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Abstract

Modern graphics accelerators have embedded programmable components in the

form of vertex and fragment shading units. Current APIs permit specification

of the programs for these components using an assembly-language level interface.

Compilers for high-level shading languages are available but these read in an exter-

nal string specification, which can be inconvenient.

It is possible, using standard C++, to define an embedded high-level shading

language. Such a language can be nearly indistinguishable from a special-purpose

shading language, yet permits more direct interaction with the specification of

textures and parameters, simplifies implementation, and enables on-the-fly gener-

ation, manipulation, and specification of shader programs. An embedded shading

language also permits the lifting of C++ host language type, modularity, and scop-

ing constructs into the shading language without any additional implementation

effort.
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Chapter 1

Introduction

The purpose of computer graphics rendering is to create pictures or animations

with computers. These pictures or animations can be used in entertainment prod-

ucts, such as movies and games, architectural applications, such as urban planning,

medical applications, such as volume rendering of the data taken by CT or MRI,

and also technical research, in which computer simulation can be used to simulate

situations where it is precarious for real people to work. Applications of computer

graphics are surely not limited to the above areas. They are found in a wide variety

of areas from daily life to academic research.

The purpose of the research described in this thesis was to develop an embedded

real-time shading language. In section 1.1, we describe the role of shading in graph-

ics. Section 1.2 introduces the architectures of graphics accelerators. In particular,

we emphasis the role of programmable shading units in modern accelerators. Our

shading language targets these programmable shading units. In section 1.3, we

motivate the use of a high-level shading language. Finally, section 1.4 summarizes

1



CHAPTER 1. INTRODUCTION 2

contributions of this thesis.

1.1 Shading

For different reasons, either artistic or technical, some of the renderings need to

be based on real-world physics. Users want objects rendered as realistically as

possible. For example, in movies, many scenes of ocean storms, fires, earthquakes,

and other natural disasters are simulated by computer graphics. The rendering

of these scenes has to be based on the physics of the natural phenomena to make

the scenes realistic. Because of the complexity of the physics, the simulations are

normally simplified to speed up the computations. But the renderings have to be

convincing enough. There are also some renderings that need special rendering

effects that have nothing to do with the underlying physics. They can be used

either artistically for striking effects or used technically for users to understand

better the data rendered. No matter what kind of rendering, we need to figure out

how to assign colour to each pixel on the surface of an object in the scene. This is

called shading [37].

Shading is a very important area in computer graphics. It is also a very com-

plicated and time-consuming procedure. Imagine we need to render a scene with a

few objects and a few light sources. For each light source, we have to figure out the

effects of the light rays on each point on the objects. A point light source will shoot

rays in all directions. So all the directions have to be taken care of. When a single

light ray hits an object surface, it can be reflected, refracted and diffracted. These

reflected, refracted or diffracted rays become new light sources. Theoretically, this
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procedure will go on forever. Since the objects can be made of different materials,

the objects may have various reflection, refraction and diffraction features. For an

area light source, we have to compute the effect integrated over the area of the

source. To make the scene more convincing, normally techniques such as, bump

mapping, displacement mapping, and anti-aliasing are applied to generate realistic

images.

1.2 Graphics Hardware Acceleration

For some rendering tasks, time is not a big problem although it is not a pleasant

thing to wait a long time for the final results. We can still perform the rendering

with software only. But for real-time rendering, a software-only rendering system

usually will not be fast enough, and we need the help of hardware accelerators.

A hardware accelerator can dramatically speed up rendering. It can implement

special graphics algorithms, such as rasterization and compositing, in the hardware.

Also, a hardware accelerator can have an architecture tuned to the needs of graphics.

In particular, the data access patterns for graphics applications can be predicted,

so a graphics accelerator does not have to depend so much on cache.

vertex shader rasterization fragment shader composition image

Figure 1.1: Architecture of graphics accelerator

A hardware accelerator is generally organized in a pipeline. Normally, the primi-
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tives represented by triangles are set up by the application program. These triangles

are sent to one end of the hardware accelerator and the color for each pixel comes

out at the other end of the hardware accelerator. A rough illustration of the data

flow in the hardware accelerator is shown in Figure 1.1.

Triangle data, including position, normal, and some other parameters of each

vertex, are sent into the accelerator. First, they enter the vertex shader, which per-

forms a set of computations either fixed in hardware or coded in software. The ver-

tex shader performs independent computations on each vertex’s data. The compu-

tations can be vertex transformations, normal transformations and normalizations,

texture coordinate generation or any other arithmetic computations to compute

the values needed in the following module.

Next, since the final goal of rendering is to find a color for each pixel in the final

image, we need information for the pixels in between the vertices. To compute the

color for each pixel, two approaches can be used. The first approach is to compute

the color in the vertex shader and interpolate it. This is known as Gouraud shading.

The second approach is to interpolate the parameters of the lighting model, then

compute the color for each pixel in a fragment shading unit. This is known as

generalized Phong shading. Gouraud shading ignores some important information

such as surface normal when it interpolates the pixel colors, so it is faster. But

the disadvantage is that it makes the images appear flat across each triangle, and

causes artificial edges along the triangle borders. Whereas Phong shading can

render curved surfaces more smoothly. Therefore Phong shading is more realistic

than Gouraud shading.
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This brings up the next module in the accelerator architecture: the rasterization

module. The main job of rasterization is to figure out which pixels each triangle

covers, and then interpolate the triangle vertex data to get corresponding data for

each pixel. The rasterizer also does some clipping or culling if the triangles are

outside of the view, perspective projection, etc. Then all the interpolated data are

sent down to the next module: the fragment shader.

Just as in the vertex shader, the fragment shader is also a computation either

fixed in hardware or coded in software that performs some arithmetic operations

and/or texture lookups to compute the color for each pixel in the final image with

the interpolated data passed in from the rasterization. For instance, the fragment

shader can evaluate a lighting model to implement Phong shading.

The last module in the pipeline is the composition module that performs alpha

testing, stencil testing, depth testing, blending and dithering to generate the final

image and put it into the framebuffer.

When graphics accelerators were first developed, the functions of the vertex

shader, the rasterizer, the fragment shader and the composition module were all

fixed in the hardware. The rendering abilities were quite restricted to the fixed

rendering functions provided by the hardware. Then came more flexible accelerators

that added programmability in some important modules, such as in the vertex

shader and the fragment shader [7, 27].

Programmability of modules means the functions of some modules in the ac-

celerators are no longer fixed. Users can write their own programs and load the

programs into these modules to control how the modules should work. Of all the
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modules in the accelerators, the modules that actually determine shading are the

vertex shader and the fragment shader. Although rasterization or composition can

be implemented in different ways, they do not affect the shading effects very much.

Generally the most efficient algorithms are fixed in hardware in these two mod-

ules to make the rendering fast. So the programmable modules in the hardware

accelerators are basically the vertex shader and the fragment shader. The first

programmable hardware accelerator was developed in 1992 on the Pixel-Planes 5

research graphics machine by University of North Carolina, and the first commod-

ity graphics hardware that had similar abilities appeared in 2001 with the NVIDIA

GeForce3. A programmable graphics accelerator is now called a GPU (Graph-

ics Processing Unit). Research in this area has been quite active. New techniques

have been found to implement sophisticated lighting models using a relatively small

number of programmable operations [17, 18, 20, 21, 30, 37] and high-level shading

languages have been developed or modified to target the GPU [15, 6, 29, 38, 41].

Computation in the vertex shader and the fragment shader in the GPU are

both performed in a streaming SIMD (Single Instruction Multiple Data) fashion.

Data streams enter the shaders, and programs are executed element by element

producing an output stream. Computations on each element are independent and

so can be executed in parallel. Also, shaders do not support branches, so all parallel

executions can use the same instruction stream.

Some data required by the shader programs vary from element to element, some

are unchanged during the rendering of a set of primitives or don’t change at all.

Data for shaders are therefore classified into different categories according to the
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frequency of their modification. For instance, one way of classification will put

the data that vary with element into a varying category, and others into uniform

category. This classification of data will be talked more about later when high level

shading languages are introduced.

1.3 High Level Shading Languages

Graphics accelerators provide assembly languages for users to write their own pro-

grams for both the vertex shader and the fragment shader. However assembly

language programs are hard to develop, debug and maintain, which prevents many

users from using them. Some of these assembly languages have never been used by

any users except the developers themselves. Thus, people started to develop high

level shading languages [2]. The main advantages of high level shading languages

are that all the hardware details and optimizations are hidden from the users, so

that users can focus on the applications only and work more efficiently. Also, the

hardware itself has diverged from the assembly language standards, so the existing

assembly languages are really an intermediate representation. There is no point in

performing extensive low-level optimizations on an assembly program if it will be

transformed by the hardware driver, so we may as well use a high level language.

When users employ a rendering system to write their own applications, they

normally use one high level shading language for the programmable shaders and

other programming languages for the rest of the application. For example, the

programmable shaders could be written in Cg [28], while the rest of the application

is written in C and OpenGL. There are quite a few high level shading languages.
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Among them, the RenderMan shading language [6, 15] is the most popular offline

(non-realtime) shading language. Some other shading languages are the Pfman

shading language [35], the Interactive Shading Language(ISL) [43], the Stanford

Real-Time Shading Lanugage [42], the OpenGL 2.0 shading language [2], and the

Microsoft High Level Shading Languages [33]. Some of these shading languages will

be introduced in more detail in the next chapter.

1.4 Contributions

In this thesis, we designed and implemented an embedded real-time shading lan-

guage called Sh. Sh is built on top of C++. We implemented the Sh compiler,

including some optimizations; designed and prototyped the basic language fea-

tures, including data types, operators, and a library; explored ways of using C++

features to organize the Sh code; explored ways of lifting error checking to compile

time; and finally, we implemented two advanced texture data types using the basic

Sh features to experiment with the abstraction mechanisms made available by our

language.



Chapter 2

Shading Languages

In this chapter, we will discuss a few well-known high-level shading languages rel-

evant to our work. Also, we will talk about our work and its comparison with

previous shading languages. Unlike general programming languages that target the

CPU, shading languages that target the GPU have a much shorter history. The time

and effort devoted to the development of GPU languages cannot be compared with

those for the CPU. We cannot expect GPU languages to be as sophisticated and

mature as CPU languages. However, to develop shading languages for the GPU, the

simple idea of transplanting a general programming language to a shading language

is not feasible for two reasons. First, GPUs have some special features, such as op-

erations on tuples instead of scalars, texture lookups, stream computation. These

features are not reflected in the design of general-purpose programming language.

Second, some features of more general programming languages are not supported

by the GPU. For instance, current GPUs don’t support branches, and compiled

programs are restricted to a certain length. Despite the differences between GPU

9
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and CPU architectures, basic compiler principles still apply to the development of

shading languages.

We will survey the features of existing shading languages. The following shading

languages will be introduced roughly in chronological order of development. Some

earlier shading languages were not designed for GPUs, but have inspired more

recently developed GPU-oriented languages.

2.1 RenderMan Shading Language

RenderMan [45, 1] is a software rendering system designed by Pixar Animation

Studios for high quality, photo-realistic image synthesis. It can be considered as an

interface between modelling programs and rendering programs. The RenderMan

shading language is an essential part of the rendering system designed to provide

customization of the shading and lighting functions. Shaders are used to simulate

different materials, the distribution of light in an environment, and the effects of

special lenses and film response.

Like GPUs, RenderMan uses a SIMD model of execution. Surfaces are tesse-

lated into small pixel-sized fragments which are shaded in parallel. In fact, the

original RenderMan interface targeted a hardware implementation, although today

RenderMan implementations are mostly performed in software.
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2.1.1 Language Features

Data Types

The RenderMan shading language is a C-like shading language. The float type is

the only basic data type for all scalar variables. There are also composite data types

like color, point and normal that are composed of groups of floats. The shading

language also has a data type for 4×4 matrix internally represented by 16 floats;

this matrix type is used to represent 3D affine and projective transformations.

One-dimensional arrays of all data types are also supported.

Data Type Modifiers

There are two data type modifiers in the language: uniform and varying. The

uniform modifier indicates the variables that are constant over a portion of surface

being shaded. The varying modifier indicates the variables that have different val-

ues at different locations on the surface being shaded. These modifiers are necessary

to optimize SIMD execution.

Operators

Arithmetic operators (+, −, ∗, /), vector operators (cross product, dot product)

and C conditional expressions are defined for the corresponding data types. On

matrices, ∗ is used for matrix multiplication.
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Control Constructs

The language supports if-then-else, for, while and do control constructs with

some restrictions on boolean expressions. It also has three domain specific block

statement constructs: illuminance, illuminate and solar. The constructs illuminate

and solar are used to specify directional properties of light sources. The illuminance

construct performs integration over all incoming lights and accumulates the lighting

contributions.

Functions and Libraries

Built-in or user-defined functions are called as in the C programming language.

The RenderMan shading language has a large library that provides mathematical

functions (such as basic math functions, derivative functions and noise functions),

shading, colouring and lighting functions (such as ambient illumination functions,

Phong illumination functions and ray tracing functions). Map access functions

(such as texture access functions, environment map functions and shadow map

functions) and geometric functions (such as point component access functions, vec-

tor normalization functions and refraction functions) are also provided. Functions

are in-lined and parameters are passed by reference.

Shaders

In the RenderMan rendering system, there are six kinds of shaders. The keywords

for these shaders, light, surface, volume, transformation, displacement and

imager, must be placed in front of shaders to distinguish shaders from normal
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functions. Each shader has an implicit parameter list that is actually a list of

global variables that have default values. When users instantiate a shader, they

can set new values to the parameters for their special cases or just use the default

values. There are two kinds of data in this implicit parameter list. One is uniform:

the data don’t change over the whole shading surface. The other is varying: they

vary with the position on the surface shaded. The results of shaders are put into

global variables.

Compilation

Shaders are placed in files separate from the user of the RenderMan system. These

files will be compiled by the RenderMan shading language compiler into machine

code and then put in a place where the rendering program can find them. When

the rest of rendering program is compiled, if there are RenderMan Interface com-

mands invoking shaders, the appropriate shaders will be found and linked with the

rendering program.

2.1.2 Example

Figure 2.1 is an example shader written in RenderMan shading language.

