥0. All these values of an are fixed by requiring that ∆ = 2∆ψ + 2j − 1 are
double zeros of the functional (4.58) for j ≥ 2, while ∆ = 2∆ψ + 1 is a simple zero. The
sine prefactor has a simple zero at all these locations, so the existence of a double zero
implies the sum in (4.58) must itself vanish there. Denote

ω̃(∆) =
∞∑
n=1

ŝ(∆, n)an . (4.68)

The conditions of ω(∆) having a simple zero and positive derivative at ∆ = 2∆ψ + 1 and
double zeros at higher ∆ = 2∆ψ + 2j − 1 read

ω̃(2∆ψ + 2j − 1) = (−1)2∆ψ+1δj1 for j ∈ N , (4.69)

where the condition for j = 1 fixes the arbitrary normalization of ω. It is not hard
to understand the mechanism of how these equations fix the values of non-zero an. We
already know that ω̃(∆) has a simple pole at ∆ = 2∆ψ + 2j for j ∈ N

ω̃(2∆ψ + 2j + ε)
ε→0∼ (−1)2∆ψ

4∆ψ + 4j − 1

a2∆ψ+2j

ε
. (4.70)
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Imagine changing ∆ continuously from ∆ = 2∆ψ + 2j to ∆ = 2∆ψ + 2j + 2. ω̃(∆) varies
from plus to minus infinity, or vice versa, depending on the sign of (−1)2∆ψ . In any case,
continuity implies

ω̃(∆) = 0 for some ∆ ∈ (2∆ψ + 2j, 2∆ψ + 2j + 2) for all j ∈ N . (4.71)

It is only for a specific choice of values of an that all these zeroes of ω̃(∆) occur precisely
at ∆ = 2∆ψ + 2j + 1. In order to find those values, it is useful to think of (4.69) as an
infinite matrix equation

∞∑
n=1

Ajnan = (−1)2∆ψ+1δj1 for j ∈ N (4.72)

with
Ajn = ŝ(2∆ψ + 2j − 1, n) . (4.73)

If the linear map defined by matrix Ajn were injective when acting on the subspace of an
that is not fixed to zero by conditions (4.63), we could obtain an simply as the first column
of the inverse of Ajn

an = (−1)2∆ψ+1A−1
n1 . (4.74)

The injectivity is in general violated for ∆ψ ≥ 3/2, and we will address this subtlety in
section 4.5. Before we do that, let us first solve the case ∆ψ = 1/2, where a closed formula
for h(x) can be found more directly.

4.4.2 The extremal functional for ∆ψ = 1/2

Notice first that when ∆ψ = 1/2, orthogonality (4.60) is valid for all m ∈ N. Since the
extremal functional corresponding to the generalized free fermion should vanish for all
∆ ∈ 2N, we conclude that only an with n odd can be nonzero

h(x) =
∑

n∈2N−1

anpn(x) . (4.75)

It follows from the symmetry property of the basis functions

pn(x) = (−1)n−1pn(1− x) (4.76)

that h(x) = h(1− x). We would now like to impose the conditions on derivatives (4.69)

ω′(2) > 0

ω′(2j + 2) = 0 for j ∈ N ,
(4.77)
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which take the explicit form

∑
n∈2N−1

[
− 1

(∆− n)(∆ + n− 1)
−R 1

2
(∆, n)

]
an =

{
1 for ∆ = 2

0 for ∆ = 2j + 2 , j ∈ N ,
(4.78)

with R∆ψ
(∆, n) defined in (4.55). Rather than solving these equations directly for an, we

will first express them in terms of scalar products of functions on the unit interval. Let us
first define the following functions for ∆ ∈ 2N

q∆(x) = Q∆−1(2x− 1)

r∆(x) =
Γ(∆)2

2Γ(2∆)

[
x∆−1

2F1(∆,∆; 2∆;x) + (1− x)∆−1
2F1(∆,∆; 2∆; 1− x)

]
s∆(x) = q∆(x)− r∆(x) ,

(4.79)

where Qm(y) is the Legendre function of the second kind. When ∆ ∈ 2N both q∆(x) and
r∆(x) are symmetric under x↔ 1− x and hence

s∆(1− x) = s∆(x) . (4.80)

The leading logarithmic divergence and constant term of q∆(x) and r∆(x) at the boundary
of the interval precisely cancel and we find s∆(0) = s∆(1) = 0. Define the usual scalar
product on the space of function on the unit interval

〈f, g〉 =

1∫
0

dxf(x)g(x) . (4.81)

Unlike the Legendre polynomials, q∆(x) are not orthogonal with respect to this scalar
product. However, the corrected functions s∆(x) are mutually orthogonal

〈s∆, s∆′〉 =
π2

4(2∆− 1)
δ∆∆′ for ∆,∆′ ∈ 2N . (4.82)

Indeed, s∆(x) form an orthogonal basis for functions on x ∈ (0, 1) satisfying f(x) = f(1−x).
The crucial observation arises from computing the scalar product of s∆(x) and pn(x) with
n odd

〈s∆, pn〉 = − 1

(∆− n)(∆ + n− 1)
−R 1

2
(∆, n) . (4.83)
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Figure 4.5: The integral kernel h(x) for ∆ψ = 1/2, given by equation (4.86).

The first and second term come from the overlap with q∆(x) and r∆(x) respectively. We
recognize that the scalar product is precisely the coefficient with which pn contributes to
the derivative of ω(∆)! Equation (4.78) can thus be written simply as

∞∑
n=1

〈s2j, pn〉an = δj1 for j ∈ N . (4.84)

In other words
〈s2j, h〉 = δj1 for j ∈ N , (4.85)

where h(x) is the sought integral kernel. Since s2j(x) are orthogonal, the last equation
is telling us precisely that h(x) must be proportional to s2(x). Hence, up to an overall
irrelevant positive constant

h(x) = s2(x) =
1

x(1− x)
− 1 +

[
x (2x2 − 5x+ 5)

2(1− x)2
log(x) + (x↔ 1− x)

]
. (4.86)

Figure 4.5 shows the shape of h(x). Note that h(0) = h(1) = 0, so that the integral
in (4.45) is convergent on both ends. It is also possible to find a closed formula for the
coefficients an. Define the function

Ω 1
2
(∆) =

1

(∆− 2)(∆ + 1)
−
[
∆(∆− 1) +

1

2

]
Ψ′
(

∆

2

)
− 2 , (4.87)

where

Ψ(z) =
d

dz
log

[
Γ
(
z + 1

2

)
Γ (z)

]
= ψ(z + 1/2)− ψ(z) , (4.88)
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Figure 4.6: The action of the extremal functional for ∆ψ = 1/2, given by equation (4.91).

with ψ(z) the digamma function. Coefficients an take the form

an =

{
(2n− 1)Ω 1

2
(n) for n odd

0 for n even .
(4.89)

The nonzero an decay like an = O(n−3) as n → ∞, a special case of the general formula
an = O(n−4∆ψ−1). It is not hard to find a formula for the action of the extremal functional
on F∆ for any ∆. It follows from (4.60) that

ω 1
2
(∆) =


Γ(2∆)

Γ(∆)2
Ω 1

2
(∆) for ∆ ∈ N odd

0 for ∆ ∈ N even .

(4.90)

The simplest meromorphic function of ∆ interpolating between these values is

ω 1
2
(∆) =

Γ(2∆)

Γ(∆)2
sin2

(
π∆

2

)
Ω 1

2
(∆) , (4.91)

which turns out to be the correct formula. The function ω 1
2
(∆) is plotted in Figure 4.6.

As expected, ω 1
2
(∆) has double zeros at ∆ = 2 + 2j, j ∈ N. The simple pole of Ω 1

2
(∆) at

∆ = 2 makes this into a simple zero of ω 1
2
(∆).

We can use the explicit formula for h(x) to produce a closed formula for the coefficients
bj of the functional in the basis of y-derivatives evaluated at y = 0

ω =
∞∑
j=1

bj
(2j − 1)!

d2j−1

dy2j−1

∣∣∣∣
y=0

, (4.92)
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Figure 4.7: The contour deformation in the y-coordinate used to find a closed formula
(4.100) for the coefficients bj of the extremal functional in the y-derivative basis. The
white stripe shows the branch cut of h(x).

described in subsection 4.3.1. Recall from (4.57) that the action of the functional is5

ω(∆) =
1

2πi

∫
Γ

dx
h(x)

1− xF∆(x) , (4.93)

where the contour Γ is shown in Figure 4.4. However, formula (4.86) shows that h(x) has
a branch cut on x ∈ (−∞, 0) so the contour integral seems not well-defined since its value
depends on where the contour Γ intersects the branch cut of h(x). It is possible to see
that the choice of Γ that reproduces the correct action (4.58) is the one intersecting the
real axis arbitrarily close to x = 0. In other words, we recover the prescription (4.45). The
advantage of the description using a contour integral passing arbitrarily close to x = 0 as
opposed to (4.45) is that the former will be valid for any ∆ψ. To pass to the derivative
basis, let us start by transforming the integral (4.93) to the Zhukovsky coordinate y defined
by (4.30), which is related to x via

x(y) = −
(
y − 1

y + 1

)2

. (4.94)

The contour Γ gets mapped to the blue curve in the left half of Figure 4.7. F∆(y) is
holomorphic inside the unit circle of variable y. h(x(y)) has a branch cut along y ∈ (−1, 1)

5By a slight abuse of notation, we write F∆(x), F∆(y) instead of F∆(z(x)), F∆(z(y)) here and in the
following.
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coming from the log(x) term in (4.86). We can deform the contour as in Figure 4.7 to get
a contour with four components as follows:

Γ1 : y(t) = −i+ it t ∈ [0, 1]

Γ2 : y(t) = t− iε t ∈ [0, 1]

Γ3 : y(t) = 1− t+ iε t ∈ [0, 1]

Γ4 : y(t) = it t ∈ [0, 1]

(4.95)

where ε → 0+. The integrals along Γ1 and Γ4 combine to depend only on the imaginary
part of h(x(y)) along the imaginary axis, the result being

1

2πi

∫
Γ1∪Γ4

dx
h(x)

1− xF∆(x) = −
∫
Γ4

dy
3y4 + 26y2 + 3

(1− y2)3 F∆(y) . (4.96)

The integrals along Γ2 and Γ3 combine to depend only on the discontinuity of h(x(y))
across the branch cut, the result being

1

2πi

∫
Γ2∪Γ3

dx
h(x)

1− xF∆(x) =

=

1∫
0

dy
(1− y)3 (3y4 + 3y3 + 8y2 + 3y + 3)

(y + 1)3 (y2 + 1)3 F∆(y) .

(4.97)

The coefficients bj can now be found by substituting the Taylor expansion of F∆(y) around
y = 0 into (4.96) and (4.97). We find

b
(1)
j = −

∫
Γ4

dy
3y4 + 26y2 + 3

(1− y2)3 y2j−1 =

=
(−1)j

4

[
8(2j − 1)− (4j − 1) (4j − 3) Ψ

(
j

2

)]
,

(4.98)

with Ψ(z) defined in (4.88). Similarly,

b
(2)
j =

1∫
0

dy
(1− y)3 (3y4 + 3y3 + 8y2 + 3y + 3)

(y + 1)3 (y2 + 1)3 y2j−1 =

=
(4j − 3)(4j − 1)

2
Ψ(j)− (2j − 3)(2j + 1)

16
Ψ

(
2j + 1

4

)
− 15j − 11

4
.

(4.99)
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The derivative coefficients are simply the sum

bj = b
(1)
j + b

(2)
j . (4.100)

The first few values of bj read

b1 =
3

4
− 3

16
π − 3

2
log(2) ≈ −0.878769

b2 =
55

4
− 5

16
π − 35

2
log(2) ≈ 0.638177

b3 =
119

4
+

21

16
π − 99

2
log(2) ≈ −0.437445

b4 =
307

4
− 45

16
π − 195

2
log(2) ≈ 0.332421

...

(4.101)

Figure 4.8 shows a comparison between the exact values for bj and those obtained by
standard numerical bootstrap when derivatives are truncated to maximal degree Nmax.
Only ratios of derivative coefficients can be compared since the overall normalization is
arbitrary. The dashed lines are obtained from the exact values (4.100) while dots of the
same color correspond to the appropriate numerical bootstrap results. The plot shows
convincing evidence that the numerical bootstrap tends to the exact answer as Nmax →∞.

Finally, we would like to point out that although our choice of basis for the bootstrap
functionals breaks the symmetry between direct and crossed channels z ↔ 1 − z, the full
extremal functional enjoys a version of this symmetry. z ↔ 1− z corresponds to x↔ 1/x,
so such symmetry can only be a property of the full sum (4.75). The integral kernel can
be rewritten

h(x)

1− xdx = h̃(z)dz , (4.102)

with

h̃(z) = 1− 1

z(1− z)
−
[

(1− z) (2z2 + z + 2)

2z2
log(z − 1) +

z (2z2 − 5z + 5)

2(1− z)2
log(z)

]
.

(4.103)
The last expression is symmetric under z ↔ 1 − z up to a minus sign picked up by the
argument of the first logarithm. A similar property holds also for higher ∆ψ, see Appendix
4.A. It would be interesting to see if the same symmetry is present for arbitrary ∆ψ.
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Figure 4.8: Comparison of the analytic extremal functional in the derivative basis (4.100)
(dashed lines) and the numerical bootstrap extremal functionals (dots) for ∆ψ = 1/2. bj
is the coefficient of the y-derivative of order 2j − 1 and Nmax is the order of the maximal
z-derivative used in the numerics.

4.5 Higher values of ∆ψ

4.5.1 Linear dependence of elementary functionals

Before we write down analytic formulas for the extremal functionals when ∆ψ is an arbitrary
positive integer or half-integer, we need to explain one subtlety. The functions pn(x), n ∈ N
are linearly independent so we would expect that their overlaps with F∆ given by

s(∆, n) =
Γ(2∆)

Γ(∆)2

sin(π∆)

π

[
(−1)n

(∆− n)(∆ + n− 1)
+ (−1)2∆ψ+n+1R∆ψ

(∆, n)

]
(4.104)

are linearly independent as functions of ∆. This is easily seen to be true for n ≥ 2∆ψ thanks
to the orthogonality (4.60). However, it is generally not true for 1 ≤ n ≤ 2∆ψ− 1, in spite
of the fact that all s+(∆, n) as well as all s−(∆, n) are linearly independent. In other words,
the linear dependence arises thanks to precise cancellations between the contribution of the
direct and crossed conformal blocks. A direct computation leads to the following examples

130



for small ∆ψ

∆ψ = 1 : s(∆, 1) = 0

∆ψ =
3

2
: s(∆, 1) = −s(∆, 2)

∆ψ = 2 : s(∆, 1) = s(∆, 2) = −1

5
s(∆, 3)

(4.105)

where the equalities hold for arbitrary ∆ ∈ R. It is natural to ask what is the kernel of
the map

ϕ : h(x) 7→
∫
Γ

dxh(x)(1− x)−2∆ψF∆(x) . (4.106)

Since pn(x) is a polynomial of degree n− 1, the kernel lies within the space of polynomials
of degree at most 2∆ψ − 2. In fact, it is possible to give a simple explicit description of
kerϕ as follows

kerϕ =


〈
xa(x− 1)2b, a+ b = ∆ψ − 1

〉
for ∆ψ ∈ N〈

xa(x− 1)2b+1, a+ b = ∆ψ − 3/2
〉

for ∆ψ ∈ N− 1

2
,

(4.107)

where 〈α〉 denotes the span of the set α and a, b ∈ Z≥0. We see that s(∆, n) with 1 ≤ n ≤
2∆ψ−1 considered as functions of ∆ generate a space of roughly half the full dimensionality,
specifically

dim (〈s(∆, n), 1 ≤ n ≤ 2∆ψ − 1〉) =

∆ψ − 1 for ∆ψ ∈ N

∆ψ −
1

2
for ∆ψ ∈ N− 1

2
.