2.2 Pfman Shading Language

The Pfman shading language [35] was designed especially for PixelFlow graphics

hardware developed by the University of North Carolina in 1995. In 1992 the Uni-

versity of North Carolina designed Pixel-Planes 5, a research hardware testbed,
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that supported real-time rendering using a high-level shading language, but only

for simple shaders. PixelFlow evolved from Pixel-Planes 5 plus a technique called

deferred shading first used by Whitted and Weimer [47]. It was the first graph-

ics system that supported hardware-accelerated rendering for arbitrarily complex

shaders.

/*

* plastic(): give the appearance of a plastic surface

*/

surface

plastic(

float ks = .5,

kd = .5,

ka = 1,

roughness = .1;

color specularcolor = 1)

{
point Nf = faceforward(normalize(N), 1);

point V = normalize(-1);

Oi = Os;

Ci = Os * (Cs * (Ka * ambient() + Kd * diffuse()) +

specularcolor * Ks * specular(Nf, V, roughness));

}

Figure 2.1: RenderMan surface shader for a plastic appearance
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2.2.1 Language Features

Data Types

Since the Pfman shading language targeted PixelFlow, it was the first real-time

high level shading language. The Pfman shading language was modeled after the

RenderMan shading language, and was quite similar to it. At this time, the Render-

Man shading language was used extensively in movie production. The developers

of Pfman wanted to make it easy to port RenderMan shaders to PixelFlow.

However, Pfman also has some improvements and differences. First, it has a

new fixed-point data type in addition to a floating-point data type. In PixelFlow,

the pixel processor did not support floating-point operations directly. The floating-

point operations were done by combining a few integer operations plus shifting to

align the decimal points. A single precision floating-point is represented by 4 bytes.

It can represent numbers from 10−38 to 1038. For operations with small numbers

(from 0 to 100, for instance) and low precision (integer computation, for instance),

it is much more efficient to use small fixed-point numbers (represented by 1 byte,

for instance) rather than floating-point numbers (represented by 4 bytes). Users

could therefore declare fixed-point data and specify the bits for the integer part

and the bits for the fraction. In cases requiring high precision over a narrow range

of values, fixed point types make more efficient use of memory.

Unlike the RenderMan shading language, that has types like point, color and

normal, the Pfman shading language used simple tuples of floating-point or fixed-

point numbers instead. RenderMan shaders also have implicit parameter lists for

input and output data. In contrast, all parameters in Pfman shading language have
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to be declared explicitly.

Control constructs are supported in the Pfman shading language. However,

since Pfman also used a SIMD execution model, implementation of these control

constructs could be inefficient.

Shaders

In the PixelFlow rendering system, there are several shader types. However, only

two of them are actually implemented in hardware: the surface shader and the

light shader.

Compilation

The compilation of the Pfman shading language has three stages. In the first stage,

the compiler transforms the shading program into a C++ program. Every Pix-

elFlow rendering node has both a serial microprocessor and a parallel SIMD array.

In the second stage, a C++ compiler cross-compiles this program into machine lan-

guage for the serial microprocessor. When this machine code runs, it executes the

uniform computations directly and generates an instruction stream for the SIMD

array to execute the varying computations. Several optimizations are performed to

minimize storage cost in the SIMD array, which is the main resource limit of the

PixelFlow architecture.

The RenderMan system is a complete rendering system that supports all stages

of rendering from setting up the models to obtaining the final image. The separate

shaders written in the RenderMan shading language are invoked by API function

calls in the rendering system. The Pfman shading language does not have such a
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complete rendering system. It accomplishes rendering by working with OpenGL.

OpenGL is an interactive API that also supports the whole rendering pipeline from

establishing models to generating the final images except (at the time PixelFlow

was implemented) that it did not support arbitrary shaders. Pfman makes OpenGL

support arbitrary shaders by adding some new API calls to OpenGL.

2.2.2 Example

Figure 2.2 is a portion of a Pfman shader for a brick wall.

// figure out which row of bricks this is (row is 8-bit integer)

fixed<8,0> row = tt/height;

// offset even rows by half a row

if(row % 2 == 0) ss += width/2;

//wrap texture coordinates to get "brick coordinates"

ss = ss % width;

tt = tt % height;

// pick a color for the brick surface

float surface color[3] = brick color;

if(ss < mortar || tt < mortar)

surface color = mortar color;

Figure 2.2: Code from a simple Pfman brick shader

2.3 ISL Shading Language

2.3.1 Language Features

While shading languages like Pfman were developed to extend the programmability

of OpenGL, SGI, who designed OpenGL, also developed their own high level shad-
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ing language for procedural shaders. This language, called the Interactive Shading

Language (ISL) [43], is built on top of existing OpenGL capabilities. The ISL com-

piler does not translate files written in ISL into machine code directly, but instead

converts ISL files into pass description files. These pass description files will then

be translated into C/OpenGL code. So the ISL compiler is indeed a compiler that

converts the ISL language into C/OpenGL code. Each OpenGL call can be seen as

a parallel SIMD operation. Combinations of OpenGL rendering passes can achieve

arbitrary shading computations. ISL is known as a multi-pass shading language.

ISL is not a full-featured shading language like the RenderMan and the Pfman

shading languages. This was because of the limitations of existing SGI OpenGL

hardware. One example of such a limitation is that texture coordinates for texture

lookups could not be computed values. Another limitation is that when users define

shaders, they could not declare their own parameters if the parameters change with

position. If the users do want such a parameter, they have to put it in a texture

map and do a texture lookup to get it.

Data Types

Data types in ISL are quite similar to those in the RenderMan shading language.

ISL also has only float for all scalars, has type color, point, and vector composed

of groups of floats, has a 4 × 4 matrix composed of 16 floats, and allows 1D

arrays of the above data types.
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Data Type Modifiers

ISL has three modifiers for its variables: varying, parameter, and uniform. The

varying data change with different positions, the parameter data change only

with different surfaces or frames, and the uniform data will not change after the

shader is compiled. The allowable arithmetic operations for varying, parameter

and uniform variables are different. A uniform variable can be converted to a

parameter variable and a parameter variable to a varying variable.

Control Constructs

ISL supports control constructs if/else and repeat that will run the repeat body

for a certain number of times. However, if/else results in inefficient execution and

repeat only supports a constant (non-data dependent) number of iterations.

Functions and Shaders

Functions and shaders in ISL are of the same format. Each has a return type,

a function name, a formal parameter list, and a body. The return type can be

one of any of the ordinary types or one of the following shader types: surface,

atmosphere, ambientlight, distantlight and pointlight. If the return type is

a shader type, the function is actually a shader, otherwise it is an ordinary function.

A big difference between ISL and most other shading languages is that ISL

allows more than one surface shader. These surface shaders are applied one by

one and their results can be composited together.
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2.3.2 Example

A simple ISL shader is shown in figure 2.3.

surface shadertest(

uniform color c = color(1, 0, 0, 1);

uniform float f = .25;

{
FB = diffuse();

FB *= C*f;

return FB;

}

Figure 2.3: A simple ISL shader

2.4 Stanford Real-Time Shading Language

The Stanford Real-Time Shading Language (RTSL) [42] is another high level shad-

ing language designed on top of OpenGL, but this time targeting OpenGL exten-

sions for modern GPUs that support programmable vertex and fragment units.

2.4.1 Language Features

Data Types

RTSL is very similar to C. Compared with the RenderMan shading language, Pfman

and ISL, RTSL adds a boolean type bool, a texture reference type texref and

clamped types (for instance clampf1 is a floating-point scalar clamped to [0-1]).

RTSL does not have data types for color, point, or vector, instead it has generic
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data types that have more than one component, such as float3 and float4. RTSL

also supports 3× 3 and 4× 4 matrices for transformations.

Data Type Modifiers

In RTSL, variables are classified into four categories indicated by four modifiers:

constant, primitive group, vertex, and fragment. The constant modifier

means the variables will not change after the shaders are compiled, so it cannot

be assigned any new value later. The primitive group modifier means the vari-

able can be assigned a value for each primitive group, but not more frequently.

The vertex modifier means the variables can be different for each vertex and the

fragment modifier means the variables change per pixel. RTSL calls these four cat-

egories computation frequencies ; constant has the lowest computation frequency

and fragment has the highest computation frequency.

There are restrictions on what operations can be performed at certain frequen-

cies. For instance, matrix-matrix multiplication must be at primitive group com-

putation frequency. Theoretically, it is not wrong to put matrix-matrix multiplica-

tion at the vertex or fragment frequency. However, matrix-matrix multiplication

normally is constant for each primitive group. It is not necessary to repeat the

operation for each vertex or fragment.

When users declare variables, they can put modifiers in front of the variable

types. Otherwise the system will figure out the computation frequencies of the

variables automatically. The variables will be computed in the appropriate compu-

tation frequencies.

RTSL supports explicit type conversion and implicit promotion of types. RTSL
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also supports computation frequency conversion from low computation frequency

to high computation frequency, but not vice versa.

RTSL provides some functionality borrowed from C++. It supports function

overloading similar to C++, conditional compilation (it has seven C preprocessor

directives) and global variables. RTSL does not support control constructs.

Operators

RTSL has the basic math operators such as +, −, ∗, / for different types, a special

operator “{}” to group scalars into vectors or vectors into matrices, and functions

to access one or more components in a vector. However, assignment to vector com-

ponents is not allowed. Grouping scalars into vectors is not only for the convenience

of users, but also for taking advantages of graphics hardware features. The regis-

ters in the graphics hardware are normally 4-tuples. Operations for four unrelated

scalars are less efficient than grouping the scalars into a vector and performing one

operation.1

RTSL has a blend function to blend two 4-component vectors together with

respective coefficient for each vector. RTSL also has comparison operators and a

conditional select operator. Operator precedence is the same as in C.

1Assuming the hardware actually operates on tuples. Unfortunately, hardware developers do
not release the internal details of their hardware and also perform optimization of assembly code
submitted to their API. There is some indication that modern GPUs are actually multithreaded
VLIW (Very Large Instruction Word) machines, in which case the driver does extensive reschedul-
ing of parallel operations anyway.
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Libraries and Functions

RTSL provides a library that has math functions for scalars, vectors and matrices,

texturing and lookup functions, and some other functions. All user-defined func-

tions must be defined before they are used, since RTSL does not support function

declaration. Functions are called just as in the C language. RTSL has a function

integrate that has similar semantics to the illuminance construct in the Render-

man shading language. The function integrate evaluates the accumulated value

of an expression over all light sources.

Shaders

RTSL has two kinds of shaders: surface and light. In the high level shading

languages that we have introduced so far, logical modules do not map one-to-one

to the GPU architecture. GPUs mainly have only programmable vertex shaders

and fragment shaders. The shading languages that we will introduce later will have

logical shaders that do map one-to-one to GPU structures.

Shaders are basically the same as functions, except that the return types of

shaders have to be modified by surface or light.

Compilation

RTSL is connected to OpenGL by a set of interfaces designed by RTSL. These API

extensions are prefixed by sgl in OpenGL.

Shaders are in files separate from the rest of the program. The surface shader

and light shader are first loaded. Then the surface shader and corresponding
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light shaders are combined together. Before this combined shader can be used, the

combined shader has to be compiled for the graphics hardware. The compilation

of shaders happens at run time because the compilation depends on the hardware

which may be different on different runs of the application.

Example

Figure 2.4 is a simple Stanford RTSL shader for a diffuse lighting model.

// useful constants

constant float4 Zero = 0, 0, 0, 0;

constant float4 Black = 0, 0, 0, 1;

constant float4 White = 1, 1, 1, 1;

constant float pi = 3.14159;

surface float4

lightmodel diffuse (float4 a, float4 b)

{
perlight float diffuse = dot(N, L);

perlight float4 fr = select(diffuse > 0, d * diffuse, Zero);

return a * Ca + integrate(fr * C1);

}

Figure 2.4: A simple diffuse Stanford RTSL shader

2.5 OpenGL 2.0 Shading Language

OpenGL 2.0 [3, 4] will support a shading language, which has been nicknamed

glslang. This language was originally designed by 3DLabs, Inc. Ltd. but is
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now being standardized by the OpenGL Architecture Review Board (ARB). The

OpenGL 2.0 shading language tries to incorporate the good features, such as vector

and matrix computations, from previous shading languages to make graphics com-

putations more convenient for users. It also added more C/C++ features to form

a full real-time shading language. Many of the OpenGL 2.0 features are similar to

features of previous shading languages.

Unlike previous shading languages that have supported logical models not match-

ing the GPU model, OpenGL 2.0 supports a logical model with only vertex and

fragment shaders which matches perfectly the vertex and fragment shader in the

GPU. This model makes compilation simpler since the effort of splitting, reorga-

nizing or combining logical shaders into GPU shaders is avoided. In OpenGL 2.0,

vertex shaders and fragment shaders are loaded directly into the corresponding

modules in the GPU.

2.5.1 Language Features

In terms of general language features, OpenGL 2.0 supports conditional compila-

tion, C/C++ style comments, structures, arrays, control constructs, C-like scoping,

C-like operator precedence, function calls, function declaration, constructors (just

like the constructors in C++ that initialize instances from constructor parameters),

conversions between variable types. Note that some of these features still have re-

strictions. For instance, the preprocessor directives in OpenGL is only a subset of

those in C/C++, the if/else control construct cannot be nested, and users can-

not define their own constructors. Also it is not clear if the OpenGL 2.0 shading
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language can be supported on current GPUs. In OpenGL fashion, if a given shader

cannot be compiled to hardware, then an implementation is free to execute it in

software—likely at a unacceptable cost in performance.

In terms of graphics, OpenGL 2.0 supports arithmetic operators and comparison

operators for vectors and matrices, more complex variable types including texture

handles, composition of vectors and matrices from scalars or vectors, vector and

matrix component access, and so on.

Data Type Modifiers

There are two categories of modifiers for data types in the OpenGL 2.0. One cat-

egory includes const, uniform, attribute and varying. These modifiers (except

const) are mainly used for global variables. Their functions are similar to the mod-

ifiers in other shading languages. The const modifier is for variables that never

change. The uniform modifier is for variables that are constant for the primitives

rendered but may change between shader bindings. The attribute modifier is

for vertex-based variables. The attribute variables (data about each vertex) are

passed from OpenGL to vertex shaders, processed by the vertex shader and the

results are written into varying variables. These varying variables are then inter-

polated and copied to the corresponding varying variables in fragment shader. The

fragment shader reads from its own input varying variables and processes them.

So the varying variables are actually the interface between the vertex shader and

the fragment shader.