(4.108)

In fact, in both cases 〈s(∆, n), 1 ≤ n ≤ 2∆ψ − 1〉 is generated by the linearly independent
set {s(∆, 2j), 1 ≤ j ≤ b∆ψ − 1/2c}.

The linear dependence implies that some columns of matrix Ajn appearing (4.72) are
linearly dependent and we can not find an simply by inverting the full Ajn. However,
Ajn can be inverted when n is restricted to a set corresponding to linearly independent
functions s(∆, n). Any two solutions of (4.72) differ by a vector δan corresponding to a
function in kerϕ

2∆ψ−1∑
n=1

δanpn(x) ∈ kerϕ . (4.109)

We will see that this redundancy can be eventually fixed by requiring that the integral
kernel has a Fourier expansion as in (4.38), in other words that (1 − x)−2∆ψh(x) has at
most a logarithmic singularity at x = 1.
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4.5.2 Extremal functionals for ∆ψ ∈ N

We are now ready to write down an explicit formula for an leading to the extremal functional
ω∆ψ

corresponding to the optimal bootstrap bound 2∆ψ + 1 for ∆ψ ∈ N. Recall from
subsection 4.4.1 that a2∆ψ+2j−1 = 0 for j ∈ N and from subsection 4.5.1 that it is sufficient
to keep only even n from among 1 ≤ n ≤ 2∆ψ − 1. Therefore, h(x) can be written as

h(x) =
∑
n∈2N

anpn(x) . (4.110)

Consequently, h(1 − x) = −h(x) since pn(1 − x) = (−1)n−1pn(x). Note that the map
x↔ 1− x corresponds to z ↔ z/(z− 1) and hence to swapping positions x3 and x4 in the
four-point function. It would be interesting to see if there is a physical interpretation of
this symmetry of h(x).

a2k satisfy the equation (4.72)

∞∑
k=1

Ãjka2k = −c∆ψ
δj1 for j ∈ N , (4.111)

where
Ãjk = ŝ(2∆ψ + 2j − 1, 2k) (4.112)

with ŝ(∆, n) given by (4.59) and c∆ψ
is an arbitrary positive normalization. Ãjk is now

non-singular when the j, k indices are truncated to an arbitrary range j, k ∈ {1, . . . J}.
In spite of the rather complicated form of the entries of Ãjk, the normalizable solution of
equation (4.111) can be written in a closed form for arbitrary ∆ψ as follows. Define

α∆ψ
(∆,m) = [1 + 4m (∆ψ −m)]

Γ(4m+ 1)Γ
(
m− 1

2

)2
Γ
(

∆+1
2

)2
Γ
(

∆+1
2
−m

)2

28mπ(4m− 1)Γ(m+ 1)2Γ
(

∆
2

)2
Γ
(

∆
2

+m
)2

β∆ψ
(∆,m) = [1− 2 (∆ψ −m)]

Γ(4m+ 1)Γ
(
m+ 1

2

)2
Γ
(

∆+1
2

)2
Γ
(

∆−1
2
−m

)
Γ
(

∆+1
2
−m

)
28m+1πΓ(m+ 1)2Γ

(
∆
2

)2
Γ
(

∆
2

+m
)

Γ
(

∆
2

+m+ 1
) .

(4.113)
Use these to define Ω∆ψ

(∆) for ∆ψ ∈ N

Ω∆ψ
(∆) = ∆(∆− 1) + ∆ψ +

∆ψ∑
m=0

[
α∆ψ

(∆,m) + β∆ψ
(∆,m)

]
. (4.114)
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The formula for an is then

an =

{
(2n− 1)Ω∆ψ

(n) for n even

0 for n odd
(4.115)

It can be checked that a2∆ψ
< 0 and a2∆ψ+2j > 0 for j ∈ N as required from an extremal

functional. It is interesting to study the behaviour of an for fixed ∆ψ and n � 1. Note
first that

α∆ψ
(n,m) = O

(
n−4m+2

)
β∆ψ

(n,m) = O
(
n−4m

) (4.116)

as n → ∞. However, due to delicate cancellations among all the terms in the sum in
(4.114), an decays as

an = O
(
n−4∆ψ−1

)
as n→∞ . (4.117)

In particular, this means that the sum (4.110) converges to a smooth integral kernel h(x)
for x ∈ (0, 1) for any ∆ψ ∈ N and the convergence improves as ∆ψ increases.

We can also find a closed formula for the action of ω∆ψ
on F∆ for any ∆ ≥ 0. Orthog-

onality (4.60) implies

ω∆ψ
(∆) =


Γ(2∆)

Γ(∆)2
Ω∆ψ

(∆) for ∆ ∈ N even , ∆ ≥ 2∆ψ

0 for ∆ ∈ N odd , ∆ ≥ 2∆ψ + 1 .

(4.118)

The simplest meromorphic function of ∆ with no other zeros or poles for ∆ ≥ 2∆ψ is

ω∆ψ
(∆) =

Γ(2∆)

Γ(∆)2
cos2

(
π∆

2

)
Ω∆ψ

(∆) , (4.119)

which turns out to be the right answer. Figure 4.9 shows the action of the extremal
functional for ∆ψ = 2. Ω∆ψ

(∆) is positive with no zeros or poles for ∆ > 2∆ψ + 1. The
only zeros in this region are thus the double zeros coming from cos2(π∆/2). Ω∆ψ

(∆) has a
simple pole at ∆ = 2∆ψ+1 coming from the β∆ψ

(∆,∆ψ) summand in (4.114), leading to a
simple zero at that location. All the double zeros of cos2(π∆/2) in the region 0 < ∆ < 2∆ψ

are cancelled by double poles of Ω∆ψ
(∆). The only zero of ω∆ψ

(∆) in this region occurs at
some non-integer value ∆0. We will see in section 4.6 that

∆0

∆ψ

→
√

2 as ∆ψ →∞ , (4.120)
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Figure 4.9: The action of the extremal functional for ∆ψ = 2, given by equation (4.119).
The location ∆0 of the only zero in 0 < ∆ < 2∆ψ + 1 will satisfy as ∆0/∆ψ →

√
2 as

∆ψ →∞.

which will be crucial to make contact with the flat-space limit. The functional ω∆ψ
satisfies

all the properties (4.27), thus establishing rigorously that the 1D bootstrap bound on the
gap is 2∆ψ + 1 for any ∆ψ ∈ N.

We were not able to find a closed form for the kernel defined by the sum (4.110). The
kernel is observed to have the following behaviour near x = 0

h(x) ∼ h1(x) + log(x)h2(x) , (4.121)

where h1(x) and h2(x) are analytic at x = 0 with the leading behaviour

h1(x) = a0 + a1x+ . . .

h2(x) = b0x
2∆ψ + b1x

2∆ψ+1 + . . . .
(4.122)

Recall that for general ∆, the action of ω must be defined via the contour integral (4.57).
The branch cut of h(x) along x ∈ (−∞, 0) arising from the infinite sum over pn(x) leads
to a dependence on deformations of Γ. This dependence appears because the infinite sum
over n and the analytic continuation in x do not commute. The correct choice reproducing
the answer (4.119) is one where the contour intersects the negative real axis arbitrarily
close to x = 0. We can not take the contour all the way to x = 0 because of the x∆−2∆ψ

singularity in F∆(x). The x2∆ψ supression of h2(x) seen in (4.122) guarantees that the
value of the contour integral converges as the intercept approaches x = 0.
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4.5.3 Fixing the remaining redundancy

As explained in Section 4.3, the extremal functional for any ∆ψ can likely be expressed in
the basis of derivatives with respect to the Zhukovsky variable y

ω∆ψ
=
∞∑
j=1

bj
(2j − 1)!

d2j−1

dy2j−1

∣∣∣∣
y=0

, (4.123)

where bj ∈ R depend on ∆ψ. Requiring the existence of this representation will fix the
redundancy in h(x) described in subsection 4.5.1. Recall from section 4.3 that (ignoring
the singularity at θ = 0 present only for small ∆) (4.123) can be expressed as the integral

ω∆ψ
(∆) =

4

π

π/2∫
0

dθ g∆ψ
(θ)Im[F∆

(
eiθ
)
] , (4.124)

where

g∆ψ
(θ) =

∞∑
j=1

bj sin [(2j − 1)θ] . (4.125)

In other words, bj are simply the Fourier coefficients of the integral kernel constructed
above. Coordinates x and θ are related through

x = tan2

(
θ

2

)
, (4.126)

and the Fourier coefficients can be obtained from the integral kernel h(x)(1− x)−2∆ψ via

bj =
1

π

1∫
0

dx sin [(2j − 1)θ(x)]h(x)(1− x)−2∆ψ . (4.127)

According to the results of the previous subsection, h(x) remains nonzero as x → 1.
Therefore, the integral diverges at x = 1 for any ∆ψ ∈ N and the integral kernel seems not
to have a Fourier expansion. Fortunatelly, this problem can be amended by recalling there
is an ambiguity in h(x), described in subsection 4.5.1. The behaviour of h(x) defined by
(4.110) and (4.115) near x = 1 is

h(x) ∼ −h1(1− x)− h2(1− x) log(1− x) , (4.128)
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with h1,2(x) as in (4.122). Therefore, only h1(1−x) up to O((x−1)2∆ψ−1) contributes to the
singularity of (4.127), while the logarithmic term does not contribute to the singularity
since it is sufficiently supressed. We must now ask whether there exists a polynomial
c(x) ∈ kerϕ such that

− h1(1− x) + c(x) = O((x− 1)2∆ψ) (4.129)

as x → 1. This is a priori an overconstrained problem since we need to cancel 2∆ψ

independent coefficients of h1 using a polynomial taken from the space kerϕ of dimension
∆ψ. However, we found that it was possible for all 1 ≤ ∆ψ ≤ 5 and therefore it is likely
possible in general. We were not able to find a closed formula for c(x) for general ∆ψ ∈ N.
Listed below are some low-lying examples of c(x)

∆ψ = 1 : c(x) = −3

8

∆ψ = 2 : c(x) =
15

16
x− 2505

1024
(x− 1)2

∆ψ = 3 : c(x) =
35

8
x2 − 6055

1024
x(x− 1)2 − 418985

65536
(x− 1)4 .

(4.130)

Clearly c(x) ∈ kerϕ with kerϕ given by (4.107) in all these examples. The Fourier coeffi-
cients can now be derived as

bj =
1

π

1∫
0

dx sin [(2j − 1)θ(x)] [h(x) + c(x)] (1− x)−2∆ψ . (4.131)

The extremal functionals coming from numerical bootstrap in the derivative basis were
checked to tend to these analytic predictions for ∆ψ = 1 as Nmax was increased although
the convergence rate was slower compared to ∆ψ = 1/2 presented in Figure 4.8.

4.5.4 Extremal functionals for ∆ψ ∈ N− 1
2

Let us move on to describe the extremal functionals in the case ∆ψ ∈ N− 1/2. It follows
from the result of subsection 4.4.1 that only an with n odd are nonvanishing for n ≥ 2∆ψ.
Analogously to (4.110), we might hope that h(x) can be expanded using only pn(x) with
n odd. However, the space of functions s(∆, n) with 1 ≤ n ≤ 2∆ψ − 1 is spanned by the
same functions with n restricted to be even, but not n restricted to be odd. Indeed, it
turns out that in order for the functional to have double zeros at the right locations, i.e.
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for (4.72) to hold, some an with 1 ≤ n ≤ 2∆ψ − 1 and n even must be nonvanishing. We
can write

h(x) = h̃(x) + c(x) , (4.132)

where
h̃(x) =

∑
n∈2N−1

ãnpn(x) , (4.133)

and c(x) is a polynomial of degree at most 2∆ψ − 2. We expect the extremal functional
can still be represented by a derivative series (4.123), meaning

h(x)(1− x)−2∆ψ (4.134)

has at most a logarithmic singularity at x = 1. This requirement fixes c(x) for any choice
of the sequence ã2j−1. We will now present a formula for ãn such that the corresponding
h(x) with c(x) fixed by this requirement satisfies (4.72). First, define

α̃∆ψ
(∆,m) = − [2m (∆ψ −m− 1) + ∆ψ]

πΓ(4m+ 1)Γ (m)2 Γ
(

∆+1
2

)2
Γ
(

∆
2
−m

)2

28m+1Γ
(
m+ 1

2

)
Γ
(
m+ 3

2

)
Γ
(

∆
2

)2
Γ
(

∆+1
2

+m
)2

β̃∆ψ
(∆,m) = (∆ψ −m− 1)

πΓ(4m+ 2)Γ (m+ 1)2 Γ
(

∆+1
2

)2
Γ
(

∆
2
−m

)
Γ
(

∆
2
−m− 1

)
28m+2Γ

(
m+ 1

2

)
Γ
(
m+ 3

2

)
Γ
(

∆
2

)2
Γ
(

∆+1
2

+m
)

Γ
(

∆+3
2

+m
) .

(4.135)
Use these to define Ω∆ψ

(∆) for ∆ψ ∈ N− 1/2

Ω∆ψ
(∆) = − [∆(∆− 1) + ∆ψ] Ψ′

(
∆

2

)
− 2−

∆ψ− 1
2∑

m=1

α̃∆ψ
(∆,m)−

∆ψ− 1
2∑

m=0

β̃∆ψ
(∆,m) (4.136)

with Ψ(z) defined in (4.88).

The formula for ãn is

ãn =

{
(2n− 1)Ω∆ψ

(n) for n odd

0 for n even
(4.137)

We were not able to find a closed formula for c(x) completing h̃(x) to the full integral
kernel for any ∆ψ, but checked that c(x) consistent with the constraints existed for all
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1/2 ≤ ∆ψ ≤ 9/2. Several low-lying examples follow

∆ψ =
1

2
: c(x) = 0

∆ψ =
3

2
: c(x) =

35

12
(x− 2)

∆ψ =
5

2
: c(x) = (x− 2)

[
1001

120
(x2 − x+ 1) +

π2

10
(2x2 + x− 1)

]
.

(4.138)

Analogously to the case with ∆ψ ∈ N, the action of the extremal functionals on F∆ with
any ∆ > 0 reads

ω∆ψ
(∆) =

Γ(2∆)

Γ(∆)2
sin2

(
π∆

2

)
Ω∆ψ

(∆) . (4.139)

Discussion following (4.119) concerning zeros ω∆ψ
(∆) applies in this case too with obvious

modifications. In summary, we have constructed functionals which prove that
the optimal bootstrap bound is 2∆ψ + 1 for ∆ψ ∈ N/2.

The resummation of (4.133) is simpler than in the case of integer ∆ψ. It appears h(x)
for ∆ψ ∈ N − 1/2 can always be written in terms of rational, log and Li2 functions. We
present some closed formulas for h̃(x) in Appendix 4.A.