Communication between application programs, OpenGL, the vertex shader and

the fragment shader in OpenGL 2.0 is handled through global variables. For exam-
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ple, vertex data are passed from application programs to the vertex shader through

some built-in global attribute variables. Data between the vertex shader and

the fragment shader are transmitted through global varying variables as long as

the declaration of the output varying variables in the vertex shader matches the

declaration of the input varying variables in the fragment shader.

Another category of modifiers including in, out, inout are for function param-

eters. The in modifier indicates read-only function parameters, the out modifier

indicates write-only function parameters, and the inout modifier indicates both

read and write function parameters. Parameters are basically passed by reference,

since functions are to be implemented by in-line code expansion.

Compilation

Just as in RTSL, the connection of shaders with other part of the OpenGL rendering

pipeline is accomplished by an OpenGL API extension. Source code for a shader is

stored in a separate file. Before a shader can be used, the API loads the shader into

a shader object. The shader object is then compiled and attached to a program

object. The program object is then linked to generate an executable that can be

run on the programmable unit in the OpenGL pipeline. This executable can be

chosen when the rendering needs it. The loading, compiling and linking of shaders

are all done at run time.

Example

The OpenGL 2.0 shading language example in Figure 2.5 is a light map applied to

a base texture map with linear fog.
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2.6 Cg (C for Graphics)

Cg (C for Graphics) is a high-level shading language developed by NVIDIA. It was

developed in parallel with the OpenGL 2.0 shading language.

2.6.1 Language Features

Generally speaking, Cg has the same logical model as OpenGL 2.0 because both

support only vertex shaders and fragment shaders. The language features of Cg are

also similar to that of OpenGL 2.0. However, there are certainly some differences

between these two languages. Cg is independent of API, while OpenGL 2.0 is very

specific to OpenGL. But the differences are not so basic as to cause big differences

in functionality.

void main (void)

{
float fog;

vec3 color;

vec3 baseMap = texture3(0, gl TexCoord0);

vec3 lightMap = texture3(1, gl TexCoord2);

color = baseMap * lightMap;

fog = (gl FogEnd - abs(gl EyeZ)) * gl FogScale;

fog = clamp(fog, 0, 1);

color = mix(color, gl FogColor, fog);

gl FragColor = vec4(color, 1);

}

Figure 2.5: OpenGL 2.0 example: a light map applied to a base texture map
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Cg introduced the concept of language profiles to distinguish the different capa-

bilities of vertex processor, fragment processor and of different commodity graphics

hardware. By choosing a certain profile, a subset of the full Cg language is cho-

sen such that this subset of language is fully supported on a particular hardware

platform. Functions in Cg can also be overloaded on profiles, providing a simple

mechanism to specify shaders specialized for different hardware platforms.

Cg also includes a mechanism for defining the input/output structure of each

shader in a struct. These structs are then bound to attributes, and shared defini-

tions are used to pass data between vertex and fragment programs.

2.6.2 Compilation

Shaders written in Cg are also put in separate files. The compiling and linking

of Cg shaders to application programs can be done at either compile time or run

time. Run time compiling and linking are supported by Cg’s runtime library, as in

OpenGL 2.0.

2.6.3 Example

Figure 2.7 is a simple Cg vertex shader program that calculates diffuse and specular

lighting. The input-output specification for this shader is given in Figure 2.6.
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2.7 Sh Shading Language

All previous shading languages put the shader program in a separate string or file

and then implement a relatively traditional compiler to convert this specification to

a machine language representation. Using a separate language has some advantages.

For instance, a “little” language can be more tightly focused and can leave out

unnecessary features while supporting a domain specific syntax. However, binding

the shader program to the application program can be a nuisance. In fact, this

binding code can easily be longer than the shader itself.

Our contribution is the development of a high-level shading language, Sh, that

is not really a separate language, but a library embedded in C++. Since it is an

embedded shading language, the binding of the shader program with the application

is implicit and controlled by C++ scoping rules. Also, all the modularity constructs

// define inputs from application

struct appin

{
float4 Position : POSITION;

float4 Normal : NORMAL;

};

// define outputs from vertex shader

struct vertout

{
float4 Hposition : POSITION;

float4 Color0 : COLOR0;

};

Figure 2.6: An input-output specification for a simple Cg vertex shader
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and syntax of C++ are available for use in Sh programs.

Shading languages are domain specific languages (DSLs) designed specifically

vertout main(appin In,

uniform float4x4 ModelViewProj : C0;

uniform float4x4 ModelViewIT : C4;

uniform float4 LightVec)

{
vertout out;

Out.Hposition = mul(ModelViewProj, In.Position);

// transform normal from model space to view space

float4 normal = normalize(mul(ModelViewIT, In.Normal).xyzz);

// store normalized light vector

float4 light = normalize(LightVec);

// calculate half angle vector

float4 eye = float4(0.0, 0.0, 1.0, 1.0);

float4 half = normalize(light + eye);

// calculate diffuse component

float specular = dot(normal, half);

// calculate specular component

float specular = dot(normal, light);

specular = pow(specular, 32);

// blue diffuse material

float4 diffuseMaterial = float4(0.0, 0.0, 1.0, 1.0);

// white specular material

float4 specularMaterial = float4(1.0, 1.0, 1.0, 1.0);

// combine diffuse and specular contributions

// and output final vertex color

Out.Color0 = diffuse * diffuseMaterial

+ specular * specularMaterial;

return Out;

}

Figure 2.7: A simple Cg vertex shader program that calculates diffuse and specular
lighting
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for computer graphics. The evolution of shading languages has followed the general

evolutionary path of all domain specific languages. Normally a DSL is first de-

signed to capture precisely the semantics of an application domain. However, users

of DSLs always find that some general programming language features are very

helpful. So eventually a DSL ends up as a general programming language with ex-

tra features in a special domain. This has also been the case in the development of

shading languages. From the very beginning, shading languages followed the syntax

of the C programming language with some additional semantics to support com-

puter graphics, such as vector and matrix operations. Shading languages are now

borrowing more and more general programming language features from C/C++,

such as structures, function definition and overloading, preprocessing directives. So

we can expect that future shading languages will be languages like C/C++ with

extra application features in computer graphics.

The evolution of a DSL also tells us that to develop a DSL that has just the

semantics of an application domain can be quick, but to make the DSL have general

language features will take lots of time and effort. This gave us the idea of building

an embedded shading language within an existing language. This saves us from

developing general language features so we can focus on the semantics of computer

graphics. The general language features of the existing host language are inhereted

“for free”. Since the host language is normally well developed and mature, and still

being improved by its own developers, the newest features of the host language will

always be available to the users of such a DSL. An API is also a language, so our

contribution can also be thought of as developing an API with the expressiveness
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of a shading language.

Embedding a DSL within an existing language is not a new idea [10, 12]. For

example, SQL database queries are often embedded in C. Embedded DSLs have

been implemented by using specilized preprocessors [19], or by taking advantage

of language features to build pure embedded DSLs. Embedded DSLs implemented

the second way are actually libraries constructed on top of the existing language.

The C++ template mechanism, for example, has been used to construct “active

libraries” which will generate more efficient code because some of the computations

are done by the preprocessor when the templates are instantiated. Embedded

DSLs have also been popular in functional programming languages like Haskell or

ML because some of their features, such as higher-order functions, lazy evaluation,

polymorphism and type classes, make the implementation of the embedded DSLs

easy. In the past, it was hard to build embedded languages in imperative languages.

Sh uses both macros (preprocessing) and operator overloading in C++ to build an

embedded DSL for graphics.

Sh is built on top of standard C++ features. The decision to embed the shad-

ing language within C++ has three motivations. First, existing shading languages

all follow the syntax of C++ and are borrowing more and more features from it,

so why not use C++ directly? Second, most real-time graphics applications are

written in C++. Third, the features of C++, such as classes, operator overloading,

templates and inheritance, have made it possible to construct an expressive embed-

ded language. The operator overloading feature in C++ in particular is crucial in

the construction of Sh. Unlike conventional language compilers that use a lexical
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analyzer and a parser to generate tokens and parse trees, the Sh compiler uses op-

erator overloading to construct parse trees directly. This saves lots of work but the

code generation that follows can use any methods that are applicable to general

compilers. Since the embedded shading language is actually a shading library in

C++, the Sh shaders can be put anywhere in the application program and don’t

need to be in separate files. The embedding of Sh in the application also gives

new power to the application, which can now easily generate custom shaders on

the fly. The compilation of an application program is just a one-pass compilation

using C++ compiler, unlike the other shading languages introduced before that

have multi-pass compilation.

In this thesis we describe the design and development of a prototype Sh imple-

mentation. This prototype was targeted at a GPU simulator called Sm [31], because

the commercial graphics cards didn’t support control constructs or floating point

at that time and we wanted Sh to target the new generation of graphics cards. In

the next chapter, we will introduce our GPU simulator.

It should be noted that all features in this simulator are now basically supported

by GPUs, and the current version of Sh targets real GPUs. However, we will focus

on the prototype for the thesis and discuss the current state of Sh in the conclusion.
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Testbed

The Sh prototype targets a software GPU simulator called Sm, implemented by

Michael McCool, Kevin Moule and Stefanus Du Toit. When the Sh prototype

was implemented, commercial graphics cards did not support control constructs or

floating point values. The new graphics products support floating point values but

not control constructs—yet. However, indications are that the next iteration of

Direct3D will require control constructs, and this will drive hardware to support

them. The Sm testbed tries to predict new directions in graphics hardware. Sm

is similar to the NVIDIA graphics hardware API except that it has new features

such as control constructs and noise functions. We did not want Sh to be obsolete

when it was released, so we targeted the testbed whose features we expected to see

in commercial graphics cards later.

Another reason the Sh prototype targeted the testbed instead of real hardware

is that when the Sh was first developed, there were not many optimizations in the

compiler. The assembly programs generated were definitely not efficient or concise.
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While commercial graphics cards have limitations on the length of shaders, our

testbed supports shaders with arbitrary length. So it was easy for us to develop

Sh on Sm at an early stage. However, the new version of Sh has targeted real

hardware.

The architecture of the Sm testbed will be roughly introduced in this chapter.

Hopefully, it will help our readers understand the Sh shading language better.

3.1 Architecture of Testbed

programmable

vertex shader

textures

pbuffer

framebuf

programmable

fragment shader

frustrum clipping

viewport mapping

homogeneous division

face culling

composition

fragment

operations:

depth−test

alpha−test

stencil−test

compositing

display

rasterization and interpolation

Figure 3.1: Architecture of testbed

The architecture of the Sm testbed is shown in Figure 3.1. The shaded blocks

in the figure are the programmable modules and the other blocks are fixed-function

modules.
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3.1.1 Vertex Shader

The processing of application program data by the Sm testbed starts from the vertex

shader. Vertex data streams are sent to the programmable vertex shader by the

rendering system. In the vertex shader module, operations such as vertex position

and normal transformation, vector normalization, texture coordinate generation,

advanced lighting models, or advanced vertex operations for special effects are

performed. At this stage, no culling or clipping is performed to remove vertices

from the data stream. Each vertex has its own corresponding input and output

data. Computations on one vertex cannot use data from neighboring vertices.

3.1.2 Rasterization and Interpolation

The output from the vertex shader is then sent to the next fixed-function module.

Here, vertices are assembled to reconstruct the triangles (primitives).

Processing primitives that are expected to be invisible is wasteful. Before raster-

ization and interpolation, hidden primitives are eliminated to speed up processing.

Face culling discards the primitives that are facing away from the viewer. Frustum

clipping, in general, clips off the primitives that are out of the viewing frustum and

may possibly generate new triangles if the primitives intersect with the viewport

boundaries. Clipping may not be a separate path from rasterization. As a matter

of fact, clipping is not done in Sm. Sm uses a clipless rasterization algorithm [32].

Rasterization and interpolation are then applied to the triangles. Data for each

pixel on a rasterized triangle, including pixel coordinates, normals, texture coordi-

nates are interpolated from the triangle vertex data. Interpolated pixel data may
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also go through further procedures such as homogeneous division, which performs

the perspective projection, and viewport mapping, which maps the pixel coordi-

nates onto the 2D screen.

3.1.3 Fragment Shader

The fragment shader uses the interpolated pixel data to compute the color for each

pixel on the screen. The computation of colors may involve arithmetic operations

and texture lookups. The results of the fragment shader are sent to the composition

module for further processing.

3.1.4 Composition

At the composition stage, the depth-test, the alpha-test, and the stencil-test are

applied to the output data from the fragment shader to generate the color for each

pixel. The depth-test determines the pixels that are closest to the viewer. These

pixels are not hidden by other pixels and will appear on the screen. The alpha-test

eliminates pixels whose alpha values do not pass a certain threshold. The stencil-

test compares a reference value with the contents in a stencil buffer, and further

operations are only applied to the pixels that pass the comparison. The results of

the composition module are sent to the framebuffer in the memory module, which

is then read by the display device.
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3.2 Vertex/Fragment Shader Architecture

In our work, all we care about are the programmable modules in the graphics cards.

So we will only focus on the vertex shader and fragment shader from now on. Here,

we will introduce the architectures of the programmable modules, and their API

features.

vertex/fragment shader

ALU

input register

output register

temporary register constant register

Figure 3.2: Architecture of vertex/fragment shader

Normally in commercial graphics cards, such as ATI and NVIDIA graphics

cards, the architectures of vertex shader and fragment shader are designed dif-

ferently to maximize overall performance because the vertex shader and fragment

shader have distinct requirements and functionalities. But in Sm, the vertex shader

and fragment shader were designed in a general way without distinguishing the dif-

ferences between them because we expect this will be the trend in hardware design.

As the vertex shader and fragment shader become more and more powerful, their

functionalities will eventually converge. The architectures of the vertex shader and
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fragment shader in Sm are shown in Figure 3.2. A vertex/fragment shader has

an ALU and four kinds of registers: input registers, output registers, constant

registers and temporary registers. Input data come in from the input registers and

final results are written to the output registers. Sm instructions are function-call

based.

3.2.1 Registers

In Sm, registers have to be declared and allocated before they are used. Each

register in Sm is a four-tuple of floating-point numbers. Operations on registers are

component-wise. Unlike real GPUs, Sm has an unlimited number of registers of all

types, and all are both readable and writable.

Users can give any names to registers, or even allocate arrays of registers. In

the following illustration, we will assume preallocated arrays of registers for the

convenience of explanation: iR for input registers, oR for output registers, tR for

temporary registers and cR for constant registers.

Input registers hold incoming attribute data; these are the varying parameters

of the shader. Output registers hold outgoing attribute data; these are the results

of the shader. Note that in Sm (and in Sh) shaders can have multiple outputs.