4.6 Emergence of AdS physics at large ∆ψ

4.6.1 A review of massive scattering in large AdS2

It turns out that the extremal functional constructed in the previous section has a clear
physical meaning for large ∆ψ in terms scattering of massive particles in large AdS2. As
a first hint, we can notice that the location of the only zero ∆0 of ω∆ψ

(∆) in the region
0 < ∆ < 2∆ψ tends to

lim
∆ψ→∞

∆0

∆ψ

→
√

2 , (4.140)

which corresponds to the point fixed by the crossing symmetry of the flat-space S-matrix.
We begin by reviewing aspects of two-dimensional scattering and its holographic dictionary.
More details and derivations can be found in [118]. Consider a 2→ 2 scattering amplitude
of identical particles of mass mψ in (1+1)D flat spacetime. The amplitude is fully described
by the S-matrix S(σ), where

σ =
(p1 + p2)2

m2
ψ

(4.141)
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Figure 4.10: The analytic structure of the S-matrix on the first sheet. There is a branch
cut for real σ > 4 corresponding to two-particle final states. Crossing symmetry implies
S(4 − σ) = S(σ). The region 0 < σ < 4 contains poles coming from bound states. Full
and empty dots denote s- and t-channel poles respectively.

is a dimensionless version of the usual Mandelstam variable s. The analytic structure of
the S-matrix is illustrated in Figure 4.10. Physical scattering regime corresponds to σ ≥ 4,
and S(σ) has a branch cut there. The branch cut is of the square root type. In the extreme
non-relativistic regime σ → 4 the particles become free, and thus the leading behaviour is

S(σ) = ±1 + α
√

4− σ +O(4− σ) , (4.142)

where the upper, lower sign corresponds to bosons, fermions respectively and α ∈ R.
Unitarity implies

|S(σ)| ≤ 1 for σ ≥ 4 , σ ∈ R . (4.143)

The S-matrix also satisfies crossing symmetry

S(4− σ) = S(σ) . (4.144)

Let us assume the scattered particle is the lightest particle of the theory. In that case,
the only other singularities of S(σ) on the first sheet are simple poles on the real axis in
0 < σ < 4, coming from bound states and located at σj = µ2

j , as well as the corresponding
t-channel poles located at σj = 4− µ2

j , where

µj =
mj

mψ

(4.145)
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and mj is the bound state mass. The two kinds of poles can be distinguished by the sign
of their residue

S(σ) ∼


−Jj

g2
j

σ − µ2
j

near σ = µ2
j

Jj
g2
j

σ − (4− µ2
j)

near σ = 4− µ2
j ,

(4.146)

where gj ∈ R is the effective three-point coupling between the external particles and the
bound state, and Jj is the positive prefactor

Jj =
1

2µj
√

4− µ2
j

. (4.147)

Placing the theory in AdS2 of radius R defines a family of 1D CFTs parametrized by
R. Bulk masses and boundary scaling dimensions of primary operators are related by

(mOR)2 = ∆O(∆O − 1) , (4.148)

When we send R → ∞, all scaling dimensions of a theory whose bulk dual is a massive
QFT tend to infinity. Their ratios tend to the ratios of the corresponding masses

lim
∆ψ→∞

∆j

∆ψ

= µj . (4.149)

The 2 → 2 scattering corresponds to a four-point function of primary operators ψ(x)
sourcing the external particle. Primary operators appearing in the ψ×ψ OPE correspond
to intermediate states of the scattering process. Those with ∆O . 2∆ψ play the role of
bound states, while those with ∆O & 2∆ψ correspond to two-particle states. The flat-
space physics governs the leading behaviour of the CFT data as ∆ψ →∞. The flat-space
scattering amplitude can be recovered as a specific limit of the boundary Mellin amplitude
[118, 121]. For example, the leading behaviour of the OPE coefficient cψψOj corresponding
to a bound state of mass mj = µjmψ takes the form

(cψψOj)
2 ∼ 2

√
πg2

j

µ
3/2
j (4− µ2

j) (µj + 2)

√
∆ψ [v(µj)]

−∆ψ as ∆ψ →∞ , (4.150)

where

v(µ) =
42+µ

|µ− 2|2−µ(µ+ 2)2+µ
, (4.151)

140



and gj is defined in (4.146). We inserted the absolute value around µ − 2 for future
convenience. In the bound state region 0 < µ < 2, we have v(µ) > 1, and thus cψψOj
is exponentially supressed in the large ∆ψ limit. This supression is coming from the
amplitude for the massive particles to propagate across an increasingly large distance in
AdS, as explained in [119, 120]. We will be able to recover the exponential supression
including the precise dependence of the exponent on µ from conformal bootstrap.

Consider now the primary operators in the ψ × ψ OPE coming from the two-particle
states. When the bulk theory is that of free real bosons or fermions, there is an exact
formula for the OPE coefficients

(cfree
ψψO)2 =

2Γ(∆O)2Γ (∆O + 2∆ψ − 1)

Γ(2∆O − 1)Γ (2∆ψ)2 Γ (∆O − 2∆ψ + 1)
, (4.152)

and the scaling dimensions are ∆O = 2∆ψ+n, where n is an even, odd non-negative integer
for bosons, fermions respectively. For a general theory in AdS2, define the spectral density

ρ∆ψ
(µ) =

∑
O∈ψ×ψ

(cψψO)2δ

(
µ− ∆O

∆ψ

)
. (4.153)

It can be shown [118] that ρ∆ψ
(µ) is universal in the flat-space limit in the sense that it

tends to the asymptotic spectral density of free fields, namely

ρ∆ψ
(µ) ∼ ρ̃∆ψ

(µ) =
4
√
µ

√
π
√
µ− 2 (µ+ 2)

3
2

√
∆ψ [v(µ)]−∆ψ as ∆ψ →∞ , (4.154)

with v(µ) again given by (4.151). Equation (4.154) is valid in the sense of distributions
when acting on smooth functions of µ.

Finally, it is also possible to recover the S-matrix from the shifts of scaling dimension of
two-particle states compared to their free-field positions. To this end, define the following
smeared average of an arbitrary function f(µ,∆ψ)

〈f(µ,∆ψ)〉ε =

µ+ε∫
µ−ε

dνρ∆ψ
(ν) [v(ν)]∆ψ f(ν,∆ψ)

µ+ε∫
µ−ε

dνρ∆ψ
(ν) [v(ν)]∆ψ ,

(4.155)

where ρ∆ψ
(ν) is the exact spectral density at finite ∆ψ. The factor [v(ν)]∆ψ cancels the fast

variation of ρ∆ψ
(ν) with ν when ∆ψ →∞. The S-matrix for σ ≥ 4 can now be recovered

through the formula
S(µ2) = lim

ε→0
lim

∆ψ→∞

〈
e−iπ(µ−2)∆ψ

〉
ε
, (4.156)
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where the order of limits is important. In other words, S(µ2) is simply the large ∆ψ

limit of the average value of e−iπ(∆O−2∆ψ) over all primaries with ∆O ∼ µ∆ψ, weighted by
(cψψO/c

free
ψψO)2.

4.6.2 AdS2 physics from crossing in a 1D CFT

We will now show how some of the features pertaining to the scattering of massive particles
in large AdS2 presented in the previous subsection follow from crossing in the 1D CFT living
at the boundary. We will also derive a simple sum rule for OPE coefficients of primary
operators corresponding to two-particle states produced at rest.

Consider a unitary solution to the bootstrap equation in 1D∑
O∈ψ×ψ

(cψψO)2F∆O(z) = 0 , (4.157)

with (cψψO)2 > 0. We can apply the extremal functional constructed in section 4.5 to get
a single equation ∑

O∈ψ×ψ

(cψψO)2ω∆ψ
(∆O) = 0 . (4.158)

When the solution to crossing corresponds to the free massive real fermion in AdS2, the
last equation is automatically satisfied since ω∆ψ

(∆O) = 0 for any O ∈ ψ × ψ. However,
in general it represents a universal constraint valid on any solution of crossing. In order to
make contact with massive QFT in AdS2, let us assume we have a family of solutions where
all dimensions scale linearly with ∆ψ, i.e. that ∆O ∼ µO∆ψ with µO fixed as ∆ψ → ∞.
We would like to understand the leading behaviour of (4.158) as ∆ψ →∞. The functional
ω∆ψ

(µ∆ψ) with large ∆ψ exhibits very different behaviour for 0 < µ < 2 and µ > 2, as
illustrated in Figure 4.11.

Let us focus first on the region 0 < µ < 2. It is possible to show directly from (4.119)
that

ω∆ψ
(µ∆ψ) ∼

√
2 (µ2 − 2)

πµ
5
2 (µ− 2)

[v(µ)]∆ψ for 0 < µ < 2 (4.159)

as ∆ψ → ∞ where v(µ) was defined in (4.151). Crucially, the functional grows exponen-
tially with ∆ψ with the exponent governed by v(µ). It follows that any two operators Oj,
Ok with 0 < µj,k < 2 that both contribute to (4.158) at the leading order as ∆ψ → ∞
must have OPE coefficients related by

(cψψOj)
2

(cψψOk)
2
∼
[
v(µj)

v(µk)

]−∆ψ

(4.160)

142



µ

!̂� (µ� )

� � � � �

-�

-�

�

�

�

�

Figure 4.11: The analytic extremal functional for ∆ψ = 15. The blue curve repre-

sents ω̂∆ψ
(µ∆ψ) = [v(µ)]−∆ψ ω∆ψ

(µ∆ψ) with v(µ) given by (4.151) and ω∆ψ
(∆) given

by (4.119). ω̂∆ψ
(µ∆ψ) in the region 0 < µ < 2 converges to the red dashed curve given

by
√

2π−1µ−5/2(µ − 2)−1(µ2 − 2) as ∆ψ → ∞. The functional is oscillatory in the region
µ > 2 with evenly spaced double zeros that condense as ∆ψ → ∞. The height of peaks
converges to the red dashed curve given by 4

√
2π−1µ−5/2(µ− 2)−1(µ2 − 2).

up to a prefactor independent of ∆ψ. This is consistent with the exponential supression of
cψψO when O corresponds to a bound state of two ψ particles in the flat space limit, seen
in (4.150). The extremal functional thus provides a universal CFT justification
of the exponential decay of bound state OPE coefficients. Assuming the full
expression (4.150), we can evaluate the contribution of a single bound state to (4.158)

(cψψOj)
2ω∆ψ

(∆Oj) = 2

√
8∆ψ

π
Resσ=µ2

j

[
(σ − 2)

σ
3
2 (4− σ)

3
2

S(σ)

]
+O(1) , (4.161)

i.e. the bound states contribute at O(
√

∆ψ). Since the function in square brackets is odd
under σ ↔ 4−σ, and remembering that every s-channel pole has its t-channel counterpart,
we can rewrite the contribution of all bound states to (4.158) at O(

√
∆ψ) as a contour

integral in the σ plane along a contour Γ1 surrounding all the poles on the real axis, as
illustrated in Figure 4.12∑

O:µO<2

(cψψO)2ω∆ψ
(∆O) =

1

2πi

√
8∆ψ

π

∮
Γ1

(σ − 2)

σ
3
2 (4− σ)

3
2

[S(σ) + 1] dσ +O(1) , (4.162)

where we added 1 to the S-matrix for future convenience without affecting the result. We
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will assume that the scattered particles are fermions, so that S(0) = S(4) = −1. The
bosonic cases S(0) = S(4) = 1 can presumably be treated analogously.

Let us now study the asymptotic behaviour of the functional for µ > 2. As illustrated
in Figure 4.11, it is oscillatory with frequency proportional to ∆ψ. The asymptotics can
be found in a closed form

ω∆ψ
(µ∆ψ) ∼ 4 cos2

(
πµ∆ψ

2

) √
2 (µ2 − 2)

πµ
5
2 (µ− 2)

[v(µ)]∆ψ for µ > 2 , (4.163)

where we can see the same exponential behaviour once again. Let us describe the spectrum
of our solution to crossing for µ > 2 using the spectral density ρ∆ψ

(µ), defined in (4.153).
The contribution of the µ > 2 operators to (4.158) can be written as an integral

∑
O:µO>2

(cψψO)2ω∆ψ
(∆O) =

∞∫
2

ρ∆ψ
(µ)ω∆ψ

(µ∆ψ)dµ . (4.164)

Assuming that states with any µ contribute to (4.158) at the leading order as ∆ψ → ∞,
we arrive at the same exponential dependence of ρ∆ψ

on ∆ψ as the one corresponding to
two-particle states in AdS2, see formula (4.154). Let us now evaluate (4.164) using the
asymptotics (4.163) and assuming the formula (4.154). Note that the oscillating prefactor
in (4.163) can be rewritten using

2 cos2

(
πµ∆ψ

2

)
= Re

[
e−iπ(µ−2)∆ψ + 1

]
, (4.165)

where we used ∆ψ ∈ N. The oscillating prefactor is clearly related to the S-matrix on the
branch cut as computed by (4.156). Indeed, it is not too hard to show from (4.156) that

∑
O:µO>2

(cψψO)2ω∆ψ
(∆O) =

1

π

√
8∆ψ

π

∞∫
4

(σ − 2)

σ
3
2 (σ − 4)

3
2

2Re [S(σ) + 1] dσ +O(1) . (4.166)

It is now useful to notice that for real σ > 4

2
Re [S(σ) + 1]

(σ − 4)
3
2

= i

[
S(σ) + 1

(4− σ)
3
2

]σ+iε

σ−iε

, (4.167)

and therefore the last integral can be written as the contour integral∑
O:µO>2

(cψψO)2ω∆ψ
(∆O) =

1

2πi

√
8∆ψ

π

∮
Γ2

(σ − 2)

σ
3
2 (4− σ)

3
2

[S(σ) + 1] dσ +O(1) , (4.168)
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Figure 4.12: Contour integrals describing the contributions of various states to the crossing
equation (4.158) at the leading order as ∆ψ →∞. Γ1, Γ2 and Γ3 give the contribution of
bound states, two-particle states and µ = 2 states respectively. The integrand takes the
form (σ− 2)σ−3/2(4− σ)−3/2[S(σ) + 1]. Conformal bootstrap at the leading order in 1/∆ψ

is equivalent to the total contour integral being zero, in other words to the analyticity of
the S-matrix away from the real axis.

where Γ2 consists of four half-lines lying on the branch cuts, as depicted in Figure 4.12,
and we used S(4− σ) = S(σ) to duplicate the contour from σ > 4 to σ < 0.

We arrived at a contour integral of exactly the same function as in the case of bound
states (4.162), only the contour is different now. The integrand decays as σ−2 so it would
be tempting to deduce the validity of (4.158) at the leading order in ∆ψ from analyticity
of S(σ) away from the real axis by deforming Γ1 ∪Γ2 to the empty contour. However, this
is not a legal operation because the integrand has poles at σ = 0, 4 and thus the contour
integral picks up a non-zero contribution from the infinitesimal contour Γ3 depicted in
Figure 4.12. On the CFT side, this contribution is coming from operators with µ = 2. The
conformal bootstrap equation will thus be satisfied at the leading order if and only if

∑
O:µO=2

(cψψO)2ω∆ψ
(∆O) =

1

2πi

√
8∆ψ

π

∮
Γ3

(σ − 2)

σ
3
2 (4− σ)

3
2

[S(σ) + 1] ds+O(1) . (4.169)

Our asymptotic formulas (4.159), (4.163) for ω∆ψ
(µ∆ψ) break down when µ = 2 and need

to be modified. Primary operators O with µ = 2 are precisely those for which ∆O − 2∆ψ
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remains finite as ∆ψ →∞. Denote

δO = lim
∆ψ→∞

(∆O − 2∆ψ) . (4.170)

The asymptotics of ω∆ψ
is modified to become a power-law

ω∆ψ
(2∆ψ + δO) ∼ − 1

Γ
(

1−δ
2

)
Γ
(

3−δ
2

) (∆ψ

2

)−δO+1

(4.171)

as ∆ψ →∞. The contour integral on the right-hand side of (4.169) can be evaluated using
expansion (4.142)

1

2πi

√
8∆ψ

π

∮
Γ3

(σ − 2)

σ
3
2 (4− σ)

3
2

[S(σ) + 1] ds = −
√

2∆ψ

π
α , (4.172)

where α is the coefficient of the square-root term in (4.142). Equation (4.169) now implies
the following sum rule for the OPE coefficients of the µ = 2 states∑

O:µO=2

1

Γ
(

1−δO
2

)
Γ
(

3−δO
2

) (∆ψ

2

)−δO+ 1
2

(cψψO)2 =
2α√
π

+O
(

∆
−1/2
ψ

)
, (4.173)

In particular, the OPE coefficients should scale as

(cψψO)2 ∼ aO∆
δO−1/2
ψ (4.174)

as ∆ψ →∞ for these operators. We have shown that provided (4.173) holds, the validity
of the conformal bootstrap equation (4.158) at the leading order at large ∆ψ

follows from analyticity of the flat-space S-matrix away from the real axis.