Constant registers are loaded explicitly by the host. They hold uniform parameters.

Finally, temporary registers hold intermediate results.
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3.2.2 Swizzling and Write Masking

Registers in Sm support both swizzling and write masking. The swizzling operation

accesses and rearranges components of a register. The write masking operation

writes only certain components of a register. The letters “x”, “y”, “z” and “w” are

used respectively to represent the first, second, third and forth components in a

register. A string composed of the four kinds of letters grouped in arbitrary order

is used for swizzling and write masking. If the string is appended to a register read

from, the string is used for swizzling; if the string is appended to a register written

into, the string is used for write masking.

3.2.3 Instructions

Most Sm instructions have the form smOP(dest, src1, src2) or smOP(dest,

src). There are also a few instructions with four parameters or one parameter.

OP is the type of operation which can be ADD (addition), MUL (multiplication), DIV

(division), MAX (maximum), and so on. Parameters src1, src2 and src are the

source registers read from. Parameter dest is the destination register written into.

The instruction smMOV(oR[1]["xy"], iR[2]["xx"]) is an example with both

swizzling and write masking. String “xx” is for swizzling and “xy” is for write

masking. This instruction copies the first component of input register iR[2] to the

first and second components of output register oR[1].

Instruction smADD(oR[1], iR[1], iR[2]) is an example that adds the values

in register iR[1] and iR[2], and puts the result in register oR[1].

Sm shader instructions are similar to NVIDIA and OpenGL ARB shader in-
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structions, except that in Sm, a shader can have unlimited number of instructions.

3.2.4 Control Flow

Sm supports branches. The following instructions are used for flow control.

command parameters function

smLBL(n) n: index of label declare a label

smJR(d) d: register for label jump to label stored in d

smBNE(d, l) d:register for label if(l != 0) goto

l:register compared with 0 label stored in d

smBE(d, l) d:register for label if(l == 0) goto

l:register compared with 0 label stored in d

3.2.5 Texture Access

For texture lookups, there are no special texture registers in Sm as in other com-

mercial graphics cards. Texture lookup is done with the constant registers in the

following steps.

1. Declare a texture object.

T1 = smNewTexture2D(res, channel, SM FLOAT);

Parameter T1 is the texture object returned by the function, parameter res is

the resolution of the texture, parameter channel is the number of channels in the

texture, and parameter SM FLOAT is the data type in the texture.
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2. Load texture data into the texture object.

smTexImage2D(T1, 0, databuffer);

Parameter T1 is the texture object object, and the databuffer parameter is a

pointer to a buffer holding the texture data.

3. Bind the texture object to a texture unit in Sm.

smBindShader(SM TEXTURE UNITn, T1);

Parameter SM TEXTURE UNITn is an integer indicating the number of the texture

unit in the GPU. Parameter T1 is the texture object.

4. Texture lookup in a texture unit.

smTEX(creg, reg1, reg2);

Parameter creg has the texture unit number. If texture lookup is done in tex-

ture unit SM TEXTURE UNITn, the content of constant register creg has to be the

same as SM TEXTURE UNITn. Parameter creg must be a constant register. Param-

eter reg1 is the register for the color returned by the texture lookup. Parameter

reg2 is the register for texture coordinates. Register reg1 can be any type of

register except constant. Register reg2 can be any types of register.

3.2.6 Noise Functions

Sm provides noise functions to generate procedural textures. Procedural textures

are functions that compute color for each pixel in the texture with respect to the

texture coordinates. The advantage of a procedural texture is that no texture buffer

is needed to store the color for each pixel. All we need is the function. Procedural

textures save the memory resources in GPU. The following noise functions are
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supported in Sm:

SMuint smDNS1(SMreg dest, SMreg src1);

SMuint smDNS2(SMreg dest, SMreg src1);

SMuint smDNS3(SMreg dest, SMreg src1);

These functions implement 1D, 2D and 3D Perlin noise functions respectively. No

current GPUs support noise functions, although they can be simulated.

3.2.7 Shader Definition

After we know the registers and instructions in Sm, the last step is to use them to

construct a shader. Here we use the example in Figure 3.3 to give the readers an

idea of what an Sm shader looks like.

First, the registers used in the shader are declared and allocated. The Sm func-

tion smDeclareShader returns a shader object. The parameter ShaderModule ID

indicates whether the shader is a vertex shader or a fragment shader. Vertex shaders

are indicated by 0, and fragment shaders are indicated by 1. The shader object

is passed as parameter to the smShaderBegin function which begins the shader

definition. The instructions that follow define the body of the shader. The shader

definition ends with the smShaderEnd function.

Multiple vertex/fragment shaders can be loaded into the GPU. But only one

vertex/fragment shader is active at a time. When a shader is loaded into the GPU,

it is made active by default. To reactivate a shader, the smBindShader function is

used.
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SMreg oPos, v0, v1, r0, r1;

oPos = smOutputReg(0);

v0 = smInputReg(0);

v1 = smInputReg(1);

r0 = smReg();

r1 = smReg();

shader = smDeclareShader(ShaderModule ID);

smShaderBegin(shader);

smDP3(r0, v0["xyz"], v1["zyx"]);

smADD(r1, v0, r0);

smMUL(r0, v0, r1);

smSUB(oPos, r0, r1);

smShaderEnd();

Figure 3.3: Example of Sm shader
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Sh Compiler

Almost all shading languages developed previously are independent languages with

their own compilers. Most of the time, programs written in shading languages are

put in separate files. They are compiled with their own compilers first, then the

compiled code is linked with the rest of the application program. The compilations

normally involve two passes.

Our goal is to develop a shading language that is powerful, expressive, easy to

develop, easy to learn, and easy to use. The powerful features of C++ made our

goal possible. The Sh shading language is an embedded shading language built in

C++. In addition to domain specific features of its own, Sh gets many powerful

C++ features for free. We also use the operator overloading function of C++ to

construct the parse tree for arithmetic expressions automatically, which saves us

from constructing a parser from scratch. Since C++ is already a popular pro-

gramming language, users of C++ can learn the Sh shading language very quickly,

because the Sh shading language is in fact a C++ library. Also, Sh shaders do not
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have to be separated from the application. They can be put anywhere in a C++

program, and compilation is a one-pass process.

In this chapter, we will explain how the prototype Sh compiler was constructed.

We start with the parse tree construction and code generation. Then we introduce

how the memory in Sh is managed to avoid memory leaks. Last, we introduce the

optimizations that the Sh prototype supported.

4.1 Parsing

Since Sh is embedded in C++, most of its syntax features are inherited from C++.

For instance, a semicolon is used to end a statement, curly braces are used to define

scopes, and functions are called the same way as in C++. The main difference

between embedded Sh shader statements and normal C++ statements is that at

run time Sh shader statements are not computed immediately in the CPU. Instead,

side effects of Sh shader statements and constructors are used to generate a parse

tree, that keeps all the information about the shader. At the end of the shader

definition, optimizations and code generation are applied to generate code for the

GPU. This code is then downloaded to the GPU.

Statements in Sh can be classified into two categories: expressions and control

constructs. The parsing of expressions and control constructs are different in Sh.

4.1.1 Expression Parsing

Expression parsing in Sh is accomplished by using operator overloading in C++.

Operators, including arithmetic operators, such as “+”, “−”, “∗”, “/”, logic oper-
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ators, such as “|”, “&”, “>”, “!”, and the assignment operator “=”, use overloading

to delay execution. Instead, a simple parse tree is constructed for each operator.

For example, the expression a + b will not compute the sum of variables a and b

immediately. Instead a parse tree as in Figure 4.1 will be generated. The parent

node “+” points to its two child nodes a and b. An operator node may have two

child nodes or one child node depending on whether the operator is binary or unary.

At the end of the shader, machine code will be generated according to this parse

tree and eventually the sum of a and b will be computed in the GPU.

a b

+

Figure 4.1: Parse tree for a + b

All operators are overloaded in a similar way except the assignment operator.

The assignment operator “=” is overloaded not only to generate a parse tree, but

also has the side effect of putting onto the current token list a token referring to the

assignment node. This token list is used to keep all the statement tokens in an Sh

shader. When the shader definition is finished, all the tokens, including expression

tokens and control construct tokens, are read from the token list to generate a

complete parse tree for the shader. Code generation is applied to this complete

parse tree.

As an example of assignment, the expression d = a+b∗c; generates a parse tree

as in Figure 4.2. An expression token referring to the assignment node is pushed
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into the token list. When the tokens in the list are read from the token list, they

are combined together to generate a complete parse tree. The parse tree for this

expression will become a part of the general one.

a

+

b

=

d

c

*

Token List
pushed into list

expression token

Figure 4.2: Parse tree for d = a + b ∗ c

The precedences of the operators cannot be modified from the C++ standard.

The operator precedences in Sh are naturally consistent with the ones in C++. In

this example, operator “∗” has higher precedence than “+”, so “∗” is parsed earlier

than “+”. The parse tree for “∗” is deeper than that for “+” in the parse tree.

The order of the parse tree generation is “∗”, “+”, and “=”. The code generation

procedure performs a bottom-up travers of the parse tree. It generates code for

b ∗ c first, puts the result in a temporary register t1, for example, then generates

code for a + t1, puts the result in another register t2, and finally generates code for

d = t2.

Expressions (other than arguments to control constructs) without an assignment

operator have no effect in the shader, therefore they are simply discarded and no
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tokens are put into the list.

The copy constructors of all data type classes in Sh are rewritten so that they

will generate an assignment parse tree that assigns the initial value to the newly

declared variable. We can then initialize the variable when we declare it, and don’t

have to separate declaration and initialization. The additional assignment will be

optimized away.

4.1.2 Control Construct Parsing

In Sh, we can use either C++ control constructs or Sh control constructs. C++

loops will expand the statements within a loop the corresponding number of times.

Also, C++ if/else permits the conditional inclusion of Sh code. Use of such

control constructs results in no jumps or loops in the generated GPU assembly

code. In order to generate assembly code that has data dependent branches, we

implemented a mechanism to specify Sh control constructs.

Control construct keywords in Sh are actually macro definitions. The control

keywords are defined as follows:

#define SH WHILE(c) shWHILE(push()&&process(c)); {

#define SH ENDWHILE shENDWHILE(); }

#define SH IF(c) shIF(push()&&process(c)); {{

#define SH ELSE shELSE();

#define SH ENDIF shENDIF(); }}

#define SH DO shDO(); {{{

#define SH UNTIL(c) shUNTIL(push()&&process(c)); }}}
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#define SH SWITCH(c) shSWITCH(push()&&process(c)); {{{{

#define SH ENDSWITCH shENDSWITCH(); }}}}

#define SH CASE(c) shCASE(push()&&process(c));

#define SH DEFAULT shDEFAULT();

#define SH FOR(a,b,c) shFOR(push()&&process(a)

&&push()&&process(b)

&&push()&&process(c)); {{{{{

#define SH ENDFOR shENDFOR(); }}}}}

#define SH BREAK shBREAK();

#define SH CONTINUE shCONTINUE();

Note that the “control keywords” in Sh are really function calls. They are

wrapped in macros just for cleaner syntax. The curly braces “{” and “}” at the

end of the macro definitions are used for compile time error detection. For example,

shFOR has five “{” and shENDFOR has five “}”. If shFOR and shENDFOR do not appear

in a pair, the C++ compiler will complain about it. The number of braces for each

pair of control keywords is unique.

Control construct functions that do not accept arguments simply insert a key-

word token into the current token list. For example, shELSE() puts an ELSE token

into the token list.

Each argument, for instance represented by c, in the control macros is expanded

into two functions in the corresponding functions: push() and process(c). These

two functions, which always return true, are linked together with operator &&.

In C++, the operator && guarantees its two operands are executed from left to
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shader definition {
expressions before WHILE loop...

SH WHILE(c) {
expressions inside WHILE loop...

} SH ENDWHILE

expressions after WHILE loop...

} end of shader definition

Figure 4.3: Shader with WHILE loop

right. Function push() returns a true value, and so process(c) is always executed.

If there are multiple arguments, the functions are linked together as in shFOR()

with &&, such that the arguments are processed in sequence. The arguments are

processed in such a way to solve some problems described below.

Suppose we are defining a shader and the shader has a current token list for

storing expression and control construct tokens. For instance there is a SH WHILE

loop in the shader, as is shown in Figure 4.3. The SH WHILE loop keyword takes one

argument c. The argument c is normally an expression such as a >= b+d or a ! =

b. The loop is ended by SH ENDWHILE.

We would like the tokens generated for this shader to be in the order shown

in Figure 4.4a. The WHILE token separates the expression tokens before SH WHILE

from c expression tokens. The “{” token separates the c expression tokens from the

expression tokens inside the loop body, and the “}” token separates the expression

tokens inside the loop from the expression tokens after the loop. If each group of

tokens is separated from other groups, it is then easy to construct a general parse

tree with these tokens and generate GPU assembly code.



CHAPTER 4. SH COMPILER 53

expr tokens before while loop

{ token

expr tokens inside loop

} token

expr tokens after while loop

WHILE token

expr tokens before while loop

tokens for expression c

{ token

expr tokens inside loop

} token

expr tokens after while loop

WHILE token tokens for expression c

incomplete c tokens

a b

Figure 4.4: Tokens in the token list

To achieve this, the shWHILE(c) function was originally designed to push a

WHILE token into the token list, then push tokens generated for expression c, and

finally push a “{” token to indicate the end of the c expression tokens and the

beginning of the expression tokens inside the loop. Function shENDWHILE() was

designed to push a “}” token into the token list to end the WHILE loop. Tokens

for expressions before, inside, and after WHILE loop are pushed into the token list

automatically because of assignment operator overloading.

The problem with this method is that when the C++ compiler sees the shWHILE(c)

function, it evaluates the argument before it executes the function. When the c ex-

pression is evaluated, any statment or assignment will push tokens into the token

list. This does not happen for simple expressions, but expressions can contain

function calls which can issue arbitrary sequences of statements. In this case, the
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tokens in the token list will be as in Figure 4.4b. Extra tokens required for the

evaluation of c now appear before the WHILE token in the list. This situation arises

frequently. For instance, the arithmetic operations sometimes involve matrices.

Matrix operations normally generate multiple assignment tokens.