It would be interesting to derive the behaviour (4.174) and the sum rule (4.173) directly
from quantum field theory in AdS2. Note that the sum rule is trivially satisfied by the free
fermion since then α = 0, and 1/[Γ

(
1−δ

2

)
Γ
(

3−δ
2

)
] vanishes for δ positive odd integer.

4.7 An analytic bound in 2D

4.7.1 The new basis in 2D

We will now discuss a generalization of the new class of bootstrap functionals to two
dimensions and how it can be used to produce an analytic constraint on the low-lying
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spectrum. The conformal blocks with four identical external scalar primaries φ(x) read

G2D
h,h̄(z, z̄) = Gh(z)Gh̄(z̄) + (h↔ h̄) , (4.175)

where Gh(z) is the 1D conformal block (4.19) and

h =
∆ + l

2
, h̄ =

∆− l
2

, (4.176)

where ∆, l are the dimension and spin of the propagating primary. The bootstrap equation
now reads ∑

O∈φ×φ

(cφφO)2Fh,h̄(z, z̄) = 0 , (4.177)

where
Fh,h̄(z, z̄) = [gh(z)gh̄(z̄)− gh(1− z)gh̄(1− z̄)] + (h↔ h̄) , (4.178)

where
gh(z) = zh−∆φ

2F1(h, h; 2h; z) . (4.179)

z, z̄ should be thought of as independent complex variables. For any value of z̄, functions
Fh,h̄(z, z̄) have a pair of branch cuts in z located at z ∈ (−∞, 0) and z ∈ (1,∞), and vice
versa with z and z̄ interchanged. Let us then define a basis of linear functionals αn acting
on functions gh(z) as in subsection 4.3.2

αn [gh(z)] = s+(h, n)

αn [gh(1− z)] = s−(h, n) ,
(4.180)

where s±(h, n) appear in (4.52) and (4.54). It is also convenient to define basis functionals
βn acting in the opposite way, i.e. by scalar products of Legendres against the discontinuity
on the branch cut z ∈ (−∞, 0)

βn [gh(z)] = s−(h, n)

βn [gh(1− z)] = s+(h, n) .
(4.181)

These functionals are not independent from αn in 1D, but are needed in 2D. The basis for
our class of functionals acting on the 2D crossing equation consists of the following tensor
products

(αm ⊗ ᾱn)
[
Fh,h̄(z, z̄)

]
=
[
s+(h,m)s+(h̄, n)− s−(h,m)s−(h̄, n)

]
+ (h↔ h̄)

(αm ⊗ β̄n)
[
Fh,h̄(z, z̄)

]
=
[
s+(h,m)s−(h̄, n)− s−(h,m)s+(h̄, n)

]
+ (h↔ h̄) ,

(4.182)
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where α, β acts on the z variable, while ᾱ, β̄ acts on the z̄ variable. The other combinations
are not independent since

βm ⊗ β̄n = −αm ⊗ ᾱn
βm ⊗ ᾱn = −αm ⊗ β̄n

(4.183)

when acting on Fh,h̄(z, z̄). The symmetrization under h↔ h̄ in Fh,h̄(z, z̄) guarantees that
the functionals appearing in (4.182) satisfy symmetry properties

αn ⊗ ᾱm = αm ⊗ ᾱn
αn ⊗ β̄m = −αm ⊗ β̄n .

(4.184)

It is therefore natural to use the following as an independent basis of functionals with
m,n ∈ N

γmn = αm ⊗ ᾱn + αm ⊗ β̄n , (4.185)

so that the first, second line of (4.182) are respectively the symmetric and antisymmetric
part of the matrix γmn. The action of γmn becomes

γmn
[
Fh,h̄(z, z̄)

]
= s(h,m)s̃(h̄, n) + (h↔ h̄) , (4.186)

where
s(h,m) = s+(h,m)− s−(h,m)

s̃(h,m) = s+(h,m) + s−(h,m) .
(4.187)

In other words, s(h,m) is precisely the function (4.50) giving the action of αn on the vectors
Fh(z) entering the crossing equation in 1D. On the other hand, s̃(h,m) is the action of αn
on the vectors F̃∆(z) for the 1D crossing equation with the wrong sign∑

O∈ψ×ψ

(cψψO)2F̃∆O(z) = 0

F̃∆(z) = z−2∆ψG∆(z) + (1− z)−2∆ψG∆(1− z) .

(4.188)

It is easy to see this equation has no nontrivial solution, as witnessed by any functional
in the form of a positive linear combination of even derivatives of [z(1− z)]2∆ψ F̃∆(z)
evaluated at z = 1/2.

4.7.2 Analytic bounds from factorized functionals

Having defined a natural basis for conformal bootstrap functionals in 2D, the remaining
task is to find coefficients amn ∈ R so that

ω =
∑
m,n∈N

amnγmn (4.189)
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is an extremal functional. Since the action of γmn essentially factorizes into a holomorphic
and antiholomorphic part, it is natural to consider a restricted class of functionals where
amn factorizes into a pair of sequences

amn = amãn . (4.190)

The action of ω then becomes

ω(Fh,h̄) = u(h)ũ(h̄) + u(h̄)ũ(h) , (4.191)

where
u(h) =

∑
m∈N

ams(h,m)

ũ(h) =
∑
n∈N

ãns̃(h, n) .
(4.192)

We will take an to be the coefficients in the 1D extremal functional for the gap 2∆ψ + 1 =
∆φ + 1, assuming it exists for any ∆φ. Hence

u(0) = 0

u(h) has a first-order zero and a positive slope at h = ∆φ + 1

u(h) ≥ 0 for h ≥ ∆φ + 1

u(h) has second-order zeros at h = ∆φ + 2j + 1 , j ∈ N .

(4.193)

Since the 1D crossing with the wrong sign has no nontrivial solutions, it is easy to find ãn
such that

ũ(h) > 0 (4.194)

for all h ≥ 0. We can take for example ãn corresponding to the functional in the form of
the second derivative of [z(1− z)]2∆ψ F̃∆(z) at z = 1/2. Consider now (4.191) as a function
of ∆ for fixed l, denoting ω(∆, l) = ω(Fh,h̄). We find the following properties

ω(0, 0) = 0

ω(∆, l) has a first-order zero and a positive slope at ∆ = 2∆φ + 2 + l , l ∈ 2N
ω(∆, l) ≥ 0 for ∆ ≥ 2∆φ + 2 + l , l ∈ 2N

(4.195)

It follows that unless all primary operators of a unitary solution to (4.177) coincide with
the zeros of ω(∆, l), the solution must contain at least one primary in the negative region
of ω(∆, l). In other words, there must be a primary distinct from identity with twist

τgap ≤ 2∆φ + 2 . (4.196)
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An analogous result holds in d > 2, where there must exist an operator with τ arbitrarily
close to 2∆φ [66, 67]. This upper bound on the minimal twist does not rely on Virasoro
symmetry, and therefore holds for arbitrary 2D conformal defects. In fact, Virasoro symme-
try implies the existence of operators with τ = 0 and l ≥ 2, so the bound is automatically
satisfied. However, the functional ω carries useful information in this case too. Note that
when 0 ≤ ∆φ ≤ 1

ω(l, l) = u(l)ũ(0) ≥ 0 for l ∈ 2N , (4.197)

so the Virasoro descendants of identity do not help and the bound (4.196) must be satisfied
by an operator of non-zero twist. Assuming the operator of minimal non-zero twist is a
scalar (such as in all theories with Virasoro symmetry where all Virasoro primaries are
scalar), numerical bootstrap shows our analytic bound is strictly above the optimal upper
bound on the scalar gap for 0 < ∆φ < 1, but it becomes optimal at ∆φ = 1, where the
extremal solution corresponds to the correlator 〈εεεε〉 in the 2D Ising model, the twist-four
primary being L−2L̄−21.