There is no way to tell how many expression tokens before WHILE are extra

ones. Even worse, if a control function has multiple arguments, like shFOR(a, b,

c), the C++ compiler expands the three arguments before shFOR is executed and

puts the tokens for all three of them into the list. Tokens for a, b and c are piled

together. It is impossible to tell which tokens belong to which argument. Another

problem is that different C++ compilers may evaluate arguments in different orders.

The parameters a, b and c could be processed from left to right or in reverse

order. The straightforward way to do control constructs, simply pushing a control

keyword token, does not work. Therefore, we introduce the functions push() and

process(c).

To solve these problems, we use the data structure shown in Figure 4.5. Each

rectangular block is a struct that has a pointer to its parent struct, a token list for

storing tokens and a child stack for storing pointers to its child structs.

If a keyword macro has no argument, we simply push a keyword token into the

current token list. If a keyword macro has an argument c, the argument is expanded

by the macro preprocessor into two functions connected with the “&&” operator:

push()&&process(c). The “&&” operator guarantees push() is executed before

process(c). The function push() creates a new child struct and sets the current

struct and token list to this child struct and token list. The function push()
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children stack
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list

children stack
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parent

parent
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Figure 4.5: Data structures in control constructs
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returns a true value to force the execution of process(c). When the C++ compiler

evaluates c, the tokens for c are now pushed onto the new child token list. Tokens

for c are thus separated from the previous tokens and the whole set of c tokens can

be used later. Function process(c) simply sets the current struct and token list

back to the previous parent struct and token list and returns a true value.

Now the function shWHILE() pushes a WHILE token into the current token list,

moves tokens from the child token list for argument c to the current token list and

pushes a “{” token. Function shENDWHILE() still pushes a “}” token into the token

list. The tokens in the final token list are now the same as in Figure 4.4a.

Other control flow functions are implemented in a similar way. Here we will

only deliberate on the shFor function a bit more to show how a function with more

than one argument works.

In the shFOR(a, b, c) macro, each argument is processed in the same way and

therefore the tokens for each parameter are put into three separate child token lists.

Theoretically, the control construct functions can have any number of arguments

by using the data structure in Figure 4.5. The push and process functions for

each argument are also connected with “&&” operator so that we can control the

processing order of a, b and c. At the end, the shFOR function rearranges the

segments of code into the correct order.

By implementing control constructs this way, and using a recursive descent

parser as introduced in the next section, Sh can support a full set of control con-

structs. Theoretically, it allows unlimited number of control construct embeddings

and also allows the keyword arguments to have functions with control constructs
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inside them.

4.1.3 Parse Tree Generation

while { }

root

expr

expr

expr

expr

expr

expr

expr

expr

before WHILE loop

shWHILE parameter c

within WHILE loop

after WHILE loop

Figure 4.6: Parse tree for a shader with a WHILE loop

After the shader definition is closed, the tokens are stored in one token list. A

recursive descent parser is then applied to construct a general parse tree for the

shader. The parse tree for a WHILE loop is shown in Figure 4.6.

If there are no control constructs, assignment tokens are linked in sequence.

Each token is set to the child of the previous token. Each expression token points

to parse trees for its left and right expressions. The parse trees for expressions are
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generated automatically by operator overloading. The emphasis of the recursive

descent parser is to parse the control constructs. For a set of control functions, for

instance shWHILE and shENDWHILE, all the keywords generated by them, in this case

keywords WHILE, “{” and “}”, are put in sequence as brothers. The expressions

for arguments, conditional or loop bodies, and the expressions after the control

constructs are set as the children of the corresponding keywords. As a matter of

fact, each expression token in the above example can be substituted by a control

construct, which makes the parse tree support arbitrary combinations of the control

constructs.

4.1.4 Code Generation

Code is generated via a top-down travers of the parse tree. The code for a parent is

always generated before the code for a child. If a node in the parse tree has both a

child node and a brother node, the child node has higher priority than the brother

node. The code for the control keywords generates either labels or branches.

Semantically, Sh control constructs work just as C++ control constructs do. Sh

supports if/else, while, do/until, for, switch, and also supports break and

continue. Arbitrary nesting of control constructs is allowed.

Syntactically, Sh differs slightly from C++. Sh has SH END... keywords for

ending control constructs, while C++ does not. Sh separates the arguments in

SH FOR with “,” instead of “;” as in C++.

Although Sh has implemented the SH SWITCH/CASE control construct, it is now

not in use, because the GPUs do not support integers, and the SWITCH/CASE control
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construct needs integer comparisons. This notwithstanding, we still implemented

the syntax for the SWITCH/CASE control construct in Sh in order to have a complete

set of control constructs for Sh, and if integer operation are supported in GPUs

later, the SWITCH/CASE will be right there for use.

4.2 Memory Management

When Sh shaders are defined, they require some memory resources. Users may

declare variables outside shaders (uniform parameters) or inside shaders; the parse

trees are constructed, and some internal data structures are allocated to store in-

formation. The memory taken by the variables and the shaders must be reclaimed

when they are no longer needed. For simplicity’s sake, we need to free users from

explicit memory management. Therefore, in Sh, reference-count smart pointers are

used to clean up memory automatically. This simple garbage collection scheme

depends on the fact that all data structures in Sh are directed acyclic graphs.

References to shaders and variables are maintained via smart pointers. For

variables, each variable points to a variable node, which keeps the reference count

of the variable. When there are new references to the variable, the reference is

increased automatically, and when the referring objects are killed, the C++ de-

structors of these refering objects automatically decrease the reference count and

delete the variable as necessary. References to shaders work the same way. Shaders

may be referenced for more than once because they can be involved in shader al-

gebra operations. When a shader is killed, all the memory taken by this shader is

automatically released.
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4.3 Optimizations

In the Sh prototype, we don’t perform complete optimizations because of the time

and effort required. But we did try to do some optimizations on constant registers

which are very important with limited resources. Our optimizations are really just

a beginning. Much more work remains to be done in the future.

4.3.1 Optimizations on Constant Variables

Since constant registers are a very limited resource, we implemented a few opti-

mizations on them.

In Sh, there are three kinds of “constants”: uniform parameters declared out-

side shaders, numeric literals, and newly declared temporary variables. Newly

declared temporary variables are regarded as constant until they are modified by

non-constant variables. Initially, only the non-constant values are stored in input

registers.

The following constant optimizations are implemented to save constant registers

and improve the efficiency of the assembly code.

Scalar Packing

For numbers that have to be loaded into constant registers, each number uses only

one component in a constant register. A constant register has four components,

so one constant register can hold four numbers. Each component can be accessed

by swizzling. If a number is used in more than one place, the number is put in

a constant register only once. A map is used to keep track of the place where
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the number is loaded. When the same number is used in an expression again, the

correct constant register and component can be retrieved.

Immediate Parameter Operation

Arithmetic expressions defined outside shaders (operations on uniform parameters)

and inside shaders are implemented in different ways. Computations defined out-

side shaders or computations define inside shaders on parameters and on constant

variables are evaluated immediately by the host, and the results are used as con-

stants inside the shaders. Arithmetic expressions defined inside shaders but on

non-constant variables are not executed immediately. Parse trees are generated for

such expressions.

Constant Folding

Constant folding is a way to improve run-time performance by doing constant

evaluation at compile time [5, 48, 34]

If there is no constant folding optimization, each constant will be loaded into

a constant register. Constant evaluations are parsed to generate assembly code.

With constant folding optimization, the constant evaluations are performed on the

host. Only the results are loaded into the constant registers.

Especially when all the variables on both sides of an assignment operator are

constant variables, the expression is executed immediately. No parse tree and as-

sembly code is generated for this expression. The reason Sh regards newly declared

temporary variables as constant is that shorter assembly code is generated because

of constant folding.
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1 ShMatrix4x4f mata;

2 ShMatrix4x4f matb;

3 matb = inverse(mata);

4 ShShader exp = SH SHADER BEGIN(0); {
5 ShInputPoint3f pc;

6 ShPoint3f pa(0.2, 3.2, 1);

7 ShPoint3f pb;

8 ShOutputPoint pd;

9 pb = pa | matb;

10 pd = pb - pc;

11 pb = pc;

12 ...

13 } SH SHADER END;

Figure 4.7: Example shader for constant folding

There are often matrix operations in shaders, such as the computation of the

inverse, adjoint, or determinant of a matrix. The length of the machine code for

these operations can be drastically reduced by the use of immediate parameter

operation and constant folding.

The segment of code in Figure 4.7 illustrates constant folding in Sh. Line 3

is executed immediately because of the immediate parameter operation. Line 9 is

also executed immediately because variables pb, pa and matb are constant. Line

10 is not executed immediately because pc is an input variable. So a parse tree is

constructed for this line. On line 11, pb is assigned by pc which is an input variable,

so a parse tree is generated for this line and pb is also marked as temporary variable.
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Parameter Modification

Parameters in Sh act like global variables in C++. When parameters are modified,

Sh automatically reloads the new values into the GPU without further action by

the users.

One parameter may be used multiple times in one shader and used in multiple

shaders. Because of constant folding, a parameter may not be loaded into regis-

ter directly, but the constant folding results involving the parameter are loaded.

Changing a parameter may affect several constant registers in the GPU. The new

values have to be loaded into the GPU before the shader is used again. We use a

data structure to keep track of this information. If a parameter is used in a shader,

a node list for this shader is added for this parameter to record which nodes in the

parse tree are influenced by this parameter. Each node is a constant folding point

in the parse tree. Sh also keeps record of the constant register each node is using.

One node list is added for each shader that uses the parameter.

When the parameter is changed outside a shader, Sh marks the parameter as

modified. When the shader is used, Sh checks each parameter to see if any of them

have been modified previously. If Sh finds a parameter that has been modified, it

will follow the node list for this shader in the parameter variable to recompute the

values at each node in the node list. Then only the new values are loaded into the

GPU. Also, if a parameter currently in use by the active shader is modified, the

recomputation and reloading are done immediately.
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4.3.2 Matrix Loading

When a matrix is loaded into the GPU, it may take more than one constant register

depending on its dimensions. Normally the matrix is loaded row by row. The

worst case is that a 4 by 1 matrix will take four constant registers using only one

component in each register. To save registers, Sh stores the transpose of such

matrices. Access to the transposed matrix has to be adjusted accordingly.

In the Sh prototype, 3 by 2 matrices are still stored row by row. The reason is

that if the transpose is stored, it only saves one register, but may make the matrix

computation more complicated, therefore generating longer code.
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Sh Language Features

Because Sh is embedded in C++, it basically follows the syntax of C++ so that

users of Sh won’t feel a big difference when they switch between the two different

languages. Some features Sh inherits from C++ directly; in others, Sh tries to

follow the C++ syntax. Things that are the same in both C++ and Sh include

variable declaration, function definition and function calls, basic operators, using

“;” to end a statement and using curly braces “{” and “}” for scope.

There are also some differences between Sh and the host language C++ either

because we added new features for Sh which don’t exist in C++ or because C++

restrictions prevent Sh from having the exact syntax of C++. For instance, Sh

has new data types and new operators, and also has swizzling and write masking

which C++ does not have. Semantically Sh has the same control constructs as

C++. Syntactically, Sh control constructs are different from those of C++ because

we cannot overload C++ keywords such as for, while, switch or “;” etc. Sh has

defined SH FOR, SH WHILE, and SH SWITCH, etc. instead. Sh also does not support

65
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pointers, although C++ pointers can be used to manipulate Sh shaders.

In this chapter, we are going to introduce the Sh language. First, a complete

shader example will be shown to give the general idea of an Sh shader. Then the

main features of Sh will be introduced.

ShShader julia0 = SH BEGIN SHADER(0) {

// declare input vertex parameters

ShInputTexCoord2f ui;

ShInputPoint4f pdi;

// declare outputs vertex parameters

ShOutputTexCoord2f uo(ui);

ShOutputPoint4f pdo(pdi);

}
SH END SHADER

Figure 5.1: Sh Vertex shader for Julia set

Figure 5.1 is an example of an Sh shader. It is the vertex shader of a pair of

shaders that computes the Julia set as a procedural texture. The variable julia0 is

the shader object. The parameter 0 of SH BEGIN SHADER indicates this is a vertex

shader. This shader does not compute the Julia set itself, but simply copies the

input texture coordinates and point position to the output texture coordinates and

point position.
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5.1 Data Types

Sh supports basic data types, such as int, float and double. Internally, these

data types will be promoted respectively to Sh data type ShAttrib1i, ShAttrib1f

and ShAttrib1d. The boolean data type is not yet supported in Sh. The Sh data

types include:

ShAttrib[1234]*

ShVector[1234]*

ShNormal[1234]*

ShPoint[1234]*

ShPlane[1234]*

ShColor[1234]*

ShTexCoord[1234]*

ShTexture[123]D*

ShTextureCube*

ShMatrix[1234]x[1234]*

ShInput*

ShOutput*

ShAttrib[1234]* is the basic data type in Sh. The numbers 1, 2, 3 and 4

indicate whether the variable is a scalar, a 2-tuple, a 3-tuple or a 4-tuple variable.
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The * is replaced with the storage type of the variable. It can be i for integers, f

for single precision floating-point or d for doubles, etc. as in OpenGL. For example,

ShAttrib2f is a 2-tuple single precision floating-point variable. In the Sh prototype,

only single precision floating-point numbers were implemented because they are the

only values supported by Sm.

In the data type design of Sh, the ShAttrib[1234]* are the super classes of

all other classes. Most of the features of ShAttrib[1234]* are inherited by other

classes.

ShVector[1234]* are the data types for vectors.

ShNormal[1234]* are the data types for normals.

ShPoint[1234]* are the data types for points.

ShPlane[1234]* are the data types for planes.

ShColor[1234]* are the data types for color.

ShTexCoord[1234]* are the data types for texture coordinates.

ShTexture[123]D* are the data types for texture maps.

ShTextureCube* are the data types for cubic texture maps.

Other than the basic texture data types, we also derived data types for sparse

textures and for textures that support cubic interpolations. More detail will be

given in Chapter 6.

ShMatrix[1234]x[1234]* are the data types for matrices. The first number in-

dicates the number of rows and the second number indicates the number of columns.

For example, ShMatrix2x3f means a matrix with 2 rows and 3 columns of floats.
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The results of operations between variables of the same data type has the the

same data type. The results of operations between variables of different data types

has data type ShAttrib[1234]*. We chose this rule to keep the language simple

and easy to learn. We also do not restrict operations based on type. For instance,

two points can be added although this has no geometric meaning.

Some data types have special rules for certain operations. For example, point

and vector data types are promoted to corresponding homogeneous data of higher

dimensions automatically when homogeneous data are required in matrix opera-

tions. However, these exceptions are only applied when otherwise there will be an

error under the usual rules. In the case of homogeneous promotion, transformation

of a ShVector3f by a ShMatrix4x4f would otherwise result in a type mismatch.

Since float and double are converted to ShAttrib1* implicitly, any operations

on ShAttrib1* can be applied with one of the operands being a constant number.

Variables declared with the above data types are temporary variables that will

be given temporary registers in the GPU. The Input and Output modifiers in the

data types indicate the variables are input variables or output variables. Input

variables are allocated input registers and output variables are allocated output

registers. For instance, ShInputVector3f declares a variable as input vector that

has 3 components.

5.2 Parameters and Local Temporary Variables

Uniform parameters and varying local temporary variables use the same data types,

but work differently. Parameters are constant inside shaders. They are declared
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outside shaders and can only be modified outside shaders. Any attempts to modify

parameters inside shaders will cause error messages. When assembly code is gen-

erated, parameters are allocated constant registers. Local temporary variables are

first regarded as local constant variables until they are modified by non-constant

variables (any expression depending on an input variable is non-constant). Then

they are regarded as temporary variables. The registers for local temporary vari-

ables are allocated accordingly.

5.3 Operators

There are two kinds of operators in Sh: general operators borrowed from C++ and

Sh operators. General operators include arithmetic operators, compound assign-

ment operators, increment and decrement operators, relational operators, logic op-

erators and explicit type casting operators. Additional Sh operators include linear

algebra operators, texture lookup operators, swizzling operators, and writemasking

operators.

5.3.1 General Operators

Arithmetic Operators

Arithmetic operators such as +, −, ∗, /, etc. are component-wise operators

for all types, including matrices. Note that ∗ does not mean matrix multiplica-

tion. We also do not restrict operators based on type. The ^ operator is used for

exponentiation, since this is a common operation in lighting models.

Normally, these operators only apply between tuples of the same size. However,
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a 1-tuple is promoted by duplication to match tuples of any size on the other side

of an arithmetic operator. Since floats and doubles are converted to 1-tuples, these

operators can also be used with numeric constants.

operator left operand l right operand r function

+ n tuple n tuple component-wise

n×m matrix n×m matrix l + r

∗ n tuple or scalar n tuple or scalar component-wise

n×m matrix or scalar n×m matrix or scalar l ∗ r

/ n tuple n tuple or scalar component-wise

n×m matrix n×m matrix or scalar l/r

− n tuple n tuple component-wise

n×m matrix n×m matrix l − r

unary n tuple component-wise

− n×m matrix −r

^ scalar scalar lr

Increment and Decrement Operators

These operators increment or decrement a 1-tuple by 1.

operator left operand l right operand r function

prefix ++ scalar r = r + 1

postfix ++ scalar l = l + 1

prefix −− scalar r = r − 1

postfix −− scalar l = l − 1
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Compound Assignment Operators

Compound assignment operators are component-wise operators to modify vari-

able in place.

operator left operand l right operand r function

+ = n tuple n tuple component-wise

n×m matrix n×m matrix l = l + r

− = n tuple n tuple component-wise

n×m matrix n×m matrix l = l − r

∗ = n tuple n tuple component-wise

n×m matrix n×m matrix l = l ∗ r

/ = n tuple n tuple component-wise

n×m matrix n×m matrix l = l/r

Relational Operators

Relational operators are component-wise operators for evaluating the relation-

ship between two operands. Because we do not yet support booleans or integers,

these operators return a ShAttrib1f containing either the value 1.0 or 0.0.
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operator left operand l right operand r function

< n tuple n tuple component-wise

1× n matrix 1× n matrix l < r

n× 1 matrix n× 1 matrix

<= n tuple n tuple component-wise

1× n matrix 1× n matrix l <= r

n× 1 matrix n× 1 matrix

> n tuple n tuple component-wise

1× n matrix 1× n matrix l > r

n× 1 matrix n× 1 matrix

>= n tuple n tuple component-wise

1× n matrix 1× n matrix l >= r

n× 1 matrix n× 1 matrix

== n tuple n tuple component-wise

1× n matrix 1× n matrix l == r

n× 1 matrix n× 1 matrix

! = n tuple n tuple component-wise

1× n matrix 1× n matrix l ! = r

n× 1 matrix n× 1 matrix

Logic Operators

Logic operators are component-wise boolean operators. They act correctly on

tuples defined such that each component holds either a 1.0 or 0.0. However, “&&”
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can also be used to compute the minimum and “||” can also be used to compute

the maximum in other contexts.

operator left operand l right operand r function

! n tuple component-wise

1× n matrix 1− r

n× 1 matrix

&& n tuple n tuple component-wise “min”

1× n matrix 1× n matrix min(l, r)

n× 1 matrix n× 1 matrix

|| n tuple n tuple component-wise “max”

1× n matrix 1× n matrix max(l, r)

n× 1 matrix n× 1 matrix

5.3.2 Sh Operators

Linear Algebra Operators

In Sh, linear algebra is supported by two operators: the matrix/vector product

operator “|” and the cross product operator “&”. Their functions are listed in

the following table. If operator “|” is applied to a matrix and a tuple that don’t

have matching dimensions, special tuple promotion rules are applied to handle

homogeneous coordinates. For example, for ShMatrix4x4f | ShPoint3f, the 3

tuple will be promoted to a 4 tuple by assigning 1 to the forth component, since

it is a point; while in example ShMatrix4x4f | ShVector3f, the 3 tuple will be

promoted to a 4 tuple by assigning 0 to the forth component, since it is a vector.

If a tuple appears on the left of a | operator, it will be interpreted as a row
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vector. If a tuple appears on the right of a | operator, it will be interpreted as a

column vector. This rule eliminates the need for many transposes. Let x and y

be tuples, and let M be a matrix. Then x|y is the dot product of x and y, M|y is

the transformation of y as a column, and x|M is the transformation of x as a row.

Quadratic forms can be expressed with x|M|x.

operator left operand l right operand r function

| n tuple n tuple dot product of l and r

n×m matrix m tuple tuple r is column vector

n tuple n×m matrix tuple l is row vector

n×m matrix m× k matrix matrix multiplication

& 3 tuple 3 tuple cross product of l and r

Texture Lookup Operators

The texture lookup operator “[ ]” can only be applied to texture data types

such as ShTexture[123]D*, ShTextureCube*, ShSparseTexture2D* and ShCubic-

InterpTex2D*. It takes one parameter of type ShTexCoord[1234]*. The following

example illustrates how the operator “[ ]” is used.

1 ShTexture3Df tex;

2 ShTexCoord4f coord;

3 ShColor3f color = tex[coord];

In this example, a special rule is applied for homogeneous coordinate calculation.

The variable tex is a 3 dimensional texture map, and coord is 4-tuple texture
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coordinates. We divide the first 3 components of coord by its forth component and

use the results to do the texture lookup. If the dimensions of the coordinates and

texture match, this division is not performed.

Swizzle and Writemask Operators

The “( )” operator is used as the swizzling and writemasking operator. It can

be applied to both tuples and matrices. It is used in single pairs with tuples and

double pairs with matrices. When it is used with matrices, the first pair of “( )” is

used for selecting rows of the matrices and second pair of “( )” is used for selecting

columns. An empty “( )” with no argument means the whole row or whole column

is selected. The operator “( )” is a swizzling operator if it is used on the right

hand side of the assignment operator, and a writemasking operator if on the left

hand side. Pairs of “( )” can also be concatenated together. They are applied

from left to right. The final result is the combined result of them. The following

examples illustrate how the operator “( )” works.

1 ShVector4f c(0.1, 2, 3.4, 0.5), v;

2 c(1,2,3) = c(0,1,2);

copies the first, second and third components of

vector c to its second, third and forth components.

3 ShMatrix4x4f m(array), d, f;

4 ShMatrix3x3f a = m(0,1,2)(0,1,2);

assigns the first, second, third rows and first, second,

third columns of matrix m to matrix a.



CHAPTER 5. SH LANGUAGE FEATURES 77

5 d()(0) = a()(2);

assigns the third column of a to the first

column of d.

6 f(2)() = a(1)();

assigns the second row of a to the third row

of f.

7 v(0) = c(1,2)(0);

assigns the second component of c to the first

component of v.

8 a = m()(1,2,3)(0,1,2)(0,1,2);

5.4 Control Constructs

Semantically, Sh supports the same control constructs as those in C++, and also

supports arbitrary nesting of the control constructs. The Sh control construct

keywords are listed in the following table.
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Sh Control Construct C/C++ Control Construct

SH IF(c) if(c) {...}else{...}

SH ELSE

SH ENDIF

SH WHILE(c) while(c){...}

SH ENDWHILE

SH DO do{...}until(c)

SH UNTIL(c)

SH FOR(a,b,c) for(a; b; c){...}

SH ENDFOR

SH BREAK break;

SH CONTINUE continue;

SH SWITCH(c) switch(c){

SH ENDSWITCH case(c): {...}

SH CASE(c) default: {...}

SH DEFAULT }

5.5 Compile-time Checking

In Sh, data types are C++ classes defined with templates. There are some restric-

tions on operations on different data types. For instance, additions of variables

with different dimensions are not allowed (except for scalar promotion), the row
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and column of matrices must match in matrix operations (except for homogeneous

promotion) and so on. So we have to define operations on different data types.

Since the data types are defined with C++ templates, it is possible to define gen-

eral operations for a group of data types that work similarly, and define special

operations for certain data types as well. When undefined operations are invoked

in shaders, the C++ compiler will figure out that the operations are illegal and give

error messages. This is a way to make the error detection happen at compile-time

instead of run-time.

The Sh shading language doesn’t have its own modularity constructs. It borrows

C++ modularity constructs such as function calls, classes and templates to organize

shaders and reuse code.

5.6 Functions

Sh functions must be declared outside shaders. The return types and formal pa-

rameter types can be basic data types like int, double, etc., or Sh data types. The

actual parameters can be passed either by value or by reference.

The copy constructors of all Sh data type classes are defined to have the same

effect as an assignment operator. So when the actual parameters are passed as

values to the formal parameters, and when the return data are passed to the tem-

porary variables, the constructors are called to generate assignment parse trees.

Eventually, these extra assignments will be optimized away although they are not
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in our prototype. Instructions inside the function calls work the same way as in-

structions in a normal shader. They are parsed and the expression and control

keyword tokens are put into a token list.

So function calls in C++ generate inline code in Sh shaders. When a function

is called, instead of creating the overhead of a function call, a copy of the function

definition is placed at the point of the call. For now, this is the only function call

mechanism that Sh supports. Later on, we plan for Sh to support operator over-

loading of “( )” on shader objects to support real function calls in the generated

code, in anticipation of GPUs that support subroutines.

5.7 Classes

The definitions of vertex shader and fragment shader can be wrapped in a C++

class as in the following example. This example defines a Phong class. The vertex

shader and the fragment shader are defined in the constructor of the class.

When an object of the class is declared, the constructor is called to initialize the

object and the assembly code for vertex shader and fragment shader are generated

on the fly. With a different constructor parameter exp, each instance of the Phong

class defines its specialized shaders. The member function Bind() loads the shaders

into the GPU. The shaders do not necessarily have to be defined in the constructor.

They can be defined separately in different member functions.

The Sh parameters (global variables) are declared as public member variables

so that the parameters can be accessed and modified from outside of the class. It is

therefore possible for application programs to define shaders, modify parameters,
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and define shaders again with the new parameters.

Garbage collection here consists of two steps. First, at the end of the shader,

the shader variables are removed by C++. The destructors of these variables

reclaim the memory that is no longer referenced. Second, when the lifetime of

an object of the class ends, its private variables phong0 and phong1 are removed

automatically. The destructors of these shader variables clear all the memories

they are using, including the memory used by the parse tree. No explicit memory

deallocation is needed.

ShColor3f

phong (

ShVector3f hv;

ShNormal3f nv;

ShColor3f kd;

ShColor3f ks;

ShAttrib1f exp;

) {

ShAttrib1f hn = (normalize(hv) | normalize(nv));

return kd + ks * pow(hn, exp);

}

class Phong {

private:

ShShader phong0, phong1;



CHAPTER 5. SH LANGUAGE FEATURES 82

public:

ShTexture2DColor3f kd;

ShColor3f ks;

Phong (

double exp;

) {

ShShader phong0 = SH BEGIN SHADER(0) {

ShInputTexColor2f ui;

ShInputNormal3f nm;

ShInputPoint3f pm;

ShOutputVector3f hv;

ShOutputTexColord2f uo(ui);

ShOutputNormal3f nv;

ShOutputColor3f ec;

ShOutputPoint4f pd;

ShPoint3f pv = modelview | pm;

pd = perspective | pv;

nv = normalize(nm | adjoint(modelview));

ShVector3f lvv = light position - pv;
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ShAttrib1f rsq = 1.0 / (lvv | lvv);

lvv *= sqrt(rsq);

ShAttrib1f ct = max(0.0, (nv | lvv));

ec = light color * rsq * ct;

ShVector3f vv = -normalize(ShVector3f(pv));

hv = normalize(lvv + v);

} SH END SHADER;

phong1 = SH BEGIN SHADER(1) {

ShInputVector3f hv;

ShInputTexCoord2f u;

ShInputNormal3f nv;

ShInputColor3f ec;

ShInputAttrib1f pdz;

ShInputAtrib2f pdxy;

ShOutputColor3f fc;

ShOutputAttrib1f fpdz(pdz);

ShOutputAttrib2f fpdxy(pdxy);

fc = ec * phong(hv, nv, kd[u], ks, exp);

} SH END SHADER;

}
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void

bind() {

ShBindShader(phong0);

ShBindShader(phong1);

}

};

5.8 I/O Templates and Structs

Data types in Sh are defined in a class hierarchy. The type ShAttrib[1234]* is the

superclass of other classes. All classes are actually defined with C++ template ar-

guments. Each class takes two template parameters: tuple dimension and I/O type.

For instance, ShAttrib[1234]f is defined using a typedef of ShAttribf<int D,

int IO>. Parameter D is the tuple dimension, and parameter IO is the I/O type.

Parameter IO can be SH INPUT, SH OUTPUT or SH LOCAL.