4.8 Future directions

We expect that the class of functionals introduced in this work will be useful for extracting
analytic predictions from the conformal bootstrap equations in a wider variety of contexts.
Work is currently in progress to generalize the results to more spacetime dimensions, where
the bootstrap bounds exhibit interesting features at locations corresponding to interacting
CFTs.

An especially promising property of our functionals is their well-controlled behaviour
when the external scaling dimensions are large. This is in sharp contrast with the derivative
functionals normally used for the numerical bootstrap, whose constraining power deterio-
rates with increasing external dimensions [118]. For this reason, the functionals from this
chapter are useful for extracting the consequences of boundary crossing symmetry on AdS
physics, as demonstrated in section 4.6. In this context, it would also be interesting to test
the sum rule (4.173), for example by constructing exact solutions to crossing corresponding
to scattering in integrable theories in large AdS2.

It would also be very interesting to identify the extremal functionals for bounds on
OPE coefficients analytically in our basis. In 1D with large external scaling dimension, the
numerical upper bound on the OPE coefficients of bound states coming from CFT crossing
was observed to coincide with the corresponding analytical bound coming from S-matrix
bootstrap in flat space [118, 122]. It is conceivable that similar methods to those presented
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in this chapter can be used to prove this upper bound analytically on the CFT side. The
main challenge seems to be able to place the double zeros of the extremal functionals to
more general locations than the equally spaced points occuring in the present work.

Crossing symmetry of mixed correlators dramatically improves the bootstrap bounds
[6, 37]. Similar improvements are observed to occur in 1D [123]. Our basis for functionals
is expected to generalize to this context too, hopefully paving the way towards an analytic
understanding of bootstrap islands in more spacetime dimensions. Related functionals
might also be useful for modular bootstrap, where suggestions concerning the analytic
nature of extremal functionals recently appeared in [124].

It could be fruitful to explore the utility of our basis for standard numerical bootstrap.
Truncating the space of integral kernels to the span of Legendre polynomials of a bounded
order, it is impossible to impose positivity for arbitrarily large scaling dimension since the
functionals eventually become oscillating. However, one could try imposing positivity only
up to the maximum order of a Legendre used.

Finally, one should look for an interpretation of what the presented functionals are
trying to do physically. The partial restoration of the z ↔ 1 − z symmetry, described
in the last paragraph of section 4.4 is a hint that our basis, which breaks this symmetry
explicitly, might not be the optimal choice.

4.A Closed formulas for the integral kernel

The goal of this appendix is to explain how one can obtain closed formulas for the integral
kernel h̃(x) corresponding to ∆ψ ∈ N− 1/2, specified by the formulas (4.133) and (4.137).
Define

〈f, g〉 =

1∫
0

dxf(x)g(x) (4.198)

the usual scalar product of real functions on the unit interval. The basis functions are
orthogonal

〈pm, pn〉 =
δmn

2m− 1
for m,n ∈ N , (4.199)

so that h̃(x) is the unique function satisfying

ãn = (2n− 1)〈h̃, pn〉 . (4.200)
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Our strategy for finding h̃(x) will be to write ãn/(2n − 1) as a linear combination of
overlaps between pn and some relatively simple functions. It is useful to define the following
functions

q∆(x) = Q∆−1(2x− 1)

r∆(x) =
Γ(∆)2

2Γ(2∆)

[
x∆−1

2F1(∆,∆; 2∆;x) + (1− x)∆−1
2F1(∆,∆; 2∆; 1− x)

]
,

(4.201)

where Qn(y) is the Legendre function of the second kind. When ∆ is even, we have
q∆(1− x) = q∆(x), and therefore 〈q∆, pn〉 is nonzero only for n odd. In that case, we find
the following overlaps

〈q∆, pn〉 =
1

λ−∆(∆− 1)
, (4.202)

where λ = n(n− 1). Clearly, the overlaps 〈r∆, pn〉 are nonvanishing again only for n odd.
For ∆ = 1, 2 we find

〈r1, pn〉 = −1

2
Ψ′
(n

2

)
〈r2, pn〉 =

[
n(n− 1) +

1

2

]
Ψ′
(n

2

)
+ 2 ,

(4.203)

with Ψ(z) = ψ(z + 1/2)− ψ(z), ψ(z) = Γ′(z)/Γ(z). It is now possible to see that

ãn
2n− 1

= −〈r2, pn〉+ (2∆ψ − 1)〈r1, pn〉+H∆ψ
(λ) , (4.204)

where H∆ψ
(λ) is a rational function of λ with simple and double poles at λ = ∆(∆ − 1)

where ∆ ∈ {2, 4, . . . , 2∆ψ + 1}. H∆ψ
(λ) → 0 as λ → ∞ and therefore H∆ψ

(λ) can be
written as a linear combination of

1

[λ−∆(∆− 1)]a
(4.205)

with a = 1, 2 and ∆ ∈ {2, 4, . . . , 2∆ψ + 1}. Any summand with a = 1 can be written as
the overlap 〈q∆, pn〉 thanks to (4.202). It remains to find functions q̃∆(x) such that

〈q̃∆, pn〉 =
1

[λ−∆(∆− 1)]2
. (4.206)

We could not find a closed formula for q̃∆(x) but worked out a few low-lying examples.
It was useful to notice that q̃∆(x) is the solution of the Legendre equation with resonant
forcing

[x(1− x)q̃′∆(x)]
′
+ ∆(∆− 1)q̃∆(x) = −q∆(x) (4.207)
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and boundary conditions

q̃∆(0) = q̃∆(1) =
ψ′
(

1−∆
2

)
− ψ′

(
∆
2

)
4(2∆− 1)

. (4.208)

The bottom line is that h̃(x) can be written as a linear combination of r1(x), r2(x), q∆(x)
and q̃∆(x) with ∆ ∈ {2, 4, . . . , 2∆ψ + 1}. In this way, one can obtain the following explicit
formulas for small ∆ψ. The kernel for ∆ψ = 1/2 takes the form

h̃(x) =

[
1− y

2y
− (2x2 + x+ 2) (x− 1)

2x2
log(1− x)

]
+ (x↔ 1− x) , (4.209)

where we use the shorthand notation y = x(1 − x). The kernel for ∆ψ = 3/2 takes the
form

h̃(x) =

[
12y2 + 11y + 12

24y
− (2x2 + 3x+ 2) (x− 1)3

2x2
log(1− x)

]
+ (x↔ 1− x) . (4.210)

Beginning from ∆ψ = 5/2, we get contributions from q̃∆(x) which contain the dilogarithm.
The kernel for ∆ψ = 5/2 takes the form

h̃(x) =

[−120y3 + 154y2 + 641y + 120

240y
+

3

5
(2x− 1)(y + 2)Li2(x)+

+
(x− 1)(y − 1) (10x4 − 5x3 − 22x2 − 5x+ 10)

10x2
log(1− x)

]
+ (x↔ 1− x) .

(4.211)
Note that the full kernel is given by h(x) = h̃(x) + c(x) with c(x) given by (4.138). It
turns out that the kernel has simple transformation properties under z ↔ 1− z. We leave
further exploration of these for a future study.
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