One advantage of defining Sh data types with C++ templates is that Sh can use

templated C++ structs. A typical case is that the outputs of a vertex shader are

always the inputs of a fragment shader. If a struct is defined for this data set, the

struct can be used in both shaders. The I/O parameter should be set to SH INPUT

in vertex shader and SH OUTPUT in fragment shader. The following is an example

that uses an I/O struct in Sh.

template< int IO>

struct COMMON DATA {
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ShNormalf<3, IO>

ShColorf<3, IO>

ShVector<3, IO>;

};

Suppose these data types are the outputs in a vertex shader and the inputs in

a fragment shader, then in the vertex shader, the output variables can be declared

as COMMON DATA<SH OUTPUT>outv, whereas in the fragment shader, the input vari-

ables can be declared as COMMON DATA<SH INPUT>inv

Since the Sh data types are defined as template classes, users can add new

classes as subclasses of the Sh classes. Templates are suggested in the definition of

new classes, so that the new classes can still be used with structs.

But normally when we declare variables, we don’t use the template formats. We

use typedef to define convenient formats for data types. For example, instead of

using ShNormalf<3,SH INPUT> to declare a variable, we can use ShInputNormal3f.

5.9 Assembly Language

The Sh shading language is a high-level shading language, but it also supports

the embedding of assembly-like instructions. Each assembly-like instruction in Sh

corresponds to one instruction in the GPU. Sometimes we need to mix the high-

level language with the low-level language, especially when we already have the old

assembly code and we want to port it into Sh shaders directly. There are also times

when we want to hand optimize the shaders.
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For example, the expression c = a∗p+b will generate a parse tree which has one

“∗” node, one “+” node, and one “=” node because of the operator overloading.

Three assembly instructions are generated for this expression. But if we use the

multiply-add-copy instruction ShMAC(c, a, p, b), only one assembly instruction

is generated which does exactly the same thing.

Each Sh assembly-like instruction is a function call. In the Sh prototype, the

number of parameters in the functions is at most 4. The function generates a parse

tree that has a root node with four child nodes pointing to the parameters. The

root node also records the type of the operation. An assembly token pointing to

this root node is generated and pushed into the token list.

In the assembly-like function, Sh also checks to see if one temporary variable

(currently marked as a constant register) has been modified by non-constant vari-

ables. If so, this variable will be marked as temporary variable.

5.10 Library

Sh has a library of support functions similar to those in Cg, the OpenGL shading

language, and RenderMan. For example, since the “?:” operator in C++ cannot

be overloaded, we provided a function selection that does the same thing. We also

provide functions for evaluating noise, performing linear interpolation, evaluating

trigometric functions, and transposing and inverting matrices.
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Applications

Other than the basic 2D and 3D texture data types, as a test of Sh, we also

implemented new texture data types such as sparse textures and textures that

support cubic interpolation. The purpose of this work is not just to add a few useful

data types, but to experiment with abstraction mechanisms that can give users

great benefits and convenience. For instance, when users declare a sparse texture,

the texture will work the same way as normal textures, except it tries to do some

data compression to save memory resources. When users declare cubic interpolation

textures, the textures will check if the hardware supports cubic interpolation, if not,

the cubic interpolation is done in software. We could also check if the hardware does

linear interpolation and if so use a simpler cubic interpolation algorithm. There

are also automatic conversions between different data types so that users can do

different operations on the same data.
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6.1 Sparse Texture

Sparse textures have a relatively small number of foreground pixels on a uniform

background. To store a large sparse texture directly is not efficient. So if only the

background color and the few foreground pixels are stored, we could save a fair

amount of memory. To know the location of the foreground pixels, we also need an

index to record the location of each foreground area.

The Sh sparse texture data type uses two textures internally as shown in Fig-

ure 6.1. One is for data, the other is for index to the foreground pixels. In the

first texture, data are colours stored in blocks. The blocks start from the origin

(0,0). The first block is for the background color. Other blocks are for colours in

the foreground. In the index texture, each element is a pair of coordinates (for the

2D data texture).

The input sparse texture is first split into small square blocks. Each block

corresponds to one element in the index array. The sparse texture is scanned block

by block. If there is no foreground in the current block, the coordinates in the

index texture is set to (0,0) indicating that the color of this block is the color of the

background stored in the first block. If the current block has foreground pixels, the

block should be put into the next block in the data texture. The coordinates for

this block in the index texture are set to the offset of the block in the data texture.

In Figure 6.1, the input is a 16× 16 sparse texture. The background is a white

color. The foreground is a black patch. The gray grid is the texture pixel. The

texture is split into 4× 4 blocks as indicated by the black grid. Of these 16 blocks,

there are 6 blocks that have foregrounds indicated by number 1 to 6. The data
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Figure 6.1: Sparse texture

texture has to have at least 7 blocks (one for the background color). The index

texture is 4 × 4. The blocks that have foregrounds are stored in the data texture

as shown in Figure 6.1 (c). The coordinates in the index texture are the offsets of

the blocks in the data texture.

The texture lookup includes three steps. Given the texture coordinates, first

compute which block the pixel falls in and the offset of this pixel in the block.

Second, perform a texture lookup in the index texture to find the origin of the

block in the data texture. Third, perform a texture lookup in the data texture

using the origin and offset to find the color of the pixel.

In Figure 6.1, the original texture has 64 pixels. In the compressed format, we

have 52 pixels. The compression ratio is 81.25%. However, this is a fairly trivial

example. The compression ratio is determined by how many foregrounds there are
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and by how the sparse texture is split.

Figure 6.2 shows how a more realistic sparse texture is compressed. The left

image is the original image. The right image shows how the foreground is com-

pressed. The red square at the top-left corner is the background color. The blue

part of the image is used to pad the texture’s dimensions to powers of two (because

we used square textures which is the only supported texture type in Sm when the

Sh prototype was implemented).

Since the square texture in GPU has to be powers of 2, the compression ratio is

decreased by a certain amount. In the worst case, the texture may actually increase

its memory requirement because of the extra index data. We can also pack the index

into one texture with the data. Retangular textures can also be used, which will

get rid of the powers of 2 requirement. On current GPUs, retangular textures have

to be used for floating point data anyway. Such textures do not support either

filtering or bilinear interpolation. This does not matter, however, because we have

to compute bilinear interpolation and filtering after the sparse lookup. This idea

could be extended to variable resolution textures and vector quantization.

6.2 Cubic Interpolation

Normally GPU only supports nearest-neighbor and linear-interpolation texture

lookup. We developed a texture map type in Sh for cubic interpolation.

Given a texture map, we hope to find a cubic B-Spline surface that each pixel

on the texture falls exactly on the surface, and other points on the surface between

the pixels are the B-Spline cubic interpolation of the adjacent pixels. Once the
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Figure 6.2: The compression of sparse texture
The left image is the original sparse texture. The right image shows how the

foreground data are stored.
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surface is found, we can get the cubic-interpolated color for any given coordinates

in the texture.

The Sh cubic-interpolated texture data type was based on this idea. A spline

surface can be represented relative to either the Cardinal spline bases or the uniform

B-Spline basis. For the texture that is going to be interpolated, the original pixel

colors are the Cardinal spline coefficients. We can easily get the B-Spline coefficients

from the Cardinal spline coefficients. Then we store the B-Spline coefficients instead

of the Cardinal spline coefficients. We do this, because over all C2 cubic spline basis,

the uniform B-spline basis has minimal support. This minimizes the number of data

points we have to access to perform an interpolation.

Figure 6.3: Texture with reflection borders

To get the cubic-interpolated color at an arbitrary position in the texture, we

need the adjacent 16 B-Spline coefficients as is shown in Figure 6.3. For the points

along the edges, a reflective border condition is used. To speed up the computation,

we store the border pixels together with the texture in a bigger texture, so we avoid

computing the border pixels.

Figure 6.3 is the texture that is actually stored in GPU. The inner square
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represents the original B-spline data, and the outer square represents the data with

reflective borders.

Figure 6.4 and Figure 6.5 are the results of bi-cubic interpolation texture lookup.

Small images are mapped onto a bigger plane. The left column is the result of

nearest-neighbor texture lookup. The middle column is the result of bilinear inter-

polation texture lookup. The right column is the result of bi-cubic interpolation

texture lookup.

From the results we see that when the images get smaller and smaller (8×8 and

4×4), bilinear interpolation starts to exhibit obvious artifacts. In Figure 6.4, when

the texture map is 8 × 8, the bilinear interpolation has artifacts and the shape of

the flower is not kept as well as the one using bi-cubic interpolation. In Figure 6.5,

when the texture map is 8 × 8, the red circle starts to change to a square when

using bilinear interpolation, whereas the red circle is quite well preserved when

using cubic interpolation.

Cubic interpolation can be used in many applications. It can be used for image

texture compression. In image pyramids [8], when smaller images are used to

approximate bigger images, cubic interpolation can get lower approximation error

for the same amount of data. Cubic interpolation can be used in BRDF data

compression (as in Figure 6.5) as well. Since the compressed BRDF data can be

well approximated with smaller errors by cubic interpolation, we can increase the

compression ratio. The disadvantage with cubic interpolation based on the B-spline

basis is that the data needs to be preprocessed. If the original pixels are used as

B-spline coefficients, the image will be over blurred. Conversion from the original
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pixels to the necessary B-spline coefficients is equivalent to a sharpening of the input

image. This can be accomplished with a pair of causal and anti-causal recursive

filters [44].

6.3 Conversions Between Texture Data Types

The new texture types can convert to each other automatically. The conversion

happens at the declaration of new texture variables. When the user declares a

new texture variable and initializes it with an old texture variable, the new texture

variable will copy texture data from the old texture variable and store these data in

current texture format. So the users can use the features of the new textures. Note

that this is where we do the preprocessing to convert from pixel values to B-spline

coefficients, for instance. All new texture types also support the [ ] texture lookup

operator so they can be used interchangeably in shaders.
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Figure 6.4: Results of cubic interpolation of hoya flower. Images of 32 × 32 (first
row), 16 × 16 (second row), 8 × 8 (third row) and 4 × 4 (forth row) are mapped
onto a plane. The left column is the result of nearest-neighbor texture lookup.
The middle column is the result of bilinear interpolation texture lookup. The right
column is the result of bi-cubic interpolation texture lookup.
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Figure 6.5: Results of cubic interpolation of BRDF data. Images of 32 × 32 (first
row), 8× 8 (second row) and 4× 4 (third row) are mapped onto a plane. The left
column is the result of nearest-neighbor texture lookup. The middle column is the
result of bilinear interpolation texture lookup. The right column is the result of
bi-cubic interpolation texture lookup.
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Results

This chapter presents some more example shaders that demonstrate some useful

aspects of the Sh shading language. The examples are:

• Modified Phong Lighting Model

• Separable BRDFs and Material Mapping

• Parameterized Noise

• Julia Set

The first example is a simple shader implementing the Blinn-Phong lighting

model. The second example shows an alternative method for building lighting

methods, homomorphic factorization, but also combines several materials using

material mapping. The third example demonstrates the use of a noise function to

implement wood and marble shaders. Noise can be either provided by the under-

lying shading system or implemented by the compiler using precomputed textures,

97
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without change to the high-level shader (although implementing noise using tex-

tures will, of course, use up texture units). The fourth example demonstrates a

complex computation using a loop: the Julia set fractal.
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7.1 Modified Phong Lighting Model

This example implements the modified Blinn-Phong lighting Model. An example

image is shown in Figure 7.1. The vertex shader is shown in Figure 7.2 and the

fragment shader is shown in Figure 7.3.

Figure 7.1: Sh example of Blinn-Phong shading
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ShShader phong0 = SH BEGIN SHADER(0) {
// declare input vertex parameters

// unpacked in order given

ShInputTexCoord2d ui; // texture coords

ShInputNormal3f nm; // normal vector (MCS)

ShInputPoint3f pm; // position (MCS)

// declare outputs vertex parameters

// packed in order given

ShOutputVector3f hv; // half-vector (VCS)

ShOutputTexCoord2f uo(ui); // texture coords

ShOutputNormal3f nv; // normal (VCS)

ShOutputColor3f ec; // irradiance

ShOutputPoint4f pd; // position (HDCS)

// compute VCS position

ShPoint3f pv = modelview | pm;

// compute DCS position

pd = perspective | pv;

// compute normalized VCS normal

nv = normalize(nm | adjoint(modelview));

// compute normalized VCS light vector

ShVector3f lvv = light position - pv;

ShAttrib1f rsq = 1.0 / (lvv | lvv);

lvv *= sqrt(rsq);

// compute irradiance

ShAttrib1f ct = max(0, (nv|lvv));

ec = light color * rsq * ct;

// compute normalized VCS view vector

ShVector3f vvv = -normalize(pv);

// compute normalized VCS half vector

hv = normalize(lvv + vvv);

} SH END SHADER;

Figure 7.2: Sh vertex shader for the Blinn-Phong lighting model.
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ShShader phong1 = SH BEGIN SHADER(1) {
// declare input fragment parameters

// unpacked in order given

ShInputVector3f hv; // half-vector(VCS)

ShInputTexCoord2f u; // texture coordinates

ShInputNormal3f nv; // normal (VCS)

ShInputColor3f ec; // irradiance

ShInputAttrib1f pdz; // fragment depth (DCS)

ShInputAttrib2f pdxy; // fragment 2D position (DCS)

// declare output fragment parameters

// packed in order given

ShOutputColor3f fc; // fragment color

ShOutputAttrib1f fpdz(pdz); // fragment depth

ShOutputAttrib2f fpdxy(pdxy); // fragment 2D position

// compute Blinn-Phong lighting model

fc = phong cd[u] + phong cs[u]

* pow((normalize(hv)|normalize(nv), phong exp);

// multiply by irradiance

fc *= ec;

} SH END SHADER;

Figure 7.3: Sh fragment shader for the Blinn-Phong lighting model.
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7.2 Separable BRDFs and Material Mapping

Separable BRDFs [30] approximate BRDFs by factorization. In particular, a nu-

merical technique called homomorphic factorization is used to find a separable

approximation to any shift-invariant BRDF. BRDFs are factorized into terms de-

pendent directly on incoming light direction, outgoing view direction and half vector

direction, all expressed relative to the local surface frame. To model the depen-

dence of the reflectance on surface position, we can sum over several BRDFs, using

a texture map to modulate each BRDF. This is called material mapping.

An example image is shown in Figure 7.4. The vertex shader is shown in Fig-

ure 7.5 and the fragment shader is shown in Figure 7.6.

Figure 7.4: Sh example of separable BRDF
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ShShader hf0 = SH BEGIN SHADER(0) {
// declare input vertex parameters, unpacked in order given

ShInputTexCoord2f ui; // texture coords

ShInputVector3f t1; // primary tangent

ShInputVector3f t2; // secondary tangent

ShInputPoint3f pm; // position (MCS)

// declare output vertex parameters, packed in order given

ShOutputVector3f vvs; // view-vector (SCS)

ShOutputVector3f hvs; // half-vector (SCS)

ShOutputVector3f lvs; // light-vector (SCS)

ShOutputTexCoord2f uo(ui); // texture coords

ShOutputColor3f ec; // irradiatestingnce

ShOutputPoint4f pd; // position (HDCS)

// compute VCS position

ShPoint3f pv = modelview | pm;

// compute DCS position

pd = perspective | pv;

// transform and normalize tangents

t1 = normalize(modelview | t1);

t2 = normalize(modelview | t2);

// compute normal via a cross product

ShNormal3f nv = normalize(t1 & t2);

// compute normalized VCS light vector

ShVector3f lvv = light position - pv;

ShAttrib1f rsq = 1.0 / (lvv|lvv);

lvv *= sqrt(rsq);

// compute irradiance

ShAttrib1f ct = max(0, nv|lvv);

ec = light color * rsq * ct;

// compute normalized VCS view vector

ShVector3f vvv = -normalize(pv);

// compute normalized VCS half vector

ShVector3f hv = normalize(lvv + vvv);

// project BRDF parameters onto SCS

vvs = ShVector3f((vvv|t1), (vvv|t2), (vvv|nv));

hvs = ShVector3f((hvv|t1), (hvv|t2), (hvv|nv));

lvs = ShVector3f((lvv|t1), (lvv|t2), (lvv|nv));

} SH END SHADER;

Figure 7.5: Sh vertex shader for homomorphic factorization.
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ShTexCoord3f parabolic (ShVector3f v) {
ShTexCoord3f u;

ShAttrib3f nv = normalize(v);

u(0) = (7.0/8.0) * nv(0) + nv(2) + 1;

u(1) = (7.0/8.0) * nv(1) + nv(2) + 1;

u(2) = 2.0 * (nv(2) + 1);

return u;

}
ShShader hf1 = SH BEGIN SHADER(1) {

// declare input fragment parameters, unpacked in order given

ShInputVector3f vv; // view-vector (SCS)

ShInputVector3f hv; // half-vector (SCS)

ShInputVector3f lv; // light-vector (SCS)

ShInputTexCoord2f u; // texture coordinates

ShInputColor3f ec; // irradiance

ShInputAttrib1f pdz; // fragment depth (DCS)

ShInputAttrib2f pdxy; // fragment position (DCS)

// declare output fragment parameters, packed in order given

ShOutputColor3f fc; // fragment color

ShOutputAttrib1f fpdz(pdz); // fragment depth

ShOutputAttrib2f fpdxy(pdxy); // fragment position

// initialize total reflectance

fc = ShColor3f(0.0, 0.0, 0.0);

// sum up contribution from each material

for(int m = 0; m < M; m++) {
// sum up weighted reflectance

fc += hf mat[m][u] * hf alpha[m]

* hf p[m][parabolic(vv)] * hf p[m][parabolic(lv)]

* hf q[m][parabolic(hv)];

}
// multiply by irradiance

fc *= ec;

} SH END SHADER;

Figure 7.6: Sh fragment shader for homomorphic factorization.
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7.3 Parameterized Noise

In this example, the simple parameterized noise model proposed by John C. Hart

et al. [16] is implemented to simulate wood. It can also be used to simulate marble

and similar materials.

An example image is shown in Figure 7.7. The vertex shader is shown in Fig-

ure 7.8 and the fragment shader is shown in Figure 7.9.

Figure 7.7: Sh example of wood
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ShShader pnm0 = SH BEGIN SHADER(0) {
// declare input vertex parameters, unpacked in order given

ShInputNormal3f nm; // normal vector (MCS)

ShInputPoint3f pm; // position (MCS)

// declare output vertex parameters, packed in order given

ShOutputPoint4f ax; // coeffs x MCS position

ShOutputPoint4f x; // position (MCS)

ShOutputVector3f hv; // half-vector (VCS)

ShOutputNormal3f nv; // normal (VCS)

ShOutputColor3f ec; // irradiance

ShOutputPoint4f pd; // position (HDCS)

// transform position

ShPoint3f pv = modelview | pm;

pd = perspective | pv;

// transform normal

nv = normalize(nm | adjoint(modelview));

// compute normalized VCS light vector

ShVector3f lvv = light position - pv;

ShAttrib1f rsq = 1.0/(lvv|lvv);

lvv *= sqrt(rsq);

// compute irradiance

ShAttrib1f ct = max(0,(nv|lvv));

ec = light color * rsq * ct;

// compute normalized VCS view vector

ShVector3f vvv = -normalize(pv);

// compute normalized VCS half vector

hv = norma(lvv + vvv);

// projectively normalized position

x = projnorm(pm);

// compute half of quadric

ax = pnm quadric | x;

} SH END SHADER;

Figure 7.8: Sh vertex shader for wood.
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ShShader pnm1 = SH BEGIN SHADER(1) {
// declare input fragment parameters, unpacked in order given

ShInputPoint4f ax; // coeffs x MCS position

ShInputPoint4f x; // position (MCS)

ShInputVector3f hv; // half-vector (VCS)

ShInputVector3f nv; // normal (VCS)

ShInputColor3f ec; // irradiance

ShInputAttrib1f pdz; // fragment depth (DCS)

ShInputAttrib2f pdxy; // fragment 2D position (DCS)

// declare output fragment parameters, packed in order given

ShOutputColor3f fc; // fragment color

ShOutputAttrib1f fpdz(pdz); // fragment depth

ShOutputAttrib2f fpdxy(pdxy); // fragment 2D position

// compute texture coordinates

ShTexCoord1f u = (x|ax) + turbulence(pnm alpha, x);

// compute Blinn-Phong lighting model

fc = phong cd[u] + phong cs[u]

* pow((normalize(hv)|normalize(nv)), phong exp);

// multiply by irradiance

fc *= ec;

} SH END SHADER;

Figure 7.9: Sh fragment shader for wood.
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7.4 Julia Set

This example implements the Julia set fractal. The example demonstrates the use

of a conditional loop. This is not really a practical example, it is just meant to

show the syntax for the definition of loops.

An example image is shown in Figure 7.10. The vertex shader is shown in

Figure 7.11 and the fragment shader is shown in Figure 7.12.

Figure 7.10: Sh example of Julia set
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ShShader julia0 = SH BEGIN SHADER {
// declare input vertex parameters, unpacked in order given

ShInputTexCoord2f ui; // texture coords

ShInputPoint3f pm; // position (MCS)

// declare outputs vertex parameters, packed in order given

ShOutputTexCoord2f uo(ui); // texture coords

ShOutputPoint4f pd; // position (HDCS)

// compute DCS position

pd = (perspective | modelview) | pm;

} SH END SHADER;

Figure 7.11: Sh vertex shader for Julia set.
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ShShader julia1 = SH BEGIN SHADER(1) {
// declare input fragment parameters, unpacked in order given

ShInputTexCoord2f u; // texture coordinates

ShInputAttrib1f pdz; // fragment depth (DCS)

ShInputAttrib2f pdxy; // fragment 2D position (DCS)

// declare output fragment parameters, packed in order given

ShOutputColor3f fc; // fragment color

ShOutputAttrib1f fpdz(pdz); // fragment depth

ShOutputAttrib2f fpdxy(pdxy); // fragment 2D position

ShAttrib1f i = 0;

ShAttrib2f v = u;

SH WHILE((v|v) < 2.0 && i < julia max iter) {
v(0) = u(0) * u(0) - u(1) * u(1) + julia c(0);

v(1) = 2 * u(0) * u(1) + julia c(1);

u = v;

i++;

} SH ENDWHILE;

// send increment through lookup table

fc = julia map[julia scale * i];

} SH END SHADER;

Figure 7.12: Sh fragment shader for Julia set.
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Conclusion

In this thesis, the Sh shading language prototype was described. This language is

an embedded shading language targeting GPUs. It is built on top of C++. The

compiler was constructed using C++ operator overloading for expressions, and a

recursive descent parser for control constructs. C++ classes and templates are used

to construct data types. Smart pointers are used for garbage collection.

8.1 The Sh Pros and Cons

Compared with other shading languages, the main differences with Sh are how it is

implemented and how it is bound to the main application. Conventional shading

languages are built just like normal programming languages. The development

of those languages has to start from the scratch. Since our language is built on

top of C++, its development avoided lots of the work that has to be done in

conventional compilers. For example, the parsing of the expressions in Sh is done by
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C++ automatically, the parsing of control constructs is simply done by a recursive

descent parser, and the definition of data types is implemented by C++ classes and

templates. Although the construction of our compiler is simple, we get a relatively

complete language.

The reason we say our language is relatively complete is due to several aspects.

First, we have relatively complete data types. The Sh data types include Vector,

Normal, Point, Texture, Matrix, etc., while in other shading languages, for in-

stance Cg, the data types are simply groups of floats, such as float3, float4. We

distinguish different data types, because we can add special features, or restrictions

to different data types. The Sh language also supports arrays. The arrays are

declared just like in C++. Since the pointer is not supported in Sh, arrays must

be defined using array syntax. C++ also gives the users the ability to define new

types as needed.

The Sh language has a complete set of operators. The operators include arith-

metic operators, increment and decrement operators, compound assignment opera-

tors, rational operators, logic operators, type casting operators, linear algebra oper-

ators, texture lookup operators, swizzle and writemask operators. These operators

cover all the C++ operators and extend them with specific graphics operators.

The control constructs in Sh are complete. Compared with C++, semantically,

the Sh language has every control construct that C++ has, although some of them

cannot be used for now, such as SWITCH... CASE... because of the limitations

of current GPU.

Although Sh does not have a subprogram capability, it can use the modularity
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constructs of C++ to better organize the shaders. In Chapter 5, we have already

introduced how C++ functions, classes and templates are used to organize the Sh

code. Some of the other shading languages also support functions. But only Sh can

use class and template because it takes advantage of C++. Note that the fact

that Sh only inlines functions is not a disadvantage relative to other existing shading

language implementation. All other shading languages also implement functions by

inlining.

The Sh language tries to provide a complete library to users. We can never

say that our library is complete, but the Sh developers will do their best to satisfy

users. However, since Sh is based on C++, users can define their own libraries and

use C++ linking tools to provide separate compilation. Separate compilation is not

supported in many other shading languages.

There are some advantages of Sh over other shading languages. First, the Sh

language is easy to extend. The Sh data types are C++ classes, and the Sh oper-

ators are operators defined for these data types, so users can define their own data

types and operators easily. Second, Sh can use C++ features directly, the C++

modularity constructs are used in Sh, and the C++ control constructs are lifted

into Sh. Third, binding of Sh shaders with application programs is extremely easy.

The Sh language is in fact a C++ library, so the binding of Sh shaders with applica-

tion programs only involves the matching of input and output data of shaders. The

shaders can be put anywhere, either in separate files or mixed with other applica-

tion programs. In other shading languages, the binding of shaders with application

programs is a nuisance, and the shaders have to be put in separate files, because the
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shading languages are completely different languages from the host languages, and

the compilation has to be done separately, normally containing two steps, whereas

the compilation of Sh shaders is a one-step process using C++ compiler. Fourth,

the Sh language is similar to C++, so it is convenient for C/C++ users to learn

without putting in too much effort. Finally, with the future development of C++,

Sh shaders can always use new C++ features.

On the other hand, since Sh is embedded in C++, the restrictions in C++ pose

some challenges to the Sh language. Syntactically, the Sh language cannot follow

the C++ rules accurately. A simple example is the Sh control constructs. Since we

cannot overload “;”, the arguments in Sh FOR loop are separated by “,” instead

of “;”. In error checking, some errors that should be checked at compile time are

delayed to run time. An example for this is the SH BREAK and SH CONTINUE. The

illegal use of them are only checked at run time, because the parsing of Sh control

constructs is in fact performed at run time. Although we did lift the checking of

matching control construct keywords to compile time by using pairs of “{” and “}”,

the error messages we get from the C++ compiler are not precisely what we want.

Debugging of shaders is also a problem. GPUs don’t provide APIs for accessing

intermediate values in registers, so it is hard to provide a convenient debugging tool

as in other languages. This is also a problem with other GPU shading languages

though. In fact, Sh can be used in immediate mode to simulate the computation

on the GPU and can be debugged using normal C++ tools.
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8.2 Improvement and Future Work

Despite all the problems we have met in the development of Sh, the work described

in this thesis demonstrates that building an embedded shading language on top of

C++ is not only possible but also efficient. This language prototype has all the basic

functionality a language needs, and its expressiveness has been tested by several

application shaders. Yet improvements to our language are still necessary. Since

the prototype was implemented, a new version of Sh was built with an improved

parser and optimizer.

Through the optimizations performed in this thesis, we found that a better data

structure was needed to represent the internal data so that optimizations can be

powerful and efficient. The static single assignment (SSA) form and control depen-

dency graph is now being used to represent data flow and control flow properties of

programs. An efficient algorithm that computes these data structures for arbitrary

control flow graphs is available [9]. In this algorithm, the intermediate code is put

into SSA form, optimizations such as code motion, elimination of partial redundan-

cies and constant propagation are performed on the SSA form representation, then

the optimized SSA form is put back into intermediate code.

In the Sh prototype, the parse tree for each expression was relatively indepen-

dent. Each expression has one assignment and one assignment token is pushed

into the token list. This representation has been changed in the new version of Sh.

Now, each operator generates a new value that is assigned to a temporary register,

and this assignment token is put into the token list. So in the token list, all the

expression tokens are simple assignments. This intermediate code is closer to SSA
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form and therefore is easier to put into SSA form than before. This approach to

parsing generates more data motion but the more powerful optimizer can clean this

up. Also, we do not need to depend on a garbage collector to recover parse trees

for expressions as they are never built.

Future work will focus on the following areas. Optimization needs to be ex-

tended to handle writemasking. SSA form has difficulty representing partial up-

dates. A better debugging tool needs to be developed. Methods should be found

to lift as much error checking as possible to C++ compile time. Real function calls

should be added by overloading the “( )” operator when GPUs support subrou-

tines. The Sh library needs to be extended by adding more useful functions, and

more example shaders should be provided to users. Finally, it would be interesting

to explore operators that recombine shaders into new shaders, providing new forms

of code reuse and modularity.
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